text
stringlengths 7
318k
| id
stringlengths 14
166
| metadata
dict | __index_level_0__
int64 0
439
|
---|---|---|---|
# coding=utf-8
# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for BigBird."""
import os
import re
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model",
"google/bigbird-roberta-large": (
"https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"
),
"google/bigbird-base-trivia-itc": (
"https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"
),
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/bigbird-roberta-base": 4096,
"google/bigbird-roberta-large": 4096,
"google/bigbird-base-trivia-itc": 4096,
}
class BigBirdTokenizer(PreTrainedTokenizer):
"""
Construct a BigBird tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The begin of sequence token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
prefix_tokens: List[int] = []
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="<pad>",
sep_token="[SEP]",
mask_token="[MASK]",
cls_token="[CLS]",
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
sep_token=sep_token,
mask_token=mask_token,
cls_token=cls_token,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
@property
def vocab_size(self):
return self.sp_model.get_piece_size()
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.convert_tokens_to_string
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def _decode(
self,
token_ids: List[int],
skip_special_tokens: bool = False,
clean_up_tokenization_spaces: bool = None,
spaces_between_special_tokens: bool = True,
**kwargs,
) -> str:
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
sub_texts = []
current_sub_text = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
current_sub_text = []
sub_texts.append(token)
else:
current_sub_text.append(token)
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
# Mimic the behavior of the Rust tokenizer:
# No space before [MASK] and [SEP]
if spaces_between_special_tokens:
text = re.sub(r" (\[(MASK|SEP)\])", r"\1", " ".join(sub_texts))
else:
text = "".join(sub_texts)
clean_up_tokenization_spaces = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
clean_text = self.clean_up_tokenization(text)
return clean_text
else:
return text
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A Big Bird sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
| transformers/src/transformers/models/big_bird/tokenization_big_bird.py/0 | {
"file_path": "transformers/src/transformers/models/big_bird/tokenization_big_bird.py",
"repo_id": "transformers",
"token_count": 6494
} | 312 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_blenderbot": [
"BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"BlenderbotConfig",
"BlenderbotOnnxConfig",
],
"tokenization_blenderbot": ["BlenderbotTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_blenderbot_fast"] = ["BlenderbotTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_blenderbot"] = [
"BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BlenderbotForCausalLM",
"BlenderbotForConditionalGeneration",
"BlenderbotModel",
"BlenderbotPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_blenderbot"] = [
"TFBlenderbotForConditionalGeneration",
"TFBlenderbotModel",
"TFBlenderbotPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_blenderbot"] = [
"FlaxBlenderbotForConditionalGeneration",
"FlaxBlenderbotModel",
"FlaxBlenderbotPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_blenderbot import (
BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotConfig,
BlenderbotOnnxConfig,
)
from .tokenization_blenderbot import BlenderbotTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_fast import BlenderbotTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot import (
BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotForCausalLM,
BlenderbotForConditionalGeneration,
BlenderbotModel,
BlenderbotPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot import (
TFBlenderbotForConditionalGeneration,
TFBlenderbotModel,
TFBlenderbotPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
FlaxBlenderbotPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/blenderbot/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/blenderbot/__init__.py",
"repo_id": "transformers",
"token_count": 1632
} | 313 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Blip model configuration"""
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json",
"Salesforce/blip-vqa-capfit-large": (
"https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json"
),
"Salesforce/blip-image-captioning-base": (
"https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json"
),
"Salesforce/blip-image-captioning-large": (
"https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json"
),
"Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json",
"Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json",
"Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json",
"Salesforce/blip-itm-large-flikr": (
"https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json"
),
}
class BlipTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BlipTextModel`]. It is used to instantiate a BLIP
text model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the `BlipText` used by the [base
architectures](https://huggingface.co/Salesforce/blip-vqa-base).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30524):
Vocabulary size of the `Blip` text model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`BlipModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
encoder_hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers from the vision model.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
bos_token_id (`int`, *optional*, defaults to 30522):
The id of the `beginning-of-sequence` token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the `end-of-sequence` token.
pad_token_id (`int`, *optional*, defaults to 0):
The id of the `padding` token.
sep_token_id (`int`, *optional*, defaults to 102):
The id of the `separator` token.
is_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as a decoder.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
Example:
```python
>>> from transformers import BlipTextConfig, BlipTextModel
>>> # Initializing a BlipTextConfig with Salesforce/blip-vqa-base style configuration
>>> configuration = BlipTextConfig()
>>> # Initializing a BlipTextModel (with random weights) from the Salesforce/blip-vqa-base style configuration
>>> model = BlipTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "blip_text_model"
def __init__(
self,
vocab_size=30524,
hidden_size=768,
encoder_hidden_size=768,
intermediate_size=3072,
projection_dim=768,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=512,
hidden_act="gelu",
layer_norm_eps=1e-12,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
initializer_range=0.02,
bos_token_id=30522,
eos_token_id=2,
pad_token_id=0,
sep_token_id=102,
is_decoder=True,
use_cache=True,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
sep_token_id=sep_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.encoder_hidden_size = encoder_hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.hidden_dropout_prob = hidden_dropout_prob
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.is_decoder = is_decoder
self.use_cache = use_cache
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from BlipConfig
if config_dict.get("model_type") == "blip":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class BlipVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`BlipVisionModel`]. It is used to instantiate a
BLIP vision model according to the specified arguments, defining the model architecture. Instantiating a
configuration defaults will yield a similar configuration to that of the Blip-base
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (`int`, *optional*, defaults to 384):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 1e-10):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
Example:
```python
>>> from transformers import BlipVisionConfig, BlipVisionModel
>>> # Initializing a BlipVisionConfig with Salesforce/blip-vqa-base style configuration
>>> configuration = BlipVisionConfig()
>>> # Initializing a BlipVisionModel (with random weights) from the Salesforce/blip-vqa-base style configuration
>>> model = BlipVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "blip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
projection_dim=512,
num_hidden_layers=12,
num_attention_heads=12,
image_size=384,
patch_size=16,
hidden_act="gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=1e-10,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
cls._set_token_in_kwargs(kwargs)
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from BlipConfig
if config_dict.get("model_type") == "blip":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class BlipConfig(PretrainedConfig):
r"""
[`BlipConfig`] is the configuration class to store the configuration of a [`BlipModel`]. It is used to instantiate
a BLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
a configuration with the defaults will yield a similar configuration to that of the BLIP-base
[Salesforce/blip-vqa-base](https://huggingface.co/Salesforce/blip-vqa-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`BlipTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`BlipVisionConfig`].
projection_dim (`int`, *optional*, defaults to 512):
Dimentionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* paramter. Default is used as per the original BLIP implementation.
image_text_hidden_size (`int`, *optional*, defaults to 256):
Dimentionality of the hidden state of the image-text fusion layer.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import BlipConfig, BlipModel
>>> # Initializing a BlipConfig with Salesforce/blip-vqa-base style configuration
>>> configuration = BlipConfig()
>>> # Initializing a BlipPModel (with random weights) from the Salesforce/blip-vqa-base style configuration
>>> model = BlipModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a BlipConfig from a BlipTextConfig and a BlipVisionConfig
>>> # Initializing a BLIPText and BLIPVision configuration
>>> config_text = BlipTextConfig()
>>> config_vision = BlipVisionConfig()
>>> config = BlipConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "blip"
def __init__(
self,
text_config=None,
vision_config=None,
projection_dim=512,
logit_scale_init_value=2.6592,
image_text_hidden_size=256,
**kwargs,
):
super().__init__(**kwargs)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `BlipTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.")
self.text_config = BlipTextConfig(**text_config)
self.vision_config = BlipVisionConfig(**vision_config)
self.text_config.encoder_hidden_size = self.vision_config.hidden_size
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = 1.0
self.initializer_range = 0.02
self.image_text_hidden_size = image_text_hidden_size
@classmethod
def from_text_vision_configs(cls, text_config: BlipTextConfig, vision_config: BlipVisionConfig, **kwargs):
r"""
Instantiate a [`BlipConfig`] (or a derived class) from blip text model configuration and blip vision model
configuration.
Returns:
[`BlipConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
| transformers/src/transformers/models/blip/configuration_blip.py/0 | {
"file_path": "transformers/src/transformers/models/blip/configuration_blip.py",
"repo_id": "transformers",
"token_count": 6358
} | 314 |
# coding=utf-8
# Copyright 2022 HuggingFace Inc. team and BigScience workshop.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch BLOOM model."""
import math
import warnings
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
from torch.nn import functional as F
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_bloom import BloomConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "bigscience/bloom-560m"
_CONFIG_FOR_DOC = "BloomConfig"
BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = [
"bigscience/bigscience-small-testing",
"bigscience/bloom-560m",
"bigscience/bloom-1b1",
"bigscience/bloom-1b7",
"bigscience/bloom-3b",
"bigscience/bloom-7b1",
"bigscience/bloom",
]
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
"""
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
`softmax(l+a) = softmax(l)`. Based on
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
Args:
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
attention_mask (`torch.Tensor`):
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
num_heads (`int`, *required*):
number of heads
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
dtype of the output tensor
"""
batch_size, seq_length = attention_mask.shape
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
base = torch.tensor(
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
)
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = torch.tensor(
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
# => the query_length dimension will then be broadcasted correctly
# This is more or less identical to T5's relative position bias:
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
alibi = slopes[..., None] * arange_tensor
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
"""
Dropout add function
Args:
x (`torch.tensor`, *required*):
input tensor
residual (`torch.tensor`, *required*):
residual tensor
prob (`float`, *required*):
dropout probability
training (`bool`, *required*):
training mode
"""
out = F.dropout(x, p=prob, training=training)
out = residual + out
return out
def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor:
"""
Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to
make the model jitable.
Args:
x (`torch.tensor`, *required*):
input hidden states
"""
return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))
def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor:
"""
gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) +
0.3989423 * x * torch.exp(-0.5 * x * x)
Args:
g (`torch.tensor`, *required*):
gradient output tensor
x (`torch.tensor`, *required*):
input tensor
"""
x = x[0] # x is a tuple of 1 element, needs to unpack it first
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out)
return ff * g
class GeLUFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, input: torch.Tensor) -> torch.Tensor:
ctx.save_for_backward(input)
return bloom_gelu_forward(input)
@staticmethod
def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor:
input = ctx.saved_tensors
tmp = bloom_gelu_back(grad_output, input)
return tmp
class BloomGelu(nn.Module):
"""
BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model
torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly
copied from Megatron-DeepSpeed code and adapted for our needs
See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329
"""
def __init__(self):
super().__init__()
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.training:
return GeLUFunction.apply(x)
else:
return bloom_gelu_forward(x)
class BloomAttention(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
self.pretraining_tp = config.pretraining_tp
self.slow_but_exact = config.slow_but_exact
self.hidden_size = config.hidden_size
self.num_heads = config.n_head
self.head_dim = self.hidden_size // self.num_heads
self.split_size = self.hidden_size
self.hidden_dropout = config.hidden_dropout
if self.head_dim * self.num_heads != self.hidden_size:
raise ValueError(
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
f" {self.num_heads})."
)
# Layer-wise attention scaling
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
self.beta = 1.0
self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True)
self.dense = nn.Linear(self.hidden_size, self.hidden_size)
self.attention_dropout = nn.Dropout(config.attention_dropout)
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory
storage as `fused_qkv`
Args:
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
Returns:
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
value: [batch_size, seq_length, num_heads, head_dim]
"""
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
"""
Merge heads together over the last dimension
Args:
x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
Returns:
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
"""
# What we want to achieve is:
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
batch_size_and_num_heads, seq_length, _ = x.shape
batch_size = batch_size_and_num_heads // self.num_heads
# First view to decompose the batch size
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
x = x.permute(0, 2, 1, 3)
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
residual: torch.Tensor,
alibi: torch.Tensor,
attention_mask: torch.Tensor,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
):
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
# 3 x [batch_size, seq_length, num_heads, head_dim]
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
batch_size, q_length, _, _ = query_layer.shape
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length)
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
if layer_past is not None:
past_key, past_value = layer_past
# concatenate along seq_length dimension:
# - key: [batch_size * self.num_heads, head_dim, kv_length]
# - value: [batch_size * self.num_heads, kv_length, head_dim]
key_layer = torch.cat((past_key, key_layer), dim=2)
value_layer = torch.cat((past_value, value_layer), dim=1)
_, _, kv_length = key_layer.shape
if use_cache is True:
present = (key_layer, value_layer)
else:
present = None
# [batch_size * num_heads, q_length, kv_length]
# we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11
matmul_result = alibi.baddbmm(
batch1=query_layer,
batch2=key_layer,
beta=self.beta,
alpha=self.inv_norm_factor,
)
# change view to [batch_size, num_heads, q_length, kv_length]
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
input_dtype = attention_scores.dtype
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
if input_dtype == torch.float16:
attention_scores = attention_scores.to(torch.float)
attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype)
# [batch_size, num_heads, q_length, kv_length]
attention_probs = self.attention_dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
# change view [batch_size x num_heads, q_length, kv_length]
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
# matmul: [batch_size * num_heads, q_length, head_dim]
context_layer = torch.bmm(attention_probs_reshaped, value_layer)
# change view [batch_size, q_length, num_heads * head_dim]
context_layer = self._merge_heads(context_layer)
# aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232
if self.pretraining_tp > 1 and self.slow_but_exact:
slices = self.hidden_size / self.pretraining_tp
output_tensor = torch.zeros_like(context_layer)
for i in range(self.pretraining_tp):
output_tensor = output_tensor + F.linear(
context_layer[:, :, int(i * slices) : int((i + 1) * slices)],
self.dense.weight[:, int(i * slices) : int((i + 1) * slices)],
)
else:
output_tensor = self.dense(context_layer)
output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training)
outputs = (output_tensor, present)
if output_attentions:
outputs += (attention_probs,)
return outputs
class BloomMLP(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
hidden_size = config.hidden_size
self.pretraining_tp = config.pretraining_tp
self.slow_but_exact = config.slow_but_exact
self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size)
self.gelu_impl = BloomGelu()
self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size)
self.hidden_dropout = config.hidden_dropout
def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor:
hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states))
if self.pretraining_tp > 1 and self.slow_but_exact:
intermediate_output = torch.zeros_like(residual)
slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp
for i in range(self.pretraining_tp):
intermediate_output = intermediate_output + F.linear(
hidden_states[:, :, int(i * slices) : int((i + 1) * slices)],
self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)],
)
else:
intermediate_output = self.dense_4h_to_h(hidden_states)
output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training)
return output
class BloomBlock(nn.Module):
def __init__(self, config: BloomConfig):
super().__init__()
hidden_size = config.hidden_size
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.num_heads = config.n_head
self.self_attention = BloomAttention(config)
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = BloomMLP(config)
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
self.hidden_dropout = config.hidden_dropout
def forward(
self,
hidden_states: torch.Tensor,
alibi: torch.Tensor,
attention_mask: torch.Tensor,
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
):
# hidden_states: [batch_size, seq_length, hidden_size]
# Layer norm at the beginning of the transformer layer.
layernorm_output = self.input_layernorm(hidden_states)
# Layer norm post the self attention.
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = hidden_states
# Self attention.
attn_outputs = self.self_attention(
layernorm_output,
residual,
layer_past=layer_past,
attention_mask=attention_mask,
alibi=alibi,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attention_output = attn_outputs[0]
outputs = attn_outputs[1:]
layernorm_output = self.post_attention_layernorm(attention_output)
# Get residual
if self.apply_residual_connection_post_layernorm:
residual = layernorm_output
else:
residual = attention_output
# MLP.
output = self.mlp(layernorm_output, residual)
if use_cache:
outputs = (output,) + outputs
else:
outputs = (output,) + outputs[1:]
return outputs # hidden_states, present, attentions
class BloomPreTrainedModel(PreTrainedModel):
config_class = BloomConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["BloomBlock"]
_skip_keys_device_placement = "past_key_values"
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module: nn.Module):
"""Initialize the weights."""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@staticmethod
def _convert_to_standard_cache(
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
"""
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
num_heads, ...]))
"""
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
num_heads = batch_size_times_num_heads // batch_size
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
return tuple(
(
layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
)
for layer_past in past_key_value
)
@staticmethod
def _convert_to_bloom_cache(
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]],
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
"""
Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...]))
"""
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
batch_size_times_num_heads = batch_size * num_heads
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
return tuple(
(
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
)
for layer_past in past_key_value
)
BLOOM_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`BloomConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
BLOOM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`):
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
their past given to this model should not be passed as `input_ids` as they have already been computed.
Each element of `past_key_values` is a tuple (past_key, past_value):
- past_key: [batch_size * num_heads, head_dim, kv_length]
- past_value: [batch_size * num_heads, kv_length, head_dim]
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
`past_key_values`).
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.",
BLOOM_START_DOCSTRING,
)
class BloomModel(BloomPreTrainedModel):
def __init__(self, config: BloomConfig):
super().__init__(config)
self.embed_dim = config.hidden_size
self.num_heads = config.n_head
# Embedding + LN Embedding
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
# Transformer blocks
self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)])
# Final Layer Norm
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
return build_alibi_tensor(attention_mask, num_heads, dtype)
def get_input_embeddings(self):
return self.word_embeddings
def set_input_embeddings(self, new_embeddings: torch.Tensor):
self.word_embeddings = new_embeddings
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**deprecated_arguments,
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if past_key_values is None:
past_key_values = tuple([None] * len(self.h))
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape batch_size x num_heads x N x N
# head_mask has shape n_layer x batch x num_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# Compute alibi tensor: check build_alibi_tensor documentation
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values[0] is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
else:
attention_mask = attention_mask.to(hidden_states.device)
alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
causal_mask = _prepare_4d_causal_attention_mask(
attention_mask,
input_shape=(batch_size, seq_length),
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
causal_mask = causal_mask.bool()
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
alibi,
causal_mask,
layer_past,
head_mask[i],
use_cache,
output_attentions,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=causal_mask,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
alibi=alibi,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
# Add last hidden state
hidden_states = self.ln_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
@add_start_docstrings(
"""
The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input
embeddings).
""",
BLOOM_START_DOCSTRING,
)
class BloomForCausalLM(BloomPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: BloomConfig):
super().__init__(config)
self.transformer = BloomModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings: torch.Tensor):
self.lm_head = new_embeddings
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> dict:
# only last tokens for input_ids if past is not None
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
# the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed
if past_key_values[0][0].shape[0] == input_ids.shape[0]:
past_key_values = self._convert_to_bloom_cache(past_key_values)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
}
)
return model_inputs
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**deprecated_arguments,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
lm_logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(lm_logits.device)
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
batch_size, seq_length, vocab_size = shift_logits.shape
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def _reorder_cache(
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
Output shares the same memory storage as `past`.
"""
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
# Get a copy of `beam_idx` on all the devices where we need those indices.
device_to_beam_idx = {
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
}
reordered_past = tuple(
(
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
)
for layer_past in standardized_past
)
return self._convert_to_bloom_cache(reordered_past)
@add_start_docstrings(
"""
The Bloom Model transformer with a sequence classification head on top (linear layer).
[`BloomForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
BLOOM_START_DOCSTRING,
)
class BloomForSequenceClassification(BloomPreTrainedModel):
def __init__(self, config: BloomConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = BloomModel(config)
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**deprecated_arguments,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
logger.warning(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
BLOOM_START_DOCSTRING,
)
class BloomForTokenClassification(BloomPreTrainedModel):
def __init__(self, config: BloomConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = BloomModel(config)
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
classifier_dropout = config.classifier_dropout
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**deprecated_arguments,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
if deprecated_arguments.pop("position_ids", False) is not False:
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
warnings.warn(
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
" passing `position_ids`.",
FutureWarning,
)
if len(deprecated_arguments) > 0:
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
batch_size, seq_length = labels.shape
loss_fct = CrossEntropyLoss()
loss = loss_fct(
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
)
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
BLOOM_START_DOCSTRING,
)
class BloomForQuestionAnswering(BloomPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = BloomModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/bloom/modeling_bloom.py/0 | {
"file_path": "transformers/src/transformers/models/bloom/modeling_bloom.py",
"repo_id": "transformers",
"token_count": 23801
} | 315 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_camembert": ["CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CamembertConfig", "CamembertOnnxConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_camembert"] = ["CamembertTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_camembert_fast"] = ["CamembertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_camembert"] = [
"CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"CamembertForCausalLM",
"CamembertForMaskedLM",
"CamembertForMultipleChoice",
"CamembertForQuestionAnswering",
"CamembertForSequenceClassification",
"CamembertForTokenClassification",
"CamembertModel",
"CamembertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_camembert"] = [
"TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCamembertForCausalLM",
"TFCamembertForMaskedLM",
"TFCamembertForMultipleChoice",
"TFCamembertForQuestionAnswering",
"TFCamembertForSequenceClassification",
"TFCamembertForTokenClassification",
"TFCamembertModel",
"TFCamembertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_camembert import CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CamembertConfig, CamembertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_camembert import CamembertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_camembert_fast import CamembertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_camembert import (
CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
CamembertForCausalLM,
CamembertForMaskedLM,
CamembertForMultipleChoice,
CamembertForQuestionAnswering,
CamembertForSequenceClassification,
CamembertForTokenClassification,
CamembertModel,
CamembertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_camembert import (
TF_CAMEMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCamembertForCausalLM,
TFCamembertForMaskedLM,
TFCamembertForMultipleChoice,
TFCamembertForQuestionAnswering,
TFCamembertForSequenceClassification,
TFCamembertForTokenClassification,
TFCamembertModel,
TFCamembertPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/camembert/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/camembert/__init__.py",
"repo_id": "transformers",
"token_count": 1824
} | 316 |
# coding=utf-8
# Copyright 2022 The OFA-Sys Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Chinese-CLIP model."""
import math
from dataclasses import dataclass
from typing import Any, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPooling,
BaseModelOutputWithPoolingAndCrossAttentions,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_chinese_clip import ChineseCLIPConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "OFA-Sys/chinese-clip-vit-base-patch16"
_CONFIG_FOR_DOC = "ChineseCLIPConfig"
CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
"OFA-Sys/chinese-clip-vit-base-patch16",
# See all Chinese-CLIP models at https://huggingface.co/models?filter=chinese_clip
]
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
# Copied from transformers.models.clip.modeling_clip.contrastive_loss
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
def chinese_clip_loss(similarity: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(similarity.t())
return (caption_loss + image_loss) / 2.0
@dataclass
class ChineseCLIPOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of
[`ChineseCLIPTextModel`].
image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of
[`ChineseCLIPVisionModel`].
text_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
The output of the [`ChineseCLIPTextModel`].
vision_model_output(`BaseModelOutputWithPoolingAndCrossAttentions`):
The output of the [`ChineseCLIPVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
image_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
vision_model_output: BaseModelOutputWithPoolingAndCrossAttentions = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
# Copied from transformers.models.bert.modeling_bert.BertEmbeddings with Bert->ChineseCLIPText
class ChineseCLIPTextEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values_length: int = 0,
) -> torch.Tensor:
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->ChineseCLIP
class ChineseCLIPVisionEmbeddings(nn.Module):
def __init__(self, config: ChineseCLIPVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->ChineseCLIPText
class ChineseCLIPTextSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in ChineseCLIPTextModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->ChineseCLIPText
class ChineseCLIPTextSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->ChineseCLIPText
class ChineseCLIPTextAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = ChineseCLIPTextSelfAttention(config, position_embedding_type=position_embedding_type)
self.output = ChineseCLIPTextSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class ChineseCLIPVisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->ChineseCLIPText
class ChineseCLIPTextIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->ChineseCLIPText
class ChineseCLIPTextOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->ChineseCLIPVision
class ChineseCLIPVisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->ChineseCLIPText
class ChineseCLIPTextLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = ChineseCLIPTextAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = ChineseCLIPTextAttention(config, position_embedding_type="absolute")
self.intermediate = ChineseCLIPTextIntermediate(config)
self.output = ChineseCLIPTextOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
" by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class ChineseCLIPVisionLayer(nn.Module):
def __init__(self, config: ChineseCLIPConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = ChineseCLIPVisionAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = ChineseCLIPVisionMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->ChineseCLIPText
class ChineseCLIPTextPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class ChineseCLIPPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ChineseCLIPConfig
base_model_prefix = "chinese_clip"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, ChineseCLIPVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
elif isinstance(module, ChineseCLIPTextEmbeddings):
nn.init.normal_(module.word_embeddings.weight, mean=0.0, std=self.config.initializer_range)
nn.init.normal_(module.position_embeddings.weight, mean=0.0, std=self.config.initializer_range)
nn.init.normal_(module.token_type_embeddings.weight, mean=0.0, std=self.config.initializer_range)
for embedding in [module.word_embeddings, module.position_embeddings, module.token_type_embeddings]:
if embedding.padding_idx is not None:
embedding.weight.data[embedding.padding_idx].zero_()
elif isinstance(module, ChineseCLIPVisionAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, ChineseCLIPVisionMLP):
factor = self.config.initializer_factor
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, ChineseCLIPModel):
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
CHINESE_CLIP_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ChineseCLIPConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CHINESE_CLIP_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
CHINESE_CLIP_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
CHINESE_CLIP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`ChineseCLIPImageProcessor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->ChineseCLIPText
class ChineseCLIPTextEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([ChineseCLIPTextLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class ChineseCLIPVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`ChineseCLIPVisionEncoderLayer`].
Args:
config: ChineseCLIPConfig
"""
def __init__(self, config: ChineseCLIPConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([ChineseCLIPVisionLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class ChineseCLIPVisionTransformer(nn.Module):
def __init__(self, config: ChineseCLIPVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = ChineseCLIPVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = ChineseCLIPVisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The text model from CHINESE_CLIP without any head or projection on top.",
CHINESE_CLIP_START_DOCSTRING,
)
class ChineseCLIPTextModel(ChineseCLIPPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
config_class = ChineseCLIPTextConfig
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = ChineseCLIPTextEmbeddings(config)
self.encoder = ChineseCLIPTextEncoder(config)
self.pooler = ChineseCLIPTextPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
@add_start_docstrings(
"""The vision model from CHINESE_CLIP without any head or projection on top.""",
CHINESE_CLIP_START_DOCSTRING,
)
class ChineseCLIPVisionModel(ChineseCLIPPreTrainedModel):
config_class = ChineseCLIPVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: ChineseCLIPVisionConfig):
super().__init__(config)
self.vision_model = ChineseCLIPVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.vision_model.embeddings.patch_embedding
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=ChineseCLIPVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import CLIPProcessor, ChineseCLIPVisionModel
>>> model = ChineseCLIPVisionModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> processor = CLIPProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(CHINESE_CLIP_START_DOCSTRING)
class ChineseCLIPModel(ChineseCLIPPreTrainedModel):
config_class = ChineseCLIPConfig
def __init__(self, config: ChineseCLIPConfig):
super().__init__(config)
if not isinstance(config.text_config, ChineseCLIPTextConfig):
raise ValueError(
"config.text_config is expected to be of type ChineseCLIPTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, ChineseCLIPVisionConfig):
raise ValueError(
"config.vision_config is expected to be of type ChineseCLIPVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = ChineseCLIPTextModel(text_config, add_pooling_layer=False)
self.vision_model = ChineseCLIPVisionTransformer(vision_config)
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CHINESE_CLIP_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the final [CLS] hidden state of Text-Transformer.
Examples:
```python
>>> from transformers import AutoTokenizer, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> tokenizer = AutoTokenizer.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> inputs = tokenizer(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
>>> text_features = text_features / text_features.norm(p=2, dim=-1, keepdim=True)
```"""
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[0][:, 0, :]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(CHINESE_CLIP_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the final [CLS] hidden state of Vision-Transformer.
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
>>> image_features = image_features / image_features.norm(p=2, dim=-1, keepdim=True)
```"""
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(CHINESE_CLIP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ChineseCLIPOutput, config_class=ChineseCLIPConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ChineseCLIPOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, ChineseCLIPModel
>>> model = ChineseCLIPModel.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> processor = AutoProcessor.from_pretrained("OFA-Sys/chinese-clip-vit-base-patch16")
>>> url = "https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/pokemon.jpeg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"], images=image, return_tensors="pt", padding=True)
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
# Use CHINESE_CLIP model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[0][:, 0, :]
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.t()
loss = None
if return_loss:
loss = chinese_clip_loss(logits_per_text)
if not return_dict:
# fix the None pooled_output of text_outputs to conform with dict_output
pooled_output = text_outputs[1]
if pooled_output is None:
text_outputs = (text_outputs[0],) + text_outputs[2:]
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return ChineseCLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
| transformers/src/transformers/models/chinese_clip/modeling_chinese_clip.py/0 | {
"file_path": "transformers/src/transformers/models/chinese_clip/modeling_chinese_clip.py",
"repo_id": "transformers",
"token_count": 30797
} | 317 |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ConvBERT checkpoint."""
import argparse
from transformers import ConvBertConfig, ConvBertModel, TFConvBertModel, load_tf_weights_in_convbert
from transformers.utils import logging
logging.set_verbosity_info()
def convert_orig_tf1_checkpoint_to_pytorch(tf_checkpoint_path, convbert_config_file, pytorch_dump_path):
conf = ConvBertConfig.from_json_file(convbert_config_file)
model = ConvBertModel(conf)
model = load_tf_weights_in_convbert(model, conf, tf_checkpoint_path)
model.save_pretrained(pytorch_dump_path)
tf_model = TFConvBertModel.from_pretrained(pytorch_dump_path, from_pt=True)
tf_model.save_pretrained(pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--convbert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained ConvBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_orig_tf1_checkpoint_to_pytorch(args.tf_checkpoint_path, args.convbert_config_file, args.pytorch_dump_path)
| transformers/src/transformers/models/convbert/convert_convbert_original_tf1_checkpoint_to_pytorch_and_tf2.py/0 | {
"file_path": "transformers/src/transformers/models/convbert/convert_convbert_original_tf1_checkpoint_to_pytorch_and_tf2.py",
"repo_id": "transformers",
"token_count": 749
} | 318 |
# coding=utf-8
# Copyright 2023 Meta Platforms Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 ConvNextV2 model."""
from __future__ import annotations
from typing import List, Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPooling,
TFBaseModelOutputWithPoolingAndNoAttention,
TFImageClassifierOutputWithNoAttention,
)
from ...modeling_tf_utils import (
TFModelInputType,
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_convnextv2 import ConvNextV2Config
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "ConvNextV2Config"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/convnextv2-tiny-1k-224"
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/convnextv2-tiny-1k-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/convnextv2-tiny-1k-224",
# See all ConvNextV2 models at https://huggingface.co/models?filter=convnextv2
]
# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextDropPath with ConvNext->ConvNextV2
class TFConvNextV2DropPath(keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
References:
(1) github.com:rwightman/pytorch-image-models
"""
def __init__(self, drop_path: float, **kwargs):
super().__init__(**kwargs)
self.drop_path = drop_path
def call(self, x: tf.Tensor, training=None):
if training:
keep_prob = 1 - self.drop_path
shape = (tf.shape(x)[0],) + (1,) * (len(tf.shape(x)) - 1)
random_tensor = keep_prob + tf.random.uniform(shape, 0, 1)
random_tensor = tf.floor(random_tensor)
return (x / keep_prob) * random_tensor
return x
class TFConvNextV2GRN(keras.layers.Layer):
"""GRN (Global Response Normalization) layer"""
def __init__(self, config: ConvNextV2Config, dim: int, **kwargs):
super().__init__(**kwargs)
self.dim = dim
def build(self, input_shape: tf.TensorShape = None):
# PT's `nn.Parameters` must be mapped to a TF layer weight to inherit the same name hierarchy (and vice-versa)
self.weight = self.add_weight(
name="weight",
shape=(1, 1, 1, self.dim),
initializer=keras.initializers.Zeros(),
)
self.bias = self.add_weight(
name="bias",
shape=(1, 1, 1, self.dim),
initializer=keras.initializers.Zeros(),
)
return super().build(input_shape)
def call(self, hidden_states: tf.Tensor):
global_features = tf.norm(hidden_states, ord="euclidean", axis=(1, 2), keepdims=True)
norm_features = global_features / (tf.reduce_mean(global_features, axis=-1, keepdims=True) + 1e-6)
hidden_states = self.weight * (hidden_states * norm_features) + self.bias + hidden_states
return hidden_states
# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextEmbeddings with ConvNext->ConvNextV2
class TFConvNextV2Embeddings(keras.layers.Layer):
"""This class is comparable to (and inspired by) the SwinEmbeddings class
found in src/transformers/models/swin/modeling_swin.py.
"""
def __init__(self, config: ConvNextV2Config, **kwargs):
super().__init__(**kwargs)
self.patch_embeddings = keras.layers.Conv2D(
filters=config.hidden_sizes[0],
kernel_size=config.patch_size,
strides=config.patch_size,
name="patch_embeddings",
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer=keras.initializers.Zeros(),
)
self.layernorm = keras.layers.LayerNormalization(epsilon=1e-6, name="layernorm")
self.num_channels = config.num_channels
self.config = config
def call(self, pixel_values):
if isinstance(pixel_values, dict):
pixel_values = pixel_values["pixel_values"]
tf.debugging.assert_equal(
shape_list(pixel_values)[1],
self.num_channels,
message="Make sure that the channel dimension of the pixel values match with the one set in the configuration.",
)
# When running on CPU, `keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels)
pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
embeddings = self.patch_embeddings(pixel_values)
embeddings = self.layernorm(embeddings)
return embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "patch_embeddings", None) is not None:
with tf.name_scope(self.patch_embeddings.name):
self.patch_embeddings.build([None, None, None, self.config.num_channels])
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, None, self.config.hidden_sizes[0]])
class TFConvNextV2Layer(keras.layers.Layer):
"""This corresponds to the `Block` class in the original implementation.
There are two equivalent implementations: [DwConv, LayerNorm (channels_first), Conv, GELU,1x1 Conv]; all in (N, C,
H, W) (2) [DwConv, Permute to (N, H, W, C), LayerNorm (channels_last), Linear, GELU, Linear]; Permute back
The authors used (2) as they find it slightly faster in PyTorch. Since we already permuted the inputs to follow
NHWC ordering, we can just apply the operations straight-away without the permutation.
Args:
config (`ConvNextV2Config`):
Model configuration class.
dim (`int`):
Number of input channels.
drop_path (`float`, defaults to 0.0):
Stochastic depth rate.
"""
def __init__(self, config: ConvNextV2Config, dim: int, drop_path: float = 0.0, **kwargs):
super().__init__(**kwargs)
self.dim = dim
self.config = config
self.dwconv = keras.layers.Conv2D(
filters=dim,
kernel_size=7,
padding="same",
groups=dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer=keras.initializers.Zeros(),
name="dwconv",
) # depthwise conv
self.layernorm = keras.layers.LayerNormalization(
epsilon=1e-6,
name="layernorm",
)
self.pwconv1 = keras.layers.Dense(
units=4 * dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer=keras.initializers.Zeros(),
name="pwconv1",
) # pointwise/1x1 convs, implemented with linear layers
self.act = get_tf_activation(config.hidden_act)
self.grn = TFConvNextV2GRN(config, 4 * dim, dtype=tf.float32, name="grn")
self.pwconv2 = keras.layers.Dense(
units=dim,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer=keras.initializers.Zeros(),
name="pwconv2",
)
# Using `layers.Activation` instead of `tf.identity` to better control `training`
# behaviour.
self.drop_path = (
TFConvNextV2DropPath(drop_path, name="drop_path")
if drop_path > 0.0
else keras.layers.Activation("linear", name="drop_path")
)
def call(self, hidden_states, training=False):
input = hidden_states
x = self.dwconv(hidden_states)
x = self.layernorm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)
x = self.pwconv2(x)
x = self.drop_path(x, training=training)
x = input + x
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dwconv", None) is not None:
with tf.name_scope(self.dwconv.name):
self.dwconv.build([None, None, None, self.dim])
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, None, self.dim])
if getattr(self, "pwconv1", None) is not None:
with tf.name_scope(self.pwconv1.name):
self.pwconv1.build([None, None, self.dim])
if getattr(self, "grn", None) is not None:
with tf.name_scope(self.grn.name):
self.grn.build(None)
if getattr(self, "pwconv2", None) is not None:
with tf.name_scope(self.pwconv2.name):
self.pwconv2.build([None, None, 4 * self.dim])
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
# Copied from transformers.models.convnext.modeling_tf_convnext.TFConvNextStage with ConvNext->ConvNextV2
class TFConvNextV2Stage(keras.layers.Layer):
"""ConvNextV2 stage, consisting of an optional downsampling layer + multiple residual blocks.
Args:
config (`ConvNextV2V2Config`):
Model configuration class.
in_channels (`int`):
Number of input channels.
out_channels (`int`):
Number of output channels.
depth (`int`):
Number of residual blocks.
drop_path_rates(`List[float]`):
Stochastic depth rates for each layer.
"""
def __init__(
self,
config: ConvNextV2Config,
in_channels: int,
out_channels: int,
kernel_size: int = 2,
stride: int = 2,
depth: int = 2,
drop_path_rates: Optional[List[float]] = None,
**kwargs,
):
super().__init__(**kwargs)
if in_channels != out_channels or stride > 1:
self.downsampling_layer = [
keras.layers.LayerNormalization(
epsilon=1e-6,
name="downsampling_layer.0",
),
# Inputs to this layer will follow NHWC format since we
# transposed the inputs from NCHW to NHWC in the `TFConvNextV2Embeddings`
# layer. All the outputs throughout the model will be in NHWC
# from this point on until the output where we again change to
# NCHW.
keras.layers.Conv2D(
filters=out_channels,
kernel_size=kernel_size,
strides=stride,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer=keras.initializers.Zeros(),
name="downsampling_layer.1",
),
]
else:
self.downsampling_layer = [tf.identity]
drop_path_rates = drop_path_rates or [0.0] * depth
self.layers = [
TFConvNextV2Layer(
config,
dim=out_channels,
drop_path=drop_path_rates[j],
name=f"layers.{j}",
)
for j in range(depth)
]
self.in_channels = in_channels
self.out_channels = out_channels
self.stride = stride
def call(self, hidden_states):
for layer in self.downsampling_layer:
hidden_states = layer(hidden_states)
for layer in self.layers:
hidden_states = layer(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
if self.in_channels != self.out_channels or self.stride > 1:
with tf.name_scope(self.downsampling_layer[0].name):
self.downsampling_layer[0].build([None, None, None, self.in_channels])
with tf.name_scope(self.downsampling_layer[1].name):
self.downsampling_layer[1].build([None, None, None, self.in_channels])
class TFConvNextV2Encoder(keras.layers.Layer):
def __init__(self, config: ConvNextV2Config, **kwargs):
super().__init__(**kwargs)
self.stages = []
drop_path_rates = tf.linspace(0.0, config.drop_path_rate, sum(config.depths))
drop_path_rates = tf.split(drop_path_rates, config.depths)
drop_path_rates = [x.numpy().tolist() for x in drop_path_rates]
prev_chs = config.hidden_sizes[0]
for i in range(config.num_stages):
out_chs = config.hidden_sizes[i]
stage = TFConvNextV2Stage(
config,
in_channels=prev_chs,
out_channels=out_chs,
stride=2 if i > 0 else 1,
depth=config.depths[i],
drop_path_rates=drop_path_rates[i],
name=f"stages.{i}",
)
self.stages.append(stage)
prev_chs = out_chs
def call(
self,
hidden_states: tf.Tensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, TFBaseModelOutputWithNoAttention]:
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.stages):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return TFBaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
def build(self, input_shape=None):
for stage in self.stages:
with tf.name_scope(stage.name):
stage.build(None)
@keras_serializable
class TFConvNextV2MainLayer(keras.layers.Layer):
config_class = ConvNextV2Config
def __init__(self, config: ConvNextV2Config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFConvNextV2Embeddings(config, name="embeddings")
self.encoder = TFConvNextV2Encoder(config, name="encoder")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
# We are setting the `data_format` like so because from here on we will revert to the
# NCHW output format
self.pooler = keras.layers.GlobalAvgPool2D(data_format="channels_last")
@unpack_inputs
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values, training=training)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = encoder_outputs[0]
# Change to NCHW output format have uniformity in the modules
pooled_output = self.pooler(last_hidden_state)
last_hidden_state = tf.transpose(last_hidden_state, perm=(0, 3, 1, 2))
pooled_output = self.layernorm(pooled_output)
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
hidden_states = tuple([tf.transpose(h, perm=(0, 3, 1, 2)) for h in encoder_outputs[1]])
if not return_dict:
hidden_states = hidden_states if output_hidden_states else ()
return (last_hidden_state, pooled_output) + hidden_states
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, self.config.hidden_sizes[-1]])
class TFConvNextV2PreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = ConvNextV2Config
base_model_prefix = "convnextv2"
main_input_name = "pixel_values"
CONVNEXTV2_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `pixel_values` only and nothing else: `model(pixel_values)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([pixel_values, attention_mask])` or `model([pixel_values, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"pixel_values": pixel_values, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`ConvNextV2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
CONVNEXTV2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]`, `Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to `True`.
"""
@add_start_docstrings(
"The bare ConvNextV2 model outputting raw features without any specific head on top.",
CONVNEXTV2_START_DOCSTRING,
)
class TFConvNextV2Model(TFConvNextV2PreTrainedModel):
def __init__(self, config: ConvNextV2Config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2")
@unpack_inputs
@add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
outputs = self.convnextv2(
pixel_values=pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return outputs[:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state,
pooler_output=outputs.pooler_output,
hidden_states=outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convnextv2", None) is not None:
with tf.name_scope(self.convnextv2.name):
self.convnextv2.build(None)
@add_start_docstrings(
"""
ConvNextV2 Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
CONVNEXTV2_START_DOCSTRING,
)
class TFConvNextV2ForImageClassification(TFConvNextV2PreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: ConvNextV2Config, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.convnextv2 = TFConvNextV2MainLayer(config, name="convnextv2")
# Classifier head
self.classifier = keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
bias_initializer=keras.initializers.Zeros(),
name="classifier",
)
@unpack_inputs
@add_start_docstrings_to_model_forward(CONVNEXTV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: TFModelInputType | None = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFImageClassifierOutputWithNoAttention, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
outputs = self.convnextv2(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "convnextv2", None) is not None:
with tf.name_scope(self.convnextv2.name):
self.convnextv2.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_sizes[-1]])
| transformers/src/transformers/models/convnextv2/modeling_tf_convnextv2.py/0 | {
"file_path": "transformers/src/transformers/models/convnextv2/modeling_tf_convnextv2.py",
"repo_id": "transformers",
"token_count": 11969
} | 319 |
# coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CvT model."""
import collections.abc
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import ImageClassifierOutputWithNoAttention, ModelOutput
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import logging
from .configuration_cvt import CvtConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "CvtConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/cvt-13"
_EXPECTED_OUTPUT_SHAPE = [1, 384, 14, 14]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/cvt-13"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
CVT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"microsoft/cvt-13",
"microsoft/cvt-13-384",
"microsoft/cvt-13-384-22k",
"microsoft/cvt-21",
"microsoft/cvt-21-384",
"microsoft/cvt-21-384-22k",
# See all Cvt models at https://huggingface.co/models?filter=cvt
]
@dataclass
class BaseModelOutputWithCLSToken(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
cls_token_value (`torch.FloatTensor` of shape `(batch_size, 1, hidden_size)`):
Classification token at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
"""
last_hidden_state: torch.FloatTensor = None
cls_token_value: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath
class CvtDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class CvtEmbeddings(nn.Module):
"""
Construct the CvT embeddings.
"""
def __init__(self, patch_size, num_channels, embed_dim, stride, padding, dropout_rate):
super().__init__()
self.convolution_embeddings = CvtConvEmbeddings(
patch_size=patch_size, num_channels=num_channels, embed_dim=embed_dim, stride=stride, padding=padding
)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, pixel_values):
hidden_state = self.convolution_embeddings(pixel_values)
hidden_state = self.dropout(hidden_state)
return hidden_state
class CvtConvEmbeddings(nn.Module):
"""
Image to Conv Embedding.
"""
def __init__(self, patch_size, num_channels, embed_dim, stride, padding):
super().__init__()
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
self.patch_size = patch_size
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=stride, padding=padding)
self.normalization = nn.LayerNorm(embed_dim)
def forward(self, pixel_values):
pixel_values = self.projection(pixel_values)
batch_size, num_channels, height, width = pixel_values.shape
hidden_size = height * width
# rearrange "b c h w -> b (h w) c"
pixel_values = pixel_values.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
if self.normalization:
pixel_values = self.normalization(pixel_values)
# rearrange "b (h w) c" -> b c h w"
pixel_values = pixel_values.permute(0, 2, 1).view(batch_size, num_channels, height, width)
return pixel_values
class CvtSelfAttentionConvProjection(nn.Module):
def __init__(self, embed_dim, kernel_size, padding, stride):
super().__init__()
self.convolution = nn.Conv2d(
embed_dim,
embed_dim,
kernel_size=kernel_size,
padding=padding,
stride=stride,
bias=False,
groups=embed_dim,
)
self.normalization = nn.BatchNorm2d(embed_dim)
def forward(self, hidden_state):
hidden_state = self.convolution(hidden_state)
hidden_state = self.normalization(hidden_state)
return hidden_state
class CvtSelfAttentionLinearProjection(nn.Module):
def forward(self, hidden_state):
batch_size, num_channels, height, width = hidden_state.shape
hidden_size = height * width
# rearrange " b c h w -> b (h w) c"
hidden_state = hidden_state.view(batch_size, num_channels, hidden_size).permute(0, 2, 1)
return hidden_state
class CvtSelfAttentionProjection(nn.Module):
def __init__(self, embed_dim, kernel_size, padding, stride, projection_method="dw_bn"):
super().__init__()
if projection_method == "dw_bn":
self.convolution_projection = CvtSelfAttentionConvProjection(embed_dim, kernel_size, padding, stride)
self.linear_projection = CvtSelfAttentionLinearProjection()
def forward(self, hidden_state):
hidden_state = self.convolution_projection(hidden_state)
hidden_state = self.linear_projection(hidden_state)
return hidden_state
class CvtSelfAttention(nn.Module):
def __init__(
self,
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
with_cls_token=True,
**kwargs,
):
super().__init__()
self.scale = embed_dim**-0.5
self.with_cls_token = with_cls_token
self.embed_dim = embed_dim
self.num_heads = num_heads
self.convolution_projection_query = CvtSelfAttentionProjection(
embed_dim,
kernel_size,
padding_q,
stride_q,
projection_method="linear" if qkv_projection_method == "avg" else qkv_projection_method,
)
self.convolution_projection_key = CvtSelfAttentionProjection(
embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
)
self.convolution_projection_value = CvtSelfAttentionProjection(
embed_dim, kernel_size, padding_kv, stride_kv, projection_method=qkv_projection_method
)
self.projection_query = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
self.projection_key = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
self.projection_value = nn.Linear(embed_dim, embed_dim, bias=qkv_bias)
self.dropout = nn.Dropout(attention_drop_rate)
def rearrange_for_multi_head_attention(self, hidden_state):
batch_size, hidden_size, _ = hidden_state.shape
head_dim = self.embed_dim // self.num_heads
# rearrange 'b t (h d) -> b h t d'
return hidden_state.view(batch_size, hidden_size, self.num_heads, head_dim).permute(0, 2, 1, 3)
def forward(self, hidden_state, height, width):
if self.with_cls_token:
cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
batch_size, hidden_size, num_channels = hidden_state.shape
# rearrange "b (h w) c -> b c h w"
hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
key = self.convolution_projection_key(hidden_state)
query = self.convolution_projection_query(hidden_state)
value = self.convolution_projection_value(hidden_state)
if self.with_cls_token:
query = torch.cat((cls_token, query), dim=1)
key = torch.cat((cls_token, key), dim=1)
value = torch.cat((cls_token, value), dim=1)
head_dim = self.embed_dim // self.num_heads
query = self.rearrange_for_multi_head_attention(self.projection_query(query))
key = self.rearrange_for_multi_head_attention(self.projection_key(key))
value = self.rearrange_for_multi_head_attention(self.projection_value(value))
attention_score = torch.einsum("bhlk,bhtk->bhlt", [query, key]) * self.scale
attention_probs = torch.nn.functional.softmax(attention_score, dim=-1)
attention_probs = self.dropout(attention_probs)
context = torch.einsum("bhlt,bhtv->bhlv", [attention_probs, value])
# rearrange"b h t d -> b t (h d)"
_, _, hidden_size, _ = context.shape
context = context.permute(0, 2, 1, 3).contiguous().view(batch_size, hidden_size, self.num_heads * head_dim)
return context
class CvtSelfOutput(nn.Module):
"""
The residual connection is defined in CvtLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, embed_dim, drop_rate):
super().__init__()
self.dense = nn.Linear(embed_dim, embed_dim)
self.dropout = nn.Dropout(drop_rate)
def forward(self, hidden_state, input_tensor):
hidden_state = self.dense(hidden_state)
hidden_state = self.dropout(hidden_state)
return hidden_state
class CvtAttention(nn.Module):
def __init__(
self,
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
drop_rate,
with_cls_token=True,
):
super().__init__()
self.attention = CvtSelfAttention(
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
with_cls_token,
)
self.output = CvtSelfOutput(embed_dim, drop_rate)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_state, height, width):
self_output = self.attention(hidden_state, height, width)
attention_output = self.output(self_output, hidden_state)
return attention_output
class CvtIntermediate(nn.Module):
def __init__(self, embed_dim, mlp_ratio):
super().__init__()
self.dense = nn.Linear(embed_dim, int(embed_dim * mlp_ratio))
self.activation = nn.GELU()
def forward(self, hidden_state):
hidden_state = self.dense(hidden_state)
hidden_state = self.activation(hidden_state)
return hidden_state
class CvtOutput(nn.Module):
def __init__(self, embed_dim, mlp_ratio, drop_rate):
super().__init__()
self.dense = nn.Linear(int(embed_dim * mlp_ratio), embed_dim)
self.dropout = nn.Dropout(drop_rate)
def forward(self, hidden_state, input_tensor):
hidden_state = self.dense(hidden_state)
hidden_state = self.dropout(hidden_state)
hidden_state = hidden_state + input_tensor
return hidden_state
class CvtLayer(nn.Module):
"""
CvtLayer composed by attention layers, normalization and multi-layer perceptrons (mlps).
"""
def __init__(
self,
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
drop_rate,
mlp_ratio,
drop_path_rate,
with_cls_token=True,
):
super().__init__()
self.attention = CvtAttention(
num_heads,
embed_dim,
kernel_size,
padding_q,
padding_kv,
stride_q,
stride_kv,
qkv_projection_method,
qkv_bias,
attention_drop_rate,
drop_rate,
with_cls_token,
)
self.intermediate = CvtIntermediate(embed_dim, mlp_ratio)
self.output = CvtOutput(embed_dim, mlp_ratio, drop_rate)
self.drop_path = CvtDropPath(drop_prob=drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_before = nn.LayerNorm(embed_dim)
self.layernorm_after = nn.LayerNorm(embed_dim)
def forward(self, hidden_state, height, width):
self_attention_output = self.attention(
self.layernorm_before(hidden_state), # in Cvt, layernorm is applied before self-attention
height,
width,
)
attention_output = self_attention_output
attention_output = self.drop_path(attention_output)
# first residual connection
hidden_state = attention_output + hidden_state
# in Cvt, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_state)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_state)
layer_output = self.drop_path(layer_output)
return layer_output
class CvtStage(nn.Module):
def __init__(self, config, stage):
super().__init__()
self.config = config
self.stage = stage
if self.config.cls_token[self.stage]:
self.cls_token = nn.Parameter(torch.randn(1, 1, self.config.embed_dim[-1]))
self.embedding = CvtEmbeddings(
patch_size=config.patch_sizes[self.stage],
stride=config.patch_stride[self.stage],
num_channels=config.num_channels if self.stage == 0 else config.embed_dim[self.stage - 1],
embed_dim=config.embed_dim[self.stage],
padding=config.patch_padding[self.stage],
dropout_rate=config.drop_rate[self.stage],
)
drop_path_rates = [x.item() for x in torch.linspace(0, config.drop_path_rate[self.stage], config.depth[stage])]
self.layers = nn.Sequential(
*[
CvtLayer(
num_heads=config.num_heads[self.stage],
embed_dim=config.embed_dim[self.stage],
kernel_size=config.kernel_qkv[self.stage],
padding_q=config.padding_q[self.stage],
padding_kv=config.padding_kv[self.stage],
stride_kv=config.stride_kv[self.stage],
stride_q=config.stride_q[self.stage],
qkv_projection_method=config.qkv_projection_method[self.stage],
qkv_bias=config.qkv_bias[self.stage],
attention_drop_rate=config.attention_drop_rate[self.stage],
drop_rate=config.drop_rate[self.stage],
drop_path_rate=drop_path_rates[self.stage],
mlp_ratio=config.mlp_ratio[self.stage],
with_cls_token=config.cls_token[self.stage],
)
for _ in range(config.depth[self.stage])
]
)
def forward(self, hidden_state):
cls_token = None
hidden_state = self.embedding(hidden_state)
batch_size, num_channels, height, width = hidden_state.shape
# rearrange b c h w -> b (h w) c"
hidden_state = hidden_state.view(batch_size, num_channels, height * width).permute(0, 2, 1)
if self.config.cls_token[self.stage]:
cls_token = self.cls_token.expand(batch_size, -1, -1)
hidden_state = torch.cat((cls_token, hidden_state), dim=1)
for layer in self.layers:
layer_outputs = layer(hidden_state, height, width)
hidden_state = layer_outputs
if self.config.cls_token[self.stage]:
cls_token, hidden_state = torch.split(hidden_state, [1, height * width], 1)
hidden_state = hidden_state.permute(0, 2, 1).view(batch_size, num_channels, height, width)
return hidden_state, cls_token
class CvtEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.stages = nn.ModuleList([])
for stage_idx in range(len(config.depth)):
self.stages.append(CvtStage(config, stage_idx))
def forward(self, pixel_values, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
hidden_state = pixel_values
cls_token = None
for _, (stage_module) in enumerate(self.stages):
hidden_state, cls_token = stage_module(hidden_state)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, cls_token, all_hidden_states] if v is not None)
return BaseModelOutputWithCLSToken(
last_hidden_state=hidden_state,
cls_token_value=cls_token,
hidden_states=all_hidden_states,
)
class CvtPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = CvtConfig
base_model_prefix = "cvt"
main_input_name = "pixel_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data = nn.init.trunc_normal_(module.weight.data, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, CvtStage):
if self.config.cls_token[module.stage]:
module.cls_token.data = nn.init.trunc_normal_(
torch.zeros(1, 1, self.config.embed_dim[-1]), mean=0.0, std=self.config.initializer_range
)
CVT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`CvtConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
CVT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`CvtImageProcessor.__call__`]
for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Cvt Model transformer outputting raw hidden-states without any specific head on top.",
CVT_START_DOCSTRING,
)
class CvtModel(CvtPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.encoder = CvtEncoder(config)
self.post_init()
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithCLSToken,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithCLSToken]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
encoder_outputs = self.encoder(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutputWithCLSToken(
last_hidden_state=sequence_output,
cls_token_value=encoder_outputs.cls_token_value,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
Cvt Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
""",
CVT_START_DOCSTRING,
)
class CvtForImageClassification(CvtPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.cvt = CvtModel(config, add_pooling_layer=False)
self.layernorm = nn.LayerNorm(config.embed_dim[-1])
# Classifier head
self.classifier = (
nn.Linear(config.embed_dim[-1], config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(CVT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.cvt(
pixel_values,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
cls_token = outputs[1]
if self.config.cls_token[-1]:
sequence_output = self.layernorm(cls_token)
else:
batch_size, num_channels, height, width = sequence_output.shape
# rearrange "b c h w -> b (h w) c"
sequence_output = sequence_output.view(batch_size, num_channels, height * width).permute(0, 2, 1)
sequence_output = self.layernorm(sequence_output)
sequence_output_mean = sequence_output.mean(dim=1)
logits = self.classifier(sequence_output_mean)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
| transformers/src/transformers/models/cvt/modeling_cvt.py/0 | {
"file_path": "transformers/src/transformers/models/cvt/modeling_cvt.py",
"repo_id": "transformers",
"token_count": 12594
} | 320 |
# coding=utf-8
# Copyright 2021 Microsoft and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 DeBERTa model."""
from __future__ import annotations
import math
from typing import Dict, Optional, Sequence, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFMaskedLMOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_deberta import DebertaConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DebertaConfig"
_CHECKPOINT_FOR_DOC = "kamalkraj/deberta-base"
TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST = [
"kamalkraj/deberta-base",
# See all DeBERTa models at https://huggingface.co/models?filter=DeBERTa
]
class TFDebertaContextPooler(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(config.pooler_hidden_size, name="dense")
self.dropout = TFDebertaStableDropout(config.pooler_dropout, name="dropout")
self.config = config
def call(self, hidden_states, training: bool = False):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
context_token = hidden_states[:, 0]
context_token = self.dropout(context_token, training=training)
pooled_output = self.dense(context_token)
pooled_output = get_tf_activation(self.config.pooler_hidden_act)(pooled_output)
return pooled_output
@property
def output_dim(self) -> int:
return self.config.hidden_size
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.pooler_hidden_size])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
class TFDebertaXSoftmax(keras.layers.Layer):
"""
Masked Softmax which is optimized for saving memory
Args:
input (`tf.Tensor`): The input tensor that will apply softmax.
mask (`tf.Tensor`): The mask matrix where 0 indicate that element will be ignored in the softmax calculation.
dim (int): The dimension that will apply softmax
"""
def __init__(self, axis=-1, **kwargs):
super().__init__(**kwargs)
self.axis = axis
def call(self, inputs: tf.Tensor, mask: tf.Tensor):
rmask = tf.logical_not(tf.cast(mask, tf.bool))
output = tf.where(rmask, float("-inf"), inputs)
output = stable_softmax(output, self.axis)
output = tf.where(rmask, 0.0, output)
return output
class TFDebertaStableDropout(keras.layers.Layer):
"""
Optimized dropout module for stabilizing the training
Args:
drop_prob (float): the dropout probabilities
"""
def __init__(self, drop_prob, **kwargs):
super().__init__(**kwargs)
self.drop_prob = drop_prob
@tf.custom_gradient
def xdropout(self, inputs):
"""
Applies dropout to the inputs, as vanilla dropout, but also scales the remaining elements up by 1/drop_prob.
"""
mask = tf.cast(
1
- tf.compat.v1.distributions.Bernoulli(probs=1.0 - self.drop_prob).sample(sample_shape=shape_list(inputs)),
tf.bool,
)
scale = tf.convert_to_tensor(1.0 / (1 - self.drop_prob), dtype=tf.float32)
if self.drop_prob > 0:
inputs = tf.where(mask, 0.0, inputs) * scale
def grad(upstream):
if self.drop_prob > 0:
return tf.where(mask, 0.0, upstream) * scale
else:
return upstream
return inputs, grad
def call(self, inputs: tf.Tensor, training: tf.Tensor = False):
if training:
return self.xdropout(inputs)
return inputs
class TFDebertaLayerNorm(keras.layers.Layer):
"""LayerNorm module in the TF style (epsilon inside the square root)."""
def __init__(self, size, eps=1e-12, **kwargs):
super().__init__(**kwargs)
self.size = size
self.eps = eps
def build(self, input_shape):
self.gamma = self.add_weight(shape=[self.size], initializer=tf.ones_initializer(), name="weight")
self.beta = self.add_weight(shape=[self.size], initializer=tf.zeros_initializer(), name="bias")
return super().build(input_shape)
def call(self, x: tf.Tensor) -> tf.Tensor:
mean = tf.reduce_mean(x, axis=[-1], keepdims=True)
variance = tf.reduce_mean(tf.square(x - mean), axis=[-1], keepdims=True)
std = tf.math.sqrt(variance + self.eps)
return self.gamma * (x - mean) / std + self.beta
class TFDebertaSelfOutput(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(config.hidden_size, name="dense")
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout")
self.config = config
def call(self, hidden_states, input_tensor, training: bool = False):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
class TFDebertaAttention(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.self = TFDebertaDisentangledSelfAttention(config, name="self")
self.dense_output = TFDebertaSelfOutput(config, name="output")
self.config = config
def call(
self,
input_tensor: tf.Tensor,
attention_mask: tf.Tensor,
query_states: tf.Tensor = None,
relative_pos: tf.Tensor = None,
rel_embeddings: tf.Tensor = None,
output_attentions: bool = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self(
hidden_states=input_tensor,
attention_mask=attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
training=training,
)
if query_states is None:
query_states = input_tensor
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=query_states, training=training
)
output = (attention_output,) + self_outputs[1:]
return output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self", None) is not None:
with tf.name_scope(self.self.name):
self.self.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
class TFDebertaIntermediate(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFDebertaOutput(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout")
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
class TFDebertaLayer(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFDebertaAttention(config, name="attention")
self.intermediate = TFDebertaIntermediate(config, name="intermediate")
self.bert_output = TFDebertaOutput(config, name="output")
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
query_states: tf.Tensor = None,
relative_pos: tf.Tensor = None,
rel_embeddings: tf.Tensor = None,
output_attentions: bool = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
attention_outputs = self.attention(
input_tensor=hidden_states,
attention_mask=attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
training=training,
)
attention_output = attention_outputs[0]
intermediate_output = self.intermediate(hidden_states=attention_output)
layer_output = self.bert_output(
hidden_states=intermediate_output, input_tensor=attention_output, training=training
)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "bert_output", None) is not None:
with tf.name_scope(self.bert_output.name):
self.bert_output.build(None)
class TFDebertaEncoder(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.layer = [TFDebertaLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
self.relative_attention = getattr(config, "relative_attention", False)
self.config = config
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
def build(self, input_shape=None):
if self.built:
return
self.built = True
if self.relative_attention:
self.rel_embeddings = self.add_weight(
name="rel_embeddings.weight",
shape=[self.max_relative_positions * 2, self.config.hidden_size],
initializer=get_initializer(self.config.initializer_range),
)
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
def get_rel_embedding(self):
rel_embeddings = self.rel_embeddings if self.relative_attention else None
return rel_embeddings
def get_attention_mask(self, attention_mask):
if len(shape_list(attention_mask)) <= 2:
extended_attention_mask = tf.expand_dims(tf.expand_dims(attention_mask, 1), 2)
attention_mask = extended_attention_mask * tf.expand_dims(tf.squeeze(extended_attention_mask, -2), -1)
attention_mask = tf.cast(attention_mask, tf.uint8)
elif len(shape_list(attention_mask)) == 3:
attention_mask = tf.expand_dims(attention_mask, 1)
return attention_mask
def get_rel_pos(self, hidden_states, query_states=None, relative_pos=None):
if self.relative_attention and relative_pos is None:
q = shape_list(query_states)[-2] if query_states is not None else shape_list(hidden_states)[-2]
relative_pos = build_relative_position(q, shape_list(hidden_states)[-2])
return relative_pos
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
query_states: tf.Tensor = None,
relative_pos: tf.Tensor = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
attention_mask = self.get_attention_mask(attention_mask)
relative_pos = self.get_rel_pos(hidden_states, query_states, relative_pos)
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[0]
else:
next_kv = hidden_states
rel_embeddings = self.get_rel_embedding()
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states=next_kv,
attention_mask=attention_mask,
query_states=query_states,
relative_pos=relative_pos,
rel_embeddings=rel_embeddings,
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if query_states is not None:
query_states = hidden_states
if isinstance(hidden_states, Sequence):
next_kv = hidden_states[i + 1] if i + 1 < len(self.layer) else None
else:
next_kv = hidden_states
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
def build_relative_position(query_size, key_size):
"""
Build relative position according to the query and key
We assume the absolute position of query \\(P_q\\) is range from (0, query_size) and the absolute position of key
\\(P_k\\) is range from (0, key_size), The relative positions from query to key is \\(R_{q \\rightarrow k} = P_q -
P_k\\)
Args:
query_size (int): the length of query
key_size (int): the length of key
Return:
`tf.Tensor`: A tensor with shape [1, query_size, key_size]
"""
q_ids = tf.range(query_size, dtype=tf.int32)
k_ids = tf.range(key_size, dtype=tf.int32)
rel_pos_ids = q_ids[:, None] - tf.tile(tf.reshape(k_ids, [1, -1]), [query_size, 1])
rel_pos_ids = rel_pos_ids[:query_size, :]
rel_pos_ids = tf.expand_dims(rel_pos_ids, axis=0)
return tf.cast(rel_pos_ids, tf.int64)
def c2p_dynamic_expand(c2p_pos, query_layer, relative_pos):
shapes = [
shape_list(query_layer)[0],
shape_list(query_layer)[1],
shape_list(query_layer)[2],
shape_list(relative_pos)[-1],
]
return tf.broadcast_to(c2p_pos, shapes)
def p2c_dynamic_expand(c2p_pos, query_layer, key_layer):
shapes = [
shape_list(query_layer)[0],
shape_list(query_layer)[1],
shape_list(key_layer)[-2],
shape_list(key_layer)[-2],
]
return tf.broadcast_to(c2p_pos, shapes)
def pos_dynamic_expand(pos_index, p2c_att, key_layer):
shapes = shape_list(p2c_att)[:2] + [shape_list(pos_index)[-2], shape_list(key_layer)[-2]]
return tf.broadcast_to(pos_index, shapes)
def torch_gather(x, indices, gather_axis):
if gather_axis < 0:
gather_axis = tf.rank(x) + gather_axis
if gather_axis != tf.rank(x) - 1:
pre_roll = tf.rank(x) - 1 - gather_axis
permutation = tf.roll(tf.range(tf.rank(x)), pre_roll, axis=0)
x = tf.transpose(x, perm=permutation)
indices = tf.transpose(indices, perm=permutation)
else:
pre_roll = 0
flat_x = tf.reshape(x, (-1, tf.shape(x)[-1]))
flat_indices = tf.reshape(indices, (-1, tf.shape(indices)[-1]))
gathered = tf.gather(flat_x, flat_indices, batch_dims=1)
gathered = tf.reshape(gathered, tf.shape(indices))
if pre_roll != 0:
permutation = tf.roll(tf.range(tf.rank(x)), -pre_roll, axis=0)
gathered = tf.transpose(gathered, perm=permutation)
return gathered
class TFDebertaDisentangledSelfAttention(keras.layers.Layer):
"""
Disentangled self-attention module
Parameters:
config (`str`):
A model config class instance with the configuration to build a new model. The schema is similar to
*BertConfig*, for more details, please refer [`DebertaConfig`]
"""
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.in_proj = keras.layers.Dense(
self.all_head_size * 3,
kernel_initializer=get_initializer(config.initializer_range),
name="in_proj",
use_bias=False,
)
self.pos_att_type = config.pos_att_type if config.pos_att_type is not None else []
self.relative_attention = getattr(config, "relative_attention", False)
self.talking_head = getattr(config, "talking_head", False)
if self.talking_head:
self.head_logits_proj = keras.layers.Dense(
self.num_attention_heads,
kernel_initializer=get_initializer(config.initializer_range),
name="head_logits_proj",
use_bias=False,
)
self.head_weights_proj = keras.layers.Dense(
self.num_attention_heads,
kernel_initializer=get_initializer(config.initializer_range),
name="head_weights_proj",
use_bias=False,
)
self.softmax = TFDebertaXSoftmax(axis=-1)
if self.relative_attention:
self.max_relative_positions = getattr(config, "max_relative_positions", -1)
if self.max_relative_positions < 1:
self.max_relative_positions = config.max_position_embeddings
self.pos_dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="pos_dropout")
if "c2p" in self.pos_att_type:
self.pos_proj = keras.layers.Dense(
self.all_head_size,
kernel_initializer=get_initializer(config.initializer_range),
name="pos_proj",
use_bias=False,
)
if "p2c" in self.pos_att_type:
self.pos_q_proj = keras.layers.Dense(
self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="pos_q_proj"
)
self.dropout = TFDebertaStableDropout(config.attention_probs_dropout_prob, name="dropout")
self.config = config
def build(self, input_shape=None):
if self.built:
return
self.built = True
self.q_bias = self.add_weight(
name="q_bias", shape=(self.all_head_size), initializer=keras.initializers.Zeros()
)
self.v_bias = self.add_weight(
name="v_bias", shape=(self.all_head_size), initializer=keras.initializers.Zeros()
)
if getattr(self, "in_proj", None) is not None:
with tf.name_scope(self.in_proj.name):
self.in_proj.build([None, None, self.config.hidden_size])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
if getattr(self, "head_logits_proj", None) is not None:
with tf.name_scope(self.head_logits_proj.name):
self.head_logits_proj.build(None)
if getattr(self, "head_weights_proj", None) is not None:
with tf.name_scope(self.head_weights_proj.name):
self.head_weights_proj.build(None)
if getattr(self, "pos_dropout", None) is not None:
with tf.name_scope(self.pos_dropout.name):
self.pos_dropout.build(None)
if getattr(self, "pos_proj", None) is not None:
with tf.name_scope(self.pos_proj.name):
self.pos_proj.build([self.config.hidden_size])
if getattr(self, "pos_q_proj", None) is not None:
with tf.name_scope(self.pos_q_proj.name):
self.pos_q_proj.build([self.config.hidden_size])
def transpose_for_scores(self, tensor: tf.Tensor) -> tf.Tensor:
shape = shape_list(tensor)[:-1] + [self.num_attention_heads, -1]
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=shape)
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor,
query_states: tf.Tensor = None,
relative_pos: tf.Tensor = None,
rel_embeddings: tf.Tensor = None,
output_attentions: bool = False,
training: bool = False,
) -> Tuple[tf.Tensor]:
"""
Call the module
Args:
hidden_states (`tf.Tensor`):
Input states to the module usually the output from previous layer, it will be the Q,K and V in
*Attention(Q,K,V)*
attention_mask (`tf.Tensor`):
An attention mask matrix of shape [*B*, *N*, *N*] where *B* is the batch size, *N* is the maximum
sequence length in which element [i,j] = *1* means the *i* th token in the input can attend to the *j*
th token.
return_att (`bool`, optional):
Whether return the attention matrix.
query_states (`tf.Tensor`, optional):
The *Q* state in *Attention(Q,K,V)*.
relative_pos (`tf.Tensor`):
The relative position encoding between the tokens in the sequence. It's of shape [*B*, *N*, *N*] with
values ranging in [*-max_relative_positions*, *max_relative_positions*].
rel_embeddings (`tf.Tensor`):
The embedding of relative distances. It's a tensor of shape [\\(2 \\times
\\text{max_relative_positions}\\), *hidden_size*].
"""
if query_states is None:
qp = self.in_proj(hidden_states) # .split(self.all_head_size, dim=-1)
query_layer, key_layer, value_layer = tf.split(
self.transpose_for_scores(qp), num_or_size_splits=3, axis=-1
)
else:
def linear(w, b, x):
out = tf.matmul(x, w, transpose_b=True)
if b is not None:
out += tf.transpose(b)
return out
ws = tf.split(
tf.transpose(self.in_proj.weight[0]), num_or_size_splits=self.num_attention_heads * 3, axis=0
)
qkvw = tf.TensorArray(dtype=tf.float32, size=3)
for k in tf.range(3):
qkvw_inside = tf.TensorArray(dtype=tf.float32, size=self.num_attention_heads)
for i in tf.range(self.num_attention_heads):
qkvw_inside = qkvw_inside.write(i, ws[i * 3 + k])
qkvw = qkvw.write(k, qkvw_inside.concat())
qkvb = [None] * 3
q = linear(qkvw[0], qkvb[0], query_states)
k = linear(qkvw[1], qkvb[1], hidden_states)
v = linear(qkvw[2], qkvb[2], hidden_states)
query_layer = self.transpose_for_scores(q)
key_layer = self.transpose_for_scores(k)
value_layer = self.transpose_for_scores(v)
query_layer = query_layer + self.transpose_for_scores(self.q_bias[None, None, :])
value_layer = value_layer + self.transpose_for_scores(self.v_bias[None, None, :])
rel_att = None
# Take the dot product between "query" and "key" to get the raw attention scores.
scale_factor = 1 + len(self.pos_att_type)
scale = math.sqrt(shape_list(query_layer)[-1] * scale_factor)
query_layer = query_layer / scale
attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, [0, 1, 3, 2]))
if self.relative_attention:
rel_embeddings = self.pos_dropout(rel_embeddings, training=training)
rel_att = self.disentangled_att_bias(query_layer, key_layer, relative_pos, rel_embeddings, scale_factor)
if rel_att is not None:
attention_scores = attention_scores + rel_att
if self.talking_head:
attention_scores = tf.transpose(
self.head_logits_proj(tf.transpose(attention_scores, [0, 2, 3, 1])), [0, 3, 1, 2]
)
attention_probs = self.softmax(attention_scores, attention_mask)
attention_probs = self.dropout(attention_probs, training=training)
if self.talking_head:
attention_probs = tf.transpose(
self.head_weights_proj(tf.transpose(attention_probs, [0, 2, 3, 1])), [0, 3, 1, 2]
)
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = tf.transpose(context_layer, [0, 2, 1, 3])
context_layer_shape = shape_list(context_layer)
# Set the final dimension here explicitly.
# Calling tf.reshape(context_layer, (*context_layer_shape[:-2], -1)) raises an error when executing
# the model in graph mode as context_layer is reshaped to (None, 7, None) and Dense layer in TFDebertaV2SelfOutput
# requires final input dimension to be defined
new_context_layer_shape = context_layer_shape[:-2] + [context_layer_shape[-2] * context_layer_shape[-1]]
context_layer = tf.reshape(context_layer, new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
def disentangled_att_bias(self, query_layer, key_layer, relative_pos, rel_embeddings, scale_factor):
if relative_pos is None:
q = shape_list(query_layer)[-2]
relative_pos = build_relative_position(q, shape_list(key_layer)[-2])
shape_list_pos = shape_list(relative_pos)
if len(shape_list_pos) == 2:
relative_pos = tf.expand_dims(tf.expand_dims(relative_pos, 0), 0)
elif len(shape_list_pos) == 3:
relative_pos = tf.expand_dims(relative_pos, 1)
# bxhxqxk
elif len(shape_list_pos) != 4:
raise ValueError(f"Relative position ids must be of dim 2 or 3 or 4. {len(shape_list_pos)}")
att_span = tf.cast(
tf.minimum(
tf.maximum(shape_list(query_layer)[-2], shape_list(key_layer)[-2]), self.max_relative_positions
),
tf.int64,
)
rel_embeddings = tf.expand_dims(
rel_embeddings[self.max_relative_positions - att_span : self.max_relative_positions + att_span, :], 0
)
score = 0
# content->position
if "c2p" in self.pos_att_type:
pos_key_layer = self.pos_proj(rel_embeddings)
pos_key_layer = self.transpose_for_scores(pos_key_layer)
c2p_att = tf.matmul(query_layer, tf.transpose(pos_key_layer, [0, 1, 3, 2]))
c2p_pos = tf.clip_by_value(relative_pos + att_span, 0, att_span * 2 - 1)
c2p_att = torch_gather(c2p_att, c2p_dynamic_expand(c2p_pos, query_layer, relative_pos), -1)
score += c2p_att
# position->content
if "p2c" in self.pos_att_type:
pos_query_layer = self.pos_q_proj(rel_embeddings)
pos_query_layer = self.transpose_for_scores(pos_query_layer)
pos_query_layer /= tf.math.sqrt(tf.cast(shape_list(pos_query_layer)[-1] * scale_factor, dtype=tf.float32))
if shape_list(query_layer)[-2] != shape_list(key_layer)[-2]:
r_pos = build_relative_position(shape_list(key_layer)[-2], shape_list(key_layer)[-2])
else:
r_pos = relative_pos
p2c_pos = tf.clip_by_value(-r_pos + att_span, 0, att_span * 2 - 1)
p2c_att = tf.matmul(key_layer, tf.transpose(pos_query_layer, [0, 1, 3, 2]))
p2c_att = tf.transpose(
torch_gather(p2c_att, p2c_dynamic_expand(p2c_pos, query_layer, key_layer), -1), [0, 1, 3, 2]
)
if shape_list(query_layer)[-2] != shape_list(key_layer)[-2]:
pos_index = tf.expand_dims(relative_pos[:, :, :, 0], -1)
p2c_att = torch_gather(p2c_att, pos_dynamic_expand(pos_index, p2c_att, key_layer), -2)
score += p2c_att
return score
class TFDebertaEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.hidden_size = config.hidden_size
self.max_position_embeddings = config.max_position_embeddings
self.position_biased_input = getattr(config, "position_biased_input", True)
self.initializer_range = config.initializer_range
if self.embedding_size != config.hidden_size:
self.embed_proj = keras.layers.Dense(
config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
name="embed_proj",
use_bias=False,
)
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.dropout = TFDebertaStableDropout(config.hidden_dropout_prob, name="dropout")
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
with tf.name_scope("token_type_embeddings"):
if self.config.type_vocab_size > 0:
self.token_type_embeddings = self.add_weight(
name="embeddings",
shape=[self.config.type_vocab_size, self.embedding_size],
initializer=get_initializer(self.initializer_range),
)
else:
self.token_type_embeddings = None
with tf.name_scope("position_embeddings"):
if self.position_biased_input:
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.max_position_embeddings, self.hidden_size],
initializer=get_initializer(self.initializer_range),
)
else:
self.position_embeddings = None
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.hidden_size])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
if getattr(self, "embed_proj", None) is not None:
with tf.name_scope(self.embed_proj.name):
self.embed_proj.build([None, None, self.embedding_size])
def call(
self,
input_ids: tf.Tensor = None,
position_ids: tf.Tensor = None,
token_type_ids: tf.Tensor = None,
inputs_embeds: tf.Tensor = None,
mask: tf.Tensor = None,
training: bool = False,
) -> tf.Tensor:
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
if input_ids is None and inputs_embeds is None:
raise ValueError("Need to provide either `input_ids` or `input_embeds`.")
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(params=self.weight, indices=input_ids)
input_shape = shape_list(inputs_embeds)[:-1]
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
if position_ids is None:
position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)
final_embeddings = inputs_embeds
if self.position_biased_input:
position_embeds = tf.gather(params=self.position_embeddings, indices=position_ids)
final_embeddings += position_embeds
if self.config.type_vocab_size > 0:
token_type_embeds = tf.gather(params=self.token_type_embeddings, indices=token_type_ids)
final_embeddings += token_type_embeds
if self.embedding_size != self.hidden_size:
final_embeddings = self.embed_proj(final_embeddings)
final_embeddings = self.LayerNorm(final_embeddings)
if mask is not None:
if len(shape_list(mask)) != len(shape_list(final_embeddings)):
if len(shape_list(mask)) == 4:
mask = tf.squeeze(tf.squeeze(mask, axis=1), axis=1)
mask = tf.cast(tf.expand_dims(mask, axis=2), tf.float32)
final_embeddings = final_embeddings * mask
final_embeddings = self.dropout(final_embeddings, training=training)
return final_embeddings
class TFDebertaPredictionHeadTransform(keras.layers.Layer):
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.dense = keras.layers.Dense(
units=self.embedding_size,
kernel_initializer=get_initializer(config.initializer_range),
name="dense",
)
if isinstance(config.hidden_act, str):
self.transform_act_fn = get_tf_activation(config.hidden_act)
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm")
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.embedding_size])
class TFDebertaLMPredictionHead(keras.layers.Layer):
def __init__(self, config: DebertaConfig, input_embeddings: keras.layers.Layer, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embedding_size = getattr(config, "embedding_size", config.hidden_size)
self.transform = TFDebertaPredictionHeadTransform(config, name="transform")
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.input_embeddings = input_embeddings
def build(self, input_shape=None):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
if self.built:
return
self.built = True
if getattr(self, "transform", None) is not None:
with tf.name_scope(self.transform.name):
self.transform.build(None)
def get_output_embeddings(self) -> keras.layers.Layer:
return self.input_embeddings
def set_output_embeddings(self, value: tf.Variable):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self) -> Dict[str, tf.Variable]:
return {"bias": self.bias}
def set_bias(self, value: tf.Variable):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.transform(hidden_states=hidden_states)
seq_length = shape_list(hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.embedding_size])
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
class TFDebertaOnlyMLMHead(keras.layers.Layer):
def __init__(self, config: DebertaConfig, input_embeddings: keras.layers.Layer, **kwargs):
super().__init__(**kwargs)
self.predictions = TFDebertaLMPredictionHead(config, input_embeddings, name="predictions")
def call(self, sequence_output: tf.Tensor) -> tf.Tensor:
prediction_scores = self.predictions(hidden_states=sequence_output)
return prediction_scores
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "predictions", None) is not None:
with tf.name_scope(self.predictions.name):
self.predictions.build(None)
# @keras_serializable
class TFDebertaMainLayer(keras.layers.Layer):
config_class = DebertaConfig
def __init__(self, config: DebertaConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.embeddings = TFDebertaEmbeddings(config, name="embeddings")
self.encoder = TFDebertaEncoder(config, name="encoder")
def get_input_embeddings(self) -> keras.layers.Layer:
return self.embeddings
def set_input_embeddings(self, value: tf.Variable):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(dims=input_shape, value=1)
if token_type_ids is None:
token_type_ids = tf.fill(dims=input_shape, value=0)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
mask=attention_mask,
training=training,
)
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return TFBaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
class TFDebertaPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DebertaConfig
base_model_prefix = "deberta"
DEBERTA_START_DOCSTRING = r"""
The DeBERTa model was proposed in [DeBERTa: Decoding-enhanced BERT with Disentangled
Attention](https://arxiv.org/abs/2006.03654) by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen. It's build
on top of BERT/RoBERTa with two improvements, i.e. disentangled attention and enhanced mask decoder. With those two
improvements, it out perform BERT/RoBERTa on a majority of tasks with 80GB pretraining data.
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`DebertaConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DEBERTA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput``] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DeBERTa Model transformer outputting raw hidden-states without any specific head on top.",
DEBERTA_START_DOCSTRING,
)
class TFDebertaModel(TFDebertaPreTrainedModel):
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.deberta = TFDebertaMainLayer(config, name="deberta")
@unpack_inputs
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
outputs = self.deberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deberta", None) is not None:
with tf.name_scope(self.deberta.name):
self.deberta.build(None)
@add_start_docstrings("""DeBERTa Model with a `language modeling` head on top.""", DEBERTA_START_DOCSTRING)
class TFDebertaForMaskedLM(TFDebertaPreTrainedModel, TFMaskedLanguageModelingLoss):
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
if config.is_decoder:
logger.warning(
"If you want to use `TFDebertaForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.deberta = TFDebertaMainLayer(config, name="deberta")
self.mlm = TFDebertaOnlyMLMHead(config, input_embeddings=self.deberta.embeddings, name="cls")
def get_lm_head(self) -> keras.layers.Layer:
return self.mlm.predictions
@unpack_inputs
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.deberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.mlm(sequence_output=sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deberta", None) is not None:
with tf.name_scope(self.deberta.name):
self.deberta.build(None)
if getattr(self, "mlm", None) is not None:
with tf.name_scope(self.mlm.name):
self.mlm.build(None)
@add_start_docstrings(
"""
DeBERTa Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
DEBERTA_START_DOCSTRING,
)
class TFDebertaForSequenceClassification(TFDebertaPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.deberta = TFDebertaMainLayer(config, name="deberta")
self.pooler = TFDebertaContextPooler(config, name="pooler")
drop_out = getattr(config, "cls_dropout", None)
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
self.dropout = TFDebertaStableDropout(drop_out, name="cls_dropout")
self.classifier = keras.layers.Dense(
units=config.num_labels,
kernel_initializer=get_initializer(config.initializer_range),
name="classifier",
)
self.output_dim = self.pooler.output_dim
@unpack_inputs
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.deberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
pooled_output = self.pooler(sequence_output, training=training)
pooled_output = self.dropout(pooled_output, training=training)
logits = self.classifier(pooled_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deberta", None) is not None:
with tf.name_scope(self.deberta.name):
self.deberta.build(None)
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.output_dim])
@add_start_docstrings(
"""
DeBERTa Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
DEBERTA_START_DOCSTRING,
)
class TFDebertaForTokenClassification(TFDebertaPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.deberta = TFDebertaMainLayer(config, name="deberta")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.classifier = keras.layers.Dense(
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
r"""
labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.deberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(inputs=sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deberta", None) is not None:
with tf.name_scope(self.deberta.name):
self.deberta.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
DeBERTa Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
DEBERTA_START_DOCSTRING,
)
class TFDebertaForQuestionAnswering(TFDebertaPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config: DebertaConfig, *inputs, **kwargs):
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.deberta = TFDebertaMainLayer(config, name="deberta")
self.qa_outputs = keras.layers.Dense(
units=config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(DEBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
r"""
start_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` or `np.ndarray` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs = self.deberta(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(inputs=sequence_output)
start_logits, end_logits = tf.split(value=logits, num_or_size_splits=2, axis=-1)
start_logits = tf.squeeze(input=start_logits, axis=-1)
end_logits = tf.squeeze(input=end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions}
labels["end_position"] = end_positions
loss = self.hf_compute_loss(labels=labels, logits=(start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deberta", None) is not None:
with tf.name_scope(self.deberta.name):
self.deberta.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
| transformers/src/transformers/models/deberta/modeling_tf_deberta.py/0 | {
"file_path": "transformers/src/transformers/models/deberta/modeling_tf_deberta.py",
"repo_id": "transformers",
"token_count": 30749
} | 321 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch M-CTC-T model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ....activations import ACT2FN
from ....file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ....integrations.deepspeed import is_deepspeed_zero3_enabled
from ....modeling_attn_mask_utils import _prepare_4d_attention_mask
from ....modeling_outputs import BaseModelOutput, CausalLMOutput
from ....modeling_utils import (
PreTrainedModel,
apply_chunking_to_forward,
find_pruneable_heads_and_indices,
prune_linear_layer,
)
from ....utils import logging
from .configuration_mctct import MCTCTConfig
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 1
_CONFIG_FOR_DOC = "MCTCTConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "speechbrain/m-ctc-t-large"
_EXPECTED_OUTPUT_SHAPE = [1, 195, 1536]
# CTC docstring
_CTC_EXPECTED_OUTPUT = '"Mr. Quilter is the apostle of the middle classes, and we\'re glad to welcome his gospel."'
_CTC_EXPECTED_LOSS = 1885.65
MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"speechbrain/m-ctc-t-large",
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
]
class MCTCTConv1dSubsampler(nn.Module):
"""
Convolutional subsampler: a stack of 1D convolution (along temporal dimension) followed by non-linear activation
via gated linear units (https://arxiv.org/abs/1911.08460)
"""
def __init__(self, config):
super().__init__()
self.config = config
self.glu_dim = config.conv_glu_dim
self.dropout = nn.Dropout(config.conv_dropout)
self.num_layers = config.num_conv_layers
self.in_channels = config.input_feat_per_channel * config.input_channels
if self.num_layers > 1:
if config.conv_channels is None:
raise ValueError(
"Need to specify `conv_channels` configuration in `MCTCTConfig` to use multiple convolution"
" layers."
)
self.mid_channels = config.conv_channels
else:
self.mid_channels = None
self.out_channels = config.hidden_size * 2 # considering GLU halving
self.kernel_size = config.conv_kernel
self.stride = config.conv_stride
# NOTE: MCTCT by construction only uses one convolution kernel. I've made this flexible to allow for
# multiple layers of convolutions, but not sure if this model definition should just restrict it
# to one layer. This becomes especially relevant when considering the padding like line 1 of forward().
self.conv_layers = nn.ModuleList(
nn.Conv1d(
self.in_channels if i == 0 else self.mid_channels[i],
self.mid_channels[i] if i < self.num_layers - 1 else self.out_channels,
kernel_size=k,
stride=self.stride[i],
padding="valid",
)
for i, k in enumerate(self.kernel_size)
)
def forward(self, input_features):
# NOTE: in reference to the NOTE in __init__, right now it just calculates padding as if
# there will be just one conv layer.
padding = sum([size // 2 for size in self.kernel_size]) # (7, 7) -> (3, 3)
input_features = torch.nn.functional.pad(input_features, (0, 0, padding, padding), "constant", 0)
hidden_states = input_features.transpose(1, 2).contiguous() # -> Batch x Frame x Time
for conv in self.conv_layers:
hidden_states = conv(hidden_states)
hidden_states = nn.functional.glu(hidden_states, dim=self.glu_dim)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states.transpose(1, 2).contiguous() # -> Batch x Time x Frame
return hidden_states
class MCTCTEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
# self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.LayerNorm = MCTCTLayerNorm()
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids",
torch.zeros(self.position_ids.size(), dtype=torch.long, device=self.position_ids.device),
persistent=False,
)
def forward(
self, input_features=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
input_shape = input_features.size() if input_features is not None else inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_features)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class MCTCTSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = config.attention_head_dim
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=False)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def reshape_fortran(self, x, shape):
if len(x.shape) > 0:
x = x.permute(*reversed(range(len(x.shape))))
return x.reshape(*reversed(shape)).permute(*reversed(range(len(shape))))
def relative_position_embedding_rotate(self, scores):
# NOTE: should re-evaluate whether this re-implementation was truly necessary
# or the reason why my complete re-haul worked was due to some other part
# of the code. Adding this and the reshape fortrain code seems very undesirable.
scores = scores.permute(0, 2, 3, 1) # e.g. [10, 1839, 14, 4]
batch, hidden_state, seq_len, heads = scores.shape
# e.g. [10, 1853, 14, 4]
scores = torch.cat((scores, torch.zeros((batch, seq_len, seq_len, heads), device=scores.device)), dim=1)
# e.g. [10, 25942, 1, 4]
scores = self.reshape_fortran(scores, [batch, (hidden_state + seq_len) * seq_len, 1, heads])
# e.g. [10, 25928, 1, 4]
scores = scores[:, : (seq_len + hidden_state - 1) * seq_len]
# e.g. [10, 1852, 14, 4]
scores = self.reshape_fortran(scores, [batch, hidden_state + seq_len - 1, seq_len, heads])
halfpoint = hidden_state // 2
scores = scores[:, halfpoint : halfpoint + seq_len].transpose(1, 2) # e.g. [10, 14, 14, 4]
return scores.permute(0, 3, 1, 2)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
mixed_query_layer = self.query(hidden_states)
mixed_query_layer = mixed_query_layer / math.sqrt(self.attention_head_size)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
# relative key position embeddings
positional_embedding = self.distance_embedding.weight
relative_position_scores = torch.einsum("lh, bche -> bcle", positional_embedding, query_layer.transpose(2, 3))
relative_position_scores = self.relative_position_embedding_rotate(relative_position_scores)
attention_scores = attention_scores + relative_position_scores
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in MCTCTModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).flatten(start_dim=-2)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class MCTCTLayerNorm(nn.Module):
def __init__(self):
super().__init__()
self.singleton_weight = nn.Parameter(torch.ones(1))
self.singleton_bias = nn.Parameter(torch.zeros(1))
def forward(self, hidden_states):
return (hidden_states * self.singleton_weight) + self.singleton_bias
class MCTCTSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class MCTCTAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = MCTCTSelfAttention(config)
self.output = MCTCTSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class MCTCTIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class MCTCTOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class MCTCTLayer(nn.Module):
def __init__(self, config: MCTCTConfig):
super().__init__()
self.seq_len_dim = 1
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.intermediate = MCTCTIntermediate(config)
self.attention = MCTCTAttention(config)
self.is_decoder = config.is_decoder
self.output = MCTCTOutput(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
self_attention_outputs = self.attention(
hidden_states, attention_mask, head_mask, output_attentions=output_attentions
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
)
outputs = (layer_output,) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class MCTCTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MCTCTConfig
base_model_prefix = "mctct"
main_input_name = "input_features"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, MCTCTLayerNorm):
module.singleton_weight.data.fill_(1.0)
module.singleton_bias.data.zero_()
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor):
"""
Computes the output length of the convolutional layers
"""
dilation = 1
for _, kernel_sz, stride in zip(
range(self.config.num_conv_layers), self.config.conv_kernel, self.config.conv_stride
):
padding = kernel_sz // 2
input_lengths = input_lengths + 2 * padding - dilation * (kernel_sz - 1) - 1
input_lengths = torch.div(input_lengths, stride, rounding_mode="trunc") + 1
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length, attention_mask):
# generate creates 3D attention mask, because of the shape of input_features
# convert it to 2D if thats the case
if len(attention_mask.shape) > 2:
attention_mask = attention_mask[:, :, -1]
# subsampled_lengths = attention_mask.sum(-1)
subsampled_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1))
bsz = attention_mask.size()[0]
attention_mask = torch.zeros(
(bsz, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values
# before the output lengths indices are attended to
attention_mask[(torch.arange(bsz, device=attention_mask.device), subsampled_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).long()
return attention_mask
MCTCT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MCTCTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MCTCT_INPUTS_DOCSTRING = r"""
Args:
input_features (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`Wav2Vec2CTCTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
class MCTCTEncoder(MCTCTPreTrainedModel):
def __init__(self, config: MCTCTConfig):
super().__init__(config)
self.hidden_dropout_prob = config.hidden_dropout_prob
self.layer_norm = MCTCTLayerNorm()
self.conv = MCTCTConv1dSubsampler(config)
self.layers = nn.ModuleList([MCTCTLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
input_features: torch.Tensor,
attention_mask: torch.Tensor,
head_mask: torch.Tensor,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
input_features = self.layer_norm(input_features)
inputs_embeds = self.conv(input_features)
# subsample attention mask if necessary
if attention_mask is not None:
attention_mask = self._get_feature_vector_attention_mask(inputs_embeds.shape[1], attention_mask)
hidden_states = nn.functional.dropout(inputs_embeds, p=self.hidden_dropout_prob, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, "
f"but it is for {head_mask.size()[0]}."
)
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or deepspeed_zero3_is_enabled:
# under deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
@add_start_docstrings(
"The bare M-CTC-T Model transformer outputting raw hidden-states without any specific head on top.",
MCTCT_START_DOCSTRING,
)
class MCTCTModel(MCTCTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.encoder = MCTCTEncoder(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_features: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_features is None:
raise ValueError("You have to specify input_features.")
encoder_outputs = self.encoder(
input_features,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""MCTCT Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
MCTCT_START_DOCSTRING,
)
class MCTCTForCTC(MCTCTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.mctct = MCTCTModel(config)
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `MCTCTForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = config.hidden_size
self.ctc_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MCTCT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_features: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mctct(
input_features,
attention_mask=attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.ctc_head(hidden_states)
loss = None
if labels is not None:
if labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask
if attention_mask is not None
else torch.ones(input_features.shape[:-1], dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
| transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/mctct/modeling_mctct.py",
"repo_id": "transformers",
"token_count": 14036
} | 322 |
# coding=utf-8
# Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TrajectoryTransformer model configuration"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
logger = logging.get_logger(__name__)
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"CarlCochet/trajectory-transformer-halfcheetah-medium-v2": (
"https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class TrajectoryTransformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TrajectoryTransformerModel`]. It is used to
instantiate an TrajectoryTransformer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the
TrajectoryTransformer
[CarlCochet/trajectory-transformer-halfcheetah-medium-v2](https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 100):
Vocabulary size of the TrajectoryTransformer model. Defines the number of different tokens that can be
represented by the `trajectories` passed when calling [`TrajectoryTransformerModel`]
action_weight (`int`, *optional*, defaults to 5):
Weight of the action in the loss function
reward_weight (`int`, *optional*, defaults to 1):
Weight of the reward in the loss function
value_weight (`int`, *optional*, defaults to 1):
Weight of the value in the loss function
block_size (`int`, *optional*, defaults to 249):
Size of the blocks in the trajectory transformer.
action_dim (`int`, *optional*, defaults to 6):
Dimension of the action space.
observation_dim (`int`, *optional*, defaults to 17):
Dimension of the observation space.
transition_dim (`int`, *optional*, defaults to 25):
Dimension of the transition space.
n_layer (`int`, *optional*, defaults to 4):
Number of hidden layers in the Transformer encoder.
n_head (`int`, *optional*, defaults to 4):
Number of attention heads for each attention layer in the Transformer encoder.
n_embd (`int`, *optional*, defaults to 128):
Dimensionality of the embeddings and hidden states.
resid_pdrop (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
embd_pdrop (`int`, *optional*, defaults to 0.1):
The dropout ratio for the embeddings.
attn_pdrop (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
kaiming_initializer_range (`float, *optional*, defaults to 1):
A coefficient scaling the negative slope of the kaiming initializer rectifier for EinLinear layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
Example:
```python
>>> from transformers import TrajectoryTransformerConfig, TrajectoryTransformerModel
>>> # Initializing a TrajectoryTransformer CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration
>>> configuration = TrajectoryTransformerConfig()
>>> # Initializing a model (with random weights) from the CarlCochet/trajectory-transformer-halfcheetah-medium-v2 style configuration
>>> model = TrajectoryTransformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "trajectory_transformer"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__(
self,
vocab_size=100,
action_weight=5,
reward_weight=1,
value_weight=1,
block_size=249,
action_dim=6,
observation_dim=17,
transition_dim=25,
n_layer=4,
n_head=4,
n_embd=128,
embd_pdrop=0.1,
attn_pdrop=0.1,
resid_pdrop=0.1,
learning_rate=0.0006,
max_position_embeddings=512,
initializer_range=0.02,
layer_norm_eps=1e-12,
kaiming_initializer_range=1,
use_cache=True,
pad_token_id=1,
bos_token_id=50256,
eos_token_id=50256,
**kwargs,
):
self.vocab_size = vocab_size
self.action_weight = action_weight
self.reward_weight = reward_weight
self.value_weight = value_weight
self.max_position_embeddings = max_position_embeddings
self.block_size = block_size
self.action_dim = action_dim
self.observation_dim = observation_dim
self.transition_dim = transition_dim
self.learning_rate = learning_rate
self.n_layer = n_layer
self.n_head = n_head
self.n_embd = n_embd
self.embd_pdrop = embd_pdrop
self.attn_pdrop = attn_pdrop
self.resid_pdrop = resid_pdrop
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.kaiming_initializer_range = kaiming_initializer_range
self.use_cache = use_cache
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
| transformers/src/transformers/models/deprecated/trajectory_transformer/configuration_trajectory_transformer.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/trajectory_transformer/configuration_trajectory_transformer.py",
"repo_id": "transformers",
"token_count": 2817
} | 323 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" DepthAnything model configuration"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto.configuration_auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
DEPTH_ANYTHING_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"LiheYoung/depth-anything-small-hf": "https://huggingface.co/LiheYoung/depth-anything-small-hf/resolve/main/config.json",
}
class DepthAnythingConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DepthAnythingModel`]. It is used to instantiate an DepthAnything
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the DepthAnything
[LiheYoung/depth-anything-small-hf](https://huggingface.co/LiheYoung/depth-anything-small-hf) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
backbone_config (`Union[Dict[str, Any], PretrainedConfig]`, *optional*):
The configuration of the backbone model. Only used in case `is_hybrid` is `True` or in case you want to
leverage the [`AutoBackbone`] API.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use pretrained weights for the backbone.
patch_size (`int`, *optional*, defaults to 14):
The size of the patches to extract from the backbone features.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
reassemble_hidden_size (`int`, *optional*, defaults to 384):
The number of input channels of the reassemble layers.
reassemble_factors (`List[int]`, *optional*, defaults to `[4, 2, 1, 0.5]`):
The up/downsampling factors of the reassemble layers.
neck_hidden_sizes (`List[str]`, *optional*, defaults to `[48, 96, 192, 384]`):
The hidden sizes to project to for the feature maps of the backbone.
fusion_hidden_size (`int`, *optional*, defaults to 64):
The number of channels before fusion.
head_in_index (`int`, *optional*, defaults to -1):
The index of the features to use in the depth estimation head.
head_hidden_size (`int`, *optional*, defaults to 32):
The number of output channels in the second convolution of the depth estimation head.
Example:
```python
>>> from transformers import DepthAnythingConfig, DepthAnythingForDepthEstimation
>>> # Initializing a DepthAnything small style configuration
>>> configuration = DepthAnythingConfig()
>>> # Initializing a model from the DepthAnything small style configuration
>>> model = DepthAnythingForDepthEstimation(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "depth_anything"
def __init__(
self,
backbone_config=None,
backbone=None,
use_pretrained_backbone=False,
patch_size=14,
initializer_range=0.02,
reassemble_hidden_size=384,
reassemble_factors=[4, 2, 1, 0.5],
neck_hidden_sizes=[48, 96, 192, 384],
fusion_hidden_size=64,
head_in_index=-1,
head_hidden_size=32,
**kwargs,
):
super().__init__(**kwargs)
if use_pretrained_backbone:
raise ValueError("Pretrained backbones are not supported yet.")
if backbone_config is not None and backbone is not None:
raise ValueError("You can't specify both `backbone` and `backbone_config`.")
if backbone_config is None and backbone is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `Dinov2` backbone.")
backbone_config = CONFIG_MAPPING["dinov2"](
image_size=518,
hidden_size=384,
num_attention_heads=6,
out_indices=[9, 10, 11, 12],
apply_layernorm=True,
reshape_hidden_states=False,
)
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.get("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
self.backbone_config = backbone_config
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.reassemble_hidden_size = reassemble_hidden_size
self.patch_size = patch_size
self.initializer_range = initializer_range
self.reassemble_factors = reassemble_factors
self.neck_hidden_sizes = neck_hidden_sizes
self.fusion_hidden_size = fusion_hidden_size
self.head_in_index = head_in_index
self.head_hidden_size = head_hidden_size
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
if output["backbone_config"] is not None:
output["backbone_config"] = self.backbone_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
| transformers/src/transformers/models/depth_anything/configuration_depth_anything.py/0 | {
"file_path": "transformers/src/transformers/models/depth_anything/configuration_depth_anything.py",
"repo_id": "transformers",
"token_count": 2443
} | 324 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for EnCodec."""
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
logger = logging.get_logger(__name__)
class EncodecFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs an EnCodec feature extractor.
This feature extractor inherits from [`~feature_extraction_sequence_utils.SequenceFeatureExtractor`] which contains
most of the main methods. Users should refer to this superclass for more information regarding those methods.
Instantiating a feature extractor with the defaults will yield a similar configuration to that of the
[facebook/encodec_24khz](https://huggingface.co/facebook/encodec_24khz) architecture.
Args:
feature_size (`int`, *optional*, defaults to 1):
The feature dimension of the extracted features. Use 1 for mono, 2 for stereo.
sampling_rate (`int`, *optional*, defaults to 24000):
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
padding_value (`float`, *optional*, defaults to 0.0):
The value that is used to fill the padding values.
chunk_length_s (`float`, *optional*):
If defined the audio is pre-processed into chunks of lengths `chunk_length_s` and then encoded.
overlap (`float`, *optional*):
Defines the overlap between each chunk. It is used to compute the `chunk_stride` using the following
formulae : `int((1.0 - self.overlap) * self.chunk_length)`.
"""
model_input_names = ["input_values", "padding_mask"]
def __init__(
self,
feature_size: int = 1,
sampling_rate: int = 24000,
padding_value: float = 0.0,
chunk_length_s: float = None,
overlap: float = None,
**kwargs,
):
super().__init__(feature_size=feature_size, sampling_rate=sampling_rate, padding_value=padding_value, **kwargs)
self.chunk_length_s = chunk_length_s
self.overlap = overlap
# This is a property because you might want to change the chunk_length_s on the fly
@property
def chunk_length(self) -> Optional[int]:
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate)
# This is a property because you might want to change the chunk_length_s on the fly
@property
def chunk_stride(self) -> Optional[int]:
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1, int((1.0 - self.overlap) * self.chunk_length))
def __call__(
self,
raw_audio: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
padding: Optional[Union[bool, str, PaddingStrategy]] = None,
truncation: Optional[bool] = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
sampling_rate: Optional[int] = None,
) -> BatchFeature:
"""
Main method to featurize and prepare for the model one or several sequence(s).
Args:
raw_audio (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be processed. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. The numpy array must be of shape
`(num_samples,)` for mono audio (`feature_size = 1`), or `(2, num_samples)` for stereo audio
(`feature_size = 2`).
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, *optional*, defaults to `False`):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
sampling_rate (`int`, *optional*):
The sampling rate at which the `audio` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors.
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"
f" {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
if padding and truncation:
raise ValueError("Both padding and truncation were set. Make sure you only set one.")
elif padding is None:
# by default let's pad the inputs
padding = True
is_batched = bool(
isinstance(raw_audio, (list, tuple)) and (isinstance(raw_audio[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_audio = [np.asarray(audio, dtype=np.float32).T for audio in raw_audio]
elif not is_batched and not isinstance(raw_audio, np.ndarray):
raw_audio = np.asarray(raw_audio, dtype=np.float32)
elif isinstance(raw_audio, np.ndarray) and raw_audio.dtype is np.dtype(np.float64):
raw_audio = raw_audio.astype(np.float32)
# always return batch
if not is_batched:
raw_audio = [np.asarray(raw_audio).T]
# verify inputs are valid
for idx, example in enumerate(raw_audio):
if example.ndim > 2:
raise ValueError(f"Expected input shape (channels, length) but got shape {example.shape}")
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f"Expected mono audio but example has {example.shape[-1]} channels")
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f"Expected stereo audio but example has {example.shape[-1]} channels")
padded_inputs = None
input_values = BatchFeature({"input_values": raw_audio})
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
max_length = min(array.shape[0] for array in raw_audio)
nb_step = int(np.floor(max_length / self.chunk_stride))
max_length = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
max_length = max(array.shape[0] for array in raw_audio)
nb_step = int(np.ceil(max_length / self.chunk_stride))
max_length = (nb_step - 1) * self.chunk_stride + self.chunk_length
padding = "max_length"
else:
padded_inputs = input_values
# normal padding on batch
if padded_inputs is None:
padded_inputs = self.pad(
input_values,
max_length=max_length,
truncation=truncation,
padding=padding,
return_attention_mask=padding,
)
if padding:
padded_inputs["padding_mask"] = padded_inputs.pop("attention_mask")
input_values = []
for example in padded_inputs.pop("input_values"):
if self.feature_size == 1:
example = example[..., None]
input_values.append(example.T)
padded_inputs["input_values"] = input_values
if return_tensors is not None:
padded_inputs = padded_inputs.convert_to_tensors(return_tensors)
return padded_inputs
| transformers/src/transformers/models/encodec/feature_extraction_encodec.py/0 | {
"file_path": "transformers/src/transformers/models/encodec/feature_extraction_encodec.py",
"repo_id": "transformers",
"token_count": 4073
} | 325 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ESM checkpoint."""
import argparse
import pathlib
from pathlib import Path
from tempfile import TemporaryDirectory
import esm as esm_module
import torch
from esm.esmfold.v1.misc import batch_encode_sequences as esmfold_encode_sequences
from esm.esmfold.v1.pretrained import esmfold_v1
from transformers.models.esm.configuration_esm import EsmConfig, EsmFoldConfig
from transformers.models.esm.modeling_esm import (
EsmForMaskedLM,
EsmForSequenceClassification,
EsmIntermediate,
EsmLayer,
EsmOutput,
EsmSelfAttention,
EsmSelfOutput,
)
from transformers.models.esm.modeling_esmfold import EsmForProteinFolding
from transformers.models.esm.tokenization_esm import EsmTokenizer
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
SAMPLE_DATA = [
(
"protein1",
"MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLYVTVQHKKLRTPLNYILLNLAVADLFMVLGGFTSTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSLVVLAIERYVVVCKPMSNFRFGENHAIMGVAFTWVMALACAAPPLAGWSRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPMIIIFFCYGQLVFTVKEAAAQQQESATTQKAEKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSNFGPIFMTIPAFFAKSAAIYNPVIYIMMNKQFRNCMLTTICCGKNPLGDDEASATVSKTETSQVAPA",
),
("protein2", "MKTVRQERLKSIVRILERSKEPVSGAQLAEELSVSRQVIVQDIAYLRSLGYNIVATPRGYVLA"),
("protein3", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLAGG"),
("protein4", "MKTVRQERLKSI<mask>RILERSKEPVSGAQLAEELS<mask>SRQVIVQDIAYLRSLGYN<mask>VATPRGYVLA"),
]
MODEL_MAPPING = {
"esm1b_t33_650M_UR50S": esm_module.pretrained.esm1b_t33_650M_UR50S,
"esm1v_t33_650M_UR90S_1": esm_module.pretrained.esm1v_t33_650M_UR90S_1,
"esm1v_t33_650M_UR90S_2": esm_module.pretrained.esm1v_t33_650M_UR90S_2,
"esm1v_t33_650M_UR90S_3": esm_module.pretrained.esm1v_t33_650M_UR90S_3,
"esm1v_t33_650M_UR90S_4": esm_module.pretrained.esm1v_t33_650M_UR90S_4,
"esm1v_t33_650M_UR90S_5": esm_module.pretrained.esm1v_t33_650M_UR90S_5,
"esm2_t48_15B_UR50D": esm_module.pretrained.esm2_t48_15B_UR50D,
"esm2_t36_3B_UR50D": esm_module.pretrained.esm2_t36_3B_UR50D,
"esm2_t33_650M_UR50D": esm_module.pretrained.esm2_t33_650M_UR50D,
"esm2_t30_150M_UR50D": esm_module.pretrained.esm2_t30_150M_UR50D,
"esm2_t12_35M_UR50D": esm_module.pretrained.esm2_t12_35M_UR50D,
"esm2_t6_8M_UR50D": esm_module.pretrained.esm2_t6_8M_UR50D,
"esmfold_v1": esmfold_v1,
}
restypes = list("ARNDCQEGHILKMFPSTWYV")
restypes_with_x = restypes + ["X"]
restypes_with_extras = restypes_with_x + ["<pad>", "<mask>", "<cls>", "<sep>", "<eos>"]
def get_esmfold_tokenizer():
with TemporaryDirectory() as tempdir:
vocab = "\n".join(restypes_with_extras)
vocab_file = Path(tempdir) / "vocab.txt"
vocab_file.write_text(vocab)
hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))
hf_tokenizer.pad_token_id = 0 # Overlaps with 'A' but that seems to be what they want
return hf_tokenizer
def transfer_and_check_weights(original_module, our_module):
status = our_module.load_state_dict(original_module.state_dict())
if status.missing_keys:
raise ValueError(f"Missing keys: {status.missing_keys}")
if status.unexpected_keys:
raise ValueError(f"Unexpected keys: {status.unexpected_keys}")
def convert_esm_checkpoint_to_pytorch(
model: str, pytorch_dump_folder_path: str, classification_head: bool, push_to_repo: str, auth_token: str
):
"""
Copy/paste/tweak esm's weights to our BERT structure.
"""
if model.startswith("esmfold"):
esm = MODEL_MAPPING[model]()
else:
esm, alphabet = MODEL_MAPPING[model]()
esm.eval() # disable dropout
if model.startswith("esmfold"):
embed_dim = esm.esm.embed_dim
num_layers = esm.esm.num_layers
num_attention_heads = esm.esm.attention_heads
intermediate_size = 4 * embed_dim
token_dropout = esm.esm.token_dropout
emb_layer_norm_before = False # This code path does not exist in ESM-2
position_embedding_type = "rotary"
is_folding_model = True
esmfold_config = EsmFoldConfig()
for key, val in esm.cfg.items():
if hasattr(esmfold_config, key) and key != "trunk":
setattr(esmfold_config, key, val)
for key, val in esm.cfg.trunk.items():
if hasattr(esmfold_config.trunk, key) and key != "structure_module":
setattr(esmfold_config.trunk, key, val)
for key, val in esm.cfg.trunk.structure_module.items():
if hasattr(esmfold_config.trunk.structure_module, key):
setattr(esmfold_config.trunk.structure_module, key, val)
elif hasattr(esm, "args"):
# Indicates an ESM-1b or ESM-1v model
embed_dim = esm.args.embed_dim
num_layers = esm.args.layers
num_attention_heads = esm.args.attention_heads
intermediate_size = esm.args.ffn_embed_dim
token_dropout = esm.args.token_dropout
emb_layer_norm_before = True if esm.emb_layer_norm_before else False
position_embedding_type = "absolute"
is_folding_model = False
esmfold_config = None
else:
# Indicates an ESM-2 model
embed_dim = esm.embed_dim
num_layers = esm.num_layers
num_attention_heads = esm.attention_heads
intermediate_size = 4 * embed_dim # This is hardcoded in ESM-2
token_dropout = esm.token_dropout
emb_layer_norm_before = False # This code path does not exist in ESM-2
position_embedding_type = "rotary"
is_folding_model = False
esmfold_config = None
if is_folding_model:
alphabet = esm.esm.alphabet
vocab_list = tuple(alphabet.all_toks)
mask_token_id = alphabet.mask_idx
pad_token_id = alphabet.padding_idx
if is_folding_model:
original_esm_model = esm.esm
else:
original_esm_model = esm
config = EsmConfig(
vocab_size=original_esm_model.embed_tokens.num_embeddings,
mask_token_id=mask_token_id,
hidden_size=embed_dim,
num_hidden_layers=num_layers,
num_attention_heads=num_attention_heads,
intermediate_size=intermediate_size,
max_position_embeddings=1026,
layer_norm_eps=1e-5, # PyTorch default used in fairseq
attention_probs_dropout_prob=0.0,
hidden_dropout_prob=0.0,
pad_token_id=pad_token_id,
emb_layer_norm_before=emb_layer_norm_before,
token_dropout=token_dropout,
position_embedding_type=position_embedding_type,
is_folding_model=is_folding_model,
esmfold_config=esmfold_config,
vocab_list=vocab_list,
)
if classification_head:
config.num_labels = esm.classification_heads["mnli"].out_proj.weight.shape[0]
print("Our ESM config:", config)
if model.startswith("esmfold"):
model_class = EsmForProteinFolding
elif classification_head:
model_class = EsmForSequenceClassification
else:
model_class = EsmForMaskedLM
model = model_class(config)
model.eval()
# Now let's copy all the weights.
# Embeddings
model.esm.embeddings.word_embeddings.weight = original_esm_model.embed_tokens.weight
if position_embedding_type == "absolute":
model.esm.embeddings.position_embeddings.weight = original_esm_model.embed_positions.weight
if config.emb_layer_norm_before:
model.esm.embeddings.layer_norm.weight = original_esm_model.emb_layer_norm_before.weight
model.esm.embeddings.layer_norm.bias = original_esm_model.emb_layer_norm_before.bias
model.esm.encoder.emb_layer_norm_after.weight = original_esm_model.emb_layer_norm_after.weight
model.esm.encoder.emb_layer_norm_after.bias = original_esm_model.emb_layer_norm_after.bias
for i in range(config.num_hidden_layers):
# Encoder: start of layer
layer: EsmLayer = model.esm.encoder.layer[i]
# esm_layer: TransformerSentenceEncoderLayer = original_esm_model.layers[i]
esm_layer = original_esm_model.layers[i]
# self attention
self_attn: EsmSelfAttention = layer.attention.self
assert (
esm_layer.self_attn.k_proj.weight.data.shape
== esm_layer.self_attn.q_proj.weight.data.shape
== esm_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size))
)
self_attn.query.weight.data = esm_layer.self_attn.q_proj.weight
self_attn.query.bias.data = esm_layer.self_attn.q_proj.bias
self_attn.key.weight.data = esm_layer.self_attn.k_proj.weight
self_attn.key.bias.data = esm_layer.self_attn.k_proj.bias
self_attn.value.weight.data = esm_layer.self_attn.v_proj.weight
self_attn.value.bias.data = esm_layer.self_attn.v_proj.bias
if getattr(esm_layer.self_attn, "rot_emb", None) is not None:
# Matt: Although inv_freq is not a trainable weight, it is computed at model init and cached.
# During the training of ESM-2 the model was converted to float16 precision, which also converts
# the inv_freq tensor, and the loss of precision remains even if the model is loaded later as float32.
# If we recompute inv_freq without this loss of precision then we will get subtly different rotary
# embeddings, which are enough to cause significant discrepancies in model outputs. To avoid this,
# we make sure the new model copies the data from the old inv_freq.
self_attn.rotary_embeddings.inv_freq.data = esm_layer.self_attn.rot_emb.inv_freq
# LayerNorm changes for pre-activation
layer.attention.LayerNorm.weight = esm_layer.self_attn_layer_norm.weight
layer.attention.LayerNorm.bias = esm_layer.self_attn_layer_norm.bias
layer.LayerNorm.weight = esm_layer.final_layer_norm.weight
layer.LayerNorm.bias = esm_layer.final_layer_norm.bias
# self-attention output
self_output: EsmSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == esm_layer.self_attn.out_proj.weight.shape
self_output.dense.weight = esm_layer.self_attn.out_proj.weight
self_output.dense.bias = esm_layer.self_attn.out_proj.bias
# intermediate
intermediate: EsmIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == esm_layer.fc1.weight.shape
intermediate.dense.weight = esm_layer.fc1.weight
intermediate.dense.bias = esm_layer.fc1.bias
# output
bert_output: EsmOutput = layer.output
assert bert_output.dense.weight.shape == esm_layer.fc2.weight.shape
bert_output.dense.weight = esm_layer.fc2.weight
bert_output.dense.bias = esm_layer.fc2.bias
# end of layer
if is_folding_model:
model.esm_s_combine.data = esm.esm_s_combine.data
model.af2_to_esm.data = esm.af2_to_esm.data
transfer_and_check_weights(esm.embedding, model.embedding)
transfer_and_check_weights(esm.esm_s_mlp, model.esm_s_mlp)
transfer_and_check_weights(esm.trunk, model.trunk)
transfer_and_check_weights(esm.distogram_head, model.distogram_head)
transfer_and_check_weights(esm.ptm_head, model.ptm_head)
transfer_and_check_weights(esm.lm_head, model.lm_head)
transfer_and_check_weights(esm.lddt_head, model.lddt_head)
elif classification_head:
model.classifier.dense.weight = esm.esm.classification_heads["mnli"].dense.weight
model.classifier.dense.bias = esm.classification_heads["mnli"].dense.bias
model.classifier.out_proj.weight = esm.classification_heads["mnli"].out_proj.weight
model.classifier.out_proj.bias = esm.classification_heads["mnli"].out_proj.bias
else:
# LM Head
model.lm_head.dense.weight = esm.lm_head.dense.weight
model.lm_head.dense.bias = esm.lm_head.dense.bias
model.lm_head.layer_norm.weight = esm.lm_head.layer_norm.weight
model.lm_head.layer_norm.bias = esm.lm_head.layer_norm.bias
model.lm_head.decoder.weight = esm.lm_head.weight
model.lm_head.bias = esm.lm_head.bias
# Contact prediction head
transfer_and_check_weights(esm.contact_head, model.esm.contact_head)
# Prepare data (first 2 sequences from ESMStructuralSplitDataset superfamily / 4)
if is_folding_model:
# Folding models aren't trained on masked inputs and don't like mask tokens.
sample_data = SAMPLE_DATA[:2]
else:
sample_data = SAMPLE_DATA
if is_folding_model:
hf_tokenizer = get_esmfold_tokenizer()
hf_tokens = hf_tokenizer(
[row[1] for row in sample_data], return_tensors="pt", padding=True, add_special_tokens=False
)
esmfold_aas, esmfold_mask, _, _, _ = esmfold_encode_sequences([row[1] for row in sample_data])
success = torch.all(hf_tokens["input_ids"] == esmfold_aas) and torch.all(
hf_tokens["attention_mask"] == esmfold_mask
)
else:
# Let's check that we get the same results.
batch_converter = alphabet.get_batch_converter()
batch_labels, batch_strs, batch_tokens = batch_converter(sample_data)
# Prepare tokenizer and make sure it matches
with TemporaryDirectory() as tempdir:
vocab = "\n".join(alphabet.all_toks)
vocab_file = Path(tempdir) / "vocab.txt"
vocab_file.write_text(vocab)
hf_tokenizer = EsmTokenizer(vocab_file=str(vocab_file))
hf_tokens = hf_tokenizer([row[1] for row in sample_data], return_tensors="pt", padding=True)
success = torch.all(hf_tokens["input_ids"] == batch_tokens)
print("Do both models tokenizers output the same tokens?", "🔥" if success else "💩")
if not success:
raise Exception("Tokenization does not match!")
with torch.no_grad():
if is_folding_model:
# Let's test the model in parts
# ESMFold always converts the ESM stem to float16, which requires float16 ops
# that don't exist on CPU. Therefore, to test it we need to run it on GPU. However,
# ESMFold is what we in the community call a "big boy" and so we desperately avoid putting both the
# original and the converted model on the GPU at the same time.
their_output = esm.cuda().infer([row[1] for row in sample_data])
our_output = model.cuda()(
input_ids=hf_tokens["input_ids"].cuda(), attention_mask=hf_tokens["attention_mask"].cuda()
)
else:
our_output = model(**hf_tokens, output_hidden_states=True)
our_output = our_output["logits"]
if classification_head:
their_output = esm.model.classification_heads["mnli"](esm.extract_features(batch_tokens))
else:
their_output = esm(hf_tokens["input_ids"], repr_layers=list(range(999)))
their_output = their_output["logits"]
if is_folding_model:
max_absolute_diff = torch.max(torch.abs(our_output["positions"] - their_output["positions"])).item()
success = torch.allclose(our_output["positions"], their_output["positions"], atol=1e-5)
else:
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
success = torch.allclose(our_output, their_output, atol=1e-5)
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5
print("Do both models output the same tensors?", "🔥" if success else "💩")
if not success:
raise Exception("Something went wRoNg")
if not is_folding_model:
# Let's check contact prediction too
our_output = model.predict_contacts(hf_tokens["input_ids"], hf_tokens["attention_mask"])
their_output = esm.predict_contacts(hf_tokens["input_ids"])
max_absolute_diff = torch.max(torch.abs(our_output - their_output)).item()
success = torch.allclose(our_output, their_output, atol=1e-5)
print("Contact prediction testing:")
print(f"max_absolute_diff = {max_absolute_diff}") # ~ 1e-5
print("Do both models output the same tensors?", "🔥" if success else "💩")
if not success:
raise Exception("Something went wRoNg")
pathlib.Path(pytorch_dump_folder_path).mkdir(parents=True, exist_ok=True)
print(f"Saving model to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
del esm # Free up some memory before continuing
print(f"Saving tokenizer to {pytorch_dump_folder_path}")
hf_tokenizer.save_pretrained(pytorch_dump_folder_path)
if push_to_repo:
model.push_to_hub(repo_id=push_to_repo, token_token=auth_token)
hf_tokenizer.push_to_hub(repo_id=push_to_repo, token_token=auth_token)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--pytorch_dump_folder_path", type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
parser.add_argument("--model", default=None, type=str, required=True, help="Name of model to convert.")
parser.add_argument("--push_to_repo", type=str, help="Repo to upload to (including username!).")
parser.add_argument("--auth_token", type=str, help="HuggingFace auth token.")
args = parser.parse_args()
convert_esm_checkpoint_to_pytorch(
args.model, args.pytorch_dump_folder_path, args.classification_head, args.push_to_repo, args.auth_token
)
| transformers/src/transformers/models/esm/convert_esm.py/0 | {
"file_path": "transformers/src/transformers/models/esm/convert_esm.py",
"repo_id": "transformers",
"token_count": 8133
} | 326 |
import json
from argparse import ArgumentParser
from pathlib import Path
"""
This script converts Falcon custom code checkpoints to modern Falcon checkpoints that use code in the Transformers
library. After conversion, performance (especially for generation) should improve and the checkpoint can be loaded
without needing trust_remote_code=True.
"""
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument(
"--checkpoint_dir",
type=Path,
required=True,
help="Directory containing a custom code checkpoint to convert to a modern Falcon checkpoint.",
)
args = parser.parse_args()
if not args.checkpoint_dir.is_dir():
raise ValueError("--checkpoint_dir argument should be a directory!")
if (
not (args.checkpoint_dir / "configuration_RW.py").is_file()
or not (args.checkpoint_dir / "modelling_RW.py").is_file()
):
raise ValueError(
"The model directory should contain configuration_RW.py and modelling_RW.py files! Are you sure this is a custom code checkpoint?"
)
(args.checkpoint_dir / "configuration_RW.py").unlink()
(args.checkpoint_dir / "modelling_RW.py").unlink()
config = args.checkpoint_dir / "config.json"
text = config.read_text()
text = text.replace("RWForCausalLM", "FalconForCausalLM")
text = text.replace("RefinedWebModel", "falcon")
text = text.replace("RefinedWeb", "falcon")
json_config = json.loads(text)
del json_config["auto_map"]
if "n_head" in json_config:
json_config["num_attention_heads"] = json_config.pop("n_head")
if "n_layer" in json_config:
json_config["num_hidden_layers"] = json_config.pop("n_layer")
if "n_head_kv" in json_config:
json_config["num_kv_heads"] = json_config.pop("n_head_kv")
json_config["new_decoder_architecture"] = True
else:
json_config["new_decoder_architecture"] = False
bos_token_id = json_config.get("bos_token_id", 1)
eos_token_id = json_config.get("eos_token_id", 2)
config.unlink()
config.write_text(json.dumps(json_config, indent=2, sort_keys=True))
tokenizer_config = args.checkpoint_dir / "tokenizer_config.json"
if tokenizer_config.is_file():
text = tokenizer_config.read_text()
json_config = json.loads(text)
if json_config["tokenizer_class"] == "PreTrainedTokenizerFast":
json_config["model_input_names"] = ["input_ids", "attention_mask"]
tokenizer_config.unlink()
tokenizer_config.write_text(json.dumps(json_config, indent=2, sort_keys=True))
generation_config_path = args.checkpoint_dir / "generation_config.json"
generation_dict = {
"_from_model_config": True,
"bos_token_id": bos_token_id,
"eos_token_id": eos_token_id,
"transformers_version": "4.33.0.dev0",
}
generation_config_path.write_text(json.dumps(generation_dict, indent=2, sort_keys=True))
print("Done! Please double-check that the new checkpoint works as expected.")
| transformers/src/transformers/models/falcon/convert_custom_code_checkpoint.py/0 | {
"file_path": "transformers/src/transformers/models/falcon/convert_custom_code_checkpoint.py",
"repo_id": "transformers",
"token_count": 1171
} | 327 |
# coding=utf-8
# Copyright 2022 Meta Platforms authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def rreplace(s, old, new, occurrence):
li = s.rsplit(old, occurrence)
return new.join(li)
def count_parameters(state_dict):
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items())
def upgrade_state_dict(state_dict):
upgrade = {}
group_keys = ["group_1", "group_2", "group_3", "group_4"]
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
key = key.replace(f"{group_key}.", f"{group_key}.group.")
if "res_path" in key:
key = key.replace("res_path.", "res_path.path.")
if key.endswith(".w"):
key = rreplace(key, ".w", ".weight", 1)
if key.endswith(".b"):
key = rreplace(key, ".b", ".bias", 1)
upgrade[key] = value.float()
return upgrade
@torch.no_grad()
def convert_dalle_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path=None, save_checkpoint=True):
"""
Copy/paste/tweak model's weights to transformers design.
"""
from dall_e import Encoder
encoder = Encoder()
if os.path.exists(checkpoint_path):
ckpt = torch.load(checkpoint_path)
else:
ckpt = torch.hub.load_state_dict_from_url(checkpoint_path)
if isinstance(ckpt, Encoder):
ckpt = ckpt.state_dict()
encoder.load_state_dict(ckpt)
if config_path is not None:
config = FlavaImageCodebookConfig.from_pretrained(config_path)
else:
config = FlavaImageCodebookConfig()
hf_model = FlavaImageCodebook(config).eval()
state_dict = encoder.state_dict()
hf_state_dict = upgrade_state_dict(state_dict)
hf_model.load_state_dict(hf_state_dict)
hf_state_dict = hf_model.state_dict()
hf_count = count_parameters(hf_state_dict)
state_dict_count = count_parameters(state_dict)
assert torch.allclose(hf_count, state_dict_count, atol=1e-3)
if save_checkpoint:
hf_model.save_pretrained(pytorch_dump_folder_path)
else:
return hf_state_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
args = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| transformers/src/transformers/models/flava/convert_dalle_to_flava_codebook.py/0 | {
"file_path": "transformers/src/transformers/models/flava/convert_dalle_to_flava_codebook.py",
"repo_id": "transformers",
"token_count": 1300
} | 328 |
# coding=utf-8
# Copyright 2023 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Fuyu model."""
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...modeling_outputs import CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...models.auto.modeling_auto import AutoModelForCausalLM
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_fuyu import FuyuConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "FuyuConfig"
FUYU_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FuyuConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Fuyu Model outputting raw hidden-states without any specific head on top.",
FUYU_START_DOCSTRING,
)
class FuyuPreTrainedModel(PreTrainedModel):
config_class = FuyuConfig
base_model_prefix = "fuyu"
supports_gradient_checkpointing = True
_no_split_modules = []
_skip_keys_device_placement = "past_key_values"
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
FUYU_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
image_patches (`torch.FloatTensor` of shape `(batch_size, num_total_patches, patch_size_ x patch_size x num_channels)`, *optional*):
Image patches to be used as continuous embeddings. The patches are flattened and then projected to the
hidden size of the model.
image_patches_indices (`torch.LongTensor` of shape `(batch_size, num_total_patches + number_of_newline_tokens + number_of_text_tokens, patch_size_ x patch_size x num_channels )`, *optional*):
Indices indicating at which position the image_patches have to be inserted in input_embeds.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"Fuyu Model with a language modeling head on top for causal language model conditioned on image patches and text.",
FUYU_START_DOCSTRING,
)
class FuyuForCausalLM(FuyuPreTrainedModel):
def __init__(self, config: FuyuConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
self.vision_embed_tokens = nn.Linear(
config.patch_size * config.patch_size * config.num_channels, config.hidden_size
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def gather_continuous_embeddings(
self,
word_embeddings: torch.Tensor,
continuous_embeddings: List[torch.Tensor],
image_patch_input_indices: torch.Tensor,
) -> torch.Tensor:
"""This function places the continuous_embeddings into the word_embeddings at the locations
indicated by image_patch_input_indices. Different batch elements can have different numbers of continuous
embeddings.
Args:
word_embeddings (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Tensor of word embeddings.
continuous_embeddings (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`):
Tensor of continuous embeddings. The length of the list is the batch size. Each entry is shape
[num_image_embeddings, hidden], and num_image_embeddings needs to match the number of non-negative
indices in image_patch_input_indices for that batch element.
image_patch_input_indices (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Tensor of indices of the image patches in the input_ids tensor.
"""
if not (word_embeddings.shape[0] == len(continuous_embeddings)):
raise ValueError(
f"Batch sizes must match! Got {len(continuous_embeddings)=} and {word_embeddings.shape[0]=}"
)
output_embeddings = word_embeddings.clone()
for batch_idx in range(word_embeddings.shape[0]):
# First, find the positions of all the non-negative values in image_patch_input_indices, those are the
# positions in word_embeddings that we want to replace with content from continuous_embeddings.
dst_indices = torch.nonzero(image_patch_input_indices[batch_idx] >= 0, as_tuple=True)[0]
# Next look up those indices in image_patch_input_indices to find the indices in continuous_embeddings that we
# want to use to replace the values in word_embeddings.
src_indices = image_patch_input_indices[batch_idx][dst_indices]
# Check if we have more indices than embeddings. Note that we could have fewer indices if images got truncated.
if src_indices.shape[0] > continuous_embeddings[batch_idx].shape[0]:
raise ValueError(
f"Number of continuous embeddings {continuous_embeddings[batch_idx].shape=} does not match "
f"number of continuous token ids {src_indices.shape=} in batch element {batch_idx}."
)
output_embeddings[batch_idx, dst_indices] = continuous_embeddings[batch_idx][src_indices]
return output_embeddings
@add_start_docstrings_to_model_forward(FUYU_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
image_patches: torch.Tensor = None, # [batch_size, num_total_patches, patch_size_ x patch_size x num_channels ]
image_patches_indices: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Examples:
```python
>>> from transformers import FuyuProcessor, FuyuForCausalLM
>>> from PIL import Image
>>> import requests
>>> processor = FuyuProcessor.from_pretrained("adept/fuyu-8b")
>>> model = FuyuForCausalLM.from_pretrained("adept/fuyu-8b")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> prompt = "Generate a coco-style caption.\n"
>>> inputs = processor(text=text_prompt, images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> generated_ids = model.generate(**model_inputs, max_new_tokens=7)
>>> generation_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generation_text)
'A bus parked on the side of a road.'
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_is or inputs_embeds")
seq_length_with_past = seq_length
past_key_values_length = 0
if past_key_values is not None:
past_key_values_length = past_key_values[0][0].shape[2]
seq_length_with_past = seq_length_with_past + past_key_values_length
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
if image_patches is not None and past_key_values is None:
patch_embeddings = [
self.vision_embed_tokens(patch.to(self.vision_embed_tokens.weight.dtype)).squeeze(0)
for patch in image_patches
]
inputs_embeds = self.gather_continuous_embeddings(
word_embeddings=inputs_embeds,
continuous_embeddings=patch_embeddings,
image_patch_input_indices=image_patches_indices,
)
outputs = self.language_model(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
labels=labels,
use_cache=use_cache,
return_dict=return_dict,
)
return outputs
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
image_patches=None,
image_patches_indices=None,
**kwargs,
):
if past_key_values:
input_ids = input_ids[:, -1:]
position_ids = kwargs.get("position_ids", None)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
if image_patches_indices is not None:
model_inputs["image_patches_indices"] = image_patches_indices
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"image_patches_indices": image_patches_indices if past_key_values is None else None,
"image_patches": image_patches if past_key_values is None else None,
}
)
return model_inputs
| transformers/src/transformers/models/fuyu/modeling_fuyu.py/0 | {
"file_path": "transformers/src/transformers/models/fuyu/modeling_fuyu.py",
"repo_id": "transformers",
"token_count": 7181
} | 329 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OpenAI GPT checkpoint."""
import argparse
import torch
from transformers import GPT2Config, GPT2Model, load_tf_weights_in_gpt2
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path):
# Construct model
if gpt2_config_file == "":
config = GPT2Config()
else:
config = GPT2Config.from_json_file(gpt2_config_file)
model = GPT2Model(config)
# Load weights from numpy
load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path)
# Save pytorch-model
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(f"Save PyTorch model to {pytorch_weights_dump_path}")
torch.save(model.state_dict(), pytorch_weights_dump_path)
print(f"Save configuration file to {pytorch_config_dump_path}")
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(config.to_json_string())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--gpt2_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
args = parser.parse_args()
convert_gpt2_checkpoint_to_pytorch(args.gpt2_checkpoint_path, args.gpt2_config_file, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 937
} | 330 |
# coding=utf-8
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" GPTNeoX model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json",
# See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
}
class GPTNeoXConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the GPTNeoX
[EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50432):
Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTNeoXModel`].
hidden_size (`int`, *optional*, defaults to 6144):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 44):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
rotary_pct (`float`, *optional*, defaults to 0.25):
percentage of hidden dimensions to allocate to rotary embeddings
rotary_emb_base (`int`, *optional*, defaults to 10000)
base for computing rotary embeddings frequency
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio probability of the attention score.
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
hidden states.
classifier_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].
The dropout ratio for the hidden layer.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 1e-5):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
use_parallel_residual (`bool`, *optional*, defaults to `True`):
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
speedup at large scales (e.g. 20B).
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
experimental feature, subject to breaking API changes in future versions.
attention_bias (`bool`, *optional*, defaults to `True`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
Example:
```python
>>> from transformers import GPTNeoXConfig, GPTNeoXModel
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
>>> configuration = GPTNeoXConfig()
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
>>> model = GPTNeoXModel(configuration) # doctest: +SKIP
>>> # Accessing the model configuration
>>> configuration = model.config # doctest: +SKIP
```"""
model_type = "gpt_neox"
def __init__(
self,
vocab_size=50432,
hidden_size=6144,
num_hidden_layers=44,
num_attention_heads=64,
intermediate_size=24576,
hidden_act="gelu",
rotary_pct=0.25,
rotary_emb_base=10000,
attention_dropout=0.0,
hidden_dropout=0.0,
classifier_dropout=0.1,
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
bos_token_id=0,
eos_token_id=2,
tie_word_embeddings=False,
use_parallel_residual=True,
rope_scaling=None,
attention_bias=True,
**kwargs,
):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.rotary_pct = rotary_pct
self.rotary_emb_base = rotary_emb_base
self.attention_dropout = attention_dropout
self.hidden_dropout = hidden_dropout
self.classifier_dropout = classifier_dropout
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
self.use_parallel_residual = use_parallel_residual
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self._rope_scaling_validation()
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"The hidden size is not divisble by the number of attention heads! Make sure to update them!"
)
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
| transformers/src/transformers/models/gpt_neox/configuration_gpt_neox.py/0 | {
"file_path": "transformers/src/transformers/models/gpt_neox/configuration_gpt_neox.py",
"repo_id": "transformers",
"token_count": 3539
} | 331 |
# coding=utf-8
# Copyright 2023, HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" GPTSAN-japanese model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"tanreinama/GPTSAN-2.8B-spout_is_uniform": (
"https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json"
),
}
class GPTSanJapaneseConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTSanJapaneseModel`]. It is used to instantiate
a GPTSANJapanese model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the GPTSANJapanese
[Tanrei/GPTSAN-japanese](https://huggingface.co/Tanrei/GPTSAN-japanese) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Arguments:
vocab_size (`int`, *optional*, defaults to 36000):
Vocabulary size of the GPTSANJapanese model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`GPTSanJapaneseModel`].
max_position_embeddings (`int`, *optional*, defaults to 1280):
The maximum sequence length that this model might ever be used with. Defaults set this to 1280.
d_model (`int`, *optional*, defaults to 1024):
Size of the encoder layers and the pooler layer.
d_ff (`int`, *optional*, defaults to 8192):
Size of the intermediate feed forward layer in each `SwitchTransformersBlock`.
d_ext (`int`, *optional*, defaults to 4096):
Size of the intermediate feed forward layer in each Extra-layers.
d_spout (`int`, *optional*, defaults to 128):
Size of the `spout` vector.
num_switch_layers (`int`, *optional*, defaults to 10):
Number of layers in the Switch Transformer layer.
num_ext_layers (`int`, *optional*, defaults to 0):
Number of layers in the Extra-layers.
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
num_experts (`int`, *optional*, defaults to 16):
Number of experts for each SwitchTransformer layer.
expert_capacity (`int`, *optional*, defaults to 128):
Number of tokens that can be stored in each expert. If set to 1, the model will behave like a regular
Transformer.
dropout_rate (`float`, *optional*, defaults to 0.0):
The ratio for all dropout layers.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
router_bias (`bool`, *optional*, defaults to `False`):
Whether to add a bias to the router.
router_jitter_noise (`float`, *optional*, defaults to 0.0):
Amount of noise to add to the router. Set it to 0.0 during prediction or set small value (usually 1e-2)
during training.
router_dtype (`str`, *optional*, default to `"float32"`):
The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the
*selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961).
router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`):
Whether to ignore padding tokens when routing.
output_hidden_states (`bool`, *optional*, default to `False`):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers.
initializer_factor (`float`, *optional*, defaults to 0.002):
A factor for initializing all weight matrices.
output_router_logits (`bool`, *optional*, default to `False`):
Whether or not to return the router logits of all experts.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models)
"""
model_type = "gptsan-japanese"
keys_to_ignore_at_inference = [
"past_key_values",
]
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__(
self,
vocab_size=36000,
max_position_embeddings=1280,
d_model=1024,
d_ff=8192,
d_ext=4096,
d_spout=128,
num_switch_layers=10,
num_ext_layers=0,
num_heads=16,
num_experts=16,
expert_capacity=128,
dropout_rate=0.0,
layer_norm_epsilon=1e-5,
router_bias=False,
router_jitter_noise=0.0,
router_dtype="float32",
router_ignore_padding_tokens=False,
output_hidden_states=False,
output_attentions=False,
initializer_factor=0.002,
output_router_logits=False,
use_cache=True,
separator_token_id=35998,
pad_token_id=35995,
eos_token_id=35999,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.d_ff = d_ff
self.d_ext = d_ext
self.d_spout = d_spout
self.num_switch_layers = num_switch_layers
self.num_ext_layers = num_ext_layers
self.num_layers = num_switch_layers + num_ext_layers
self.num_heads = num_heads
self.num_experts = num_experts
self.expert_capacity = expert_capacity
self.dropout_rate = dropout_rate
self.layer_norm_epsilon = layer_norm_epsilon
self.router_bias = router_bias
self.router_jitter_noise = router_jitter_noise
self.router_dtype = router_dtype
self.router_ignore_padding_tokens = router_ignore_padding_tokens
self.output_hidden_states = output_hidden_states
self.output_attentions = output_attentions
self.initializer_factor = initializer_factor
self.output_router_logits = output_router_logits
self.use_cache = use_cache
super().__init__(
separator_token_id=separator_token_id,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
| transformers/src/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py/0 | {
"file_path": "transformers/src/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py",
"repo_id": "transformers",
"token_count": 2956
} | 332 |
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, Allegro.pl, Facebook Inc. and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json"
},
"merges_file": {
"allegro/herbert-base-cased": "https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt"
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {"allegro/herbert-base-cased": 514}
PRETRAINED_INIT_CONFIGURATION = {}
class HerbertTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "Fast" BPE tokenizer for HerBERT (backed by HuggingFace's *tokenizers* library).
Peculiarities:
- uses BERT's pre-tokenizer: BertPreTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of
a punctuation character will be treated separately.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the methods. Users should refer to the
superclass for more information regarding methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
merges_file (`str`):
Path to the merges file.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
slow_tokenizer_class = HerbertTokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
sep_token="</s>",
**kwargs,
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
mask_token=mask_token,
sep_token=sep_token,
**kwargs,
)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An HerBERT, like BERT sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
cls = [self.cls_token_id]
sep = [self.sep_token_id]
if token_ids_1 is None:
return cls + token_ids_0 + sep
return cls + token_ids_0 + sep + token_ids_1 + sep
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. HerBERT, like
BERT sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
| transformers/src/transformers/models/herbert/tokenization_herbert_fast.py/0 | {
"file_path": "transformers/src/transformers/models/herbert/tokenization_herbert_fast.py",
"repo_id": "transformers",
"token_count": 2812
} | 333 |
# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License.
#
# MIT License
#
# Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially
time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note
that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to
prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that
to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore.
References:
- DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
- Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch
"""
from typing import Optional, Tuple
import torch
import torch.nn as nn
from .configuration_idefics import IdeficsConfig
class IdeficsPerceiverResampler(nn.Module):
def __init__(
self, config: IdeficsConfig, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int
) -> None:
"""
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed
to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler.
Could be e.g., VIT embed_dim, ResNet pool dim, and so on.
Args:
config (`IdeficsConfig`): config object
embed_dim (`int`): The size of each embedding vector
depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention).
head_dim (`int`): Dimensionality of each head projection in the Transformer block.
n_latents (`int`):
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents
self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver
# Create Latents for Perceiver
self.latents = nn.Parameter(torch.randn(self.n_latents, self.embed_dim), requires_grad=True)
self.intermediate_dim = (
self.embed_dim * 4
if not hasattr(config.vision_config, "embed_dim")
else config.vision_config.embed_dim * 4
)
# Create Transformer Blocks
self.blocks = nn.ModuleList(
[
nn.ModuleList(
[
IdeficsPerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms),
IdeficsMLP(self.intermediate_dim, config),
]
)
for _ in range(depth)
]
)
self.layer_norm = nn.LayerNorm(self.embed_dim)
def forward(self, context: torch.Tensor) -> torch.Tensor:
"""Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
# einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
latents = self.latents.repeat(context.shape[0], 1, 1)
# Feed through Perceiver Attention blocks...
for attn, ff in self.blocks:
latents = attn(context, latents) + latents
latents = ff(latents) + latents
return self.layer_norm(latents)
class IdeficsPerceiverAttention(nn.Module):
def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None:
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
self.qk_layer_norms = qk_layer_norms
# Normalization & Scaling
self.context_layer_norm = nn.LayerNorm(self.embed_dim)
self.latents_layer_norm = nn.LayerNorm(self.embed_dim)
if self.qk_layer_norms:
self.q_layer_norm = nn.LayerNorm(self.head_dim)
self.k_layer_norm = nn.LayerNorm(self.head_dim)
self.qk_scale = self.head_dim**-0.5
# Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.output_proj = nn.Linear(self.n_heads * self.head_dim, embed_dim, bias=False)
def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
"""
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
Args:
context (`torch.Tensor`):
Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample.
latents (`torch.Tensor`):
Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to.
Returns:
`torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross
from context.
"""
context = self.context_layer_norm(context)
latents = self.latents_layer_norm(latents)
batch_size, seq_length, embed_dim = context.shape[:3]
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
q = self.q_proj(latents)
k = self.k_proj(torch.cat([context, latents], dim=-2))
v = self.v_proj(torch.cat([context, latents], dim=-2))
# Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
# =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
# einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads)
q, k, v = [x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose(1, 2) for x in (q, k, v)]
if self.qk_layer_norms:
q = self.q_layer_norm(q)
k = self.k_layer_norm(k)
scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach())
attn = stabilized_scores.softmax(dim=-1)
# Attend & project back to output...
resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v)
# einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads)
return self.output_proj(resampled.transpose(1, 2).flatten(-2))
class IdeficsMLP(nn.Module):
def __init__(self, intermediate_size, config: IdeficsConfig):
"""Simple MLP block with intermediate_size and embedding size"""
super().__init__()
self.embed_dim = config.vision_config.embed_dim
self.ln = nn.LayerNorm(self.embed_dim)
self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False)
self.act = nn.ReLU()
self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False)
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.ln(hidden_states)
hidden_states = self.fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
return hidden_states
| transformers/src/transformers/models/idefics/perceiver.py/0 | {
"file_path": "transformers/src/transformers/models/idefics/perceiver.py",
"repo_id": "transformers",
"token_count": 3755
} | 334 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for LeViT."""
from typing import Dict, Iterable, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
get_resize_output_image_size,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_DEFAULT_MEAN,
IMAGENET_DEFAULT_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class LevitImageProcessor(BaseImageProcessor):
r"""
Constructs a LeViT image processor.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Wwhether to resize the shortest edge of the input to int(256/224 *`size`). Can be overridden by the
`do_resize` parameter in the `preprocess` method.
size (`Dict[str, int]`, *optional*, defaults to `{"shortest_edge": 224}`):
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image will
be resized to `(size["height"], size["width"])`. If size is a dict with key "shortest_edge", the shortest
edge value `c` is rescaled to `int(c * (256/224))`. The smaller edge of the image will be matched to this
value i.e, if height > width, then image will be rescaled to `(size["shortest_egde"] * height / width,
size["shortest_egde"])`. Can be overridden by the `size` parameter in the `preprocess` method.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
`preprocess` method.
do_center_crop (`bool`, *optional*, defaults to `True`):
Whether or not to center crop the input to `(crop_size["height"], crop_size["width"])`. Can be overridden
by the `do_center_crop` parameter in the `preprocess` method.
crop_size (`Dict`, *optional*, defaults to `{"height": 224, "width": 224}`):
Desired image size after `center_crop`. Can be overridden by the `crop_size` parameter in the `preprocess`
method.
do_rescale (`bool`, *optional*, defaults to `True`):
Controls whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the
`do_rescale` parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
do_normalize (`bool`, *optional*, defaults to `True`):
Controls whether to normalize the image. Can be overridden by the `do_normalize` parameter in the
`preprocess` method.
image_mean (`List[int]`, *optional*, defaults to `[0.485, 0.456, 0.406]`):
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
image_std (`List[int]`, *optional*, defaults to `[0.229, 0.224, 0.225]`):
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize: bool = True,
size: Dict[str, int] = None,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_center_crop: bool = True,
crop_size: Dict[str, int] = None,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN,
image_std: Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD,
**kwargs,
) -> None:
super().__init__(**kwargs)
size = size if size is not None else {"shortest_edge": 224}
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
crop_size = get_size_dict(crop_size, param_name="crop_size")
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN
self.image_std = image_std if image_std is not None else IMAGENET_DEFAULT_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling = PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image.
If size is a dict with keys "width" and "height", the image will be resized to `(size["height"],
size["width"])`.
If size is a dict with key "shortest_edge", the shortest edge value `c` is rescaled to `int(c * (256/224))`.
The smaller edge of the image will be matched to this value i.e, if height > width, then image will be rescaled
to `(size["shortest_egde"] * height / width, size["shortest_egde"])`.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image
will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value
`c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value
i.e, if height > width, then image will be rescaled to (size * height / width, size).
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the image. If not provided, it will be the same as the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size_dict = get_size_dict(size, default_to_square=False)
# size_dict is a dict with either keys "height" and "width" or "shortest_edge"
if "shortest_edge" in size:
shortest_edge = int((256 / 224) * size["shortest_edge"])
output_size = get_resize_output_image_size(
image, size=shortest_edge, default_to_square=False, input_data_format=input_data_format
)
size_dict = {"height": output_size[0], "width": output_size[1]}
if "height" not in size_dict or "width" not in size_dict:
raise ValueError(
f"Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}"
)
return resize(
image,
size=(size_dict["height"], size_dict["width"]),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, Iterable[float]]] = None,
image_std: Optional[Union[float, Iterable[float]]] = None,
return_tensors: Optional[TensorType] = None,
data_format: ChannelDimension = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
Preprocess an image or batch of images to be used as input to a LeViT model.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects a single or batch of images with pixel values ranging
from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the output image after resizing. If size is a dict with keys "width" and "height", the image
will be resized to (height, width). If size is a dict with key "shortest_edge", the shortest edge value
`c` is rescaled to int(`c` * (256/224)). The smaller edge of the image will be matched to this value
i.e, if height > width, then image will be rescaled to (size * height / width, size).
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
Resampling filter to use when resiizing the image.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether to center crop the image.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
Size of the output image after center cropping. Crops images to (crop_size["height"],
crop_size["width"]).
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image pixel values by `rescaling_factor` - typical to values between 0 and 1.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Factor to rescale the image pixel values by.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image pixel values by `image_mean` and `image_std`.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Mean to normalize the image pixel values by.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Standard deviation to normalize the image pixel values by.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`str` or `ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
size = size if size is not None else self.size
size = get_size_dict(size, default_to_square=False)
crop_size = crop_size if crop_size is not None else self.crop_size
crop_size = get_size_dict(crop_size, param_name="crop_size")
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True.")
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [self.resize(image, size, resample, input_data_format=input_data_format) for image in images]
if do_center_crop:
images = [self.center_crop(image, crop_size, input_data_format=input_data_format) for image in images]
if do_rescale:
images = [self.rescale(image, rescale_factor, input_data_format=input_data_format) for image in images]
if do_normalize:
images = [
self.normalize(image, image_mean, image_std, input_data_format=input_data_format) for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| transformers/src/transformers/models/levit/image_processing_levit.py/0 | {
"file_path": "transformers/src/transformers/models/levit/image_processing_levit.py",
"repo_id": "transformers",
"token_count": 6797
} | 335 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Llava.
"""
from typing import List, Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class LlavaProcessor(ProcessorMixin):
r"""
Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor.
[`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information.
Args:
image_processor ([`CLIPImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "CLIPImageProcessor"
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None):
super().__init__(image_processor, tokenizer)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
"""
if images is not None:
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
else:
pixel_values = None
text_inputs = self.tokenizer(
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
)
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
| transformers/src/transformers/models/llava/processing_llava.py/0 | {
"file_path": "transformers/src/transformers/models/llava/processing_llava.py",
"repo_id": "transformers",
"token_count": 2756
} | 336 |
# coding=utf-8
# Copyright Studio Ousia and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch LUKE model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN, gelu
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_luke import LukeConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LukeConfig"
_CHECKPOINT_FOR_DOC = "studio-ousia/luke-base"
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST = [
"studio-ousia/luke-base",
"studio-ousia/luke-large",
# See all LUKE models at https://huggingface.co/models?filter=luke
]
@dataclass
class BaseLukeModelOutputWithPooling(BaseModelOutputWithPooling):
"""
Base class for outputs of the LUKE model.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`):
Sequence of entity hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) further processed by a
Linear layer and a Tanh activation function.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length +
entity_length, sequence_length + entity_length)`. Attentions weights after the attention softmax, used to
compute the weighted average in the self-attention heads.
"""
entity_last_hidden_state: torch.FloatTensor = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseLukeModelOutput(BaseModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
entity_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, entity_length, hidden_size)`):
Sequence of entity hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
entity_last_hidden_state: torch.FloatTensor = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LukeMaskedLMOutput(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
The sum of masked language modeling (MLM) loss and entity prediction loss.
mlm_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked language modeling (MLM) loss.
mep_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Masked entity prediction (MEP) loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
entity_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the entity prediction head (scores for each entity vocabulary token before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
mlm_loss: Optional[torch.FloatTensor] = None
mep_loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
entity_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class EntityClassificationOutput(ModelOutput):
"""
Outputs of entity classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class EntityPairClassificationOutput(ModelOutput):
"""
Outputs of entity pair classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class EntitySpanClassificationOutput(ModelOutput):
"""
Outputs of entity span classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, entity_length, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LukeSequenceClassifierOutput(ModelOutput):
"""
Outputs of sentence classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LukeTokenClassifierOutput(ModelOutput):
"""
Base class for outputs of token classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided) :
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.num_labels)`):
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LukeQuestionAnsweringModelOutput(ModelOutput):
"""
Outputs of question answering models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
start_logits: torch.FloatTensor = None
end_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LukeMultipleChoiceModelOutput(ModelOutput):
"""
Outputs of multiple choice models.
Args:
loss (`torch.FloatTensor` of shape *(1,)*, *optional*, returned when `labels` is provided):
Classification loss.
logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
*num_choices* is the second dimension of the input tensors. (see *input_ids* above).
Classification scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
entity_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, entity_length, hidden_size)`. Entity hidden-states of the model at the output of each
layer plus the initial entity embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
entity_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class LukeEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# End copy
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
def forward(
self,
input_ids=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx).to(input_ids.device)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
class LukeEntityEmbeddings(nn.Module):
def __init__(self, config: LukeConfig):
super().__init__()
self.config = config
self.entity_embeddings = nn.Embedding(config.entity_vocab_size, config.entity_emb_size, padding_idx=0)
if config.entity_emb_size != config.hidden_size:
self.entity_embedding_dense = nn.Linear(config.entity_emb_size, config.hidden_size, bias=False)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(
self, entity_ids: torch.LongTensor, position_ids: torch.LongTensor, token_type_ids: torch.LongTensor = None
):
if token_type_ids is None:
token_type_ids = torch.zeros_like(entity_ids)
entity_embeddings = self.entity_embeddings(entity_ids)
if self.config.entity_emb_size != self.config.hidden_size:
entity_embeddings = self.entity_embedding_dense(entity_embeddings)
position_embeddings = self.position_embeddings(position_ids.clamp(min=0))
position_embedding_mask = (position_ids != -1).type_as(position_embeddings).unsqueeze(-1)
position_embeddings = position_embeddings * position_embedding_mask
position_embeddings = torch.sum(position_embeddings, dim=-2)
position_embeddings = position_embeddings / position_embedding_mask.sum(dim=-2).clamp(min=1e-7)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = entity_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class LukeSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.use_entity_aware_attention = config.use_entity_aware_attention
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
if self.use_entity_aware_attention:
self.w2e_query = nn.Linear(config.hidden_size, self.all_head_size)
self.e2w_query = nn.Linear(config.hidden_size, self.all_head_size)
self.e2e_query = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
word_hidden_states,
entity_hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
word_size = word_hidden_states.size(1)
if entity_hidden_states is None:
concat_hidden_states = word_hidden_states
else:
concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1)
key_layer = self.transpose_for_scores(self.key(concat_hidden_states))
value_layer = self.transpose_for_scores(self.value(concat_hidden_states))
if self.use_entity_aware_attention and entity_hidden_states is not None:
# compute query vectors using word-word (w2w), word-entity (w2e), entity-word (e2w), entity-entity (e2e)
# query layers
w2w_query_layer = self.transpose_for_scores(self.query(word_hidden_states))
w2e_query_layer = self.transpose_for_scores(self.w2e_query(word_hidden_states))
e2w_query_layer = self.transpose_for_scores(self.e2w_query(entity_hidden_states))
e2e_query_layer = self.transpose_for_scores(self.e2e_query(entity_hidden_states))
# compute w2w, w2e, e2w, and e2e key vectors used with the query vectors computed above
w2w_key_layer = key_layer[:, :, :word_size, :]
e2w_key_layer = key_layer[:, :, :word_size, :]
w2e_key_layer = key_layer[:, :, word_size:, :]
e2e_key_layer = key_layer[:, :, word_size:, :]
# compute attention scores based on the dot product between the query and key vectors
w2w_attention_scores = torch.matmul(w2w_query_layer, w2w_key_layer.transpose(-1, -2))
w2e_attention_scores = torch.matmul(w2e_query_layer, w2e_key_layer.transpose(-1, -2))
e2w_attention_scores = torch.matmul(e2w_query_layer, e2w_key_layer.transpose(-1, -2))
e2e_attention_scores = torch.matmul(e2e_query_layer, e2e_key_layer.transpose(-1, -2))
# combine attention scores to create the final attention score matrix
word_attention_scores = torch.cat([w2w_attention_scores, w2e_attention_scores], dim=3)
entity_attention_scores = torch.cat([e2w_attention_scores, e2e_attention_scores], dim=3)
attention_scores = torch.cat([word_attention_scores, entity_attention_scores], dim=2)
else:
query_layer = self.transpose_for_scores(self.query(concat_hidden_states))
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in LukeModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
output_word_hidden_states = context_layer[:, :word_size, :]
if entity_hidden_states is None:
output_entity_hidden_states = None
else:
output_entity_hidden_states = context_layer[:, word_size:, :]
if output_attentions:
outputs = (output_word_hidden_states, output_entity_hidden_states, attention_probs)
else:
outputs = (output_word_hidden_states, output_entity_hidden_states)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput
class LukeSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class LukeAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = LukeSelfAttention(config)
self.output = LukeSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
raise NotImplementedError("LUKE does not support the pruning of attention heads")
def forward(
self,
word_hidden_states,
entity_hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
word_size = word_hidden_states.size(1)
self_outputs = self.self(
word_hidden_states,
entity_hidden_states,
attention_mask,
head_mask,
output_attentions,
)
if entity_hidden_states is None:
concat_self_outputs = self_outputs[0]
concat_hidden_states = word_hidden_states
else:
concat_self_outputs = torch.cat(self_outputs[:2], dim=1)
concat_hidden_states = torch.cat([word_hidden_states, entity_hidden_states], dim=1)
attention_output = self.output(concat_self_outputs, concat_hidden_states)
word_attention_output = attention_output[:, :word_size, :]
if entity_hidden_states is None:
entity_attention_output = None
else:
entity_attention_output = attention_output[:, word_size:, :]
# add attentions if we output them
outputs = (word_attention_output, entity_attention_output) + self_outputs[2:]
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate
class LukeIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput
class LukeOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class LukeLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = LukeAttention(config)
self.intermediate = LukeIntermediate(config)
self.output = LukeOutput(config)
def forward(
self,
word_hidden_states,
entity_hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
word_size = word_hidden_states.size(1)
self_attention_outputs = self.attention(
word_hidden_states,
entity_hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
)
if entity_hidden_states is None:
concat_attention_output = self_attention_outputs[0]
else:
concat_attention_output = torch.cat(self_attention_outputs[:2], dim=1)
outputs = self_attention_outputs[2:] # add self attentions if we output attention weights
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, concat_attention_output
)
word_layer_output = layer_output[:, :word_size, :]
if entity_hidden_states is None:
entity_layer_output = None
else:
entity_layer_output = layer_output[:, word_size:, :]
outputs = (word_layer_output, entity_layer_output) + outputs
return outputs
def feed_forward_chunk(self, attention_output):
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class LukeEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([LukeLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
word_hidden_states,
entity_hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_word_hidden_states = () if output_hidden_states else None
all_entity_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
word_hidden_states,
entity_hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(
word_hidden_states,
entity_hidden_states,
attention_mask,
layer_head_mask,
output_attentions,
)
word_hidden_states = layer_outputs[0]
if entity_hidden_states is not None:
entity_hidden_states = layer_outputs[1]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[2],)
if output_hidden_states:
all_word_hidden_states = all_word_hidden_states + (word_hidden_states,)
all_entity_hidden_states = all_entity_hidden_states + (entity_hidden_states,)
if not return_dict:
return tuple(
v
for v in [
word_hidden_states,
all_word_hidden_states,
all_self_attentions,
entity_hidden_states,
all_entity_hidden_states,
]
if v is not None
)
return BaseLukeModelOutput(
last_hidden_state=word_hidden_states,
hidden_states=all_word_hidden_states,
attentions=all_self_attentions,
entity_last_hidden_state=entity_hidden_states,
entity_hidden_states=all_entity_hidden_states,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler
class LukePooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class EntityPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.entity_emb_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.entity_emb_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class EntityPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.transform = EntityPredictionHeadTransform(config)
self.decoder = nn.Linear(config.entity_emb_size, config.entity_vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.entity_vocab_size))
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states) + self.bias
return hidden_states
class LukePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LukeConfig
base_model_prefix = "luke"
supports_gradient_checkpointing = True
_no_split_modules = ["LukeAttention", "LukeEntityEmbeddings"]
def _init_weights(self, module: nn.Module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
if module.embedding_dim == 1: # embedding for bias parameters
module.weight.data.zero_()
else:
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
LUKE_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LukeConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LUKE_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
entity_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`):
Indices of entity tokens in the entity vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
entity_attention_mask (`torch.FloatTensor` of shape `(batch_size, entity_length)`, *optional*):
Mask to avoid performing attention on padding entity token indices. Mask values selected in `[0, 1]`:
- 1 for entity tokens that are **not masked**,
- 0 for entity tokens that are **masked**.
entity_token_type_ids (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*):
Segment token indices to indicate first and second portions of the entity token inputs. Indices are
selected in `[0, 1]`:
- 0 corresponds to a *portion A* entity token,
- 1 corresponds to a *portion B* entity token.
entity_position_ids (`torch.LongTensor` of shape `(batch_size, entity_length, max_mention_length)`, *optional*):
Indices of positions of each input entity in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare LUKE model transformer outputting raw hidden-states for both word tokens and entities without any"
" specific head on top.",
LUKE_START_DOCSTRING,
)
class LukeModel(LukePreTrainedModel):
def __init__(self, config: LukeConfig, add_pooling_layer: bool = True):
super().__init__(config)
self.config = config
self.embeddings = LukeEmbeddings(config)
self.entity_embeddings = LukeEntityEmbeddings(config)
self.encoder = LukeEncoder(config)
self.pooler = LukePooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def get_entity_embeddings(self):
return self.entity_embeddings.entity_embeddings
def set_entity_embeddings(self, value):
self.entity_embeddings.entity_embeddings = value
def _prune_heads(self, heads_to_prune):
raise NotImplementedError("LUKE does not support the pruning of attention heads")
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=BaseLukeModelOutputWithPooling, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseLukeModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LukeModel
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-base")
>>> model = LukeModel.from_pretrained("studio-ousia/luke-base")
# Compute the contextualized entity representation corresponding to the entity mention "Beyoncé"
>>> text = "Beyoncé lives in Los Angeles."
>>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé"
>>> encoding = tokenizer(text, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt")
>>> outputs = model(**encoding)
>>> word_last_hidden_state = outputs.last_hidden_state
>>> entity_last_hidden_state = outputs.entity_last_hidden_state
# Input Wikipedia entities to obtain enriched contextualized representations of word tokens
>>> text = "Beyoncé lives in Los Angeles."
>>> entities = [
... "Beyoncé",
... "Los Angeles",
... ] # Wikipedia entity titles corresponding to the entity mentions "Beyoncé" and "Los Angeles"
>>> entity_spans = [
... (0, 7),
... (17, 28),
... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
>>> encoding = tokenizer(
... text, entities=entities, entity_spans=entity_spans, add_prefix_space=True, return_tensors="pt"
... )
>>> outputs = model(**encoding)
>>> word_last_hidden_state = outputs.last_hidden_state
>>> entity_last_hidden_state = outputs.entity_last_hidden_state
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones((batch_size, seq_length), device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
if entity_ids is not None:
entity_seq_length = entity_ids.size(1)
if entity_attention_mask is None:
entity_attention_mask = torch.ones((batch_size, entity_seq_length), device=device)
if entity_token_type_ids is None:
entity_token_type_ids = torch.zeros((batch_size, entity_seq_length), dtype=torch.long, device=device)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
# First, compute word embeddings
word_embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
# Second, compute extended attention mask
extended_attention_mask = self.get_extended_attention_mask(attention_mask, entity_attention_mask)
# Third, compute entity embeddings and concatenate with word embeddings
if entity_ids is None:
entity_embedding_output = None
else:
entity_embedding_output = self.entity_embeddings(entity_ids, entity_position_ids, entity_token_type_ids)
# Fourth, send embeddings through the model
encoder_outputs = self.encoder(
word_embedding_output,
entity_embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Fifth, get the output. LukeModel outputs the same as BertModel, namely sequence_output of shape (batch_size, seq_len, hidden_size)
sequence_output = encoder_outputs[0]
# Sixth, we compute the pooled_output, word_sequence_output and entity_sequence_output based on the sequence_output
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseLukeModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
entity_last_hidden_state=encoder_outputs.entity_last_hidden_state,
entity_hidden_states=encoder_outputs.entity_hidden_states,
)
def get_extended_attention_mask(
self, word_attention_mask: torch.LongTensor, entity_attention_mask: Optional[torch.LongTensor]
):
"""
Makes broadcastable attention and causal masks so that future and masked tokens are ignored.
Arguments:
word_attention_mask (`torch.LongTensor`):
Attention mask for word tokens with ones indicating tokens to attend to, zeros for tokens to ignore.
entity_attention_mask (`torch.LongTensor`, *optional*):
Attention mask for entity tokens with ones indicating tokens to attend to, zeros for tokens to ignore.
Returns:
`torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`.
"""
attention_mask = word_attention_mask
if entity_attention_mask is not None:
attention_mask = torch.cat([attention_mask, entity_attention_mask], dim=-1)
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(f"Wrong shape for attention_mask (shape {attention_mask.shape})")
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(self.dtype).min
return extended_attention_mask
def create_position_ids_from_input_ids(input_ids, padding_idx):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask)) * mask
return incremental_indices.long() + padding_idx
# Copied from transformers.models.roberta.modeling_roberta.RobertaLMHead
class LukeLMHead(nn.Module):
"""Roberta Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x)
return x
def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
self.bias = self.decoder.bias
@add_start_docstrings(
"""
The LUKE model with a language modeling head and entity prediction head on top for masked language modeling and
masked entity prediction.
""",
LUKE_START_DOCSTRING,
)
class LukeForMaskedLM(LukePreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
self.luke = LukeModel(config)
self.lm_head = LukeLMHead(config)
self.entity_predictions = EntityPredictionHead(config)
self.loss_fn = nn.CrossEntropyLoss()
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
super().tie_weights()
self._tie_or_clone_weights(self.entity_predictions.decoder, self.luke.entity_embeddings.entity_embeddings)
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=LukeMaskedLMOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.LongTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
entity_labels: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeMaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
entity_labels (`torch.LongTensor` of shape `(batch_size, entity_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
loss = None
mlm_loss = None
logits = self.lm_head(outputs.last_hidden_state)
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
mlm_loss = self.loss_fn(logits.view(-1, self.config.vocab_size), labels.view(-1))
if loss is None:
loss = mlm_loss
mep_loss = None
entity_logits = None
if outputs.entity_last_hidden_state is not None:
entity_logits = self.entity_predictions(outputs.entity_last_hidden_state)
if entity_labels is not None:
mep_loss = self.loss_fn(entity_logits.view(-1, self.config.entity_vocab_size), entity_labels.view(-1))
if loss is None:
loss = mep_loss
else:
loss = loss + mep_loss
if not return_dict:
return tuple(
v
for v in [
loss,
mlm_loss,
mep_loss,
logits,
entity_logits,
outputs.hidden_states,
outputs.entity_hidden_states,
outputs.attentions,
]
if v is not None
)
return LukeMaskedLMOutput(
loss=loss,
mlm_loss=mlm_loss,
mep_loss=mep_loss,
logits=logits,
entity_logits=entity_logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The LUKE model with a classification head on top (a linear layer on top of the hidden state of the first entity
token) for entity classification tasks, such as Open Entity.
""",
LUKE_START_DOCSTRING,
)
class LukeForEntityClassification(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.luke = LukeModel(config)
self.num_labels = config.num_labels
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=EntityClassificationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, EntityClassificationOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*):
Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is
used for the single-label classification. In this case, labels should contain the indices that should be in
`[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy
loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0
and 1 indicate false and true, respectively.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LukeForEntityClassification
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-open-entity")
>>> model = LukeForEntityClassification.from_pretrained("studio-ousia/luke-large-finetuned-open-entity")
>>> text = "Beyoncé lives in Los Angeles."
>>> entity_spans = [(0, 7)] # character-based entity span corresponding to "Beyoncé"
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: person
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
feature_vector = outputs.entity_last_hidden_state[:, 0, :]
feature_vector = self.dropout(feature_vector)
logits = self.classifier(feature_vector)
loss = None
if labels is not None:
# When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary
# cross entropy is used otherwise.
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if labels.ndim == 1:
loss = nn.functional.cross_entropy(logits, labels)
else:
loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))
if not return_dict:
return tuple(
v
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
if v is not None
)
return EntityClassificationOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The LUKE model with a classification head on top (a linear layer on top of the hidden states of the two entity
tokens) for entity pair classification tasks, such as TACRED.
""",
LUKE_START_DOCSTRING,
)
class LukeForEntityPairClassification(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.luke = LukeModel(config)
self.num_labels = config.num_labels
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size * 2, config.num_labels, False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=EntityPairClassificationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, EntityPairClassificationOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)` or `(batch_size, num_labels)`, *optional*):
Labels for computing the classification loss. If the shape is `(batch_size,)`, the cross entropy loss is
used for the single-label classification. In this case, labels should contain the indices that should be in
`[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, num_labels)`, the binary cross entropy
loss is used for the multi-label classification. In this case, labels should only contain `[0, 1]`, where 0
and 1 indicate false and true, respectively.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LukeForEntityPairClassification
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
>>> model = LukeForEntityPairClassification.from_pretrained("studio-ousia/luke-large-finetuned-tacred")
>>> text = "Beyoncé lives in Los Angeles."
>>> entity_spans = [
... (0, 7),
... (17, 28),
... ] # character-based entity spans corresponding to "Beyoncé" and "Los Angeles"
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: per:cities_of_residence
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
feature_vector = torch.cat(
[outputs.entity_last_hidden_state[:, 0, :], outputs.entity_last_hidden_state[:, 1, :]], dim=1
)
feature_vector = self.dropout(feature_vector)
logits = self.classifier(feature_vector)
loss = None
if labels is not None:
# When the number of dimension of `labels` is 1, cross entropy is used as the loss function. The binary
# cross entropy is used otherwise.
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if labels.ndim == 1:
loss = nn.functional.cross_entropy(logits, labels)
else:
loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))
if not return_dict:
return tuple(
v
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
if v is not None
)
return EntityPairClassificationOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The LUKE model with a span classification head on top (a linear layer on top of the hidden states output) for tasks
such as named entity recognition.
""",
LUKE_START_DOCSTRING,
)
class LukeForEntitySpanClassification(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.luke = LukeModel(config)
self.num_labels = config.num_labels
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size * 3, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=EntitySpanClassificationOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.LongTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
entity_start_positions: Optional[torch.LongTensor] = None,
entity_end_positions: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, EntitySpanClassificationOutput]:
r"""
entity_start_positions (`torch.LongTensor`):
The start positions of entities in the word token sequence.
entity_end_positions (`torch.LongTensor`):
The end positions of entities in the word token sequence.
labels (`torch.LongTensor` of shape `(batch_size, entity_length)` or `(batch_size, entity_length, num_labels)`, *optional*):
Labels for computing the classification loss. If the shape is `(batch_size, entity_length)`, the cross
entropy loss is used for the single-label classification. In this case, labels should contain the indices
that should be in `[0, ..., config.num_labels - 1]`. If the shape is `(batch_size, entity_length,
num_labels)`, the binary cross entropy loss is used for the multi-label classification. In this case,
labels should only contain `[0, 1]`, where 0 and 1 indicate false and true, respectively.
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, LukeForEntitySpanClassification
>>> tokenizer = AutoTokenizer.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
>>> model = LukeForEntitySpanClassification.from_pretrained("studio-ousia/luke-large-finetuned-conll-2003")
>>> text = "Beyoncé lives in Los Angeles"
# List all possible entity spans in the text
>>> word_start_positions = [0, 8, 14, 17, 21] # character-based start positions of word tokens
>>> word_end_positions = [7, 13, 16, 20, 28] # character-based end positions of word tokens
>>> entity_spans = []
>>> for i, start_pos in enumerate(word_start_positions):
... for end_pos in word_end_positions[i:]:
... entity_spans.append((start_pos, end_pos))
>>> inputs = tokenizer(text, entity_spans=entity_spans, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> predicted_class_indices = logits.argmax(-1).squeeze().tolist()
>>> for span, predicted_class_idx in zip(entity_spans, predicted_class_indices):
... if predicted_class_idx != 0:
... print(text[span[0] : span[1]], model.config.id2label[predicted_class_idx])
Beyoncé PER
Los Angeles LOC
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
hidden_size = outputs.last_hidden_state.size(-1)
entity_start_positions = entity_start_positions.unsqueeze(-1).expand(-1, -1, hidden_size)
if entity_start_positions.device != outputs.last_hidden_state.device:
entity_start_positions = entity_start_positions.to(outputs.last_hidden_state.device)
start_states = torch.gather(outputs.last_hidden_state, -2, entity_start_positions)
entity_end_positions = entity_end_positions.unsqueeze(-1).expand(-1, -1, hidden_size)
if entity_end_positions.device != outputs.last_hidden_state.device:
entity_end_positions = entity_end_positions.to(outputs.last_hidden_state.device)
end_states = torch.gather(outputs.last_hidden_state, -2, entity_end_positions)
feature_vector = torch.cat([start_states, end_states, outputs.entity_last_hidden_state], dim=2)
feature_vector = self.dropout(feature_vector)
logits = self.classifier(feature_vector)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
# When the number of dimension of `labels` is 2, cross entropy is used as the loss function. The binary
# cross entropy is used otherwise.
if labels.ndim == 2:
loss = nn.functional.cross_entropy(logits.view(-1, self.num_labels), labels.view(-1))
else:
loss = nn.functional.binary_cross_entropy_with_logits(logits.view(-1), labels.view(-1).type_as(logits))
if not return_dict:
return tuple(
v
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
if v is not None
)
return EntitySpanClassificationOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The LUKE Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
LUKE_START_DOCSTRING,
)
class LukeForSequenceClassification(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.luke = LukeModel(config)
self.dropout = nn.Dropout(
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=LukeSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
pooled_output = outputs.pooler_output
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
return tuple(
v
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
if v is not None
)
return LukeSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The LUKE Model with a token classification head on top (a linear layer on top of the hidden-states output). To
solve Named-Entity Recognition (NER) task using LUKE, `LukeForEntitySpanClassification` is more suitable than this
class.
""",
LUKE_START_DOCSTRING,
)
class LukeForTokenClassification(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.luke = LukeModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=LukeTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeTokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
sequence_output = outputs.last_hidden_state
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
return tuple(
v
for v in [loss, logits, outputs.hidden_states, outputs.entity_hidden_states, outputs.attentions]
if v is not None
)
return LukeTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The LUKE Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
LUKE_START_DOCSTRING,
)
class LukeForQuestionAnswering(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.luke = LukeModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=LukeQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.FloatTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
sequence_output = outputs.last_hidden_state
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions.clamp_(0, ignored_index)
end_positions.clamp_(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
return tuple(
v
for v in [
total_loss,
start_logits,
end_logits,
outputs.hidden_states,
outputs.entity_hidden_states,
outputs.attentions,
]
if v is not None
)
return LukeQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
The LUKE Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
LUKE_START_DOCSTRING,
)
class LukeForMultipleChoice(LukePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.luke = LukeModel(config)
self.dropout = nn.Dropout(
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LUKE_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=LukeMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
entity_ids: Optional[torch.LongTensor] = None,
entity_attention_mask: Optional[torch.FloatTensor] = None,
entity_token_type_ids: Optional[torch.LongTensor] = None,
entity_position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, LukeMultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
entity_ids = entity_ids.view(-1, entity_ids.size(-1)) if entity_ids is not None else None
entity_attention_mask = (
entity_attention_mask.view(-1, entity_attention_mask.size(-1))
if entity_attention_mask is not None
else None
)
entity_token_type_ids = (
entity_token_type_ids.view(-1, entity_token_type_ids.size(-1))
if entity_token_type_ids is not None
else None
)
entity_position_ids = (
entity_position_ids.view(-1, entity_position_ids.size(-2), entity_position_ids.size(-1))
if entity_position_ids is not None
else None
)
outputs = self.luke(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
entity_ids=entity_ids,
entity_attention_mask=entity_attention_mask,
entity_token_type_ids=entity_token_type_ids,
entity_position_ids=entity_position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
)
pooled_output = outputs.pooler_output
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
# move labels to correct device to enable model parallelism
labels = labels.to(reshaped_logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
return tuple(
v
for v in [
loss,
reshaped_logits,
outputs.hidden_states,
outputs.entity_hidden_states,
outputs.attentions,
]
if v is not None
)
return LukeMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
entity_hidden_states=outputs.entity_hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/luke/modeling_luke.py/0 | {
"file_path": "transformers/src/transformers/models/luke/modeling_luke.py",
"repo_id": "transformers",
"token_count": 43009
} | 337 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import datetime
import json
import os
import re
from pathlib import Path
from typing import Tuple
import yaml
from tqdm import tqdm
from transformers.models.marian.convert_marian_to_pytorch import (
FRONT_MATTER_TEMPLATE,
convert,
convert_opus_name_to_hf_name,
download_and_unzip,
get_system_metadata,
)
DEFAULT_REPO = "Tatoeba-Challenge"
DEFAULT_MODEL_DIR = os.path.join(DEFAULT_REPO, "models")
LANG_CODE_URL = "https://datahub.io/core/language-codes/r/language-codes-3b2.csv"
ISO_URL = "https://cdn-datasets.huggingface.co/language_codes/iso-639-3.csv"
ISO_PATH = "lang_code_data/iso-639-3.csv"
LANG_CODE_PATH = "lang_code_data/language-codes-3b2.csv"
TATOEBA_MODELS_URL = "https://object.pouta.csc.fi/Tatoeba-MT-models"
class TatoebaConverter:
"""
Convert Tatoeba-Challenge models to huggingface format.
Steps:
1. Convert numpy state dict to hf format (same code as OPUS-MT-Train conversion).
2. Rename opus model to huggingface format. This means replace each alpha3 code with an alpha2 code if a unique
one exists. e.g. aav-eng -> aav-en, heb-eng -> he-en
3. Select the best model for a particular pair, parse the yml for it and write a model card. By default the
best model is the one listed first in released-model-results, but it's also possible to specify the most
recent one.
"""
def __init__(self, save_dir="marian_converted"):
assert Path(DEFAULT_REPO).exists(), "need git clone [email protected]:Helsinki-NLP/Tatoeba-Challenge.git"
self.download_lang_info()
self.model_results = json.load(open("Tatoeba-Challenge/models/released-model-results.json"))
self.alpha3_to_alpha2 = {}
for line in open(ISO_PATH):
parts = line.split("\t")
if len(parts[0]) == 3 and len(parts[3]) == 2:
self.alpha3_to_alpha2[parts[0]] = parts[3]
for line in LANG_CODE_PATH:
parts = line.split(",")
if len(parts[0]) == 3 and len(parts[1]) == 2:
self.alpha3_to_alpha2[parts[0]] = parts[1]
self.model_card_dir = Path(save_dir)
self.tag2name = {}
for key, value in GROUP_MEMBERS.items():
self.tag2name[key] = value[0]
def convert_models(self, tatoeba_ids, dry_run=False):
models_to_convert = [self.parse_metadata(x) for x in tatoeba_ids]
save_dir = Path("marian_ckpt")
dest_dir = Path(self.model_card_dir)
dest_dir.mkdir(exist_ok=True)
for model in tqdm(models_to_convert): # k, prepro, download, test_set_url in tqdm(model_list):
if "SentencePiece" not in model["pre-processing"]:
print(f"Skipping {model['release']} because it doesn't appear to use SentencePiece")
continue
if not os.path.exists(save_dir / model["_name"]):
download_and_unzip(f"{TATOEBA_MODELS_URL}/{model['release']}", save_dir / model["_name"])
# from convert_marian_to_pytorch
opus_language_groups_to_hf = convert_opus_name_to_hf_name
pair_name = opus_language_groups_to_hf(model["_name"])
convert(save_dir / model["_name"], dest_dir / f"opus-mt-{pair_name}")
self.write_model_card(model, dry_run=dry_run)
def expand_group_to_two_letter_codes(self, grp_name):
return [self.alpha3_to_alpha2.get(x, x) for x in GROUP_MEMBERS[grp_name][1]]
def is_group(self, code, name):
return "languages" in name or len(GROUP_MEMBERS.get(code, [])) > 1
def get_tags(self, code, name):
if len(code) == 2:
assert "languages" not in name, f"{code}: {name}"
return [code]
elif self.is_group(code, name):
group = self.expand_group_to_two_letter_codes(code)
group.append(code)
return group
else: # zho-> zh
print(f"Three letter monolingual code: {code}")
return [code]
def resolve_lang_code(self, src, tgt) -> Tuple[str, str]:
src_tags = self.get_tags(src, self.tag2name[src])
tgt_tags = self.get_tags(tgt, self.tag2name[tgt])
return src_tags, tgt_tags
@staticmethod
def model_type_info_from_model_name(name):
info = {"_has_backtranslated_data": False}
if "1m" in name:
info["_data_per_pair"] = str(1e6)
if "2m" in name:
info["_data_per_pair"] = str(2e6)
if "4m" in name:
info["_data_per_pair"] = str(4e6)
if "+bt" in name:
info["_has_backtranslated_data"] = True
if "tuned4" in name:
info["_tuned"] = re.search(r"tuned4[^-]+", name).group()
return info
def write_model_card(self, model_dict, dry_run=False) -> str:
"""
Construct card from data parsed from YAML and the model's name. upload command: aws s3 sync model_card_dir
s3://models.huggingface.co/bert/Helsinki-NLP/ --dryrun
"""
model_dir_url = f"{TATOEBA_MODELS_URL}/{model_dict['release']}"
long_pair = model_dict["_name"].split("-")
assert len(long_pair) == 2, f"got a translation pair {model_dict['_name']} that doesn't appear to be a pair"
short_src = self.alpha3_to_alpha2.get(long_pair[0], long_pair[0])
short_tgt = self.alpha3_to_alpha2.get(long_pair[1], long_pair[1])
model_dict["_hf_model_id"] = f"opus-mt-{short_src}-{short_tgt}"
a3_src, a3_tgt = model_dict["_name"].split("-")
# opus_src_tags, opus_tgt_tags = a3_src.split("+"), a3_tgt.split("+")
# This messy part tries to deal with language tags in multilingual models, possibly
# not all having three-letter codes
resolved_src_tags, resolved_tgt_tags = self.resolve_lang_code(a3_src, a3_tgt)
a2_src_tags, a2_tgt_tags = [], []
for tag in resolved_src_tags:
if tag not in self.alpha3_to_alpha2:
a2_src_tags.append(tag)
for tag in resolved_tgt_tags:
if tag not in self.alpha3_to_alpha2:
a2_tgt_tags.append(tag)
lang_tags = dedup(a2_src_tags + a2_tgt_tags)
src_multilingual, tgt_multilingual = (len(a2_src_tags) > 1), (len(a2_tgt_tags) > 1)
s, t = ",".join(a2_src_tags), ",".join(a2_tgt_tags)
metadata = {
"hf_name": model_dict["_name"],
"source_languages": s,
"target_languages": t,
"opus_readme_url": f"{model_dir_url}/README.md",
"original_repo": "Tatoeba-Challenge",
"tags": ["translation"],
"languages": lang_tags,
}
lang_tags = l2front_matter(lang_tags)
metadata["src_constituents"] = list(GROUP_MEMBERS[a3_src][1])
metadata["tgt_constituents"] = list(GROUP_MEMBERS[a3_tgt][1])
metadata["src_multilingual"] = src_multilingual
metadata["tgt_multilingual"] = tgt_multilingual
backtranslated_data = ""
if model_dict["_has_backtranslated_data"]:
backtranslated_data = " with backtranslations"
multilingual_data = ""
if "_data_per_pair" in model_dict:
multilingual_data = f"* data per pair in multilingual model: {model_dict['_data_per_pair']}\n"
tuned = ""
if "_tuned" in model_dict:
tuned = f"* multilingual model tuned for: {model_dict['_tuned']}\n"
model_base_filename = model_dict["release"].split("/")[-1]
download = f"* download original weights: [{model_base_filename}]({model_dir_url}/{model_dict['release']})\n"
langtoken = ""
if tgt_multilingual:
langtoken = (
"* a sentence-initial language token is required in the form of >>id<<"
"(id = valid, usually three-letter target language ID)\n"
)
metadata.update(get_system_metadata(DEFAULT_REPO))
scorestable = ""
for k, v in model_dict.items():
if "scores" in k:
this_score_table = f"* {k}\n|Test set|score|\n|---|---|\n"
pairs = sorted(v.items(), key=lambda x: x[1], reverse=True)
for pair in pairs:
this_score_table += f"|{pair[0]}|{pair[1]}|\n"
scorestable += this_score_table
datainfo = ""
if "training-data" in model_dict:
datainfo += "* Training data: \n"
for k, v in model_dict["training-data"].items():
datainfo += f" * {str(k)}: {str(v)}\n"
if "validation-data" in model_dict:
datainfo += "* Validation data: \n"
for k, v in model_dict["validation-data"].items():
datainfo += f" * {str(k)}: {str(v)}\n"
if "test-data" in model_dict:
datainfo += "* Test data: \n"
for k, v in model_dict["test-data"].items():
datainfo += f" * {str(k)}: {str(v)}\n"
testsetfilename = model_dict["release"].replace(".zip", ".test.txt")
testscoresfilename = model_dict["release"].replace(".zip", ".eval.txt")
testset = f"* test set translations file: [test.txt]({model_dir_url}/{testsetfilename})\n"
testscores = f"* test set scores file: [eval.txt]({model_dir_url}/{testscoresfilename})\n"
# combine with Tatoeba markdown
readme_url = f"{TATOEBA_MODELS_URL}/{model_dict['_name']}/README.md"
extra_markdown = f"""
### {model_dict['_name']}
* source language name: {self.tag2name[a3_src]}
* target language name: {self.tag2name[a3_tgt]}
* OPUS readme: [README.md]({readme_url})
"""
content = (
f"""
* model: {model_dict['modeltype']}
* source language code{src_multilingual*'s'}: {', '.join(a2_src_tags)}
* target language code{tgt_multilingual*'s'}: {', '.join(a2_tgt_tags)}
* dataset: opus {backtranslated_data}
* release date: {model_dict['release-date']}
* pre-processing: {model_dict['pre-processing']}
"""
+ multilingual_data
+ tuned
+ download
+ langtoken
+ datainfo
+ testset
+ testscores
+ scorestable
)
content = FRONT_MATTER_TEMPLATE.format(lang_tags) + extra_markdown + content
items = "\n".join([f"* {k}: {v}" for k, v in metadata.items()])
sec3 = "\n### System Info: \n" + items
content += sec3
if dry_run:
print("CONTENT:")
print(content)
print("METADATA:")
print(metadata)
return
sub_dir = self.model_card_dir / model_dict["_hf_model_id"]
sub_dir.mkdir(exist_ok=True)
dest = sub_dir / "README.md"
dest.open("w").write(content)
for k, v in metadata.items():
if isinstance(v, datetime.date):
metadata[k] = datetime.datetime.strftime(v, "%Y-%m-%d")
with open(sub_dir / "metadata.json", "w", encoding="utf-8") as writeobj:
json.dump(metadata, writeobj)
def download_lang_info(self):
Path(LANG_CODE_PATH).parent.mkdir(exist_ok=True)
import wget
if not os.path.exists(ISO_PATH):
wget.download(ISO_URL, ISO_PATH)
if not os.path.exists(LANG_CODE_PATH):
wget.download(LANG_CODE_URL, LANG_CODE_PATH)
def parse_metadata(self, model_name, repo_path=DEFAULT_MODEL_DIR, method="best"):
p = Path(repo_path) / model_name
def url_to_name(url):
return url.split("/")[-1].split(".")[0]
if model_name not in self.model_results:
# This is not a language pair, so model results are ambiguous, go by newest
method = "newest"
if method == "best":
# Sort by how early they appear in released-models-results
results = [url_to_name(model["download"]) for model in self.model_results[model_name]]
ymls = [f for f in os.listdir(p) if f.endswith(".yml") and f[:-4] in results]
ymls.sort(key=lambda x: results.index(x[:-4]))
metadata = yaml.safe_load(open(p / ymls[0]))
metadata.update(self.model_type_info_from_model_name(ymls[0][:-4]))
elif method == "newest":
ymls = [f for f in os.listdir(p) if f.endswith(".yml")]
# Sort by date
ymls.sort(
key=lambda x: datetime.datetime.strptime(re.search(r"\d\d\d\d-\d\d?-\d\d?", x).group(), "%Y-%m-%d")
)
metadata = yaml.safe_load(open(p / ymls[-1]))
metadata.update(self.model_type_info_from_model_name(ymls[-1][:-4]))
else:
raise NotImplementedError(f"Don't know argument method='{method}' to parse_metadata()")
metadata["_name"] = model_name
return metadata
GROUP_MEMBERS = {
# three letter code -> (group/language name, {constituents...}
# if this language is on the target side the constituents can be used as target language codes.
# if the language is on the source side they are supported natively without special codes.
"aav": ("Austro-Asiatic languages", {"hoc", "hoc_Latn", "kha", "khm", "khm_Latn", "mnw", "vie", "vie_Hani"}),
"afa": (
"Afro-Asiatic languages",
{
"acm",
"afb",
"amh",
"apc",
"ara",
"arq",
"ary",
"arz",
"hau_Latn",
"heb",
"kab",
"mlt",
"rif_Latn",
"shy_Latn",
"som",
"thv",
"tir",
},
),
"afr": ("Afrikaans", {"afr"}),
"alv": (
"Atlantic-Congo languages",
{
"ewe",
"fuc",
"fuv",
"ibo",
"kin",
"lin",
"lug",
"nya",
"run",
"sag",
"sna",
"swh",
"toi_Latn",
"tso",
"umb",
"wol",
"xho",
"yor",
"zul",
},
),
"ara": ("Arabic", {"afb", "apc", "apc_Latn", "ara", "ara_Latn", "arq", "arq_Latn", "arz"}),
"art": (
"Artificial languages",
{
"afh_Latn",
"avk_Latn",
"dws_Latn",
"epo",
"ido",
"ido_Latn",
"ile_Latn",
"ina_Latn",
"jbo",
"jbo_Cyrl",
"jbo_Latn",
"ldn_Latn",
"lfn_Cyrl",
"lfn_Latn",
"nov_Latn",
"qya",
"qya_Latn",
"sjn_Latn",
"tlh_Latn",
"tzl",
"tzl_Latn",
"vol_Latn",
},
),
"aze": ("Azerbaijani", {"aze_Latn"}),
"bat": ("Baltic languages", {"lit", "lav", "prg_Latn", "ltg", "sgs"}),
"bel": ("Belarusian", {"bel", "bel_Latn"}),
"ben": ("Bengali", {"ben"}),
"bnt": (
"Bantu languages",
{"kin", "lin", "lug", "nya", "run", "sna", "swh", "toi_Latn", "tso", "umb", "xho", "zul"},
),
"bul": ("Bulgarian", {"bul", "bul_Latn"}),
"cat": ("Catalan", {"cat"}),
"cau": ("Caucasian languages", {"abk", "kat", "che", "ady"}),
"ccs": ("South Caucasian languages", {"kat"}),
"ceb": ("Cebuano", {"ceb"}),
"cel": ("Celtic languages", {"gla", "gle", "bre", "cor", "glv", "cym"}),
"ces": ("Czech", {"ces"}),
"cpf": ("Creoles and pidgins, French‑based", {"gcf_Latn", "hat", "mfe"}),
"cpp": (
"Creoles and pidgins, Portuguese-based",
{"zsm_Latn", "ind", "pap", "min", "tmw_Latn", "max_Latn", "zlm_Latn"},
),
"cus": ("Cushitic languages", {"som"}),
"dan": ("Danish", {"dan"}),
"deu": ("German", {"deu"}),
"dra": ("Dravidian languages", {"tam", "kan", "mal", "tel"}),
"ell": ("Modern Greek (1453-)", {"ell"}),
"eng": ("English", {"eng"}),
"epo": ("Esperanto", {"epo"}),
"est": ("Estonian", {"est"}),
"euq": ("Basque (family)", {"eus"}),
"eus": ("Basque", {"eus"}),
"fin": ("Finnish", {"fin"}),
"fiu": (
"Finno-Ugrian languages",
{
"est",
"fin",
"fkv_Latn",
"hun",
"izh",
"kpv",
"krl",
"liv_Latn",
"mdf",
"mhr",
"myv",
"sma",
"sme",
"udm",
"vep",
"vro",
},
),
"fra": ("French", {"fra"}),
"gem": (
"Germanic languages",
{
"afr",
"ang_Latn",
"dan",
"deu",
"eng",
"enm_Latn",
"fao",
"frr",
"fry",
"gos",
"got_Goth",
"gsw",
"isl",
"ksh",
"ltz",
"nds",
"nld",
"nno",
"nob",
"nob_Hebr",
"non_Latn",
"pdc",
"sco",
"stq",
"swe",
"swg",
"yid",
},
),
"gle": ("Irish", {"gle"}),
"glg": ("Galician", {"glg"}),
"gmq": ("North Germanic languages", {"dan", "nob", "nob_Hebr", "swe", "isl", "nno", "non_Latn", "fao"}),
"gmw": (
"West Germanic languages",
{
"afr",
"ang_Latn",
"deu",
"eng",
"enm_Latn",
"frr",
"fry",
"gos",
"gsw",
"ksh",
"ltz",
"nds",
"nld",
"pdc",
"sco",
"stq",
"swg",
"yid",
},
),
"grk": ("Greek languages", {"grc_Grek", "ell"}),
"hbs": ("Serbo-Croatian", {"hrv", "srp_Cyrl", "bos_Latn", "srp_Latn"}),
"heb": ("Hebrew", {"heb"}),
"hin": ("Hindi", {"hin"}),
"hun": ("Hungarian", {"hun"}),
"hye": ("Armenian", {"hye", "hye_Latn"}),
"iir": (
"Indo-Iranian languages",
{
"asm",
"awa",
"ben",
"bho",
"gom",
"guj",
"hif_Latn",
"hin",
"jdt_Cyrl",
"kur_Arab",
"kur_Latn",
"mai",
"mar",
"npi",
"ori",
"oss",
"pan_Guru",
"pes",
"pes_Latn",
"pes_Thaa",
"pnb",
"pus",
"rom",
"san_Deva",
"sin",
"snd_Arab",
"tgk_Cyrl",
"tly_Latn",
"urd",
"zza",
},
),
"ilo": ("Iloko", {"ilo"}),
"inc": (
"Indic languages",
{
"asm",
"awa",
"ben",
"bho",
"gom",
"guj",
"hif_Latn",
"hin",
"mai",
"mar",
"npi",
"ori",
"pan_Guru",
"pnb",
"rom",
"san_Deva",
"sin",
"snd_Arab",
"urd",
},
),
"ine": (
"Indo-European languages",
{
"afr",
"afr_Arab",
"aln",
"ang_Latn",
"arg",
"asm",
"ast",
"awa",
"bel",
"bel_Latn",
"ben",
"bho",
"bjn",
"bos_Latn",
"bre",
"bul",
"bul_Latn",
"cat",
"ces",
"cor",
"cos",
"csb_Latn",
"cym",
"dan",
"deu",
"dsb",
"egl",
"ell",
"eng",
"enm_Latn",
"ext",
"fao",
"fra",
"frm_Latn",
"frr",
"fry",
"gcf_Latn",
"gla",
"gle",
"glg",
"glv",
"gom",
"gos",
"got_Goth",
"grc_Grek",
"gsw",
"guj",
"hat",
"hif_Latn",
"hin",
"hrv",
"hsb",
"hye",
"hye_Latn",
"ind",
"isl",
"ita",
"jdt_Cyrl",
"ksh",
"kur_Arab",
"kur_Latn",
"lad",
"lad_Latn",
"lat_Grek",
"lat_Latn",
"lav",
"lij",
"lit",
"lld_Latn",
"lmo",
"ltg",
"ltz",
"mai",
"mar",
"max_Latn",
"mfe",
"min",
"mkd",
"mwl",
"nds",
"nld",
"nno",
"nob",
"nob_Hebr",
"non_Latn",
"npi",
"oci",
"ori",
"orv_Cyrl",
"oss",
"pan_Guru",
"pap",
"pcd",
"pdc",
"pes",
"pes_Latn",
"pes_Thaa",
"pms",
"pnb",
"pol",
"por",
"prg_Latn",
"pus",
"roh",
"rom",
"ron",
"rue",
"rus",
"rus_Latn",
"san_Deva",
"scn",
"sco",
"sgs",
"sin",
"slv",
"snd_Arab",
"spa",
"sqi",
"srd",
"srp_Cyrl",
"srp_Latn",
"stq",
"swe",
"swg",
"tgk_Cyrl",
"tly_Latn",
"tmw_Latn",
"ukr",
"urd",
"vec",
"wln",
"yid",
"zlm_Latn",
"zsm_Latn",
"zza",
},
),
"isl": ("Icelandic", {"isl"}),
"ita": ("Italian", {"ita"}),
"itc": (
"Italic languages",
{
"arg",
"ast",
"bjn",
"cat",
"cos",
"egl",
"ext",
"fra",
"frm_Latn",
"gcf_Latn",
"glg",
"hat",
"ind",
"ita",
"lad",
"lad_Latn",
"lat_Grek",
"lat_Latn",
"lij",
"lld_Latn",
"lmo",
"max_Latn",
"mfe",
"min",
"mwl",
"oci",
"pap",
"pcd",
"pms",
"por",
"roh",
"ron",
"scn",
"spa",
"srd",
"tmw_Latn",
"vec",
"wln",
"zlm_Latn",
"zsm_Latn",
},
),
"jpn": ("Japanese", {"jpn", "jpn_Bopo", "jpn_Hang", "jpn_Hani", "jpn_Hira", "jpn_Kana", "jpn_Latn", "jpn_Yiii"}),
"jpx": ("Japanese (family)", {"jpn"}),
"kat": ("Georgian", {"kat"}),
"kor": ("Korean", {"kor_Hani", "kor_Hang", "kor_Latn", "kor"}),
"lav": ("Latvian", {"lav"}),
"lit": ("Lithuanian", {"lit"}),
"mkd": ("Macedonian", {"mkd"}),
"mkh": ("Mon-Khmer languages", {"vie_Hani", "mnw", "vie", "kha", "khm_Latn", "khm"}),
"msa": ("Malay (macrolanguage)", {"zsm_Latn", "ind", "max_Latn", "zlm_Latn", "min"}),
"mul": (
"Multiple languages",
{
"abk",
"acm",
"ady",
"afb",
"afh_Latn",
"afr",
"akl_Latn",
"aln",
"amh",
"ang_Latn",
"apc",
"ara",
"arg",
"arq",
"ary",
"arz",
"asm",
"ast",
"avk_Latn",
"awa",
"aze_Latn",
"bak",
"bam_Latn",
"bel",
"bel_Latn",
"ben",
"bho",
"bod",
"bos_Latn",
"bre",
"brx",
"brx_Latn",
"bul",
"bul_Latn",
"cat",
"ceb",
"ces",
"cha",
"che",
"chr",
"chv",
"cjy_Hans",
"cjy_Hant",
"cmn",
"cmn_Hans",
"cmn_Hant",
"cor",
"cos",
"crh",
"crh_Latn",
"csb_Latn",
"cym",
"dan",
"deu",
"dsb",
"dtp",
"dws_Latn",
"egl",
"ell",
"enm_Latn",
"epo",
"est",
"eus",
"ewe",
"ext",
"fao",
"fij",
"fin",
"fkv_Latn",
"fra",
"frm_Latn",
"frr",
"fry",
"fuc",
"fuv",
"gan",
"gcf_Latn",
"gil",
"gla",
"gle",
"glg",
"glv",
"gom",
"gos",
"got_Goth",
"grc_Grek",
"grn",
"gsw",
"guj",
"hat",
"hau_Latn",
"haw",
"heb",
"hif_Latn",
"hil",
"hin",
"hnj_Latn",
"hoc",
"hoc_Latn",
"hrv",
"hsb",
"hun",
"hye",
"iba",
"ibo",
"ido",
"ido_Latn",
"ike_Latn",
"ile_Latn",
"ilo",
"ina_Latn",
"ind",
"isl",
"ita",
"izh",
"jav",
"jav_Java",
"jbo",
"jbo_Cyrl",
"jbo_Latn",
"jdt_Cyrl",
"jpn",
"kab",
"kal",
"kan",
"kat",
"kaz_Cyrl",
"kaz_Latn",
"kek_Latn",
"kha",
"khm",
"khm_Latn",
"kin",
"kir_Cyrl",
"kjh",
"kpv",
"krl",
"ksh",
"kum",
"kur_Arab",
"kur_Latn",
"lad",
"lad_Latn",
"lao",
"lat_Latn",
"lav",
"ldn_Latn",
"lfn_Cyrl",
"lfn_Latn",
"lij",
"lin",
"lit",
"liv_Latn",
"lkt",
"lld_Latn",
"lmo",
"ltg",
"ltz",
"lug",
"lzh",
"lzh_Hans",
"mad",
"mah",
"mai",
"mal",
"mar",
"max_Latn",
"mdf",
"mfe",
"mhr",
"mic",
"min",
"mkd",
"mlg",
"mlt",
"mnw",
"moh",
"mon",
"mri",
"mwl",
"mww",
"mya",
"myv",
"nan",
"nau",
"nav",
"nds",
"niu",
"nld",
"nno",
"nob",
"nob_Hebr",
"nog",
"non_Latn",
"nov_Latn",
"npi",
"nya",
"oci",
"ori",
"orv_Cyrl",
"oss",
"ota_Arab",
"ota_Latn",
"pag",
"pan_Guru",
"pap",
"pau",
"pdc",
"pes",
"pes_Latn",
"pes_Thaa",
"pms",
"pnb",
"pol",
"por",
"ppl_Latn",
"prg_Latn",
"pus",
"quc",
"qya",
"qya_Latn",
"rap",
"rif_Latn",
"roh",
"rom",
"ron",
"rue",
"run",
"rus",
"sag",
"sah",
"san_Deva",
"scn",
"sco",
"sgs",
"shs_Latn",
"shy_Latn",
"sin",
"sjn_Latn",
"slv",
"sma",
"sme",
"smo",
"sna",
"snd_Arab",
"som",
"spa",
"sqi",
"srp_Cyrl",
"srp_Latn",
"stq",
"sun",
"swe",
"swg",
"swh",
"tah",
"tam",
"tat",
"tat_Arab",
"tat_Latn",
"tel",
"tet",
"tgk_Cyrl",
"tha",
"tir",
"tlh_Latn",
"tly_Latn",
"tmw_Latn",
"toi_Latn",
"ton",
"tpw_Latn",
"tso",
"tuk",
"tuk_Latn",
"tur",
"tvl",
"tyv",
"tzl",
"tzl_Latn",
"udm",
"uig_Arab",
"uig_Cyrl",
"ukr",
"umb",
"urd",
"uzb_Cyrl",
"uzb_Latn",
"vec",
"vie",
"vie_Hani",
"vol_Latn",
"vro",
"war",
"wln",
"wol",
"wuu",
"xal",
"xho",
"yid",
"yor",
"yue",
"yue_Hans",
"yue_Hant",
"zho",
"zho_Hans",
"zho_Hant",
"zlm_Latn",
"zsm_Latn",
"zul",
"zza",
},
),
"nic": (
"Niger-Kordofanian languages",
{
"bam_Latn",
"ewe",
"fuc",
"fuv",
"ibo",
"kin",
"lin",
"lug",
"nya",
"run",
"sag",
"sna",
"swh",
"toi_Latn",
"tso",
"umb",
"wol",
"xho",
"yor",
"zul",
},
),
"nld": ("Dutch", {"nld"}),
"nor": ("Norwegian", {"nob", "nno"}),
"phi": ("Philippine languages", {"ilo", "akl_Latn", "war", "hil", "pag", "ceb"}),
"pol": ("Polish", {"pol"}),
"por": ("Portuguese", {"por"}),
"pqe": (
"Eastern Malayo-Polynesian languages",
{"fij", "gil", "haw", "mah", "mri", "nau", "niu", "rap", "smo", "tah", "ton", "tvl"},
),
"roa": (
"Romance languages",
{
"arg",
"ast",
"cat",
"cos",
"egl",
"ext",
"fra",
"frm_Latn",
"gcf_Latn",
"glg",
"hat",
"ind",
"ita",
"lad",
"lad_Latn",
"lij",
"lld_Latn",
"lmo",
"max_Latn",
"mfe",
"min",
"mwl",
"oci",
"pap",
"pms",
"por",
"roh",
"ron",
"scn",
"spa",
"tmw_Latn",
"vec",
"wln",
"zlm_Latn",
"zsm_Latn",
},
),
"ron": ("Romanian", {"ron"}),
"run": ("Rundi", {"run"}),
"rus": ("Russian", {"rus"}),
"sal": ("Salishan languages", {"shs_Latn"}),
"sem": ("Semitic languages", {"acm", "afb", "amh", "apc", "ara", "arq", "ary", "arz", "heb", "mlt", "tir"}),
"sla": (
"Slavic languages",
{
"bel",
"bel_Latn",
"bos_Latn",
"bul",
"bul_Latn",
"ces",
"csb_Latn",
"dsb",
"hrv",
"hsb",
"mkd",
"orv_Cyrl",
"pol",
"rue",
"rus",
"slv",
"srp_Cyrl",
"srp_Latn",
"ukr",
},
),
"slv": ("Slovenian", {"slv"}),
"spa": ("Spanish", {"spa"}),
"swe": ("Swedish", {"swe"}),
"taw": ("Tai", {"lao", "tha"}),
"tgl": ("Tagalog", {"tgl_Latn"}),
"tha": ("Thai", {"tha"}),
"trk": (
"Turkic languages",
{
"aze_Latn",
"bak",
"chv",
"crh",
"crh_Latn",
"kaz_Cyrl",
"kaz_Latn",
"kir_Cyrl",
"kjh",
"kum",
"ota_Arab",
"ota_Latn",
"sah",
"tat",
"tat_Arab",
"tat_Latn",
"tuk",
"tuk_Latn",
"tur",
"tyv",
"uig_Arab",
"uig_Cyrl",
"uzb_Cyrl",
"uzb_Latn",
},
),
"tur": ("Turkish", {"tur"}),
"ukr": ("Ukrainian", {"ukr"}),
"urd": ("Urdu", {"urd"}),
"urj": (
"Uralic languages",
{
"est",
"fin",
"fkv_Latn",
"hun",
"izh",
"kpv",
"krl",
"liv_Latn",
"mdf",
"mhr",
"myv",
"sma",
"sme",
"udm",
"vep",
"vro",
},
),
"vie": ("Vietnamese", {"vie", "vie_Hani"}),
"war": ("Waray (Philippines)", {"war"}),
"zho": (
"Chinese",
{
"cjy_Hans",
"cjy_Hant",
"cmn",
"cmn_Bopo",
"cmn_Hang",
"cmn_Hani",
"cmn_Hans",
"cmn_Hant",
"cmn_Hira",
"cmn_Kana",
"cmn_Latn",
"cmn_Yiii",
"gan",
"hak_Hani",
"lzh",
"lzh_Bopo",
"lzh_Hang",
"lzh_Hani",
"lzh_Hans",
"lzh_Hira",
"lzh_Kana",
"lzh_Yiii",
"nan",
"nan_Hani",
"wuu",
"wuu_Bopo",
"wuu_Hani",
"wuu_Latn",
"yue",
"yue_Bopo",
"yue_Hang",
"yue_Hani",
"yue_Hans",
"yue_Hant",
"yue_Hira",
"yue_Kana",
"zho",
"zho_Hans",
"zho_Hant",
},
),
"zle": ("East Slavic languages", {"bel", "orv_Cyrl", "bel_Latn", "rus", "ukr", "rue"}),
"zls": ("South Slavic languages", {"bos_Latn", "bul", "bul_Latn", "hrv", "mkd", "slv", "srp_Cyrl", "srp_Latn"}),
"zlw": ("West Slavic languages", {"csb_Latn", "dsb", "hsb", "pol", "ces"}),
}
def l2front_matter(langs):
return "".join(f"- {l}\n" for l in langs)
def dedup(lst):
"""Preservers order"""
new_lst = []
for item in lst:
if not item or item in new_lst:
continue
else:
new_lst.append(item)
return new_lst
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-m", "--models", action="append", help="<Required> Set flag", required=True, nargs="+", dest="models"
)
parser.add_argument("-save_dir", "--save_dir", default="marian_converted", help="where to save converted models")
args = parser.parse_args()
resolver = TatoebaConverter(save_dir=args.save_dir)
resolver.convert_models(args.models[0])
| transformers/src/transformers/models/marian/convert_marian_tatoeba_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/marian/convert_marian_tatoeba_to_pytorch.py",
"repo_id": "transformers",
"token_count": 22808
} | 338 |
# coding=utf-8
# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch MBART model."""
import copy
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from .configuration_mbart import MBartConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25"
_CONFIG_FOR_DOC = "MBartConfig"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
MBART_PRETRAINED_MODEL_ARCHIVE_LIST = [
"facebook/mbart-large-cc25",
# See all MBART models at https://huggingface.co/models?filter=mbart
]
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int):
"""
Shift input ids one token to the right, and wrap the last non pad token (the <LID> token) Note that MBart does not
have a single `decoder_start_token_id` in contrast to other Bart-like models.
"""
prev_output_tokens = input_ids.clone()
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
prev_output_tokens.masked_fill_(prev_output_tokens == -100, pad_token_id)
index_of_eos = (prev_output_tokens.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1)
decoder_start_tokens = prev_output_tokens.gather(1, index_of_eos).squeeze()
prev_output_tokens[:, 1:] = prev_output_tokens[:, :-1].clone()
prev_output_tokens[:, 0] = decoder_start_tokens
return prev_output_tokens
# Copied from transformers.models.bart.modeling_bart.BartLearnedPositionalEmbedding with Bart->MBart
class MBartLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
# MBart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim)
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
"""`input_ids' shape is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids.shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
).expand(bsz, -1)
return super().forward(positions + self.offset)
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->MBart
class MBartAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[MBartConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->MBart
class MBartFlashAttention2(MBartAttention):
"""
MBart flash attention module. This module inherits from `MBartAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# MBartFlashAttention2 attention does not support output_attentions
if output_attentions:
raise ValueError("MBartFlashAttention2 attention does not support output_attentions")
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, q_len, _ = hidden_states.size()
# get query proj
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0].transpose(1, 2)
value_states = past_key_value[1].transpose(1, 2)
elif is_cross_attention:
# cross_attentions
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
else:
# self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(
query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout
)
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`int`, *optional*):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
)
return attn_output
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
MBART_ATTENTION_CLASSES = {
"eager": MBartAttention,
"flash_attention_2": MBartFlashAttention2,
}
class MBartEncoderLayer(nn.Module):
def __init__(self, config: MBartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
config=config,
)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class MBartDecoderLayer(nn.Module):
def __init__(self, config: MBartConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
is_causal=True,
config=config,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = MBART_ATTENTION_CLASSES[config._attn_implementation](
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
config=config,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
`(encoder_attention_heads,)`.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
size `(decoder_attention_heads,)`.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->MBart
class MBartClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class MBartPreTrainedModel(PreTrainedModel):
config_class = MBartConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MBartDecoderLayer", "MBartAttention"]
_supports_flash_attn_2 = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
MBART_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MBartConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MBART_GENERATION_EXAMPLE = r"""
Translation example:
```python
>>> from transformers import AutoTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro")
>>> example_english_phrase = "42 is the answer"
>>> inputs = tokenizer(example_english_phrase, return_tensors="pt")
>>> # Translate
>>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5)
>>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
'42 este răspuns'
```
Mask filling example:
```python
>>> from transformers import AutoTokenizer, MBartForConditionalGeneration
>>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25")
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> # de_DE is the language symbol id <LID> for German
>>> TXT = "</s> Meine Freunde sind <mask> nett aber sie essen zu viel Kuchen. </s> de_DE"
>>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"]
>>> logits = model(input_ids).logits
>>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item()
>>> probs = logits[0, masked_index].softmax(dim=0)
>>> values, predictions = probs.topk(5)
>>> tokenizer.decode(predictions).split()
['nett', 'sehr', 'ganz', 'nicht', 'so']
```
"""
MBART_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that
varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class MBartEncoder(MBartPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
[`MBartEncoderLayer`].
Args:
config: MBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([MBartEncoderLayer(config) for _ in range(config.encoder_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _backward_compatibility_gradient_checkpointing(self):
# Override to not delete the attribute from the config
if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False):
self.gradient_checkpointing_enable()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input)
hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
if self._use_flash_attention_2:
attention_mask = attention_mask if 0 in attention_mask else None
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class MBartDecoder(MBartPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`]
Args:
config: MBartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = MBartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.layer_norm = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# 4d mask is passed through the layers
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
if self._use_flash_attention_2:
encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None
else:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length)
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {attn_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare MBART Model outputting raw hidden-states without any specific head on top.",
MBART_START_DOCSTRING,
)
class MBartModel(MBartPreTrainedModel):
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
def __init__(self, config: MBartConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = MBartEncoder(config, self.shared)
self.decoder = MBartDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.encoder.embed_tokens, self.get_input_embeddings())
self._tie_or_clone_weights(self.decoder.embed_tokens, self.get_input_embeddings())
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqModelOutput, Tuple[torch.FloatTensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# different to other models, MBart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models.",
MBART_START_DOCSTRING,
)
class MBartForConditionalGeneration(MBartPreTrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
_tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: MBartConfig):
super().__init__(config)
self.model = MBartModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.get_encoder()
def get_decoder(self):
return self.model.get_decoder()
def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(MBART_GENERATION_EXAMPLE)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_inputs_for_generation(
self,
decoder_input_ids,
past_key_values=None,
attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
use_cache=None,
encoder_outputs=None,
**kwargs,
):
# cut decoder_input_ids if past is used
if past_key_values is not None:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if decoder_input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = decoder_input_ids.shape[1] - 1
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
return {
"input_ids": None, # encoder_outputs is defined. input_ids not needed
"encoder_outputs": encoder_outputs,
"past_key_values": past_key_values,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
}
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"""
MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
MBART_START_DOCSTRING,
)
class MBartForSequenceClassification(MBartPreTrainedModel):
_tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"]
def __init__(self, config: MBartConfig, **kwargs):
super().__init__(config, **kwargs)
self.model = MBartModel(config)
self.classification_head = MBartClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.forward
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
MBART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MBART_START_DOCSTRING,
)
class MBartForQuestionAnswering(MBartPreTrainedModel):
_tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = MBartModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bart.modeling_bart.BartForQuestionAnswering.forward
def forward(
self,
input_ids: torch.Tensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->MBart
class MBartDecoderWrapper(MBartPreTrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the [`EncoderDecoderModel`] framework.
"""
def __init__(self, config):
super().__init__(config)
self.decoder = MBartDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart, facebook/bart-base->facebook/mbart-large-cc25
class MBartForCausalLM(MBartPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
super().__init__(config)
self.model = MBartDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.decoder = decoder
def get_decoder(self):
return self.model.decoder
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
if the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MBartForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25")
>>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False)
>>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder."
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size]
>>> list(logits.shape) == expected_shape
True
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model.decoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
logits = self.lm_head(outputs[0])
loss = None
if labels is not None:
labels = labels.to(logits.device)
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
):
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_ids.shape)
if past_key_values:
past_length = past_key_values[0][0].shape[2]
# Some generation methods already pass only the last input ID
if input_ids.shape[1] > past_length:
remove_prefix_length = past_length
else:
# Default to old behavior: keep only final ID
remove_prefix_length = input_ids.shape[1] - 1
input_ids = input_ids[:, remove_prefix_length:]
# first step, decoder_cached_states are empty
return {
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
| transformers/src/transformers/models/mbart/modeling_mbart.py/0 | {
"file_path": "transformers/src/transformers/models/mbart/modeling_mbart.py",
"repo_id": "transformers",
"token_count": 44217
} | 339 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import re
import sys
import types
import torch
from transformers import AutoTokenizer, GPT2Config
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME, shard_checkpoint
def add_checkpointing_args(parser):
parser.add_argument("--megatron-path", type=str, default=None, help="Base directory of Megatron repository")
parser.add_argument(
"--convert_checkpoint_from_megatron_to_transformers",
action="store_true",
help=(
"If True, convert a Megatron checkpoint to a Transformers checkpoint. "
"If False, convert a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--load_path",
type=str,
required=True,
help="Path to the checkpoint to convert.",
)
parser.add_argument(
"--save_path",
type=str,
required=True,
help="Path to the converted checkpoint.",
)
parser.add_argument("--print-checkpoint-structure", action="store_true")
return parser
def add_megatron_checkpoint_args(parser):
parser.add_argument(
"--target_tensor_model_parallel_size",
type=int,
default=1,
help=(
"The tensor model parallel size of the converted checkpoint. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--target_pipeline_model_parallel_size",
type=int,
default=1,
help=(
"The pipeline model parallel size of the converted checkpoint. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--target_data_parallel_size",
type=int,
default=1,
help=(
"The data parallel size of the converted checkpoint. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--target_params_dtype",
type=str,
default="fp32",
help=(
"The dtype of the converted checkpoint. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--make_vocab_size_divisible_by",
type=int,
default=128,
help=(
"Pad the vocab size to be divisible by this value. "
"This is added for computational efficieny reasons. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
parser.add_argument(
"--use_distributed_optimizer",
action="store_true",
help=(
"If True, use the distributed optimizer. "
"Only used when converting a Transformers checkpoint to a Megatron checkpoint."
),
)
return parser
def add_transformers_checkpoint_args(parser):
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help=(
"The name of the pre-trained tokenizer to save. "
"If not None, the tokenizer will be saved. "
"Only used when converting a Megatron checkpoint to a Transformers checkpoint."
),
)
parser.add_argument(
"--max_shard_size",
type=str,
default="10GB",
help=(
"The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size "
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`). "
"Only used when converting a Megatron checkpoint to a Transformers checkpoint."
),
)
return parser
# The simple map of names for "automated" rules.
megatron_to_transformers = {
"attention.dense": ".attn.c_proj.",
"self_attention.dense": ".attn.c_proj.",
"mlp.dense_h_to_4h": ".mlp.c_fc.",
"mlp.dense_4h_to_h": ".mlp.c_proj.",
}
transformers_to_megatron = {v[1:-1]: k for k, v in megatron_to_transformers.items()}
tensor_parallel_params = [
# megatron-lm layers to merge across tp ranks
"self_attention.query_key_value.weight",
"self_attention.query_key_value.bias",
"self_attention.dense.weight",
"mlp.dense_h_to_4h.weight",
"mlp.dense_h_to_4h.bias",
"mlp.dense_4h_to_h.weight",
# deprecated
"attention.query_key_value.weight",
"attention.query_key_value.bias",
"attention.dense.weight",
# transformers layers to split across tp ranks
"attn.c_attn.weight",
"attn.c_attn.bias",
"attn.c_proj.weight",
"mlp.c_fc.weight",
"mlp.c_fc.bias",
"mlp.c_proj.weight",
]
def recursive_print(name, val, spaces=0):
"""
Recursively print the structure of a checkpoint. This function is taken from `convert_megatron_gpt2_checkpoint.py`
Args:
name (str): the name of the current tensor parameter
val (Tuple(int)): the shape of the current tensor parameter
spaces (int): the number of spaces to print before the output for a nested structure
"""
# Format the message.
if name is None:
msg = None
else:
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
msg = fmt.format(name)
# Print and recurse (if needed).
if isinstance(val, dict):
if msg is not None:
print(msg)
for k in val.keys():
recursive_print(k, val[k], spaces + 2)
elif isinstance(val, torch.Tensor):
print(msg, ":", val.size())
else:
print(msg, ":", val)
def megatron_to_transformers_fix_query_key_value_ordering(
param, checkpoint_version, num_splits, num_heads, hidden_size
):
"""
Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] for compatibility with later versions
of NVIDIA Megatron-LM. The inverse operation is performed inside Megatron-LM to read checkpoints:
https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 If param is the weight tensor of the
self-attention block, the returned tensor will have to be transposed one more time to be read by HuggingFace GPT2.
This function is taken from `convert_megatron_gpt2_checkpoint.py`
Args:
param (torch.Tensor): the tensor to permute
checkpoint_version (int): the version of the checkpoint.
num_splits (int): the number of projections, usually 3 for (Query, Key, Value)
num_heads (int): the number of attention heads
hidden_size (int): the hidden size per head
"""
input_shape = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
saved_shape = (num_heads, hidden_size, num_splits) + input_shape[1:]
param = param.view(*saved_shape)
param = param.transpose(0, 2)
param = param.transpose(1, 2).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
saved_shape = (num_heads, num_splits, hidden_size) + input_shape[1:]
param = param.view(*saved_shape)
param = param.transpose(0, 1).contiguous()
param = param.view(*input_shape)
return param
def transformers_to_megatron_fix_query_key_value_ordering(
param, checkpoint_version, num_splits, num_heads, hidden_size
):
"""
Permutes layout of param tensor to the one compatible with respective NVIDIA Megatron-LM chekpoint versions. Input
is [num_splits * num_heads * hidden_size, :] and output is [num_heads * hidden_size * num_splits, :] for version
1.0 and [num_heads * num_splits * hidden_size, :] for version 2.0 and later. If param is the weight tensor of the
self-attention block, the param needs to be already transposed before calling this function.
Args:
param (torch.Tensor): the tensor to permute
checkpoint_version (int): the version of the checkpoint.
num_splits (int): the number of projections, usually 3 for (Query, Key, Value)
num_heads (int): the number of attention heads
hidden_size (int): the hidden size per head
"""
# Input is [num_splits * num_heads * hidden_size, :]
input_shape = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:]
param = param.view(*current_shape)
param = param.transpose(0, 2)
param = param.transpose(1, 2).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
current_shape = (num_splits, num_heads, hidden_size) + input_shape[1:]
param = param.view(*current_shape)
param = param.transpose(0, 1).contiguous()
param = param.view(*input_shape)
return param
def merge_transformers_sharded_states(path, num_checkpoints):
"""
Merge sharded checkpoints from transformers into a single checkpoint.
Args:
path (str): the path to the sharded checkpoints
num_checkpoints (int): the number of checkpoints to merge
"""
state_dict = {}
for i in range(1, num_checkpoints + 1):
checkpoint_path = os.path.join(path, f"pytorch_model-{i:05d}-of-{num_checkpoints:05d}.bin")
current_chunk = torch.load(checkpoint_path, map_location="cpu")
state_dict.update(current_chunk)
return state_dict
def get_megatron_sharded_states(args, tp_size, pp_size, pp_rank):
"""
Get sharded checkpoints from NVIDIA Megatron-LM checkpoint based on the provided tensor parallel size, pipeline
parallel size and pipeline parallel rank.
Args:
args (argparse.Namespace): the arguments to the script
tp_size (int): the tensor parallel size
pp_size (int): the pipeline parallel size
pp_rank (int): the pipeline parallel rank
"""
tp_state_dicts = []
for i in range(tp_size):
sub_dir_name = f"mp_rank_{i:02d}" if pp_size == 1 else f"mp_rank_{i:02d}_{pp_rank:03d}"
for checkpoint_name in ["model_optim_rng.pt", "model_rng.pt"]:
checkpoint_path = os.path.join(args.load_path, sub_dir_name, checkpoint_name)
if os.path.isfile(checkpoint_path):
break
state_dict = torch.load(checkpoint_path, map_location="cpu")
tp_state_dicts.append(state_dict)
return tp_state_dicts
def get_element_from_dict_by_path(d, path):
"""
Get element from dictionary by path. If element is not present, recursively add empty dictionaries.
Args:
d (dict): the dictionary to get the element from
path (list): the path to the element which is delimited by "."
"""
path = path.split(".")
for k in path:
if k not in d:
d[k] = {}
d = d[k]
return d
def convert_checkpoint_from_megatron_to_transformers(args):
"""
Convert NVIDIA Megatron-LM checkpoint to HuggingFace Transformers checkpoint. This handles Megatron checkpoints
with different tensor parallelism and pipeline parallelism sizes. It saves the converted checkpoint into shards
using HuggingFace Transformers checkpoint sharding functionality. This greatly extends the functionality of
`convert_megatron_gpt2_checkpoint.py`
Args:
args (argparse.Namespace): the arguments to the script
"""
# Load Megatron-LM checkpoint arguments from the state dict
sub_dirs = os.listdir(args.load_path)
possible_sub_dirs = ["mp_rank_00", "mp_rank_00_000"]
for sub_dir in possible_sub_dirs:
if sub_dir in sub_dirs:
rank0_checkpoint_name = os.listdir(os.path.join(args.load_path, sub_dir))[0]
rank0_checkpoint_path = os.path.join(args.load_path, sub_dir, rank0_checkpoint_name)
break
print(f"Loading Megatron-LM checkpoint arguments from: {rank0_checkpoint_path}")
state_dict = torch.load(rank0_checkpoint_path, map_location="cpu")
megatron_args = state_dict.get("args", None)
if megatron_args is None:
raise ValueError(
"Megatron-LM checkpoint does not contain arguments. This utility only supports Megatron-LM checkpoints"
" containing all the megatron arguments. This is because it loads all config related to model"
" architecture, the tensor and pipeline model parallel size from the checkpoint insead of user having to"
" manually specify all the details. Please save Megatron-LM checkpoint along with all the megatron"
" arguments to use this utility."
)
# Create Transformers GPT2 config from Megatron-LM arguments
if megatron_args is not None:
if megatron_args.bias_gelu_fusion:
activation_function = "gelu_fast"
elif megatron_args.openai_gelu:
activation_function = "gelu_new"
else:
activation_function = "gelu"
else:
# in the very early days this used to be "gelu_new"
activation_function = "gelu_new"
vocab_size = (
megatron_args.padded_vocab_size
if getattr(megatron_args, "orig_vocab_size", None) is None
else megatron_args.orig_vocab_size
)
print(vocab_size)
config = GPT2Config(
vocab_size=vocab_size,
n_positions=megatron_args.max_position_embeddings,
n_embd=megatron_args.hidden_size,
n_layer=megatron_args.num_layers,
n_head=megatron_args.num_attention_heads,
n_inner=megatron_args.ffn_hidden_size,
activation_function=activation_function,
resid_pdrop=0.1,
embd_pdrop=0.1,
attn_pdrop=0.1,
layer_norm_epsilon=1e-5,
initializer_range=0.02,
summary_type="cls_index",
summary_use_proj=True,
summary_activation=None,
summary_proj_to_labels=True,
summary_first_dropout=0.1,
scale_attn_weights=True,
use_cache=True,
bos_token_id=vocab_size - 1,
eos_token_id=vocab_size - 1,
architectures=["GPT2LMHeadModel"],
)
output_state_dict = {}
checkpoint_version = state_dict.get("checkpoint_version", 0.0)
tp_size = megatron_args.tensor_model_parallel_size
pp_size = megatron_args.pipeline_model_parallel_size
dtype = torch.float32
# The regex to extract layer names.
layer_re = re.compile(r"layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
# Convert.
print("Converting")
# Embeddings
print("Converting embeddings")
tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, 0)
# Convert and store the position embeddings.
position_embeddings = get_element_from_dict_by_path(
tp_state_dicts[0], "model.language_model.embedding.position_embeddings.weight"
)
output_state_dict["transformer.wpe.weight"] = position_embeddings.to(dtype)
# Convert and store the word embeddings.
word_embeddings = torch.cat(
[
get_element_from_dict_by_path(
tp_state_dicts[tp_rank], "model.language_model.embedding.word_embeddings.weight"
)
for tp_rank in range(tp_size)
],
dim=0,
)
word_embeddings = word_embeddings[:vocab_size].to(dtype)
output_state_dict["transformer.wte.weight"] = word_embeddings
# Transformer Layers
print("Converting transformer layers")
# The number of heads.
heads = config.n_head
# The hidden_size per head.
hidden_size_per_head = config.n_embd // config.n_head
n_positions = config.n_positions
num_layers = config.num_hidden_layers // pp_size
for pp_rank in range(pp_size):
if pp_size > 0:
print(f"Converting pipeline parallel rank {pp_rank}")
tp_state_dicts = get_megatron_sharded_states(args, tp_size, pp_size, pp_rank)
# The transformer.
path = (
"model.language_model.transformer"
if "transformer" in get_element_from_dict_by_path(tp_state_dicts[0], "model.language_model").keys()
else "model.language_model.encoder"
)
# Extract the layers.
for key, val in get_element_from_dict_by_path(tp_state_dicts[0], path).items():
# Match the name.
m = layer_re.match(key)
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
layer_idx = int(m.group(1)) + pp_rank * num_layers
# The name of the operation.
op_name = m.group(2)
# Is it a weight or a bias?
weight_or_bias = m.group(3)
# The name of the layer.
layer_name = f"transformer.h.{layer_idx}"
if op_name + "." + weight_or_bias not in tensor_parallel_params:
params = val.to(dtype)
else:
dim = 1 if op_name in ["self_attention.dense", "mlp.dense_4h_to_h", "attention.dense"] else 0
params = torch.cat(
[val]
+ [
get_element_from_dict_by_path(tp_state_dicts[tp_rank], f"{path}")[key]
for tp_rank in range(1, tp_size)
],
dim=dim,
).to(dtype)
# For layernorm(s), simply store the layer norm.
if op_name.endswith("layernorm"):
ln_name = "ln_1" if op_name.startswith("input") else "ln_2"
output_state_dict[layer_name + "." + ln_name + "." + weight_or_bias] = params
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
causal_mask = torch.tril(torch.ones((n_positions, n_positions), dtype=dtype)).view(
1, 1, n_positions, n_positions
)
output_state_dict[layer_name + ".attn.bias"] = causal_mask
# Insert a "dummy" tensor for masked_bias.
masked_bias = torch.tensor(-1e4, dtype=dtype)
output_state_dict[layer_name + ".attn.masked_bias"] = masked_bias
out_val = megatron_to_transformers_fix_query_key_value_ordering(
params,
checkpoint_version,
3,
heads,
hidden_size_per_head,
)
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
out_val = out_val.transpose(0, 1).contiguous()
# Store.
output_state_dict[layer_name + ".attn.c_attn.weight"] = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
out_val = megatron_to_transformers_fix_query_key_value_ordering(
params, checkpoint_version, 3, heads, hidden_size_per_head
)
# Store. No change of shape.
output_state_dict[layer_name + ".attn.c_attn.bias"] = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
out_name = megatron_to_transformers[op_name]
output_state_dict[layer_name + out_name + "weight"] = params.transpose(0, 1)
# Copy the bias.
elif weight_or_bias == "bias":
out_name = megatron_to_transformers[op_name]
output_state_dict[layer_name + out_name + "bias"] = params
if config.n_layer != (layer_idx + 1):
raise ValueError(f"Expected {config.n_layer} layers but found {layer_idx + 1}")
# The final layernorm.
print("Converting final layernorm")
params = get_element_from_dict_by_path(tp_state_dicts[0], str(path))
output_state_dict["transformer.ln_f.weight"] = params["final_layernorm.weight"].to(dtype)
output_state_dict["transformer.ln_f.bias"] = params["final_layernorm.bias"].to(dtype)
# For LM head, transformers' wants the matrix to weight embeddings.
print("Converting LM head")
output_state_dict["lm_head.weight"] = word_embeddings.to(dtype)
# It should be done!
print("Conversion from Megatron-LM to Transformers is done!")
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(None, output_state_dict)
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if args.tokenizer_name is None:
tokenizer_name = "gpt2"
else:
tokenizer_name = args.tokenizer_name
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
tokenizer_class = type(tokenizer).__name__
config.tokenizer_class = tokenizer_class
# Store the config to file.
print("Saving config")
config.save_pretrained(args.save_path)
# Save tokenizer based on args
if args.tokenizer_name is not None:
print(f"Adding {tokenizer_class} tokenizer files")
tokenizer.save_pretrained(args.save_path)
# Store the state_dict to file.
max_shard_size = int(args.max_shard_size) if args.max_shard_size.isdigit() else args.max_shard_size
shards, index = shard_checkpoint(output_state_dict, max_shard_size=max_shard_size)
# Save the model
for shard_file, shard in shards.items():
torch.save(shard, os.path.join(args.save_path, shard_file))
if index is None:
print(f"Model weights saved in {os.path.join(args.save_path, WEIGHTS_NAME)}")
else:
save_index_file = os.path.join(args.save_path, WEIGHTS_INDEX_NAME)
# Save the index as well
with open(save_index_file, "w", encoding="utf-8") as f:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
f.write(content)
print(
f"The model is bigger than the maximum size per checkpoint ({args.max_shard_size}) and is going to be "
f"split in {len(shards)} checkpoint shards. You can find where each parameters has been saved in the "
f"index located at {save_index_file}."
)
def convert_checkpoint_from_transformers_to_megatron(args):
"""
Convert a checkpoint from HuggingFace Transformers to Megatron-LM. This allows converted checkpoints with variable
tensor parallelism and pipeline parallelism sizes. It takes as input a checkpoint from HuggingFace Transformers
which can have multiple shards.
Args:
args (argparse.Namespace): the arguments to the script
"""
os.makedirs(args.save_path, exist_ok=True)
# Search in directory above this
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
if args.megatron_path is not None:
sys.path.insert(0, args.megatron_path)
try:
from megatron.tokenizer.tokenizer import _vocab_size_with_padding
except ModuleNotFoundError:
print("Unable to import Megatron, please specify the path to Megatron using --megatron-path. Exiting.")
exit(1)
# load the transformers model state dict and config
sub_dirs = [x for x in os.listdir(args.load_path) if x.startswith("pytorch_model")]
if len(sub_dirs) == 1:
checkpoint_name = "pytorch_model.bin"
state_dict = torch.load(os.path.join(args.load_path, checkpoint_name), map_location="cpu")
else:
num_checkpoints = len(sub_dirs) - 1
state_dict = merge_transformers_sharded_states(args.load_path, num_checkpoints)
config = GPT2Config.from_pretrained(args.load_path)
# Saving the tracker file
tracker_filepath = os.path.join(args.save_path, "latest_checkpointed_iteration.txt")
with open(tracker_filepath, "w") as f:
f.write("release")
# create `release` dir in args.load_path
release_dir = os.path.join(args.save_path, "release")
os.makedirs(release_dir, exist_ok=True)
# megatron args
megatron_args = {
"orig_vocab_size": config.vocab_size,
"max_position_embeddings": config.n_positions,
"hidden_size": config.n_embd,
"num_layers": config.n_layer,
"num_attention_heads": config.n_head,
"ffn_hidden_size": config.n_inner,
"tensor_model_parallel_size": args.target_tensor_model_parallel_size,
"pipeline_model_parallel_size": args.target_pipeline_model_parallel_size,
"data_parallel_size": args.target_data_parallel_size,
"make_vocab_size_divisible_by": args.make_vocab_size_divisible_by,
"rank": 0,
"tokenizer_type": "GPT2BPETokenizer",
}
if config.activation_function == "gelu":
megatron_args["bias_gelu_fusion"] = False
megatron_args["openai_gelu"] = False
elif config.activation_function == "gelu_fast":
megatron_args["bias_gelu_fusion"] = True
megatron_args["openai_gelu"] = False
elif config.activation_function == "gelu_new":
megatron_args["bias_gelu_fusion"] = False
megatron_args["openai_gelu"] = True
margs = types.SimpleNamespace()
for k, v in megatron_args.items():
setattr(margs, k, v)
# params dtype
if args.target_params_dtype == "fp16":
dtype = torch.float16
elif args.target_params_dtype == "bf16":
dtype = torch.bfloat16
else:
dtype = torch.float32
setattr(margs, "params_dtype", dtype)
# save dummy optim state dict
dummy_optim_state_dict = {}
dummy_optim_state_dict["optimizer"] = {
"step": 0,
"param_groups": [
{
"lr": 0.0,
"beta1": 0.0,
"beta2": 0.0,
"eps": 0.0,
"weight_decay": 0.0,
"correct_bias": False,
"params": [],
}
],
}
if args.use_distributed_optimizer:
for i in range(args.target_pipeline_model_parallel_size):
for j in range(args.target_tensor_model_parallel_size):
for k in range(args.target_data_parallel_size):
if args.target_pipeline_model_parallel_size == 1:
checkpoint_dir = f"mp_rank_{j:02d}_{k:03d}"
else:
checkpoint_dir = f"mp_rank_{j:02d}_{i:03d}_{k:03d}"
checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
os.makedirs(checkpoint_dir, exist_ok=True)
torch.save(
dummy_optim_state_dict,
os.path.join(checkpoint_dir, "optim.pt"),
)
# Convert.
print("Converting")
output_state_dict = []
for i in range(args.target_tensor_model_parallel_size):
output_state_dict.append({})
# Embedding layer
print("converting embedding layer")
pos_embedding = state_dict["transformer.wpe.weight"].to(dtype)
word_embedding = state_dict["transformer.wte.weight"].to(dtype)
orig_vocab_size = config.vocab_size
padded_vocab_size = _vocab_size_with_padding(orig_vocab_size, margs)
setattr(margs, "padded_vocab_size", padded_vocab_size)
# Cut out extra padding we don't need
if orig_vocab_size > padded_vocab_size:
full_word_embed = word_embedding[0:padded_vocab_size, :]
# Expanding embedding to larger size by replicating final entry
elif orig_vocab_size < padded_vocab_size:
padding_size = padded_vocab_size - orig_vocab_size
full_word_embed = torch.cat((word_embedding, word_embedding[-1].unsqueeze(0).expand(padding_size, -1)))
# Same size!
else:
full_word_embed = word_embedding
# Split into new tensor model parallel sizes
out_word_embed = torch.chunk(full_word_embed, args.target_tensor_model_parallel_size, dim=0)
for i in range(args.target_tensor_model_parallel_size):
pos_emb_dict = get_element_from_dict_by_path(
output_state_dict[i], "model.language_model.embedding.position_embeddings"
)
pos_emb_dict["weight"] = pos_embedding
word_emb_dict = get_element_from_dict_by_path(
output_state_dict[i], "model.language_model.embedding.word_embeddings"
)
word_emb_dict["weight"] = out_word_embed[i].clone()
# Transformer layers
print("converting transformer layers")
if config.num_attention_heads % args.target_tensor_model_parallel_size != 0:
raise ValueError(
f"Number of attention heads ({config.num_attention_heads}) must be divisible by number of tensor parallelism"
f" ({args.target_tensor_model_parallel_size})"
)
if config.num_hidden_layers % args.target_pipeline_model_parallel_size != 0:
raise ValueError(
f"Number of layers ({config.num_hidden_layers}) must be divisible by number of pipeline parallelism"
f" ({args.target_pipeline_model_parallel_size})"
)
num_layers = config.num_hidden_layers // args.target_pipeline_model_parallel_size
layer_re = re.compile(r"transformer.h\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)")
# The number of heads.
heads = config.n_head
# The hidden_size per head.
hidden_size_per_head = config.n_embd // config.n_head
for pp_rank in range(args.target_pipeline_model_parallel_size):
layer_offset = pp_rank * num_layers
if pp_rank > 0:
output_state_dict = []
for i in range(args.target_tensor_model_parallel_size):
output_state_dict.append({})
for layer in range(num_layers):
pp_layer_id = layer + layer_offset
layers_to_copy = [
layer_name
for layer_name in state_dict.keys()
if layer_name.startswith(f"transformer.h.{pp_layer_id}.")
]
for layer_name in layers_to_copy:
m = layer_re.match(layer_name)
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
_ = int(m.group(1))
# The name of the operation.
op_name = m.group(2)
# Is it a weight or a bias?
weight_or_bias = m.group(3)
params = state_dict[layer_name].to(dtype)
# handle layernorm
if op_name.startswith("ln"):
out_name = "input_layernorm" if op_name.endswith("1") else "post_attention_layernorm"
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
# handle attention K, V, Q weights
elif op_name.startswith("attn.c_attn") and weight_or_bias == "weight":
# transformers stores D X (3*D) but Megatron-LM expects (3*D) X D.
params = params.transpose(0, 1).contiguous()
params = transformers_to_megatron_fix_query_key_value_ordering(
params,
3.0,
3,
heads,
hidden_size_per_head,
)
layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"
# handle attention K, V, Q bias
elif op_name.startswith("attn.c_attn") and weight_or_bias == "bias":
params = transformers_to_megatron_fix_query_key_value_ordering(
params,
3.0,
3,
heads,
hidden_size_per_head,
)
layer_name = f"layers.{layer}.self_attention.query_key_value.{weight_or_bias}"
# handle attention and mlp weights
elif weight_or_bias == "weight":
out_name = transformers_to_megatron.get(op_name, None)
if out_name is None:
continue
params = params.transpose(0, 1)
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
# handle attention and mlp bias
elif weight_or_bias == "bias":
out_name = transformers_to_megatron.get(op_name, None)
if out_name is None:
continue
layer_name = f"layers.{layer}.{out_name}.{weight_or_bias}"
# skip
else:
continue
if op_name + "." + weight_or_bias in tensor_parallel_params:
dim = 1 if op_name in ["attn.c_proj", "mlp.c_proj"] else 0
params = torch.chunk(params, args.target_tensor_model_parallel_size, dim=dim)
for i in range(args.target_tensor_model_parallel_size):
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
params_dict[layer_name] = (
params[i].clone() if (op_name + "." + weight_or_bias in tensor_parallel_params) else params
)
if pp_rank == args.target_pipeline_model_parallel_size - 1:
# handle final layernorm
for weight_or_bias in ["weight", "bias"]:
params = state_dict[f"transformer.ln_f.{weight_or_bias}"].to(dtype)
layer_name = f"final_layernorm.{weight_or_bias}"
for i in range(args.target_tensor_model_parallel_size):
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.language_model.encoder")
params_dict[layer_name] = params
# add the LM head
for i in range(args.target_tensor_model_parallel_size):
params_dict = get_element_from_dict_by_path(output_state_dict[i], "model.word_embeddings_for_head")
params_dict["weight"] = out_word_embed[i].clone()
# saving the state dict as per the tp_rank and pp_rank
for tp_rank in range(args.target_tensor_model_parallel_size):
output_state_dict[tp_rank]["checkpoint_version"] = 3.0
output_state_dict[tp_rank]["args"] = margs
checkpoint_dir = (
f"mp_rank_{tp_rank:02d}"
if args.target_pipeline_model_parallel_size == 1
else f"mp_rank_{tp_rank:02d}_{pp_rank:03d}"
)
if args.use_distributed_optimizer:
checkpoint_name = "model_rng.pt"
else:
checkpoint_name = "model_optim_rng.pt"
output_state_dict[tp_rank]["optimizer"] = dummy_optim_state_dict["optimizer"]
checkpoint_dir = os.path.join(release_dir, checkpoint_dir)
os.makedirs(checkpoint_dir, exist_ok=True)
checkpoint_path = os.path.join(checkpoint_dir, checkpoint_name)
if args.print_checkpoint_structure:
print(
f"Checkpoint structure of model state dict shard belonging to TP rank {tp_rank} and PP rank"
f" {pp_rank}:"
)
recursive_print(None, output_state_dict[tp_rank])
torch.save(output_state_dict[tp_rank], checkpoint_path)
def main():
parser = argparse.ArgumentParser()
parser = add_checkpointing_args(parser)
parser = add_megatron_checkpoint_args(parser)
parser = add_transformers_checkpoint_args(parser)
args = parser.parse_args()
if args.convert_checkpoint_from_megatron_to_transformers:
convert_checkpoint_from_megatron_to_transformers(args)
else:
convert_checkpoint_from_transformers_to_megatron(args)
if __name__ == "__main__":
main()
| transformers/src/transformers/models/megatron_gpt2/checkpoint_reshaping_and_interoperability.py/0 | {
"file_path": "transformers/src/transformers/models/megatron_gpt2/checkpoint_reshaping_and_interoperability.py",
"repo_id": "transformers",
"token_count": 16485
} | 340 |
# coding=utf-8
# Copyright 2023 Apple Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Original license: https://github.com/apple/ml-cvnets/blob/main/LICENSE
""" PyTorch MobileViTV2 model."""
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
SemanticSegmenterOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_mobilevitv2 import MobileViTV2Config
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "MobileViTV2Config"
# Base docstring
_CHECKPOINT_FOR_DOC = "apple/mobilevitv2-1.0-imagenet1k-256"
_EXPECTED_OUTPUT_SHAPE = [1, 512, 8, 8]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "apple/mobilevitv2-1.0-imagenet1k-256"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST = [
"apple/mobilevitv2-1.0-imagenet1k-256"
# See all MobileViTV2 models at https://huggingface.co/models?filter=mobilevitv2
]
# Copied from transformers.models.mobilevit.modeling_mobilevit.make_divisible
def make_divisible(value: int, divisor: int = 8, min_value: Optional[int] = None) -> int:
"""
Ensure that all layers have a channel count that is divisible by `divisor`. This function is taken from the
original TensorFlow repo. It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_value < 0.9 * value:
new_value += divisor
return int(new_value)
def clip(value: float, min_val: float = float("-inf"), max_val: float = float("inf")) -> float:
return max(min_val, min(max_val, value))
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTConvLayer with MobileViT->MobileViTV2
class MobileViTV2ConvLayer(nn.Module):
def __init__(
self,
config: MobileViTV2Config,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
groups: int = 1,
bias: bool = False,
dilation: int = 1,
use_normalization: bool = True,
use_activation: Union[bool, str] = True,
) -> None:
super().__init__()
padding = int((kernel_size - 1) / 2) * dilation
if in_channels % groups != 0:
raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
if out_channels % groups != 0:
raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
self.convolution = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=bias,
padding_mode="zeros",
)
if use_normalization:
self.normalization = nn.BatchNorm2d(
num_features=out_channels,
eps=1e-5,
momentum=0.1,
affine=True,
track_running_stats=True,
)
else:
self.normalization = None
if use_activation:
if isinstance(use_activation, str):
self.activation = ACT2FN[use_activation]
elif isinstance(config.hidden_act, str):
self.activation = ACT2FN[config.hidden_act]
else:
self.activation = config.hidden_act
else:
self.activation = None
def forward(self, features: torch.Tensor) -> torch.Tensor:
features = self.convolution(features)
if self.normalization is not None:
features = self.normalization(features)
if self.activation is not None:
features = self.activation(features)
return features
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTInvertedResidual with MobileViT->MobileViTV2
class MobileViTV2InvertedResidual(nn.Module):
"""
Inverted residual block (MobileNetv2): https://arxiv.org/abs/1801.04381
"""
def __init__(
self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int, dilation: int = 1
) -> None:
super().__init__()
expanded_channels = make_divisible(int(round(in_channels * config.expand_ratio)), 8)
if stride not in [1, 2]:
raise ValueError(f"Invalid stride {stride}.")
self.use_residual = (stride == 1) and (in_channels == out_channels)
self.expand_1x1 = MobileViTV2ConvLayer(
config, in_channels=in_channels, out_channels=expanded_channels, kernel_size=1
)
self.conv_3x3 = MobileViTV2ConvLayer(
config,
in_channels=expanded_channels,
out_channels=expanded_channels,
kernel_size=3,
stride=stride,
groups=expanded_channels,
dilation=dilation,
)
self.reduce_1x1 = MobileViTV2ConvLayer(
config,
in_channels=expanded_channels,
out_channels=out_channels,
kernel_size=1,
use_activation=False,
)
def forward(self, features: torch.Tensor) -> torch.Tensor:
residual = features
features = self.expand_1x1(features)
features = self.conv_3x3(features)
features = self.reduce_1x1(features)
return residual + features if self.use_residual else features
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTMobileNetLayer with MobileViT->MobileViTV2
class MobileViTV2MobileNetLayer(nn.Module):
def __init__(
self, config: MobileViTV2Config, in_channels: int, out_channels: int, stride: int = 1, num_stages: int = 1
) -> None:
super().__init__()
self.layer = nn.ModuleList()
for i in range(num_stages):
layer = MobileViTV2InvertedResidual(
config,
in_channels=in_channels,
out_channels=out_channels,
stride=stride if i == 0 else 1,
)
self.layer.append(layer)
in_channels = out_channels
def forward(self, features: torch.Tensor) -> torch.Tensor:
for layer_module in self.layer:
features = layer_module(features)
return features
class MobileViTV2LinearSelfAttention(nn.Module):
"""
This layer applies a self-attention with linear complexity, as described in MobileViTV2 paper:
https://arxiv.org/abs/2206.02680
Args:
config (`MobileVitv2Config`):
Model configuration object
embed_dim (`int`):
`input_channels` from an expected input of size :math:`(batch_size, input_channels, height, width)`
"""
def __init__(self, config: MobileViTV2Config, embed_dim: int) -> None:
super().__init__()
self.qkv_proj = MobileViTV2ConvLayer(
config=config,
in_channels=embed_dim,
out_channels=1 + (2 * embed_dim),
bias=True,
kernel_size=1,
use_normalization=False,
use_activation=False,
)
self.attn_dropout = nn.Dropout(p=config.attn_dropout)
self.out_proj = MobileViTV2ConvLayer(
config=config,
in_channels=embed_dim,
out_channels=embed_dim,
bias=True,
kernel_size=1,
use_normalization=False,
use_activation=False,
)
self.embed_dim = embed_dim
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# (batch_size, embed_dim, num_pixels_in_patch, num_patches) --> (batch_size, 1+2*embed_dim, num_pixels_in_patch, num_patches)
qkv = self.qkv_proj(hidden_states)
# Project hidden_states into query, key and value
# Query --> [batch_size, 1, num_pixels_in_patch, num_patches]
# value, key --> [batch_size, embed_dim, num_pixels_in_patch, num_patches]
query, key, value = torch.split(qkv, split_size_or_sections=[1, self.embed_dim, self.embed_dim], dim=1)
# apply softmax along num_patches dimension
context_scores = torch.nn.functional.softmax(query, dim=-1)
context_scores = self.attn_dropout(context_scores)
# Compute context vector
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] x [batch_size, 1, num_pixels_in_patch, num_patches] -> [batch_size, embed_dim, num_pixels_in_patch, num_patches]
context_vector = key * context_scores
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] --> [batch_size, embed_dim, num_pixels_in_patch, 1]
context_vector = torch.sum(context_vector, dim=-1, keepdim=True)
# combine context vector with values
# [batch_size, embed_dim, num_pixels_in_patch, num_patches] * [batch_size, embed_dim, num_pixels_in_patch, 1] --> [batch_size, embed_dim, num_pixels_in_patch, num_patches]
out = torch.nn.functional.relu(value) * context_vector.expand_as(value)
out = self.out_proj(out)
return out
class MobileViTV2FFN(nn.Module):
def __init__(
self,
config: MobileViTV2Config,
embed_dim: int,
ffn_latent_dim: int,
ffn_dropout: float = 0.0,
) -> None:
super().__init__()
self.conv1 = MobileViTV2ConvLayer(
config=config,
in_channels=embed_dim,
out_channels=ffn_latent_dim,
kernel_size=1,
stride=1,
bias=True,
use_normalization=False,
use_activation=True,
)
self.dropout1 = nn.Dropout(ffn_dropout)
self.conv2 = MobileViTV2ConvLayer(
config=config,
in_channels=ffn_latent_dim,
out_channels=embed_dim,
kernel_size=1,
stride=1,
bias=True,
use_normalization=False,
use_activation=False,
)
self.dropout2 = nn.Dropout(ffn_dropout)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.conv1(hidden_states)
hidden_states = self.dropout1(hidden_states)
hidden_states = self.conv2(hidden_states)
hidden_states = self.dropout2(hidden_states)
return hidden_states
class MobileViTV2TransformerLayer(nn.Module):
def __init__(
self,
config: MobileViTV2Config,
embed_dim: int,
ffn_latent_dim: int,
dropout: float = 0.0,
) -> None:
super().__init__()
self.layernorm_before = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps)
self.attention = MobileViTV2LinearSelfAttention(config, embed_dim)
self.dropout1 = nn.Dropout(p=dropout)
self.layernorm_after = nn.GroupNorm(num_groups=1, num_channels=embed_dim, eps=config.layer_norm_eps)
self.ffn = MobileViTV2FFN(config, embed_dim, ffn_latent_dim, config.ffn_dropout)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
layernorm_1_out = self.layernorm_before(hidden_states)
attention_output = self.attention(layernorm_1_out)
hidden_states = attention_output + hidden_states
layer_output = self.layernorm_after(hidden_states)
layer_output = self.ffn(layer_output)
layer_output = layer_output + hidden_states
return layer_output
class MobileViTV2Transformer(nn.Module):
def __init__(self, config: MobileViTV2Config, n_layers: int, d_model: int) -> None:
super().__init__()
ffn_multiplier = config.ffn_multiplier
ffn_dims = [ffn_multiplier * d_model] * n_layers
# ensure that dims are multiple of 16
ffn_dims = [int((d // 16) * 16) for d in ffn_dims]
self.layer = nn.ModuleList()
for block_idx in range(n_layers):
transformer_layer = MobileViTV2TransformerLayer(
config, embed_dim=d_model, ffn_latent_dim=ffn_dims[block_idx]
)
self.layer.append(transformer_layer)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
for layer_module in self.layer:
hidden_states = layer_module(hidden_states)
return hidden_states
class MobileViTV2Layer(nn.Module):
"""
MobileViTV2 layer: https://arxiv.org/abs/2206.02680
"""
def __init__(
self,
config: MobileViTV2Config,
in_channels: int,
out_channels: int,
attn_unit_dim: int,
n_attn_blocks: int = 2,
dilation: int = 1,
stride: int = 2,
) -> None:
super().__init__()
self.patch_width = config.patch_size
self.patch_height = config.patch_size
cnn_out_dim = attn_unit_dim
if stride == 2:
self.downsampling_layer = MobileViTV2InvertedResidual(
config,
in_channels=in_channels,
out_channels=out_channels,
stride=stride if dilation == 1 else 1,
dilation=dilation // 2 if dilation > 1 else 1,
)
in_channels = out_channels
else:
self.downsampling_layer = None
# Local representations
self.conv_kxk = MobileViTV2ConvLayer(
config,
in_channels=in_channels,
out_channels=in_channels,
kernel_size=config.conv_kernel_size,
groups=in_channels,
)
self.conv_1x1 = MobileViTV2ConvLayer(
config,
in_channels=in_channels,
out_channels=cnn_out_dim,
kernel_size=1,
use_normalization=False,
use_activation=False,
)
# Global representations
self.transformer = MobileViTV2Transformer(config, d_model=attn_unit_dim, n_layers=n_attn_blocks)
# self.layernorm = MobileViTV2LayerNorm2D(attn_unit_dim, eps=config.layer_norm_eps)
self.layernorm = nn.GroupNorm(num_groups=1, num_channels=attn_unit_dim, eps=config.layer_norm_eps)
# Fusion
self.conv_projection = MobileViTV2ConvLayer(
config,
in_channels=cnn_out_dim,
out_channels=in_channels,
kernel_size=1,
use_normalization=True,
use_activation=False,
)
def unfolding(self, feature_map: torch.Tensor) -> Tuple[torch.Tensor, Tuple[int, int]]:
batch_size, in_channels, img_height, img_width = feature_map.shape
patches = nn.functional.unfold(
feature_map,
kernel_size=(self.patch_height, self.patch_width),
stride=(self.patch_height, self.patch_width),
)
patches = patches.reshape(batch_size, in_channels, self.patch_height * self.patch_width, -1)
return patches, (img_height, img_width)
def folding(self, patches: torch.Tensor, output_size: Tuple[int, int]) -> torch.Tensor:
batch_size, in_dim, patch_size, n_patches = patches.shape
patches = patches.reshape(batch_size, in_dim * patch_size, n_patches)
feature_map = nn.functional.fold(
patches,
output_size=output_size,
kernel_size=(self.patch_height, self.patch_width),
stride=(self.patch_height, self.patch_width),
)
return feature_map
def forward(self, features: torch.Tensor) -> torch.Tensor:
# reduce spatial dimensions if needed
if self.downsampling_layer:
features = self.downsampling_layer(features)
# local representation
features = self.conv_kxk(features)
features = self.conv_1x1(features)
# convert feature map to patches
patches, output_size = self.unfolding(features)
# learn global representations
patches = self.transformer(patches)
patches = self.layernorm(patches)
# convert patches back to feature maps
# [batch_size, patch_height, patch_width, input_dim] --> [batch_size, input_dim, patch_height, patch_width]
features = self.folding(patches, output_size)
features = self.conv_projection(features)
return features
class MobileViTV2Encoder(nn.Module):
def __init__(self, config: MobileViTV2Config) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList()
self.gradient_checkpointing = False
# segmentation architectures like DeepLab and PSPNet modify the strides
# of the classification backbones
dilate_layer_4 = dilate_layer_5 = False
if config.output_stride == 8:
dilate_layer_4 = True
dilate_layer_5 = True
elif config.output_stride == 16:
dilate_layer_5 = True
dilation = 1
layer_0_dim = make_divisible(
clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16
)
layer_1_dim = make_divisible(64 * config.width_multiplier, divisor=16)
layer_2_dim = make_divisible(128 * config.width_multiplier, divisor=8)
layer_3_dim = make_divisible(256 * config.width_multiplier, divisor=8)
layer_4_dim = make_divisible(384 * config.width_multiplier, divisor=8)
layer_5_dim = make_divisible(512 * config.width_multiplier, divisor=8)
layer_1 = MobileViTV2MobileNetLayer(
config,
in_channels=layer_0_dim,
out_channels=layer_1_dim,
stride=1,
num_stages=1,
)
self.layer.append(layer_1)
layer_2 = MobileViTV2MobileNetLayer(
config,
in_channels=layer_1_dim,
out_channels=layer_2_dim,
stride=2,
num_stages=2,
)
self.layer.append(layer_2)
layer_3 = MobileViTV2Layer(
config,
in_channels=layer_2_dim,
out_channels=layer_3_dim,
attn_unit_dim=make_divisible(config.base_attn_unit_dims[0] * config.width_multiplier, divisor=8),
n_attn_blocks=config.n_attn_blocks[0],
)
self.layer.append(layer_3)
if dilate_layer_4:
dilation *= 2
layer_4 = MobileViTV2Layer(
config,
in_channels=layer_3_dim,
out_channels=layer_4_dim,
attn_unit_dim=make_divisible(config.base_attn_unit_dims[1] * config.width_multiplier, divisor=8),
n_attn_blocks=config.n_attn_blocks[1],
dilation=dilation,
)
self.layer.append(layer_4)
if dilate_layer_5:
dilation *= 2
layer_5 = MobileViTV2Layer(
config,
in_channels=layer_4_dim,
out_channels=layer_5_dim,
attn_unit_dim=make_divisible(config.base_attn_unit_dims[2] * config.width_multiplier, divisor=8),
n_attn_blocks=config.n_attn_blocks[2],
dilation=dilation,
)
self.layer.append(layer_5)
def forward(
self,
hidden_states: torch.Tensor,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutputWithNoAttention]:
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
)
else:
hidden_states = layer_module(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTPreTrainedModel with MobileViT->MobileViTV2,mobilevit->mobilevitv2
class MobileViTV2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MobileViTV2Config
base_model_prefix = "mobilevitv2"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
MOBILEVITV2_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`MobileViTV2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MOBILEVITV2_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`MobileViTImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MobileViTV2 model outputting raw hidden-states without any specific head on top.",
MOBILEVITV2_START_DOCSTRING,
)
class MobileViTV2Model(MobileViTV2PreTrainedModel):
def __init__(self, config: MobileViTV2Config, expand_output: bool = True):
super().__init__(config)
self.config = config
self.expand_output = expand_output
layer_0_dim = make_divisible(
clip(value=32 * config.width_multiplier, min_val=16, max_val=64), divisor=8, min_value=16
)
self.conv_stem = MobileViTV2ConvLayer(
config,
in_channels=config.num_channels,
out_channels=layer_0_dim,
kernel_size=3,
stride=2,
use_normalization=True,
use_activation=True,
)
self.encoder = MobileViTV2Encoder(config)
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel
"""
for layer_index, heads in heads_to_prune.items():
mobilevitv2_layer = self.encoder.layer[layer_index]
if isinstance(mobilevitv2_layer, MobileViTV2Layer):
for transformer_layer in mobilevitv2_layer.transformer.layer:
transformer_layer.attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.conv_stem(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.expand_output:
last_hidden_state = encoder_outputs[0]
# global average pooling: (batch_size, channels, height, width) -> (batch_size, channels)
pooled_output = torch.mean(last_hidden_state, dim=[-2, -1], keepdim=False)
else:
last_hidden_state = encoder_outputs[0]
pooled_output = None
if not return_dict:
output = (last_hidden_state, pooled_output) if pooled_output is not None else (last_hidden_state,)
return output + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
MobileViTV2 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""",
MOBILEVITV2_START_DOCSTRING,
)
class MobileViTV2ForImageClassification(MobileViTV2PreTrainedModel):
def __init__(self, config: MobileViTV2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mobilevitv2 = MobileViTV2Model(config)
out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension
# Classifier head
self.classifier = (
nn.Linear(in_features=out_channels, out_features=config.num_labels)
if config.num_labels > 0
else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mobilevitv2(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTASPPPooling with MobileViT->MobileViTV2
class MobileViTV2ASPPPooling(nn.Module):
def __init__(self, config: MobileViTV2Config, in_channels: int, out_channels: int) -> None:
super().__init__()
self.global_pool = nn.AdaptiveAvgPool2d(output_size=1)
self.conv_1x1 = MobileViTV2ConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
stride=1,
use_normalization=True,
use_activation="relu",
)
def forward(self, features: torch.Tensor) -> torch.Tensor:
spatial_size = features.shape[-2:]
features = self.global_pool(features)
features = self.conv_1x1(features)
features = nn.functional.interpolate(features, size=spatial_size, mode="bilinear", align_corners=False)
return features
class MobileViTV2ASPP(nn.Module):
"""
ASPP module defined in DeepLab papers: https://arxiv.org/abs/1606.00915, https://arxiv.org/abs/1706.05587
"""
def __init__(self, config: MobileViTV2Config) -> None:
super().__init__()
encoder_out_channels = make_divisible(512 * config.width_multiplier, divisor=8) # layer 5 output dimension
in_channels = encoder_out_channels
out_channels = config.aspp_out_channels
if len(config.atrous_rates) != 3:
raise ValueError("Expected 3 values for atrous_rates")
self.convs = nn.ModuleList()
in_projection = MobileViTV2ConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=1,
use_activation="relu",
)
self.convs.append(in_projection)
self.convs.extend(
[
MobileViTV2ConvLayer(
config,
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
dilation=rate,
use_activation="relu",
)
for rate in config.atrous_rates
]
)
pool_layer = MobileViTV2ASPPPooling(config, in_channels, out_channels)
self.convs.append(pool_layer)
self.project = MobileViTV2ConvLayer(
config, in_channels=5 * out_channels, out_channels=out_channels, kernel_size=1, use_activation="relu"
)
self.dropout = nn.Dropout(p=config.aspp_dropout_prob)
def forward(self, features: torch.Tensor) -> torch.Tensor:
pyramid = []
for conv in self.convs:
pyramid.append(conv(features))
pyramid = torch.cat(pyramid, dim=1)
pooled_features = self.project(pyramid)
pooled_features = self.dropout(pooled_features)
return pooled_features
# Copied from transformers.models.mobilevit.modeling_mobilevit.MobileViTDeepLabV3 with MobileViT->MobileViTV2
class MobileViTV2DeepLabV3(nn.Module):
"""
DeepLabv3 architecture: https://arxiv.org/abs/1706.05587
"""
def __init__(self, config: MobileViTV2Config) -> None:
super().__init__()
self.aspp = MobileViTV2ASPP(config)
self.dropout = nn.Dropout2d(config.classifier_dropout_prob)
self.classifier = MobileViTV2ConvLayer(
config,
in_channels=config.aspp_out_channels,
out_channels=config.num_labels,
kernel_size=1,
use_normalization=False,
use_activation=False,
bias=True,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
features = self.aspp(hidden_states[-1])
features = self.dropout(features)
features = self.classifier(features)
return features
@add_start_docstrings(
"""
MobileViTV2 model with a semantic segmentation head on top, e.g. for Pascal VOC.
""",
MOBILEVITV2_START_DOCSTRING,
)
class MobileViTV2ForSemanticSegmentation(MobileViTV2PreTrainedModel):
def __init__(self, config: MobileViTV2Config) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.mobilevitv2 = MobileViTV2Model(config, expand_output=False)
self.segmentation_head = MobileViTV2DeepLabV3(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MOBILEVITV2_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> import requests
>>> import torch
>>> from PIL import Image
>>> from transformers import AutoImageProcessor, MobileViTV2ForSemanticSegmentation
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256")
>>> model = MobileViTV2ForSemanticSegmentation.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # logits are of shape (batch_size, num_labels, height, width)
>>> logits = outputs.logits
```"""
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mobilevitv2(
pixel_values,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
encoder_hidden_states = outputs.hidden_states if return_dict else outputs[1]
logits = self.segmentation_head(encoder_hidden_states)
loss = None
if labels is not None:
if self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
else:
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
loss = loss_fct(upsampled_logits, labels)
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=None,
)
| transformers/src/transformers/models/mobilevitv2/modeling_mobilevitv2.py/0 | {
"file_path": "transformers/src/transformers/models/mobilevitv2/modeling_mobilevitv2.py",
"repo_id": "transformers",
"token_count": 17368
} | 341 |
# coding=utf-8
# Copyright 2021 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax mT5 model."""
import jax.numpy as jnp
from ...utils import logging
from ..t5.modeling_flax_t5 import FlaxT5EncoderModel, FlaxT5ForConditionalGeneration, FlaxT5Model
from .configuration_mt5 import MT5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "T5Config"
# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right
def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray:
"""
Shift input ids one token to the right.
"""
shifted_input_ids = jnp.zeros_like(input_ids)
shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1])
shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id)
shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids)
return shifted_input_ids
class FlaxMT5Model(FlaxT5Model):
r"""
This class overrides [`FlaxT5Model`]. Please check the superclass for the appropriate documentation alongside usage
examples.
Examples:
```python
>>> from transformers import FlaxMT5Model, AutoTokenizer
>>> model = FlaxMT5Model.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")
>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=decoder_input_ids)
>>> hidden_states = outputs.last_hidden_state
```"""
model_type = "mt5"
config_class = MT5Config
class FlaxMT5EncoderModel(FlaxT5EncoderModel):
r"""
This class overrides [`FlaxT5EncoderModel`]. Please check the superclass for the appropriate documentation
alongside usage examples.
Examples:
```python
>>> from transformers import FlaxT5EncoderModel, AutoTokenizer
>>> model = FlaxT5EncoderModel.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")
>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids
>>> outputs = model(input_ids=inputs["input_ids"])
>>> hidden_states = outputs.last_hidden_state
```"""
model_type = "mt5"
config_class = MT5Config
class FlaxMT5ForConditionalGeneration(FlaxT5ForConditionalGeneration):
r"""
This class overrides [`FlaxT5ForConditionalGeneration`]. Please check the superclass for the appropriate
documentation alongside usage examples.
Examples:
```python
>>> from transformers import FlaxMT5ForConditionalGeneration, AutoTokenizer
>>> model = FlaxMT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="np")
>>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids
>>> outputs = model(**inputs, decoder_input_ids=decoder_input_ids)
>>> logits = outputs.logits
```"""
model_type = "mt5"
config_class = MT5Config
| transformers/src/transformers/models/mt5/modeling_flax_mt5.py/0 | {
"file_path": "transformers/src/transformers/models/mt5/modeling_flax_mt5.py",
"repo_id": "transformers",
"token_count": 1465
} | 342 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_nezha"] = [
"NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST",
"NezhaForNextSentencePrediction",
"NezhaForMaskedLM",
"NezhaForPreTraining",
"NezhaForMultipleChoice",
"NezhaForQuestionAnswering",
"NezhaForSequenceClassification",
"NezhaForTokenClassification",
"NezhaModel",
"NezhaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/nezha/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/nezha/__init__.py",
"repo_id": "transformers",
"token_count": 899
} | 343 |
# coding=utf-8
# Copyright 2022 UW-Madison and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Nystromformer model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
NYSTROMFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"uw-madison/nystromformer-512": "https://huggingface.co/uw-madison/nystromformer-512/resolve/main/config.json",
# See all Nystromformer models at https://huggingface.co/models?filter=nystromformer
}
class NystromformerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`NystromformerModel`]. It is used to instantiate
an Nystromformer model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the Nystromformer
[uw-madison/nystromformer-512](https://huggingface.co/uw-madison/nystromformer-512) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30000):
Vocabulary size of the Nystromformer model. Defines the number of different tokens that can be represented
by the `inputs_ids` passed when calling [`NystromformerModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`NystromformerModel`].
segment_means_seq_len (`int`, *optional*, defaults to 64):
Sequence length used in segment-means.
num_landmarks (`int`, *optional*, defaults to 64):
The number of landmark (or Nystrom) points to use in Nystrom approximation of the softmax self-attention
matrix.
conv_kernel_size (`int`, *optional*, defaults to 65):
The kernel size of depthwise convolution used in Nystrom approximation.
inv_coeff_init_option (`bool`, *optional*, defaults to `False`):
Whether or not to use exact coefficient computation for the initial values for the iterative method of
calculating the Moore-Penrose inverse of a matrix.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
Example:
```python
>>> from transformers import NystromformerModel, NystromformerConfig
>>> # Initializing a Nystromformer uw-madison/nystromformer-512 style configuration
>>> configuration = NystromformerConfig()
>>> # Initializing a model from the uw-madison/nystromformer-512 style configuration
>>> model = NystromformerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "nystromformer"
def __init__(
self,
vocab_size=30000,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu_new",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=510,
type_vocab_size=2,
segment_means_seq_len=64,
num_landmarks=64,
conv_kernel_size=65,
inv_coeff_init_option=False,
initializer_range=0.02,
layer_norm_eps=1e-5,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.type_vocab_size = type_vocab_size
self.segment_means_seq_len = segment_means_seq_len
self.num_landmarks = num_landmarks
self.conv_kernel_size = conv_kernel_size
self.inv_coeff_init_option = inv_coeff_init_option
self.layer_norm_eps = layer_norm_eps
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
| transformers/src/transformers/models/nystromformer/configuration_nystromformer.py/0 | {
"file_path": "transformers/src/transformers/models/nystromformer/configuration_nystromformer.py",
"repo_id": "transformers",
"token_count": 2444
} | 344 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {"configuration_opt": ["OPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OPTConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_opt"] = [
"OPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"OPTForCausalLM",
"OPTModel",
"OPTPreTrainedModel",
"OPTForSequenceClassification",
"OPTForQuestionAnswering",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_opt"] = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_opt"] = [
"FlaxOPTForCausalLM",
"FlaxOPTModel",
"FlaxOPTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_opt import (
OPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OPTForCausalLM,
OPTForQuestionAnswering,
OPTForSequenceClassification,
OPTModel,
OPTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/opt/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/opt/__init__.py",
"repo_id": "transformers",
"token_count": 1188
} | 345 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for OwlViT"""
import warnings
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
center_to_corners_format,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_torch_available, logging
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
def _upcast(t):
# Protects from numerical overflows in multiplications by upcasting to the equivalent higher type
if t.is_floating_point():
return t if t.dtype in (torch.float32, torch.float64) else t.float()
else:
return t if t.dtype in (torch.int32, torch.int64) else t.int()
def box_area(boxes):
"""
Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates.
Args:
boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`):
Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1
< x2` and `0 <= y1 < y2`.
Returns:
`torch.FloatTensor`: a tensor containing the area for each box.
"""
boxes = _upcast(boxes)
return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
def box_iou(boxes1, boxes2):
area1 = box_area(boxes1)
area2 = box_area(boxes2)
left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2]
inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / union
return iou, union
class OwlViTImageProcessor(BaseImageProcessor):
r"""
Constructs an OWL-ViT image processor.
This image processor inherits from [`ImageProcessingMixin`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the shorter edge of the input to a certain `size`.
size (`Dict[str, int]`, *optional*, defaults to {"height": 768, "width": 768}):
The size to use for resizing the image. Only has an effect if `do_resize` is set to `True`. If `size` is a
sequence like (h, w), output size will be matched to this. If `size` is an int, then image will be resized
to (size, size).
resample (`int`, *optional*, defaults to `Resampling.BICUBIC`):
An optional resampling filter. This can be one of `PIL.Image.Resampling.NEAREST`,
`PIL.Image.Resampling.BOX`, `PIL.Image.Resampling.BILINEAR`, `PIL.Image.Resampling.HAMMING`,
`PIL.Image.Resampling.BICUBIC` or `PIL.Image.Resampling.LANCZOS`. Only has an effect if `do_resize` is set
to `True`.
do_center_crop (`bool`, *optional*, defaults to `False`):
Whether to crop the input at the center. If the input size is smaller than `crop_size` along any edge, the
image is padded with 0's and then center cropped.
crop_size (`int`, *optional*, defaults to {"height": 768, "width": 768}):
The size to use for center cropping the image. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the input by a certain factor.
rescale_factor (`float`, *optional*, defaults to `1/255`):
The factor to use for rescaling the image. Only has an effect if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether or not to normalize the input with `image_mean` and `image_std`. Desired output size when applying
center-cropping. Only has an effect if `do_center_crop` is set to `True`.
image_mean (`List[int]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
The sequence of means for each channel, to be used when normalizing images.
image_std (`List[int]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
The sequence of standard deviations for each channel, to be used when normalizing images.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_resize=True,
size=None,
resample=PILImageResampling.BICUBIC,
do_center_crop=False,
crop_size=None,
do_rescale=True,
rescale_factor=1 / 255,
do_normalize=True,
image_mean=None,
image_std=None,
**kwargs,
):
size = size if size is not None else {"height": 768, "width": 768}
size = get_size_dict(size, default_to_square=True)
crop_size = crop_size if crop_size is not None else {"height": 768, "width": 768}
crop_size = get_size_dict(crop_size, default_to_square=True)
# Early versions of the OWL-ViT config on the hub had "rescale" as a flag. This clashes with the
# vision image processor method `rescale` as it would be set as an attribute during the super().__init__
# call. This is for backwards compatibility.
if "rescale" in kwargs:
rescale_val = kwargs.pop("rescale")
kwargs["do_rescale"] = rescale_val
super().__init__(**kwargs)
self.do_resize = do_resize
self.size = size
self.resample = resample
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
def resize(
self,
image: np.ndarray,
size: Dict[str, int],
resample: PILImageResampling.BICUBIC,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Resize an image to a certain size.
Args:
image (`np.ndarray`):
Image to resize.
size (`Dict[str, int]`):
The size to resize the image to. Must contain height and width keys.
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
The resampling filter to use when resizing the input.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
size = get_size_dict(size, default_to_square=True)
if "height" not in size or "width" not in size:
raise ValueError("size dictionary must contain height and width keys")
return resize(
image,
(size["height"], size["width"]),
resample=resample,
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
def center_crop(
self,
image: np.ndarray,
crop_size: Dict[str, int],
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> np.ndarray:
"""
Center crop an image to a certain size.
Args:
image (`np.ndarray`):
Image to center crop.
crop_size (`Dict[str, int]`):
The size to center crop the image to. Must contain height and width keys.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format of the input image. If not provided, it will be inferred.
"""
crop_size = get_size_dict(crop_size, default_to_square=True)
if "height" not in crop_size or "width" not in crop_size:
raise ValueError("crop_size dictionary must contain height and width keys")
return center_crop(
image,
(crop_size["height"], crop_size["width"]),
data_format=data_format,
input_data_format=input_data_format,
**kwargs,
)
# Copied from transformers.models.detr.image_processing_detr.DetrImageProcessor.rescale
def rescale(
self,
image: np.ndarray,
rescale_factor: float,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
) -> np.ndarray:
"""
Rescale the image by the given factor. image = image * rescale_factor.
Args:
image (`np.ndarray`):
Image to rescale.
rescale_factor (`float`):
The value to use for rescaling.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, is inferred from the input image. Can be
one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
"""
return rescale(image, rescale_factor, data_format=data_format, input_data_format=input_data_format)
def preprocess(
self,
images: ImageInput,
do_resize: Optional[bool] = None,
size: Optional[Dict[str, int]] = None,
resample: PILImageResampling = None,
do_center_crop: Optional[bool] = None,
crop_size: Optional[Dict[str, int]] = None,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_normalize: Optional[bool] = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
return_tensors: Optional[Union[TensorType, str]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
) -> BatchFeature:
"""
Prepares an image or batch of images for the model.
Args:
images (`ImageInput`):
The image or batch of images to be prepared. Expects a single or batch of images with pixel values
ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether or not to resize the input. If `True`, will resize the input to the size specified by `size`.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
The size to resize the input to. Only has an effect if `do_resize` is set to `True`.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
The resampling filter to use when resizing the input. Only has an effect if `do_resize` is set to
`True`.
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
Whether or not to center crop the input. If `True`, will center crop the input to the size specified by
`crop_size`.
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
The size to center crop the input to. Only has an effect if `do_center_crop` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether or not to rescale the input. If `True`, will rescale the input by dividing it by
`rescale_factor`.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
The factor to rescale the input by. Only has an effect if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether or not to normalize the input. If `True`, will normalize the input by subtracting `image_mean`
and dividing by `image_std`.
image_mean (`Union[float, List[float]]`, *optional*, defaults to `self.image_mean`):
The mean to subtract from the input when normalizing. Only has an effect if `do_normalize` is set to
`True`.
image_std (`Union[float, List[float]]`, *optional*, defaults to `self.image_std`):
The standard deviation to divide the input by when normalizing. Only has an effect if `do_normalize` is
set to `True`.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: defaults to the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
crop_size = crop_size if crop_size is not None else self.crop_size
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
if do_resize is not None and size is None:
raise ValueError("Size and max_size must be specified if do_resize is True.")
if do_center_crop is not None and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True.")
if do_rescale is not None and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize is not None and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
# All transformations expect numpy arrays
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_resize:
images = [
self.resize(image, size=size, resample=resample, input_data_format=input_data_format)
for image in images
]
if do_center_crop:
images = [
self.center_crop(image, crop_size=crop_size, input_data_format=input_data_format) for image in images
]
if do_rescale:
images = [
self.rescale(image, rescale_factor=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_normalize:
images = [
self.normalize(image, mean=image_mean, std=image_std, input_data_format=input_data_format)
for image in images
]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
encoded_inputs = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)
return encoded_inputs
def post_process(self, outputs, target_sizes):
"""
Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format.
Args:
outputs ([`OwlViTObjectDetectionOutput`]):
Raw outputs of the model.
target_sizes (`torch.Tensor` of shape `(batch_size, 2)`):
Tensor containing the size (h, w) of each image of the batch. For evaluation, this must be the original
image size (before any data augmentation). For visualization, this should be the image size after data
augment, but before padding.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
# TODO: (amy) add support for other frameworks
warnings.warn(
"`post_process` is deprecated and will be removed in v5 of Transformers, please use"
" `post_process_object_detection` instead, with `threshold=0.` for equivalent results.",
FutureWarning,
)
logits, boxes = outputs.logits, outputs.pred_boxes
if len(logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
probs = torch.max(logits, dim=-1)
scores = torch.sigmoid(probs.values)
labels = probs.indices
# Convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(boxes)
# Convert from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = [{"scores": s, "labels": l, "boxes": b} for s, l, b in zip(scores, labels, boxes)]
return results
def post_process_object_detection(
self, outputs, threshold: float = 0.1, target_sizes: Union[TensorType, List[Tuple]] = None
):
"""
Converts the raw output of [`OwlViTForObjectDetection`] into final bounding boxes in (top_left_x, top_left_y,
bottom_right_x, bottom_right_y) format.
Args:
outputs ([`OwlViTObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*):
Score threshold to keep object detection predictions.
target_sizes (`torch.Tensor` or `List[Tuple[int, int]]`, *optional*):
Tensor of shape `(batch_size, 2)` or list of tuples (`Tuple[int, int]`) containing the target size
`(height, width)` of each image in the batch. If unset, predictions will not be resized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model.
"""
# TODO: (amy) add support for other frameworks
logits, boxes = outputs.logits, outputs.pred_boxes
if target_sizes is not None:
if len(logits) != len(target_sizes):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits"
)
probs = torch.max(logits, dim=-1)
scores = torch.sigmoid(probs.values)
labels = probs.indices
# Convert to [x0, y0, x1, y1] format
boxes = center_to_corners_format(boxes)
# Convert from relative [0, 1] to absolute [0, height] coordinates
if target_sizes is not None:
if isinstance(target_sizes, List):
img_h = torch.Tensor([i[0] for i in target_sizes])
img_w = torch.Tensor([i[1] for i in target_sizes])
else:
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(boxes.device)
boxes = boxes * scale_fct[:, None, :]
results = []
for s, l, b in zip(scores, labels, boxes):
score = s[s > threshold]
label = l[s > threshold]
box = b[s > threshold]
results.append({"scores": score, "labels": label, "boxes": box})
return results
# TODO: (Amy) Make compatible with other frameworks
def post_process_image_guided_detection(self, outputs, threshold=0.0, nms_threshold=0.3, target_sizes=None):
"""
Converts the output of [`OwlViTForObjectDetection.image_guided_detection`] into the format expected by the COCO
api.
Args:
outputs ([`OwlViTImageGuidedObjectDetectionOutput`]):
Raw outputs of the model.
threshold (`float`, *optional*, defaults to 0.0):
Minimum confidence threshold to use to filter out predicted boxes.
nms_threshold (`float`, *optional*, defaults to 0.3):
IoU threshold for non-maximum suppression of overlapping boxes.
target_sizes (`torch.Tensor`, *optional*):
Tensor of shape (batch_size, 2) where each entry is the (height, width) of the corresponding image in
the batch. If set, predicted normalized bounding boxes are rescaled to the target sizes. If left to
None, predictions will not be unnormalized.
Returns:
`List[Dict]`: A list of dictionaries, each dictionary containing the scores, labels and boxes for an image
in the batch as predicted by the model. All labels are set to None as
`OwlViTForObjectDetection.image_guided_detection` perform one-shot object detection.
"""
logits, target_boxes = outputs.logits, outputs.target_pred_boxes
if len(logits) != len(target_sizes):
raise ValueError("Make sure that you pass in as many target sizes as the batch dimension of the logits")
if target_sizes.shape[1] != 2:
raise ValueError("Each element of target_sizes must contain the size (h, w) of each image of the batch")
probs = torch.max(logits, dim=-1)
scores = torch.sigmoid(probs.values)
# Convert to [x0, y0, x1, y1] format
target_boxes = center_to_corners_format(target_boxes)
# Apply non-maximum suppression (NMS)
if nms_threshold < 1.0:
for idx in range(target_boxes.shape[0]):
for i in torch.argsort(-scores[idx]):
if not scores[idx][i]:
continue
ious = box_iou(target_boxes[idx][i, :].unsqueeze(0), target_boxes[idx])[0][0]
ious[i] = -1.0 # Mask self-IoU.
scores[idx][ious > nms_threshold] = 0.0
# Convert from relative [0, 1] to absolute [0, height] coordinates
img_h, img_w = target_sizes.unbind(1)
scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1).to(target_boxes.device)
target_boxes = target_boxes * scale_fct[:, None, :]
# Compute box display alphas based on prediction scores
results = []
alphas = torch.zeros_like(scores)
for idx in range(target_boxes.shape[0]):
# Select scores for boxes matching the current query:
query_scores = scores[idx]
if not query_scores.nonzero().numel():
continue
# Apply threshold on scores before scaling
query_scores[query_scores < threshold] = 0.0
# Scale box alpha such that the best box for each query has alpha 1.0 and the worst box has alpha 0.1.
# All other boxes will either belong to a different query, or will not be shown.
max_score = torch.max(query_scores) + 1e-6
query_alphas = (query_scores - (max_score * 0.1)) / (max_score * 0.9)
query_alphas = torch.clip(query_alphas, 0.0, 1.0)
alphas[idx] = query_alphas
mask = alphas[idx] > 0
box_scores = alphas[idx][mask]
boxes = target_boxes[idx][mask]
results.append({"scores": box_scores, "labels": None, "boxes": boxes})
return results
| transformers/src/transformers/models/owlvit/image_processing_owlvit.py/0 | {
"file_path": "transformers/src/transformers/models/owlvit/image_processing_owlvit.py",
"repo_id": "transformers",
"token_count": 11997
} | 346 |
# coding=utf-8
# Copyright 2020 Google and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for model PEGASUS."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
PegasusTokenizer = None
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"},
"tokenizer_file": {
"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json"
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/pegasus-xsum": 512,
}
class PegasusTokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" PEGASUS tokenizer (backed by HuggingFace's *tokenizers* library). Based on
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
mask_token (`str`, *optional*, defaults to `"<mask_2>"`):
The token used for masking single token values. This is the token used when training this model with masked
language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining.
It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
Summarization](https://arxiv.org/pdf/1912.08777.pdf).
mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`):
The token used for masking whole target sentences. This is the token used when training this model with gap
sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during
pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for
Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf).
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and
<unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS
tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66)
that uses the tokens 2 - 104 only for pretraining
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
slow_tokenizer_class = PegasusTokenizer
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
pad_token="<pad>",
eos_token="</s>",
unk_token="<unk>",
mask_token="<mask_2>",
mask_token_sent="<mask_1>",
additional_special_tokens=None,
offset=103, # entries 2 - 104 are only used for pretraining
**kwargs,
):
self.offset = offset
if additional_special_tokens is not None:
if not isinstance(additional_special_tokens, list):
raise TypeError(
f"additional_special_tokens should be of type {type(list)}, but is"
f" {type(additional_special_tokens)}"
)
additional_special_tokens_extended = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1)
]
if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended):
raise ValueError(
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}."
)
additional_special_tokens = additional_special_tokens_extended
else:
additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)]
# pegasus was design to support changing the index of the first tokens. If one of the padding/eos/unk/mask token
# is different from default, we must rebuild the vocab
from_slow = kwargs.pop("from_slow", None)
from_slow = from_slow or str(pad_token) != "<pad>" or str(eos_token) != "</s>" or str(unk_token) != "<unk>"
kwargs.pop("added_tokens_decoder", {})
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
pad_token=pad_token,
eos_token=eos_token,
unk_token=unk_token,
mask_token=mask_token,
mask_token_sent=mask_token_sent,
offset=offset,
additional_special_tokens=additional_special_tokens,
from_slow=from_slow,
**kwargs,
)
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def _special_token_mask(self, seq):
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens) + 3)):
raise ValueError(
"There should be 3 special tokens: mask_token, pad_token, and eos_token +"
f" {len(self.additional_special_tokens)} additional_special_tokens, but got {all_special_ids}"
)
return [1 if x in all_special_ids else 0 for x in seq]
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""Get list where entries are [1] if a token is [eos] or [pad] else 0."""
if already_has_special_tokens:
return self._special_token_mask(token_ids_0)
elif token_ids_1 is None:
return self._special_token_mask(token_ids_0) + [1]
else:
return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""
Build model inputs from a sequence by adding eos to the end. no bos token is added to the front.
- single sequence: `X </s>`
- pair of sequences: `A B </s>` (not intended use)
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_0 + token_ids_1 + [self.eos_token_id]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
| transformers/src/transformers/models/pegasus/tokenization_pegasus_fast.py/0 | {
"file_path": "transformers/src/transformers/models/pegasus/tokenization_pegasus_fast.py",
"repo_id": "transformers",
"token_count": 4338
} | 347 |
# coding=utf-8
# Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Phi model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
PHI_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/phi-1": "https://huggingface.co/microsoft/phi-1/resolve/main/config.json",
"microsoft/phi-1_5": "https://huggingface.co/microsoft/phi-1_5/resolve/main/config.json",
"microsoft/phi-2": "https://huggingface.co/microsoft/phi-2/resolve/main/config.json",
}
class PhiConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`PhiModel`]. It is used to instantiate an Phi
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Phi
[microsoft/phi-1](https://huggingface.co/microsoft/phi-1).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 51200):
Vocabulary size of the Phi model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`PhiModel`].
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
resid_pdrop (`float`, *optional*, defaults to 0.0):
Dropout probability for mlp outputs.
embd_pdrop (`int`, *optional*, defaults to 0.0):
The dropout ratio for the embeddings.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio after computing the attention scores.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_new"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Phi-1 and Phi-1.5 supports up to 2048
tokens.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
these scaling strategies behave:
https://www.reddit.com/r/LocalPersimmon/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
is an experimental feature, subject to breaking API changes in future versions.
partial_rotary_factor (`float`, *optional*, defaults to 0.5):
Percentage of the query and keys which will have rotary embedding.
qk_layernorm (`bool`, *optional*, defaults to `False`):
Whether or not to normalize the Queries and Keys after projecting the hidden states.
bos_token_id (`int`, *optional*, defaults to 1):
Denotes beginning of sequences token id.
eos_token_id (`int`, *optional*, defaults to 2):
Denotes end of sequences token id.
Example:
```python
>>> from transformers import PhiModel, PhiConfig
>>> # Initializing a Phi-1 style configuration
>>> configuration = PhiConfig.from_pretrained("microsoft/phi-1")
>>> # Initializing a model from the configuration
>>> model = PhiModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "phi"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=51200,
hidden_size=2048,
intermediate_size=8192,
num_hidden_layers=24,
num_attention_heads=32,
num_key_value_heads=None,
resid_pdrop=0.0,
embd_pdrop=0.0,
attention_dropout=0.0,
hidden_act="gelu_new",
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
partial_rotary_factor=0.5,
qk_layernorm=False,
bos_token_id=1,
eos_token_id=2,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.resid_pdrop = resid_pdrop
self.embd_pdrop = embd_pdrop
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.partial_rotary_factor = partial_rotary_factor
self.qk_layernorm = qk_layernorm
self._rope_scaling_validation()
super().__init__(
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
# Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
def _rope_scaling_validation(self):
"""
Validate the `rope_scaling` configuration.
"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
f"got {self.rope_scaling}"
)
rope_scaling_type = self.rope_scaling.get("type", None)
rope_scaling_factor = self.rope_scaling.get("factor", None)
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
)
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
| transformers/src/transformers/models/phi/configuration_phi.py/0 | {
"file_path": "transformers/src/transformers/models/phi/configuration_phi.py",
"repo_id": "transformers",
"token_count": 3668
} | 348 |
# coding=utf-8
# Copyright 2020, The RAG Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" RAG model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
RAG_CONFIG_DOC = r"""
[`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.
Args:
title_sep (`str`, *optional*, defaults to `" / "`):
Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
doc_sep (`str`, *optional*, defaults to `" // "`):
Separator inserted between the text of the retrieved document and the original input when calling
[`RagRetriever`].
n_docs (`int`, *optional*, defaults to 5):
Number of documents to retrieve.
max_combined_length (`int`, *optional*, defaults to 300):
Max length of contextualized input returned by [`~RagRetriever.__call__`].
retrieval_vector_size (`int`, *optional*, defaults to 768):
Dimensionality of the document embeddings indexed by [`RagRetriever`].
retrieval_batch_size (`int`, *optional*, defaults to 8):
Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
[`RagRetriever`].
dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
using `datasets.list_datasets()`).
dataset_split (`str`, *optional*, defaults to `"train"`)
Which split of the `dataset` to load.
index_name (`str`, *optional*, defaults to `"compressed"`)
The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
`"compressed"`.
index_path (`str`, *optional*)
The path to the serialized faiss index on disk.
passages_path (`str`, *optional*):
A path to text passages compatible with the faiss index. Required if using
[`~models.rag.retrieval_rag.LegacyIndex`]
use_dummy_dataset (`bool`, *optional*, defaults to `False`)
Whether to load a "dummy" variant of the dataset specified by `dataset`.
label_smoothing (`float`, *optional*, defaults to 0.0):
Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
in the loss calculation. If set to 0, no label smoothing is performed.
do_marginalize (`bool`, *optional*, defaults to `False`):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
reduce_loss (`bool`, *optional*, defaults to `False`):
Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
do_deduplication (`bool`, *optional*, defaults to `True`):
Whether or not to deduplicate the generations from different context documents for a given input. Has to be
set to `False` if used while training with distributed backend.
exclude_bos_score (`bool`, *optional*, defaults to `False`):
Whether or not to disregard the BOS token when computing the loss.
output_retrieved(`bool`, *optional*, defaults to `False`):
If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
`context_attention_mask` are returned. See returned tensors for more detail.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
"""
@add_start_docstrings(RAG_CONFIG_DOC)
class RagConfig(PretrainedConfig):
model_type = "rag"
is_composition = True
def __init__(
self,
vocab_size=None,
is_encoder_decoder=True,
prefix=None,
bos_token_id=None,
pad_token_id=None,
eos_token_id=None,
decoder_start_token_id=None,
title_sep=" / ",
doc_sep=" // ",
n_docs=5,
max_combined_length=300,
retrieval_vector_size=768,
retrieval_batch_size=8,
dataset="wiki_dpr",
dataset_split="train",
index_name="compressed",
index_path=None,
passages_path=None,
use_dummy_dataset=False,
reduce_loss=False,
label_smoothing=0.0,
do_deduplication=True,
exclude_bos_score=False,
do_marginalize=False,
output_retrieved=False,
use_cache=True,
forced_eos_token_id=None,
**kwargs,
):
super().__init__(
bos_token_id=bos_token_id,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
is_encoder_decoder=is_encoder_decoder,
prefix=prefix,
vocab_size=vocab_size,
**kwargs,
)
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
question_encoder_config = kwargs.pop("question_encoder")
question_encoder_model_type = question_encoder_config.pop("model_type")
decoder_config = kwargs.pop("generator")
decoder_model_type = decoder_config.pop("model_type")
from ..auto.configuration_auto import AutoConfig
self.question_encoder = AutoConfig.for_model(question_encoder_model_type, **question_encoder_config)
self.generator = AutoConfig.for_model(decoder_model_type, **decoder_config)
self.reduce_loss = reduce_loss
self.label_smoothing = label_smoothing
self.exclude_bos_score = exclude_bos_score
self.do_marginalize = do_marginalize
self.title_sep = title_sep
self.doc_sep = doc_sep
self.n_docs = n_docs
self.max_combined_length = max_combined_length
self.dataset = dataset
self.dataset_split = dataset_split
self.index_name = index_name
self.retrieval_vector_size = retrieval_vector_size
self.retrieval_batch_size = retrieval_batch_size
self.passages_path = passages_path
self.index_path = index_path
self.use_dummy_dataset = use_dummy_dataset
self.output_retrieved = output_retrieved
self.do_deduplication = do_deduplication
self.use_cache = use_cache
if self.forced_eos_token_id is None:
self.forced_eos_token_id = getattr(self.generator, "forced_eos_token_id", None)
@classmethod
def from_question_encoder_generator_configs(
cls, question_encoder_config: PretrainedConfig, generator_config: PretrainedConfig, **kwargs
) -> PretrainedConfig:
r"""
Instantiate a [`EncoderDecoderConfig`] (or a derived class) from a pre-trained encoder model configuration and
decoder model configuration.
Returns:
[`EncoderDecoderConfig`]: An instance of a configuration object
"""
return cls(question_encoder=question_encoder_config.to_dict(), generator=generator_config.to_dict(), **kwargs)
| transformers/src/transformers/models/rag/configuration_rag.py/0 | {
"file_path": "transformers/src/transformers/models/rag/configuration_rag.py",
"repo_id": "transformers",
"token_count": 3331
} | 349 |
# coding=utf-8
# Copyright 2020 The Trax Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for model Reformer."""
import os
from shutil import copyfile
from typing import Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_reformer import ReformerTokenizer
else:
ReformerTokenizer = None
logger = logging.get_logger(__name__)
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"google/reformer-crime-and-punishment": (
"https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"
)
},
"tokenizer_file": {
"google/reformer-crime-and-punishment": (
"https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/tokenizer.json"
)
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"google/reformer-crime-and-punishment": 524288,
}
class ReformerTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" Reformer tokenizer (backed by HuggingFace's *tokenizers* library). Based on
[Unigram](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=unigram#models).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = ReformerTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
eos_token="</s>",
unk_token="<unk>",
additional_special_tokens=[],
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
eos_token=eos_token,
unk_token=unk_token,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
| transformers/src/transformers/models/reformer/tokenization_reformer_fast.py/0 | {
"file_path": "transformers/src/transformers/models/reformer/tokenization_reformer_fast.py",
"repo_id": "transformers",
"token_count": 1954
} | 350 |
# coding=utf-8
# Copyright 2022 Microsoft Research, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" ResNet model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
logger = logging.get_logger(__name__)
RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class ResNetConfig(BackboneConfigMixin, PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ResNetModel`]. It is used to instantiate an
ResNet model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the ResNet
[microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
embedding_size (`int`, *optional*, defaults to 64):
Dimensionality (hidden size) for the embedding layer.
hidden_sizes (`List[int]`, *optional*, defaults to `[256, 512, 1024, 2048]`):
Dimensionality (hidden size) at each stage.
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 3]`):
Depth (number of layers) for each stage.
layer_type (`str`, *optional*, defaults to `"bottleneck"`):
The layer to use, it can be either `"basic"` (used for smaller models, like resnet-18 or resnet-34) or
`"bottleneck"` (used for larger models like resnet-50 and above).
hidden_act (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function in each block. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"`
are supported.
downsample_in_first_stage (`bool`, *optional*, defaults to `False`):
If `True`, the first stage will downsample the inputs using a `stride` of 2.
downsample_in_bottleneck (`bool`, *optional*, defaults to `False`):
If `True`, the first conv 1x1 in ResNetBottleNeckLayer will downsample the inputs using a `stride` of 2.
out_features (`List[str]`, *optional*):
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
out_indices (`List[int]`, *optional*):
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
If unset and `out_features` is unset, will default to the last stage. Must be in the
same order as defined in the `stage_names` attribute.
Example:
```python
>>> from transformers import ResNetConfig, ResNetModel
>>> # Initializing a ResNet resnet-50 style configuration
>>> configuration = ResNetConfig()
>>> # Initializing a model (with random weights) from the resnet-50 style configuration
>>> model = ResNetModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "resnet"
layer_types = ["basic", "bottleneck"]
def __init__(
self,
num_channels=3,
embedding_size=64,
hidden_sizes=[256, 512, 1024, 2048],
depths=[3, 4, 6, 3],
layer_type="bottleneck",
hidden_act="relu",
downsample_in_first_stage=False,
downsample_in_bottleneck=False,
out_features=None,
out_indices=None,
**kwargs,
):
super().__init__(**kwargs)
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types)}")
self.num_channels = num_channels
self.embedding_size = embedding_size
self.hidden_sizes = hidden_sizes
self.depths = depths
self.layer_type = layer_type
self.hidden_act = hidden_act
self.downsample_in_first_stage = downsample_in_first_stage
self.downsample_in_bottleneck = downsample_in_bottleneck
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
)
class ResNetOnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-3
| transformers/src/transformers/models/resnet/configuration_resnet.py/0 | {
"file_path": "transformers/src/transformers/models/resnet/configuration_resnet.py",
"repo_id": "transformers",
"token_count": 2286
} | 351 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Audio/Text processor class for SeamlessM4T
"""
from ...processing_utils import ProcessorMixin
class SeamlessM4TProcessor(ProcessorMixin):
r"""
Constructs a SeamlessM4T processor which wraps a SeamlessM4T feature extractor and a SeamlessM4T tokenizer into a
single processor.
[`SeamlessM4TProcessor`] offers all the functionalities of [`SeamlessM4TFeatureExtractor`] and
[`SeamlessM4TTokenizerFast`]. See the [`~SeamlessM4TProcessor.__call__`] and [`~SeamlessM4TProcessor.decode`] for
more information.
Args:
feature_extractor ([`SeamlessM4TFeatureExtractor`]):
The audio processor is a required input.
tokenizer ([`SeamlessM4TTokenizerFast`]):
The tokenizer is a required input.
"""
feature_extractor_class = "SeamlessM4TFeatureExtractor"
tokenizer_class = ("SeamlessM4TTokenizer", "SeamlessM4TTokenizerFast")
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
def __call__(self, text=None, audios=None, src_lang=None, tgt_lang=None, **kwargs):
"""
Main method to prepare for the model one or several sequences(s) and audio(s). This method forwards the `text`
and `kwargs` arguments to SeamlessM4TTokenizerFast's [`~SeamlessM4TTokenizerFast.__call__`] if `text` is not
`None` to encode the text. To prepare the audio(s), this method forwards the `audios` and `kwrags` arguments to
SeamlessM4TFeatureExtractor's [`~SeamlessM4TFeatureExtractor.__call__`] if `audios` is not `None`. Please refer
to the doctsring of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
audios (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The audio or batch of audios to be prepared. Each audio can be NumPy array or PyTorch tensor. In case
of a NumPy array/PyTorch tensor, each audio should be of shape (C, T), where C is a number of channels,
and T the sample length of the audio.
src_lang (`str`, *optional*):
The language code of the input texts/audios. If not specified, the last `src_lang` specified will be
used.
tgt_lang (`str`, *optional*):
The code of the target language. If not specified, the last `tgt_lang` specified will be used.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to the feature extractor and/or the
tokenizer.
Returns:
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **input_features** -- Audio input features to be fed to a model. Returned when `audios` is not `None`.
"""
sampling_rate = kwargs.pop("sampling_rate", None)
if text is None and audios is None:
raise ValueError("You have to specify either text or audios. Both cannot be none.")
elif text is not None and audios is not None:
raise ValueError(
"Text and audios are mututally exclusive when passed to `SeamlessM4T`. Specify one or another."
)
elif text is not None:
if tgt_lang is not None:
self.tokenizer.tgt_lang = tgt_lang
if src_lang is not None:
self.tokenizer.src_lang = src_lang
encoding = self.tokenizer(text, **kwargs)
return encoding
else:
encoding = self.feature_extractor(audios, sampling_rate=sampling_rate, **kwargs)
return encoding
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to SeamlessM4TTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
feature_extractor_input_names = self.feature_extractor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names))
| transformers/src/transformers/models/seamless_m4t/processing_seamless_m4t.py/0 | {
"file_path": "transformers/src/transformers/models/seamless_m4t/processing_seamless_m4t.py",
"repo_id": "transformers",
"token_count": 2298
} | 352 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert SEW checkpoint."""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
# Register SEW's fairseq modules
from sew_asapp import tasks # noqa: F401
from transformers import (
SEWConfig,
SEWForCTC,
SEWModel,
Wav2Vec2CTCTokenizer,
Wav2Vec2FeatureExtractor,
Wav2Vec2Processor,
logging,
)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
MAPPING = {
"post_extract_proj": "feature_projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.upsample.0": "encoder.upsample.projection",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def set_recursively(hf_pointer, key, value, full_name, weight_type):
for attribute in key.split("."):
hf_pointer = getattr(hf_pointer, attribute)
if weight_type is not None:
hf_shape = getattr(hf_pointer, weight_type).shape
else:
hf_shape = hf_pointer.shape
assert hf_shape == value.shape, (
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}"
)
if weight_type == "weight":
hf_pointer.weight.data = value
elif weight_type == "weight_g":
hf_pointer.weight_g.data = value
elif weight_type == "weight_v":
hf_pointer.weight_v.data = value
elif weight_type == "bias":
hf_pointer.bias.data = value
else:
hf_pointer.data = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.")
def recursively_load_weights(fairseq_model, hf_model, is_finetuned):
unused_weights = []
fairseq_dict = fairseq_model.state_dict()
feature_extractor = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
is_used = False
if "conv_layers" in name:
load_conv_layer(
name,
value,
feature_extractor,
unused_weights,
hf_model.config.feat_extract_norm == "group",
)
is_used = True
else:
for key, mapped_key in MAPPING.items():
mapped_key = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key
if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]:
is_used = True
if "*" in mapped_key:
layer_index = name.split(key)[0].split(".")[-2]
mapped_key = mapped_key.replace("*", layer_index)
if "weight_g" in name:
weight_type = "weight_g"
elif "weight_v" in name:
weight_type = "weight_v"
elif "weight" in name:
weight_type = "weight"
elif "bias" in name:
weight_type = "bias"
else:
weight_type = None
set_recursively(hf_model, mapped_key, value, name, weight_type)
continue
if not is_used:
unused_weights.append(name)
logger.warning(f"Unused weights: {unused_weights}")
def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm):
name = full_name.split("conv_layers.")[-1]
items = name.split(".")
layer_id = int(items[0])
type_id = int(items[1])
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].conv.bias.data = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].conv.weight.data = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"
" found."
)
feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
else:
unused_weights.append(full_name)
def convert_config(model, is_finetuned):
config = SEWConfig()
if is_finetuned:
fs_config = model.w2v_encoder.w2v_model.cfg
else:
fs_config = model.cfg
config.conv_bias = fs_config.conv_bias
conv_layers = eval(fs_config.conv_feature_layers)
config.conv_dim = [x[0] for x in conv_layers]
config.conv_kernel = [x[1] for x in conv_layers]
config.conv_stride = [x[2] for x in conv_layers]
config.feat_extract_activation = "gelu"
config.feat_extract_norm = "layer" if fs_config.extractor_mode == "layer_norm" else "group"
config.final_dropout = 0.0
config.hidden_act = fs_config.activation_fn.name
config.hidden_size = fs_config.encoder_embed_dim
config.initializer_range = 0.02
config.intermediate_size = fs_config.encoder_ffn_embed_dim
config.layer_norm_eps = 1e-5
config.layerdrop = fs_config.encoder_layerdrop
config.num_attention_heads = fs_config.encoder_attention_heads
config.num_conv_pos_embedding_groups = fs_config.conv_pos_groups
config.num_conv_pos_embeddings = fs_config.conv_pos
config.num_feat_extract_layers = len(conv_layers)
config.num_hidden_layers = fs_config.encoder_layers
config.squeeze_factor = fs_config.squeeze_factor
# take care of any params that are overridden by the Wav2VecCtc model
if is_finetuned:
fs_config = model.cfg
config.final_dropout = fs_config.final_dropout
config.layerdrop = fs_config.layerdrop
config.activation_dropout = fs_config.activation_dropout
config.apply_spec_augment = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0
config.attention_dropout = fs_config.attention_dropout
config.feat_proj_dropout = fs_config.dropout_input
config.hidden_dropout = fs_config.dropout
config.mask_feature_length = fs_config.mask_channel_length
config.mask_feature_prob = fs_config.mask_channel_prob
config.mask_time_length = fs_config.mask_length
config.mask_time_prob = fs_config.mask_prob
config.feature_extractor_type = "Wav2Vec2FeatureExtractor"
config.tokenizer_class = "Wav2Vec2CTCTokenizer"
return config
@torch.no_grad()
def convert_sew_checkpoint(
checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True
):
"""
Copy/paste/tweak model's weights to transformers design.
"""
if is_finetuned:
model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}
)
else:
model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path])
if config_path is not None:
config = SEWConfig.from_pretrained(config_path)
else:
config = convert_config(model[0], is_finetuned)
model = model[0].eval()
return_attention_mask = True if config.feat_extract_norm == "layer" else False
feature_extractor = Wav2Vec2FeatureExtractor(
feature_size=1,
sampling_rate=16000,
padding_value=0,
do_normalize=True,
return_attention_mask=return_attention_mask,
)
if is_finetuned:
if dict_path:
target_dict = Dictionary.load(dict_path)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
target_dict.indices[target_dict.bos_word] = target_dict.pad_index
target_dict.indices[target_dict.pad_word] = target_dict.bos_index
config.bos_token_id = target_dict.pad_index
config.pad_token_id = target_dict.bos_index
config.eos_token_id = target_dict.eos_index
config.vocab_size = len(target_dict.symbols)
vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json")
if not os.path.isdir(pytorch_dump_folder_path):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path))
return
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
with open(vocab_path, "w", encoding="utf-8") as vocab_handle:
json.dump(target_dict.indices, vocab_handle)
tokenizer = Wav2Vec2CTCTokenizer(
vocab_path,
unk_token=target_dict.unk_word,
pad_token=target_dict.pad_word,
bos_token=target_dict.bos_word,
eos_token=target_dict.eos_word,
word_delimiter_token="|",
do_lower_case=False,
)
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.save_pretrained(pytorch_dump_folder_path)
hf_model = SEWForCTC(config)
else:
hf_model = SEWModel(config)
feature_extractor.save_pretrained(pytorch_dump_folder_path)
recursively_load_weights(model, hf_model, is_finetuned)
hf_model.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--is_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
args = parser.parse_args()
convert_sew_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned
)
| transformers/src/transformers/models/sew/convert_sew_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/sew/convert_sew_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 5650
} | 353 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
_import_structure = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_speecht5"] = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_speecht5"] = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speecht5 import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechT5Config,
SpeechT5HifiGanConfig,
)
from .feature_extraction_speecht5 import SpeechT5FeatureExtractor
from .processing_speecht5 import SpeechT5Processor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speecht5 import SpeechT5Tokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speecht5 import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechT5ForSpeechToSpeech,
SpeechT5ForSpeechToText,
SpeechT5ForTextToSpeech,
SpeechT5HifiGan,
SpeechT5Model,
SpeechT5PreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/speecht5/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/speecht5/__init__.py",
"repo_id": "transformers",
"token_count": 1227
} | 354 |
# coding=utf-8
# Copyright 2020 The SqueezeBert authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch SqueezeBert model."""
import math
from typing import Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_squeezebert import SqueezeBertConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "squeezebert/squeezebert-uncased"
_CONFIG_FOR_DOC = "SqueezeBertConfig"
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
"squeezebert/squeezebert-uncased",
"squeezebert/squeezebert-mnli",
"squeezebert/squeezebert-mnli-headless",
]
class SqueezeBertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.embedding_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.embedding_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.embedding_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class MatMulWrapper(nn.Module):
"""
Wrapper for torch.matmul(). This makes flop-counting easier to implement. Note that if you directly call
torch.matmul() in your code, the flop counter will typically ignore the flops of the matmul.
"""
def __init__(self):
super().__init__()
def forward(self, mat1, mat2):
"""
:param inputs: two torch tensors :return: matmul of these tensors
Here are the typical dimensions found in BERT (the B is optional) mat1.shape: [B, <optional extra dims>, M, K]
mat2.shape: [B, <optional extra dims>, K, N] output shape: [B, <optional extra dims>, M, N]
"""
return torch.matmul(mat1, mat2)
class SqueezeBertLayerNorm(nn.LayerNorm):
"""
This is a nn.LayerNorm subclass that accepts NCW data layout and performs normalization in the C dimension.
N = batch C = channels W = sequence length
"""
def __init__(self, hidden_size, eps=1e-12):
nn.LayerNorm.__init__(self, normalized_shape=hidden_size, eps=eps) # instantiates self.{weight, bias, eps}
def forward(self, x):
x = x.permute(0, 2, 1)
x = nn.LayerNorm.forward(self, x)
return x.permute(0, 2, 1)
class ConvDropoutLayerNorm(nn.Module):
"""
ConvDropoutLayerNorm: Conv, Dropout, LayerNorm
"""
def __init__(self, cin, cout, groups, dropout_prob):
super().__init__()
self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups)
self.layernorm = SqueezeBertLayerNorm(cout)
self.dropout = nn.Dropout(dropout_prob)
def forward(self, hidden_states, input_tensor):
x = self.conv1d(hidden_states)
x = self.dropout(x)
x = x + input_tensor
x = self.layernorm(x)
return x
class ConvActivation(nn.Module):
"""
ConvActivation: Conv, Activation
"""
def __init__(self, cin, cout, groups, act):
super().__init__()
self.conv1d = nn.Conv1d(in_channels=cin, out_channels=cout, kernel_size=1, groups=groups)
self.act = ACT2FN[act]
def forward(self, x):
output = self.conv1d(x)
return self.act(output)
class SqueezeBertSelfAttention(nn.Module):
def __init__(self, config, cin, q_groups=1, k_groups=1, v_groups=1):
"""
config = used for some things; ignored for others (work in progress...) cin = input channels = output channels
groups = number of groups to use in conv1d layers
"""
super().__init__()
if cin % config.num_attention_heads != 0:
raise ValueError(
f"cin ({cin}) is not a multiple of the number of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(cin / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=q_groups)
self.key = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=k_groups)
self.value = nn.Conv1d(in_channels=cin, out_channels=cin, kernel_size=1, groups=v_groups)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.softmax = nn.Softmax(dim=-1)
self.matmul_qk = MatMulWrapper()
self.matmul_qkv = MatMulWrapper()
def transpose_for_scores(self, x):
"""
- input: [N, C, W]
- output: [N, C1, W, C2] where C1 is the head index, and C2 is one head's contents
"""
new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W]
x = x.view(*new_x_shape)
return x.permute(0, 1, 3, 2) # [N, C1, C2, W] --> [N, C1, W, C2]
def transpose_key_for_scores(self, x):
"""
- input: [N, C, W]
- output: [N, C1, C2, W] where C1 is the head index, and C2 is one head's contents
"""
new_x_shape = (x.size()[0], self.num_attention_heads, self.attention_head_size, x.size()[-1]) # [N, C1, C2, W]
x = x.view(*new_x_shape)
# no `permute` needed
return x
def transpose_output(self, x):
"""
- input: [N, C1, W, C2]
- output: [N, C, W]
"""
x = x.permute(0, 1, 3, 2).contiguous() # [N, C1, C2, W]
new_x_shape = (x.size()[0], self.all_head_size, x.size()[3]) # [N, C, W]
x = x.view(*new_x_shape)
return x
def forward(self, hidden_states, attention_mask, output_attentions):
"""
expects hidden_states in [N, C, W] data layout.
The attention_mask data layout is [N, W], and it does not need to be transposed.
"""
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_key_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_score = self.matmul_qk(query_layer, key_layer)
attention_score = attention_score / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_score = attention_score + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = self.softmax(attention_score)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = self.matmul_qkv(attention_probs, value_layer)
context_layer = self.transpose_output(context_layer)
result = {"context_layer": context_layer}
if output_attentions:
result["attention_score"] = attention_score
return result
class SqueezeBertModule(nn.Module):
def __init__(self, config):
"""
- hidden_size = input chans = output chans for Q, K, V (they are all the same ... for now) = output chans for
the module
- intermediate_size = output chans for intermediate layer
- groups = number of groups for all layers in the BertModule. (eventually we could change the interface to
allow different groups for different layers)
"""
super().__init__()
c0 = config.hidden_size
c1 = config.hidden_size
c2 = config.intermediate_size
c3 = config.hidden_size
self.attention = SqueezeBertSelfAttention(
config=config, cin=c0, q_groups=config.q_groups, k_groups=config.k_groups, v_groups=config.v_groups
)
self.post_attention = ConvDropoutLayerNorm(
cin=c0, cout=c1, groups=config.post_attention_groups, dropout_prob=config.hidden_dropout_prob
)
self.intermediate = ConvActivation(cin=c1, cout=c2, groups=config.intermediate_groups, act=config.hidden_act)
self.output = ConvDropoutLayerNorm(
cin=c2, cout=c3, groups=config.output_groups, dropout_prob=config.hidden_dropout_prob
)
def forward(self, hidden_states, attention_mask, output_attentions):
att = self.attention(hidden_states, attention_mask, output_attentions)
attention_output = att["context_layer"]
post_attention_output = self.post_attention(attention_output, hidden_states)
intermediate_output = self.intermediate(post_attention_output)
layer_output = self.output(intermediate_output, post_attention_output)
output_dict = {"feature_map": layer_output}
if output_attentions:
output_dict["attention_score"] = att["attention_score"]
return output_dict
class SqueezeBertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
assert config.embedding_size == config.hidden_size, (
"If you want embedding_size != intermediate hidden_size, "
"please insert a Conv1d layer to adjust the number of channels "
"before the first SqueezeBertModule."
)
self.layers = nn.ModuleList(SqueezeBertModule(config) for _ in range(config.num_hidden_layers))
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
if head_mask is None:
head_mask_is_all_none = True
elif head_mask.count(None) == len(head_mask):
head_mask_is_all_none = True
else:
head_mask_is_all_none = False
assert head_mask_is_all_none is True, "head_mask is not yet supported in the SqueezeBert implementation."
# [batch_size, sequence_length, hidden_size] --> [batch_size, hidden_size, sequence_length]
hidden_states = hidden_states.permute(0, 2, 1)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
hidden_states = hidden_states.permute(0, 2, 1)
all_hidden_states += (hidden_states,)
hidden_states = hidden_states.permute(0, 2, 1)
layer_output = layer.forward(hidden_states, attention_mask, output_attentions)
hidden_states = layer_output["feature_map"]
if output_attentions:
all_attentions += (layer_output["attention_score"],)
# [batch_size, hidden_size, sequence_length] --> [batch_size, sequence_length, hidden_size]
hidden_states = hidden_states.permute(0, 2, 1)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class SqueezeBertPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class SqueezeBertPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class SqueezeBertLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = SqueezeBertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
class SqueezeBertOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = SqueezeBertLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
class SqueezeBertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SqueezeBertConfig
base_model_prefix = "transformer"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, SqueezeBertLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
SQUEEZEBERT_START_DOCSTRING = r"""
The SqueezeBERT model was proposed in [SqueezeBERT: What can computer vision teach NLP about efficient neural
networks?](https://arxiv.org/abs/2006.11316) by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W.
Keutzer
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
For best results finetuning SqueezeBERT on text classification tasks, it is recommended to use the
*squeezebert/squeezebert-mnli-headless* checkpoint as a starting point.
Parameters:
config ([`SqueezeBertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
Hierarchy:
```
Internal class hierarchy:
SqueezeBertModel
SqueezeBertEncoder
SqueezeBertModule
SqueezeBertSelfAttention
ConvActivation
ConvDropoutLayerNorm
```
Data layouts:
```
Input data is in [batch, sequence_length, hidden_size] format.
Data inside the encoder is in [batch, hidden_size, sequence_length] format. But, if `output_hidden_states == True`, the data from inside the encoder is returned in [batch, sequence_length, hidden_size] format.
The final output of the encoder is in [batch, sequence_length, hidden_size] format.
```
"""
SQUEEZEBERT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare SqueezeBERT Model transformer outputting raw hidden-states without any specific head on top.",
SQUEEZEBERT_START_DOCSTRING,
)
class SqueezeBertModel(SqueezeBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = SqueezeBertEmbeddings(config)
self.encoder = SqueezeBertEncoder(config)
self.pooler = SqueezeBertPooler(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings.word_embeddings = new_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
encoder_outputs = self.encoder(
hidden_states=embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output)
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""SqueezeBERT Model with a `language modeling` head on top.""", SQUEEZEBERT_START_DOCSTRING)
class SqueezeBertForMaskedLM(SqueezeBertPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"]
def __init__(self, config):
super().__init__(config)
self.transformer = SqueezeBertModel(config)
self.cls = SqueezeBertOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
SqueezeBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
SQUEEZEBERT_START_DOCSTRING,
)
class SqueezeBertForSequenceClassification(SqueezeBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.transformer = SqueezeBertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
SqueezeBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
a softmax) e.g. for RocStories/SWAG tasks.
""",
SQUEEZEBERT_START_DOCSTRING,
)
class SqueezeBertForMultipleChoice(SqueezeBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = SqueezeBertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(
SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where *num_choices* is the size of the second dimension of the input tensors. (see
*input_ids* above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
SqueezeBERT Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
SQUEEZEBERT_START_DOCSTRING,
)
class SqueezeBertForTokenClassification(SqueezeBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = SqueezeBertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
SqueezeBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
SQUEEZEBERT_START_DOCSTRING,
)
class SqueezeBertForQuestionAnswering(SqueezeBertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = SqueezeBertModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(SQUEEZEBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/squeezebert/modeling_squeezebert.py/0 | {
"file_path": "transformers/src/transformers/models/squeezebert/modeling_squeezebert.py",
"repo_id": "transformers",
"token_count": 19019
} | 355 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Swin2SR."""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
infer_channel_dimension_format,
is_scaled_image,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
class Swin2SRImageProcessor(BaseImageProcessor):
r"""
Constructs a Swin2SR image processor.
Args:
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
parameter in the `preprocess` method.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
`preprocess` method.
"""
model_input_names = ["pixel_values"]
def __init__(
self,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_pad: bool = True,
pad_size: int = 8,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
self.pad_size = pad_size
def pad(
self,
image: np.ndarray,
size: int,
data_format: Optional[Union[str, ChannelDimension]] = None,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Pad an image to make the height and width divisible by `size`.
Args:
image (`np.ndarray`):
Image to pad.
size (`int`):
The size to make the height and width divisible by.
data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the output image. If unset, the channel dimension format of the input
image is used. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
input_data_format (`str` or `ChannelDimension`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
Returns:
`np.ndarray`: The padded image.
"""
old_height, old_width = get_image_size(image, input_data_format)
pad_height = (old_height // size + 1) * size - old_height
pad_width = (old_width // size + 1) * size - old_width
return pad(
image,
((0, pad_height), (0, pad_width)),
mode="symmetric",
data_format=data_format,
input_data_format=input_data_format,
)
def preprocess(
self,
images: ImageInput,
do_rescale: Optional[bool] = None,
rescale_factor: Optional[float] = None,
do_pad: Optional[bool] = None,
pad_size: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
**kwargs,
):
"""
Preprocess an image or batch of images.
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image values between [0 - 1].
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_pad (`bool`, *optional*, defaults to `True`):
Whether to pad the image to make the height and width divisible by `window_size`.
pad_size (`int`, *optional*, defaults to 32):
The size of the sliding window for the local attention.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of typ, input_data_format=input_data_formate
`tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_pad = do_pad if do_pad is not None else self.do_pad
pad_size = pad_size if pad_size is not None else self.pad_size
images = make_list_of_images(images)
if not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if is_scaled_image(images[0]) and do_rescale:
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
if do_rescale:
images = [
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
for image in images
]
if do_pad:
images = [self.pad(image, size=pad_size, input_data_format=input_data_format) for image in images]
images = [
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
]
data = {"pixel_values": images}
return BatchFeature(data=data, tensor_type=return_tensors)
| transformers/src/transformers/models/swin2sr/image_processing_swin2sr.py/0 | {
"file_path": "transformers/src/transformers/models/swin2sr/image_processing_swin2sr.py",
"repo_id": "transformers",
"token_count": 3791
} | 356 |
#!/usr/bin/env bash
# Use this script as follows ./download_from_gcp.sh /path/to/folder/to/store/downloads
folder_to_store_downloads=${1}
# Replace by gcp_path to T5 cloud bucket folder here
# To download the official `t5-small` model of https://github.com/google-research/text-to-text-transfer-transformer#released-model-checkpoints:
gcp_path="gs://t5-data/pretrained_models/small"
# Number of files the checkpoint is split into
num_of_checks=16
# Create dir if not exist
mkdir -p ${folder_to_store_downloads}
# Copy all meta information files
gsutil cp "${gcp_path}/operative_config.gin" ${folder_to_store_downloads}
gsutil cp "${gcp_path}/checkpoint" ${folder_to_store_downloads}
gsutil cp "${gcp_path}/model.ckpt-1000000.index" ${folder_to_store_downloads}
gsutil cp "${gcp_path}/model.ckpt-1000000.meta" ${folder_to_store_downloads}
# Copy all model weights
# single digit num checkpoitns
for ((i = 0 ; i < ${num_of_checks} ; i++)); do
gsutil cp "${gcp_path}/model.ckpt-1000000.data-0000${i}-of-000${num_of_checks}" ${folder_to_store_downloads}
done
# double digit num checkpoints
for ((i = 0 ; i < ${num_of_checks} ; i++)); do
gsutil cp "${gcp_path}/model.ckpt-1000000.data-000${i}-of-000${num_of_checks}" ${folder_to_store_downloads}
done
# Having run this script, you should create a suitable config.json, *e.g.* by
# looking at `https://huggingface.co/t5-small`.
# Then you can run `python convert_t5_original_tf_checkpoint_to_pytorch.py --tf_checkpoint_path "${folder_to_store_downloads}" --config_file "config.json" --pytorch_dump_path "/path/to/store/pytorch/weights"
| transformers/src/transformers/models/t5/download_from_gcp.sh/0 | {
"file_path": "transformers/src/transformers/models/t5/download_from_gcp.sh",
"repo_id": "transformers",
"token_count": 579
} | 357 |
# coding=utf-8
# Copyright 2020 Google Research and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Tokenization class for TAPAS model."""
import collections
import datetime
import enum
import itertools
import math
import os
import re
import unicodedata
from dataclasses import dataclass
from typing import Callable, Dict, Generator, List, Optional, Text, Tuple, Union
import numpy as np
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...tokenization_utils_base import (
ENCODE_KWARGS_DOCSTRING,
VERY_LARGE_INTEGER,
BatchEncoding,
EncodedInput,
PreTokenizedInput,
TextInput,
)
from ...utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available, logging
if is_pandas_available():
import pandas as pd
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
# large models
"google/tapas-large-finetuned-sqa": (
"https://huggingface.co/google/tapas-large-finetuned-sqa/resolve/main/vocab.txt"
),
"google/tapas-large-finetuned-wtq": (
"https://huggingface.co/google/tapas-large-finetuned-wtq/resolve/main/vocab.txt"
),
"google/tapas-large-finetuned-wikisql-supervised": (
"https://huggingface.co/google/tapas-large-finetuned-wikisql-supervised/resolve/main/vocab.txt"
),
"google/tapas-large-finetuned-tabfact": (
"https://huggingface.co/google/tapas-large-finetuned-tabfact/resolve/main/vocab.txt"
),
# base models
"google/tapas-base-finetuned-sqa": (
"https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/vocab.txt"
),
"google/tapas-base-finetuned-wtq": (
"https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/vocab.txt"
),
"google/tapas-base-finetuned-wikisql-supervised": (
"https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/vocab.txt"
),
"google/tapas-base-finetuned-tabfact": (
"https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/vocab.txt"
),
# medium models
"google/tapas-medium-finetuned-sqa": (
"https://huggingface.co/google/tapas-medium-finetuned-sqa/resolve/main/vocab.txt"
),
"google/tapas-medium-finetuned-wtq": (
"https://huggingface.co/google/tapas-medium-finetuned-wtq/resolve/main/vocab.txt"
),
"google/tapas-medium-finetuned-wikisql-supervised": (
"https://huggingface.co/google/tapas-medium-finetuned-wikisql-supervised/resolve/main/vocab.txt"
),
"google/tapas-medium-finetuned-tabfact": (
"https://huggingface.co/google/tapas-medium-finetuned-tabfact/resolve/main/vocab.txt"
),
# small models
"google/tapas-small-finetuned-sqa": (
"https://huggingface.co/google/tapas-small-finetuned-sqa/resolve/main/vocab.txt"
),
"google/tapas-small-finetuned-wtq": (
"https://huggingface.co/google/tapas-small-finetuned-wtq/resolve/main/vocab.txt"
),
"google/tapas-small-finetuned-wikisql-supervised": (
"https://huggingface.co/google/tapas-small-finetuned-wikisql-supervised/resolve/main/vocab.txt"
),
"google/tapas-small-finetuned-tabfact": (
"https://huggingface.co/google/tapas-small-finetuned-tabfact/resolve/main/vocab.txt"
),
# tiny models
"google/tapas-tiny-finetuned-sqa": (
"https://huggingface.co/google/tapas-tiny-finetuned-sqa/resolve/main/vocab.txt"
),
"google/tapas-tiny-finetuned-wtq": (
"https://huggingface.co/google/tapas-tiny-finetuned-wtq/resolve/main/vocab.txt"
),
"google/tapas-tiny-finetuned-wikisql-supervised": (
"https://huggingface.co/google/tapas-tiny-finetuned-wikisql-supervised/resolve/main/vocab.txt"
),
"google/tapas-tiny-finetuned-tabfact": (
"https://huggingface.co/google/tapas-tiny-finetuned-tabfact/resolve/main/vocab.txt"
),
# mini models
"google/tapas-mini-finetuned-sqa": (
"https://huggingface.co/google/tapas-mini-finetuned-sqa/resolve/main/vocab.txt"
),
"google/tapas-mini-finetuned-wtq": (
"https://huggingface.co/google/tapas-mini-finetuned-wtq/resolve/main/vocab.txt"
),
"google/tapas-mini-finetuned-wikisql-supervised": (
"https://huggingface.co/google/tapas-mini-finetuned-wikisql-supervised/resolve/main/vocab.txt"
),
"google/tapas-mini-finetuned-tabfact": (
"https://huggingface.co/google/tapas-mini-finetuned-tabfact/resolve/main/vocab.txt"
),
}
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {name: 512 for name in PRETRAINED_VOCAB_FILES_MAP.keys()}
PRETRAINED_INIT_CONFIGURATION = {name: {"do_lower_case": True} for name in PRETRAINED_VOCAB_FILES_MAP.keys()}
class TapasTruncationStrategy(ExplicitEnum):
"""
Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE.
"""
DROP_ROWS_TO_FIT = "drop_rows_to_fit"
DO_NOT_TRUNCATE = "do_not_truncate"
TableValue = collections.namedtuple("TokenValue", ["token", "column_id", "row_id"])
@dataclass(frozen=True)
class TokenCoordinates:
column_index: int
row_index: int
token_index: int
@dataclass
class TokenizedTable:
rows: List[List[List[Text]]]
selected_tokens: List[TokenCoordinates]
@dataclass(frozen=True)
class SerializedExample:
tokens: List[Text]
column_ids: List[int]
row_ids: List[int]
segment_ids: List[int]
def _is_inner_wordpiece(token: Text):
return token.startswith("##")
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r"""
add_special_tokens (`bool`, *optional*, defaults to `True`):
Whether or not to encode the sequences with the special tokens relative to their model.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`TapasTruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length`
or to the maximum acceptable input length for the model if that argument is not provided. This will
truncate row by row, removing rows from the table.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
is_split_into_words (`bool`, *optional*, defaults to `False`):
Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize. This is useful for NER or token classification.
pad_to_multiple_of (`int`, *optional*):
If set will pad the sequence to a multiple of the provided value. This is especially useful to enable
the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta).
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
"""
class TapasTokenizer(PreTrainedTokenizer):
r"""
Construct a TAPAS tokenizer. Based on WordPiece. Flattens a table and one or more related sentences to be used by
TAPAS models.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods. [`TapasTokenizer`] creates several token type ids to
encode tabular structure. To be more precise, it adds 7 token type ids, in the following order: `segment_ids`,
`column_ids`, `row_ids`, `prev_labels`, `column_ranks`, `inv_column_ranks` and `numeric_relations`:
- segment_ids: indicate whether a token belongs to the question (0) or the table (1). 0 for special tokens and
padding.
- column_ids: indicate to which column of the table a token belongs (starting from 1). Is 0 for all question
tokens, special tokens and padding.
- row_ids: indicate to which row of the table a token belongs (starting from 1). Is 0 for all question tokens,
special tokens and padding. Tokens of column headers are also 0.
- prev_labels: indicate whether a token was (part of) an answer to the previous question (1) or not (0). Useful in
a conversational setup (such as SQA).
- column_ranks: indicate the rank of a table token relative to a column, if applicable. For example, if you have a
column "number of movies" with values 87, 53 and 69, then the column ranks of these tokens are 3, 1 and 2
respectively. 0 for all question tokens, special tokens and padding.
- inv_column_ranks: indicate the inverse rank of a table token relative to a column, if applicable. For example, if
you have a column "number of movies" with values 87, 53 and 69, then the inverse column ranks of these tokens are
1, 3 and 2 respectively. 0 for all question tokens, special tokens and padding.
- numeric_relations: indicate numeric relations between the question and the tokens of the table. 0 for all
question tokens, special tokens and padding.
[`TapasTokenizer`] runs end-to-end tokenization on a table and associated sentences: punctuation splitting and
wordpiece.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
Whether or not to do basic tokenization before WordPiece.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
empty_token (`str`, *optional*, defaults to `"[EMPTY]"`):
The token used for empty cell values in a table. Empty cell values include "", "n/a", "nan" and "?".
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
cell_trim_length (`int`, *optional*, defaults to -1):
If > 0: Trim cells so that the length is <= this value. Also disables further cell trimming, should thus be
used with `truncation` set to `True`.
max_column_id (`int`, *optional*):
Max column id to extract.
max_row_id (`int`, *optional*):
Max row id to extract.
strip_column_names (`bool`, *optional*, defaults to `False`):
Whether to add empty strings instead of column names.
update_answer_coordinates (`bool`, *optional*, defaults to `False`):
Whether to recompute the answer coordinates from the answer text.
min_question_length (`int`, *optional*):
Minimum length of each question in terms of tokens (will be skipped otherwise).
max_question_length (`int`, *optional*):
Maximum length of each question in terms of tokens (will be skipped otherwise).
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__(
self,
vocab_file,
do_lower_case=True,
do_basic_tokenize=True,
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
empty_token="[EMPTY]",
tokenize_chinese_chars=True,
strip_accents=None,
cell_trim_length: int = -1,
max_column_id: int = None,
max_row_id: int = None,
strip_column_names: bool = False,
update_answer_coordinates: bool = False,
min_question_length=None,
max_question_length=None,
model_max_length: int = 512,
additional_special_tokens: Optional[List[str]] = None,
**kwargs,
):
if not is_pandas_available():
raise ImportError("Pandas is required for the TAPAS tokenizer.")
if additional_special_tokens is not None:
if empty_token not in additional_special_tokens:
additional_special_tokens.append(empty_token)
else:
additional_special_tokens = [empty_token]
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_basic_tokenize = do_basic_tokenize
if do_basic_tokenize:
self.basic_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case,
never_split=never_split,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
# Additional properties
self.cell_trim_length = cell_trim_length
self.max_column_id = (
max_column_id
if max_column_id is not None
else model_max_length
if model_max_length is not None
else VERY_LARGE_INTEGER
)
self.max_row_id = (
max_row_id
if max_row_id is not None
else model_max_length
if model_max_length is not None
else VERY_LARGE_INTEGER
)
self.strip_column_names = strip_column_names
self.update_answer_coordinates = update_answer_coordinates
self.min_question_length = min_question_length
self.max_question_length = max_question_length
super().__init__(
do_lower_case=do_lower_case,
do_basic_tokenize=do_basic_tokenize,
never_split=never_split,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
empty_token=empty_token,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
cell_trim_length=cell_trim_length,
max_column_id=max_column_id,
max_row_id=max_row_id,
strip_column_names=strip_column_names,
update_answer_coordinates=update_answer_coordinates,
min_question_length=min_question_length,
max_question_length=max_question_length,
model_max_length=model_max_length,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
@property
def do_lower_case(self):
return self.basic_tokenizer.do_lower_case
@property
def vocab_size(self):
return len(self.vocab)
def get_vocab(self):
return dict(self.vocab, **self.added_tokens_encoder)
def _tokenize(self, text):
if format_text(text) == EMPTY_TEXT:
return [self.additional_special_tokens[0]]
split_tokens = []
if self.do_basic_tokenize:
for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens):
# If the token is part of the never_split set
if token in self.basic_tokenizer.never_split:
split_tokens.append(token)
else:
split_tokens += self.wordpiece_tokenizer.tokenize(token)
else:
split_tokens = self.wordpiece_tokenizer.tokenize(text)
return split_tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
def create_attention_mask_from_sequences(self, query_ids: List[int], table_values: List[TableValue]) -> List[int]:
"""
Creates the attention mask according to the query token IDs and a list of table values.
Args:
query_ids (`List[int]`): list of token IDs corresponding to the ID.
table_values (`List[TableValue]`): lift of table values, which are named tuples containing the
token value, the column ID and the row ID of said token.
Returns:
`List[int]`: List of ints containing the attention mask values.
"""
return [1] * (1 + len(query_ids) + 1 + len(table_values))
def create_segment_token_type_ids_from_sequences(
self, query_ids: List[int], table_values: List[TableValue]
) -> List[int]:
"""
Creates the segment token type IDs according to the query token IDs and a list of table values.
Args:
query_ids (`List[int]`): list of token IDs corresponding to the ID.
table_values (`List[TableValue]`): lift of table values, which are named tuples containing the
token value, the column ID and the row ID of said token.
Returns:
`List[int]`: List of ints containing the segment token type IDs values.
"""
table_ids = list(zip(*table_values))[0] if table_values else []
return [0] * (1 + len(query_ids) + 1) + [1] * len(table_ids)
def create_column_token_type_ids_from_sequences(
self, query_ids: List[int], table_values: List[TableValue]
) -> List[int]:
"""
Creates the column token type IDs according to the query token IDs and a list of table values.
Args:
query_ids (`List[int]`): list of token IDs corresponding to the ID.
table_values (`List[TableValue]`): lift of table values, which are named tuples containing the
token value, the column ID and the row ID of said token.
Returns:
`List[int]`: List of ints containing the column token type IDs values.
"""
table_column_ids = list(zip(*table_values))[1] if table_values else []
return [0] * (1 + len(query_ids) + 1) + list(table_column_ids)
def create_row_token_type_ids_from_sequences(
self, query_ids: List[int], table_values: List[TableValue]
) -> List[int]:
"""
Creates the row token type IDs according to the query token IDs and a list of table values.
Args:
query_ids (`List[int]`): list of token IDs corresponding to the ID.
table_values (`List[TableValue]`): lift of table values, which are named tuples containing the
token value, the column ID and the row ID of said token.
Returns:
`List[int]`: List of ints containing the row token type IDs values.
"""
table_row_ids = list(zip(*table_values))[2] if table_values else []
return [0] * (1 + len(query_ids) + 1) + list(table_row_ids)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a question and flattened table for question answering or sequence classification tasks
by concatenating and adding special tokens.
Args:
token_ids_0 (`List[int]`): The ids of the question.
token_ids_1 (`List[int]`, *optional*): The ids of the flattened table.
Returns:
`List[int]`: The model input with special tokens.
"""
if token_ids_1 is None:
raise ValueError("With TAPAS, you must provide both question IDs and table IDs.")
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of question IDs.
token_ids_1 (`List[int]`, *optional*):
List of flattened table IDs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))
return [1] + ([0] * len(token_ids_0)) + [1]
@add_end_docstrings(TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def __call__(
self,
table: "pd.DataFrame",
queries: Optional[
Union[
TextInput,
PreTokenizedInput,
EncodedInput,
List[TextInput],
List[PreTokenizedInput],
List[EncodedInput],
]
] = None,
answer_coordinates: Optional[Union[List[Tuple], List[List[Tuple]]]] = None,
answer_text: Optional[Union[List[TextInput], List[List[TextInput]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TapasTruncationStrategy] = False,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) related to a table.
Args:
table (`pd.DataFrame`):
Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas
dataframe to convert it to string.
queries (`str` or `List[str]`):
Question or batch of questions related to a table to be encoded. Note that in case of a batch, all
questions must refer to the **same** table.
answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*):
Answer coordinates of each table-question pair in the batch. In case only a single table-question pair
is provided, then the answer_coordinates must be a single list of one or more tuples. Each tuple must
be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The
first column has index 0. In case a batch of table-question pairs is provided, then the
answer_coordinates must be a list of lists of tuples (each list corresponding to a single
table-question pair).
answer_text (`List[str]` or `List[List[str]]`, *optional*):
Answer text of each table-question pair in the batch. In case only a single table-question pair is
provided, then the answer_text must be a single list of one or more strings. Each string must be the
answer text of a corresponding answer coordinate. In case a batch of table-question pairs is provided,
then the answer_coordinates must be a list of lists of strings (each list corresponding to a single
table-question pair).
"""
assert isinstance(table, pd.DataFrame), "Table must be of type pd.DataFrame"
# Input type checking for clearer error
valid_query = False
# Check that query has a valid type
if queries is None or isinstance(queries, str):
valid_query = True
elif isinstance(queries, (list, tuple)):
if len(queries) == 0 or isinstance(queries[0], str):
valid_query = True
if not valid_query:
raise ValueError(
"queries input must of type `str` (single example), `List[str]` (batch or single pretokenized"
" example). "
)
is_batched = isinstance(queries, (list, tuple))
if is_batched:
return self.batch_encode_plus(
table=table,
queries=queries,
answer_coordinates=answer_coordinates,
answer_text=answer_text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
table=table,
query=queries,
answer_coordinates=answer_coordinates,
answer_text=answer_text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def batch_encode_plus(
self,
table: "pd.DataFrame",
queries: Optional[
Union[
List[TextInput],
List[PreTokenizedInput],
List[EncodedInput],
]
] = None,
answer_coordinates: Optional[List[List[Tuple]]] = None,
answer_text: Optional[List[List[TextInput]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TapasTruncationStrategy] = False,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Prepare a table and a list of strings for the model.
<Tip warning={true}>
This method is deprecated, `__call__` should be used instead.
</Tip>
Args:
table (`pd.DataFrame`):
Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas
dataframe to convert it to string.
queries (`List[str]`):
Batch of questions related to a table to be encoded. Note that all questions must refer to the **same**
table.
answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*):
Answer coordinates of each table-question pair in the batch. Each tuple must be a (row_index,
column_index) pair. The first data row (not the column header row) has index 0. The first column has
index 0. The answer_coordinates must be a list of lists of tuples (each list corresponding to a single
table-question pair).
answer_text (`List[str]` or `List[List[str]]`, *optional*):
Answer text of each table-question pair in the batch. In case a batch of table-question pairs is
provided, then the answer_coordinates must be a list of lists of strings (each list corresponding to a
single table-question pair). Each string must be the answer text of a corresponding answer coordinate.
"""
if return_token_type_ids is not None and not add_special_tokens:
raise ValueError(
"Asking to return token_type_ids while setting add_special_tokens to False "
"results in an undefined behavior. Please set add_special_tokens to True or "
"set return_token_type_ids to None."
)
if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text):
raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided")
elif answer_coordinates is None and answer_text is None:
answer_coordinates = answer_text = [None] * len(queries)
if "is_split_into_words" in kwargs:
raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.")
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
return self._batch_encode_plus(
table=table,
queries=queries,
answer_coordinates=answer_coordinates,
answer_text=answer_text,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _get_question_tokens(self, query):
"""Tokenizes the query, taking into account the max and min question length."""
query_tokens = self.tokenize(query)
if self.max_question_length is not None and len(query_tokens) > self.max_question_length:
logger.warning("Skipping query as its tokens are longer than the max question length")
return "", []
if self.min_question_length is not None and len(query_tokens) < self.min_question_length:
logger.warning("Skipping query as its tokens are shorter than the min question length")
return "", []
return query, query_tokens
def _batch_encode_plus(
self,
table,
queries: Union[
List[TextInput],
List[PreTokenizedInput],
List[EncodedInput],
],
answer_coordinates: Optional[List[List[Tuple]]] = None,
answer_text: Optional[List[List[TextInput]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TapasTruncationStrategy] = False,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = True,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
table_tokens = self._tokenize_table(table)
queries_tokens = []
for idx, query in enumerate(queries):
query, query_tokens = self._get_question_tokens(query)
queries[idx] = query
queries_tokens.append(query_tokens)
batch_outputs = self._batch_prepare_for_model(
table,
queries,
tokenized_table=table_tokens,
queries_tokens=queries_tokens,
answer_coordinates=answer_coordinates,
padding=padding,
truncation=truncation,
answer_text=answer_text,
add_special_tokens=add_special_tokens,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
return BatchEncoding(batch_outputs)
def _batch_prepare_for_model(
self,
raw_table: "pd.DataFrame",
raw_queries: Union[
List[TextInput],
List[PreTokenizedInput],
List[EncodedInput],
],
tokenized_table: Optional[TokenizedTable] = None,
queries_tokens: Optional[List[List[str]]] = None,
answer_coordinates: Optional[List[List[Tuple]]] = None,
answer_text: Optional[List[List[TextInput]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TapasTruncationStrategy] = False,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = True,
return_attention_mask: Optional[bool] = True,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
prepend_batch_axis: bool = False,
**kwargs,
) -> BatchEncoding:
batch_outputs = {}
for index, example in enumerate(zip(raw_queries, queries_tokens, answer_coordinates, answer_text)):
raw_query, query_tokens, answer_coords, answer_txt = example
outputs = self.prepare_for_model(
raw_table,
raw_query,
tokenized_table=tokenized_table,
query_tokens=query_tokens,
answer_coordinates=answer_coords,
answer_text=answer_txt,
add_special_tokens=add_special_tokens,
padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=None, # we pad in batch afterwards
return_attention_mask=False, # we pad in batch afterwards
return_token_type_ids=return_token_type_ids,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
return_tensors=None, # We convert the whole batch to tensors at the end
prepend_batch_axis=False,
verbose=verbose,
prev_answer_coordinates=answer_coordinates[index - 1] if index != 0 else None,
prev_answer_text=answer_text[index - 1] if index != 0 else None,
)
for key, value in outputs.items():
if key not in batch_outputs:
batch_outputs[key] = []
batch_outputs[key].append(value)
batch_outputs = self.pad(
batch_outputs,
padding=padding,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors)
return batch_outputs
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING)
def encode(
self,
table: "pd.DataFrame",
query: Optional[
Union[
TextInput,
PreTokenizedInput,
EncodedInput,
]
] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TapasTruncationStrategy] = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
**kwargs,
) -> List[int]:
"""
Prepare a table and a string for the model. This method does not return token type IDs, attention masks, etc.
which are necessary for the model to work correctly. Use that method if you want to build your processing on
your own, otherwise refer to `__call__`.
Args:
table (`pd.DataFrame`):
Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas
dataframe to convert it to string.
query (`str` or `List[str]`):
Question related to a table to be encoded.
"""
encoded_inputs = self.encode_plus(
table,
query=query,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
**kwargs,
)
return encoded_inputs["input_ids"]
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def encode_plus(
self,
table: "pd.DataFrame",
query: Optional[
Union[
TextInput,
PreTokenizedInput,
EncodedInput,
]
] = None,
answer_coordinates: Optional[List[Tuple]] = None,
answer_text: Optional[List[TextInput]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TapasTruncationStrategy] = False,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Prepare a table and a string for the model.
Args:
table (`pd.DataFrame`):
Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas
dataframe to convert it to string.
query (`str` or `List[str]`):
Question related to a table to be encoded.
answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*):
Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single
list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row
(not the column header row) has index 0. The first column has index 0.
answer_text (`List[str]` or `List[List[str]]`, *optional*):
Answer text of each table-question pair in the batch. The answer_text must be a single list of one or
more strings. Each string must be the answer text of a corresponding answer coordinate.
"""
if return_token_type_ids is not None and not add_special_tokens:
raise ValueError(
"Asking to return token_type_ids while setting add_special_tokens to False "
"results in an undefined behavior. Please set add_special_tokens to True or "
"set return_token_type_ids to None."
)
if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text):
raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided")
if "is_split_into_words" in kwargs:
raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.")
if return_offsets_mapping:
raise NotImplementedError(
"return_offset_mapping is not available when using Python tokenizers. "
"To use this feature, change your tokenizer to one deriving from "
"transformers.PreTrainedTokenizerFast."
)
return self._encode_plus(
table=table,
query=query,
answer_coordinates=answer_coordinates,
answer_text=answer_text,
add_special_tokens=add_special_tokens,
truncation=truncation,
padding=padding,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _encode_plus(
self,
table: "pd.DataFrame",
query: Union[
TextInput,
PreTokenizedInput,
EncodedInput,
],
answer_coordinates: Optional[List[Tuple]] = None,
answer_text: Optional[List[TextInput]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TapasTruncationStrategy] = False,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = True,
return_attention_mask: Optional[bool] = True,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
):
if query is None:
query = ""
logger.warning(
"TAPAS is a question answering model but you have not passed a query. Please be aware that the "
"model will probably not behave correctly."
)
table_tokens = self._tokenize_table(table)
query, query_tokens = self._get_question_tokens(query)
return self.prepare_for_model(
table,
query,
tokenized_table=table_tokens,
query_tokens=query_tokens,
answer_coordinates=answer_coordinates,
answer_text=answer_text,
add_special_tokens=add_special_tokens,
truncation=truncation,
padding=padding,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
return_tensors=return_tensors,
prepend_batch_axis=True,
return_attention_mask=return_attention_mask,
return_token_type_ids=return_token_type_ids,
return_special_tokens_mask=return_special_tokens_mask,
return_length=return_length,
verbose=verbose,
)
@add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def prepare_for_model(
self,
raw_table: "pd.DataFrame",
raw_query: Union[
TextInput,
PreTokenizedInput,
EncodedInput,
],
tokenized_table: Optional[TokenizedTable] = None,
query_tokens: Optional[TokenizedTable] = None,
answer_coordinates: Optional[List[Tuple]] = None,
answer_text: Optional[List[TextInput]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TapasTruncationStrategy] = False,
max_length: Optional[int] = None,
pad_to_multiple_of: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = True,
return_attention_mask: Optional[bool] = True,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
prepend_batch_axis: bool = False,
**kwargs,
) -> BatchEncoding:
"""
Prepares a sequence of input id so that it can be used by the model. It adds special tokens, truncates
sequences if overflowing while taking into account the special tokens.
Args:
raw_table (`pd.DataFrame`):
The original table before any transformation (like tokenization) was applied to it.
raw_query (`TextInput` or `PreTokenizedInput` or `EncodedInput`):
The original query before any transformation (like tokenization) was applied to it.
tokenized_table (`TokenizedTable`):
The table after tokenization.
query_tokens (`List[str]`):
The query after tokenization.
answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*):
Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single
list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row
(not the column header row) has index 0. The first column has index 0.
answer_text (`List[str]` or `List[List[str]]`, *optional*):
Answer text of each table-question pair in the batch. The answer_text must be a single list of one or
more strings. Each string must be the answer text of a corresponding answer coordinate.
"""
if isinstance(padding, bool):
if padding and (max_length is not None or pad_to_multiple_of is not None):
padding = PaddingStrategy.MAX_LENGTH
else:
padding = PaddingStrategy.DO_NOT_PAD
elif not isinstance(padding, PaddingStrategy):
padding = PaddingStrategy(padding)
if isinstance(truncation, bool):
if truncation:
truncation = TapasTruncationStrategy.DROP_ROWS_TO_FIT
else:
truncation = TapasTruncationStrategy.DO_NOT_TRUNCATE
elif not isinstance(truncation, TapasTruncationStrategy):
truncation = TapasTruncationStrategy(truncation)
encoded_inputs = {}
is_part_of_batch = False
prev_answer_coordinates, prev_answer_text = None, None
if "prev_answer_coordinates" in kwargs and "prev_answer_text" in kwargs:
is_part_of_batch = True
prev_answer_coordinates = kwargs["prev_answer_coordinates"]
prev_answer_text = kwargs["prev_answer_text"]
num_rows = self._get_num_rows(raw_table, truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE)
num_columns = self._get_num_columns(raw_table)
_, _, num_tokens = self._get_table_boundaries(tokenized_table)
if truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE:
num_rows, num_tokens = self._get_truncated_table_rows(
query_tokens, tokenized_table, num_rows, num_columns, max_length, truncation_strategy=truncation
)
table_data = list(self._get_table_values(tokenized_table, num_columns, num_rows, num_tokens))
query_ids = self.convert_tokens_to_ids(query_tokens)
table_ids = list(zip(*table_data))[0] if len(table_data) > 0 else list(zip(*table_data))
table_ids = self.convert_tokens_to_ids(list(table_ids))
if "return_overflowing_tokens" in kwargs and kwargs["return_overflowing_tokens"]:
raise ValueError("TAPAS does not return overflowing tokens as it works on tables.")
if add_special_tokens:
input_ids = self.build_inputs_with_special_tokens(query_ids, table_ids)
else:
input_ids = query_ids + table_ids
if max_length is not None and len(input_ids) > max_length:
raise ValueError(
"Could not encode the query and table header given the maximum length. Encoding the query and table "
f"header results in a length of {len(input_ids)} which is higher than the max_length of {max_length}"
)
encoded_inputs["input_ids"] = input_ids
segment_ids = self.create_segment_token_type_ids_from_sequences(query_ids, table_data)
column_ids = self.create_column_token_type_ids_from_sequences(query_ids, table_data)
row_ids = self.create_row_token_type_ids_from_sequences(query_ids, table_data)
if not is_part_of_batch or (prev_answer_coordinates is None and prev_answer_text is None):
# simply set the prev_labels to zeros
prev_labels = [0] * len(row_ids)
else:
prev_labels = self.get_answer_ids(
column_ids, row_ids, table_data, prev_answer_text, prev_answer_coordinates
)
# FIRST: parse both the table and question in terms of numeric values
raw_table = add_numeric_table_values(raw_table)
raw_query = add_numeric_values_to_question(raw_query)
# SECOND: add numeric-related features (and not parse them in these functions):
column_ranks, inv_column_ranks = self._get_numeric_column_ranks(column_ids, row_ids, raw_table)
numeric_relations = self._get_numeric_relations(raw_query, column_ids, row_ids, raw_table)
# Load from model defaults
if return_token_type_ids is None:
return_token_type_ids = "token_type_ids" in self.model_input_names
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
if return_attention_mask:
attention_mask = self.create_attention_mask_from_sequences(query_ids, table_data)
encoded_inputs["attention_mask"] = attention_mask
if answer_coordinates is not None and answer_text is not None:
labels = self.get_answer_ids(column_ids, row_ids, table_data, answer_text, answer_coordinates)
numeric_values = self._get_numeric_values(raw_table, column_ids, row_ids)
numeric_values_scale = self._get_numeric_values_scale(raw_table, column_ids, row_ids)
encoded_inputs["labels"] = labels
encoded_inputs["numeric_values"] = numeric_values
encoded_inputs["numeric_values_scale"] = numeric_values_scale
if return_token_type_ids:
token_type_ids = [
segment_ids,
column_ids,
row_ids,
prev_labels,
column_ranks,
inv_column_ranks,
numeric_relations,
]
token_type_ids = [list(ids) for ids in list(zip(*token_type_ids))]
encoded_inputs["token_type_ids"] = token_type_ids
if return_special_tokens_mask:
if add_special_tokens:
encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(query_ids, table_ids)
else:
encoded_inputs["special_tokens_mask"] = [0] * len(input_ids)
# Check lengths
if max_length is None and len(encoded_inputs["input_ids"]) > self.model_max_length and verbose:
if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False):
logger.warning(
"Token indices sequence length is longer than the specified maximum sequence length "
f"for this model ({len(encoded_inputs['input_ids'])} > {self.model_max_length}). Running this "
"sequence through the model will result in indexing errors."
)
self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True
# Padding
if padding != PaddingStrategy.DO_NOT_PAD or return_attention_mask:
encoded_inputs = self.pad(
encoded_inputs,
max_length=max_length,
padding=padding.value,
pad_to_multiple_of=pad_to_multiple_of,
return_attention_mask=return_attention_mask,
)
if return_length:
encoded_inputs["length"] = len(encoded_inputs["input_ids"])
batch_outputs = BatchEncoding(
encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis
)
return batch_outputs
def _get_truncated_table_rows(
self,
query_tokens: List[str],
tokenized_table: TokenizedTable,
num_rows: int,
num_columns: int,
max_length: int,
truncation_strategy: Union[str, TapasTruncationStrategy],
) -> Tuple[int, int]:
"""
Truncates a sequence pair in-place following the strategy.
Args:
query_tokens (`List[str]`):
List of strings corresponding to the tokenized query.
tokenized_table (`TokenizedTable`):
Tokenized table
num_rows (`int`):
Total number of table rows
num_columns (`int`):
Total number of table columns
max_length (`int`):
Total maximum length.
truncation_strategy (`str` or [`TapasTruncationStrategy`]):
Truncation strategy to use. Seeing as this method should only be called when truncating, the only
available strategy is the `"drop_rows_to_fit"` strategy.
Returns:
`Tuple(int, int)`: tuple containing the number of rows after truncation, and the number of tokens available
for each table element.
"""
if not isinstance(truncation_strategy, TapasTruncationStrategy):
truncation_strategy = TapasTruncationStrategy(truncation_strategy)
if max_length is None:
max_length = self.model_max_length
if truncation_strategy == TapasTruncationStrategy.DROP_ROWS_TO_FIT:
while True:
num_tokens = self._get_max_num_tokens(
query_tokens, tokenized_table, num_rows=num_rows, num_columns=num_columns, max_length=max_length
)
if num_tokens is not None:
# We could fit the table.
break
# Try to drop a row to fit the table.
num_rows -= 1
if num_rows < 1:
break
elif truncation_strategy != TapasTruncationStrategy.DO_NOT_TRUNCATE:
raise ValueError(f"Unknown truncation strategy {truncation_strategy}.")
return num_rows, num_tokens or 1
def _tokenize_table(
self,
table=None,
):
"""
Tokenizes column headers and cell texts of a table.
Args:
table (`pd.Dataframe`):
Table. Returns: `TokenizedTable`: TokenizedTable object.
"""
tokenized_rows = []
tokenized_row = []
# tokenize column headers
for column in table:
if self.strip_column_names:
tokenized_row.append(self.tokenize(""))
else:
tokenized_row.append(self.tokenize(column))
tokenized_rows.append(tokenized_row)
# tokenize cell values
for idx, row in table.iterrows():
tokenized_row = []
for cell in row:
tokenized_row.append(self.tokenize(cell))
tokenized_rows.append(tokenized_row)
token_coordinates = []
for row_index, row in enumerate(tokenized_rows):
for column_index, cell in enumerate(row):
for token_index, _ in enumerate(cell):
token_coordinates.append(
TokenCoordinates(
row_index=row_index,
column_index=column_index,
token_index=token_index,
)
)
return TokenizedTable(
rows=tokenized_rows,
selected_tokens=token_coordinates,
)
def _question_encoding_cost(self, question_tokens):
# Two extra spots of SEP and CLS.
return len(question_tokens) + 2
def _get_token_budget(self, question_tokens, max_length=None):
"""
Computes the number of tokens left for the table after tokenizing a question, taking into account the max
sequence length of the model.
Args:
question_tokens (`List[String]`):
List of question tokens. Returns: `int`: the number of tokens left for the table, given the model max
length.
"""
return (max_length if max_length is not None else self.model_max_length) - self._question_encoding_cost(
question_tokens
)
def _get_table_values(self, table, num_columns, num_rows, num_tokens) -> Generator[TableValue, None, None]:
"""Iterates over partial table and returns token, column and row indexes."""
for tc in table.selected_tokens:
# First row is header row.
if tc.row_index >= num_rows + 1:
continue
if tc.column_index >= num_columns:
continue
cell = table.rows[tc.row_index][tc.column_index]
token = cell[tc.token_index]
word_begin_index = tc.token_index
# Don't add partial words. Find the starting word piece and check if it
# fits in the token budget.
while word_begin_index >= 0 and _is_inner_wordpiece(cell[word_begin_index]):
word_begin_index -= 1
if word_begin_index >= num_tokens:
continue
yield TableValue(token, tc.column_index + 1, tc.row_index)
def _get_table_boundaries(self, table):
"""Return maximal number of rows, columns and tokens."""
max_num_tokens = 0
max_num_columns = 0
max_num_rows = 0
for tc in table.selected_tokens:
max_num_columns = max(max_num_columns, tc.column_index + 1)
max_num_rows = max(max_num_rows, tc.row_index + 1)
max_num_tokens = max(max_num_tokens, tc.token_index + 1)
max_num_columns = min(self.max_column_id, max_num_columns)
max_num_rows = min(self.max_row_id, max_num_rows)
return max_num_rows, max_num_columns, max_num_tokens
def _get_table_cost(self, table, num_columns, num_rows, num_tokens):
return sum(1 for _ in self._get_table_values(table, num_columns, num_rows, num_tokens))
def _get_max_num_tokens(self, question_tokens, tokenized_table, num_columns, num_rows, max_length):
"""Computes max number of tokens that can be squeezed into the budget."""
token_budget = self._get_token_budget(question_tokens, max_length)
_, _, max_num_tokens = self._get_table_boundaries(tokenized_table)
if self.cell_trim_length >= 0 and max_num_tokens > self.cell_trim_length:
max_num_tokens = self.cell_trim_length
num_tokens = 0
for num_tokens in range(max_num_tokens + 1):
cost = self._get_table_cost(tokenized_table, num_columns, num_rows, num_tokens + 1)
if cost > token_budget:
break
if num_tokens < max_num_tokens:
if self.cell_trim_length >= 0:
# We don't allow dynamic trimming if a cell_trim_length is set.
return None
if num_tokens == 0:
return None
return num_tokens
def _get_num_columns(self, table):
num_columns = table.shape[1]
if num_columns >= self.max_column_id:
raise ValueError("Too many columns")
return num_columns
def _get_num_rows(self, table, drop_rows_to_fit):
num_rows = table.shape[0]
if num_rows >= self.max_row_id:
if drop_rows_to_fit:
num_rows = self.max_row_id - 1
else:
raise ValueError("Too many rows")
return num_rows
def _serialize_text(self, question_tokens):
"""Serializes texts in index arrays."""
tokens = []
segment_ids = []
column_ids = []
row_ids = []
# add [CLS] token at the beginning
tokens.append(self.cls_token)
segment_ids.append(0)
column_ids.append(0)
row_ids.append(0)
for token in question_tokens:
tokens.append(token)
segment_ids.append(0)
column_ids.append(0)
row_ids.append(0)
return tokens, segment_ids, column_ids, row_ids
def _serialize(
self,
question_tokens,
table,
num_columns,
num_rows,
num_tokens,
):
"""Serializes table and text."""
tokens, segment_ids, column_ids, row_ids = self._serialize_text(question_tokens)
# add [SEP] token between question and table tokens
tokens.append(self.sep_token)
segment_ids.append(0)
column_ids.append(0)
row_ids.append(0)
for token, column_id, row_id in self._get_table_values(table, num_columns, num_rows, num_tokens):
tokens.append(token)
segment_ids.append(1)
column_ids.append(column_id)
row_ids.append(row_id)
return SerializedExample(
tokens=tokens,
segment_ids=segment_ids,
column_ids=column_ids,
row_ids=row_ids,
)
def _get_column_values(self, table, col_index):
table_numeric_values = {}
for row_index, row in table.iterrows():
cell = row[col_index]
if cell.numeric_value is not None:
table_numeric_values[row_index] = cell.numeric_value
return table_numeric_values
def _get_cell_token_indexes(self, column_ids, row_ids, column_id, row_id):
for index in range(len(column_ids)):
if column_ids[index] - 1 == column_id and row_ids[index] - 1 == row_id:
yield index
def _get_numeric_column_ranks(self, column_ids, row_ids, table):
"""Returns column ranks for all numeric columns."""
ranks = [0] * len(column_ids)
inv_ranks = [0] * len(column_ids)
# original code from tf_example_utils.py of the original implementation
if table is not None:
for col_index in range(len(table.columns)):
table_numeric_values = self._get_column_values(table, col_index)
if not table_numeric_values:
continue
try:
key_fn = get_numeric_sort_key_fn(table_numeric_values.values())
except ValueError:
continue
table_numeric_values = {row_index: key_fn(value) for row_index, value in table_numeric_values.items()}
table_numeric_values_inv = collections.defaultdict(list)
for row_index, value in table_numeric_values.items():
table_numeric_values_inv[value].append(row_index)
unique_values = sorted(table_numeric_values_inv.keys())
for rank, value in enumerate(unique_values):
for row_index in table_numeric_values_inv[value]:
for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index):
ranks[index] = rank + 1
inv_ranks[index] = len(unique_values) - rank
return ranks, inv_ranks
def _get_numeric_sort_key_fn(self, table_numeric_values, value):
"""
Returns the sort key function for comparing value to table values. The function returned will be a suitable
input for the key param of the sort(). See number_annotation_utils._get_numeric_sort_key_fn for details
Args:
table_numeric_values: Numeric values of a column
value: Numeric value in the question
Returns:
A function key function to compare column and question values.
"""
if not table_numeric_values:
return None
all_values = list(table_numeric_values.values())
all_values.append(value)
try:
return get_numeric_sort_key_fn(all_values)
except ValueError:
return None
def _get_numeric_relations(self, question, column_ids, row_ids, table):
"""
Returns numeric relations embeddings
Args:
question: Question object.
column_ids: Maps word piece position to column id.
row_ids: Maps word piece position to row id.
table: The table containing the numeric cell values.
"""
numeric_relations = [0] * len(column_ids)
# first, we add any numeric value spans to the question:
# Create a dictionary that maps a table cell to the set of all relations
# this cell has with any value in the question.
cell_indices_to_relations = collections.defaultdict(set)
if question is not None and table is not None:
for numeric_value_span in question.numeric_spans:
for value in numeric_value_span.values:
for column_index in range(len(table.columns)):
table_numeric_values = self._get_column_values(table, column_index)
sort_key_fn = self._get_numeric_sort_key_fn(table_numeric_values, value)
if sort_key_fn is None:
continue
for row_index, cell_value in table_numeric_values.items():
relation = get_numeric_relation(value, cell_value, sort_key_fn)
if relation is not None:
cell_indices_to_relations[column_index, row_index].add(relation)
# For each cell add a special feature for all its word pieces.
for (column_index, row_index), relations in cell_indices_to_relations.items():
relation_set_index = 0
for relation in relations:
assert relation.value >= Relation.EQ.value
relation_set_index += 2 ** (relation.value - Relation.EQ.value)
for cell_token_index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index):
numeric_relations[cell_token_index] = relation_set_index
return numeric_relations
def _get_numeric_values(self, table, column_ids, row_ids):
"""Returns numeric values for computation of answer loss."""
numeric_values = [float("nan")] * len(column_ids)
if table is not None:
num_rows = table.shape[0]
num_columns = table.shape[1]
for col_index in range(num_columns):
for row_index in range(num_rows):
numeric_value = table.iloc[row_index, col_index].numeric_value
if numeric_value is not None:
if numeric_value.float_value is None:
continue
float_value = numeric_value.float_value
if float_value == float("inf"):
continue
for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index):
numeric_values[index] = float_value
return numeric_values
def _get_numeric_values_scale(self, table, column_ids, row_ids):
"""Returns a scale to each token to down weigh the value of long words."""
numeric_values_scale = [1.0] * len(column_ids)
if table is None:
return numeric_values_scale
num_rows = table.shape[0]
num_columns = table.shape[1]
for col_index in range(num_columns):
for row_index in range(num_rows):
indices = list(self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index))
num_indices = len(indices)
if num_indices > 1:
for index in indices:
numeric_values_scale[index] = float(num_indices)
return numeric_values_scale
def _pad_to_seq_length(self, inputs):
while len(inputs) > self.model_max_length:
inputs.pop()
while len(inputs) < self.model_max_length:
inputs.append(0)
def _get_all_answer_ids_from_coordinates(
self,
column_ids,
row_ids,
answers_list,
):
"""Maps lists of answer coordinates to token indexes."""
answer_ids = [0] * len(column_ids)
found_answers = set()
all_answers = set()
for answers in answers_list:
column_index, row_index = answers
all_answers.add((column_index, row_index))
for index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index):
found_answers.add((column_index, row_index))
answer_ids[index] = 1
missing_count = len(all_answers) - len(found_answers)
return answer_ids, missing_count
def _get_all_answer_ids(self, column_ids, row_ids, answer_coordinates):
"""
Maps answer coordinates of a question to token indexes.
In the SQA format (TSV), the coordinates are given as (row, column) tuples. Here, we first swap them to
(column, row) format before calling _get_all_answer_ids_from_coordinates.
"""
def _to_coordinates(answer_coordinates_question):
return [(coords[1], coords[0]) for coords in answer_coordinates_question]
return self._get_all_answer_ids_from_coordinates(
column_ids, row_ids, answers_list=(_to_coordinates(answer_coordinates))
)
def _find_tokens(self, text, segment):
"""Return start index of segment in text or None."""
logging.info(f"text: {text} {segment}")
for index in range(1 + len(text) - len(segment)):
for seg_index, seg_token in enumerate(segment):
if text[index + seg_index].piece != seg_token.piece:
break
else:
return index
return None
def _find_answer_coordinates_from_answer_text(
self,
tokenized_table,
answer_text,
):
"""Returns all occurrences of answer_text in the table."""
logging.info(f"answer text: {answer_text}")
for row_index, row in enumerate(tokenized_table.rows):
if row_index == 0:
# We don't search for answers in the header.
continue
for col_index, cell in enumerate(row):
token_index = self._find_tokens(cell, answer_text)
if token_index is not None:
yield TokenCoordinates(
row_index=row_index,
column_index=col_index,
token_index=token_index,
)
def _find_answer_ids_from_answer_texts(
self,
column_ids,
row_ids,
tokenized_table,
answer_texts,
):
"""Maps question with answer texts to the first matching token indexes."""
answer_ids = [0] * len(column_ids)
for answer_text in answer_texts:
for coordinates in self._find_answer_coordinates_from_answer_text(
tokenized_table,
answer_text,
):
# Maps answer coordinates to indexes this can fail if tokens / rows have
# been pruned.
indexes = list(
self._get_cell_token_indexes(
column_ids,
row_ids,
column_id=coordinates.column_index,
row_id=coordinates.row_index - 1,
)
)
indexes.sort()
coordinate_answer_ids = []
if indexes:
begin_index = coordinates.token_index + indexes[0]
end_index = begin_index + len(answer_text)
for index in indexes:
if index >= begin_index and index < end_index:
coordinate_answer_ids.append(index)
if len(coordinate_answer_ids) == len(answer_text):
for index in coordinate_answer_ids:
answer_ids[index] = 1
break
return answer_ids
def _get_answer_ids(self, column_ids, row_ids, answer_coordinates):
"""Maps answer coordinates of a question to token indexes."""
answer_ids, missing_count = self._get_all_answer_ids(column_ids, row_ids, answer_coordinates)
if missing_count:
raise ValueError("Couldn't find all answers")
return answer_ids
def get_answer_ids(self, column_ids, row_ids, tokenized_table, answer_texts_question, answer_coordinates_question):
if self.update_answer_coordinates:
return self._find_answer_ids_from_answer_texts(
column_ids,
row_ids,
tokenized_table,
answer_texts=[self.tokenize(at) for at in answer_texts_question],
)
return self._get_answer_ids(column_ids, row_ids, answer_coordinates_question)
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(encoded_inputs["input_ids"])
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = (
padding_strategy != PaddingStrategy.DO_NOT_PAD and len(encoded_inputs["input_ids"]) != max_length
)
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"])
if needs_to_be_padded:
difference = max_length - len(encoded_inputs["input_ids"])
if self.padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] + [[self.pad_token_type_id] * 7] * difference
)
if "labels" in encoded_inputs:
encoded_inputs["labels"] = encoded_inputs["labels"] + [0] * difference
if "numeric_values" in encoded_inputs:
encoded_inputs["numeric_values"] = encoded_inputs["numeric_values"] + [float("nan")] * difference
if "numeric_values_scale" in encoded_inputs:
encoded_inputs["numeric_values_scale"] = (
encoded_inputs["numeric_values_scale"] + [1.0] * difference
)
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference
elif self.padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [[self.pad_token_type_id] * 7] * difference + encoded_inputs[
"token_type_ids"
]
if "labels" in encoded_inputs:
encoded_inputs["labels"] = [0] * difference + encoded_inputs["labels"]
if "numeric_values" in encoded_inputs:
encoded_inputs["numeric_values"] = [float("nan")] * difference + encoded_inputs["numeric_values"]
if "numeric_values_scale" in encoded_inputs:
encoded_inputs["numeric_values_scale"] = [1.0] * difference + encoded_inputs[
"numeric_values_scale"
]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side))
return encoded_inputs
# Everything related to converting logits to predictions
def _get_cell_token_probs(self, probabilities, segment_ids, row_ids, column_ids):
for i, p in enumerate(probabilities):
segment_id = segment_ids[i]
col = column_ids[i] - 1
row = row_ids[i] - 1
if col >= 0 and row >= 0 and segment_id == 1:
yield i, p
def _get_mean_cell_probs(self, probabilities, segment_ids, row_ids, column_ids):
"""Computes average probability per cell, aggregating over tokens."""
coords_to_probs = collections.defaultdict(list)
for i, prob in self._get_cell_token_probs(probabilities, segment_ids, row_ids, column_ids):
col = column_ids[i] - 1
row = row_ids[i] - 1
coords_to_probs[(col, row)].append(prob)
return {coords: np.array(cell_probs).mean() for coords, cell_probs in coords_to_probs.items()}
def convert_logits_to_predictions(self, data, logits, logits_agg=None, cell_classification_threshold=0.5):
"""
Converts logits of [`TapasForQuestionAnswering`] to actual predicted answer coordinates and optional
aggregation indices.
The original implementation, on which this function is based, can be found
[here](https://github.com/google-research/tapas/blob/4908213eb4df7aa988573350278b44c4dbe3f71b/tapas/experiments/prediction_utils.py#L288).
Args:
data (`dict`):
Dictionary mapping features to actual values. Should be created using [`TapasTokenizer`].
logits (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
Tensor containing the logits at the token level.
logits_agg (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, num_aggregation_labels)`, *optional*):
Tensor containing the aggregation logits.
cell_classification_threshold (`float`, *optional*, defaults to 0.5):
Threshold to be used for cell selection. All table cells for which their probability is larger than
this threshold will be selected.
Returns:
`tuple` comprising various elements depending on the inputs:
- predicted_answer_coordinates (`List[List[[tuple]]` of length `batch_size`): Predicted answer coordinates
as a list of lists of tuples. Each element in the list contains the predicted answer coordinates of a
single example in the batch, as a list of tuples. Each tuple is a cell, i.e. (row index, column index).
- predicted_aggregation_indices (`List[int]`of length `batch_size`, *optional*, returned when
`logits_aggregation` is provided): Predicted aggregation operator indices of the aggregation head.
"""
# converting to numpy arrays to work with PT/TF
logits = logits.numpy()
if logits_agg is not None:
logits_agg = logits_agg.numpy()
data = {key: value.numpy() for key, value in data.items() if key != "training"}
# input data is of type float32
# np.log(np.finfo(np.float32).max) = 88.72284
# Any value over 88.72284 will overflow when passed through the exponential, sending a warning
# We disable this warning by truncating the logits.
logits[logits < -88.7] = -88.7
# Compute probabilities from token logits
probabilities = 1 / (1 + np.exp(-logits)) * data["attention_mask"]
token_types = [
"segment_ids",
"column_ids",
"row_ids",
"prev_labels",
"column_ranks",
"inv_column_ranks",
"numeric_relations",
]
# collect input_ids, segment ids, row ids and column ids of batch. Shape (batch_size, seq_len)
input_ids = data["input_ids"]
segment_ids = data["token_type_ids"][:, :, token_types.index("segment_ids")]
row_ids = data["token_type_ids"][:, :, token_types.index("row_ids")]
column_ids = data["token_type_ids"][:, :, token_types.index("column_ids")]
# next, get answer coordinates for every example in the batch
num_batch = input_ids.shape[0]
predicted_answer_coordinates = []
for i in range(num_batch):
probabilities_example = probabilities[i].tolist()
segment_ids_example = segment_ids[i]
row_ids_example = row_ids[i]
column_ids_example = column_ids[i]
max_width = column_ids_example.max()
max_height = row_ids_example.max()
if max_width == 0 and max_height == 0:
continue
cell_coords_to_prob = self._get_mean_cell_probs(
probabilities_example,
segment_ids_example.tolist(),
row_ids_example.tolist(),
column_ids_example.tolist(),
)
# Select the answers above the classification threshold.
answer_coordinates = []
for col in range(max_width):
for row in range(max_height):
cell_prob = cell_coords_to_prob.get((col, row), None)
if cell_prob is not None:
if cell_prob > cell_classification_threshold:
answer_coordinates.append((row, col))
answer_coordinates = sorted(answer_coordinates)
predicted_answer_coordinates.append(answer_coordinates)
output = (predicted_answer_coordinates,)
if logits_agg is not None:
predicted_aggregation_indices = logits_agg.argmax(axis=-1)
output = (predicted_answer_coordinates, predicted_aggregation_indices.tolist())
return output
# End of everything related to converting logits to predictions
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer(object):
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer(object):
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
# Below: utilities for TAPAS tokenizer (independent from PyTorch/Tensorflow).
# This includes functions to parse numeric values (dates and numbers) from both the table and questions in order
# to create the column_ranks, inv_column_ranks, numeric_values, numeric values_scale and numeric_relations in
# prepare_for_model of TapasTokenizer.
# These are meant to be used in an academic setup, for production use cases Gold mine or Aqua should be used.
# taken from constants.py of the original implementation
# URL: https://github.com/google-research/tapas/blob/master/tapas/utils/constants.py
class Relation(enum.Enum):
HEADER_TO_CELL = 1 # Connects header to cell.
CELL_TO_HEADER = 2 # Connects cell to header.
QUERY_TO_HEADER = 3 # Connects query to headers.
QUERY_TO_CELL = 4 # Connects query to cells.
ROW_TO_CELL = 5 # Connects row to cells.
CELL_TO_ROW = 6 # Connects cells to row.
EQ = 7 # Annotation value is same as cell value
LT = 8 # Annotation value is less than cell value
GT = 9 # Annotation value is greater than cell value
@dataclass
class Date:
year: Optional[int] = None
month: Optional[int] = None
day: Optional[int] = None
@dataclass
class NumericValue:
float_value: Optional[float] = None
date: Optional[Date] = None
@dataclass
class NumericValueSpan:
begin_index: int = None
end_index: int = None
values: List[NumericValue] = None
@dataclass
class Cell:
text: Text
numeric_value: Optional[NumericValue] = None
@dataclass
class Question:
original_text: Text # The original raw question string.
text: Text # The question string after normalization.
numeric_spans: Optional[List[NumericValueSpan]] = None
# Below: all functions from number_utils.py as well as 2 functions (namely get_all_spans and normalize_for_match)
# from text_utils.py of the original implementation. URL's:
# - https://github.com/google-research/tapas/blob/master/tapas/utils/number_utils.py
# - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py
# Constants for parsing date expressions.
# Masks that specify (by a bool) which of (year, month, day) will be populated.
_DateMask = collections.namedtuple("_DateMask", ["year", "month", "day"])
_YEAR = _DateMask(True, False, False)
_YEAR_MONTH = _DateMask(True, True, False)
_YEAR_MONTH_DAY = _DateMask(True, True, True)
_MONTH = _DateMask(False, True, False)
_MONTH_DAY = _DateMask(False, True, True)
# Pairs of patterns to pass to 'datetime.strptime' and masks specifying which
# fields will be set by the corresponding pattern.
_DATE_PATTERNS = (
("%B", _MONTH),
("%Y", _YEAR),
("%Ys", _YEAR),
("%b %Y", _YEAR_MONTH),
("%B %Y", _YEAR_MONTH),
("%B %d", _MONTH_DAY),
("%b %d", _MONTH_DAY),
("%d %b", _MONTH_DAY),
("%d %B", _MONTH_DAY),
("%B %d, %Y", _YEAR_MONTH_DAY),
("%d %B %Y", _YEAR_MONTH_DAY),
("%m-%d-%Y", _YEAR_MONTH_DAY),
("%Y-%m-%d", _YEAR_MONTH_DAY),
("%Y-%m", _YEAR_MONTH),
("%B %Y", _YEAR_MONTH),
("%d %b %Y", _YEAR_MONTH_DAY),
("%Y-%m-%d", _YEAR_MONTH_DAY),
("%b %d, %Y", _YEAR_MONTH_DAY),
("%d.%m.%Y", _YEAR_MONTH_DAY),
("%A, %b %d", _MONTH_DAY),
("%A, %B %d", _MONTH_DAY),
)
# This mapping is used to convert date patterns to regex patterns.
_FIELD_TO_REGEX = (
("%A", r"\w+"), # Weekday as locale’s full name.
("%B", r"\w+"), # Month as locale’s full name.
("%Y", r"\d{4}"), # Year with century as a decimal number.
("%b", r"\w{3}"), # Month as locale’s abbreviated name.
("%d", r"\d{1,2}"), # Day of the month as a zero-padded decimal number.
("%m", r"\d{1,2}"), # Month as a zero-padded decimal number.
)
def _process_date_pattern(dp):
"""Compute a regex for each date pattern to use as a prefilter."""
pattern, mask = dp
regex = pattern
regex = regex.replace(".", re.escape("."))
regex = regex.replace("-", re.escape("-"))
regex = regex.replace(" ", r"\s+")
for field, field_regex in _FIELD_TO_REGEX:
regex = regex.replace(field, field_regex)
# Make sure we didn't miss any of the fields.
assert "%" not in regex, regex
return pattern, mask, re.compile("^" + regex + "$")
def _process_date_patterns():
return tuple(_process_date_pattern(dp) for dp in _DATE_PATTERNS)
_PROCESSED_DATE_PATTERNS = _process_date_patterns()
_MAX_DATE_NGRAM_SIZE = 5
# Following DynSp:
# https://github.com/Microsoft/DynSP/blob/master/util.py#L414.
_NUMBER_WORDS = [
"zero",
"one",
"two",
"three",
"four",
"five",
"six",
"seven",
"eight",
"nine",
"ten",
"eleven",
"twelve",
]
_ORDINAL_WORDS = [
"zeroth",
"first",
"second",
"third",
"fourth",
"fith",
"sixth",
"seventh",
"eighth",
"ninth",
"tenth",
"eleventh",
"twelfth",
]
_ORDINAL_SUFFIXES = ["st", "nd", "rd", "th"]
_NUMBER_PATTERN = re.compile(r"((^|\s)[+-])?((\.\d+)|(\d+(,\d\d\d)*(\.\d*)?))")
# Following DynSp:
# https://github.com/Microsoft/DynSP/blob/master/util.py#L293.
_MIN_YEAR = 1700
_MAX_YEAR = 2016
_INF = float("INF")
def _get_numeric_value_from_date(date, mask):
"""Converts date (datetime Python object) to a NumericValue object with a Date object value."""
if date.year < _MIN_YEAR or date.year > _MAX_YEAR:
raise ValueError(f"Invalid year: {date.year}")
new_date = Date()
if mask.year:
new_date.year = date.year
if mask.month:
new_date.month = date.month
if mask.day:
new_date.day = date.day
return NumericValue(date=new_date)
def _get_span_length_key(span):
"""Sorts span by decreasing length first and increasing first index second."""
return span[1] - span[0], -span[0]
def _get_numeric_value_from_float(value):
"""Converts float (Python) to a NumericValue object with a float value."""
return NumericValue(float_value=value)
# Doesn't parse ordinal expressions such as '18th of february 1655'.
def _parse_date(text):
"""Attempts to format a text as a standard date string (yyyy-mm-dd)."""
text = re.sub(r"Sept\b", "Sep", text)
for in_pattern, mask, regex in _PROCESSED_DATE_PATTERNS:
if not regex.match(text):
continue
try:
date = datetime.datetime.strptime(text, in_pattern).date()
except ValueError:
continue
try:
return _get_numeric_value_from_date(date, mask)
except ValueError:
continue
return None
def _parse_number(text):
"""Parses simple cardinal and ordinals numbers."""
for suffix in _ORDINAL_SUFFIXES:
if text.endswith(suffix):
text = text[: -len(suffix)]
break
text = text.replace(",", "")
try:
value = float(text)
except ValueError:
return None
if math.isnan(value):
return None
if value == _INF:
return None
return value
def get_all_spans(text, max_ngram_length):
"""
Split a text into all possible ngrams up to 'max_ngram_length'. Split points are white space and punctuation.
Args:
text: Text to split.
max_ngram_length: maximal ngram length.
Yields:
Spans, tuples of begin-end index.
"""
start_indexes = []
for index, char in enumerate(text):
if not char.isalnum():
continue
if index == 0 or not text[index - 1].isalnum():
start_indexes.append(index)
if index + 1 == len(text) or not text[index + 1].isalnum():
for start_index in start_indexes[-max_ngram_length:]:
yield start_index, index + 1
def normalize_for_match(text):
return " ".join(text.lower().split())
def format_text(text):
"""Lowercases and strips punctuation."""
text = text.lower().strip()
if text == "n/a" or text == "?" or text == "nan":
text = EMPTY_TEXT
text = re.sub(r"[^\w\d]+", " ", text).replace("_", " ")
text = " ".join(text.split())
text = text.strip()
if text:
return text
return EMPTY_TEXT
def parse_text(text):
"""
Extracts longest number and date spans.
Args:
text: text to annotate
Returns:
List of longest numeric value spans.
"""
span_dict = collections.defaultdict(list)
for match in _NUMBER_PATTERN.finditer(text):
span_text = text[match.start() : match.end()]
number = _parse_number(span_text)
if number is not None:
span_dict[match.span()].append(_get_numeric_value_from_float(number))
for begin_index, end_index in get_all_spans(text, max_ngram_length=1):
if (begin_index, end_index) in span_dict:
continue
span_text = text[begin_index:end_index]
number = _parse_number(span_text)
if number is not None:
span_dict[begin_index, end_index].append(_get_numeric_value_from_float(number))
for number, word in enumerate(_NUMBER_WORDS):
if span_text == word:
span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number)))
break
for number, word in enumerate(_ORDINAL_WORDS):
if span_text == word:
span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number)))
break
for begin_index, end_index in get_all_spans(text, max_ngram_length=_MAX_DATE_NGRAM_SIZE):
span_text = text[begin_index:end_index]
date = _parse_date(span_text)
if date is not None:
span_dict[begin_index, end_index].append(date)
spans = sorted(span_dict.items(), key=lambda span_value: _get_span_length_key(span_value[0]), reverse=True)
selected_spans = []
for span, value in spans:
for selected_span, _ in selected_spans:
if selected_span[0] <= span[0] and span[1] <= selected_span[1]:
break
else:
selected_spans.append((span, value))
selected_spans.sort(key=lambda span_value: span_value[0][0])
numeric_value_spans = []
for span, values in selected_spans:
numeric_value_spans.append(NumericValueSpan(begin_index=span[0], end_index=span[1], values=values))
return numeric_value_spans
# Below: all functions from number_annotation_utils.py and 2 functions (namely filter_invalid_unicode
# and filter_invalid_unicode_from_table) from text_utils.py of the original implementation. URL's:
# - https://github.com/google-research/tapas/blob/master/tapas/utils/number_annotation_utils.py
# - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py
_PrimitiveNumericValue = Union[float, Tuple[Optional[float], Optional[float], Optional[float]]]
_SortKeyFn = Callable[[NumericValue], Tuple[float, Ellipsis]]
_DATE_TUPLE_SIZE = 3
EMPTY_TEXT = "EMPTY"
NUMBER_TYPE = "number"
DATE_TYPE = "date"
def _get_value_type(numeric_value):
if numeric_value.float_value is not None:
return NUMBER_TYPE
elif numeric_value.date is not None:
return DATE_TYPE
raise ValueError(f"Unknown type: {numeric_value}")
def _get_value_as_primitive_value(numeric_value):
"""Maps a NumericValue proto to a float or tuple of float."""
if numeric_value.float_value is not None:
return numeric_value.float_value
if numeric_value.date is not None:
date = numeric_value.date
value_tuple = [None, None, None]
# All dates fields are cased to float to produce a simple primitive value.
if date.year is not None:
value_tuple[0] = float(date.year)
if date.month is not None:
value_tuple[1] = float(date.month)
if date.day is not None:
value_tuple[2] = float(date.day)
return tuple(value_tuple)
raise ValueError(f"Unknown type: {numeric_value}")
def _get_all_types(numeric_values):
return {_get_value_type(value) for value in numeric_values}
def get_numeric_sort_key_fn(numeric_values):
"""
Creates a function that can be used as a sort key or to compare the values. Maps to primitive types and finds the
biggest common subset. Consider the values "05/05/2010" and "August 2007". With the corresponding primitive values
(2010.,5.,5.) and (2007.,8., None). These values can be compared by year and date so we map to the sequence (2010.,
5.), (2007., 8.). If we added a third value "2006" with primitive value (2006., None, None), we could only compare
by the year so we would map to (2010.,), (2007.,) and (2006.,).
Args:
numeric_values: Values to compare
Returns:
A function that can be used as a sort key function (mapping numeric values to a comparable tuple)
Raises:
ValueError if values don't have a common type or are not comparable.
"""
value_types = _get_all_types(numeric_values)
if len(value_types) != 1:
raise ValueError(f"No common value type in {numeric_values}")
value_type = next(iter(value_types))
if value_type == NUMBER_TYPE:
# Primitive values are simple floats, nothing to do here.
return _get_value_as_primitive_value
# The type can only be Date at this point which means the primitive type
# is a float triple.
valid_indexes = set(range(_DATE_TUPLE_SIZE))
for numeric_value in numeric_values:
value = _get_value_as_primitive_value(numeric_value)
assert isinstance(value, tuple)
for tuple_index, inner_value in enumerate(value):
if inner_value is None:
valid_indexes.discard(tuple_index)
if not valid_indexes:
raise ValueError(f"No common value in {numeric_values}")
def _sort_key_fn(numeric_value):
value = _get_value_as_primitive_value(numeric_value)
return tuple(value[index] for index in valid_indexes)
return _sort_key_fn
def _consolidate_numeric_values(row_index_to_values, min_consolidation_fraction, debug_info):
"""
Finds the most common numeric values in a column and returns them
Args:
row_index_to_values:
For each row index all the values in that cell.
min_consolidation_fraction:
Fraction of cells that need to have consolidated value.
debug_info:
Additional information only used for logging
Returns:
For each row index the first value that matches the most common value. Rows that don't have a matching value
are dropped. Empty list if values can't be consolidated.
"""
type_counts = collections.Counter()
for numeric_values in row_index_to_values.values():
type_counts.update(_get_all_types(numeric_values))
if not type_counts:
return {}
max_count = max(type_counts.values())
if max_count < len(row_index_to_values) * min_consolidation_fraction:
# logging.log_every_n(logging.INFO, f'Can\'t consolidate types: {debug_info} {row_index_to_values} {max_count}', 100)
return {}
valid_types = set()
for value_type, count in type_counts.items():
if count == max_count:
valid_types.add(value_type)
if len(valid_types) > 1:
assert DATE_TYPE in valid_types
max_type = DATE_TYPE
else:
max_type = next(iter(valid_types))
new_row_index_to_value = {}
for index, values in row_index_to_values.items():
# Extract the first matching value.
for value in values:
if _get_value_type(value) == max_type:
new_row_index_to_value[index] = value
break
return new_row_index_to_value
def _get_numeric_values(text):
"""Parses text and returns numeric values."""
numeric_spans = parse_text(text)
return itertools.chain(*(span.values for span in numeric_spans))
def _get_column_values(table, col_index):
"""
Parses text in column and returns a dict mapping row_index to values. This is the _get_column_values function from
number_annotation_utils.py of the original implementation
Args:
table: Pandas dataframe
col_index: integer, indicating the index of the column to get the numeric values of
"""
index_to_values = {}
for row_index, row in table.iterrows():
text = normalize_for_match(row[col_index].text)
index_to_values[row_index] = list(_get_numeric_values(text))
return index_to_values
def get_numeric_relation(value, other_value, sort_key_fn):
"""Compares two values and returns their relation or None."""
value = sort_key_fn(value)
other_value = sort_key_fn(other_value)
if value == other_value:
return Relation.EQ
if value < other_value:
return Relation.LT
if value > other_value:
return Relation.GT
return None
def add_numeric_values_to_question(question):
"""Adds numeric value spans to a question."""
original_text = question
question = normalize_for_match(question)
numeric_spans = parse_text(question)
return Question(original_text=original_text, text=question, numeric_spans=numeric_spans)
def filter_invalid_unicode(text):
"""Return an empty string and True if 'text' is in invalid unicode."""
return ("", True) if isinstance(text, bytes) else (text, False)
def filter_invalid_unicode_from_table(table):
"""
Removes invalid unicode from table. Checks whether a table cell text contains an invalid unicode encoding. If yes,
reset the table cell text to an empty str and log a warning for each invalid cell
Args:
table: table to clean.
"""
# to do: add table id support
if not hasattr(table, "table_id"):
table.table_id = 0
for row_index, row in table.iterrows():
for col_index, cell in enumerate(row):
cell, is_invalid = filter_invalid_unicode(cell)
if is_invalid:
logging.warning(
f"Scrub an invalid table body @ table_id: {table.table_id}, row_index: {row_index}, "
f"col_index: {col_index}",
)
for col_index, column in enumerate(table.columns):
column, is_invalid = filter_invalid_unicode(column)
if is_invalid:
logging.warning(f"Scrub an invalid table header @ table_id: {table.table_id}, col_index: {col_index}")
def add_numeric_table_values(table, min_consolidation_fraction=0.7, debug_info=None):
"""
Parses text in table column-wise and adds the consolidated values. Consolidation refers to finding values with a
common types (date or number)
Args:
table:
Table to annotate.
min_consolidation_fraction:
Fraction of cells in a column that need to have consolidated value.
debug_info:
Additional information used for logging.
"""
table = table.copy()
# First, filter table on invalid unicode
filter_invalid_unicode_from_table(table)
# Second, replace cell values by Cell objects
for row_index, row in table.iterrows():
for col_index, cell in enumerate(row):
table.iloc[row_index, col_index] = Cell(text=cell)
# Third, add numeric_value attributes to these Cell objects
for col_index, column in enumerate(table.columns):
column_values = _consolidate_numeric_values(
_get_column_values(table, col_index),
min_consolidation_fraction=min_consolidation_fraction,
debug_info=(debug_info, column),
)
for row_index, numeric_value in column_values.items():
table.iloc[row_index, col_index].numeric_value = numeric_value
return table
| transformers/src/transformers/models/tapas/tokenization_tapas.py/0 | {
"file_path": "transformers/src/transformers/models/tapas/tokenization_tapas.py",
"repo_id": "transformers",
"token_count": 53968
} | 358 |
# flake8: noqa
# There's no way to ignore "F401 '...' imported but unused" warnings in this
# module, but to preserve other warnings. So, don't check this module at all.
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
is_vision_available,
)
_import_structure = {
"configuration_tvlt": ["TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP", "TvltConfig"],
"feature_extraction_tvlt": ["TvltFeatureExtractor"],
"processing_tvlt": ["TvltProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tvlt"] = [
"TVLT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TvltModel",
"TvltForPreTraining",
"TvltForAudioVisualClassification",
"TvltPreTrainedModel",
]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["image_processing_tvlt"] = ["TvltImageProcessor"]
if TYPE_CHECKING:
from .configuration_tvlt import TVLT_PRETRAINED_CONFIG_ARCHIVE_MAP, TvltConfig
from .processing_tvlt import TvltProcessor
from .feature_extraction_tvlt import TvltFeatureExtractor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tvlt import (
TVLT_PRETRAINED_MODEL_ARCHIVE_LIST,
TvltForAudioVisualClassification,
TvltForPreTraining,
TvltModel,
TvltPreTrainedModel,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_tvlt import TvltImageProcessor
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/tvlt/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/tvlt/__init__.py",
"repo_id": "transformers",
"token_count": 1013
} | 359 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" UniSpeech model configuration"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"microsoft/unispeech-large-1500h-cv": (
"https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class UniSpeechConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`UniSpeechModel`]. It is used to instantiate an
UniSpeech model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the UniSpeech
[microsoft/unispeech-large-1500h-cv](https://huggingface.co/microsoft/unispeech-large-1500h-cv) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32):
Vocabulary size of the UniSpeech model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`UniSpeechModel`]. Vocabulary size of the model. Defines the
different tokens that can be represented by the *inputs_ids* passed to the forward method of
[`UniSpeechModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
activation_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for activations inside the fully connected layer.
attention_dropout (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
feat_proj_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for output of the feature encoder.
feat_quantizer_dropout (`float`, *optional*, defaults to 0.0):
The dropout probability for the output of the feature encoder that's used by the quantizer.
final_dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for the final projection layer of [`UniSpeechForCTC`].
layerdrop (`float`, *optional*, defaults to 0.1):
The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
details.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
feat_extract_norm (`str`, *optional*, defaults to `"group"`):
The norm to be applied to 1D convolutional layers in feature encoder. One of `"group"` for group
normalization of only the first 1D convolutional layer or `"layer"` for layer normalization of all 1D
convolutional layers.
feat_extract_activation (`str, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the 1D convolutional layers of the feature
extractor. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
conv_dim (`Tuple[int]` or `List[int]`, *optional*, defaults to `(512, 512, 512, 512, 512, 512, 512)`):
A tuple of integers defining the number of input and output channels of each 1D convolutional layer in the
feature encoder. The length of *conv_dim* defines the number of 1D convolutional layers.
conv_stride (`Tuple[int]` or `List[int]`, *optional*, defaults to `(5, 2, 2, 2, 2, 2, 2)`):
A tuple of integers defining the stride of each 1D convolutional layer in the feature encoder. The length
of *conv_stride* defines the number of convolutional layers and has to match the length of *conv_dim*.
conv_kernel (`Tuple[int]` or `List[int]`, *optional*, defaults to `(10, 3, 3, 3, 3, 2, 2)`):
A tuple of integers defining the kernel size of each 1D convolutional layer in the feature encoder. The
length of *conv_kernel* defines the number of convolutional layers and has to match the length of
*conv_dim*.
conv_bias (`bool`, *optional*, defaults to `False`):
Whether the 1D convolutional layers have a bias.
num_conv_pos_embeddings (`int`, *optional*, defaults to 128):
Number of convolutional positional embeddings. Defines the kernel size of 1D convolutional positional
embeddings layer.
num_conv_pos_embedding_groups (`int`, *optional*, defaults to 16):
Number of groups of 1D convolutional positional embeddings layer.
do_stable_layer_norm (`bool`, *optional*, defaults to `False`):
Whether to apply *stable* layer norm architecture of the Transformer encoder. `do_stable_layer_norm is
True` corresponds to applying layer norm before the attention layer, whereas `do_stable_layer_norm is
False` corresponds to applying layer norm after the attention layer.
apply_spec_augment (`bool`, *optional*, defaults to `True`):
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates ''mask_time_prob*len(time_axis)/mask_time_length'' independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
actual percentage of masked vectors. This is only relevant if `apply_spec_augment is True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2):
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates ''mask_feature_prob*len(feature_axis)/mask_time_length'' independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0):
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
''mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks''
num_codevectors_per_group (`int`, *optional*, defaults to 320):
Number of entries in each quantization codebook (group).
num_codevector_groups (`int`, *optional*, defaults to 2):
Number of codevector groups for product codevector quantization.
contrastive_logits_temperature (`float`, *optional*, defaults to 0.1):
The temperature *kappa* in the contrastive loss.
num_negatives (`int`, *optional*, defaults to 100):
Number of negative samples for the contrastive loss.
codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the quantized feature vectors.
proj_codevector_dim (`int`, *optional*, defaults to 256):
Dimensionality of the final projection of both the quantized and the transformer features.
diversity_loss_weight (`int`, *optional*, defaults to 0.1):
The weight of the codebook diversity loss component.
ctc_loss_reduction (`str`, *optional*, defaults to `"mean"`):
Specifies the reduction to apply to the output of `torch.nn.CTCLoss`. Only relevant when training an
instance of [`UniSpeechForCTC`].
ctc_zero_infinity (`bool`, *optional*, defaults to `False`):
Whether to zero infinite losses and the associated gradients of `torch.nn.CTCLoss`. Infinite losses mainly
occur when the inputs are too short to be aligned to the targets. Only relevant when training an instance
of [`UniSpeechForCTC`].
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
instance of [`UniSpeechForSequenceClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification.
num_ctc_classes (`int`, *optional*, defaults to 80):
Specifies the number of classes (phoneme tokens and blank token) for phoneme-level CTC loss. Only relevant
when using an instance of [`UniSpeechForPreTraining`].
pad_token_id (`int`, *optional*, defaults to 0):
The id of the padding token.
bos_token_id (`int`, *optional*, defaults to 1):
The id of the "beginning-of-sequence" token.
eos_token_id (`int`, *optional*, defaults to 2):
The id of the "end-of-sequence" token.
replace_prob (`float`, *optional*, defaults to 0.5):
Propability that transformer feature is replaced by quantized feature for pretraining.
Example:
```python
>>> from transformers import UniSpeechConfig, UniSpeechModel
>>> # Initializing a UniSpeech facebook/unispeech-base-960h style configuration
>>> configuration = UniSpeechConfig()
>>> # Initializing a model (with random weights) from the facebook/unispeech-base-960h style configuration
>>> model = UniSpeechModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "unispeech"
def __init__(
self,
vocab_size=32,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout=0.1,
activation_dropout=0.1,
attention_dropout=0.1,
feat_proj_dropout=0.0,
feat_quantizer_dropout=0.0,
final_dropout=0.1,
layerdrop=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
feat_extract_norm="group",
feat_extract_activation="gelu",
conv_dim=(512, 512, 512, 512, 512, 512, 512),
conv_stride=(5, 2, 2, 2, 2, 2, 2),
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
conv_bias=False,
num_conv_pos_embeddings=128,
num_conv_pos_embedding_groups=16,
do_stable_layer_norm=False,
apply_spec_augment=True,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
mask_feature_min_masks=0,
num_codevectors_per_group=320,
num_codevector_groups=2,
contrastive_logits_temperature=0.1,
num_negatives=100,
codevector_dim=256,
proj_codevector_dim=256,
diversity_loss_weight=0.1,
ctc_loss_reduction="mean",
ctc_zero_infinity=False,
use_weighted_layer_sum=False,
classifier_proj_size=256,
num_ctc_classes=80,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
replace_prob=0.5,
**kwargs,
):
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_activation = feat_extract_activation
self.conv_dim = list(conv_dim)
self.conv_stride = list(conv_stride)
self.conv_kernel = list(conv_kernel)
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.num_feat_extract_layers = len(self.conv_dim)
self.num_hidden_layers = num_hidden_layers
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.num_attention_heads = num_attention_heads
self.hidden_dropout = hidden_dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.feat_proj_dropout = feat_proj_dropout
self.final_dropout = final_dropout
self.layerdrop = layerdrop
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.num_ctc_classes = num_ctc_classes
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.use_weighted_layer_sum = use_weighted_layer_sum
self.classifier_proj_size = classifier_proj_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
)
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
self.mask_feature_min_masks = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
self.num_codevectors_per_group = num_codevectors_per_group
self.num_codevector_groups = num_codevector_groups
self.contrastive_logits_temperature = contrastive_logits_temperature
self.feat_quantizer_dropout = feat_quantizer_dropout
self.num_negatives = num_negatives
self.codevector_dim = codevector_dim
self.proj_codevector_dim = proj_codevector_dim
self.diversity_loss_weight = diversity_loss_weight
# ctc loss
self.ctc_loss_reduction = ctc_loss_reduction
self.ctc_zero_infinity = ctc_zero_infinity
# pretraining loss
self.replace_prob = replace_prob
@property
def inputs_to_logits_ratio(self):
return functools.reduce(operator.mul, self.conv_stride, 1)
| transformers/src/transformers/models/unispeech/configuration_unispeech.py/0 | {
"file_path": "transformers/src/transformers/models/unispeech/configuration_unispeech.py",
"repo_id": "transformers",
"token_count": 6896
} | 360 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Swin Transformer + UperNet checkpoints from mmsegmentation.
URL: https://github.com/open-mmlab/mmsegmentation/tree/master/configs/swin
"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def get_upernet_config(model_name):
auxiliary_in_channels = 384
window_size = 7
if "tiny" in model_name:
embed_dim = 96
depths = (2, 2, 6, 2)
num_heads = (3, 6, 12, 24)
elif "small" in model_name:
embed_dim = 96
depths = (2, 2, 18, 2)
num_heads = (3, 6, 12, 24)
elif "base" in model_name:
embed_dim = 128
depths = (2, 2, 18, 2)
num_heads = (4, 8, 16, 32)
window_size = 12
auxiliary_in_channels = 512
elif "large" in model_name:
embed_dim = 192
depths = (2, 2, 18, 2)
num_heads = (6, 12, 24, 48)
window_size = 12
auxiliary_in_channels = 768
# set label information
num_labels = 150
repo_id = "huggingface/label-files"
filename = "ade20k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
label2id = {v: k for k, v in id2label.items()}
backbone_config = SwinConfig(
embed_dim=embed_dim,
depths=depths,
num_heads=num_heads,
window_size=window_size,
out_features=["stage1", "stage2", "stage3", "stage4"],
)
config = UperNetConfig(
backbone_config=backbone_config,
auxiliary_in_channels=auxiliary_in_channels,
num_labels=num_labels,
id2label=id2label,
label2id=label2id,
)
return config
# here we list all keys to be renamed (original name on the left, our name on the right)
def create_rename_keys(config):
rename_keys = []
# fmt: off
# stem
rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight"))
rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias"))
rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight"))
rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias"))
# stages
for i in range(len(config.backbone_config.depths)):
for j in range(config.backbone_config.depths[i]):
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight"))
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias"))
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table"))
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index", f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index"))
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight"))
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias", f"backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias"))
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.weight", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight"))
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.norm2.bias", f"backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias"))
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight"))
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias", f"backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias"))
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight"))
rename_keys.append((f"backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias", f"backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias"))
if i < 3:
rename_keys.append((f"backbone.stages.{i}.downsample.reduction.weight", f"backbone.encoder.layers.{i}.downsample.reduction.weight"))
rename_keys.append((f"backbone.stages.{i}.downsample.norm.weight", f"backbone.encoder.layers.{i}.downsample.norm.weight"))
rename_keys.append((f"backbone.stages.{i}.downsample.norm.bias", f"backbone.encoder.layers.{i}.downsample.norm.bias"))
rename_keys.append((f"backbone.norm{i}.weight", f"backbone.hidden_states_norms.stage{i+1}.weight"))
rename_keys.append((f"backbone.norm{i}.bias", f"backbone.hidden_states_norms.stage{i+1}.bias"))
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
]
)
# fmt: on
return rename_keys
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, backbone_config):
num_features = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))]
for i in range(len(backbone_config.depths)):
dim = num_features[i]
for j in range(backbone_config.depths[i]):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight")
in_proj_bias = state_dict.pop(f"backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.query.weight"] = in_proj_weight[:dim, :]
state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.query.bias"] = in_proj_bias[: dim]
state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.key.weight"] = in_proj_weight[
dim : dim * 2, :
]
state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.key.bias"] = in_proj_bias[
dim : dim * 2
]
state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.value.weight"] = in_proj_weight[
-dim :, :
]
state_dict[f"backbone.encoder.layers.{i}.blocks.{j}.attention.self.value.bias"] = in_proj_bias[-dim :]
# fmt: on
def correct_unfold_reduction_order(x):
out_channel, in_channel = x.shape
x = x.reshape(out_channel, 4, in_channel // 4)
x = x[:, [0, 2, 1, 3], :].transpose(1, 2).reshape(out_channel, in_channel)
return x
def reverse_correct_unfold_reduction_order(x):
out_channel, in_channel = x.shape
x = x.reshape(out_channel, in_channel // 4, 4)
x = x[:, :, [0, 2, 1, 3]].transpose(1, 2).reshape(out_channel, in_channel)
return x
def correct_unfold_norm_order(x):
in_channel = x.shape[0]
x = x.reshape(4, in_channel // 4)
x = x[[0, 2, 1, 3], :].transpose(0, 1).reshape(in_channel)
return x
# there was an incompatibility with this version, due to a new implementation of their downsampling operation using nn.Unfold.
# was resolved as seen here:
# https://github.com/open-mmlab/mmdetection/blob/31c84958f54287a8be2b99cbf87a6dcf12e57753/mmdet/models/utils/ckpt_convert.py#L96.
def reverse_correct_unfold_norm_order(x):
in_channel = x.shape[0]
x = x.reshape(in_channel // 4, 4)
x = x[:, [0, 2, 1, 3]].transpose(0, 1).reshape(in_channel)
return x
def convert_upernet_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub):
model_name_to_url = {
"upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth",
"upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth",
"upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth",
"upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth",
}
checkpoint_url = model_name_to_url[model_name]
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu", file_name=model_name)[
"state_dict"
]
for name, param in state_dict.items():
print(name, param.shape)
config = get_upernet_config(model_name)
model = UperNetForSemanticSegmentation(config)
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
val = state_dict.pop(key)
if "bn" in key:
key = key.replace("bn", "batch_norm")
state_dict[key] = val
# rename keys
rename_keys = create_rename_keys(config)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_q_k_v(state_dict, config.backbone_config)
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
state_dict[key] = reverse_correct_unfold_reduction_order(value)
if "norm" in key:
state_dict[key] = reverse_correct_unfold_norm_order(value)
model.load_state_dict(state_dict)
# verify on image
url = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
processor = SegformerImageProcessor()
pixel_values = processor(image, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = model(pixel_values)
logits = outputs.logits
print(logits.shape)
print("First values of logits:", logits[0, 0, :3, :3])
# assert values
if model_name == "upernet-swin-tiny":
expected_slice = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]]
)
elif model_name == "upernet-swin-small":
expected_slice = torch.tensor(
[[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]]
)
elif model_name == "upernet-swin-base":
expected_slice = torch.tensor(
[[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]]
)
elif model_name == "upernet-swin-large":
expected_slice = torch.tensor(
[[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]]
)
print("Logits:", outputs.logits[0, 0, :3, :3])
assert torch.allclose(outputs.logits[0, 0, :3, :3], expected_slice, atol=1e-4)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving processor to {pytorch_dump_folder_path}")
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print(f"Pushing model and processor for {model_name} to hub")
model.push_to_hub(f"openmmlab/{model_name}")
processor.push_to_hub(f"openmmlab/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-swin-tiny",
type=str,
choices=[f"upernet-swin-{size}" for size in ["tiny", "small", "base", "large"]],
help="Name of the Swin + UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| transformers/src/transformers/models/upernet/convert_swin_upernet_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/upernet/convert_swin_upernet_to_pytorch.py",
"repo_id": "transformers",
"token_count": 6234
} | 361 |
# coding=utf-8
# Copyright 2023 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" VipLlava model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"ybelkada/vip-llava-7b-hf": "https://huggingface.co/llava-hf/vip-llava-7b-hf/resolve/main/config.json",
}
class VipLlavaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VipLlavaForConditionalGeneration`]. It is used to instantiate an
VipLlava model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the VipLlava-9B.
e.g. [ybelkada/vip-llava-7b-hf](https://huggingface.co/ybelkada/vip-llava-7b-hf)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`VipLlavaVisionConfig`, *optional*):
Custom vision config or dict
text_config (`Union[AutoConfig, dict]`, *optional*):
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`.
ignore_index (`int`, *optional*, defaults to -100):
The ignore index for the loss function.
image_token_index (`int`, *optional*, defaults to 32000):
The image token index to encode the image prompt.
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`):
The activation function used by the multimodal projector.
projector_layernorm_eps (`float`, *optional*, defaults to 1e-05):
The layer norm epsilon of the projector layernorm
vision_feature_layers (`List[int]`, *optional*, defaults to `[-2, -5, -8, -11, 6]`):
The list of layers to select the vision features from.
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the VipLlava model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`~VipLlavaForConditionalGeneration`]
Example:
```python
>>> from transformers import VipLlavaForConditionalGeneration, VipLlavaConfig, CLIPVisionConfig, LlamaConfig
>>> # Initializing a CLIP-vision config
>>> vision_config = CLIPVisionConfig()
>>> # Initializing a Llama config
>>> text_config = LlamaConfig()
>>> # Initializing a VipLlava vipllava-7b style configuration
>>> configuration = VipLlavaConfig(vision_config, text_config)
>>> # Initializing a model from the vipllava-7b style configuration
>>> model = VipLlavaForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "vipllava"
is_composition = False
def __init__(
self,
vision_config=None,
text_config=None,
ignore_index=-100,
image_token_index=32000,
projector_hidden_act="gelu",
projector_layernorm_eps=1e-5,
vision_feature_layers=[-2, -5, -8, -11, 6],
vocab_size=32000,
**kwargs,
):
self.ignore_index = ignore_index
self.image_token_index = image_token_index
self.projector_hidden_act = projector_hidden_act
self.projector_layernorm_eps = projector_layernorm_eps
self.vision_feature_layers = vision_feature_layers
self.vocab_size = vocab_size
self.vision_config = vision_config
if isinstance(self.vision_config, dict):
vision_config["model_type"] = (
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model"
)
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config)
elif vision_config is None:
self.vision_config = CONFIG_MAPPING["clip_vision_model"](
intermediate_size=4096,
hidden_size=1024,
patch_size=14,
image_size=336,
num_hidden_layers=24,
num_attention_heads=16,
vocab_size=32000,
projection_dim=768,
)
self.vocab_size = self.vocab_size
self.text_config = text_config
if isinstance(self.text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
self.vocab_size = self.text_config.vocab_size
elif text_config is None:
self.text_config = CONFIG_MAPPING["llama"]()
super().__init__(**kwargs)
| transformers/src/transformers/models/vipllava/configuration_vipllava.py/0 | {
"file_path": "transformers/src/transformers/models/vipllava/configuration_vipllava.py",
"repo_id": "transformers",
"token_count": 2161
} | 362 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert VisualBert checkpoint."""
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
rename_keys_prefix = [
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
ACCEPTABLE_CHECKPOINTS = [
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def load_state_dict(checkpoint_path):
sd = torch.load(checkpoint_path, map_location="cpu")
return sd
def get_new_dict(d, config, rename_keys_prefix=rename_keys_prefix):
new_d = OrderedDict()
new_d["visual_bert.embeddings.position_ids"] = torch.arange(config.max_position_embeddings).expand((1, -1))
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
new_key = key
for name_pair in rename_keys_prefix:
new_key = new_key.replace(name_pair[0], name_pair[1])
new_d[new_key] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
new_d["cls.predictions.decoder.bias"] = new_d["cls.predictions.bias"]
return new_d
@torch.no_grad()
def convert_visual_bert_checkpoint(checkpoint_path, pytorch_dump_folder_path):
"""
Copy/paste/tweak model's weights to our VisualBERT structure.
"""
assert (
checkpoint_path.split("/")[-1] in ACCEPTABLE_CHECKPOINTS
), f"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."
# Get Config
if "pre" in checkpoint_path:
model_type = "pretraining"
if "vcr" in checkpoint_path:
config_params = {"visual_embedding_dim": 512}
elif "vqa_advanced" in checkpoint_path:
config_params = {"visual_embedding_dim": 2048}
elif "vqa" in checkpoint_path:
config_params = {"visual_embedding_dim": 2048}
elif "nlvr" in checkpoint_path:
config_params = {"visual_embedding_dim": 1024}
else:
raise NotImplementedError(f"No implementation found for `{checkpoint_path}`.")
else:
if "vcr" in checkpoint_path:
config_params = {"visual_embedding_dim": 512}
model_type = "multichoice"
elif "vqa_advanced" in checkpoint_path:
config_params = {"visual_embedding_dim": 2048}
model_type = "vqa_advanced"
elif "vqa" in checkpoint_path:
config_params = {"visual_embedding_dim": 2048, "num_labels": 3129}
model_type = "vqa"
elif "nlvr" in checkpoint_path:
config_params = {
"visual_embedding_dim": 1024,
"num_labels": 2,
}
model_type = "nlvr"
config = VisualBertConfig(**config_params)
# Load State Dict
state_dict = load_state_dict(checkpoint_path)
new_state_dict = get_new_dict(state_dict, config)
if model_type == "pretraining":
model = VisualBertForPreTraining(config)
elif model_type == "vqa":
model = VisualBertForQuestionAnswering(config)
elif model_type == "nlvr":
model = VisualBertForVisualReasoning(config)
elif model_type == "multichoice":
model = VisualBertForMultipleChoice(config)
model.load_state_dict(new_state_dict)
# Save Checkpoints
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
args = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/visual_bert/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/visual_bert/convert_visual_bert_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 2115
} | 363 |
# coding=utf-8
# Copyright 2023 HUST-VL and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch ViTMatte model."""
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...utils.backbone_utils import load_backbone
from .configuration_vitmatte import VitMatteConfig
VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST = [
"hustvl/vitmatte-small-composition-1k",
# See all VitMatte models at https://huggingface.co/models?filter=vitmatte
]
# General docstring
_CONFIG_FOR_DOC = "VitMatteConfig"
@dataclass
class ImageMattingOutput(ModelOutput):
"""
Class for outputs of image matting models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Loss.
alphas (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Estimated alpha values.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states
(also called feature maps) of the model at the output of each stage.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
alphas: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class VitMattePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = VitMatteConfig
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
class VitMatteBasicConv3x3(nn.Module):
"""
Basic convolution layers including: Conv3x3, BatchNorm2d, ReLU layers.
"""
def __init__(self, config, in_channels, out_channels, stride=2, padding=1):
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
padding=padding,
bias=False,
)
self.batch_norm = nn.BatchNorm2d(out_channels, eps=config.batch_norm_eps)
self.relu = nn.ReLU()
def forward(self, hidden_state):
hidden_state = self.conv(hidden_state)
hidden_state = self.batch_norm(hidden_state)
hidden_state = self.relu(hidden_state)
return hidden_state
class VitMatteConvStream(nn.Module):
"""
Simple ConvStream containing a series of basic conv3x3 layers to extract detail features.
"""
def __init__(self, config):
super().__init__()
in_channels = config.backbone_config.num_channels
out_channels = config.convstream_hidden_sizes
self.convs = nn.ModuleList()
self.conv_chans = [in_channels] + out_channels
for i in range(len(self.conv_chans) - 1):
in_chan_ = self.conv_chans[i]
out_chan_ = self.conv_chans[i + 1]
self.convs.append(VitMatteBasicConv3x3(config, in_chan_, out_chan_))
def forward(self, pixel_values):
out_dict = {"detailed_feature_map_0": pixel_values}
embeddings = pixel_values
for i in range(len(self.convs)):
embeddings = self.convs[i](embeddings)
name_ = "detailed_feature_map_" + str(i + 1)
out_dict[name_] = embeddings
return out_dict
class VitMatteFusionBlock(nn.Module):
"""
Simple fusion block to fuse features from ConvStream and Plain Vision Transformer.
"""
def __init__(self, config, in_channels, out_channels):
super().__init__()
self.conv = VitMatteBasicConv3x3(config, in_channels, out_channels, stride=1, padding=1)
def forward(self, features, detailed_feature_map):
upscaled_features = nn.functional.interpolate(features, scale_factor=2, mode="bilinear", align_corners=False)
out = torch.cat([detailed_feature_map, upscaled_features], dim=1)
out = self.conv(out)
return out
class VitMatteHead(nn.Module):
"""
Simple Matting Head, containing only conv3x3 and conv1x1 layers.
"""
def __init__(self, config):
super().__init__()
in_channels = config.fusion_hidden_sizes[-1]
mid_channels = 16
self.matting_convs = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(mid_channels),
nn.ReLU(True),
nn.Conv2d(mid_channels, 1, kernel_size=1, stride=1, padding=0),
)
def forward(self, hidden_state):
hidden_state = self.matting_convs(hidden_state)
return hidden_state
class VitMatteDetailCaptureModule(nn.Module):
"""
Simple and lightweight Detail Capture Module for ViT Matting.
"""
def __init__(self, config):
super().__init__()
if len(config.fusion_hidden_sizes) != len(config.convstream_hidden_sizes) + 1:
raise ValueError(
"The length of fusion_hidden_sizes should be equal to the length of convstream_hidden_sizes + 1."
)
self.config = config
self.convstream = VitMatteConvStream(config)
self.conv_chans = self.convstream.conv_chans
self.fusion_blocks = nn.ModuleList()
self.fusion_channels = [config.hidden_size] + config.fusion_hidden_sizes
for i in range(len(self.fusion_channels) - 1):
self.fusion_blocks.append(
VitMatteFusionBlock(
config=config,
in_channels=self.fusion_channels[i] + self.conv_chans[-(i + 1)],
out_channels=self.fusion_channels[i + 1],
)
)
self.matting_head = VitMatteHead(config)
def forward(self, features, pixel_values):
detail_features = self.convstream(pixel_values)
for i in range(len(self.fusion_blocks)):
detailed_feature_map_name = "detailed_feature_map_" + str(len(self.fusion_blocks) - i - 1)
features = self.fusion_blocks[i](features, detail_features[detailed_feature_map_name])
alphas = torch.sigmoid(self.matting_head(features))
return alphas
VITMATTE_START_DOCSTRING = r"""
Parameters:
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
VITMATTE_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`VitMatteImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See
`attentions` under returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under
returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""ViTMatte framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""",
VITMATTE_START_DOCSTRING,
)
class VitMatteForImageMatting(VitMattePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.backbone = load_backbone(config)
self.decoder = VitMatteDetailCaptureModule(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(VITMATTE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=ImageMattingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
):
"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth image matting for computing the loss.
Returns:
Examples:
```python
>>> from transformers import VitMatteImageProcessor, VitMatteForImageMatting
>>> import torch
>>> from PIL import Image
>>> from huggingface_hub import hf_hub_download
>>> processor = VitMatteImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k")
>>> model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k")
>>> filepath = hf_hub_download(
... repo_id="hf-internal-testing/image-matting-fixtures", filename="image.png", repo_type="dataset"
... )
>>> image = Image.open(filepath).convert("RGB")
>>> filepath = hf_hub_download(
... repo_id="hf-internal-testing/image-matting-fixtures", filename="trimap.png", repo_type="dataset"
... )
>>> trimap = Image.open(filepath).convert("L")
>>> # prepare image + trimap for the model
>>> inputs = processor(images=image, trimaps=trimap, return_tensors="pt")
>>> with torch.no_grad():
... alphas = model(**inputs).alphas
>>> print(alphas.shape)
torch.Size([1, 1, 640, 960])
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
outputs = self.backbone.forward_with_filtered_kwargs(
pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions
)
features = outputs.feature_maps[-1]
alphas = self.decoder(features, pixel_values)
loss = None
if labels is not None:
raise NotImplementedError("Training is not yet supported")
if not return_dict:
output = (alphas,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageMattingOutput(
loss=loss,
alphas=alphas,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/vitmatte/modeling_vitmatte.py/0 | {
"file_path": "transformers/src/transformers/models/vitmatte/modeling_vitmatte.py",
"repo_id": "transformers",
"token_count": 5253
} | 364 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Flax Wav2Vec2 model."""
from functools import partial
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from ...modeling_flax_utils import (
ACT2FN,
FlaxPreTrainedModel,
append_replace_return_docstrings,
overwrite_call_docstring,
)
from ...utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_wav2vec2 import Wav2Vec2Config
logger = logging.get_logger(__name__)
@flax.struct.dataclass
class FlaxWav2Vec2BaseModelOutput(ModelOutput):
"""
Output type of [`FlaxWav2Vec2BaseModelOutput`], with potential hidden states and attentions.
Args:
last_hidden_state (`jnp.ndarray` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
extract_features (`jnp.ndarray` of shape `(batch_size, sequence_length, last_conv_dim)`):
Sequence of extracted feature vectors of the last convolutional layer of the model with `last_conv_dim`
being the dimension of the last convolutional layer.
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
last_hidden_state: jnp.ndarray = None
extract_features: jnp.ndarray = None
hidden_states: Optional[Tuple[jnp.ndarray]] = None
attentions: Optional[Tuple[jnp.ndarray]] = None
@flax.struct.dataclass
class FlaxWav2Vec2ForPreTrainingOutput(ModelOutput):
"""
Output type of [`FlaxWav2Vec2ForPreTrainingOutput`], with potential hidden states and attentions.
Args:
loss (*optional*, returned when model is in train mode, `jnp.ndarray` of shape `(1,)`):
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
projected_states (`jnp.ndarray` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
projected quantized states.
projected_quantized_states (`jnp.ndarray` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
target vectors for contrastive loss.
hidden_states (`tuple(jnp.ndarray)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `jnp.ndarray` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(jnp.ndarray)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `jnp.ndarray` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
projected_states: jnp.ndarray = None
projected_quantized_states: jnp.ndarray = None
codevector_perplexity: jnp.ndarray = None
hidden_states: Optional[Tuple[jnp.ndarray]] = None
attentions: Optional[Tuple[jnp.ndarray]] = None
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[np.ndarray] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
mask_prob:
probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_length: size of the mask
min_masks: minimum number of masked spans
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and"
f" `sequence_length`: {sequence_length}`"
)
# compute number of masked spans in batch
num_masked_spans = int(mask_prob * sequence_length / mask_length + np.random.rand(1).item())
num_masked_spans = max(num_masked_spans, min_masks)
# make sure num masked indices <= sequence_length
if num_masked_spans * mask_length > sequence_length:
num_masked_spans = sequence_length // mask_length
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
# get random indices to mask
spec_aug_mask_idxs = np.array(
[
np.random.choice(np.arange(sequence_length - (mask_length - 1)), num_masked_spans, replace=False)
for _ in range(batch_size)
]
)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(spec_aug_mask_idxs[:, :, None], (batch_size, num_masked_spans, mask_length))
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, num_masked_spans * mask_length)
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, num_masked_spans, mask_length)).reshape(
batch_size, num_masked_spans * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
if attention_mask is not None:
# make sure padded input ids cannot be masked
spec_aug_mask = np.where(attention_mask, spec_aug_mask, False)
return spec_aug_mask
def _sample_negative_indices(features_shape: Tuple, num_negatives: int, attention_mask: Optional[np.ndarray] = None):
"""
Sample `num_negatives` vectors from feature vectors.
"""
batch_size, sequence_length, hidden_size = features_shape
if sequence_length <= 1:
raise ValueError(
"`features should have `sequence_length` > 1, but are of shape "
f"(batch_size, sequence_length, hidden_size) = ({batch_size, sequence_length, hidden_size})."
)
# get `num_negatives` random vector indices from the same utterance
sampled_negative_indices = []
for batch_idx in range(batch_size):
high = attention_mask[batch_idx].sum() - 1 if attention_mask is not None else sequence_length - 1
sampled_indices_slice = np.random.randint(0, high, size=(num_negatives * sequence_length,))
sampled_negative_indices.append(sampled_indices_slice)
sampled_negative_indices = np.asarray(sampled_negative_indices, dtype=np.int32)
# generate indices of the positive vectors themselves, repeat them `num_negatives` times
feature_indices = np.broadcast_to(np.arange(sequence_length)[:, None], (sequence_length, num_negatives)).flatten()
# avoid sampling the same positive vector, but keep the distribution uniform
sampled_negative_indices[sampled_negative_indices >= feature_indices] += 1
# correct for batch size
for batch_idx in range(1, batch_size):
sampled_negative_indices[batch_idx] += batch_idx * sequence_length
return sampled_negative_indices
WAV_2_VEC_2_START_DOCSTRING = r"""
Wav2Vec2 was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
Auli.
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`Wav2Vec2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
WAV_2_VEC_2_INPUTS_DOCSTRING = r"""
Args:
input_values (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
conversion into a tensor of type `jnp.ndarray`. See [`Wav2Vec2Processor.__call__`] for details.
attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask) .. warning:: `attention_mask` should only be passed
if the corresponding processor has `config.return_attention_mask == True`. For all models whose processor
has `config.return_attention_mask == False`, such as
[wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base-960h), `attention_mask` should **not** be
passed to avoid degraded performance when doing batched inference. For such models `input_values` should
simply be padded with 0 and passed without `attention_mask`. Be aware that these models also yield slightly
different results depending on whether `input_values` is padded or not.
mask_time_indices (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
masked extracted features in *config.proj_codevector_dim* space.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class FlaxWav2Vec2LayerNormConvLayer(nn.Module):
config: Wav2Vec2Config
layer_id: int = 0
dtype: jnp.dtype = jnp.float32
def setup(self):
self.in_conv_dim = self.config.conv_dim[self.layer_id] if self.layer_id > 0 else 1
self.out_conv_dim = self.config.conv_dim[self.layer_id]
self.conv = nn.Conv(
features=self.config.conv_dim[self.layer_id],
kernel_size=(self.config.conv_kernel[self.layer_id],),
strides=(self.config.conv_stride[self.layer_id],),
use_bias=self.config.conv_bias,
kernel_init=jax.nn.initializers.he_normal(),
padding="VALID",
dtype=self.dtype,
)
self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.activation = ACT2FN[self.config.feat_extract_activation]
def __call__(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
class FlaxConvWithWeightNorm(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
features=self.config.hidden_size,
kernel_size=(self.config.num_conv_pos_embeddings,),
kernel_init=jax.nn.initializers.he_normal(),
padding="VALID",
feature_group_count=self.config.num_conv_pos_embedding_groups,
dtype=self.dtype,
)
weight_shape = (
self.conv.features,
self.conv.features // self.conv.feature_group_count,
self.conv.kernel_size[0],
)
self.weight_v = self.param("weight_v", jax.nn.initializers.he_normal(), weight_shape)
self.weight_g = self.param("weight_g", lambda _: jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :])
self.bias = self.param("bias", jax.nn.initializers.zeros, (self.conv.features,))
self.prev_padding = self.conv.kernel_size[0] // 2
def _get_normed_weights(self):
weight_v_norm = jnp.linalg.norm(self.weight_v, axis=(0, 1))[None, None, :]
normed_weight_v = jnp.divide(self.weight_v, weight_v_norm)
normed_kernel = jnp.multiply(normed_weight_v, self.weight_g)
return normed_kernel
def __call__(self, hidden_states):
kernel = self._get_normed_weights()
hidden_states = jnp.pad(hidden_states, ((0, 0), (self.prev_padding, self.prev_padding), (0, 0)))
hidden_states = self.conv.apply({"params": {"kernel": kernel.T, "bias": self.bias}}, hidden_states)
return hidden_states
class FlaxWav2Vec2PositionalConvEmbedding(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = FlaxConvWithWeightNorm(self.config, dtype=self.dtype)
self.activation = ACT2FN[self.config.feat_extract_activation]
self.num_pad_remove = 1 if self.config.num_conv_pos_embeddings % 2 == 0 else 0
def __call__(self, hidden_states):
hidden_states = hidden_states.transpose((0, 1, 2))
hidden_states = self.conv(hidden_states)
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, : -self.num_pad_remove, :]
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose((0, 1, 2))
return hidden_states
class FlaxConvLayersCollection(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
if self.config.feat_extract_norm == "layer":
self.layers = [
FlaxWav2Vec2LayerNormConvLayer(self.config, layer_id=i, name=str(i), dtype=self.dtype)
for i in range(self.config.num_feat_extract_layers)
]
elif self.config.feat_extract_norm == "group":
raise NotImplementedError("At the moment only ``config.feat_extact_norm == 'layer'`` is supported")
else:
raise ValueError(
f"`config.feat_extract_norm` is {self.config.feat_extract_norm}, but has to be one of ['group',"
" 'layer']"
)
def __call__(self, hidden_states):
for i, conv_layer in enumerate(self.layers):
hidden_states = conv_layer(hidden_states)
return hidden_states
class FlaxWav2Vec2FeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv_layers = FlaxConvLayersCollection(self.config, dtype=self.dtype)
def __call__(self, input_values, freeze_feature_encoder=False):
hidden_states = input_values[:, :, None]
hidden_states = self.conv_layers(hidden_states)
if freeze_feature_encoder:
hidden_states = jax.lax.stop_gradient(hidden_states)
return hidden_states
class FlaxWav2Vec2FeatureProjection(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.projection = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.feat_proj_dropout)
def __call__(self, hidden_states, deterministic=True):
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states, norm_hidden_states
class FlaxWav2Vec2Attention(nn.Module):
config: Wav2Vec2Config
embed_dim: int
num_heads: int
dropout: float = 0.0
bias: bool = True
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
def __call__(
self,
hidden_states: jnp.ndarray,
key_value_states: Optional[jnp.ndarray] = None,
attention_mask: Optional[jnp.ndarray] = None,
deterministic: bool = True,
) -> Tuple[jnp.ndarray]:
"""Input shape: Batch x Time x Channel"""
# get query proj
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
if attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.dropout > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.dropout,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class FlaxWav2Vec2FeedForward(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.intermediate_dropout = nn.Dropout(rate=self.config.activation_dropout)
self.intermediate_dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
if isinstance(self.config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[self.config.hidden_act]
else:
self.intermediate_act_fn = self.config.hidden_act
self.output_dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.output_dropout = nn.Dropout(rate=self.config.hidden_dropout)
def __call__(self, hidden_states, deterministic=True):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states, deterministic=deterministic)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxWav2Vec2EncoderLayerStableLayerNorm(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.attention = FlaxWav2Vec2Attention(
config=self.config,
embed_dim=self.config.hidden_size,
num_heads=self.config.num_attention_heads,
dropout=self.config.attention_dropout,
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout)
self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.feed_forward = FlaxWav2Vec2FeedForward(self.config, dtype=self.dtype)
self.final_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, attention_mask=None, deterministic=True, output_attentions=False):
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights = self.attention(
hidden_states, attention_mask=attention_mask, deterministic=deterministic
)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(
self.final_layer_norm(hidden_states), deterministic=deterministic
)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class FlaxWav2Vec2EncoderLayerStableLayerNormCollection(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.layers = [
FlaxWav2Vec2EncoderLayerStableLayerNorm(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states, attention_mask, deterministic=deterministic, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
class FlaxWav2Vec2StableLayerNormEncoder(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.pos_conv_embed = FlaxWav2Vec2PositionalConvEmbedding(self.config, dtype=self.dtype)
self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout)
self.layers = FlaxWav2Vec2EncoderLayerStableLayerNormCollection(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask=None,
deterministic=True,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
if attention_mask is not None:
# make sure padded tokens are not attended to
hidden_states = jnp.where(
jnp.broadcast_to(attention_mask[:, :, None], hidden_states.shape), hidden_states, 0
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
outputs = self.layers(
hidden_states,
attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = self.layer_norm(outputs[0])
# update the last element in `hidden_states` after applying `layernorm` above
hidden_states = None
if output_hidden_states:
hidden_states = outputs[1]
hidden_states = hidden_states[:-1] + (last_hidden_state,)
if not return_dict:
outputs = (last_hidden_state, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:])
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=last_hidden_state, hidden_states=hidden_states, attentions=outputs.attentions
)
class FlaxWav2Vec2GumbelVectorQuantizer(nn.Module):
"""
Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
"""
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.num_groups = self.config.num_codevector_groups
self.num_vars = self.config.num_codevectors_per_group
if self.config.codevector_dim % self.num_groups != 0:
raise ValueError(
f"`config.codevector_dim {self.config.codevector_dim} must be divisible by"
f" `config.num_codevector_groups` {self.num_groups} for concatenation"
)
# storage for codebook variables (codewords)
self.codevectors = self.param(
"codevectors",
jax.nn.initializers.uniform(),
(1, self.num_groups * self.num_vars, self.config.codevector_dim // self.num_groups),
)
self.weight_proj = nn.Dense(
self.num_groups * self.num_vars,
kernel_init=jax.nn.initializers.normal(1.0),
dtype=self.dtype,
)
@staticmethod
def _compute_perplexity(probs, mask=None):
if mask is not None:
mask_extended = jnp.broadcast_to(mask.flatten()[:, None, None], probs.shape)
probs = jnp.where(mask_extended, probs, jnp.zeros_like(probs))
marginal_probs = probs.sum(axis=0) / mask.sum()
else:
marginal_probs = probs.mean(axis=0)
perplexity = jnp.exp(-jnp.sum(marginal_probs * jnp.log(marginal_probs + 1e-7), axis=-1)).sum()
return perplexity
def __call__(self, hidden_states, mask_time_indices=None, deterministic=True, temperature=1):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.reshape(batch_size * sequence_length * self.num_groups, -1)
if not deterministic:
# sample code vector probs via gumbel in differentiateable way
gumbel_rng = self.make_rng("gumbel")
gumbels = jax.random.gumbel(gumbel_rng, hidden_states.shape)
codevector_probs = nn.softmax((hidden_states + gumbels) / temperature)
# compute perplexity
codevector_soft_dist = nn.softmax(
hidden_states.reshape(batch_size * sequence_length, self.num_groups, -1), axis=-1
)
perplexity = self._compute_perplexity(codevector_soft_dist, mask_time_indices)
else:
# take argmax in non-differentiable way
# comptute hard codevector distribution (one hot)
codevector_idx = hidden_states.argmax(axis=-1)
codevector_probs = jax.nn.one_hot(codevector_idx, hidden_states.shape[-1]) * 1.0
codevector_probs = codevector_probs.reshape(batch_size * sequence_length, self.num_groups, -1)
perplexity = self._compute_perplexity(codevector_probs, mask_time_indices)
codevector_probs = codevector_probs.reshape(batch_size * sequence_length, -1)
# use probs to retrieve codevectors
codevectors_per_group = jnp.expand_dims(codevector_probs, axis=-1) * self.codevectors
codevectors = codevectors_per_group.reshape(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
codevectors = codevectors.sum(-2).reshape(batch_size, sequence_length, -1)
return codevectors, perplexity
class FlaxWav2Vec2Adapter(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
# hidden_states require down-projection if feature dims don't match
if self.config.output_hidden_size != self.config.hidden_size:
self.proj = nn.Dense(
self.config.output_hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.proj_layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
else:
self.proj = self.proj_layer_norm = None
self.layers = FlaxWav2Vec2AdapterLayersCollection(self.config, dtype=self.dtype)
def __call__(self, hidden_states, deterministic=True):
# down-project hidden_states if required
if self.proj is not None and self.proj_layer_norm is not None:
hidden_states = self.proj(hidden_states)
hidden_states = self.proj_layer_norm(hidden_states)
hidden_states = self.layers(hidden_states)
return hidden_states
class FlaxWav2Vec2AdapterLayer(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.conv = nn.Conv(
features=2 * self.config.output_hidden_size,
kernel_size=(self.config.adapter_kernel_size,),
strides=(self.config.adapter_stride,),
padding=((1, 1),),
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = nn.glu(hidden_states, axis=2)
return hidden_states
class FlaxWav2Vec2AdapterLayersCollection(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.layers = [
FlaxWav2Vec2AdapterLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_adapter_layers)
]
def __call__(self, hidden_states):
for conv_layer in self.layers:
hidden_states = conv_layer(hidden_states)
return hidden_states
class FlaxWav2Vec2PreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Wav2Vec2Config
base_model_prefix: str = "wav2vec2"
main_input_name = "input_values"
module_class: nn.Module = None
def __init__(
self,
config: Wav2Vec2Config,
input_shape: Tuple = (1, 1024),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_values = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_values)
params_rng, dropout_rng = jax.random.split(rng, 2)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_values, attention_mask, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
freeze_feature_encoder: bool = False,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_values.shape
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
return self.module.apply(
inputs,
jnp.array(input_values, dtype="f4"),
jnp.array(attention_mask, dtype="i4"),
mask_time_indices,
not train,
output_attentions,
output_hidden_states,
freeze_feature_encoder,
return_dict,
rngs=rngs,
)
def _get_feat_extract_output_lengths(
self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None
):
return self.module._get_feat_extract_output_lengths(input_lengths, add_adapter=add_adapter)
class FlaxWav2Vec2Module(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.feature_extractor = FlaxWav2Vec2FeatureEncoder(self.config, dtype=self.dtype)
self.feature_projection = FlaxWav2Vec2FeatureProjection(self.config, dtype=self.dtype)
self.masked_spec_embed = self.param(
"masked_spec_embed", jax.nn.initializers.uniform(), (self.config.hidden_size,)
)
if self.config.do_stable_layer_norm:
self.encoder = FlaxWav2Vec2StableLayerNormEncoder(self.config, dtype=self.dtype)
else:
raise NotImplementedError("``config.do_stable_layer_norm is False`` is currently not supported.")
self.adapter = FlaxWav2Vec2Adapter(self.config, dtype=self.dtype) if self.config.add_adapter else None
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
deterministic=True,
output_attentions=None,
output_hidden_states=None,
freeze_feature_encoder=False,
return_dict=None,
):
extract_features = self.feature_extractor(input_values, freeze_feature_encoder=freeze_feature_encoder)
# make sure that no loss is computed on padded inputs
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(
extract_features.shape[1], attention_mask, add_adapter=False
)
hidden_states, extract_features = self.feature_projection(extract_features, deterministic=deterministic)
if mask_time_indices is not None: # apply SpecAugment along time axis with given indices
hidden_states = jnp.where(
jnp.broadcast_to(mask_time_indices[:, :, None], hidden_states.shape),
jnp.broadcast_to(self.masked_spec_embed[None, None, :], hidden_states.shape),
hidden_states,
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if self.adapter is not None:
hidden_states = self.adapter(hidden_states)
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return FlaxWav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def _get_feat_extract_output_lengths(
self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None
):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
if add_adapter:
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
return input_lengths
def _get_feature_vector_attention_mask(
self, feature_vector_length: int, attention_mask: jnp.ndarray, add_adapter=None
):
# Effectively attention_mask.sum(-1), but not inplace to be able to run
# on inference mode.
non_padded_lengths = attention_mask.cumsum(axis=-1)[:, -1]
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
batch_size = attention_mask.shape[0]
attention_mask = jnp.zeros((batch_size, feature_vector_length), dtype=attention_mask.dtype)
# these two operations makes sure that all values
# before the output lengths indices are attended to
attention_mask = attention_mask.at[jnp.arange(attention_mask.shape[0]), output_lengths - 1].set(1)
attention_mask = jnp.flip(jnp.flip(attention_mask, -1).cumsum(-1), -1).astype("bool")
return attention_mask
@add_start_docstrings(
"The bare Wav2Vec2 Model transformer outputting raw hidden-states without any specific head on top.",
WAV_2_VEC_2_START_DOCSTRING,
)
class FlaxWav2Vec2Model(FlaxWav2Vec2PreTrainedModel):
module_class = FlaxWav2Vec2Module
FLAX_WAV2VEC2_MODEL_DOCSTRING = """
Returns:
Example:
```python
>>> from transformers import AutoProcessor, FlaxWav2Vec2Model
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-lv60")
>>> model = FlaxWav2Vec2Model.from_pretrained("facebook/wav2vec2-large-lv60")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(
... ds["speech"][0], sampling_rate=16_000, return_tensors="np"
... ).input_values # Batch size 1
>>> hidden_states = model(input_values).last_hidden_state
```
"""
overwrite_call_docstring(
FlaxWav2Vec2Model,
WAV_2_VEC_2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_MODEL_DOCSTRING,
)
append_replace_return_docstrings(
FlaxWav2Vec2Model, output_type=FlaxWav2Vec2BaseModelOutput, config_class=Wav2Vec2Config
)
class FlaxWav2Vec2ForCTCModule(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.final_dropout)
self.lm_head = nn.Dense(
self.config.vocab_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
deterministic=True,
output_attentions=None,
output_hidden_states=None,
freeze_feature_encoder=False,
return_dict=None,
):
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
mask_time_indices=mask_time_indices,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
freeze_feature_encoder=freeze_feature_encoder,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.lm_head(hidden_states)
if not return_dict:
return (logits,) + outputs[2:]
return FlaxCausalLMOutput(logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
def _get_feat_extract_output_lengths(
self,
input_lengths: Union[jnp.ndarray, int],
add_adapter: Optional[bool] = None,
):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
if add_adapter:
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
return input_lengths
@add_start_docstrings(
"Wav2Vec2 Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).",
WAV_2_VEC_2_START_DOCSTRING,
)
class FlaxWav2Vec2ForCTC(FlaxWav2Vec2PreTrainedModel):
module_class = FlaxWav2Vec2ForCTCModule
FLAX_WAV2VEC2_FOR_CTC_DOCSTRING = """
Returns:
Example:
```python
>>> import jax.numpy as jnp
>>> from transformers import AutoProcessor, FlaxWav2Vec2ForCTC
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-large-960h-lv60")
>>> model = FlaxWav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h-lv60")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = processor(
... ds["speech"][0], sampling_rate=16_000, return_tensors="np"
... ).input_values # Batch size 1
>>> logits = model(input_values).logits
>>> predicted_ids = jnp.argmax(logits, axis=-1)
>>> transcription = processor.decode(predicted_ids[0])
>>> # should give: "A MAN SAID TO THE UNIVERSE SIR I EXIST"
```
"""
overwrite_call_docstring(
FlaxWav2Vec2ForCTC,
WAV_2_VEC_2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_FOR_CTC_DOCSTRING,
)
append_replace_return_docstrings(FlaxWav2Vec2ForCTC, output_type=FlaxCausalLMOutput, config_class=Wav2Vec2Config)
class FlaxWav2Vec2ForPreTrainingModule(nn.Module):
config: Wav2Vec2Config
dtype: jnp.dtype = jnp.float32
def setup(self):
self.wav2vec2 = FlaxWav2Vec2Module(self.config, dtype=self.dtype)
self.dropout_features = nn.Dropout(self.config.feat_quantizer_dropout)
self.quantizer = FlaxWav2Vec2GumbelVectorQuantizer(self.config, dtype=self.dtype)
self.project_q = nn.Dense(
self.config.proj_codevector_dim,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.project_hid = nn.Dense(
self.config.proj_codevector_dim,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
gumbel_temperature: int = 1,
deterministic: bool = True,
output_attentions=None,
output_hidden_states=None,
freeze_feature_encoder=False,
return_dict=None,
):
r"""
Returns:
Example:
```python
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.wav2vec2(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
mask_time_indices=mask_time_indices,
deterministic=deterministic,
freeze_feature_encoder=freeze_feature_encoder,
return_dict=return_dict,
)
# project all transformed features (including masked) to final vq dim
transformer_features = self.project_hid(outputs[0])
# quantize all (unmasked) extracted features and project to final vq dim
extract_features = self.dropout_features(outputs[1], deterministic=deterministic)
quantized_features, codevector_perplexity = self.quantizer(
extract_features, mask_time_indices, deterministic=deterministic, temperature=gumbel_temperature
)
quantized_features = self.project_q(quantized_features)
if not return_dict:
return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return FlaxWav2Vec2ForPreTrainingOutput(
projected_states=transformer_features,
projected_quantized_states=quantized_features,
codevector_perplexity=codevector_perplexity,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def _get_feat_extract_output_lengths(
self, input_lengths: Union[jnp.ndarray, int], add_adapter: Optional[bool] = None
):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
if add_adapter:
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
return input_lengths
@add_start_docstrings("""Wav2Vec2 Model with a quantizer and `VQ` head on top.""", WAV_2_VEC_2_START_DOCSTRING)
class FlaxWav2Vec2ForPreTraining(FlaxWav2Vec2PreTrainedModel):
module_class = FlaxWav2Vec2ForPreTrainingModule
@add_start_docstrings_to_model_forward(WAV_2_VEC_2_INPUTS_DOCSTRING)
# overwrite since has `gumbel_temperature` input
def __call__(
self,
input_values,
attention_mask=None,
mask_time_indices=None,
gumbel_temperature: int = 1,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
gumbel_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
freeze_feature_encoder: bool = False,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_values.shape
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
if gumbel_rng is not None:
rngs["gumbel"] = gumbel_rng
inputs = {"params": params or self.params}
return self.module.apply(
inputs,
jnp.array(input_values, dtype="f4"),
jnp.array(attention_mask, dtype="i4"),
mask_time_indices,
gumbel_temperature,
not train,
output_attentions,
output_hidden_states,
freeze_feature_encoder,
return_dict,
rngs=rngs,
)
FLAX_WAV2VEC2_FOR_PRETRAINING_DOCSTRING = """
Returns:
Example:
```python
>>> import optax
>>> import numpy as np
>>> import jax.numpy as jnp
>>> from transformers import AutoFeatureExtractor, FlaxWav2Vec2ForPreTraining
>>> from transformers.models.wav2vec2.modeling_flax_wav2vec2 import _compute_mask_indices
>>> from datasets import load_dataset
>>> import soundfile as sf
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-large-lv60")
>>> model = FlaxWav2Vec2ForPreTraining.from_pretrained("facebook/wav2vec2-large-lv60")
>>> def map_to_array(batch):
... speech, _ = sf.read(batch["file"])
... batch["speech"] = speech
... return batch
>>> ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
>>> ds = ds.map(map_to_array)
>>> input_values = feature_extractor(ds["speech"][0], return_tensors="np").input_values # Batch size 1
>>> # compute masked indices
>>> batch_size, raw_sequence_length = input_values.shape
>>> sequence_length = model._get_feat_extract_output_lengths(raw_sequence_length)
>>> mask_time_indices = _compute_mask_indices((batch_size, sequence_length), mask_prob=0.2, mask_length=2)
>>> outputs = model(input_values, mask_time_indices=mask_time_indices)
>>> # compute cosine similarity between predicted (=projected_states) and target (=projected_quantized_states)
>>> cosine_sim = optax.cosine_similarity(outputs.projected_states, outputs.projected_quantized_states)
>>> # show that cosine similarity is much higher than random
>>> assert np.asarray(cosine_sim)[mask_time_indices].mean() > 0.5
```
"""
overwrite_call_docstring(
FlaxWav2Vec2ForPreTraining,
WAV_2_VEC_2_INPUTS_DOCSTRING + FLAX_WAV2VEC2_FOR_PRETRAINING_DOCSTRING,
)
append_replace_return_docstrings(
FlaxWav2Vec2ForPreTraining, output_type=FlaxWav2Vec2ForPreTrainingOutput, config_class=Wav2Vec2Config
)
| transformers/src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py/0 | {
"file_path": "transformers/src/transformers/models/wav2vec2/modeling_flax_wav2vec2.py",
"repo_id": "transformers",
"token_count": 24375
} | 365 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Speech processor class for Whisper
"""
from ...processing_utils import ProcessorMixin
class WhisperProcessor(ProcessorMixin):
r"""
Constructs a Whisper processor which wraps a Whisper feature extractor and a Whisper tokenizer into a single
processor.
[`WhisperProcessor`] offers all the functionalities of [`WhisperFeatureExtractor`] and [`WhisperTokenizer`]. See
the [`~WhisperProcessor.__call__`] and [`~WhisperProcessor.decode`] for more information.
Args:
feature_extractor (`WhisperFeatureExtractor`):
An instance of [`WhisperFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`WhisperTokenizer`):
An instance of [`WhisperTokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "WhisperFeatureExtractor"
tokenizer_class = "WhisperTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
def get_decoder_prompt_ids(self, task=None, language=None, no_timestamps=True):
return self.tokenizer.get_decoder_prompt_ids(task=task, language=language, no_timestamps=no_timestamps)
def __call__(self, *args, **kwargs):
"""
Forwards the `audio` argument to WhisperFeatureExtractor's [`~WhisperFeatureExtractor.__call__`] and the `text`
argument to [`~WhisperTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
audio = kwargs.pop("audio", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if len(args) > 0:
audio = args[0]
args = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if audio is not None:
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif audio is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to WhisperTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
def get_prompt_ids(self, text: str, return_tensors="np"):
return self.tokenizer.get_prompt_ids(text, return_tensors=return_tensors)
| transformers/src/transformers/models/whisper/processing_whisper.py/0 | {
"file_path": "transformers/src/transformers/models/whisper/processing_whisper.py",
"repo_id": "transformers",
"token_count": 1465
} | 366 |
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License
""" Tokenization classes for XLM-RoBERTa model."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlm_roberta import XLMRobertaTokenizer
else:
XLMRobertaTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model"
),
},
"tokenizer_file": {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/tokenizer.json",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/tokenizer.json",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/tokenizer.json"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/tokenizer.json"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/tokenizer.json"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/tokenizer.json"
),
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"xlm-roberta-base": 512,
"xlm-roberta-large": 512,
"xlm-roberta-large-finetuned-conll02-dutch": 512,
"xlm-roberta-large-finetuned-conll02-spanish": 512,
"xlm-roberta-large-finetuned-conll03-english": 512,
"xlm-roberta-large-finetuned-conll03-german": 512,
}
class XLMRobertaTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" XLM-RoBERTa tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
[`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
sep_token (`str`, *optional*, defaults to `"</s>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
cls_token (`str`, *optional*, defaults to `"<s>"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
Additional special tokens used by the tokenizer.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = XLMRobertaTokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
bos_token="<s>",
eos_token="</s>",
sep_token="</s>",
cls_token="<s>",
unk_token="<unk>",
pad_token="<pad>",
mask_token="<mask>",
**kwargs,
):
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
bos_token=bos_token,
eos_token=eos_token,
sep_token=sep_token,
cls_token=cls_token,
unk_token=unk_token,
pad_token=pad_token,
mask_token=mask_token,
**kwargs,
)
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLM-RoBERTa sequence has the following format:
- single sequence: `<s> X </s>`
- pair of sequences: `<s> A </s></s> B </s>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
not make use of token type ids, therefore a list of zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
| transformers/src/transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.py/0 | {
"file_path": "transformers/src/transformers/models/xlm_roberta/tokenization_xlm_roberta_fast.py",
"repo_id": "transformers",
"token_count": 4437
} | 367 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""
import math
import warnings
from functools import partial
from typing import Callable, Iterable, Optional, Tuple, Union
import torch
from torch import nn
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR, ReduceLROnPlateau
from .trainer_utils import SchedulerType
from .utils import logging
from .utils.versions import require_version
logger = logging.get_logger(__name__)
def _get_constant_lambda(_=None):
return 1
def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1):
"""
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
return LambdaLR(optimizer, _get_constant_lambda, last_epoch=last_epoch)
def get_reduce_on_plateau_schedule(optimizer: Optimizer, **kwargs):
"""
Create a schedule with a constant learning rate that decreases when a metric has stopped improving.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
kwargs (`dict`, *optional*):
Extra parameters to be passed to the scheduler. See `torch.optim.lr_scheduler.ReduceLROnPlateau`
for possible parameters.
Return:
`torch.optim.lr_scheduler.ReduceLROnPlateau` with the appropriate schedule.
"""
return ReduceLROnPlateau(optimizer, **kwargs)
def _get_constant_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1.0, num_warmup_steps))
return 1.0
def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1):
"""
Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
increases linearly between 0 and the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(_get_constant_schedule_with_warmup_lr_lambda, num_warmup_steps=num_warmup_steps)
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
def _get_linear_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)))
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
"""
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_linear_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_cosine_schedule_with_warmup_lr_lambda(
current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: float
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
def get_cosine_schedule_with_warmup(
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_cosine_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_cosine_with_hard_restarts_schedule_with_warmup_lr_lambda(
current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: int
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))
def get_cosine_with_hard_restarts_schedule_with_warmup(
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
linearly between 0 and the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`int`, *optional*, defaults to 1):
The number of hard restarts to use.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_cosine_with_hard_restarts_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_polynomial_decay_schedule_with_warmup_lr_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_training_steps: int,
lr_end: float,
power: float,
lr_init: int,
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
lr_range = lr_init - lr_end
decay_steps = num_training_steps - num_warmup_steps
pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
decay = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
def get_polynomial_decay_schedule_with_warmup(
optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1
):
"""
Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
lr_end (`float`, *optional*, defaults to 1e-7):
The end LR.
power (`float`, *optional*, defaults to 1.0):
Power factor.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT
implementation at
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_init = optimizer.defaults["lr"]
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})")
lr_lambda = partial(
_get_polynomial_decay_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
lr_end=lr_end,
power=power,
lr_init=lr_init,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_inverse_sqrt_schedule_lr_lambda(current_step: int, *, num_warmup_steps: int, timescale: int = None):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
shift = timescale - num_warmup_steps
decay = 1.0 / math.sqrt((current_step + shift) / timescale)
return decay
def get_inverse_sqrt_schedule(
optimizer: Optimizer, num_warmup_steps: int, timescale: int = None, last_epoch: int = -1
):
"""
Create a schedule with an inverse square-root learning rate, from the initial lr set in the optimizer, after a
warmup period which increases lr linearly from 0 to the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
timescale (`int`, *optional*, defaults to `num_warmup_steps`):
Time scale.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
# Note: this implementation is adapted from
# https://github.com/google-research/big_vision/blob/f071ce68852d56099437004fd70057597a95f6ef/big_vision/utils.py#L930
if timescale is None:
timescale = num_warmup_steps
lr_lambda = partial(_get_inverse_sqrt_schedule_lr_lambda, num_warmup_steps=num_warmup_steps, timescale=timescale)
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
TYPE_TO_SCHEDULER_FUNCTION = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.INVERSE_SQRT: get_inverse_sqrt_schedule,
SchedulerType.REDUCE_ON_PLATEAU: get_reduce_on_plateau_schedule,
}
def get_scheduler(
name: Union[str, SchedulerType],
optimizer: Optimizer,
num_warmup_steps: Optional[int] = None,
num_training_steps: Optional[int] = None,
scheduler_specific_kwargs: Optional[dict] = None,
):
"""
Unified API to get any scheduler from its name.
Args:
name (`str` or `SchedulerType`):
The name of the scheduler to use.
optimizer (`torch.optim.Optimizer`):
The optimizer that will be used during training.
num_warmup_steps (`int`, *optional*):
The number of warmup steps to do. This is not required by all schedulers (hence the argument being
optional), the function will raise an error if it's unset and the scheduler type requires it.
num_training_steps (`int``, *optional*):
The number of training steps to do. This is not required by all schedulers (hence the argument being
optional), the function will raise an error if it's unset and the scheduler type requires it.
scheduler_specific_kwargs (`dict`, *optional*):
Extra parameters for schedulers such as cosine with restarts. Mismatched scheduler types and scheduler
parameters will cause the scheduler function to raise a TypeError.
"""
name = SchedulerType(name)
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(optimizer)
if scheduler_specific_kwargs is None:
scheduler_specific_kwargs = {}
if name == SchedulerType.REDUCE_ON_PLATEAU:
return schedule_func(optimizer, **scheduler_specific_kwargs)
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)
if name == SchedulerType.INVERSE_SQRT:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
**scheduler_specific_kwargs,
)
class AdamW(Optimizer):
"""
Implements Adam algorithm with weight decay fix as introduced in [Decoupled Weight Decay
Regularization](https://arxiv.org/abs/1711.05101).
Parameters:
params (`Iterable[nn.parameter.Parameter]`):
Iterable of parameters to optimize or dictionaries defining parameter groups.
lr (`float`, *optional*, defaults to 0.001):
The learning rate to use.
betas (`Tuple[float,float]`, *optional*, defaults to `(0.9, 0.999)`):
Adam's betas parameters (b1, b2).
eps (`float`, *optional*, defaults to 1e-06):
Adam's epsilon for numerical stability.
weight_decay (`float`, *optional*, defaults to 0.0):
Decoupled weight decay to apply.
correct_bias (`bool`, *optional*, defaults to `True`):
Whether or not to correct bias in Adam (for instance, in Bert TF repository they use `False`).
no_deprecation_warning (`bool`, *optional*, defaults to `False`):
A flag used to disable the deprecation warning (set to `True` to disable the warning).
"""
def __init__(
self,
params: Iterable[nn.parameter.Parameter],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0.0,
correct_bias: bool = True,
no_deprecation_warning: bool = False,
):
if not no_deprecation_warning:
warnings.warn(
"This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch"
" implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this"
" warning",
FutureWarning,
)
require_version("torch>=1.5.0") # add_ with alpha
if lr < 0.0:
raise ValueError(f"Invalid learning rate: {lr} - should be >= 0.0")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter: {betas[0]} - should be in [0.0, 1.0)")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter: {betas[1]} - should be in [0.0, 1.0)")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps} - should be >= 0.0")
defaults = {"lr": lr, "betas": betas, "eps": eps, "weight_decay": weight_decay, "correct_bias": correct_bias}
super().__init__(params, defaults)
@torch.no_grad()
def step(self, closure: Callable = None):
"""
Performs a single optimization step.
Arguments:
closure (`Callable`, *optional*): A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad
if grad.is_sparse:
raise RuntimeError("Adam does not support sparse gradients, please consider SparseAdam instead")
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
exp_avg.mul_(beta1).add_(grad, alpha=(1.0 - beta1))
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2)
denom = exp_avg_sq.sqrt().add_(group["eps"])
step_size = group["lr"]
if group["correct_bias"]: # No bias correction for Bert
bias_correction1 = 1.0 - beta1 ** state["step"]
bias_correction2 = 1.0 - beta2 ** state["step"]
step_size = step_size * math.sqrt(bias_correction2) / bias_correction1
p.addcdiv_(exp_avg, denom, value=-step_size)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
# Add weight decay at the end (fixed version)
if group["weight_decay"] > 0.0:
p.add_(p, alpha=(-group["lr"] * group["weight_decay"]))
return loss
class Adafactor(Optimizer):
"""
AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code:
https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py
Paper: *Adafactor: Adaptive Learning Rates with Sublinear Memory Cost* https://arxiv.org/abs/1804.04235 Note that
this optimizer internally adjusts the learning rate depending on the `scale_parameter`, `relative_step` and
`warmup_init` options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and
`relative_step=False`.
Arguments:
params (`Iterable[nn.parameter.Parameter]`):
Iterable of parameters to optimize or dictionaries defining parameter groups.
lr (`float`, *optional*):
The external learning rate.
eps (`Tuple[float, float]`, *optional*, defaults to `(1e-30, 0.001)`):
Regularization constants for square gradient and parameter scale respectively
clip_threshold (`float`, *optional*, defaults to 1.0):
Threshold of root mean square of final gradient update
decay_rate (`float`, *optional*, defaults to -0.8):
Coefficient used to compute running averages of square
beta1 (`float`, *optional*):
Coefficient used for computing running averages of gradient
weight_decay (`float`, *optional*, defaults to 0.0):
Weight decay (L2 penalty)
scale_parameter (`bool`, *optional*, defaults to `True`):
If True, learning rate is scaled by root mean square
relative_step (`bool`, *optional*, defaults to `True`):
If True, time-dependent learning rate is computed instead of external learning rate
warmup_init (`bool`, *optional*, defaults to `False`):
Time-dependent learning rate computation depends on whether warm-up initialization is being used
This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested.
Recommended T5 finetuning settings (https://discuss.huggingface.co/t/t5-finetuning-tips/684/3):
- Training without LR warmup or clip_threshold is not recommended.
- use scheduled LR warm-up to fixed LR
- use clip_threshold=1.0 (https://arxiv.org/abs/1804.04235)
- Disable relative updates
- Use scale_parameter=False
- Additional optimizer operations like gradient clipping should not be used alongside Adafactor
Example:
```python
Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=1e-3)
```
Others reported the following combination to work well:
```python
Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
```
When using `lr=None` with [`Trainer`] you will most likely need to use [`~optimization.AdafactorSchedule`]
scheduler as following:
```python
from transformers.optimization import Adafactor, AdafactorSchedule
optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
lr_scheduler = AdafactorSchedule(optimizer)
trainer = Trainer(..., optimizers=(optimizer, lr_scheduler))
```
Usage:
```python
# replace AdamW with Adafactor
optimizer = Adafactor(
model.parameters(),
lr=1e-3,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
relative_step=False,
scale_parameter=False,
warmup_init=False,
)
```"""
def __init__(
self,
params,
lr=None,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
scale_parameter=True,
relative_step=True,
warmup_init=False,
):
require_version("torch>=1.5.0") # add_ with alpha
if lr is not None and relative_step:
raise ValueError("Cannot combine manual `lr` and `relative_step=True` options")
if warmup_init and not relative_step:
raise ValueError("`warmup_init=True` requires `relative_step=True`")
defaults = {
"lr": lr,
"eps": eps,
"clip_threshold": clip_threshold,
"decay_rate": decay_rate,
"beta1": beta1,
"weight_decay": weight_decay,
"scale_parameter": scale_parameter,
"relative_step": relative_step,
"warmup_init": warmup_init,
}
super().__init__(params, defaults)
@staticmethod
def _get_lr(param_group, param_state):
rel_step_sz = param_group["lr"]
if param_group["relative_step"]:
min_step = 1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
param_scale = 1.0
if param_group["scale_parameter"]:
param_scale = max(param_group["eps"][1], param_state["RMS"])
return param_scale * rel_step_sz
@staticmethod
def _get_options(param_group, param_shape):
factored = len(param_shape) >= 2
use_first_moment = param_group["beta1"] is not None
return factored, use_first_moment
@staticmethod
def _rms(tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
@staticmethod
def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
# copy from fairseq's adafactor implementation:
# https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization step
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError("Adafactor does not support sparse gradients.")
state = self.state[p]
grad_shape = grad.shape
factored, use_first_moment = self._get_options(group, grad_shape)
# State Initialization
if len(state) == 0:
state["step"] = 0
if use_first_moment:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(grad)
if factored:
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad)
else:
state["exp_avg_sq"] = torch.zeros_like(grad)
state["RMS"] = 0
else:
if use_first_moment:
state["exp_avg"] = state["exp_avg"].to(grad)
if factored:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
else:
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)
p_data_fp32 = p
if p.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
state["step"] += 1
state["RMS"] = self._rms(p_data_fp32)
lr = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
update = (grad**2) + group["eps"][0]
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t))
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t))
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
update.mul_(lr)
if use_first_moment:
exp_avg = state["exp_avg"]
exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"]))
update = exp_avg
if group["weight_decay"] != 0:
p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr))
p_data_fp32.add_(-update)
if p.dtype in {torch.float16, torch.bfloat16}:
p.copy_(p_data_fp32)
return loss
class AdafactorSchedule(LambdaLR):
"""
Since [`~optimization.Adafactor`] performs its own scheduling, if the training loop relies on a scheduler (e.g.,
for logging), this class creates a proxy object that retrieves the current lr values from the optimizer.
It returns `initial_lr` during startup and the actual `lr` during stepping.
"""
def __init__(self, optimizer, initial_lr=0.0):
def lr_lambda(_):
return initial_lr
for group in optimizer.param_groups:
group["initial_lr"] = initial_lr
super().__init__(optimizer, lr_lambda)
for group in optimizer.param_groups:
del group["initial_lr"]
def get_lr(self):
opt = self.optimizer
lrs = [
opt._get_lr(group, opt.state[group["params"][0]])
for group in opt.param_groups
if group["params"][0].grad is not None
]
if len(lrs) == 0:
lrs = self.base_lrs # if called before stepping
return lrs
def get_adafactor_schedule(optimizer, initial_lr=0.0):
"""
Get a proxy schedule for [`~optimization.Adafactor`]
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
initial_lr (`float`, *optional*, defaults to 0.0):
Initial lr
Return:
[`~optimization.Adafactor`] proxy schedule object.
"""
return AdafactorSchedule(optimizer, initial_lr)
| transformers/src/transformers/optimization.py/0 | {
"file_path": "transformers/src/transformers/optimization.py",
"repo_id": "transformers",
"token_count": 13951
} | 368 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import ChunkPipeline, build_pipeline_init_args
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING_NAMES
logger = logging.get_logger(__name__)
@add_end_docstrings(
build_pipeline_init_args(has_image_processor=True),
r"""
points_per_batch (*optional*, int, default to 64):
Sets the number of points run simultaneously by the model. Higher numbers may be faster but use more GPU
memory.
output_bboxes_mask (`bool`, *optional*, default to `False`):
Whether or not to output the bounding box predictions.
output_rle_masks (`bool`, *optional*, default to `False`):
Whether or not to output the masks in `RLE` format""",
)
class MaskGenerationPipeline(ChunkPipeline):
"""
Automatic mask generation for images using `SamForMaskGeneration`. This pipeline predicts binary masks for an
image, given an image. It is a `ChunkPipeline` because you can seperate the points in a mini-batch in order to
avoid OOM issues. Use the `points_per_batch` argument to control the number of points that will be processed at the
same time. Default is `64`.
The pipeline works in 3 steps:
1. `preprocess`: A grid of 1024 points evenly separated is generated along with bounding boxes and point
labels.
For more details on how the points and bounding boxes are created, check the `_generate_crop_boxes`
function. The image is also preprocessed using the `image_processor`. This function `yields` a minibatch of
`points_per_batch`.
2. `forward`: feeds the outputs of `preprocess` to the model. The image embedding is computed only once.
Calls both `self.model.get_image_embeddings` and makes sure that the gradients are not computed, and the
tensors and models are on the same device.
3. `postprocess`: The most important part of the automatic mask generation happens here. Three steps
are induced:
- image_processor.postprocess_masks (run on each minibatch loop): takes in the raw output masks,
resizes them according
to the image size, and transforms there to binary masks.
- image_processor.filter_masks (on each minibatch loop): uses both `pred_iou_thresh` and
`stability_scores`. Also
applies a variety of filters based on non maximum suppression to remove bad masks.
- image_processor.postprocess_masks_for_amg applies the NSM on the mask to only keep relevant ones.
Example:
```python
>>> from transformers import pipeline
>>> generator = pipeline(model="facebook/sam-vit-base", task="mask-generation")
>>> outputs = generator(
... "http://images.cocodataset.org/val2017/000000039769.jpg",
... )
>>> outputs = generator(
... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", points_per_batch=128
... )
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This segmentation pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"mask-generation"`.
See the list of available models on [huggingface.co/models](https://huggingface.co/models?filter=mask-generation).
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
requires_backends(self, "vision")
requires_backends(self, "torch")
if self.framework != "pt":
raise ValueError(f"The {self.__class__} is only available in PyTorch.")
self.check_model_type(MODEL_FOR_MASK_GENERATION_MAPPING_NAMES)
def _sanitize_parameters(self, **kwargs):
preprocess_kwargs = {}
postprocess_kwargs = {}
forward_params = {}
# preprocess args
if "points_per_batch" in kwargs:
preprocess_kwargs["points_per_batch"] = kwargs["points_per_batch"]
if "points_per_crop" in kwargs:
preprocess_kwargs["points_per_crop"] = kwargs["points_per_crop"]
if "crops_n_layers" in kwargs:
preprocess_kwargs["crops_n_layers"] = kwargs["crops_n_layers"]
if "crop_overlap_ratio" in kwargs:
preprocess_kwargs["crop_overlap_ratio"] = kwargs["crop_overlap_ratio"]
if "crop_n_points_downscale_factor" in kwargs:
preprocess_kwargs["crop_n_points_downscale_factor"] = kwargs["crop_n_points_downscale_factor"]
if "timeout" in kwargs:
preprocess_kwargs["timeout"] = kwargs["timeout"]
# postprocess args
if "pred_iou_thresh" in kwargs:
forward_params["pred_iou_thresh"] = kwargs["pred_iou_thresh"]
if "stability_score_offset" in kwargs:
forward_params["stability_score_offset"] = kwargs["stability_score_offset"]
if "mask_threshold" in kwargs:
forward_params["mask_threshold"] = kwargs["mask_threshold"]
if "stability_score_thresh" in kwargs:
forward_params["stability_score_thresh"] = kwargs["stability_score_thresh"]
if "crops_nms_thresh" in kwargs:
postprocess_kwargs["crops_nms_thresh"] = kwargs["crops_nms_thresh"]
if "output_rle_mask" in kwargs:
postprocess_kwargs["output_rle_mask"] = kwargs["output_rle_mask"]
if "output_bboxes_mask" in kwargs:
postprocess_kwargs["output_bboxes_mask"] = kwargs["output_bboxes_mask"]
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__(self, image, *args, num_workers=None, batch_size=None, **kwargs):
"""
Generates binary segmentation masks
Args:
inputs (`np.ndarray` or `bytes` or `str` or `dict`):
Image or list of images.
mask_threshold (`float`, *optional*, defaults to 0.0):
Threshold to use when turning the predicted masks into binary values.
pred_iou_thresh (`float`, *optional*, defaults to 0.88):
A filtering threshold in `[0,1]` applied on the model's predicted mask quality.
stability_score_thresh (`float`, *optional*, defaults to 0.95):
A filtering threshold in `[0,1]`, using the stability of the mask under changes to the cutoff used to
binarize the model's mask predictions.
stability_score_offset (`int`, *optional*, defaults to 1):
The amount to shift the cutoff when calculated the stability score.
crops_nms_thresh (`float`, *optional*, defaults to 0.7):
The box IoU cutoff used by non-maximal suppression to filter duplicate masks.
crops_n_layers (`int`, *optional*, defaults to 0):
If `crops_n_layers>0`, mask prediction will be run again on crops of the image. Sets the number of
layers to run, where each layer has 2**i_layer number of image crops.
crop_overlap_ratio (`float`, *optional*, defaults to `512 / 1500`):
Sets the degree to which crops overlap. In the first crop layer, crops will overlap by this fraction of
the image length. Later layers with more crops scale down this overlap.
crop_n_points_downscale_factor (`int`, *optional*, defaults to `1`):
The number of points-per-side sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
timeout (`float`, *optional*, defaults to None):
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
the call may block forever.
Return:
`Dict`: A dictionary with the following keys:
- **mask** (`PIL.Image`) -- A binary mask of the detected object as a PIL Image of shape `(width,
height)` of the original image. Returns a mask filled with zeros if no object is found.
- **score** (*optional* `float`) -- Optionally, when the model is capable of estimating a confidence of
the "object" described by the label and the mask.
"""
return super().__call__(image, *args, num_workers=num_workers, batch_size=batch_size, **kwargs)
def preprocess(
self,
image,
points_per_batch=64,
crops_n_layers: int = 0,
crop_overlap_ratio: float = 512 / 1500,
points_per_crop: Optional[int] = 32,
crop_n_points_downscale_factor: Optional[int] = 1,
timeout: Optional[float] = None,
):
image = load_image(image, timeout=timeout)
target_size = self.image_processor.size["longest_edge"]
crop_boxes, grid_points, cropped_images, input_labels = self.image_processor.generate_crop_boxes(
image, target_size, crops_n_layers, crop_overlap_ratio, points_per_crop, crop_n_points_downscale_factor
)
model_inputs = self.image_processor(images=cropped_images, return_tensors="pt")
with self.device_placement():
if self.framework == "pt":
inference_context = self.get_inference_context()
with inference_context():
model_inputs = self._ensure_tensor_on_device(model_inputs, device=self.device)
image_embeddings = self.model.get_image_embeddings(model_inputs.pop("pixel_values"))
model_inputs["image_embeddings"] = image_embeddings
n_points = grid_points.shape[1]
points_per_batch = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
"Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. "
"To return all points at once, set points_per_batch to None"
)
for i in range(0, n_points, points_per_batch):
batched_points = grid_points[:, i : i + points_per_batch, :, :]
labels = input_labels[:, i : i + points_per_batch]
is_last = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def _forward(
self,
model_inputs,
pred_iou_thresh=0.88,
stability_score_thresh=0.95,
mask_threshold=0,
stability_score_offset=1,
):
input_boxes = model_inputs.pop("input_boxes")
is_last = model_inputs.pop("is_last")
original_sizes = model_inputs.pop("original_sizes").tolist()
reshaped_input_sizes = model_inputs.pop("reshaped_input_sizes").tolist()
model_outputs = self.model(**model_inputs)
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
low_resolution_masks = model_outputs["pred_masks"]
masks = self.image_processor.post_process_masks(
low_resolution_masks, original_sizes, reshaped_input_sizes, mask_threshold, binarize=False
)
iou_scores = model_outputs["iou_scores"]
masks, iou_scores, boxes = self.image_processor.filter_masks(
masks[0],
iou_scores[0],
original_sizes[0],
input_boxes[0],
pred_iou_thresh,
stability_score_thresh,
mask_threshold,
stability_score_offset,
)
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def postprocess(
self,
model_outputs,
output_rle_mask=False,
output_bboxes_mask=False,
crops_nms_thresh=0.7,
):
all_scores = []
all_masks = []
all_boxes = []
for model_output in model_outputs:
all_scores.append(model_output.pop("iou_scores"))
all_masks.extend(model_output.pop("masks"))
all_boxes.append(model_output.pop("boxes"))
all_scores = torch.cat(all_scores)
all_boxes = torch.cat(all_boxes)
output_masks, iou_scores, rle_mask, bounding_boxes = self.image_processor.post_process_for_mask_generation(
all_masks, all_scores, all_boxes, crops_nms_thresh
)
extra = defaultdict(list)
for output in model_outputs:
for k, v in output.items():
extra[k].append(v)
optional = {}
if output_rle_mask:
optional["rle_mask"] = rle_mask
if output_bboxes_mask:
optional["bounding_boxes"] = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| transformers/src/transformers/pipelines/mask_generation.py/0 | {
"file_path": "transformers/src/transformers/pipelines/mask_generation.py",
"repo_id": "transformers",
"token_count": 5619
} | 369 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processing saving/loading class for common processors.
"""
import copy
import inspect
import json
import os
import warnings
from pathlib import Path
from typing import Any, Dict, Optional, Tuple, Union
from .dynamic_module_utils import custom_object_save
from .tokenization_utils_base import PreTrainedTokenizerBase
from .utils import (
PROCESSOR_NAME,
PushToHubMixin,
add_model_info_to_auto_map,
cached_file,
copy_func,
direct_transformers_import,
download_url,
is_offline_mode,
is_remote_url,
logging,
)
logger = logging.get_logger(__name__)
# Dynamically import the Transformers module to grab the attribute classes of the processor form their names.
transformers_module = direct_transformers_import(Path(__file__).parent)
AUTO_TO_BASE_CLASS_MAPPING = {
"AutoTokenizer": "PreTrainedTokenizerBase",
"AutoFeatureExtractor": "FeatureExtractionMixin",
"AutoImageProcessor": "ImageProcessingMixin",
}
class ProcessorMixin(PushToHubMixin):
"""
This is a mixin used to provide saving/loading functionality for all processor classes.
"""
attributes = ["feature_extractor", "tokenizer"]
# Names need to be attr_class for attr in attributes
feature_extractor_class = None
tokenizer_class = None
_auto_class = None
# args have to match the attributes class attribute
def __init__(self, *args, **kwargs):
# Sanitize args and kwargs
for key in kwargs:
if key not in self.attributes:
raise TypeError(f"Unexpected keyword argument {key}.")
for arg, attribute_name in zip(args, self.attributes):
if attribute_name in kwargs:
raise TypeError(f"Got multiple values for argument {attribute_name}.")
else:
kwargs[attribute_name] = arg
if len(kwargs) != len(self.attributes):
raise ValueError(
f"This processor requires {len(self.attributes)} arguments: {', '.join(self.attributes)}. Got "
f"{len(args)} arguments instead."
)
# Check each arg is of the proper class (this will also catch a user initializing in the wrong order)
for attribute_name, arg in kwargs.items():
class_name = getattr(self, f"{attribute_name}_class")
# Nothing is ever going to be an instance of "AutoXxx", in that case we check the base class.
class_name = AUTO_TO_BASE_CLASS_MAPPING.get(class_name, class_name)
if isinstance(class_name, tuple):
proper_class = tuple(getattr(transformers_module, n) for n in class_name if n is not None)
else:
proper_class = getattr(transformers_module, class_name)
if not isinstance(arg, proper_class):
raise ValueError(
f"Received a {type(arg).__name__} for argument {attribute_name}, but a {class_name} was expected."
)
setattr(self, attribute_name, arg)
def to_dict(self) -> Dict[str, Any]:
"""
Serializes this instance to a Python dictionary.
Returns:
`Dict[str, Any]`: Dictionary of all the attributes that make up this processor instance.
"""
output = copy.deepcopy(self.__dict__)
# Get the kwargs in `__init__`.
sig = inspect.signature(self.__init__)
# Only save the attributes that are presented in the kwargs of `__init__`.
attrs_to_save = sig.parameters
# Don't save attributes like `tokenizer`, `image processor` etc.
attrs_to_save = [x for x in attrs_to_save if x not in self.__class__.attributes]
# extra attributes to be kept
attrs_to_save += ["auto_map"]
output = {k: v for k, v in output.items() if k in attrs_to_save}
output["processor_class"] = self.__class__.__name__
if "tokenizer" in output:
del output["tokenizer"]
if "image_processor" in output:
del output["image_processor"]
if "feature_extractor" in output:
del output["feature_extractor"]
# Some attributes have different names but containing objects that are not simple strings
output = {
k: v
for k, v in output.items()
if not (isinstance(v, PushToHubMixin) or v.__class__.__name__ == "BeamSearchDecoderCTC")
}
return output
def to_json_string(self) -> str:
"""
Serializes this instance to a JSON string.
Returns:
`str`: String containing all the attributes that make up this feature_extractor instance in JSON format.
"""
dictionary = self.to_dict()
return json.dumps(dictionary, indent=2, sort_keys=True) + "\n"
def to_json_file(self, json_file_path: Union[str, os.PathLike]):
"""
Save this instance to a JSON file.
Args:
json_file_path (`str` or `os.PathLike`):
Path to the JSON file in which this processor instance's parameters will be saved.
"""
with open(json_file_path, "w", encoding="utf-8") as writer:
writer.write(self.to_json_string())
def __repr__(self):
attributes_repr = [f"- {name}: {repr(getattr(self, name))}" for name in self.attributes]
attributes_repr = "\n".join(attributes_repr)
return f"{self.__class__.__name__}:\n{attributes_repr}\n\n{self.to_json_string()}"
def save_pretrained(self, save_directory, push_to_hub: bool = False, **kwargs):
"""
Saves the attributes of this processor (feature extractor, tokenizer...) in the specified directory so that it
can be reloaded using the [`~ProcessorMixin.from_pretrained`] method.
<Tip>
This class method is simply calling [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] and
[`~tokenization_utils_base.PreTrainedTokenizerBase.save_pretrained`]. Please refer to the docstrings of the
methods above for more information.
</Tip>
Args:
save_directory (`str` or `os.PathLike`):
Directory where the feature extractor JSON file and the tokenizer files will be saved (directory will
be created if it does not exist).
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
namespace).
kwargs (`Dict[str, Any]`, *optional*):
Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if kwargs.get("token", None) is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
kwargs["token"] = use_auth_token
os.makedirs(save_directory, exist_ok=True)
if push_to_hub:
commit_message = kwargs.pop("commit_message", None)
repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
repo_id = self._create_repo(repo_id, **kwargs)
files_timestamps = self._get_files_timestamps(save_directory)
# If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be
# loaded from the Hub.
if self._auto_class is not None:
attrs = [getattr(self, attribute_name) for attribute_name in self.attributes]
configs = [(a.init_kwargs if isinstance(a, PreTrainedTokenizerBase) else a) for a in attrs]
configs.append(self)
custom_object_save(self, save_directory, config=configs)
for attribute_name in self.attributes:
attribute = getattr(self, attribute_name)
# Include the processor class in the attribute config so this processor can then be reloaded with the
# `AutoProcessor` API.
if hasattr(attribute, "_set_processor_class"):
attribute._set_processor_class(self.__class__.__name__)
attribute.save_pretrained(save_directory)
if self._auto_class is not None:
# We added an attribute to the init_kwargs of the tokenizers, which needs to be cleaned up.
for attribute_name in self.attributes:
attribute = getattr(self, attribute_name)
if isinstance(attribute, PreTrainedTokenizerBase):
del attribute.init_kwargs["auto_map"]
# If we save using the predefined names, we can load using `from_pretrained`
output_processor_file = os.path.join(save_directory, PROCESSOR_NAME)
# For now, let's not save to `processor_config.json` if the processor doesn't have extra attributes and
# `auto_map` is not specified.
if set(self.to_dict().keys()) != {"processor_class"}:
self.to_json_file(output_processor_file)
logger.info(f"processor saved in {output_processor_file}")
if push_to_hub:
self._upload_modified_files(
save_directory,
repo_id,
files_timestamps,
commit_message=commit_message,
token=kwargs.get("token"),
)
if set(self.to_dict().keys()) == {"processor_class"}:
return []
return [output_processor_file]
@classmethod
def get_processor_dict(
cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs
) -> Tuple[Dict[str, Any], Dict[str, Any]]:
"""
From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a
processor of type [`~processing_utils.ProcessingMixin`] using `from_args_and_dict`.
Parameters:
pretrained_model_name_or_path (`str` or `os.PathLike`):
The identifier of the pre-trained checkpoint from which we want the dictionary of parameters.
subfolder (`str`, *optional*, defaults to `""`):
In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can
specify the folder name here.
Returns:
`Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the processor object.
"""
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", "")
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
user_agent = {"file_type": "processor", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
is_local = os.path.isdir(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
processor_file = os.path.join(pretrained_model_name_or_path, PROCESSOR_NAME)
if os.path.isfile(pretrained_model_name_or_path):
resolved_processor_file = pretrained_model_name_or_path
is_local = True
elif is_remote_url(pretrained_model_name_or_path):
processor_file = pretrained_model_name_or_path
resolved_processor_file = download_url(pretrained_model_name_or_path)
else:
processor_file = PROCESSOR_NAME
try:
# Load from local folder or from cache or download from model Hub and cache
resolved_processor_file = cached_file(
pretrained_model_name_or_path,
processor_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
user_agent=user_agent,
revision=revision,
subfolder=subfolder,
_raise_exceptions_for_missing_entries=False,
)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
# the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load"
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
f" directory containing a {PROCESSOR_NAME} file"
)
# Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not
# updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict.
# (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception)
# However, for models added in the future, we won't get the expected error if this file is missing.
if resolved_processor_file is None:
return {}, kwargs
try:
# Load processor dict
with open(resolved_processor_file, "r", encoding="utf-8") as reader:
text = reader.read()
processor_dict = json.loads(text)
except json.JSONDecodeError:
raise EnvironmentError(
f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file."
)
if is_local:
logger.info(f"loading configuration file {resolved_processor_file}")
else:
logger.info(f"loading configuration file {processor_file} from cache at {resolved_processor_file}")
if "auto_map" in processor_dict and not is_local:
processor_dict["auto_map"] = add_model_info_to_auto_map(
processor_dict["auto_map"], pretrained_model_name_or_path
)
return processor_dict, kwargs
@classmethod
def from_args_and_dict(cls, args, processor_dict: Dict[str, Any], **kwargs):
"""
Instantiates a type of [`~processing_utils.ProcessingMixin`] from a Python dictionary of parameters.
Args:
processor_dict (`Dict[str, Any]`):
Dictionary that will be used to instantiate the processor object. Such a dictionary can be
retrieved from a pretrained checkpoint by leveraging the
[`~processing_utils.ProcessingMixin.to_dict`] method.
kwargs (`Dict[str, Any]`):
Additional parameters from which to initialize the processor object.
Returns:
[`~processing_utils.ProcessingMixin`]: The processor object instantiated from those
parameters.
"""
processor_dict = processor_dict.copy()
return_unused_kwargs = kwargs.pop("return_unused_kwargs", False)
# Unlike image processors or feature extractors whose `__init__` accept `kwargs`, processor don't have `kwargs`.
# We have to pop up some unused (but specific) arguments to make it work.
if "processor_class" in processor_dict:
del processor_dict["processor_class"]
if "auto_map" in processor_dict:
del processor_dict["auto_map"]
processor = cls(*args, **processor_dict)
# Update processor with kwargs if needed
for key in set(kwargs.keys()):
if hasattr(processor, key):
setattr(processor, key, kwargs.pop(key))
logger.info(f"Processor {processor}")
if return_unused_kwargs:
return processor, kwargs
else:
return processor
@classmethod
def from_pretrained(
cls,
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
local_files_only: bool = False,
token: Optional[Union[str, bool]] = None,
revision: str = "main",
**kwargs,
):
r"""
Instantiate a processor associated with a pretrained model.
<Tip>
This class method is simply calling the feature extractor
[`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`], image processor
[`~image_processing_utils.ImageProcessingMixin`] and the tokenizer
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`] methods. Please refer to the docstrings of the
methods above for more information.
</Tip>
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on
huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or
namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`.
- a path to a *directory* containing a feature extractor file saved using the
[`~SequenceFeatureExtractor.save_pretrained`] method, e.g., `./my_model_directory/`.
- a path or url to a saved feature extractor JSON *file*, e.g.,
`./my_model_directory/preprocessor_config.json`.
**kwargs
Additional keyword arguments passed along to both
[`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] and
[`~tokenization_utils_base.PreTrainedTokenizer.from_pretrained`].
"""
kwargs["cache_dir"] = cache_dir
kwargs["force_download"] = force_download
kwargs["local_files_only"] = local_files_only
kwargs["revision"] = revision
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError(
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
)
token = use_auth_token
if token is not None:
kwargs["token"] = token
args = cls._get_arguments_from_pretrained(pretrained_model_name_or_path, **kwargs)
processor_dict, kwargs = cls.get_processor_dict(pretrained_model_name_or_path, **kwargs)
return cls.from_args_and_dict(args, processor_dict, **kwargs)
@classmethod
def register_for_auto_class(cls, auto_class="AutoProcessor"):
"""
Register this class with a given auto class. This should only be used for custom feature extractors as the ones
in the library are already mapped with `AutoProcessor`.
<Tip warning={true}>
This API is experimental and may have some slight breaking changes in the next releases.
</Tip>
Args:
auto_class (`str` or `type`, *optional*, defaults to `"AutoProcessor"`):
The auto class to register this new feature extractor with.
"""
if not isinstance(auto_class, str):
auto_class = auto_class.__name__
import transformers.models.auto as auto_module
if not hasattr(auto_module, auto_class):
raise ValueError(f"{auto_class} is not a valid auto class.")
cls._auto_class = auto_class
@classmethod
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
args = []
for attribute_name in cls.attributes:
class_name = getattr(cls, f"{attribute_name}_class")
if isinstance(class_name, tuple):
classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name)
use_fast = kwargs.get("use_fast", True)
if use_fast and classes[1] is not None:
attribute_class = classes[1]
else:
attribute_class = classes[0]
else:
attribute_class = getattr(transformers_module, class_name)
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
return args
@property
def model_input_names(self):
first_attribute = getattr(self, self.attributes[0])
return getattr(first_attribute, "model_input_names", None)
ProcessorMixin.push_to_hub = copy_func(ProcessorMixin.push_to_hub)
if ProcessorMixin.push_to_hub.__doc__ is not None:
ProcessorMixin.push_to_hub.__doc__ = ProcessorMixin.push_to_hub.__doc__.format(
object="processor", object_class="AutoProcessor", object_files="processor files"
)
| transformers/src/transformers/processing_utils.py/0 | {
"file_path": "transformers/src/transformers/processing_utils.py",
"repo_id": "transformers",
"token_count": 9681
} | 370 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Time series distributional output classes and utilities.
"""
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import nn
from torch.distributions import (
AffineTransform,
Distribution,
Independent,
NegativeBinomial,
Normal,
StudentT,
TransformedDistribution,
)
class AffineTransformed(TransformedDistribution):
def __init__(self, base_distribution: Distribution, loc=None, scale=None, event_dim=0):
self.scale = 1.0 if scale is None else scale
self.loc = 0.0 if loc is None else loc
super().__init__(base_distribution, [AffineTransform(loc=self.loc, scale=self.scale, event_dim=event_dim)])
@property
def mean(self):
"""
Returns the mean of the distribution.
"""
return self.base_dist.mean * self.scale + self.loc
@property
def variance(self):
"""
Returns the variance of the distribution.
"""
return self.base_dist.variance * self.scale**2
@property
def stddev(self):
"""
Returns the standard deviation of the distribution.
"""
return self.variance.sqrt()
class ParameterProjection(nn.Module):
def __init__(
self, in_features: int, args_dim: Dict[str, int], domain_map: Callable[..., Tuple[torch.Tensor]], **kwargs
) -> None:
super().__init__(**kwargs)
self.args_dim = args_dim
self.proj = nn.ModuleList([nn.Linear(in_features, dim) for dim in args_dim.values()])
self.domain_map = domain_map
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor]:
params_unbounded = [proj(x) for proj in self.proj]
return self.domain_map(*params_unbounded)
class LambdaLayer(nn.Module):
def __init__(self, function):
super().__init__()
self.function = function
def forward(self, x, *args):
return self.function(x, *args)
class DistributionOutput:
distribution_class: type
in_features: int
args_dim: Dict[str, int]
def __init__(self, dim: int = 1) -> None:
self.dim = dim
self.args_dim = {k: dim * self.args_dim[k] for k in self.args_dim}
def _base_distribution(self, distr_args):
if self.dim == 1:
return self.distribution_class(*distr_args)
else:
return Independent(self.distribution_class(*distr_args), 1)
def distribution(
self,
distr_args,
loc: Optional[torch.Tensor] = None,
scale: Optional[torch.Tensor] = None,
) -> Distribution:
distr = self._base_distribution(distr_args)
if loc is None and scale is None:
return distr
else:
return AffineTransformed(distr, loc=loc, scale=scale, event_dim=self.event_dim)
@property
def event_shape(self) -> Tuple:
r"""
Shape of each individual event contemplated by the distributions that this object constructs.
"""
return () if self.dim == 1 else (self.dim,)
@property
def event_dim(self) -> int:
r"""
Number of event dimensions, i.e., length of the `event_shape` tuple, of the distributions that this object
constructs.
"""
return len(self.event_shape)
@property
def value_in_support(self) -> float:
r"""
A float that will have a valid numeric value when computing the log-loss of the corresponding distribution. By
default 0.0. This value will be used when padding data series.
"""
return 0.0
def get_parameter_projection(self, in_features: int) -> nn.Module:
r"""
Return the parameter projection layer that maps the input to the appropriate parameters of the distribution.
"""
return ParameterProjection(
in_features=in_features,
args_dim=self.args_dim,
domain_map=LambdaLayer(self.domain_map),
)
def domain_map(self, *args: torch.Tensor):
r"""
Converts arguments to the right shape and domain. The domain depends on the type of distribution, while the
correct shape is obtained by reshaping the trailing axis in such a way that the returned tensors define a
distribution of the right event_shape.
"""
raise NotImplementedError()
@staticmethod
def squareplus(x: torch.Tensor) -> torch.Tensor:
r"""
Helper to map inputs to the positive orthant by applying the square-plus operation. Reference:
https://twitter.com/jon_barron/status/1387167648669048833
"""
return (x + torch.sqrt(torch.square(x) + 4.0)) / 2.0
class StudentTOutput(DistributionOutput):
"""
Student-T distribution output class.
"""
args_dim: Dict[str, int] = {"df": 1, "loc": 1, "scale": 1}
distribution_class: type = StudentT
@classmethod
def domain_map(cls, df: torch.Tensor, loc: torch.Tensor, scale: torch.Tensor):
scale = cls.squareplus(scale).clamp_min(torch.finfo(scale.dtype).eps)
df = 2.0 + cls.squareplus(df)
return df.squeeze(-1), loc.squeeze(-1), scale.squeeze(-1)
class NormalOutput(DistributionOutput):
"""
Normal distribution output class.
"""
args_dim: Dict[str, int] = {"loc": 1, "scale": 1}
distribution_class: type = Normal
@classmethod
def domain_map(cls, loc: torch.Tensor, scale: torch.Tensor):
scale = cls.squareplus(scale).clamp_min(torch.finfo(scale.dtype).eps)
return loc.squeeze(-1), scale.squeeze(-1)
class NegativeBinomialOutput(DistributionOutput):
"""
Negative Binomial distribution output class.
"""
args_dim: Dict[str, int] = {"total_count": 1, "logits": 1}
distribution_class: type = NegativeBinomial
@classmethod
def domain_map(cls, total_count: torch.Tensor, logits: torch.Tensor):
total_count = cls.squareplus(total_count)
return total_count.squeeze(-1), logits.squeeze(-1)
def _base_distribution(self, distr_args) -> Distribution:
total_count, logits = distr_args
if self.dim == 1:
return self.distribution_class(total_count=total_count, logits=logits)
else:
return Independent(self.distribution_class(total_count=total_count, logits=logits), 1)
# Overwrites the parent class method. We cannot scale using the affine
# transformation since negative binomial should return integers. Instead
# we scale the parameters.
def distribution(
self, distr_args, loc: Optional[torch.Tensor] = None, scale: Optional[torch.Tensor] = None
) -> Distribution:
total_count, logits = distr_args
if scale is not None:
# See scaling property of Gamma.
logits += scale.log()
return self._base_distribution((total_count, logits))
| transformers/src/transformers/time_series_utils.py/0 | {
"file_path": "transformers/src/transformers/time_series_utils.py",
"repo_id": "transformers",
"token_count": 2916
} | 371 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class TextClassificationTool(PipelineTool):
"""
Example:
```py
from transformers.tools import TextClassificationTool
classifier = TextClassificationTool()
classifier("This is a super nice API!", labels=["positive", "negative"])
```
"""
default_checkpoint = "facebook/bart-large-mnli"
description = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
name = "text_classifier"
pre_processor_class = AutoTokenizer
model_class = AutoModelForSequenceClassification
inputs = ["text", ["text"]]
outputs = ["text"]
def setup(self):
super().setup()
config = self.model.config
self.entailment_id = -1
for idx, label in config.id2label.items():
if label.lower().startswith("entail"):
self.entailment_id = int(idx)
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init.")
def encode(self, text, labels):
self._labels = labels
return self.pre_processor(
[text] * len(labels),
[f"This example is {label}" for label in labels],
return_tensors="pt",
padding="max_length",
)
def decode(self, outputs):
logits = outputs.logits
label_id = torch.argmax(logits[:, 2]).item()
return self._labels[label_id]
| transformers/src/transformers/tools/text_classification.py/0 | {
"file_path": "transformers/src/transformers/tools/text_classification.py",
"repo_id": "transformers",
"token_count": 874
} | 372 |
IMAGENET_DEFAULT_MEAN = [0.485, 0.456, 0.406]
IMAGENET_DEFAULT_STD = [0.229, 0.224, 0.225]
IMAGENET_STANDARD_MEAN = [0.5, 0.5, 0.5]
IMAGENET_STANDARD_STD = [0.5, 0.5, 0.5]
OPENAI_CLIP_MEAN = [0.48145466, 0.4578275, 0.40821073]
OPENAI_CLIP_STD = [0.26862954, 0.26130258, 0.27577711]
| transformers/src/transformers/utils/constants.py/0 | {
"file_path": "transformers/src/transformers/utils/constants.py",
"repo_id": "transformers",
"token_count": 162
} | 373 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Generic utilities
"""
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields, is_dataclass
from enum import Enum
from functools import partial
from typing import Any, ContextManager, Iterable, List, Tuple
import numpy as np
from packaging import version
from .import_utils import get_torch_version, is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class cached_property(property):
"""
Descriptor that mimics @property but caches output in member variable.
From tensorflow_datasets
Built-in in functools from Python 3.8.
"""
def __get__(self, obj, objtype=None):
# See docs.python.org/3/howto/descriptor.html#properties
if obj is None:
return self
if self.fget is None:
raise AttributeError("unreadable attribute")
attr = "__cached_" + self.fget.__name__
cached = getattr(obj, attr, None)
if cached is None:
cached = self.fget(obj)
setattr(obj, attr, cached)
return cached
# vendored from distutils.util
def strtobool(val):
"""Convert a string representation of truth to true (1) or false (0).
True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'.
Raises ValueError if 'val' is anything else.
"""
val = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f"invalid truth value {val!r}")
def infer_framework_from_repr(x):
"""
Tries to guess the framework of an object `x` from its repr (brittle but will help in `is_tensor` to try the
frameworks in a smart order, without the need to import the frameworks).
"""
representation = str(type(x))
if representation.startswith("<class 'torch."):
return "pt"
elif representation.startswith("<class 'tensorflow."):
return "tf"
elif representation.startswith("<class 'jax"):
return "jax"
elif representation.startswith("<class 'numpy."):
return "np"
def _get_frameworks_and_test_func(x):
"""
Returns an (ordered since we are in Python 3.7+) dictionary framework to test function, which places the framework
we can guess from the repr first, then Numpy, then the others.
"""
framework_to_test = {
"pt": is_torch_tensor,
"tf": is_tf_tensor,
"jax": is_jax_tensor,
"np": is_numpy_array,
}
preferred_framework = infer_framework_from_repr(x)
# We will test this one first, then numpy, then the others.
frameworks = [] if preferred_framework is None else [preferred_framework]
if preferred_framework != "np":
frameworks.append("np")
frameworks.extend([f for f in framework_to_test if f not in [preferred_framework, "np"]])
return {f: framework_to_test[f] for f in frameworks}
def is_tensor(x):
"""
Tests if `x` is a `torch.Tensor`, `tf.Tensor`, `jaxlib.xla_extension.DeviceArray` or `np.ndarray` in the order
defined by `infer_framework_from_repr`
"""
# This gives us a smart order to test the frameworks with the corresponding tests.
framework_to_test_func = _get_frameworks_and_test_func(x)
for test_func in framework_to_test_func.values():
if test_func(x):
return True
# Tracers
if is_torch_fx_proxy(x):
return True
if is_flax_available():
from jax.core import Tracer
if isinstance(x, Tracer):
return True
return False
def _is_numpy(x):
return isinstance(x, np.ndarray)
def is_numpy_array(x):
"""
Tests if `x` is a numpy array or not.
"""
return _is_numpy(x)
def _is_torch(x):
import torch
return isinstance(x, torch.Tensor)
def is_torch_tensor(x):
"""
Tests if `x` is a torch tensor or not. Safe to call even if torch is not installed.
"""
return False if not is_torch_available() else _is_torch(x)
def _is_torch_device(x):
import torch
return isinstance(x, torch.device)
def is_torch_device(x):
"""
Tests if `x` is a torch device or not. Safe to call even if torch is not installed.
"""
return False if not is_torch_available() else _is_torch_device(x)
def _is_torch_dtype(x):
import torch
if isinstance(x, str):
if hasattr(torch, x):
x = getattr(torch, x)
else:
return False
return isinstance(x, torch.dtype)
def is_torch_dtype(x):
"""
Tests if `x` is a torch dtype or not. Safe to call even if torch is not installed.
"""
return False if not is_torch_available() else _is_torch_dtype(x)
def _is_tensorflow(x):
import tensorflow as tf
return isinstance(x, tf.Tensor)
def is_tf_tensor(x):
"""
Tests if `x` is a tensorflow tensor or not. Safe to call even if tensorflow is not installed.
"""
return False if not is_tf_available() else _is_tensorflow(x)
def _is_tf_symbolic_tensor(x):
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(tf, "is_symbolic_tensor"):
return tf.is_symbolic_tensor(x)
return type(x) == tf.Tensor
def is_tf_symbolic_tensor(x):
"""
Tests if `x` is a tensorflow symbolic tensor or not (ie. not eager). Safe to call even if tensorflow is not
installed.
"""
return False if not is_tf_available() else _is_tf_symbolic_tensor(x)
def _is_jax(x):
import jax.numpy as jnp # noqa: F811
return isinstance(x, jnp.ndarray)
def is_jax_tensor(x):
"""
Tests if `x` is a Jax tensor or not. Safe to call even if jax is not installed.
"""
return False if not is_flax_available() else _is_jax(x)
def to_py_obj(obj):
"""
Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a python list.
"""
framework_to_py_obj = {
"pt": lambda obj: obj.detach().cpu().tolist(),
"tf": lambda obj: obj.numpy().tolist(),
"jax": lambda obj: np.asarray(obj).tolist(),
"np": lambda obj: obj.tolist(),
}
if isinstance(obj, (dict, UserDict)):
return {k: to_py_obj(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return [to_py_obj(o) for o in obj]
# This gives us a smart order to test the frameworks with the corresponding tests.
framework_to_test_func = _get_frameworks_and_test_func(obj)
for framework, test_func in framework_to_test_func.items():
if test_func(obj):
return framework_to_py_obj[framework](obj)
# tolist also works on 0d np arrays
if isinstance(obj, np.number):
return obj.tolist()
else:
return obj
def to_numpy(obj):
"""
Convert a TensorFlow tensor, PyTorch tensor, Numpy array or python list to a Numpy array.
"""
framework_to_numpy = {
"pt": lambda obj: obj.detach().cpu().numpy(),
"tf": lambda obj: obj.numpy(),
"jax": lambda obj: np.asarray(obj),
"np": lambda obj: obj,
}
if isinstance(obj, (dict, UserDict)):
return {k: to_numpy(v) for k, v in obj.items()}
elif isinstance(obj, (list, tuple)):
return np.array(obj)
# This gives us a smart order to test the frameworks with the corresponding tests.
framework_to_test_func = _get_frameworks_and_test_func(obj)
for framework, test_func in framework_to_test_func.items():
if test_func(obj):
return framework_to_numpy[framework](obj)
return obj
class ModelOutput(OrderedDict):
"""
Base class for all model outputs as dataclass. Has a `__getitem__` that allows indexing by integer or slice (like a
tuple) or strings (like a dictionary) that will ignore the `None` attributes. Otherwise behaves like a regular
python dictionary.
<Tip warning={true}>
You can't unpack a `ModelOutput` directly. Use the [`~utils.ModelOutput.to_tuple`] method to convert it to a tuple
before.
</Tip>
"""
def __init_subclass__(cls) -> None:
"""Register subclasses as pytree nodes.
This is necessary to synchronize gradients when using `torch.nn.parallel.DistributedDataParallel` with
`static_graph=True` with modules that output `ModelOutput` subclasses.
"""
if is_torch_available():
if version.parse(get_torch_version()) >= version.parse("2.2"):
_torch_pytree.register_pytree_node(
cls,
_model_output_flatten,
partial(_model_output_unflatten, output_type=cls),
serialized_type_name=f"{cls.__module__}.{cls.__name__}",
)
else:
_torch_pytree._register_pytree_node(
cls,
_model_output_flatten,
partial(_model_output_unflatten, output_type=cls),
)
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# Subclasses of ModelOutput must use the @dataclass decorator
# This check is done in __init__ because the @dataclass decorator operates after __init_subclass__
# issubclass() would return True for issubclass(ModelOutput, ModelOutput) when False is needed
# Just need to check that the current class is not ModelOutput
is_modeloutput_subclass = self.__class__ != ModelOutput
if is_modeloutput_subclass and not is_dataclass(self):
raise TypeError(
f"{self.__module__}.{self.__class__.__name__} is not a dataclasss."
" This is a subclass of ModelOutput and so must use the @dataclass decorator."
)
def __post_init__(self):
"""Check the ModelOutput dataclass.
Only occurs if @dataclass decorator has been used.
"""
class_fields = fields(self)
# Safety and consistency checks
if not len(class_fields):
raise ValueError(f"{self.__class__.__name__} has no fields.")
if not all(field.default is None for field in class_fields[1:]):
raise ValueError(f"{self.__class__.__name__} should not have more than one required field.")
first_field = getattr(self, class_fields[0].name)
other_fields_are_none = all(getattr(self, field.name) is None for field in class_fields[1:])
if other_fields_are_none and not is_tensor(first_field):
if isinstance(first_field, dict):
iterator = first_field.items()
first_field_iterator = True
else:
try:
iterator = iter(first_field)
first_field_iterator = True
except TypeError:
first_field_iterator = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(iterator):
if (
not isinstance(element, (list, tuple))
or not len(element) == 2
or not isinstance(element[0], str)
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
self[class_fields[0].name] = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
f"Cannot set key/value for {element}. It needs to be a tuple (key, value)."
)
break
setattr(self, element[0], element[1])
if element[1] is not None:
self[element[0]] = element[1]
elif first_field is not None:
self[class_fields[0].name] = first_field
else:
for field in class_fields:
v = getattr(self, field.name)
if v is not None:
self[field.name] = v
def __delitem__(self, *args, **kwargs):
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
def setdefault(self, *args, **kwargs):
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
def pop(self, *args, **kwargs):
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
def update(self, *args, **kwargs):
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
def __getitem__(self, k):
if isinstance(k, str):
inner_dict = dict(self.items())
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__(self, name, value):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(name, value)
super().__setattr__(name, value)
def __setitem__(self, key, value):
# Will raise a KeyException if needed
super().__setitem__(key, value)
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(key, value)
def __reduce__(self):
if not is_dataclass(self):
return super().__reduce__()
callable, _args, *remaining = super().__reduce__()
args = tuple(getattr(self, field.name) for field in fields(self))
return callable, args, *remaining
def to_tuple(self) -> Tuple[Any]:
"""
Convert self to a tuple containing all the attributes/keys that are not `None`.
"""
return tuple(self[k] for k in self.keys())
if is_torch_available():
import torch.utils._pytree as _torch_pytree
def _model_output_flatten(output: ModelOutput) -> Tuple[List[Any], "_torch_pytree.Context"]:
return list(output.values()), list(output.keys())
def _model_output_unflatten(
values: Iterable[Any],
context: "_torch_pytree.Context",
output_type=None,
) -> ModelOutput:
return output_type(**dict(zip(context, values)))
if version.parse(get_torch_version()) >= version.parse("2.2"):
_torch_pytree.register_pytree_node(
ModelOutput,
_model_output_flatten,
partial(_model_output_unflatten, output_type=ModelOutput),
serialized_type_name=f"{ModelOutput.__module__}.{ModelOutput.__name__}",
)
else:
_torch_pytree._register_pytree_node(
ModelOutput,
_model_output_flatten,
partial(_model_output_unflatten, output_type=ModelOutput),
)
class ExplicitEnum(str, Enum):
"""
Enum with more explicit error message for missing values.
"""
@classmethod
def _missing_(cls, value):
raise ValueError(
f"{value} is not a valid {cls.__name__}, please select one of {list(cls._value2member_map_.keys())}"
)
class PaddingStrategy(ExplicitEnum):
"""
Possible values for the `padding` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for tab-completion in an
IDE.
"""
LONGEST = "longest"
MAX_LENGTH = "max_length"
DO_NOT_PAD = "do_not_pad"
class TensorType(ExplicitEnum):
"""
Possible values for the `return_tensors` argument in [`PreTrainedTokenizerBase.__call__`]. Useful for
tab-completion in an IDE.
"""
PYTORCH = "pt"
TENSORFLOW = "tf"
NUMPY = "np"
JAX = "jax"
class ContextManagers:
"""
Wrapper for `contextlib.ExitStack` which enters a collection of context managers. Adaptation of `ContextManagers`
in the `fastcore` library.
"""
def __init__(self, context_managers: List[ContextManager]):
self.context_managers = context_managers
self.stack = ExitStack()
def __enter__(self):
for context_manager in self.context_managers:
self.stack.enter_context(context_manager)
def __exit__(self, *args, **kwargs):
self.stack.__exit__(*args, **kwargs)
def can_return_loss(model_class):
"""
Check if a given model can return loss.
Args:
model_class (`type`): The class of the model.
"""
framework = infer_framework(model_class)
if framework == "tf":
signature = inspect.signature(model_class.call) # TensorFlow models
elif framework == "pt":
signature = inspect.signature(model_class.forward) # PyTorch models
else:
signature = inspect.signature(model_class.__call__) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def find_labels(model_class):
"""
Find the labels used by a given model.
Args:
model_class (`type`): The class of the model.
"""
model_name = model_class.__name__
framework = infer_framework(model_class)
if framework == "tf":
signature = inspect.signature(model_class.call) # TensorFlow models
elif framework == "pt":
signature = inspect.signature(model_class.forward) # PyTorch models
else:
signature = inspect.signature(model_class.__call__) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def flatten_dict(d: MutableMapping, parent_key: str = "", delimiter: str = "."):
"""Flatten a nested dict into a single level dict."""
def _flatten_dict(d, parent_key="", delimiter="."):
for k, v in d.items():
key = str(parent_key) + delimiter + str(k) if parent_key else k
if v and isinstance(v, MutableMapping):
yield from flatten_dict(v, key, delimiter=delimiter).items()
else:
yield key, v
return dict(_flatten_dict(d, parent_key, delimiter))
@contextmanager
def working_or_temp_dir(working_dir, use_temp_dir: bool = False):
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def transpose(array, axes=None):
"""
Framework-agnostic version of `numpy.transpose` that will work on torch/TensorFlow/Jax tensors as well as NumPy
arrays.
"""
if is_numpy_array(array):
return np.transpose(array, axes=axes)
elif is_torch_tensor(array):
return array.T if axes is None else array.permute(*axes)
elif is_tf_tensor(array):
import tensorflow as tf
return tf.transpose(array, perm=axes)
elif is_jax_tensor(array):
return jnp.transpose(array, axes=axes)
else:
raise ValueError(f"Type not supported for transpose: {type(array)}.")
def reshape(array, newshape):
"""
Framework-agnostic version of `numpy.reshape` that will work on torch/TensorFlow/Jax tensors as well as NumPy
arrays.
"""
if is_numpy_array(array):
return np.reshape(array, newshape)
elif is_torch_tensor(array):
return array.reshape(*newshape)
elif is_tf_tensor(array):
import tensorflow as tf
return tf.reshape(array, newshape)
elif is_jax_tensor(array):
return jnp.reshape(array, newshape)
else:
raise ValueError(f"Type not supported for reshape: {type(array)}.")
def squeeze(array, axis=None):
"""
Framework-agnostic version of `numpy.squeeze` that will work on torch/TensorFlow/Jax tensors as well as NumPy
arrays.
"""
if is_numpy_array(array):
return np.squeeze(array, axis=axis)
elif is_torch_tensor(array):
return array.squeeze() if axis is None else array.squeeze(dim=axis)
elif is_tf_tensor(array):
import tensorflow as tf
return tf.squeeze(array, axis=axis)
elif is_jax_tensor(array):
return jnp.squeeze(array, axis=axis)
else:
raise ValueError(f"Type not supported for squeeze: {type(array)}.")
def expand_dims(array, axis):
"""
Framework-agnostic version of `numpy.expand_dims` that will work on torch/TensorFlow/Jax tensors as well as NumPy
arrays.
"""
if is_numpy_array(array):
return np.expand_dims(array, axis)
elif is_torch_tensor(array):
return array.unsqueeze(dim=axis)
elif is_tf_tensor(array):
import tensorflow as tf
return tf.expand_dims(array, axis=axis)
elif is_jax_tensor(array):
return jnp.expand_dims(array, axis=axis)
else:
raise ValueError(f"Type not supported for expand_dims: {type(array)}.")
def tensor_size(array):
"""
Framework-agnostic version of `numpy.size` that will work on torch/TensorFlow/Jax tensors as well as NumPy arrays.
"""
if is_numpy_array(array):
return np.size(array)
elif is_torch_tensor(array):
return array.numel()
elif is_tf_tensor(array):
import tensorflow as tf
return tf.size(array)
elif is_jax_tensor(array):
return array.size
else:
raise ValueError(f"Type not supported for tensor_size: {type(array)}.")
def add_model_info_to_auto_map(auto_map, repo_id):
"""
Adds the information of the repo_id to a given auto map.
"""
for key, value in auto_map.items():
if isinstance(value, (tuple, list)):
auto_map[key] = [f"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value]
elif value is not None and "--" not in value:
auto_map[key] = f"{repo_id}--{value}"
return auto_map
def infer_framework(model_class):
"""
Infers the framework of a given model without using isinstance(), because we cannot guarantee that the relevant
classes are imported or available.
"""
for base_class in inspect.getmro(model_class):
module = base_class.__module__
name = base_class.__name__
if module.startswith("tensorflow") or module.startswith("keras") or name == "TFPreTrainedModel":
return "tf"
elif module.startswith("torch") or name == "PreTrainedModel":
return "pt"
elif module.startswith("flax") or module.startswith("jax") or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f"Could not infer framework from class {model_class}.")
| transformers/src/transformers/utils/generic.py/0 | {
"file_path": "transformers/src/transformers/utils/generic.py",
"repo_id": "transformers",
"token_count": 9888
} | 374 |
{
"example_name": "text classification",
"directory_name": "{{cookiecutter.example_name|lower|replace(' ', '-')}}",
"example_shortcut": "{{cookiecutter.directory_name}}",
"model_class": "AutoModel",
"authors": "The HuggingFace Team",
"can_train_from_scratch": ["True", "False"],
"with_trainer": ["True", "False"]
} | transformers/templates/adding_a_new_example_script/cookiecutter.json/0 | {
"file_path": "transformers/templates/adding_a_new_example_script/cookiecutter.json",
"repo_id": "transformers",
"token_count": 115
} | 375 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# {{cookiecutter.modelname}}
## Overview
The {{cookiecutter.modelname}} model was proposed in [<INSERT PAPER NAME HERE>](<INSERT PAPER LINK HERE>) by <INSERT AUTHORS HERE>. <INSERT SHORT SUMMARY HERE>
The abstract from the paper is the following:
*<INSERT PAPER ABSTRACT HERE>*
Tips:
<INSERT TIPS ABOUT MODEL HERE>
This model was contributed by [INSERT YOUR HF USERNAME HERE](<https://huggingface.co/<INSERT YOUR HF USERNAME HERE>). The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>).
## {{cookiecutter.camelcase_modelname}}Config
[[autodoc]] {{cookiecutter.camelcase_modelname}}Config
## {{cookiecutter.camelcase_modelname}}Tokenizer
[[autodoc]] {{cookiecutter.camelcase_modelname}}Tokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## {{cookiecutter.camelcase_modelname}}TokenizerFast
[[autodoc]] {{cookiecutter.camelcase_modelname}}TokenizerFast
{% if "PyTorch" in cookiecutter.generate_tensorflow_pytorch_and_flax -%}
## {{cookiecutter.camelcase_modelname}}Model
[[autodoc]] {{cookiecutter.camelcase_modelname}}Model
- forward
{% if cookiecutter.is_encoder_decoder_model == "False" %}
## {{cookiecutter.camelcase_modelname}}ForCausalLM
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForCausalLM
- forward
## {{cookiecutter.camelcase_modelname}}ForMaskedLM
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForMaskedLM
- forward
## {{cookiecutter.camelcase_modelname}}ForSequenceClassification
[[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForSequenceClassification
- forward
## {{cookiecutter.camelcase_modelname}}ForMultipleChoice
[[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForMultipleChoice
- forward
## {{cookiecutter.camelcase_modelname}}ForTokenClassification
[[autodoc]] transformers.{{cookiecutter.camelcase_modelname}}ForTokenClassification
- forward
## {{cookiecutter.camelcase_modelname}}ForQuestionAnswering
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForQuestionAnswering
- forward
{%- else %}
## {{cookiecutter.camelcase_modelname}}ForConditionalGeneration
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForConditionalGeneration
- forward
## {{cookiecutter.camelcase_modelname}}ForSequenceClassification
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForSequenceClassification
- forward
## {{cookiecutter.camelcase_modelname}}ForQuestionAnswering
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForQuestionAnswering
- forward
## {{cookiecutter.camelcase_modelname}}ForCausalLM
[[autodoc]] {{cookiecutter.camelcase_modelname}}ForCausalLM
- forward
{% endif -%}
{% endif -%}
{% if "TensorFlow" in cookiecutter.generate_tensorflow_pytorch_and_flax -%}
## TF{{cookiecutter.camelcase_modelname}}Model
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}Model
- call
{% if cookiecutter.is_encoder_decoder_model == "False" %}
## TF{{cookiecutter.camelcase_modelname}}ForMaskedLM
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForMaskedLM
- call
## TF{{cookiecutter.camelcase_modelname}}ForCausalLM
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForCausalLM
- call
## TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForSequenceClassification
- call
## TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForMultipleChoice
- call
## TF{{cookiecutter.camelcase_modelname}}ForTokenClassification
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForTokenClassification
- call
## TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
- call
{%- else %}
## TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
[[autodoc]] TF{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
- call
{% endif -%}
{% endif -%}
{% if "Flax" in cookiecutter.generate_tensorflow_pytorch_and_flax -%}
## Flax{{cookiecutter.camelcase_modelname}}Model
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}Model
- call
{% if cookiecutter.is_encoder_decoder_model == "False" %}
## Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForMaskedLM
- call
## Flax{{cookiecutter.camelcase_modelname}}ForCausalLM
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForCausalLM
- call
## Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification
- call
## Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForMultipleChoice
- call
## Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForTokenClassification
- call
## Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
- call
{%- else %}
## Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForSequenceClassification
- call
## Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForQuestionAnswering
- call
## Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
[[autodoc]] Flax{{cookiecutter.camelcase_modelname}}ForConditionalGeneration
- call
{% endif -%}
{% endif -%}
| transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/{{cookiecutter.lowercase_modelname}}.md/0 | {
"file_path": "transformers/templates/adding_a_new_model/cookiecutter-template-{{cookiecutter.modelname}}/{{cookiecutter.lowercase_modelname}}.md",
"repo_id": "transformers",
"token_count": 2170
} | 376 |
# coding=utf-8
# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class AutoImageProcessorTest(unittest.TestCase):
def setUp(self):
transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0
def test_image_processor_from_model_shortcut(self):
config = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_directory_from_key(self):
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
config = AutoImageProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_directory_from_feature_extractor_key(self):
# Ensure we can load the image processor from the feature extractor config
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
config = AutoImageProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_directory_from_config(self):
with tempfile.TemporaryDirectory() as tmpdirname:
model_config = CLIPConfig()
# Create a dummy config file with image_proceesor_type
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
config_dict = AutoImageProcessor.from_pretrained(tmpdirname).to_dict()
config_dict.pop("image_processor_type")
config = CLIPImageProcessor(**config_dict)
# save in new folder
model_config.save_pretrained(tmpdirname)
config.save_pretrained(tmpdirname)
config = AutoImageProcessor.from_pretrained(tmpdirname)
# make sure private variable is not incorrectly saved
dict_as_saved = json.loads(config.to_json_string())
self.assertTrue("_processor_class" not in dict_as_saved)
self.assertIsInstance(config, CLIPImageProcessor)
def test_image_processor_from_local_file(self):
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
json.dump(
{"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
config = AutoImageProcessor.from_pretrained(processor_tmpfile)
self.assertIsInstance(config, CLIPImageProcessor)
def test_repo_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, "clip-base is not a local folder and is not a valid model identifier"
):
_ = AutoImageProcessor.from_pretrained("clip-base")
def test_revision_not_found(self):
with self.assertRaisesRegex(
EnvironmentError, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"
):
_ = AutoImageProcessor.from_pretrained(DUMMY_UNKNOWN_IDENTIFIER, revision="aaaaaa")
def test_image_processor_not_found(self):
with self.assertRaisesRegex(
EnvironmentError,
"hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.",
):
_ = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model")
def test_from_pretrained_dynamic_image_processor(self):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(ValueError):
image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor")
# If remote code is disabled, we can't load this config.
with self.assertRaises(ValueError):
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False
)
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True
)
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(tmp_dir)
reloaded_image_processor = AutoImageProcessor.from_pretrained(tmp_dir, trust_remote_code=True)
self.assertEqual(reloaded_image_processor.__class__.__name__, "NewImageProcessor")
def test_new_image_processor_registration(self):
try:
AutoConfig.register("custom", CustomConfig)
AutoImageProcessor.register(CustomConfig, CustomImageProcessor)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(ValueError):
AutoImageProcessor.register(CLIPConfig, CLIPImageProcessor)
with tempfile.TemporaryDirectory() as tmpdirname:
processor_tmpfile = Path(tmpdirname) / "preprocessor_config.json"
config_tmpfile = Path(tmpdirname) / "config.json"
json.dump(
{"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"},
open(processor_tmpfile, "w"),
)
json.dump({"model_type": "clip"}, open(config_tmpfile, "w"))
image_processor = CustomImageProcessor.from_pretrained(tmpdirname)
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(tmp_dir)
new_image_processor = AutoImageProcessor.from_pretrained(tmp_dir)
self.assertIsInstance(new_image_processor, CustomImageProcessor)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def test_from_pretrained_dynamic_image_processor_conflict(self):
class NewImageProcessor(CLIPImageProcessor):
is_local = True
try:
AutoConfig.register("custom", CustomConfig)
AutoImageProcessor.register(CustomConfig, NewImageProcessor)
# If remote code is not set, the default is to use local
image_processor = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor")
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
self.assertTrue(image_processor.is_local)
# If remote code is disabled, we load the local one.
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=False
)
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
self.assertTrue(image_processor.is_local)
# If remote is enabled, we load from the Hub
image_processor = AutoImageProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_image_processor", trust_remote_code=True
)
self.assertEqual(image_processor.__class__.__name__, "NewImageProcessor")
self.assertTrue(not hasattr(image_processor, "is_local"))
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
| transformers/tests/models/auto/test_image_processing_auto.py/0 | {
"file_path": "transformers/tests/models/auto/test_image_processing_auto.py",
"repo_id": "transformers",
"token_count": 4164
} | 377 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import unittest
from transformers import BartTokenizer, BartTokenizerFast, BatchEncoding
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors
@require_tokenizers
class TestTokenizationBart(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = BartTokenizer
rust_tokenizer_class = BartTokenizerFast
test_rust_tokenizer = True
from_pretrained_filter = filter_roberta_detectors
# from_pretrained_kwargs = {'add_prefix_space': True}
def setUp(self):
super().setUp()
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_rust_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
return "lower newer", "lower newer"
@cached_property
def default_tokenizer(self):
return BartTokenizer.from_pretrained("facebook/bart-large")
@cached_property
def default_tokenizer_fast(self):
return BartTokenizerFast.from_pretrained("facebook/bart-large")
@require_torch
def test_prepare_batch(self):
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
expected_src_tokens = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
batch = tokenizer(src_text, max_length=len(expected_src_tokens), padding=True, return_tensors="pt")
self.assertIsInstance(batch, BatchEncoding)
self.assertEqual((2, 9), batch.input_ids.shape)
self.assertEqual((2, 9), batch.attention_mask.shape)
result = batch.input_ids.tolist()[0]
self.assertListEqual(expected_src_tokens, result)
# Test that special tokens are reset
@require_torch
def test_prepare_batch_empty_target_text(self):
src_text = ["A long paragraph for summarization.", "Another paragraph for summarization."]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
batch = tokenizer(src_text, padding=True, return_tensors="pt")
# check if input_ids are returned and no labels
self.assertIn("input_ids", batch)
self.assertIn("attention_mask", batch)
self.assertNotIn("labels", batch)
self.assertNotIn("decoder_attention_mask", batch)
@require_torch
def test_tokenizer_as_target_length(self):
tgt_text = [
"Summary of the text.",
"Another summary.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
targets = tokenizer(text_target=tgt_text, max_length=32, padding="max_length", return_tensors="pt")
self.assertEqual(32, targets["input_ids"].shape[1])
@require_torch
def test_prepare_batch_not_longer_than_maxlen(self):
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
batch = tokenizer(
["I am a small frog" * 1024, "I am a small frog"], padding=True, truncation=True, return_tensors="pt"
)
self.assertIsInstance(batch, BatchEncoding)
self.assertEqual(batch.input_ids.shape, (2, 1024))
@require_torch
def test_special_tokens(self):
src_text = ["A long paragraph for summarization."]
tgt_text = [
"Summary of the text.",
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
inputs = tokenizer(src_text, return_tensors="pt")
targets = tokenizer(text_target=tgt_text, return_tensors="pt")
input_ids = inputs["input_ids"]
labels = targets["input_ids"]
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item())
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item())
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item())
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item())
def test_pretokenized_inputs(self):
pass
def test_embeded_special_tokens(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
sentence = "A, <mask> AllenNLP sentence."
tokens_r = tokenizer_r.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
tokens_p = tokenizer_p.encode_plus(sentence, add_special_tokens=True, return_token_type_ids=True)
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["attention_mask"]) / len(tokens_r["attention_mask"]),
sum(tokens_p["attention_mask"]) / len(tokens_p["attention_mask"]),
)
tokens_r_str = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
tokens_p_str = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
self.assertSequenceEqual(tokens_p["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(tokens_r["input_ids"], [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2])
self.assertSequenceEqual(
tokens_p_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
self.assertSequenceEqual(
tokens_r_str, ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"]
)
| transformers/tests/models/bart/test_tokenization_bart.py/0 | {
"file_path": "transformers/tests/models/bart/test_tokenization_bart.py",
"repo_id": "transformers",
"token_count": 3668
} | 378 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class BertGenerationEncoderTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=50,
initializer_range=0.02,
use_labels=True,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.use_labels = use_labels
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if self.use_labels:
token_labels = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
config = self.get_config()
return config, input_ids, input_mask, token_labels
def get_config(self):
return BertGenerationConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
input_mask,
token_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self,
config,
input_ids,
input_mask,
token_labels,
**kwargs,
):
model = BertGenerationEncoder(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
**kwargs,
):
config.add_cross_attention = True
model = BertGenerationEncoder(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
**kwargs,
):
config.is_decoder = True
config.add_cross_attention = True
model = BertGenerationDecoder(config=config).to(torch_device).eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
input_mask,
token_labels,
*args,
):
model = BertGenerationDecoder(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def prepare_config_and_inputs_for_common(self):
config, input_ids, input_mask, token_labels = self.prepare_config_and_inputs()
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class BertGenerationEncoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
all_generative_model_classes = (BertGenerationDecoder,) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder}
if is_torch_available()
else {}
)
def setUp(self):
self.model_tester = BertGenerationEncoderTester(self)
self.config_tester = ConfigTester(self, config_class=BertGenerationConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_as_bert(self):
config, input_ids, input_mask, token_labels = self.model_tester.prepare_config_and_inputs()
config.model_type = "bert"
self.model_tester.create_and_check_model(config, input_ids, input_mask, token_labels)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def test_for_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
self.assertIsNotNone(model)
@require_torch
class BertGenerationEncoderIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head_absolute_embedding(self):
model = BertGenerationEncoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size([1, 8, 1024])
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
@require_torch
class BertGenerationDecoderIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head_absolute_embedding(self):
model = BertGenerationDecoder.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder")
input_ids = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]])
with torch.no_grad():
output = model(input_ids)[0]
expected_shape = torch.Size([1, 8, 50358])
self.assertEqual(output.shape, expected_shape)
expected_slice = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]]
)
self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4))
| transformers/tests/models/bert_generation/test_modeling_bert_generation.py/0 | {
"file_path": "transformers/tests/models/bert_generation/test_modeling_bert_generation.py",
"repo_id": "transformers",
"token_count": 5707
} | 379 |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_vision_available():
from transformers import CLIPImageProcessor
class CLIPImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
do_normalize=True,
image_mean=[0.48145466, 0.4578275, 0.40821073],
image_std=[0.26862954, 0.26130258, 0.27577711],
do_convert_rgb=True,
):
size = size if size is not None else {"shortest_edge": 20}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_convert_rgb": self.do_convert_rgb,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class CLIPImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = CLIPImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = CLIPImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"shortest_edge": 20})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
self.assertEqual(image_processor.size, {"shortest_edge": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
| transformers/tests/models/clip/test_image_processing_clip.py/0 | {
"file_path": "transformers/tests/models/clip/test_image_processing_clip.py",
"repo_id": "transformers",
"token_count": 1915
} | 380 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow Data2VecVision model. """
from __future__ import annotations
import collections.abc
import inspect
import unittest
import numpy as np
from transformers import Data2VecVisionConfig
from transformers.file_utils import cached_property, is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, require_vision, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFData2VecVisionForImageClassification,
TFData2VecVisionForSemanticSegmentation,
TFData2VecVisionModel,
)
from transformers.modeling_tf_utils import keras
from transformers.models.data2vec.modeling_tf_data2vec_vision import (
TF_DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class TFData2VecVisionModelTester:
def __init__(
self,
parent,
vocab_size=100,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_labels=3,
scope=None,
out_indices=[0, 1, 2, 3],
):
self.parent = parent
self.vocab_size = 100
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.out_indices = out_indices
self.num_labels = num_labels
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return Data2VecVisionConfig(
vocab_size=self.vocab_size,
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
out_indices=self.out_indices,
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = TFData2VecVisionModel(config=config)
result = model(pixel_values, training=False)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (
self.image_size
if isinstance(self.image_size, collections.abc.Iterable)
else (self.image_size, self.image_size)
)
patch_size = (
self.patch_size
if isinstance(self.image_size, collections.abc.Iterable)
else (self.patch_size, self.patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.type_sequence_label_size
model = TFData2VecVisionForImageClassification(config)
result = model(pixel_values, labels=labels, training=False)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def create_and_check_for_image_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = TFData2VecVisionForSemanticSegmentation(config)
result = model(pixel_values, training=False)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
)
result = model(pixel_values, labels=pixel_labels)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
def prepare_config_and_inputs_for_keras_fit(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, _, _ = config_and_inputs
inputs_dict = {"pixel_values": pixel_values, "labels": tf.zeros((self.batch_size))}
return config, inputs_dict
@require_tf
class TFData2VecVisionModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Data2VecVision does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(TFData2VecVisionModel, TFData2VecVisionForImageClassification, TFData2VecVisionForSemanticSegmentation)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{"feature-extraction": TFData2VecVisionModel, "image-classification": TFData2VecVisionForImageClassification}
if is_tf_available()
else {}
)
test_pruning = False
test_onnx = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = TFData2VecVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=Data2VecVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="Data2VecVision does not use inputs_embeds")
def test_inputs_embeds(self):
# Data2VecVision does not use inputs_embeds
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, keras.layers.Layer))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_image_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*config_and_inputs)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
# in Data2VecVision, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
image_size = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
patch_size = (
self.model_tester.patch_size
if isinstance(self.model_tester.patch_size, collections.abc.Iterable)
else (self.model_tester.patch_size, self.model_tester.patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_len = num_patches + 1
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
chunk_length = getattr(self.model_tester, "chunk_length", None)
if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class), training=False)
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# Data2VecVision has a different seq_length
image_size = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
patch_size = (
self.model_tester.patch_size
if isinstance(self.model_tester.patch_size, collections.abc.Iterable)
else (self.model_tester.patch_size, self.model_tester.patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
seq_length = num_patches + 1
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# Overriding this method since the base method won't be compatible with Data2VecVision.
@slow
def test_keras_fit(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Since `TFData2VecVisionModel` cannot operate with the default `fit()` method.
if model_class.__name__ != "TFData2VecVisionModel":
model = model_class(config)
if getattr(model, "hf_compute_loss", None):
# Test that model correctly compute the loss with kwargs
_, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit()
label_names = {"labels"}
self.assertGreater(len(label_names), 0, msg="No matching label names found!")
labels = {key: val for key, val in prepared_for_class.items() if key in label_names}
inputs_minus_labels = {
key: val for key, val in prepared_for_class.items() if key not in label_names
}
self.assertGreater(len(inputs_minus_labels), 0)
model.compile(optimizer=keras.optimizers.SGD(0.0), run_eagerly=True)
# Make sure the model fits without crashing regardless of where we pass the labels
history1 = model.fit(
prepared_for_class,
validation_data=prepared_for_class,
steps_per_epoch=1,
validation_steps=1,
shuffle=False,
)
val_loss1 = history1.history["val_loss"][0]
history2 = model.fit(
inputs_minus_labels,
labels,
validation_data=(inputs_minus_labels, labels),
steps_per_epoch=1,
validation_steps=1,
shuffle=False,
)
val_loss2 = history2.history["val_loss"][0]
self.assertTrue(np.allclose(val_loss1, val_loss2, atol=1e-2, rtol=1e-3))
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=2e-4, name="outputs", attributes=None):
# We override with a slightly higher tol value, as semseg models tend to diverge a bit more
super().check_pt_tf_outputs(tf_outputs, pt_outputs, model_class, tol, name, attributes)
# Overriding this method since the base method won't be compatible with Data2VecVision.
def test_loss_computation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Since `TFData2VecVisionModel` won't have labels against which we
# could compute loss.
if model_class.__name__ != "TFData2VecVisionModel":
model = model_class(config)
if getattr(model, "hf_compute_loss", None):
# The number of elements in the loss should be the same as the number of elements in the label
_, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit()
added_label = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0]
]
loss_size = tf.size(added_label)
# Test that model correctly compute the loss with kwargs
possible_input_names = {"input_ids", "pixel_values", "input_features"}
input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
model_input = prepared_for_class.pop(input_name)
loss = model(model_input, **prepared_for_class)[0]
self.assertEqual(loss.shape, [loss_size])
# Test that model correctly compute the loss with a dict
_, prepared_for_class = self.model_tester.prepare_config_and_inputs_for_keras_fit()
loss = model(**prepared_for_class)[0]
self.assertEqual(loss.shape, [loss_size])
# Test that model correctly compute the loss with a tuple
label_keys = prepared_for_class.keys() - inputs_dict.keys()
signature = inspect.signature(model.call).parameters
signature_names = list(signature.keys())
# Create a dictionary holding the location of the tensors in the tuple
tuple_index_mapping = {0: input_name}
for label_key in label_keys:
label_key_index = signature_names.index(label_key)
tuple_index_mapping[label_key_index] = label_key
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
# Initialize a list with their default values, update the values and convert to a tuple
list_input = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default)
for index, value in sorted_tuple_index_mapping:
list_input[index] = prepared_for_class[value]
tuple_input = tuple(list_input)
# Send to model
loss = model(tuple_input[:-1])[0]
self.assertEqual(loss.shape, [loss_size])
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in TF_DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFData2VecVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_tf
@require_vision
class TFData2VecVisionModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
BeitImageProcessor.from_pretrained("facebook/data2vec-vision-base-ft1k") if is_vision_available() else None
)
@slow
def test_inference_image_classification_head_imagenet_1k(self):
model = TFData2VecVisionForImageClassification.from_pretrained("facebook/data2vec-vision-base-ft1k")
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(**inputs)
logits = outputs.logits
# verify the logits
expected_shape = tf.convert_to_tensor([1, 1000])
self.assertEqual(logits.shape, expected_shape)
expected_slice = tf.convert_to_tensor([0.3277, -0.1395, 0.0911])
tf.debugging.assert_near(logits[0, :3], expected_slice, atol=1e-4)
expected_top2 = [model.config.label2id[i] for i in ["remote control, remote", "tabby, tabby cat"]]
self.assertEqual(tf.nn.top_k(outputs.logits[0], 2).indices.numpy().tolist(), expected_top2)
| transformers/tests/models/data2vec/test_modeling_tf_data2vec_vision.py/0 | {
"file_path": "transformers/tests/models/data2vec/test_modeling_tf_data2vec_vision.py",
"repo_id": "transformers",
"token_count": 9984
} | 381 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DeiT model. """
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_accelerator,
require_torch_fp16,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class DeiTModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_labels=3,
scope=None,
encoder_stride=2,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.encoder_stride = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 2
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return DeiTConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
encoder_stride=self.encoder_stride,
)
def create_and_check_model(self, config, pixel_values, labels):
model = DeiTModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_masked_image_modeling(self, config, pixel_values, labels):
model = DeiTForMaskedImageModeling(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(
result.reconstruction.shape, (self.batch_size, self.num_channels, self.image_size, self.image_size)
)
# test greyscale images
config.num_channels = 1
model = DeiTForMaskedImageModeling(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values)
self.parent.assertEqual(result.reconstruction.shape, (self.batch_size, 1, self.image_size, self.image_size))
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
model = DeiTForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
# test greyscale images
config.num_channels = 1
model = DeiTForImageClassification(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class DeiTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as DeiT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": DeiTModel,
"image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = DeiTModelTester(self)
self.config_tester = ConfigTester(self, config_class=DeiTConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_image_modeling(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
# special case for DeiTForImageClassificationWithTeacher model
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def test_training(self):
if not self.model_tester.is_training:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(MODEL_MAPPING)
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
config.use_cache = False
config.return_dict = True
for model_class in self.all_model_classes:
if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
model = model_class(config)
model.gradient_checkpointing_enable()
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_problem_types(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
problem_types = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
config.problem_type = problem_type["title"]
config.num_labels = problem_type["num_labels"]
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
if problem_type["num_labels"] > 1:
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])
inputs["labels"] = inputs["labels"].to(problem_type["dtype"])
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=True) as warning_list:
loss = model(**inputs).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}"
)
loss.backward()
@slow
def test_model_from_pretrained(self):
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = DeiTModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class DeiTModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
if is_vision_available()
else None
)
@slow
def test_inference_image_classification_head(self):
model = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224").to(
torch_device
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-1.0266, 0.1912, -1.2861]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
@slow
@require_accelerate
@require_torch_accelerator
@require_torch_fp16
def test_inference_fp16(self):
r"""
A small test to make sure that inference work in half precision without any problem.
"""
model = DeiTModel.from_pretrained(
"facebook/deit-base-distilled-patch16-224", torch_dtype=torch.float16, device_map="auto"
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt")
pixel_values = inputs.pixel_values.to(torch_device)
# forward pass to make sure inference works in fp16
with torch.no_grad():
_ = model(pixel_values)
| transformers/tests/models/deit/test_modeling_deit.py/0 | {
"file_path": "transformers/tests/models/deit/test_modeling_deit.py",
"repo_id": "transformers",
"token_count": 7228
} | 382 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers import DistilBertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.distilbert.modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
)
class FlaxDistilBertModelTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_attention_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_choices=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_choices = num_choices
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
attention_mask = None
if self.use_attention_mask:
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = DistilBertConfig(
vocab_size=self.vocab_size,
dim=self.hidden_size,
n_layers=self.num_hidden_layers,
n_heads=self.num_attention_heads,
hidden_dim=self.intermediate_size,
hidden_act=self.hidden_act,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
tie_weights_=True,
)
return config, input_ids, attention_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class FlaxDistilBertModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (
(
FlaxDistilBertModel,
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def setUp(self):
self.model_tester = FlaxDistilBertModelTester(self)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("distilbert-base-uncased")
outputs = model(np.ones((1, 1)))
self.assertIsNotNone(outputs)
@require_flax
class FlaxDistilBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_no_head_absolute_embedding(self):
model = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased")
input_ids = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]])
attention_mask = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
output = model(input_ids, attention_mask=attention_mask)[0]
expected_shape = (1, 11, 768)
self.assertEqual(output.shape, expected_shape)
expected_slice = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]])
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4))
| transformers/tests/models/distilbert/test_modeling_flax_distilbert.py/0 | {
"file_path": "transformers/tests/models/distilbert/test_modeling_flax_distilbert.py",
"repo_id": "transformers",
"token_count": 2492
} | 383 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch DPT model. """
import unittest
from transformers import Dinov2Config, DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MODEL_MAPPING, DPTForDepthEstimation
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class DPTModelTester:
def __init__(
self,
parent,
batch_size=2,
num_channels=3,
image_size=32,
patch_size=16,
use_labels=True,
num_labels=3,
is_training=True,
hidden_size=4,
num_hidden_layers=2,
num_attention_heads=2,
intermediate_size=8,
out_features=["stage1", "stage2"],
apply_layernorm=False,
reshape_hidden_states=False,
neck_hidden_sizes=[2, 2],
fusion_hidden_size=6,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.out_features = out_features
self.apply_layernorm = apply_layernorm
self.reshape_hidden_states = reshape_hidden_states
self.use_labels = use_labels
self.num_labels = num_labels
self.is_training = is_training
self.neck_hidden_sizes = neck_hidden_sizes
self.fusion_hidden_size = fusion_hidden_size
# DPT's sequence length
self.seq_length = (self.image_size // self.patch_size) ** 2 + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return DPTConfig(
backbone_config=self.get_backbone_config(),
backbone=None,
neck_hidden_sizes=self.neck_hidden_sizes,
fusion_hidden_size=self.fusion_hidden_size,
)
def get_backbone_config(self):
return Dinov2Config(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
is_training=self.is_training,
out_features=self.out_features,
reshape_hidden_states=self.reshape_hidden_states,
)
def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = DPTForDepthEstimation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class DPTModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as DPT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (DPTForDepthEstimation,) if is_torch_available() else ()
pipeline_model_mapping = {"depth-estimation": DPTForDepthEstimation} if is_torch_available() else {}
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = DPTModelTester(self)
self.config_tester = ConfigTester(self, config_class=DPTConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="DPT with AutoBackbone does not have a base model and hence no input_embeddings")
def test_inputs_embeds(self):
pass
def test_for_depth_estimation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)
def test_training(self):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
if model_class in get_values(MODEL_MAPPING):
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.use_cache = False
config.return_dict = True
if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
continue
model = model_class(config)
model.to(torch_device)
model.gradient_checkpointing_enable()
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
# Skip the check for the backbone
backbone_params = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
backbone_params = [f"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
@unittest.skip(reason="DPT with AutoBackbone does not have a base model and hence no input_embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="DPT with AutoBackbone does not have a base model")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="DPT with AutoBackbone does not have a base model")
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = DPTForDepthEstimation.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
@slow
class DPTModelIntegrationTest(unittest.TestCase):
def test_inference_depth_estimation_dinov2(self):
image_processor = DPTImageProcessor.from_pretrained("facebook/dpt-dinov2-small-kitti")
model = DPTForDepthEstimation.from_pretrained("facebook/dpt-dinov2-small-kitti").to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# verify the predicted depth
expected_shape = torch.Size((1, 576, 736))
self.assertEqual(predicted_depth.shape, expected_shape)
expected_slice = torch.tensor(
[[6.0433, 7.1636, 7.4268], [6.9047, 7.2471, 7.2355], [7.9261, 8.0631, 8.0244]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))
def test_inference_depth_estimation_beit(self):
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-beit-base-384")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-beit-base-384").to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# verify the predicted depth
expected_shape = torch.Size((1, 384, 384))
self.assertEqual(predicted_depth.shape, expected_shape)
expected_slice = torch.tensor(
[[2669.7061, 2663.7144, 2674.9399], [2633.9326, 2650.9092, 2665.4270], [2621.8271, 2632.0129, 2637.2290]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))
def test_inference_depth_estimation_swinv2(self):
image_processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256").to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# verify the predicted depth
expected_shape = torch.Size((1, 256, 256))
self.assertEqual(predicted_depth.shape, expected_shape)
expected_slice = torch.tensor(
[[1032.7719, 1025.1886, 1030.2661], [1023.7619, 1021.0075, 1024.9121], [1022.5667, 1018.8522, 1021.4145]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))
| transformers/tests/models/dpt/test_modeling_dpt_auto_backbone.py/0 | {
"file_path": "transformers/tests/models/dpt/test_modeling_dpt_auto_backbone.py",
"repo_id": "transformers",
"token_count": 5415
} | 384 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Encodec model. """
import copy
import inspect
import os
import tempfile
import unittest
from typing import Dict, List, Tuple
import numpy as np
from datasets import Audio, load_dataset
from transformers import AutoProcessor, EncodecConfig
from transformers.testing_utils import (
is_torch_available,
require_torch,
slow,
torch_device,
)
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EncodecModel
def prepare_inputs_dict(
config,
input_ids=None,
input_values=None,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if input_ids is not None:
encoder_dict = {"input_ids": input_ids}
else:
encoder_dict = {"input_values": input_values}
decoder_dict = {"decoder_input_ids": decoder_input_ids} if decoder_input_ids is not None else {}
return {**encoder_dict, **decoder_dict}
@require_torch
class EncodecModelTester:
def __init__(
self,
parent,
# `batch_size` needs to be an even number if the model has some outputs with batch dim != 0.
batch_size=12,
num_channels=2,
is_training=False,
intermediate_size=40,
hidden_size=32,
num_filters=8,
num_residual_layers=1,
upsampling_ratios=[8, 4],
num_lstm_layers=1,
codebook_size=64,
):
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.is_training = is_training
self.intermediate_size = intermediate_size
self.hidden_size = hidden_size
self.num_filters = num_filters
self.num_residual_layers = num_residual_layers
self.upsampling_ratios = upsampling_ratios
self.num_lstm_layers = num_lstm_layers
self.codebook_size = codebook_size
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.num_channels, self.intermediate_size], scale=1.0)
config = self.get_config()
inputs_dict = {"input_values": input_values}
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def get_config(self):
return EncodecConfig(
audio_channels=self.num_channels,
chunk_in_sec=None,
hidden_size=self.hidden_size,
num_filters=self.num_filters,
num_residual_layers=self.num_residual_layers,
upsampling_ratios=self.upsampling_ratios,
num_lstm_layers=self.num_lstm_layers,
codebook_size=self.codebook_size,
)
def create_and_check_model_forward(self, config, inputs_dict):
model = EncodecModel(config=config).to(torch_device).eval()
input_values = inputs_dict["input_values"]
result = model(input_values)
self.parent.assertEqual(
result.audio_values.shape, (self.batch_size, self.num_channels, self.intermediate_size)
)
@require_torch
class EncodecModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (EncodecModel,) if is_torch_available() else ()
is_encoder_decoder = True
test_pruning = False
test_headmasking = False
test_resize_embeddings = False
pipeline_model_mapping = {"feature-extraction": EncodecModel} if is_torch_available() else {}
input_name = "input_values"
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
# model does not have attention and does not support returning hidden states
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if "output_attentions" in inputs_dict:
inputs_dict.pop("output_attentions")
if "output_hidden_states" in inputs_dict:
inputs_dict.pop("output_hidden_states")
return inputs_dict
def setUp(self):
self.model_tester = EncodecModelTester(self)
self.config_tester = ConfigTester(
self, config_class=EncodecConfig, hidden_size=37, common_properties=[], has_text_modality=False
)
def test_config(self):
self.config_tester.run_common_tests()
def test_model_forward(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_forward(*config_and_inputs)
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_values", "padding_mask", "bandwidth"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@unittest.skip("The EncodecModel is not transformers based, thus it does not have `inputs_embeds` logics")
def test_inputs_embeds(self):
pass
@unittest.skip("The EncodecModel is not transformers based, thus it does not have `inputs_embeds` logics")
def test_model_common_attributes(self):
pass
@unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic")
def test_torchscript_output_attentions(self):
pass
@unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `hidden_states` logic")
def test_torchscript_output_hidden_state(self):
pass
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
main_input = inputs[main_input_name]
model(main_input)
traced_model = torch.jit.trace(model, main_input)
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `attention` logic")
def test_attention_outputs(self):
pass
def test_feed_forward_chunking(self):
(original_config, inputs_dict) = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
torch.manual_seed(0)
config = copy.deepcopy(original_config)
config.chunk_length_s = None
config.overlap = None
config.sampling_rate = 10
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
inputs["input_values"] = inputs["input_values"].repeat(1, 1, 10)
hidden_states_no_chunk = model(**inputs)[0]
torch.manual_seed(0)
config.chunk_length_s = 1
config.overlap = 0
config.sampling_rate = 10
model = model_class(config)
model.to(torch_device)
model.eval()
hidden_states_with_chunk = model(**inputs)[0]
self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))
@unittest.skip("The EncodecModel is not transformers based, thus it does not have the usual `hidden_states` logic")
def test_hidden_states_output(self):
pass
def test_determinism(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def check_determinism(first, second):
# outputs are not tensors but list (since each sequence don't have the same frame_length)
out_1 = first.cpu().numpy()
out_2 = second.cpu().numpy()
out_1 = out_1[~np.isnan(out_1)]
out_2 = out_2[~np.isnan(out_2)]
max_diff = np.amax(np.abs(out_1 - out_2))
self.assertLessEqual(max_diff, 1e-5)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_determinism(tensor1, tensor2)
else:
check_determinism(first, second)
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs)
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = ["conv"]
ignore_init = ["lstm"]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif not any(x in name for x in ignore_init):
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_identity_shortcut(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
config.use_conv_shortcut = False
self.model_tester.create_and_check_model_forward(config, inputs_dict)
def normalize(arr):
norm = np.linalg.norm(arr)
normalized_arr = arr / norm
return normalized_arr
def compute_rmse(arr1, arr2):
arr1_normalized = normalize(arr1)
arr2_normalized = normalize(arr2)
return np.sqrt(((arr1_normalized - arr2_normalized) ** 2).mean())
@slow
@require_torch
class EncodecIntegrationTest(unittest.TestCase):
def test_integration_24kHz(self):
expected_rmse = {
"1.5": 0.0025,
"24.0": 0.0015,
}
expected_codesums = {
"1.5": [371955],
"24.0": [6659962],
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "facebook/encodec_24khz"
model = EncodecModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
inputs = processor(
raw_audio=audio_sample,
sampling_rate=processor.sampling_rate,
return_tensors="pt",
).to(torch_device)
for bandwidth, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwith for best possible reconstruction
encoder_outputs = model.encode(inputs["input_values"], bandwidth=float(bandwidth))
audio_code_sums = [a[0].sum().cpu().item() for a in encoder_outputs[0]]
# make sure audio encoded codes are correct
self.assertListEqual(audio_code_sums, expected_codesums[bandwidth])
audio_codes, scales = encoder_outputs.to_tuple()
input_values_dec = model.decode(audio_codes, scales, inputs["padding_mask"])[0]
input_values_enc_dec = model(
inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth)
)[-1]
# make sure forward and decode gives same result
self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3))
# make sure shape matches
self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(rmse < expected_rmse)
def test_integration_48kHz(self):
expected_rmse = {
"3.0": 0.001,
"24.0": 0.0005,
}
expected_codesums = {
"3.0": [144259, 146765, 156435, 176871, 161971],
"24.0": [1568553, 1294948, 1306190, 1464747, 1663150],
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "facebook/encodec_48khz"
model = EncodecModel.from_pretrained(model_id).to(torch_device)
model = model.eval()
processor = AutoProcessor.from_pretrained(model_id)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_sample = librispeech_dummy[-1]["audio"]["array"]
# transform mono to stereo
audio_sample = np.array([audio_sample, audio_sample])
inputs = processor(raw_audio=audio_sample, sampling_rate=processor.sampling_rate, return_tensors="pt").to(
torch_device
)
for bandwidth, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwith for best possible reconstruction
encoder_outputs = model.encode(
inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth), return_dict=False
)
audio_code_sums = [a[0].sum().cpu().item() for a in encoder_outputs[0]]
# make sure audio encoded codes are correct
self.assertListEqual(audio_code_sums, expected_codesums[bandwidth])
audio_codes, scales = encoder_outputs
input_values_dec = model.decode(audio_codes, scales, inputs["padding_mask"])[0]
input_values_enc_dec = model(
inputs["input_values"], inputs["padding_mask"], bandwidth=float(bandwidth)
)[-1]
# make sure forward and decode gives same result
self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3))
# make sure shape matches
self.assertTrue(inputs["input_values"].shape == input_values_enc_dec.shape)
arr = inputs["input_values"][0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(rmse < expected_rmse)
def test_batch_48kHz(self):
expected_rmse = {
"3.0": 0.001,
"24.0": 0.0005,
}
expected_codesums = {
"3.0": [
[72410, 79137, 76694, 90854, 73023, 82980, 72707, 54842],
[85561, 81870, 76953, 48967, 79315, 85442, 81479, 107241],
],
"24.0": [
[72410, 79137, 76694, 90854, 73023, 82980, 72707, 54842],
[85561, 81870, 76953, 48967, 79315, 85442, 81479, 107241],
],
}
librispeech_dummy = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
model_id = "facebook/encodec_48khz"
model = EncodecModel.from_pretrained(model_id).to(torch_device)
processor = AutoProcessor.from_pretrained(model_id, chunk_length_s=1, overlap=0.01)
librispeech_dummy = librispeech_dummy.cast_column("audio", Audio(sampling_rate=processor.sampling_rate))
audio_samples = [
np.array([audio_sample["array"], audio_sample["array"]])
for audio_sample in librispeech_dummy[-2:]["audio"]
]
inputs = processor(raw_audio=audio_samples, sampling_rate=processor.sampling_rate, return_tensors="pt")
input_values = inputs["input_values"].to(torch_device)
for bandwidth, expected_rmse in expected_rmse.items():
with torch.no_grad():
# use max bandwith for best possible reconstruction
encoder_outputs = model.encode(input_values, bandwidth=float(bandwidth), return_dict=False)
audio_code_sums_0 = [a[0][0].sum().cpu().item() for a in encoder_outputs[0]]
audio_code_sums_1 = [a[0][1].sum().cpu().item() for a in encoder_outputs[0]]
# make sure audio encoded codes are correct
self.assertListEqual(audio_code_sums_0, expected_codesums[bandwidth][0])
self.assertListEqual(audio_code_sums_1, expected_codesums[bandwidth][1])
audio_codes, scales = encoder_outputs
input_values_dec = model.decode(audio_codes, scales)[0]
input_values_enc_dec = model(input_values, bandwidth=float(bandwidth))[-1]
# make sure forward and decode gives same result
self.assertTrue(torch.allclose(input_values_dec, input_values_enc_dec, atol=1e-3))
# make sure shape matches
self.assertTrue(input_values.shape == input_values_enc_dec.shape)
arr = input_values[0].cpu().numpy()
arr_enc_dec = input_values_enc_dec[0].cpu().numpy()
# make sure audios are more or less equal
# the RMSE of two random gaussian noise vectors with ~N(0, 1) is around 1.0
rmse = compute_rmse(arr, arr_enc_dec)
self.assertTrue(rmse < expected_rmse)
| transformers/tests/models/encodec/test_modeling_encodec.py/0 | {
"file_path": "transformers/tests/models/encodec/test_modeling_encodec.py",
"repo_id": "transformers",
"token_count": 11774
} | 385 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Falcon model. """
import tempfile
import unittest
from parameterized import parameterized
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
FalconConfig,
is_torch_available,
set_seed,
)
from transformers.testing_utils import require_bitsandbytes, require_torch, require_torch_sdpa, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
)
class FalconModelTester:
def __init__(
self,
parent,
batch_size=3,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return FalconConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=1,
new_decoder_architecture=True,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = FalconModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = FalconModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = FalconForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = FalconForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class FalconModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
FalconModel,
FalconForCausalLM,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconForQuestionAnswering,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (FalconForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": FalconModel,
"question-answering": FalconForQuestionAnswering,
"text-classification": FalconForSequenceClassification,
"text-generation": FalconForCausalLM,
"token-classification": FalconForTokenClassification,
"zero-shot": FalconForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
return True
def setUp(self):
self.model_tester = FalconModelTester(self)
self.config_tester = ConfigTester(self, config_class=FalconConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_position_embedding_types(self):
config, *inputs = self.model_tester.prepare_config_and_inputs()
for alibi in [True, False]:
config.alibi = alibi
self.model_tester.create_and_check_model(config, *inputs)
def test_falcon_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = FalconForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_falcon_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = FalconForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_falcon_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = FalconForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_past_key_values_format(self):
# Falcon can have different numbers of KV-heads than the number of query heads, so we need
# to override this test to use the right head counts.
for model_class in self.all_generative_model_classes:
config, inputs = self.model_tester.prepare_config_and_inputs_for_common()
# If it doesn't support cache, pass the test
if not hasattr(config, "use_cache"):
return
model = model_class(config).to(torch_device)
if "use_cache" not in inputs:
inputs["use_cache"] = True
outputs = model(**inputs)
# If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format)
if "past_key_values" not in outputs:
return
num_hidden_layers = (
getattr(config, "decoder_layers", None)
or getattr(config, "num_decoder_layers", None)
or config.num_hidden_layers
)
num_attention_heads = getattr(config, "num_kv_heads", config.num_attention_heads)
embed_dim = getattr(config, "d_model", config.hidden_size)
per_head_embed_dim = embed_dim // num_attention_heads
past_kv = outputs["past_key_values"]
self.assertEqual(len(past_kv), num_hidden_layers)
batch_size, seq_length = inputs["input_ids"].shape
for i in range(num_hidden_layers):
if config.new_decoder_architecture:
num_attention_heads = config.num_attention_heads
elif config.multi_query:
num_attention_heads = 1
self.assertEqual(len(past_kv[0]), 2) # K V for the decoder = 2
self.assertEqual(
past_kv[i][0].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
)
self.assertEqual(
past_kv[i][1].shape, (batch_size, num_attention_heads, seq_length, per_head_embed_dim)
)
@parameterized.expand([("linear",), ("dynamic",)])
def test_model_rope_scaling(self, scaling_type):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
short_input = ids_tensor([1, 10], config.vocab_size)
long_input = ids_tensor([1, int(config.max_position_embeddings * 1.5)], config.vocab_size)
set_seed(42) # Fixed seed at init time so the two models get the same random weights
original_model = FalconModel(config)
original_model.to(torch_device)
original_model.eval()
original_short_output = original_model(short_input).last_hidden_state
original_long_output = original_model(long_input).last_hidden_state
set_seed(42) # Fixed seed at init time so the two models get the same random weights
config.rope_scaling = {"type": scaling_type, "factor": 10.0}
scaled_model = FalconModel(config)
scaled_model.to(torch_device)
scaled_model.eval()
scaled_short_output = scaled_model(short_input).last_hidden_state
scaled_long_output = scaled_model(long_input).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
else:
self.assertFalse(torch.allclose(original_short_output, scaled_short_output, atol=1e-5))
# The output should be different for long inputs
self.assertFalse(torch.allclose(original_long_output, scaled_long_output, atol=1e-5))
@require_torch_sdpa
@slow
def test_eager_matches_sdpa_generate(self):
max_new_tokens = 30
if len(self.all_generative_model_classes) == 0:
self.skipTest(f"{self.__class__.__name__} tests a model that does support generate: skipping this test")
for model_class in self.all_generative_model_classes:
if not model_class._supports_sdpa:
self.skipTest(f"{model_class.__name__} does not support SDPA")
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
dummy_input = inputs_dict[model_class.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
# make sure that all models have enough positions for generation
if hasattr(config, "max_position_embeddings"):
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
model_sdpa = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to(torch_device)
self.assertTrue(model_sdpa.config._attn_implementation == "sdpa")
model_eager = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
attn_implementation="eager",
).to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
# NOTE: This check is disabled for Falcon as the non-SDPA/SDPA implementation is in the same class (legacy reason).
# for name, submodule in model_eager.named_modules():
# if "SdpaAttention" in submodule.__class__.__name__:
# raise ValueError("The eager model should not have SDPA attention layers")
# has_sdpa = False
# for name, submodule in model_sdpa.named_modules():
# if "SdpaAttention" in submodule.__class__.__name__:
# has_sdpa = True
# break
# if not has_sdpa:
# raise ValueError("The SDPA model should have SDPA attention layers")
# Just test that a large cache works as expected
res_eager = model_eager.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
)
res_sdpa = model_sdpa.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=max_new_tokens, do_sample=False
)
self.assertTrue(torch.allclose(res_eager, res_sdpa))
@require_torch
class FalconLanguageGenerationTest(unittest.TestCase):
@slow
def test_lm_generate_falcon(self):
tokenizer = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b")
model = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b")
model.eval()
model.to(torch_device)
inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device)
EXPECTED_OUTPUT = (
"My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday."
)
output_ids = model.generate(**inputs, do_sample=False, max_new_tokens=19)
output_str = tokenizer.batch_decode(output_ids)[0]
self.assertEqual(output_str, EXPECTED_OUTPUT)
@slow
def test_lm_generation_big_models(self):
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]:
tokenizer = AutoTokenizer.from_pretrained(repo)
model = FalconForCausalLM.from_pretrained(repo)
model.eval()
model.to(torch_device)
inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device)
# We just test that these run without errors - the models are randomly initialized
# and so the actual text outputs will be garbage
model.generate(**inputs, do_sample=False, max_new_tokens=4)
model.generate(**inputs, do_sample=True, max_new_tokens=4)
model.generate(**inputs, num_beams=2, max_new_tokens=4)
@slow
def test_lm_generation_use_cache(self):
# The big models are way too big for the CI, so we use tiny random models that resemble their
# architectures but with much smaller and fewer layers
with torch.no_grad():
for repo in [
"Rocketknight1/falcon-rw-1b",
"Rocketknight1/tiny-random-falcon-7b",
"Rocketknight1/tiny-random-falcon-40b",
]:
tokenizer = AutoTokenizer.from_pretrained(repo)
model = FalconForCausalLM.from_pretrained(repo)
model.eval()
model.to(device=torch_device)
inputs = tokenizer("My favorite food is", return_tensors="pt").to(torch_device)
# Test results are the same with and without cache
outputs_no_cache = model.generate(**inputs, do_sample=False, max_new_tokens=20, use_cache=False)
outputs_cache = model.generate(**inputs, do_sample=False, max_new_tokens=20, use_cache=True)
self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
@require_bitsandbytes
@slow
def test_batched_generation(self):
tokenizer = AutoTokenizer.from_pretrained("tiiuae/falcon-7b", padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(
"tiiuae/falcon-7b",
device_map="auto",
load_in_4bit=True,
)
test_text = "A sequence: 1, 2" # should generate the rest of the sequence
unpadded_inputs = tokenizer([test_text], return_tensors="pt").to("cuda:0")
unpadded_gen_out = model.generate(**unpadded_inputs, max_new_tokens=20)
unpadded_gen_text = tokenizer.batch_decode(unpadded_gen_out, skip_special_tokens=True)
dummy_text = "This is a longer text " * 2 # forces left-padding on `test_text`
padded_inputs = tokenizer([test_text, dummy_text], return_tensors="pt", padding=True).to("cuda:0")
padded_gen_out = model.generate(**padded_inputs, max_new_tokens=20)
padded_gen_text = tokenizer.batch_decode(padded_gen_out, skip_special_tokens=True)
expected_output = "A sequence: 1, 2, 3, 4, 5, 6, 7, 8, "
self.assertLess(unpadded_inputs.input_ids.shape[-1], padded_inputs.input_ids.shape[-1]) # left-padding exists
self.assertEqual(unpadded_gen_text[0], expected_output)
self.assertEqual(padded_gen_text[0], expected_output)
| transformers/tests/models/falcon/test_modeling_falcon.py/0 | {
"file_path": "transformers/tests/models/falcon/test_modeling_falcon.py",
"repo_id": "transformers",
"token_count": 11320
} | 386 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch GLPN model. """
import unittest
from transformers import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MODEL_MAPPING, GLPNConfig, GLPNForDepthEstimation, GLPNModel
from transformers.models.glpn.modeling_glpn import GLPN_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import GLPNImageProcessor
class GLPNConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "hidden_sizes"))
self.parent.assertTrue(hasattr(config, "num_attention_heads"))
self.parent.assertTrue(hasattr(config, "num_encoder_blocks"))
class GLPNModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=64,
num_channels=3,
num_encoder_blocks=4,
depths=[2, 2, 2, 2],
sr_ratios=[8, 4, 2, 1],
hidden_sizes=[16, 32, 64, 128],
downsampling_rates=[1, 4, 8, 16],
num_attention_heads=[1, 2, 4, 8],
is_training=True,
use_labels=True,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
decoder_hidden_size=16,
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.num_encoder_blocks = num_encoder_blocks
self.sr_ratios = sr_ratios
self.depths = depths
self.hidden_sizes = hidden_sizes
self.downsampling_rates = downsampling_rates
self.num_attention_heads = num_attention_heads
self.is_training = is_training
self.use_labels = use_labels
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.decoder_hidden_size = decoder_hidden_size
self.num_labels = num_labels
self.scope = scope
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return GLPNConfig(
image_size=self.image_size,
num_channels=self.num_channels,
num_encoder_blocks=self.num_encoder_blocks,
depths=self.depths,
hidden_sizes=self.hidden_sizes,
num_attention_heads=self.num_attention_heads,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
initializer_range=self.initializer_range,
decoder_hidden_size=self.decoder_hidden_size,
)
def create_and_check_model(self, config, pixel_values, labels):
model = GLPNModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
expected_height = expected_width = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)
)
def create_and_check_for_depth_estimation(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = GLPNForDepthEstimation(config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.predicted_depth.shape, (self.batch_size, self.image_size, self.image_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class GLPNModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (GLPNModel, GLPNForDepthEstimation) if is_torch_available() else ()
pipeline_model_mapping = (
{"depth-estimation": GLPNForDepthEstimation, "feature-extraction": GLPNModel} if is_torch_available() else {}
)
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
def setUp(self):
self.model_tester = GLPNModelTester(self)
self.config_tester = GLPNConfigTester(self, config_class=GLPNConfig)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_depth_estimation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*config_and_inputs)
@unittest.skip("GLPN does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip("GLPN does not have get_input_embeddings method and get_output_embeddings methods")
def test_model_common_attributes(self):
pass
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
expected_num_attentions = sum(self.model_tester.depths)
self.assertEqual(len(attentions), expected_num_attentions)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.attentions
self.assertEqual(len(attentions), expected_num_attentions)
# verify the first attentions (first block, first layer)
expected_seq_len = (self.model_tester.image_size // 4) ** 2
expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],
)
# verify the last attentions (last block, last layer)
expected_seq_len = (self.model_tester.image_size // 32) ** 2
expected_reduced_seq_len = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:]),
[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len],
)
out_len = len(outputs)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
self.assertEqual(out_len + 1, len(outputs))
self_attentions = outputs.attentions
self.assertEqual(len(self_attentions), expected_num_attentions)
# verify the first attentions (first block, first layer)
expected_seq_len = (self.model_tester.image_size // 4) ** 2
expected_reduced_seq_len = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len],
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = self.model_tester.num_encoder_blocks
self.assertEqual(len(hidden_states), expected_num_layers)
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:]),
[
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_training(self):
if not self.model_tester.is_training:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
if model_class in get_values(MODEL_MAPPING):
continue
# TODO: remove the following 3 lines once we have a MODEL_FOR_DEPTH_ESTIMATION_MAPPING
# this can then be incorporated into _prepare_for_class in test_modeling_common.py
if model_class.__name__ == "GLPNForDepthEstimation":
batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
inputs_dict["labels"] = torch.zeros(
[self.model_tester.batch_size, height, width], device=torch_device
).long()
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
@slow
def test_model_from_pretrained(self):
for model_name in GLPN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = GLPNModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
@slow
class GLPNModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_depth_estimation(self):
image_processor = GLPNImageProcessor.from_pretrained(GLPN_PRETRAINED_MODEL_ARCHIVE_LIST[0])
model = GLPNForDepthEstimation.from_pretrained(GLPN_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(torch_device)
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the predicted depth
expected_shape = torch.Size([1, 480, 640])
self.assertEqual(outputs.predicted_depth.shape, expected_shape)
expected_slice = torch.tensor(
[[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.predicted_depth[0, :3, :3], expected_slice, atol=1e-4))
| transformers/tests/models/glpn/test_modeling_glpn.py/0 | {
"file_path": "transformers/tests/models/glpn/test_modeling_glpn.py",
"repo_id": "transformers",
"token_count": 6135
} | 387 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import unittest
from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import (
VOCAB_FILES_NAMES,
GPTNeoXJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class GPTNeoXJapaneseTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = GPTNeoXJapaneseTokenizer
test_rust_tokenizer = False
from_pretrained_kwargs = {"do_clean_text": False, "add_prefix_space": False}
def setUp(self):
super().setUp()
vocab_tokens = [
"こん",
"こんに",
"にちは",
"ばんは",
"世界,㔺界",
"、",
"。",
"<BR>",
"<SP>",
"<TAB>",
"<URL>",
"<EMAIL>",
"<TEL>",
"<DATE>",
"<PRICE>",
"<BLOCK>",
"<KIGOU>",
"<U2000U2BFF>",
"<|emoji1|>",
"<unk>",
"<|startoftext|>",
"<|endoftext|>",
]
emoji_tokens = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.emoji_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["emoji_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
with open(self.emoji_file, "w") as emoji_writer:
emoji_writer.write(json.dumps(emoji_tokens))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return GPTNeoXJapaneseTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "こんにちは、世界。 \nこんばんは、㔺界。😀"
output_text = "こんにちは、世界。 \nこんばんは、世界。😀"
return input_text, output_text
def get_clean_sequence(self, tokenizer):
input_text, output_text = self.get_input_output_texts(tokenizer)
ids = tokenizer.encode(output_text, add_special_tokens=False)
text = tokenizer.decode(ids, clean_up_tokenization_spaces=False)
return text, ids
def test_pretokenized_inputs(self):
pass # TODO add if relevant
def test_maximum_encoding_length_pair_input(self):
pass # TODO add if relevant
def test_maximum_encoding_length_single_input(self):
pass # TODO add if relevant
def test_full_tokenizer(self):
tokenizer = self.get_tokenizer()
# Testing tokenization
input_text = "こんにちは、世界。 こんばんは、㔺界。"
expected_token = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"]
tokens = tokenizer.tokenize(input_text)
self.assertListEqual(tokens, expected_token)
# Testing conversion to ids without special tokens
expected_ids = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
input_ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(input_ids, expected_ids)
# Testing conversion to ids with special tokens
input_tokens = tokens + [tokenizer.unk_token]
expected_ids = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
input_ids = tokenizer.convert_tokens_to_ids(input_tokens)
self.assertListEqual(input_ids, expected_ids)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("abeja/gpt-neox-japanese-2.7b")
ids_1 = tokenizer.encode("ありがとう。", add_special_tokens=False)
ids_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(ids_1)
encoded_pair = tokenizer.build_inputs_with_special_tokens(ids_1, ids_2)
assert encoded_sentence == ids_1
assert encoded_pair == ids_1 + ids_2
def test_conversion_reversible(self):
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def test_padding_different_model_input_name(self):
# tokenizer has no padding token
pass
| transformers/tests/models/gpt_neox_japanese/test_tokenization_gpt_neox_japanese.py/0 | {
"file_path": "transformers/tests/models/gpt_neox_japanese/test_tokenization_gpt_neox_japanese.py",
"repo_id": "transformers",
"token_count": 2273
} | 388 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors, Allegro.pl and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import unittest
from transformers import HerbertTokenizer, HerbertTokenizerFast
from transformers.models.herbert.tokenization_herbert import VOCAB_FILES_NAMES
from transformers.testing_utils import get_tests_dir, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class HerbertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = HerbertTokenizer
rust_tokenizer_class = HerbertTokenizerFast
test_rust_tokenizer = True
def setUp(self):
super().setUp()
# Use a simpler test file without japanese/chinese characters
with open(f"{get_tests_dir()}/fixtures/sample_text_no_unicode.txt", encoding="utf-8") as f_data:
self._data = f_data.read().replace("\n\n", "\n").strip()
vocab = [
"<s>",
"</s>",
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"w</w>",
"r</w>",
"t</w>",
"lo",
"low",
"er</w>",
"low</w>",
"lowest</w>",
"newer</w>",
"wider</w>",
",</w>",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["l o 123", "lo w 1456", "e r</w> 1789", ""]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w") as fp:
fp.write(json.dumps(vocab_tokens))
with open(self.merges_file, "w") as fp:
fp.write("\n".join(merges))
def get_input_output_texts(self, tokenizer):
input_text = "lower newer"
output_text = "lower newer"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(vocab_file=self.vocab_file, merges_file=self.merges_file)
text = "lower"
bpe_tokens = ["low", "er</w>"]
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + ["<unk>"]
input_bpe_tokens = [16, 17, 23]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
def test_rust_and_python_full_tokenizers(self):
if not self.test_rust_tokenizer:
return
tokenizer = self.get_tokenizer()
rust_tokenizer = self.get_rust_tokenizer()
sequence = "lower,newer"
tokens = tokenizer.tokenize(sequence)
rust_tokens = rust_tokenizer.tokenize(sequence)
self.assertListEqual(tokens, rust_tokens)
ids = tokenizer.encode(sequence, add_special_tokens=False)
rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
self.assertListEqual(ids, rust_ids)
rust_tokenizer = self.get_rust_tokenizer()
ids = tokenizer.encode(sequence)
rust_ids = rust_tokenizer.encode(sequence)
self.assertListEqual(ids, rust_ids)
@slow
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("allegro/herbert-base-cased")
text = tokenizer.encode("konstruowanie sekwencji", add_special_tokens=False)
text_2 = tokenizer.encode("konstruowanie wielu sekwencji", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
assert encoded_sentence == [0] + text + [2]
assert encoded_pair == [0] + text + [2] + text_2 + [2]
@unittest.skip(
"Test passes if run individually but not with the full tests (internal state of the tokenizer is modified). Will fix later"
)
def test_training_new_tokenizer_with_special_tokens_change(self):
pass
@unittest.skip(
"Test passes if run individually but not with the full tests (internal state of the tokenizer is modified). Will fix later"
)
def test_training_new_tokenizer(self):
pass
| transformers/tests/models/herbert/test_tokenization_herbert.py/0 | {
"file_path": "transformers/tests/models/herbert/test_tokenization_herbert.py",
"repo_id": "transformers",
"token_count": 2164
} | 389 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch InstructBLIP model. """
import inspect
import tempfile
import unittest
import numpy as np
import requests
from transformers import (
CONFIG_MAPPING,
InstructBlipConfig,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from transformers.testing_utils import (
require_accelerate,
require_bitsandbytes,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
floats_tensor,
ids_tensor,
random_attention_mask,
)
if is_torch_available():
import torch
from torch import nn
from transformers import InstructBlipForConditionalGeneration, InstructBlipVisionModel
from transformers.models.instructblip.modeling_instructblip import INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class InstructBlipVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=1e-10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in case of a vision transformer, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return InstructBlipVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = InstructBlipVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class InstructBlipVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as InstructBLIP's vision encoder does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (InstructBlipVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = InstructBlipVisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=InstructBlipVisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="InstructBLIP's vision encoder does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="InstructBlipVisionModel is an internal building block, doesn't support standalone training")
def test_training(self):
pass
@unittest.skip(reason="InstructBlipVisionModel is an internal building block, doesn't support standalone training")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="InstructBlipVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="InstructBlipVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = InstructBlipVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class InstructBlipQFormerModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
bos_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
qformer_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
qformer_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask, qformer_input_ids, qformer_attention_mask
def get_config(self):
return InstructBlipQFormerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
bos_token_id=self.bos_token_id,
)
# this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py
class InstructBlipTextModelDecoderOnlyTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=20,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
num_labels=3,
word_embed_proj_dim=16,
type_sequence_label_size=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.num_labels = num_labels
self.type_sequence_label_size = type_sequence_label_size
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
config = self.get_config()
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3)
input_ids[:, -1] = self.eos_token_id # Eos Token
attention_mask = input_ids.ne(self.pad_token_id)
return config, input_ids, attention_mask
def get_config(self):
return CONFIG_MAPPING["opt"](
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
# this model tester uses a decoder-only language model (OPT)
class InstructBlipForConditionalGenerationDecoderOnlyModelTester:
def __init__(
self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10
):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {}
if text_kwargs is None:
text_kwargs = {}
self.parent = parent
self.vision_model_tester = InstructBlipVisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = InstructBlipQFormerModelTester(parent, **qformer_kwargs)
self.text_model_tester = InstructBlipTextModelDecoderOnlyTester(parent, **text_kwargs)
self.is_training = is_training
self.num_query_tokens = num_query_tokens
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
_, _, _, qformer_input_ids, qformer_attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
def get_config(self):
return InstructBlipConfig.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
text_config=self.text_model_tester.get_config(),
num_query_tokens=self.num_query_tokens,
)
def create_and_check_for_conditional_generation(
self, config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
):
model = InstructBlipForConditionalGeneration(config).to(torch_device).eval()
with torch.no_grad():
result = model(
pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
qformer_input_ids=qformer_input_ids,
qformer_attention_mask=qformer_attention_mask,
)
expected_seq_length = self.num_query_tokens + self.text_model_tester.seq_length
self.parent.assertEqual(
result.logits.shape,
(self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"qformer_input_ids": qformer_input_ids,
"qformer_attention_mask": qformer_attention_mask,
"labels": input_ids,
}
return config, inputs_dict
@require_torch
class InstructBlipForConditionalGenerationDecoderOnlyTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (InstructBlipForConditionalGeneration,) if is_torch_available() else ()
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = InstructBlipForConditionalGenerationDecoderOnlyModelTester(self)
def test_for_conditional_generation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="InstructBlipForConditionalGeneration doesn't support inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Tied weights are tested in individual model tests")
def test_tied_weights_keys(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="InstructBlipModel does not have input/output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="There's no base InstructBlipModel")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="There's no base InstructBlipModel")
def test_save_load_fast_init_to_base(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save InstructBlipConfig and check if we can load InstructBlipVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = InstructBlipVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save InstructBlipConfig and check if we can load InstructBlipQFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = InstructBlipQFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
def test_model_from_pretrained(self):
for model_name in INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST:
model = InstructBlipForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@require_vision
@require_torch
@slow
class InstructBlipModelIntegrationTest(unittest.TestCase):
@require_bitsandbytes
@require_accelerate
def test_inference_vicuna_7b(self):
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
model = InstructBlipForConditionalGeneration.from_pretrained(
"Salesforce/instructblip-vicuna-7b", load_in_8bit=True, low_cpu_mem_usage=True
)
url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
prompt = "What is unusual about this image?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, torch.float16)
# verify logits
with torch.no_grad():
logits = model(**inputs).logits
expected_slice = torch.tensor(
[[-3.4902, -12.5078, 8.4141], [-5.1211, -12.1328, 7.8281], [-4.0312, -13.5938, 9.1172]],
device=torch_device,
)
self.assertTrue(torch.allclose(logits[0, :3, :3].float(), expected_slice, atol=1e-3))
# verify generation
outputs = model.generate(**inputs, max_new_tokens=30)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
expected_outputs = [2, 450, 22910, 9565, 310, 445, 1967, 338, 393, 263, 767, 338, 13977, 292, 22095, 373, 278, 1250, 310, 263, 13328, 20134, 29963, 1550, 19500, 1623, 263, 19587, 4272, 11952, 29889] # fmt: skip
self.assertEqual(outputs[0].tolist(), expected_outputs)
self.assertEqual(
generated_text,
"The unusual aspect of this image is that a man is ironing clothes on the back of a yellow SUV while driving down a busy city street.",
)
def test_inference_flant5_xl(self):
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl")
model = InstructBlipForConditionalGeneration.from_pretrained(
"Salesforce/instructblip-flan-t5-xl",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
).to(torch_device)
url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
prompt = "What is unusual about this image?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device)
for k, v in inputs.items():
if torch.is_floating_point(v):
inputs[k] = v.to(torch.bfloat16)
outputs = model.generate(
**inputs,
do_sample=False,
num_beams=5,
max_length=256,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1.0,
temperature=1,
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
expected_outputs = [0, 37, 1023, 9850, 7, 3, 9, 388, 3575, 53, 4954, 30, 8, 223, 13, 3, 9, 4459, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 37, 388, 19, 5119, 3, 9, 4459, 8677, 28, 3, 9, 2756, 4459, 6177, 6, 11, 3, 88, 19, 338, 46, 3575, 53, 1476, 12, 743, 112, 2491, 5, 37, 1023, 19, 7225, 788, 12, 8, 685, 24, 34, 1267, 3, 9, 388, 3575, 53, 4954, 30, 8, 223, 13, 3, 9, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 94, 19, 487, 24, 8, 388, 19, 1119, 12, 1097, 540, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 6, 68, 34, 19, 92, 487, 24, 3, 88, 19, 1119, 12, 1097, 97, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 3, 13865, 13, 8, 1053, 21, 8, 388, 31, 7, 2874, 6, 34, 19, 964, 24, 3, 88, 19, 1119, 12, 1097, 97, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 1] # fmt: skip
self.assertEqual(outputs[0].tolist(), expected_outputs)
self.assertEqual(
generated_text,
"The image depicts a man ironing clothes on the back of a yellow van in the middle of a busy city street. The man is wearing a yellow shirt with a bright yellow tie, and he is using an ironing board to complete his task. The image is unusual due to the fact that it shows a man ironing clothes on the back of a van in the middle of a busy city street. It is possible that the man is trying to save money by doing his laundry on the back of the van, but it is also possible that he is trying to save time by doing his laundry on the back of the van in the middle of a busy city street. Regardless of the reason for the man's actions, it is clear that he is trying to save time by doing his laundry on the back of the van in the middle of a busy city street.",
)
| transformers/tests/models/instructblip/test_modeling_instructblip.py/0 | {
"file_path": "transformers/tests/models/instructblip/test_modeling_instructblip.py",
"repo_id": "transformers",
"token_count": 10951
} | 390 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch LeViT model. """
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class LevitConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "hidden_sizes"))
self.parent.assertTrue(hasattr(config, "num_attention_heads"))
class LevitModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=64,
num_channels=3,
kernel_size=3,
stride=2,
padding=1,
patch_size=16,
hidden_sizes=[16, 32, 48],
num_attention_heads=[1, 2, 3],
depths=[2, 3, 4],
key_dim=[8, 8, 8],
drop_path_rate=0,
mlp_ratio=[2, 2, 2],
attention_ratio=[2, 2, 2],
initializer_range=0.02,
is_training=True,
use_labels=True,
num_labels=2, # Check
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.hidden_sizes = hidden_sizes
self.num_attention_heads = num_attention_heads
self.depths = depths
self.key_dim = key_dim
self.drop_path_rate = drop_path_rate
self.patch_size = patch_size
self.attention_ratio = attention_ratio
self.mlp_ratio = mlp_ratio
self.initializer_range = initializer_range
self.down_ops = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
self.is_training = is_training
self.use_labels = use_labels
self.num_labels = num_labels
self.initializer_range = initializer_range
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return LevitConfig(
image_size=self.image_size,
num_channels=self.num_channels,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
patch_size=self.patch_size,
hidden_sizes=self.hidden_sizes,
num_attention_heads=self.num_attention_heads,
depths=self.depths,
key_dim=self.key_dim,
drop_path_rate=self.drop_path_rate,
mlp_ratio=self.mlp_ratio,
attention_ratio=self.attention_ratio,
initializer_range=self.initializer_range,
down_ops=self.down_ops,
)
def create_and_check_model(self, config, pixel_values, labels):
model = LevitModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
image_size = (self.image_size, self.image_size)
height, width = image_size[0], image_size[1]
for _ in range(4):
height = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1)
width = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, ceil(height / 4) * ceil(width / 4), self.hidden_sizes[-1]),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = LevitForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class LevitModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Levit does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
test_pruning = False
test_torchscript = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = LevitModelTester(self)
self.config_tester = ConfigTester(self, config_class=LevitConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
@unittest.skip(reason="Levit does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Levit does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="Levit does not output attentions")
def test_attention_outputs(self):
pass
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = len(self.model_tester.depths) + 1
self.assertEqual(len(hidden_states), expected_num_layers)
image_size = (self.model_tester.image_size, self.model_tester.image_size)
height, width = image_size[0], image_size[1]
for _ in range(4):
height = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1
)
width = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1
)
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[
height * width,
self.model_tester.hidden_sizes[0],
],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
# special case for LevitForImageClassificationWithTeacher model
def test_training(self):
if not self.model_tester.is_training:
return
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(MODEL_MAPPING)
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_training_gradient_checkpointing(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
config.use_cache = False
config.return_dict = True
for model_class in self.all_model_classes:
if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
model = model_class(config)
model.gradient_checkpointing_enable()
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
loss = model(**inputs).loss
loss.backward()
def test_problem_types(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
problem_types = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
config.problem_type = problem_type["title"]
config.num_labels = problem_type["num_labels"]
model = model_class(config)
model.to(torch_device)
model.train()
inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
if problem_type["num_labels"] > 1:
inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])
inputs["labels"] = inputs["labels"].to(problem_type["dtype"])
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=True) as warning_list:
loss = model(**inputs).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}"
)
loss.backward()
@slow
def test_model_from_pretrained(self):
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = LevitModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class LevitModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0])
@slow
def test_inference_image_classification_head(self):
model = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(
torch_device
)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([1.0448, -0.3745, -1.8317]).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
| transformers/tests/models/levit/test_modeling_levit.py/0 | {
"file_path": "transformers/tests/models/levit/test_modeling_levit.py",
"repo_id": "transformers",
"token_count": 7343
} | 391 |
# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_bs4
from transformers.utils import is_bs4_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bs4_available():
from transformers import MarkupLMFeatureExtractor
class MarkupLMFeatureExtractionTester(unittest.TestCase):
def __init__(self, parent):
self.parent = parent
def prepare_feat_extract_dict(self):
return {}
def get_html_strings():
html_string_1 = """<HTML>
<HEAD>
<TITLE>sample document</TITLE>
</HEAD>
<BODY BGCOLOR="FFFFFF">
<HR>
<a href="http://google.com">Goog</a>
<H1>This is one header</H1>
<H2>This is a another Header</H2>
<P>Travel from
<P>
<B>SFO to JFK</B>
<BR>
<B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>
<HR>
<div style="color:#0000FF">
<h3>Traveler <b> name </b> is
<p> John Doe </p>
</div>"""
html_string_2 = """
<!DOCTYPE html>
<html>
<body>
<h1>My First Heading</h1>
<p>My first paragraph.</p>
</body>
</html>
"""
return [html_string_1, html_string_2]
@require_bs4
class MarkupLMFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase):
feature_extraction_class = MarkupLMFeatureExtractor if is_bs4_available() else None
def setUp(self):
self.feature_extract_tester = MarkupLMFeatureExtractionTester(self)
@property
def feat_extract_dict(self):
return self.feature_extract_tester.prepare_feat_extract_dict()
def test_call(self):
# Initialize feature_extractor
feature_extractor = self.feature_extraction_class()
# Test not batched input
html_string = get_html_strings()[0]
encoding = feature_extractor(html_string)
# fmt: off
expected_nodes = [['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']]
expected_xpaths = [['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']]
# fmt: on
self.assertEqual(encoding.nodes, expected_nodes)
self.assertEqual(encoding.xpaths, expected_xpaths)
# Test batched
html_strings = get_html_strings()
encoding = feature_extractor(html_strings)
# fmt: off
expected_nodes = expected_nodes + [['My First Heading', 'My first paragraph.']]
expected_xpaths = expected_xpaths + [['/html/body/h1', '/html/body/p']]
self.assertEqual(len(encoding.nodes), 2)
self.assertEqual(len(encoding.xpaths), 2)
self.assertEqual(encoding.nodes, expected_nodes)
self.assertEqual(encoding.xpaths, expected_xpaths)
| transformers/tests/models/markuplm/test_feature_extraction_markuplm.py/0 | {
"file_path": "transformers/tests/models/markuplm/test_feature_extraction_markuplm.py",
"repo_id": "transformers",
"token_count": 1485
} | 392 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Mixtral model. """
import tempfile
import unittest
import pytest
from transformers import MixtralConfig, is_torch_available
from transformers.testing_utils import (
require_flash_attn,
require_torch,
require_torch_gpu,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MixtralForCausalLM, MixtralForSequenceClassification, MixtralModel
class MixtralModelTester:
# Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.__init__
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
num_key_value_heads=2,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
pad_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.pad_token_id = pad_token_id
self.scope = scope
# Copied from tests.models.mistral.test_modeling_mistral.MistralModelTester.prepare_config_and_inputs
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = torch.tril(torch.ones(self.batch_size, self.seq_length)).to(torch_device)
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return MixtralConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
num_key_value_heads=self.num_key_value_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
num_experts_per_tok=2,
num_local_experts=2,
)
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model with Llama->Mixtral
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = MixtralModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_model_as_decoder with Llama->Mixtral
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = MixtralModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_for_causal_lm with Llama->Mixtral
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = MixtralForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.create_and_check_decoder_model_past_large_inputs with Llama->Mixtral
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = MixtralForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
# Copied from tests.models.llama.test_modeling_llama.LlamaModelTester.prepare_config_and_inputs_for_common with Llama->Mixtral
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
# Copied from tests.models.mistral.test_modeling_mistral.MistralModelTest with Mistral->Mixtral
class MixtralModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(MixtralModel, MixtralForCausalLM, MixtralForSequenceClassification) if is_torch_available() else ()
)
all_generative_model_classes = (MixtralForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": MixtralModel,
"text-classification": MixtralForSequenceClassification,
"text-generation": MixtralForCausalLM,
"zero-shot": MixtralForSequenceClassification,
}
if is_torch_available()
else {}
)
test_headmasking = False
test_pruning = False
# TODO (ydshieh): Check this. See https://app.circleci.com/pipelines/github/huggingface/transformers/79245/workflows/9490ef58-79c2-410d-8f51-e3495156cf9c/jobs/1012146
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
return True
def setUp(self):
self.model_tester = MixtralModelTester(self)
self.config_tester = ConfigTester(self, config_class=MixtralConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_various_embeddings(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
config_and_inputs[0].position_embedding_type = type
self.model_tester.create_and_check_model(*config_and_inputs)
def test_Mixtral_sequence_classification_model(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
print(config)
config.num_labels = 3
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = MixtralForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_Mixtral_sequence_classification_model_for_single_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "single_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor([self.model_tester.batch_size], self.model_tester.type_sequence_label_size)
model = MixtralForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
def test_Mixtral_sequence_classification_model_for_multi_label(self):
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.problem_type = "multi_label_classification"
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
sequence_labels = ids_tensor(
[self.model_tester.batch_size, config.num_labels], self.model_tester.type_sequence_label_size
).to(torch.float)
model = MixtralForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask, labels=sequence_labels)
self.assertEqual(result.logits.shape, (self.model_tester.batch_size, self.model_tester.num_labels))
@unittest.skip("Mixtral buffers include complex numbers, which breaks this test")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip("Mixtral uses GQA on all models so the KV cache is a non standard format")
def test_past_key_values_format(self):
pass
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_generate_padding_right(self):
import torch
for model_class in self.all_generative_model_classes:
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname, torch_dtype=torch.float16, low_cpu_mem_usage=True).to(
torch_device
)
dummy_input = torch.LongTensor([[0, 2, 3, 4], [0, 2, 3, 4]]).to(torch_device)
dummy_attention_mask = torch.LongTensor([[1, 1, 1, 1], [1, 1, 1, 0]]).to(torch_device)
model.generate(dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False)
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
with self.assertRaises(ValueError):
_ = model.generate(
dummy_input, attention_mask=dummy_attention_mask, max_new_tokens=1, do_sample=False
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_generate_use_cache(self):
import torch
max_new_tokens = 30
for model_class in self.all_generative_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
dummy_input = inputs_dict[model_class.main_input_name]
if dummy_input.dtype in [torch.float32, torch.bfloat16]:
dummy_input = dummy_input.to(torch.float16)
# make sure that all models have enough positions for generation
if hasattr(config, "max_position_embeddings"):
config.max_position_embeddings = max_new_tokens + dummy_input.shape[1] + 1
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
dummy_attention_mask = inputs_dict.get("attention_mask", torch.ones_like(dummy_input))
# NOTE: Mixtral apparently does not support right padding + use_cache with FA2.
dummy_attention_mask[:, -1] = 1
model = model_class.from_pretrained(
tmpdirname,
torch_dtype=torch.float16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage=True,
).to(torch_device)
# Just test that a large cache works as expected
_ = model.generate(
dummy_input,
attention_mask=dummy_attention_mask,
max_new_tokens=max_new_tokens,
do_sample=False,
use_cache=True,
)
@require_flash_attn
@require_torch_gpu
@pytest.mark.flash_attn_test
@slow
def test_flash_attn_2_inference_padding_right(self):
self.skipTest("Mixtral flash attention does not support right padding")
# Ignore copy
def test_load_balancing_loss(self):
r"""
Let's make sure we can actually compute the loss and do a backward on it.
"""
config, input_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.num_labels = 3
config.num_local_experts = 8
config.output_router_logits = True
input_ids = input_dict["input_ids"]
attention_mask = input_ids.ne(1).to(torch_device)
model = MixtralForCausalLM(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=attention_mask)
self.assertEqual(result.router_logits[0].shape, (91, config.num_local_experts))
torch.testing.assert_close(result.aux_loss.cpu(), torch.tensor(2, dtype=torch.float32), rtol=1e-2, atol=1e-2)
# First, we make sure that adding padding tokens doesn't change the loss
# loss(input_ids, attention_mask=None) == loss(input_ids + padding, attention_mask=attention_mask_with_padding)
pad_length = 1000
# Add padding tokens (assume that pad_token_id=1) to input_ids
padding_block = torch.ones(input_ids.shape[0], pad_length, dtype=torch.int32).to(torch_device)
padded_input_ids = torch.cat((padding_block, input_ids), dim=1) # this is to simulate padding to the left
padded_attention_mask = padded_input_ids.ne(1).to(torch_device)
padded_result = model(padded_input_ids, attention_mask=padded_attention_mask)
torch.testing.assert_close(result.aux_loss.cpu(), padded_result.aux_loss.cpu(), rtol=1e-4, atol=1e-4)
# We make sure that the loss of includding padding tokens != the loss without padding tokens
# if attention_mask=None --> we don't exclude padding tokens
include_padding_result = model(padded_input_ids, attention_mask=None)
# This is to mimic torch.testing.assert_not_close
self.assertNotAlmostEqual(include_padding_result.aux_loss.item(), result.aux_loss.item())
@require_torch
class MixtralIntegrationTest(unittest.TestCase):
@slow
@require_torch_gpu
def test_small_model_logits(self):
model_id = "hf-internal-testing/Mixtral-tiny"
dummy_input = torch.LongTensor([[0, 1, 0], [0, 1, 0]]).to(torch_device)
model = MixtralForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True).to(
torch_device
)
# TODO: might need to tweak it in case the logits do not match on our daily runners
# these logits have been obtained with the original megablocks impelmentation.
EXPECTED_LOGITS = torch.Tensor(
[[0.1670, 0.1620, 0.6094], [-0.8906, -0.1588, -0.6060], [0.1572, 0.1290, 0.7246]]
).to(torch_device)
with torch.no_grad():
logits = model(dummy_input).logits
torch.testing.assert_close(logits[0, :3, :3].half(), EXPECTED_LOGITS, atol=1e-3, rtol=1e-3)
torch.testing.assert_close(logits[1, :3, :3].half(), EXPECTED_LOGITS, atol=1e-3, rtol=1e-3)
@slow
# @require_torch_gpu
def test_small_model_logits_batched(self):
model_id = "hf-internal-testing/Mixtral-tiny"
dummy_input = torch.LongTensor([[0, 0, 0, 0, 0, 0, 1, 2, 3], [1, 1, 2, 3, 4, 5, 6, 7, 8]]).to(torch_device)
attention_mask = dummy_input.ne(0).to(torch.long)
model = MixtralForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True).to(
torch_device
)
# TODO: might need to tweak it in case the logits do not match on our daily runners
EXPECTED_LOGITS_LEFT = torch.Tensor(
[[0.1750, 0.0537, 0.7007], [0.1750, 0.0537, 0.7007], [0.1750, 0.0537, 0.7007]],
)
# logits[0, -3:, -3:].half()
EXPECTED_LOGITS_LEFT_UNPADDED = torch.Tensor(
[[0.2212, 0.5200, -0.3816], [0.8213, -0.2313, 0.6069], [0.2664, -0.7090, 0.2468]],
)
# logits[1, -3:, -3:].half()
EXPECTED_LOGITS_RIGHT_UNPADDED = torch.Tensor(
[[0.2205, 0.1232, -0.1611], [-0.3484, 0.3030, -1.0312], [0.0742, 0.7930, 0.7969]]
)
with torch.no_grad():
logits = model(dummy_input, attention_mask=attention_mask).logits
torch.testing.assert_close(logits[0, :3, :3].half(), EXPECTED_LOGITS_LEFT, atol=1e-3, rtol=1e-3)
torch.testing.assert_close(logits[0, -3:, -3:].half(), EXPECTED_LOGITS_LEFT_UNPADDED, atol=1e-3, rtol=1e-3)
torch.testing.assert_close(logits[1, -3:, -3:].half(), EXPECTED_LOGITS_RIGHT_UNPADDED, atol=1e-3, rtol=1e-3)
| transformers/tests/models/mixtral/test_modeling_mixtral.py/0 | {
"file_path": "transformers/tests/models/mixtral/test_modeling_mixtral.py",
"repo_id": "transformers",
"token_count": 10571
} | 393 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow MobileViT model. """
from __future__ import annotations
import inspect
import unittest
from transformers import MobileViTConfig
from transformers.file_utils import is_tf_available, is_vision_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel
from transformers.models.mobilevit.modeling_tf_mobilevit import TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class TFMobileViTConfigTester(ConfigTester):
def create_and_test_config_common_properties(self):
config = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(config, "hidden_sizes"))
self.parent.assertTrue(hasattr(config, "neck_hidden_sizes"))
self.parent.assertTrue(hasattr(config, "num_attention_heads"))
class TFMobileViTModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
patch_size=2,
num_channels=3,
last_hidden_size=32,
num_attention_heads=4,
hidden_act="silu",
conv_kernel_size=3,
output_stride=32,
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
classifier_dropout_prob=0.1,
initializer_range=0.02,
is_training=True,
use_labels=True,
num_labels=10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.last_hidden_size = last_hidden_size
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.conv_kernel_size = conv_kernel_size
self.output_stride = output_stride
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.classifier_dropout_prob = classifier_dropout_prob
self.use_labels = use_labels
self.is_training = is_training
self.num_labels = num_labels
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
pixel_labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
pixel_labels = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels, pixel_labels
def get_config(self):
return MobileViTConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
num_attention_heads=self.num_attention_heads,
hidden_act=self.hidden_act,
conv_kernel_size=self.conv_kernel_size,
output_stride=self.output_stride,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
classifier_dropout_prob=self.classifier_dropout_prob,
initializer_range=self.initializer_range,
hidden_sizes=[12, 16, 20],
neck_hidden_sizes=[8, 8, 16, 16, 32, 32, 32],
)
def create_and_check_model(self, config, pixel_values, labels, pixel_labels):
model = TFMobileViTModel(config=config)
result = model(pixel_values, training=False)
expected_height = expected_width = self.image_size // self.output_stride
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.last_hidden_size, expected_height, expected_width)
)
def create_and_check_for_image_classification(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = TFMobileViTForImageClassification(config)
result = model(pixel_values, labels=labels, training=False)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_semantic_segmentation(self, config, pixel_values, labels, pixel_labels):
config.num_labels = self.num_labels
model = TFMobileViTForSemanticSegmentation(config)
expected_height = expected_width = self.image_size // self.output_stride
result = model(pixel_values, training=False)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, expected_height, expected_width)
)
result = model(pixel_values, labels=pixel_labels, training=False)
self.parent.assertEqual(
result.logits.shape, (self.batch_size, self.num_labels, expected_height, expected_width)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels, pixel_labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class TFMobileViTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as MobileViT does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(TFMobileViTModel, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{"feature-extraction": TFMobileViTModel, "image-classification": TFMobileViTForImageClassification}
if is_tf_available()
else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
test_onnx = False
def setUp(self):
self.model_tester = TFMobileViTModelTester(self)
self.config_tester = TFMobileViTConfigTester(self, config_class=MobileViTConfig, has_text_modality=False)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="MobileViT does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="MobileViT does not support input and output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="MobileViT does not output attentions")
def test_attention_outputs(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_stages = 5
self.assertEqual(len(hidden_states), expected_num_stages)
# MobileViT's feature maps are of shape (batch_size, num_channels, height, width)
# with the width and height being successively divided by 2.
divisor = 2
for i in range(len(hidden_states)):
self.assertListEqual(
list(hidden_states[i].shape[-2:]),
[self.model_tester.image_size // divisor, self.model_tester.image_size // divisor],
)
divisor *= 2
self.assertEqual(self.model_tester.output_stride, divisor // 2)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
def test_for_semantic_segmentation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*config_and_inputs)
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF does not support backprop for grouped convolutions on CPU.",
)
def test_dataset_conversion(self):
super().test_dataset_conversion()
def check_keras_fit_results(self, val_loss1, val_loss2, atol=2e-1, rtol=2e-1):
self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol))
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("GPU")) == 0,
reason="TF does not support backprop for grouped convolutions on CPU.",
)
@slow
def test_keras_fit(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# Since `TFMobileViTModel` cannot operate with the default `fit()` method.
if model_class.__name__ != "TFMobileViTModel":
model = model_class(config)
if getattr(model, "hf_compute_loss", None):
super().test_keras_fit()
# The default test_loss_computation() uses -100 as a proxy ignore_index
# to test masked losses. Overridding to avoid -100 since semantic segmentation
# models use `semantic_loss_ignore_index` from the config.
def test_loss_computation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# set an ignore index to correctly test the masked loss used in
# `TFMobileViTForSemanticSegmentation`.
if model_class.__name__ != "TFMobileViTForSemanticSegmentation":
config.semantic_loss_ignore_index = 5
model = model_class(config)
if getattr(model, "hf_compute_loss", None):
# The number of elements in the loss should be the same as the number of elements in the label
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
added_label = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True)[0]
]
expected_loss_size = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
possible_input_names = {"input_ids", "pixel_values", "input_features"}
input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
model_input = prepared_for_class.pop(input_name)
loss = model(model_input, **prepared_for_class)[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
# Test that model correctly compute the loss when we mask some positions
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
possible_input_names = {"input_ids", "pixel_values", "input_features"}
input_name = possible_input_names.intersection(set(prepared_for_class)).pop()
model_input = prepared_for_class.pop(input_name)
if "labels" in prepared_for_class:
labels = prepared_for_class["labels"].numpy()
if len(labels.shape) > 1 and labels.shape[1] != 1:
# labels[0] = -100
prepared_for_class["labels"] = tf.convert_to_tensor(labels)
loss = model(model_input, **prepared_for_class)[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
self.assertTrue(not np.any(np.isnan(loss.numpy())))
# Test that model correctly compute the loss with a dict
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
loss = model(prepared_for_class)[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
# Test that model correctly compute the loss with a tuple
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True)
# Get keys that were added with the _prepare_for_class function
label_keys = prepared_for_class.keys() - inputs_dict.keys()
signature = inspect.signature(model.call).parameters
signature_names = list(signature.keys())
# Create a dictionary holding the location of the tensors in the tuple
tuple_index_mapping = {0: input_name}
for label_key in label_keys:
label_key_index = signature_names.index(label_key)
tuple_index_mapping[label_key_index] = label_key
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items())
# Initialize a list with their default values, update the values and convert to a tuple
list_input = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default)
for index, value in sorted_tuple_index_mapping:
list_input[index] = prepared_for_class[value]
tuple_input = tuple(list_input)
# Send to model
loss = model(tuple_input[:-1])[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1])
@slow
def test_model_from_pretrained(self):
for model_name in TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = TFMobileViTModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_tf
class TFMobileViTModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_image_classification_head(self):
model = TFMobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small")
image_processor = MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(**inputs, training=False)
# verify the logits
expected_shape = tf.TensorShape((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = tf.constant([-1.9364, -1.2327, -0.4653])
tf.debugging.assert_near(outputs.logits[0, :3], expected_slice, atol=1e-4, rtol=1e-04)
@slow
def test_inference_semantic_segmentation(self):
# `from_pt` will be removed
model = TFMobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image_processor = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small")
image = prepare_img()
inputs = image_processor(images=image, return_tensors="tf")
# forward pass
outputs = model(inputs.pixel_values, training=False)
logits = outputs.logits
# verify the logits
expected_shape = tf.TensorShape((1, 21, 32, 32))
self.assertEqual(logits.shape, expected_shape)
expected_slice = tf.constant(
[
[[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]],
[[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]],
[[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]],
]
)
tf.debugging.assert_near(logits[0, :3, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
| transformers/tests/models/mobilevit/test_modeling_tf_mobilevit.py/0 | {
"file_path": "transformers/tests/models/mobilevit/test_modeling_tf_mobilevit.py",
"repo_id": "transformers",
"token_count": 7977
} | 394 |
# coding=utf-8
# Copyright 2021, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Musicgen model. """
import copy
import inspect
import math
import unittest
import numpy as np
from transformers import (
EncodecConfig,
MusicgenConfig,
MusicgenDecoderConfig,
MusicgenProcessor,
PretrainedConfig,
T5Config,
)
from transformers.testing_utils import (
is_torch_available,
require_torch,
require_torch_fp16,
slow,
torch_device,
)
from transformers.utils import cached_property
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MusicgenForCausalLM,
MusicgenForConditionalGeneration,
MusicgenModel,
set_seed,
)
from transformers.generation import (
GenerateDecoderOnlyOutput,
GenerateEncoderDecoderOutput,
InfNanRemoveLogitsProcessor,
LogitsProcessorList,
)
def _config_zero_init(config):
configs_no_init = copy.deepcopy(config)
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(configs_no_init, key, 1e-10)
if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
setattr(configs_no_init, key, no_init_subconfig)
return configs_no_init
def prepare_musicgen_decoder_inputs_dict(
config,
input_ids,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = input_ids.reshape(-1, config.num_codebooks, input_ids.shape[-1])[:, 0, :]
attention_mask = attention_mask.ne(config.pad_token_id)
if head_mask is None:
head_mask = torch.ones(config.num_hidden_layers, config.num_attention_heads, device=torch_device)
if encoder_attention_mask is None and encoder_hidden_states is not None:
encoder_attention_mask = torch.ones(encoder_hidden_states.shape[:2], device=torch_device)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(config.num_hidden_layers, config.num_attention_heads, device=torch_device)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"encoder_hidden_states": encoder_hidden_states,
"encoder_attention_mask": encoder_attention_mask,
"head_mask": head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class MusicgenDecoderTester:
def __init__(
self,
parent,
batch_size=2,
seq_length=7,
is_training=False,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=100,
pad_token_id=99,
bos_token_id=99,
num_codebooks=4,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.num_codebooks = num_codebooks
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size * self.num_codebooks, self.seq_length], self.vocab_size)
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
config = self.get_config()
inputs_dict = prepare_musicgen_decoder_inputs_dict(
config, input_ids, encoder_hidden_states=encoder_hidden_states
)
return config, inputs_dict
def get_config(self):
config = MusicgenDecoderConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
d_ff=self.intermediate_size,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.bos_token_id,
bos_token_id=self.bos_token_id,
num_codebooks=self.num_codebooks,
tie_word_embeddings=False,
)
return config
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
@require_torch
class MusicgenDecoderTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (MusicgenModel, MusicgenForCausalLM) if is_torch_available() else ()
greedy_sample_model_classes = (
(MusicgenForCausalLM,) if is_torch_available() else ()
) # we don't want to run all the generation tests, only a specific subset
pipeline_model_mapping = {}
test_pruning = False
test_resize_embeddings = False
def setUp(self):
self.model_tester = MusicgenDecoderTester(self)
self.config_tester = ConfigTester(self, config_class=MusicgenDecoderConfig, hidden_size=16)
def test_config(self):
self.config_tester.run_common_tests()
# override since we have to compute the input embeddings over codebooks
def test_inputs_embeds(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
input_ids = inputs["input_ids"]
del inputs["input_ids"]
embed_tokens = model.get_input_embeddings()
input_ids = input_ids.reshape(-1, config.num_codebooks, input_ids.shape[-1])
inputs["inputs_embeds"] = sum(
[embed_tokens[codebook](input_ids[:, codebook]) for codebook in range(config.num_codebooks)]
)
with torch.no_grad():
model(**inputs)[0]
# override since we have embeddings / LM heads over multiple codebooks
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
first_embed = model.get_input_embeddings()[0]
self.assertIsInstance(first_embed, torch.nn.Embedding)
lm_heads = model.get_output_embeddings()
self.assertTrue(lm_heads is None or isinstance(lm_heads[0], torch.nn.Linear))
# skip as this model doesn't support all arguments tested
def test_model_outputs_equivalence(self):
pass
# skip as this model has multiple inputs embeds and lm heads that should not be tied
def test_tie_model_weights(self):
pass
# skip as this model has multiple inputs embeds and lm heads that should not be tied
def test_tied_weights_keys(self):
pass
def _get_input_ids_and_config(self, batch_size=2):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_ids = inputs_dict["input_ids"]
# take max batch_size
sequence_length = input_ids.shape[-1]
input_ids = input_ids[: batch_size * config.num_codebooks, :]
# generate max 3 tokens
max_length = input_ids.shape[-1] + 3
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long)
return config, input_ids, attention_mask, max_length
@staticmethod
def _get_logits_processor_and_kwargs(
input_length,
eos_token_id,
forced_bos_token_id=None,
forced_eos_token_id=None,
max_length=None,
diversity_penalty=None,
):
process_kwargs = {
"min_length": input_length + 1 if max_length is None else max_length - 1,
}
logits_processor = LogitsProcessorList()
return process_kwargs, logits_processor
# override since we don't expect the outputs of `.generate` and `.greedy_search` to be the same, since we perform
# additional post-processing in the former
def test_greedy_generate_dict_outputs(self):
for model_class in self.greedy_sample_model_classes:
# disable cache
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config.use_cache = False
model = model_class(config).to(torch_device).eval()
output_greedy, output_generate = self._greedy_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
self.assertIsInstance(output_greedy, GenerateDecoderOnlyOutput)
self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
self.assertNotIn(config.pad_token_id, output_generate)
# override since we don't expect the outputs of `.generate` and `.greedy_search` to be the same, since we perform
# additional post-processing in the former
def test_greedy_generate_dict_outputs_use_cache(self):
for model_class in self.greedy_sample_model_classes:
# enable cache
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config.use_cache = True
config.is_decoder = True
model = model_class(config).to(torch_device).eval()
output_greedy, output_generate = self._greedy_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
self.assertIsInstance(output_greedy, GenerateDecoderOnlyOutput)
self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
# override since we don't expect the outputs of `.generate` and `.sample` to be the same, since we perform
# additional post-processing in the former
def test_sample_generate(self):
for model_class in self.greedy_sample_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
input_ids.shape[-1],
model.config.eos_token_id,
forced_bos_token_id=model.config.forced_bos_token_id,
forced_eos_token_id=model.config.forced_eos_token_id,
max_length=max_length,
)
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=2)
# check `generate()` and `sample()` are equal
output_sample, output_generate = self._sample_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
num_return_sequences=3,
logits_processor=logits_processor,
logits_warper=logits_warper,
logits_warper_kwargs=logits_warper_kwargs,
process_kwargs=process_kwargs,
)
self.assertIsInstance(output_sample, torch.Tensor)
self.assertIsInstance(output_generate, torch.Tensor)
# override since we don't expect the outputs of `.generate` and `.sample` to be the same, since we perform
# additional post-processing in the former
def test_sample_generate_dict_output(self):
for model_class in self.greedy_sample_model_classes:
# disable cache
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config.use_cache = False
model = model_class(config).to(torch_device).eval()
process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
input_ids.shape[-1],
model.config.eos_token_id,
forced_bos_token_id=model.config.forced_bos_token_id,
forced_eos_token_id=model.config.forced_eos_token_id,
max_length=max_length,
)
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
output_sample, output_generate = self._sample_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
num_return_sequences=1,
logits_processor=logits_processor,
logits_warper=logits_warper,
logits_warper_kwargs=logits_warper_kwargs,
process_kwargs=process_kwargs,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
self.assertIsInstance(output_sample, GenerateDecoderOnlyOutput)
self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
def test_greedy_generate_stereo_outputs(self):
for model_class in self.greedy_sample_model_classes:
config, input_ids, attention_mask, max_length = self._get_input_ids_and_config()
config.audio_channels = 2
model = model_class(config).to(torch_device).eval()
output_greedy, output_generate = self._greedy_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
self.assertIsInstance(output_greedy, GenerateDecoderOnlyOutput)
self.assertIsInstance(output_generate, GenerateDecoderOnlyOutput)
self.assertNotIn(config.pad_token_id, output_generate)
def prepare_musicgen_inputs_dict(
config,
input_ids,
decoder_input_ids,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if decoder_attention_mask is None:
decoder_attention_mask = decoder_input_ids.reshape(
-1, config.decoder.num_codebooks, decoder_input_ids.shape[-1]
)[:, 0, :]
decoder_attention_mask = decoder_attention_mask.ne(config.decoder.pad_token_id)
if head_mask is None:
head_mask = torch.ones(
config.text_encoder.num_hidden_layers, config.text_encoder.num_attention_heads, device=torch_device
)
if decoder_head_mask is None:
decoder_head_mask = torch.ones(
config.decoder.num_hidden_layers, config.decoder.num_attention_heads, device=torch_device
)
if cross_attn_head_mask is None:
cross_attn_head_mask = torch.ones(
config.decoder.num_hidden_layers, config.decoder.num_attention_heads, device=torch_device
)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
class MusicgenTester:
def __init__(
self,
parent,
batch_size=2,
seq_length=7,
is_training=False,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=100,
pad_token_id=99,
bos_token_id=99,
num_codebooks=4,
num_filters=4,
codebook_size=128,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.num_codebooks = num_codebooks
self.num_filters = num_filters
self.codebook_size = codebook_size
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size * self.num_codebooks, self.seq_length], self.vocab_size)
config = self.get_config()
inputs_dict = prepare_musicgen_inputs_dict(config, input_ids, decoder_input_ids=decoder_input_ids)
return config, inputs_dict
def get_config(self):
text_encoder_config = T5Config(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.intermediate_size,
num_layers=self.num_hidden_layers,
num_heads=self.num_attention_heads,
)
audio_encoder_config = EncodecConfig(
hidden_size=self.vocab_size,
compress=1,
num_filters=self.num_filters,
codebook_size=self.codebook_size,
codebook_dim=self.vocab_size,
)
decoder_config = MusicgenDecoderConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.bos_token_id,
bos_token_id=self.bos_token_id,
num_codebooks=self.num_codebooks,
tie_word_embeddings=False,
)
config = MusicgenConfig.from_sub_models_config(text_encoder_config, audio_encoder_config, decoder_config)
return config
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
@require_torch
class MusicgenTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (MusicgenForConditionalGeneration,) if is_torch_available() else ()
greedy_sample_model_classes = (MusicgenForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = {"text-to-audio": MusicgenForConditionalGeneration} if is_torch_available() else {}
test_pruning = False # training is not supported yet for MusicGen
test_headmasking = False
test_resize_embeddings = False
# not to test torchscript as the model tester doesn't prepare `input_values` and `padding_mask`
# (and `torchscript` hates `None` values).
test_torchscript = False
def setUp(self):
self.model_tester = MusicgenTester(self)
def _check_output_with_attentions(self, outputs, config, input_ids, decoder_input_ids):
text_encoder_config = config.text_encoder
decoder_config = config.decoder
encoder_attentions = outputs["encoder_attentions"]
self.assertEqual(len(encoder_attentions), text_encoder_config.num_hidden_layers)
self.assertEqual(
encoder_attentions[0].shape[-3:],
(text_encoder_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]),
)
decoder_attentions = outputs["decoder_attentions"]
num_decoder_layers = decoder_config.num_hidden_layers
self.assertEqual(len(decoder_attentions), num_decoder_layers)
self.assertEqual(
decoder_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, decoder_input_ids.shape[-1], decoder_input_ids.shape[-1]),
)
cross_attentions = outputs["cross_attentions"]
self.assertEqual(len(cross_attentions), num_decoder_layers)
cross_attention_input_seq_len = decoder_input_ids.shape[-1]
self.assertEqual(
cross_attentions[0].shape[-3:],
(decoder_config.num_attention_heads, cross_attention_input_seq_len, input_ids.shape[-1]),
)
def check_musicgen_model_output_attentions(
self,
model_class,
config,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
output_attentions=True,
**kwargs,
)
self._check_output_with_attentions(outputs, config, input_ids, decoder_input_ids)
def check_musicgen_model_output_attentions_from_config(
self,
model_class,
config,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
**kwargs,
):
# Similar to `check_musicgen_model_output_attentions`, but with `output_attentions` triggered from the
# config file. Contrarily to most models, changing the model's config won't work -- the defaults are loaded
# from the inner models' configurations.
config.output_attentions = True # model config -> won't work
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
**kwargs,
)
self.assertTrue(
all(key not in outputs for key in ["encoder_attentions", "decoder_attentions", "cross_attentions"])
)
config.text_encoder.output_attentions = True # inner model config -> will work
config.audio_encoder.output_attentions = True
config.decoder.output_attentions = True
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
**kwargs,
)
self._check_output_with_attentions(outputs, config, input_ids, decoder_input_ids)
# override since changing `output_attentions` from the top-level model config won't work
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
self.check_musicgen_model_output_attentions(model_class, config, **inputs_dict)
self.check_musicgen_model_output_attentions_from_config(model_class, config, **inputs_dict)
# override since we have a specific forward signature for musicgen
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = [
"input_ids",
"attention_mask",
"input_values",
"padding_mask",
"decoder_input_ids",
"decoder_attention_mask",
]
expected_arg_names.extend(
["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
else ["encoder_outputs"]
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
# override since changing `gradient_checkpointing` from the top-level model config won't work
def test_gradient_checkpointing_backward_compatibility(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
if not model_class.supports_gradient_checkpointing:
continue
config.text_encoder.gradient_checkpointing = True
config.audio_encoder.gradient_checkpointing = True
config.decoder.gradient_checkpointing = True
model = model_class(config)
self.assertTrue(model.is_gradient_checkpointing)
# skip as this model has multiple inputs embeds and lm heads that should not be tied
def test_tie_model_weights(self):
pass
# skip as this model has multiple inputs embeds and lm heads that should not be tied
def test_tied_model_weights_key_ignore(self):
pass
# skip as this model has multiple inputs embeds and lm heads that should not be tied
def test_tied_weights_keys(self):
pass
# override since changing `output_hidden_states` / `output_attentions` from the top-level model config won't work
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.text_encoder.output_hidden_states = True
config.audio_encoder.output_hidden_states = True
config.decoder.output_hidden_states = True
config.text_encoder.output_attentions = True
config.decoder.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
inputs = self._prepare_for_class(inputs_dict, model_class)
outputs = model(**inputs)
output = outputs[0]
encoder_hidden_states = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
decoder_hidden_states = outputs.decoder_hidden_states[0]
decoder_hidden_states.retain_grad()
if self.has_attentions:
encoder_attentions = outputs.encoder_attentions[0]
encoder_attentions.retain_grad()
decoder_attentions = outputs.decoder_attentions[0]
decoder_attentions.retain_grad()
cross_attentions = outputs.cross_attentions[0]
cross_attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(decoder_hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(encoder_attentions.grad)
self.assertIsNotNone(decoder_attentions.grad)
self.assertIsNotNone(cross_attentions.grad)
# override since changing `output_hidden_states` from the top-level model config won't work
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states
expected_num_layers = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(hidden_states), expected_num_layers)
seq_length = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
hidden_states = outputs.decoder_hidden_states
self.assertIsInstance(hidden_states, (list, tuple))
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[seq_length, self.model_tester.hidden_size],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.text_encoder.output_hidden_states = True
config.audio_encoder.output_hidden_states = True
config.decoder.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
# override since the conv layers and lstm's in encodec are exceptions
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = ["conv"]
ignore_init = ["lstm"]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif not any(x in name for x in ignore_init):
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# override since we have embeddings / LM heads over multiple codebooks
def test_model_common_attributes(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), torch.nn.Embedding)
lm_heads = model.get_output_embeddings()
self.assertTrue(lm_heads is None or isinstance(lm_heads[0], torch.nn.Linear))
def _get_input_ids_and_config(self, batch_size=2):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
input_ids = inputs_dict["input_ids"]
# take max batch_size
sequence_length = input_ids.shape[-1]
input_ids = input_ids[:batch_size, :]
attention_mask = torch.ones((batch_size, sequence_length), dtype=torch.long)
# generate max 3 tokens
decoder_input_ids = inputs_dict["decoder_input_ids"]
max_length = decoder_input_ids.shape[-1] + 3
decoder_input_ids = decoder_input_ids[: batch_size * config.decoder.num_codebooks, :]
return config, input_ids, attention_mask, decoder_input_ids, max_length
# override since the `input_ids` cannot be used as the `decoder_input_ids` for musicgen (input / outputs are
# different modalities -> different shapes)
def _greedy_generate(
self,
model,
input_ids,
attention_mask,
decoder_input_ids,
max_length,
output_scores=False,
output_attentions=False,
output_hidden_states=False,
return_dict_in_generate=False,
):
logits_process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
input_ids.shape[-1],
eos_token_id=model.config.eos_token_id,
forced_bos_token_id=model.config.forced_bos_token_id,
forced_eos_token_id=model.config.forced_eos_token_id,
max_length=max_length,
)
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
output_generate = model.generate(
input_ids,
do_sample=False,
num_beams=1,
max_length=max_length,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
remove_invalid_values=True,
**logits_process_kwargs,
**model_kwargs,
)
encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
model,
input_ids,
attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
with torch.no_grad():
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
output_greedy = model.greedy_search(
decoder_input_ids,
max_length=max_length,
logits_processor=logits_processor,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
output_scores=output_scores,
return_dict_in_generate=return_dict_in_generate,
encoder_outputs=encoder_outputs,
**model_kwargs,
)
return output_greedy, output_generate
# override since the `input_ids` cannot be used as the `decoder_input_ids` for musicgen (input / outputs are
# different modalities -> different shapes)
def _sample_generate(
self,
model,
input_ids,
attention_mask,
decoder_input_ids,
max_length,
num_return_sequences,
logits_processor,
logits_warper,
logits_warper_kwargs,
process_kwargs,
output_scores=False,
output_attentions=False,
output_hidden_states=False,
return_dict_in_generate=False,
):
torch.manual_seed(0)
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
output_generate = model.generate(
input_ids,
do_sample=True,
num_beams=1,
max_length=max_length,
num_return_sequences=num_return_sequences,
output_scores=output_scores,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict_in_generate=return_dict_in_generate,
remove_invalid_values=True,
**logits_warper_kwargs,
**process_kwargs,
**model_kwargs,
)
torch.manual_seed(0)
encoder_outputs, input_ids, attention_mask = self._get_encoder_outputs(
model,
input_ids,
attention_mask,
num_interleave=num_return_sequences,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
# prevent flaky generation test failures
logits_processor.append(InfNanRemoveLogitsProcessor())
with torch.no_grad():
model_kwargs = {"attention_mask": attention_mask} if attention_mask is not None else {}
output_sample = model.sample(
decoder_input_ids.repeat_interleave(num_return_sequences, dim=0),
max_length=max_length,
logits_processor=logits_processor,
logits_warper=logits_warper,
output_scores=output_scores,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict_in_generate=return_dict_in_generate,
encoder_outputs=encoder_outputs,
**model_kwargs,
)
return output_sample, output_generate
@staticmethod
def _get_logits_processor_and_kwargs(
input_length,
eos_token_id,
forced_bos_token_id=None,
forced_eos_token_id=None,
max_length=None,
diversity_penalty=None,
):
process_kwargs = {
"min_length": input_length + 1 if max_length is None else max_length - 1,
}
logits_processor = LogitsProcessorList()
return process_kwargs, logits_processor
def test_greedy_generate_dict_outputs(self):
for model_class in self.greedy_sample_model_classes:
# disable cache
config, input_ids, attention_mask, decoder_input_ids, max_length = self._get_input_ids_and_config()
config.use_cache = False
model = model_class(config).to(torch_device).eval()
output_greedy, output_generate = self._greedy_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
decoder_input_ids=decoder_input_ids,
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
self.assertIsInstance(output_greedy, GenerateEncoderDecoderOutput)
self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
self.assertNotIn(config.pad_token_id, output_generate)
def test_greedy_generate_dict_outputs_use_cache(self):
for model_class in self.greedy_sample_model_classes:
# enable cache
config, input_ids, attention_mask, decoder_input_ids, max_length = self._get_input_ids_and_config()
config.use_cache = True
config.is_decoder = True
model = model_class(config).to(torch_device).eval()
output_greedy, output_generate = self._greedy_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
decoder_input_ids=decoder_input_ids,
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
self.assertIsInstance(output_greedy, GenerateEncoderDecoderOutput)
self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
def test_sample_generate(self):
for model_class in self.greedy_sample_model_classes:
config, input_ids, attention_mask, decoder_input_ids, max_length = self._get_input_ids_and_config()
model = model_class(config).to(torch_device).eval()
process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
input_ids.shape[-1],
model.config.eos_token_id,
forced_bos_token_id=model.config.forced_bos_token_id,
forced_eos_token_id=model.config.forced_eos_token_id,
max_length=max_length,
)
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=2)
# check `generate()` and `sample()` are equal
output_sample, output_generate = self._sample_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
decoder_input_ids=decoder_input_ids,
max_length=max_length,
num_return_sequences=1,
logits_processor=logits_processor,
logits_warper=logits_warper,
logits_warper_kwargs=logits_warper_kwargs,
process_kwargs=process_kwargs,
)
self.assertIsInstance(output_sample, torch.Tensor)
self.assertIsInstance(output_generate, torch.Tensor)
def test_sample_generate_dict_output(self):
for model_class in self.greedy_sample_model_classes:
# disable cache
config, input_ids, attention_mask, decoder_input_ids, max_length = self._get_input_ids_and_config()
config.use_cache = False
model = model_class(config).to(torch_device).eval()
process_kwargs, logits_processor = self._get_logits_processor_and_kwargs(
input_ids.shape[-1],
model.config.eos_token_id,
forced_bos_token_id=model.config.forced_bos_token_id,
forced_eos_token_id=model.config.forced_eos_token_id,
max_length=max_length,
)
logits_warper_kwargs, logits_warper = self._get_warper_and_kwargs(num_beams=1)
output_sample, output_generate = self._sample_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
decoder_input_ids=decoder_input_ids,
max_length=max_length,
num_return_sequences=3,
logits_processor=logits_processor,
logits_warper=logits_warper,
logits_warper_kwargs=logits_warper_kwargs,
process_kwargs=process_kwargs,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
self.assertIsInstance(output_sample, GenerateEncoderDecoderOutput)
self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
def test_generate_without_input_ids(self):
config, _, _, _, max_length = self._get_input_ids_and_config()
# if no bos token id => cannot generate from None
if config.bos_token_id is None:
return
for model_class in self.greedy_sample_model_classes:
model = model_class(config).to(torch_device)
model.eval()
output_ids_generate = model.generate(do_sample=False, max_length=max_length, remove_invalid_values=True)
self.assertIsNotNone(output_ids_generate)
@require_torch_fp16
def test_generate_fp16(self):
config, input_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.greedy_sample_model_classes:
model = model_class(config).eval().to(torch_device)
model.half()
# greedy
model.generate(input_dict["input_ids"], attention_mask=input_dict["attention_mask"], max_new_tokens=10)
# sampling
model.generate(
input_dict["input_ids"], attention_mask=input_dict["attention_mask"], do_sample=True, max_new_tokens=10
)
def test_greedy_generate_stereo_outputs(self):
for model_class in self.greedy_sample_model_classes:
config, input_ids, attention_mask, decoder_input_ids, max_length = self._get_input_ids_and_config()
config.audio_channels = 2
model = model_class(config).to(torch_device).eval()
output_greedy, output_generate = self._greedy_generate(
model=model,
input_ids=input_ids.to(torch_device),
attention_mask=attention_mask.to(torch_device),
decoder_input_ids=decoder_input_ids,
max_length=max_length,
output_scores=True,
output_hidden_states=True,
output_attentions=True,
return_dict_in_generate=True,
)
self.assertIsInstance(output_greedy, GenerateEncoderDecoderOutput)
self.assertIsInstance(output_generate, GenerateEncoderDecoderOutput)
self.assertNotIn(config.pad_token_id, output_generate)
def get_bip_bip(bip_duration=0.125, duration=0.5, sample_rate=32000):
"""Produces a series of 'bip bip' sounds at a given frequency."""
timesteps = np.arange(int(duration * sample_rate)) / sample_rate
wav = np.cos(2 * math.pi * 440 * timesteps)
time_period = (timesteps % (2 * bip_duration)) / (2 * bip_duration)
envelope = time_period >= 0.5
return wav * envelope
def place_dict_on_device(dict_to_place, device):
for key in dict_to_place:
if dict_to_place[key] is not None and isinstance(dict_to_place[key], torch.Tensor):
dict_to_place[key] = dict_to_place[key].to(device)
return dict_to_place
@require_torch
class MusicgenIntegrationTests(unittest.TestCase):
@cached_property
def model(self):
return MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small").to(torch_device)
@cached_property
def processor(self):
return MusicgenProcessor.from_pretrained("facebook/musicgen-small")
@slow
def test_logits_text_prompt(self):
model = self.model
processor = self.processor
inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt")
# prepare the encoder inputs
input_ids = inputs.input_ids.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
# prepare the decoder inputs
pad_token_id = model.generation_config.pad_token_id
decoder_input_ids = (
torch.ones((input_ids.shape[0] * model.decoder.num_codebooks, 1), dtype=torch.long).to(torch_device)
* pad_token_id
)
with torch.no_grad():
logits = model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
).logits
# fmt: off
EXPECTED_LOGITS = torch.tensor(
[
-0.9708, -3.0149, -4.6415, -1.4754, -0.2786, -2.3523, -2.6049, -6.7467,
-1.0206, -3.2984, -3.3968, -1.5108, -1.5786, -3.1493, -1.1503, -0.0545,
]
)
# fmt: on
self.assertTrue(logits.shape == (*decoder_input_ids.shape, model.decoder.config.vocab_size))
self.assertTrue(torch.allclose(logits[0, 0, :16].cpu(), EXPECTED_LOGITS, atol=1e-4))
@slow
def test_logits_text_audio_prompt(self):
model = self.model
processor = self.processor
audio = [get_bip_bip(duration=0.5), get_bip_bip(duration=1.0)]
text = ["80s music", "Club techno"]
inputs = processor(audio=audio, text=text, padding=True, return_tensors="pt")
# prepare the text encoder inputs
input_ids = inputs.input_ids.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
# prepare the audio encoder inputs
input_values = inputs.input_values.to(torch_device)
padding_mask = inputs.padding_mask.to(torch_device)
with torch.no_grad():
logits = model(
input_ids,
attention_mask=attention_mask,
input_values=input_values,
padding_mask=padding_mask,
).logits
# fmt: off
EXPECTED_LOGITS = torch.tensor(
[
0.1841, -2.9324, -0.7898, 0.1857, 0.4971, -2.8685, -1.6525, -1.6541,
2.7757, -2.5942, -3.0959, -1.0120, -1.0147, -0.4605, -0.8885, 0.6820,
]
)
# fmt: on
self.assertTrue(logits.shape == (8, 50, 2048))
self.assertTrue(torch.allclose(logits[0, -1, :16].cpu(), EXPECTED_LOGITS, atol=1e-4))
@slow
def test_generate_unconditional_greedy(self):
model = self.model
# only generate 1 sample with greedy - since it's deterministic all elements of the batch will be the same
unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
unconditional_inputs = place_dict_on_device(unconditional_inputs, device=torch_device)
output_values = model.generate(**unconditional_inputs, do_sample=False, max_new_tokens=5)
# fmt: off
EXPECTED_VALUES = torch.tensor(
[
0.0056, 0.0064, 0.0063, 0.0054, 0.0042, 0.0033, 0.0024, 0.0015,
0.0015, 0.0010, 0.0004, -0.0012, -0.0036, -0.0055, -0.0067, -0.0071,
]
)
# fmt: on
self.assertTrue(output_values.shape == (1, 1, 3200))
self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4))
@slow
def test_generate_unconditional_sampling(self):
model = self.model
# for stochastic sampling we can generate multiple outputs
unconditional_inputs = model.get_unconditional_inputs(num_samples=2)
unconditional_inputs = place_dict_on_device(unconditional_inputs, device=torch_device)
set_seed(0)
output_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=10)
# fmt: off
EXPECTED_VALUES = torch.tensor(
[
-0.0099, -0.0140, 0.0079, 0.0080, -0.0046, 0.0065, -0.0068, -0.0185,
0.0105, 0.0059, 0.0329, 0.0249, -0.0204, -0.0341, -0.0465, 0.0053,
]
)
# fmt: on
self.assertTrue(output_values.shape == (2, 1, 4480))
self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4))
@slow
def test_generate_text_prompt_greedy(self):
model = self.model
processor = self.processor
inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt")
# prepare the encoder inputs
input_ids = inputs.input_ids.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
output_values = model.generate(
input_ids, attention_mask=attention_mask, do_sample=False, guidance_scale=None, max_new_tokens=10
)
# fmt: off
EXPECTED_VALUES = torch.tensor(
[
-1.1998e-04, -2.2302e-04, 4.6296e-04, 1.0524e-03, 2.4827e-04,
-4.0288e-05, -1.2468e-04, 4.9846e-05, 7.1485e-04, 4.4197e-04,
]
)
# fmt: on
self.assertTrue(output_values.shape == (2, 1, 4480))
self.assertTrue(torch.allclose(output_values[0, 0, :10].cpu(), EXPECTED_VALUES, atol=1e-4))
@slow
def test_generate_text_prompt_greedy_with_classifier_free_guidance(self):
model = self.model
processor = self.processor
inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt")
# prepare the encoder inputs
input_ids = inputs.input_ids.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
output_values = model.generate(
input_ids, attention_mask=attention_mask, do_sample=False, guidance_scale=3, max_new_tokens=10
)
# fmt: off
EXPECTED_VALUES = torch.tensor(
[
0.0283, 0.0246, 0.0650, 0.0640, 0.0599, 0.0711, 0.0420, 0.0112,
0.0511, 0.0746, 0.1363, 0.1213, 0.0185, -0.0578, -0.0908, 0.0443,
]
)
# fmt: on
self.assertTrue(output_values.shape == (2, 1, 4480))
self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4))
@slow
def test_generate_text_prompt_sampling(self):
model = self.model
processor = self.processor
inputs = processor(text=["80s music", "Club techno"], padding=True, return_tensors="pt")
# prepare the encoder inputs
input_ids = inputs.input_ids.to(torch_device)
attention_mask = inputs.attention_mask.to(torch_device)
set_seed(0)
output_values = model.generate(
input_ids, attention_mask=attention_mask, do_sample=True, guidance_scale=None, max_new_tokens=10
)
# fmt: off
EXPECTED_VALUES = torch.tensor(
[
-0.0111, -0.0154, 0.0047, 0.0058, -0.0068, 0.0012, -0.0109, -0.0229,
0.0010, -0.0038, 0.0167, 0.0042, -0.0421, -0.0610, -0.0764, -0.0326,
]
)
# fmt: on
self.assertTrue(output_values.shape == (2, 1, 4480))
self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES, atol=1e-4))
@slow
def test_generate_text_audio_prompt(self):
model = self.model
processor = self.processor
audio = [get_bip_bip(duration=0.5), get_bip_bip(duration=1.0)]
text = ["80s music", "Club techno"]
inputs = processor(audio=audio, text=text, padding=True, return_tensors="pt")
inputs = place_dict_on_device(inputs, device=torch_device)
output_values = model.generate(**inputs, do_sample=False, guidance_scale=None, max_new_tokens=10)
# fmt: off
EXPECTED_VALUES = torch.tensor(
[
-0.0036, -0.0130, -0.0261, -0.0384, -0.0557, -0.0718, -0.0680, -0.0632,
-0.0529, -0.0403, -0.0289, -0.0198, -0.0136, -0.0101, -0.0095, -0.0040,
]
)
# fmt: on
self.assertTrue(
output_values.shape == (2, 1, 36480)
) # input values take shape 32000 and we generate from there
self.assertTrue(torch.allclose(output_values[0, 0, -16:].cpu(), EXPECTED_VALUES, atol=1e-4))
@require_torch
class MusicgenStereoIntegrationTests(unittest.TestCase):
@cached_property
def model(self):
return MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-stereo-small").to(torch_device)
@cached_property
def processor(self):
return MusicgenProcessor.from_pretrained("facebook/musicgen-stereo-small")
@slow
def test_generate_unconditional_greedy(self):
model = self.model
# only generate 1 sample with greedy - since it's deterministic all elements of the batch will be the same
unconditional_inputs = model.get_unconditional_inputs(num_samples=1)
unconditional_inputs = place_dict_on_device(unconditional_inputs, device=torch_device)
output_values = model.generate(**unconditional_inputs, do_sample=False, max_new_tokens=12)
# fmt: off
EXPECTED_VALUES_LEFT = torch.tensor(
[
0.0017, 0.0004, 0.0004, 0.0005, 0.0002, 0.0002, -0.0002, -0.0013,
-0.0010, -0.0015, -0.0018, -0.0032, -0.0060, -0.0082, -0.0096, -0.0099,
]
)
EXPECTED_VALUES_RIGHT = torch.tensor(
[
0.0038, 0.0028, 0.0031, 0.0032, 0.0031, 0.0032, 0.0030, 0.0019,
0.0021, 0.0015, 0.0009, -0.0008, -0.0040, -0.0067, -0.0087, -0.0096,
]
)
# fmt: on
# (bsz, channels, seq_len)
self.assertTrue(output_values.shape == (1, 2, 5760))
self.assertTrue(torch.allclose(output_values[0, 0, :16].cpu(), EXPECTED_VALUES_LEFT, atol=1e-4))
self.assertTrue(torch.allclose(output_values[0, 1, :16].cpu(), EXPECTED_VALUES_RIGHT, atol=1e-4))
@slow
def test_generate_text_audio_prompt(self):
model = self.model
processor = self.processor
# create stereo inputs
audio = [get_bip_bip(duration=0.5)[None, :].repeat(2, 0), get_bip_bip(duration=1.0)[None, :].repeat(2, 0)]
text = ["80s music", "Club techno"]
inputs = processor(audio=audio, text=text, padding=True, return_tensors="pt")
inputs = place_dict_on_device(inputs, device=torch_device)
output_values = model.generate(**inputs, do_sample=False, guidance_scale=3.0, max_new_tokens=12)
# fmt: off
EXPECTED_VALUES_LEFT = torch.tensor(
[
0.2535, 0.2008, 0.1471, 0.0896, 0.0306, -0.0200, -0.0501, -0.0728,
-0.0832, -0.0856, -0.0867, -0.0884, -0.0864, -0.0866, -0.0744, -0.0430,
]
)
EXPECTED_VALUES_RIGHT = torch.tensor(
[
0.1695, 0.1213, 0.0732, 0.0239, -0.0264, -0.0705, -0.0935, -0.1103,
-0.1163, -0.1139, -0.1104, -0.1082, -0.1027, -0.1004, -0.0900, -0.0614,
]
)
# fmt: on
# (bsz, channels, seq_len)
self.assertTrue(output_values.shape == (2, 2, 37760))
# input values take shape 32000 and we generate from there - we check the last (generated) values
self.assertTrue(torch.allclose(output_values[0, 0, -16:].cpu(), EXPECTED_VALUES_LEFT, atol=1e-4))
self.assertTrue(torch.allclose(output_values[0, 1, -16:].cpu(), EXPECTED_VALUES_RIGHT, atol=1e-4))
| transformers/tests/models/musicgen/test_modeling_musicgen.py/0 | {
"file_path": "transformers/tests/models/musicgen/test_modeling_musicgen.py",
"repo_id": "transformers",
"token_count": 28053
} | 395 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Owlv2 model. """
import inspect
import os
import tempfile
import unittest
import numpy as np
import requests
from transformers import Owlv2Config, Owlv2TextConfig, Owlv2VisionConfig
from transformers.testing_utils import (
require_torch,
require_torch_accelerator,
require_torch_fp16,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import Owlv2ForObjectDetection, Owlv2Model, Owlv2TextModel, Owlv2VisionModel
from transformers.models.owlv2.modeling_owlv2 import OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import OwlViTProcessor
# Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTVisionModelTester with OwlViT->Owlv2
class Owlv2VisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=32,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return Owlv2VisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = Owlv2VisionModel(config=config).to(torch_device)
model.eval()
pixel_values = pixel_values.to(torch.float32)
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
num_patches = (self.image_size // self.patch_size) ** 2
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
# Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTVisionModelTest with OwlViT->Owlv2, OWL-ViT->OwlV2, OWLVIT->OWLV2
class Owlv2VisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as OWLV2 does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (Owlv2VisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = Owlv2VisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=Owlv2VisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="OWLV2 does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="OwlV2 does not support training yet")
def test_training(self):
pass
@unittest.skip(reason="OwlV2 does not support training yet")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Owlv2VisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Owlv2VisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = Owlv2VisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTTextModelTester with OwlViT->Owlv2
class Owlv2TextModelTester:
def __init__(
self,
parent,
batch_size=12,
num_queries=4,
seq_length=16,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=64,
num_hidden_layers=12,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=16,
initializer_range=0.02,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.num_queries = num_queries
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size * self.num_queries, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size * self.num_queries, self.seq_length])
if input_mask is not None:
num_text, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(num_text,))
for idx, start_index in enumerate(rnd_start_indices):
input_mask[idx, :start_index] = 1
input_mask[idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return Owlv2TextConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, input_ids, input_mask):
model = Owlv2TextModel(config=config).to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids=input_ids, attention_mask=input_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size * self.num_queries, self.seq_length, self.hidden_size)
)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size * self.num_queries, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, input_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
# Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTTextModelTest with OwlViT->Owlv2, OWL-ViT->OwlV2, OWLVIT->OWLV2
class Owlv2TextModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Owlv2TextModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
def setUp(self):
self.model_tester = Owlv2TextModelTester(self)
self.config_tester = ConfigTester(self, config_class=Owlv2TextConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="OwlV2 does not support training yet")
def test_training(self):
pass
@unittest.skip(reason="OwlV2 does not support training yet")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="OWLV2 does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Owlv2TextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Owlv2TextModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
for model_name in OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = Owlv2TextModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class Owlv2ModelTester:
def __init__(self, parent, text_kwargs=None, vision_kwargs=None, is_training=True):
if text_kwargs is None:
text_kwargs = {}
if vision_kwargs is None:
vision_kwargs = {}
self.parent = parent
self.text_model_tester = Owlv2TextModelTester(parent, **text_kwargs)
self.vision_model_tester = Owlv2VisionModelTester(parent, **vision_kwargs)
self.is_training = is_training
self.text_config = self.text_model_tester.get_config().to_dict()
self.vision_config = self.vision_model_tester.get_config().to_dict()
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return Owlv2Config.from_text_vision_configs(self.text_config, self.vision_config, projection_dim=64)
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = Owlv2Model(config).to(torch_device).eval()
with torch.no_grad():
result = model(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
)
image_logits_size = (
self.vision_model_tester.batch_size,
self.text_model_tester.batch_size * self.text_model_tester.num_queries,
)
text_logits_size = (
self.text_model_tester.batch_size * self.text_model_tester.num_queries,
self.vision_model_tester.batch_size,
)
self.parent.assertEqual(result.logits_per_image.shape, image_logits_size)
self.parent.assertEqual(result.logits_per_text.shape, text_logits_size)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"return_loss": False,
}
return config, inputs_dict
@require_torch
# Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTModelTest with OwlViT->Owlv2, OWL-ViT->OwlV2, OWLVIT->OWLV2
class Owlv2ModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (Owlv2Model,) if is_torch_available() else ()
pipeline_model_mapping = (
{"feature-extraction": Owlv2Model, "zero-shot-object-detection": Owlv2ForObjectDetection}
if is_torch_available()
else {}
)
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
self.model_tester = Owlv2ModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Owlv2Model does not have input/output embeddings")
def test_model_common_attributes(self):
pass
# override as the `logit_scale` parameter initilization is different for OWLV2
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init).to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # OWLV2 needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
loaded_model = loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
def test_load_vision_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save Owlv2Config and check if we can load Owlv2VisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = Owlv2VisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save Owlv2Config and check if we can load Owlv2TextConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
text_config = Owlv2TextConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.text_config.to_dict(), text_config.to_dict())
@slow
def test_model_from_pretrained(self):
for model_name in OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = Owlv2Model.from_pretrained(model_name)
self.assertIsNotNone(model)
# Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTForObjectDetectionTester with OwlViT->Owlv2, OWL-ViT->OwlV2, OWLVIT->OWLV2
class Owlv2ForObjectDetectionTester:
def __init__(self, parent, is_training=True):
self.parent = parent
self.text_model_tester = Owlv2TextModelTester(parent)
self.vision_model_tester = Owlv2VisionModelTester(parent)
self.is_training = is_training
self.text_config = self.text_model_tester.get_config().to_dict()
self.vision_config = self.vision_model_tester.get_config().to_dict()
def prepare_config_and_inputs(self):
text_config, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_config, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, pixel_values, input_ids, attention_mask
def get_config(self):
return Owlv2Config.from_text_vision_configs(self.text_config, self.vision_config, projection_dim=64)
def create_and_check_model(self, config, pixel_values, input_ids, attention_mask):
model = Owlv2ForObjectDetection(config).to(torch_device).eval()
with torch.no_grad():
result = model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=True,
)
pred_boxes_size = (
self.vision_model_tester.batch_size,
(self.vision_model_tester.image_size // self.vision_model_tester.patch_size) ** 2,
4,
)
pred_logits_size = (
self.vision_model_tester.batch_size,
(self.vision_model_tester.image_size // self.vision_model_tester.patch_size) ** 2,
4,
)
pred_class_embeds_size = (
self.vision_model_tester.batch_size,
(self.vision_model_tester.image_size // self.vision_model_tester.patch_size) ** 2,
self.text_model_tester.hidden_size,
)
self.parent.assertEqual(result.pred_boxes.shape, pred_boxes_size)
self.parent.assertEqual(result.logits.shape, pred_logits_size)
self.parent.assertEqual(result.class_embeds.shape, pred_class_embeds_size)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, input_ids, attention_mask = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
# Copied from tests.models.owlvit.test_modeling_owlvit.OwlViTForObjectDetectionTest with OwlViT->Owlv2, OWL-ViT->OwlV2, OWLVIT->OWLV2
class Owlv2ForObjectDetectionTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Owlv2ForObjectDetection,) if is_torch_available() else ()
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
def setUp(self):
self.model_tester = Owlv2ForObjectDetectionTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Owlv2Model does not have input/output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="Test_initialization is tested in individual model tests")
def test_initialization(self):
pass
@unittest.skip(reason="Test_forward_signature is tested in individual model tests")
def test_forward_signature(self):
pass
@unittest.skip(reason="Test_save_load_fast_init_from_base is tested in individual model tests")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="OwlV2 does not support training yet")
def test_training(self):
pass
@unittest.skip(reason="OwlV2 does not support training yet")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def _create_and_check_torchscript(self, config, inputs_dict):
if not self.test_torchscript:
return
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
configs_no_init.return_dict = False
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init).to(torch_device)
model.eval()
try:
input_ids = inputs_dict["input_ids"]
pixel_values = inputs_dict["pixel_values"] # OWLV2 needs pixel_values
traced_model = torch.jit.trace(model, (input_ids, pixel_values))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
loaded_model = loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
@slow
def test_model_from_pretrained(self):
for model_name in OWLV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = Owlv2ForObjectDetection.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@require_vision
@require_torch
class Owlv2ModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
model_name = "google/owlv2-base-patch16"
model = Owlv2Model.from_pretrained(model_name).to(torch_device)
processor = OwlViTProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(
text=[["a photo of a cat", "a photo of a dog"]],
images=image,
max_length=16,
padding="max_length",
return_tensors="pt",
).to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
self.assertEqual(
outputs.logits_per_image.shape,
torch.Size((inputs.pixel_values.shape[0], inputs.input_ids.shape[0])),
)
self.assertEqual(
outputs.logits_per_text.shape,
torch.Size((inputs.input_ids.shape[0], inputs.pixel_values.shape[0])),
)
expected_logits = torch.tensor([[-6.2229, -8.2601]], device=torch_device)
self.assertTrue(torch.allclose(outputs.logits_per_image, expected_logits, atol=1e-3))
@slow
def test_inference_object_detection(self):
model_name = "google/owlv2-base-patch16"
model = Owlv2ForObjectDetection.from_pretrained(model_name).to(torch_device)
processor = OwlViTProcessor.from_pretrained(model_name)
image = prepare_img()
inputs = processor(
text=[["a photo of a cat", "a photo of a dog"]],
images=image,
max_length=16,
padding="max_length",
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
outputs = model(**inputs)
num_queries = int((model.config.vision_config.image_size / model.config.vision_config.patch_size) ** 2)
self.assertEqual(outputs.pred_boxes.shape, torch.Size((1, num_queries, 4)))
expected_slice_logits = torch.tensor(
[[-21.413497, -21.612638], [-19.008193, -19.548841], [-20.958896, -21.382694]]
).to(torch_device)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], expected_slice_logits, atol=1e-4))
expected_slice_boxes = torch.tensor(
[[0.241309, 0.051896, 0.453267], [0.139474, 0.045701, 0.250660], [0.233022, 0.050479, 0.427671]],
).to(torch_device)
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
@slow
def test_inference_one_shot_object_detection(self):
model_name = "google/owlv2-base-patch16"
model = Owlv2ForObjectDetection.from_pretrained(model_name).to(torch_device)
processor = OwlViTProcessor.from_pretrained(model_name)
image = prepare_img()
query_image = prepare_img()
inputs = processor(
images=image,
query_images=query_image,
max_length=16,
padding="max_length",
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
outputs = model.image_guided_detection(**inputs)
num_queries = int((model.config.vision_config.image_size / model.config.vision_config.patch_size) ** 2)
self.assertEqual(outputs.target_pred_boxes.shape, torch.Size((1, num_queries, 4)))
expected_slice_boxes = torch.tensor(
[[0.2413, 0.0519, 0.4533], [0.1395, 0.0457, 0.2507], [0.2330, 0.0505, 0.4277]],
).to(torch_device)
self.assertTrue(torch.allclose(outputs.target_pred_boxes[0, :3, :3], expected_slice_boxes, atol=1e-4))
@slow
@require_torch_accelerator
@require_torch_fp16
def test_inference_one_shot_object_detection_fp16(self):
model_name = "google/owlv2-base-patch16"
model = Owlv2ForObjectDetection.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device)
processor = OwlViTProcessor.from_pretrained(model_name)
image = prepare_img()
query_image = prepare_img()
inputs = processor(
images=image,
query_images=query_image,
max_length=16,
padding="max_length",
return_tensors="pt",
).to(torch_device)
with torch.no_grad():
outputs = model.image_guided_detection(**inputs)
# No need to check the logits, we just check inference runs fine.
num_queries = int((model.config.vision_config.image_size / model.config.vision_config.patch_size) ** 2)
self.assertEqual(outputs.target_pred_boxes.shape, torch.Size((1, num_queries, 4)))
| transformers/tests/models/owlv2/test_modeling_owlv2.py/0 | {
"file_path": "transformers/tests/models/owlv2/test_modeling_owlv2.py",
"repo_id": "transformers",
"token_count": 15766
} | 396 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class FlaxRegNetModelTester(unittest.TestCase):
def __init__(
self,
parent,
batch_size=3,
image_size=32,
num_channels=3,
embeddings_size=10,
hidden_sizes=[10, 20, 30, 40],
depths=[1, 1, 2, 1],
is_training=True,
use_labels=True,
hidden_act="relu",
num_labels=3,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.embeddings_size = embeddings_size
self.hidden_sizes = hidden_sizes
self.depths = depths
self.is_training = is_training
self.use_labels = use_labels
self.hidden_act = hidden_act
self.num_labels = num_labels
self.scope = scope
self.num_stages = len(hidden_sizes)
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return RegNetConfig(
num_channels=self.num_channels,
embeddings_size=self.embeddings_size,
hidden_sizes=self.hidden_sizes,
depths=self.depths,
hidden_act=self.hidden_act,
num_labels=self.num_labels,
image_size=self.image_size,
)
def create_and_check_model(self, config, pixel_values):
model = FlaxRegNetModel(config=config)
result = model(pixel_values)
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),
)
def create_and_check_for_image_classification(self, config, pixel_values):
config.num_labels = self.num_labels
model = FlaxRegNetForImageClassification(config=config)
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class FlaxResNetModelTest(FlaxModelTesterMixin, unittest.TestCase):
all_model_classes = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
is_encoder_decoder = False
test_head_masking = False
has_attentions = False
def setUp(self) -> None:
self.model_tester = FlaxRegNetModelTester(self)
self.config_tester = ConfigTester(self, config_class=RegNetConfig, has_text_modality=False)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@unittest.skip(reason="RegNet does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="RegNet does not support input and output embeddings")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.__call__)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_stages = self.model_tester.num_stages
self.assertEqual(len(hidden_states), expected_num_stages + 1)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
def test_jit_compilation(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def model_jitted(pixel_values, **kwargs):
return model(pixel_values=pixel_values, **kwargs)
with self.subTest("JIT Enabled"):
jitted_outputs = model_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = model_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_flax
class FlaxRegNetModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained("facebook/regnet-y-040") if is_vision_available() else None
@slow
def test_inference_image_classification_head(self):
model = FlaxRegNetForImageClassification.from_pretrained("facebook/regnet-y-040")
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="np")
outputs = model(**inputs)
# verify the logits
expected_shape = (1, 1000)
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = jnp.array([-0.4180, -1.5051, -3.4836])
self.assertTrue(jnp.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4))
| transformers/tests/models/regnet/test_modeling_flax_regnet.py/0 | {
"file_path": "transformers/tests/models/regnet/test_modeling_flax_regnet.py",
"repo_id": "transformers",
"token_count": 3717
} | 397 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the TensorFlow SAM model. """
from __future__ import annotations
import inspect
import unittest
import numpy as np
import requests
from transformers import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import SamProcessor, TFSamModel
from transformers.modeling_tf_utils import keras
if is_vision_available():
from PIL import Image
class TFSamPromptEncoderTester:
def __init__(
self,
hidden_size=32,
input_image_size=24,
patch_size=2,
mask_input_channels=4,
num_point_embeddings=4,
hidden_act="gelu",
):
self.hidden_size = hidden_size
self.input_image_size = input_image_size
self.patch_size = patch_size
self.mask_input_channels = mask_input_channels
self.num_point_embeddings = num_point_embeddings
self.hidden_act = hidden_act
def get_config(self):
return SamPromptEncoderConfig(
image_size=self.input_image_size,
patch_size=self.patch_size,
mask_input_channels=self.mask_input_channels,
hidden_size=self.hidden_size,
num_point_embeddings=self.num_point_embeddings,
hidden_act=self.hidden_act,
)
def prepare_config_and_inputs(self):
dummy_points = floats_tensor([self.batch_size, 3, 2])
config = self.get_config()
return config, dummy_points
class TFSamMaskDecoderTester:
def __init__(
self,
hidden_size=32,
hidden_act="relu",
mlp_dim=64,
num_hidden_layers=2,
num_attention_heads=4,
attention_downsample_rate=2,
num_multimask_outputs=3,
iou_head_depth=3,
iou_head_hidden_dim=32,
layer_norm_eps=1e-6,
):
self.hidden_size = hidden_size
self.hidden_act = hidden_act
self.mlp_dim = mlp_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.attention_downsample_rate = attention_downsample_rate
self.num_multimask_outputs = num_multimask_outputs
self.iou_head_depth = iou_head_depth
self.iou_head_hidden_dim = iou_head_hidden_dim
self.layer_norm_eps = layer_norm_eps
def get_config(self):
return SamMaskDecoderConfig(
hidden_size=self.hidden_size,
hidden_act=self.hidden_act,
mlp_dim=self.mlp_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
attention_downsample_rate=self.attention_downsample_rate,
num_multimask_outputs=self.num_multimask_outputs,
iou_head_depth=self.iou_head_depth,
iou_head_hidden_dim=self.iou_head_hidden_dim,
layer_norm_eps=self.layer_norm_eps,
)
def prepare_config_and_inputs(self):
config = self.get_config()
dummy_inputs = {
"image_embedding": floats_tensor([self.batch_size, self.hidden_size]),
}
return config, dummy_inputs
class TFSamModelTester:
def __init__(
self,
parent,
hidden_size=36,
intermediate_size=72,
projection_dim=62,
output_channels=32,
num_hidden_layers=2,
num_attention_heads=4,
num_channels=3,
image_size=24,
patch_size=2,
hidden_act="gelu",
layer_norm_eps=1e-06,
dropout=0.0,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
qkv_bias=True,
mlp_ratio=4.0,
use_abs_pos=True,
use_rel_pos=True,
rel_pos_zero_init=False,
window_size=14,
global_attn_indexes=[2, 5, 8, 11],
num_pos_feats=16,
mlp_dim=None,
batch_size=2,
):
self.parent = parent
self.image_size = image_size
self.patch_size = patch_size
self.output_channels = output_channels
self.num_channels = num_channels
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.hidden_act = hidden_act
self.layer_norm_eps = layer_norm_eps
self.qkv_bias = qkv_bias
self.mlp_ratio = mlp_ratio
self.use_abs_pos = use_abs_pos
self.use_rel_pos = use_rel_pos
self.rel_pos_zero_init = rel_pos_zero_init
self.window_size = window_size
self.global_attn_indexes = global_attn_indexes
self.num_pos_feats = num_pos_feats
self.mlp_dim = mlp_dim
self.batch_size = batch_size
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
self.prompt_encoder_tester = TFSamPromptEncoderTester()
self.mask_decoder_tester = TFSamMaskDecoderTester()
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
vision_config = SamVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
initializer_factor=self.initializer_factor,
output_channels=self.output_channels,
qkv_bias=self.qkv_bias,
mlp_ratio=self.mlp_ratio,
use_abs_pos=self.use_abs_pos,
use_rel_pos=self.use_rel_pos,
rel_pos_zero_init=self.rel_pos_zero_init,
window_size=self.window_size,
global_attn_indexes=self.global_attn_indexes,
num_pos_feats=self.num_pos_feats,
mlp_dim=self.mlp_dim,
)
prompt_encoder_config = self.prompt_encoder_tester.get_config()
mask_decoder_config = self.mask_decoder_tester.get_config()
return SamConfig(
vision_config=vision_config,
prompt_encoder_config=prompt_encoder_config,
mask_decoder_config=mask_decoder_config,
)
def create_and_check_model(self, config, pixel_values):
model = TFSamModel(config=config)
result = model(pixel_values)
self.parent.assertEqual(result.iou_scores.shape, (self.batch_size, 1, 3))
self.parent.assertEqual(result.pred_masks.shape[:3], (self.batch_size, 1, 3))
def create_and_check_get_image_features(self, config, pixel_values):
model = TFSamModel(config=config)
result = model.get_image_embeddings(pixel_values)
self.parent.assertEqual(result[0].shape, (self.output_channels, 12, 12))
def create_and_check_get_image_hidden_states(self, config, pixel_values):
model = TFSamModel(config=config)
result = model.vision_encoder(
pixel_values,
output_hidden_states=True,
return_dict=True,
)
# after computing the convolutional features
expected_hidden_states_shape = (self.batch_size, 12, 12, 36)
self.parent.assertEqual(len(result[1]), self.num_hidden_layers + 1)
self.parent.assertEqual(result[1][0].shape, expected_hidden_states_shape)
result = model.vision_encoder(
pixel_values,
output_hidden_states=True,
return_dict=False,
)
# after computing the convolutional features
expected_hidden_states_shape = (self.batch_size, 12, 12, 36)
self.parent.assertEqual(len(result[1]), self.num_hidden_layers + 1)
self.parent.assertEqual(result[1][0].shape, expected_hidden_states_shape)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class TFSamModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as SAM's vision encoder does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (TFSamModel,) if is_tf_available() else ()
pipeline_model_mapping = (
{"feature-extraction": TFSamModel, "mask-generation": TFSamModel} if is_tf_available() else {}
)
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
test_onnx = False
# TODO: Fix me @Arthur: `run_batch_test` in `tests/test_pipeline_mixin.py` not working
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
return True
def setUp(self):
self.model_tester = TFSamModelTester(self)
self.vision_config_tester = ConfigTester(self, config_class=SamVisionConfig, has_text_modality=False)
self.prompt_encoder_config_tester = ConfigTester(
self,
config_class=SamPromptEncoderConfig,
has_text_modality=False,
num_attention_heads=12,
num_hidden_layers=2,
)
self.mask_decoder_config_tester = ConfigTester(
self, config_class=SamMaskDecoderConfig, has_text_modality=False
)
def test_config(self):
self.vision_config_tester.run_common_tests()
self.prompt_encoder_config_tester.run_common_tests()
self.mask_decoder_config_tester.run_common_tests()
@unittest.skip(reason="SAM's vision encoder does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (keras.layers.Layer))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, keras.layers.Dense))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_get_image_features(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_get_image_features(*config_and_inputs)
def test_image_hidden_states(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_get_image_hidden_states(*config_and_inputs)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
expected_vision_attention_shape = (
self.model_tester.batch_size * self.model_tester.num_attention_heads,
196,
196,
)
expected_mask_decoder_attention_shape = (self.model_tester.batch_size, 1, 144, 32)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
config.return_dict = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
vision_attentions = outputs.vision_attentions
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers)
mask_decoder_attentions = outputs.mask_decoder_attentions
self.assertEqual(len(mask_decoder_attentions), self.model_tester.mask_decoder_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
vision_attentions = outputs.vision_attentions
self.assertEqual(len(vision_attentions), self.model_tester.num_hidden_layers)
mask_decoder_attentions = outputs.mask_decoder_attentions
self.assertEqual(len(mask_decoder_attentions), self.model_tester.mask_decoder_tester.num_hidden_layers)
self.assertListEqual(
list(vision_attentions[0].shape[-4:]),
list(expected_vision_attention_shape),
)
self.assertListEqual(
list(mask_decoder_attentions[0].shape[-4:]),
list(expected_mask_decoder_attention_shape),
)
@unittest.skip(reason="Hidden_states is tested in create_and_check_model tests")
def test_hidden_states_output(self):
pass
@slow
def test_model_from_pretrained(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base") # sam-vit-huge blows out our memory
self.assertIsNotNone(model)
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=5e-4, name="outputs", attributes=None):
super().check_pt_tf_outputs(
tf_outputs=tf_outputs,
pt_outputs=pt_outputs,
model_class=model_class,
tol=tol,
name=name,
attributes=attributes,
)
def prepare_image():
img_url = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
return raw_image
def prepare_dog_img():
img_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/dog-sam.png"
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
return raw_image
@require_tf
@slow
class TFSamModelIntegrationTest(unittest.TestCase):
def test_inference_mask_generation_no_point(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
raw_image = prepare_image()
inputs = processor(images=raw_image, return_tensors="tf")
outputs = model(**inputs)
scores = tf.squeeze(outputs.iou_scores)
masks = outputs.pred_masks[0, 0, 0, 0, :3]
self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.4515), atol=2e-4))
self.assertTrue(np.allclose(masks.numpy(), np.array([-4.1807, -3.4949, -3.4483]), atol=1e-2))
def test_inference_mask_generation_one_point_one_bb(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
raw_image = prepare_image()
input_boxes = [[[650, 900, 1000, 1250]]]
input_points = [[[820, 1080]]]
inputs = processor(images=raw_image, input_boxes=input_boxes, input_points=input_points, return_tensors="tf")
outputs = model(**inputs)
scores = tf.squeeze(outputs.iou_scores)
masks = outputs.pred_masks[0, 0, 0, 0, :3]
self.assertTrue(np.allclose(scores[-1], np.array(0.9566), atol=2e-4))
self.assertTrue(np.allclose(masks.numpy(), np.array([-12.7657, -12.3683, -12.5985]), atol=2e-2))
def test_inference_mask_generation_batched_points_batched_images(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
raw_image = prepare_image()
input_points = [
[[[820, 1080]], [[820, 1080]], [[820, 1080]], [[820, 1080]]],
[[[510, 1080]], [[820, 1080]], [[820, 1080]], [[820, 1080]]],
]
inputs = processor(images=[raw_image, raw_image], input_points=input_points, return_tensors="tf")
outputs = model(**inputs)
scores = tf.squeeze(outputs.iou_scores)
masks = outputs.pred_masks[0, 0, 0, 0, :3]
EXPECTED_SCORES = np.array(
[
[
[0.6765, 0.9379, 0.8803],
[0.6765, 0.9379, 0.8803],
[0.6765, 0.9379, 0.8803],
[0.6765, 0.9379, 0.8803],
],
[
[0.3317, 0.7264, 0.7646],
[0.6765, 0.9379, 0.8803],
[0.6765, 0.9379, 0.8803],
[0.6765, 0.9379, 0.8803],
],
]
)
EXPECTED_MASKS = np.array([-2.8552, -2.7990, -2.9612])
self.assertTrue(np.allclose(scores.numpy(), EXPECTED_SCORES, atol=1e-3))
self.assertTrue(np.allclose(masks.numpy(), EXPECTED_MASKS, atol=3e-2))
def test_inference_mask_generation_one_point_one_bb_zero(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
raw_image = prepare_image()
input_boxes = [[[620, 900, 1000, 1255]]]
input_points = [[[820, 1080]]]
labels = [[0]]
inputs = processor(
images=raw_image,
input_boxes=input_boxes,
input_points=input_points,
input_labels=labels,
return_tensors="tf",
)
outputs = model(**inputs)
scores = tf.squeeze(outputs.iou_scores)
self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.7894), atol=1e-4))
def test_inference_mask_generation_one_point(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
raw_image = prepare_image()
input_points = [[[400, 650]]]
input_labels = [[1]]
inputs = processor(images=raw_image, input_points=input_points, input_labels=input_labels, return_tensors="tf")
outputs = model(**inputs)
scores = tf.squeeze(outputs.iou_scores)
self.assertTrue(np.allclose(scores[-1], np.array(0.9675), atol=1e-4))
# With no label
input_points = [[[400, 650]]]
inputs = processor(images=raw_image, input_points=input_points, return_tensors="tf")
outputs = model(**inputs)
scores = tf.squeeze(outputs.iou_scores)
self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.9675), atol=1e-4))
def test_inference_mask_generation_two_points(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
raw_image = prepare_image()
input_points = [[[400, 650], [800, 650]]]
input_labels = [[1, 1]]
inputs = processor(images=raw_image, input_points=input_points, input_labels=input_labels, return_tensors="tf")
outputs = model(**inputs)
scores = tf.squeeze(outputs.iou_scores)
self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.9762), atol=1e-4))
# no labels
inputs = processor(images=raw_image, input_points=input_points, return_tensors="tf")
outputs = model(**inputs)
scores = tf.squeeze(outputs.iou_scores)
self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.9762), atol=1e-4))
def test_inference_mask_generation_two_points_batched(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
raw_image = prepare_image()
input_points = [[[400, 650], [800, 650]], [[400, 650]]]
input_labels = [[1, 1], [1]]
inputs = processor(
images=[raw_image, raw_image], input_points=input_points, input_labels=input_labels, return_tensors="tf"
)
outputs = model(**inputs)
scores = tf.squeeze(outputs.iou_scores)
self.assertTrue(np.allclose(scores[0][-1].numpy(), np.array(0.9762), atol=1e-4))
self.assertTrue(np.allclose(scores[1][-1], np.array(0.9637), atol=1e-4))
def test_inference_mask_generation_one_box(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
raw_image = prepare_image()
input_boxes = [[[75, 275, 1725, 850]]]
inputs = processor(images=raw_image, input_boxes=input_boxes, return_tensors="tf")
outputs = model(**inputs)
scores = tf.squeeze(outputs.iou_scores)
self.assertTrue(np.allclose(scores[-1].numpy(), np.array(0.7937), atol=1e-4))
def test_inference_mask_generation_batched_image_one_point(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
raw_image = prepare_image()
raw_dog_image = prepare_dog_img()
input_points = [[[820, 1080]], [[220, 470]]]
inputs = processor(images=[raw_image, raw_dog_image], input_points=input_points, return_tensors="tf")
outputs = model(**inputs)
scores_batched = tf.squeeze(outputs.iou_scores)
input_points = [[[220, 470]]]
inputs = processor(images=raw_dog_image, input_points=input_points, return_tensors="tf")
outputs = model(**inputs)
scores_single = tf.squeeze(outputs.iou_scores)
self.assertTrue(np.allclose(scores_batched[1, :].numpy(), scores_single.numpy(), atol=1e-4))
def test_inference_mask_generation_two_points_point_batch(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
raw_image = prepare_image()
input_points = tf.convert_to_tensor([[[400, 650]], [[220, 470]]]) # fmt: skip
input_points = tf.expand_dims(input_points, 0)
inputs = processor(raw_image, input_points=input_points, return_tensors="tf")
outputs = model(**inputs)
iou_scores = outputs.iou_scores
self.assertTrue(iou_scores.shape == (1, 2, 3))
self.assertTrue(
np.allclose(
iou_scores.numpy(),
np.array([[[0.9105, 0.9825, 0.9675], [0.7646, 0.7943, 0.7774]]]),
atol=1e-4,
rtol=1e-4,
)
)
def test_inference_mask_generation_three_boxes_point_batch(self):
model = TFSamModel.from_pretrained("facebook/sam-vit-base")
processor = SamProcessor.from_pretrained("facebook/sam-vit-base")
raw_image = prepare_image()
# fmt: off
input_boxes = tf.convert_to_tensor([[[620, 900, 1000, 1255]], [[75, 275, 1725, 850]], [[75, 275, 1725, 850]]])
EXPECTED_IOU = np.array([[[0.9773, 0.9881, 0.9522],
[0.5996, 0.7661, 0.7937],
[0.5996, 0.7661, 0.7937]]])
# fmt: on
input_boxes = tf.expand_dims(input_boxes, 0)
inputs = processor(raw_image, input_boxes=input_boxes, return_tensors="tf")
outputs = model(**inputs)
iou_scores = outputs.iou_scores
self.assertTrue(iou_scores.shape == (1, 3, 3))
self.assertTrue(np.allclose(iou_scores.numpy(), EXPECTED_IOU, atol=1e-4, rtol=1e-4))
| transformers/tests/models/sam/test_modeling_tf_sam.py/0 | {
"file_path": "transformers/tests/models/sam/test_modeling_tf_sam.py",
"repo_id": "transformers",
"token_count": 11717
} | 398 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch Hubert model. """
import math
import unittest
import pytest
from transformers import SEWDConfig, is_torch_available
from transformers.testing_utils import require_soundfile, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SEWDForCTC,
SEWDForSequenceClassification,
SEWDModel,
Wav2Vec2FeatureExtractor,
Wav2Vec2Processor,
)
from transformers.models.hubert.modeling_hubert import _compute_mask_indices
class SEWDModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=1024, # speech is longer
is_training=False,
hidden_size=32,
feat_extract_norm="group",
feat_extract_dropout=0.0,
feat_extract_activation="gelu",
conv_dim=(64, 32, 32),
conv_stride=(5, 2, 1),
conv_kernel=(10, 3, 1),
conv_bias=False,
num_conv_pos_embeddings=31,
num_conv_pos_embedding_groups=2,
squeeze_factor=2,
max_position_embeddings=512,
position_buckets=256,
share_att_key=True,
relative_attention=True,
position_biased_input=False,
pos_att_type=("p2c", "c2p"),
norm_rel_ebd="layer_norm",
num_hidden_layers=2,
num_attention_heads=2,
hidden_dropout=0.1,
intermediate_size=20,
layer_norm_eps=1e-5,
hidden_act="gelu",
initializer_range=0.02,
vocab_size=32,
do_stable_layer_norm=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.hidden_size = hidden_size
self.feat_extract_norm = feat_extract_norm
self.feat_extract_dropout = feat_extract_dropout
self.feat_extract_activation = feat_extract_activation
self.conv_dim = conv_dim
self.conv_stride = conv_stride
self.conv_kernel = conv_kernel
self.conv_bias = conv_bias
self.num_conv_pos_embeddings = num_conv_pos_embeddings
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
self.squeeze_factor = squeeze_factor
self.max_position_embeddings = max_position_embeddings
self.position_buckets = position_buckets
self.share_att_key = share_att_key
self.relative_attention = relative_attention
self.position_biased_input = position_biased_input
self.pos_att_type = pos_att_type
self.norm_rel_ebd = norm_rel_ebd
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_dropout = hidden_dropout
self.intermediate_size = intermediate_size
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.vocab_size = vocab_size
self.do_stable_layer_norm = do_stable_layer_norm
self.scope = scope
output_seq_length = self.seq_length
for kernel, stride in zip(self.conv_kernel, self.conv_stride):
output_seq_length = (output_seq_length - (kernel - 1)) / stride
self.output_seq_length = int(math.ceil(output_seq_length))
self.encoder_seq_length = self.output_seq_length // self.squeeze_factor
def prepare_config_and_inputs(self):
input_values = floats_tensor([self.batch_size, self.seq_length], scale=1.0)
attention_mask = random_attention_mask([self.batch_size, self.seq_length])
config = self.get_config()
return config, input_values, attention_mask
def get_config(self):
return SEWDConfig(
hidden_size=self.hidden_size,
feat_extract_norm=self.feat_extract_norm,
feat_extract_dropout=self.feat_extract_dropout,
feat_extract_activation=self.feat_extract_activation,
conv_dim=self.conv_dim,
conv_stride=self.conv_stride,
conv_kernel=self.conv_kernel,
conv_bias=self.conv_bias,
num_conv_pos_embeddings=self.num_conv_pos_embeddings,
num_conv_pos_embedding_groups=self.num_conv_pos_embedding_groups,
squeeze_factor=self.squeeze_factor,
max_position_embeddings=self.max_position_embeddings,
position_buckets=self.position_buckets,
share_att_key=self.share_att_key,
relative_attention=self.relative_attention,
position_biased_input=self.position_biased_input,
pos_att_type=self.pos_att_type,
norm_rel_ebd=self.norm_rel_ebd,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_dropout=self.hidden_dropout,
intermediate_size=self.intermediate_size,
layer_norm_eps=self.layer_norm_eps,
hidden_act=self.hidden_act,
initializer_range=self.initializer_range,
vocab_size=self.vocab_size,
)
def create_and_check_model(self, config, input_values, attention_mask):
model = SEWDModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_values, attention_mask=attention_mask)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.output_seq_length, self.hidden_size)
)
def create_and_check_batch_inference(self, config, input_values, *args):
# test does not pass for models making use of `group_norm`
# check: https://github.com/pytorch/fairseq/issues/3227
model = SEWDModel(config=config)
model.to(torch_device)
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.bool)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0.0
batch_outputs = model(input_values, attention_mask=attention_mask).last_hidden_state
for i in range(input_values.shape[0]):
input_slice = input_values[i : i + 1, : input_lengths[i]]
output = model(input_slice).last_hidden_state
batch_output = batch_outputs[i : i + 1, : output.shape[1]]
self.parent.assertTrue(torch.allclose(output, batch_output, atol=1e-3))
def check_ctc_loss(self, config, input_values, *args):
model = SEWDForCTC(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], min(max_length_labels) - 1), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
model.config.ctc_loss_reduction = "sum"
sum_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
model.config.ctc_loss_reduction = "mean"
mean_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
self.parent.assertTrue(isinstance(sum_loss, float))
self.parent.assertTrue(isinstance(mean_loss, float))
def check_ctc_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = SEWDForCTC(config=config)
model.to(torch_device)
model.train()
# freeze feature encoder
model.freeze_feature_encoder()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size)
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
if max_length_labels[i] < labels.shape[-1]:
# it's important that we make sure that target lengths are at least
# one shorter than logit lengths to prevent -inf
labels[i, max_length_labels[i] - 1 :] = -100
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_seq_classifier_loss(self, config, input_values, *args):
model = SEWDForSequenceClassification(config=config)
model.to(torch_device)
# make sure that dropout is disabled
model.eval()
input_values = input_values[:3]
attention_mask = torch.ones(input_values.shape, device=torch_device, dtype=torch.long)
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
attention_mask[i, input_lengths[i] :] = 0
masked_loss = model(input_values, attention_mask=attention_mask, labels=labels).loss.item()
unmasked_loss = model(input_values, labels=labels).loss.item()
self.parent.assertTrue(isinstance(masked_loss, float))
self.parent.assertTrue(isinstance(unmasked_loss, float))
self.parent.assertTrue(masked_loss != unmasked_loss)
def check_seq_classifier_training(self, config, input_values, *args):
config.ctc_zero_infinity = True
model = SEWDForSequenceClassification(config=config)
model.to(torch_device)
model.train()
# freeze everything but the classification head
model.freeze_base_model()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
labels = ids_tensor((input_values.shape[0], 1), len(model.config.id2label))
# pad input
for i in range(len(input_lengths)):
input_values[i, input_lengths[i] :] = 0.0
loss = model(input_values, labels=labels).loss
self.parent.assertFalse(torch.isinf(loss).item())
loss.backward()
def check_labels_out_of_vocab(self, config, input_values, *args):
model = SEWDForCTC(config)
model.to(torch_device)
model.train()
input_values = input_values[:3]
input_lengths = [input_values.shape[-1] // i for i in [4, 2, 1]]
max_length_labels = model._get_feat_extract_output_lengths(torch.tensor(input_lengths))
labels = ids_tensor((input_values.shape[0], max(max_length_labels) - 2), model.config.vocab_size + 100)
with pytest.raises(ValueError):
model(input_values, labels=labels)
def prepare_config_and_inputs_for_common(self):
config, input_values, attention_mask = self.prepare_config_and_inputs()
inputs_dict = {"input_values": input_values, "attention_mask": attention_mask}
return config, inputs_dict
@require_torch
class SEWDModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (SEWDForCTC, SEWDModel, SEWDForSequenceClassification) if is_torch_available() else ()
pipeline_model_mapping = (
{
"audio-classification": SEWDForSequenceClassification,
"automatic-speech-recognition": SEWDForCTC,
"feature-extraction": SEWDModel,
}
if is_torch_available()
else {}
)
test_pruning = False
test_headmasking = False
test_torchscript = False
def setUp(self):
self.model_tester = SEWDModelTester(self)
self.config_tester = ConfigTester(self, config_class=SEWDConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_ctc_loss_inference(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_loss(*config_and_inputs)
def test_ctc_train(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_ctc_training(*config_and_inputs)
def test_labels_out_of_vocab(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_labels_out_of_vocab(*config_and_inputs)
# Hubert has no inputs_embeds
def test_inputs_embeds(self):
pass
# `input_ids` is renamed to `input_values`
def test_forward_signature(self):
pass
# SEW cannot resize token embeddings
# since it has no tokens embeddings
def test_resize_tokens_embeddings(self):
pass
# SEW has no inputs_embeds
# and thus the `get_input_embeddings` fn
# is not implemented
def test_model_common_attributes(self):
pass
def test_retain_grad_hidden_states_attentions(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.output_hidden_states = True
config.output_attentions = True
# no need to test all models as different heads yield the same functionality
model_class = self.all_model_classes[0]
model = model_class(config)
model.to(torch_device)
# set layer drop to 0
model.config.layerdrop = 0.0
input_values = inputs_dict["input_values"]
input_lengths = torch.tensor(
[input_values.shape[1] for _ in range(input_values.shape[0])], dtype=torch.long, device=torch_device
)
output_lengths = model._get_feat_extract_output_lengths(input_lengths)
labels = ids_tensor((input_values.shape[0], output_lengths[0] - 2), self.model_tester.vocab_size)
inputs_dict["attention_mask"] = torch.ones_like(inputs_dict["attention_mask"])
inputs_dict["labels"] = labels
outputs = model(**inputs_dict)
output = outputs[0]
# Encoder-/Decoder-only models
hidden_states = outputs.hidden_states[0]
attentions = outputs.attentions[0]
hidden_states.retain_grad()
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=True)
self.assertIsNotNone(hidden_states.grad)
self.assertIsNotNone(attentions.grad)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
uniform_init_parms = [
"conv.weight",
"masked_spec_embed",
"quantizer.weight_proj.weight",
]
if param.requires_grad:
if any(x in name for x in uniform_init_parms):
self.assertTrue(
-1.0 <= ((param.data.mean() * 1e9).round() / 1e9).item() <= 1.0,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# overwrite from test_modeling_common
def _mock_init_weights(self, module):
if hasattr(module, "weight") and module.weight is not None:
module.weight.data.fill_(3)
if hasattr(module, "weight_g") and module.weight_g is not None:
module.weight_g.data.fill_(3)
if hasattr(module, "weight_v") and module.weight_v is not None:
module.weight_v.data.fill_(3)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.fill_(3)
if hasattr(module, "masked_spec_embed") and module.masked_spec_embed is not None:
module.masked_spec_embed.data.fill_(3)
@unittest.skip(reason="Feed forward chunking is not implemented")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
model = SEWDModel.from_pretrained("asapp/sew-d-tiny-100k")
self.assertIsNotNone(model)
@require_torch
class SEWDUtilsTest(unittest.TestCase):
def test_compute_mask_indices(self):
batch_size = 4
sequence_length = 60
mask_prob = 0.5
mask_length = 1
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
self.assertListEqual(mask.sum(axis=-1).tolist(), [mask_prob * sequence_length for _ in range(batch_size)])
def test_compute_mask_indices_overlap(self):
batch_size = 4
sequence_length = 80
mask_prob = 0.5
mask_length = 4
mask = _compute_mask_indices((batch_size, sequence_length), mask_prob, mask_length)
mask = torch.from_numpy(mask).to(torch_device)
# because of overlap mask don't have to add up exactly to `mask_prob * sequence_length`, but have to be smaller or equal
for batch_sum in mask.sum(axis=-1):
self.assertTrue(int(batch_sum) <= mask_prob * sequence_length)
@require_torch
@require_soundfile
@slow
class SEWDModelIntegrationTest(unittest.TestCase):
def _load_datasamples(self, num_samples):
from datasets import load_dataset
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_samples = ds.sort("id").filter(
lambda x: x["id"] in [f"1272-141231-000{i}" for i in range(num_samples)]
)[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def test_inference_pretrained_batched(self):
model = SEWDModel.from_pretrained("asapp/sew-d-tiny-100k").to(torch_device)
processor = Wav2Vec2FeatureExtractor.from_pretrained("asapp/sew-d-tiny-100k")
input_speech = self._load_datasamples(2)
inputs = processor(input_speech, return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
with torch.no_grad():
outputs = model(input_values).last_hidden_state
# expected outputs taken from the original SEW-D implementation
expected_outputs_first = torch.tensor(
[
[
[-0.1619, 0.6995, 0.4062, -0.1014],
[-0.1364, 0.5960, 0.0952, -0.0873],
[-0.1572, 0.5718, 0.4228, -0.0864],
[-0.1325, 0.6823, 0.1387, -0.0871],
],
[
[-0.1296, 0.4008, 0.4952, -0.1450],
[-0.1152, 0.3693, 0.3037, -0.1290],
[-0.1194, 0.6074, 0.3531, -0.1466],
[-0.1113, 0.3135, 0.2224, -0.1338],
],
],
device=torch_device,
)
expected_outputs_last = torch.tensor(
[
[
[-0.1577, 0.5108, 0.8553, 0.2550],
[-0.1530, 0.3580, 0.6143, 0.2672],
[-0.1535, 0.4954, 0.8503, 0.1387],
[-0.1572, 0.3363, 0.6217, 0.1490],
],
[
[-0.1338, 0.5459, 0.9607, -0.1133],
[-0.1502, 0.3738, 0.7313, -0.0986],
[-0.0953, 0.4708, 1.0821, -0.0944],
[-0.1474, 0.3598, 0.7248, -0.0748],
],
],
device=torch_device,
)
expected_output_sum = 54201.0469
self.assertTrue(torch.allclose(outputs[:, :4, :4], expected_outputs_first, atol=1e-3))
self.assertTrue(torch.allclose(outputs[:, -4:, -4:], expected_outputs_last, atol=1e-3))
self.assertTrue(abs(outputs.sum() - expected_output_sum) < 1)
def test_inference_ctc_batched(self):
model = SEWDForCTC.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h").to(torch_device)
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h", do_lower_case=True)
input_speech = self._load_datasamples(2)
inputs = processor(input_speech, return_tensors="pt", padding=True)
input_values = inputs.input_values.to(torch_device)
with torch.no_grad():
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_trans = processor.batch_decode(predicted_ids)
EXPECTED_TRANSCRIPTIONS = [
"a man said to the universe sir i exist",
"swet covered breon's body trickling into the titlowing closs that was the only garmened he war",
]
self.assertListEqual(predicted_trans, EXPECTED_TRANSCRIPTIONS)
| transformers/tests/models/sew_d/test_modeling_sew_d.py/0 | {
"file_path": "transformers/tests/models/sew_d/test_modeling_sew_d.py",
"repo_id": "transformers",
"token_count": 10461
} | 399 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
import tempfile
import unittest
from transformers.models.speech_to_text_2 import Speech2Text2Tokenizer
from transformers.models.speech_to_text_2.tokenization_speech_to_text_2 import VOCAB_FILES_NAMES
from ...test_tokenization_common import TokenizerTesterMixin
class SpeechToTextTokenizerTest(TokenizerTesterMixin, unittest.TestCase):
tokenizer_class = Speech2Text2Tokenizer
test_rust_tokenizer = False
def setUp(self):
super().setUp()
vocab = "<s> <pad> </s> <unk> here@@ a couple of@@ words for the he@@ re@@ vocab".split(" ")
merges = ["he re</w> 123", "here a 1456"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
self.special_tokens_map = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"}
self.tmpdirname = tempfile.mkdtemp()
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w") as fp:
fp.write("\n".join(merges))
def test_get_vocab(self):
vocab_keys = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0], "<s>")
self.assertEqual(vocab_keys[1], "<pad>")
self.assertEqual(vocab_keys[-1], "vocab")
self.assertEqual(len(vocab_keys), 14)
def test_vocab_size(self):
self.assertEqual(self.get_tokenizer().vocab_size, 14)
def test_tokenizer_decode(self):
tokenizer = Speech2Text2Tokenizer.from_pretrained(self.tmpdirname)
# make sure @@ is correctly concatenated
token_ids = [4, 6, 8, 7, 10] # ["here@@", "couple", "words", "of@@", "the"]
output_string = tokenizer.decode(token_ids)
self.assertTrue(output_string == "herecouple words ofthe")
def test_load_no_merges_file(self):
tokenizer = Speech2Text2Tokenizer.from_pretrained(self.tmpdirname)
with tempfile.TemporaryDirectory() as tmp_dirname:
tokenizer.save_pretrained(tmp_dirname)
os.remove(os.path.join(tmp_dirname, "merges.txt"))
# load tokenizer without merges file should not throw an error
tokenizer = Speech2Text2Tokenizer.from_pretrained(tmp_dirname)
with tempfile.TemporaryDirectory() as tmp_dirname:
# save tokenizer and load again
tokenizer.save_pretrained(tmp_dirname)
tokenizer = Speech2Text2Tokenizer.from_pretrained(tmp_dirname)
self.assertIsNotNone(tokenizer)
# overwrite since merges_file is optional
def test_tokenizer_slow_store_full_signature(self):
if not self.test_slow_tokenizer:
return
signature = inspect.signature(self.tokenizer_class.__init__)
tokenizer = self.get_tokenizer()
for parameter_name, parameter in signature.parameters.items():
if parameter.default != inspect.Parameter.empty and parameter_name != "merges_file":
self.assertIn(parameter_name, tokenizer.init_kwargs)
| transformers/tests/models/speech_to_text_2/test_tokenization_speech_to_text_2.py/0 | {
"file_path": "transformers/tests/models/speech_to_text_2/test_tokenization_speech_to_text_2.py",
"repo_id": "transformers",
"token_count": 1531
} | 400 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import copy
import unittest
import numpy as np
import pandas as pd
from transformers import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TapasConfig,
TapasTokenizer,
is_tf_available,
)
from transformers.models.auto import get_values
from transformers.testing_utils import require_tensorflow_probability, require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFTapasForMaskedLM,
TFTapasForQuestionAnswering,
TFTapasForSequenceClassification,
TFTapasModel,
)
from transformers.models.tapas.modeling_tf_tapas import (
IndexMap,
ProductIndexMap,
flatten,
gather,
range_index_map,
reduce_max,
reduce_mean,
reduce_sum,
)
class TFTapasModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
initializer_range=0.02,
max_position_embeddings=512,
type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10],
type_sequence_label_size=2,
positive_weight=10.0,
num_aggregation_labels=4,
num_labels=2,
aggregation_loss_importance=0.8,
use_answer_as_supervision=True,
answer_loss_importance=0.001,
use_normalized_answer_loss=False,
huber_loss_delta=25.0,
temperature=1.0,
agg_temperature=1.0,
use_gumbel_for_cells=False,
use_gumbel_for_agg=False,
average_approximation_function="ratio",
cell_selection_preference=0.5,
answer_loss_cutoff=100,
max_num_rows=64,
max_num_columns=32,
average_logits_per_cell=True,
select_one_column=True,
allow_empty_column_selection=False,
init_cell_selection_weights_to_zero=True,
reset_position_index_per_cell=True,
disable_per_token_loss=False,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.max_position_embeddings = max_position_embeddings
self.type_vocab_sizes = type_vocab_sizes
self.type_sequence_label_size = type_sequence_label_size
self.positive_weight = positive_weight
self.num_aggregation_labels = num_aggregation_labels
self.num_labels = num_labels
self.aggregation_loss_importance = aggregation_loss_importance
self.use_answer_as_supervision = use_answer_as_supervision
self.answer_loss_importance = answer_loss_importance
self.use_normalized_answer_loss = use_normalized_answer_loss
self.huber_loss_delta = huber_loss_delta
self.temperature = temperature
self.agg_temperature = agg_temperature
self.use_gumbel_for_cells = use_gumbel_for_cells
self.use_gumbel_for_agg = use_gumbel_for_agg
self.average_approximation_function = average_approximation_function
self.cell_selection_preference = cell_selection_preference
self.answer_loss_cutoff = answer_loss_cutoff
self.max_num_rows = max_num_rows
self.max_num_columns = max_num_columns
self.average_logits_per_cell = average_logits_per_cell
self.select_one_column = select_one_column
self.allow_empty_column_selection = allow_empty_column_selection
self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero
self.reset_position_index_per_cell = reset_position_index_per_cell
self.disable_per_token_loss = disable_per_token_loss
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = []
for type_vocab_size in self.type_vocab_sizes:
token_type_ids.append(ids_tensor(shape=[self.batch_size, self.seq_length], vocab_size=type_vocab_size))
token_type_ids = tf.stack(token_type_ids, axis=2)
sequence_labels = None
token_labels = None
labels = None
numeric_values = None
numeric_values_scale = None
float_answer = None
aggregation_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
labels = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
numeric_values = ids_tensor([self.batch_size, self.seq_length], vocab_size=2, dtype=tf.float32)
numeric_values_scale = ids_tensor([self.batch_size, self.seq_length], vocab_size=2, dtype=tf.float32)
float_answer = ids_tensor([self.batch_size], vocab_size=2, dtype=tf.float32)
aggregation_labels = ids_tensor([self.batch_size], self.num_aggregation_labels)
config = self.get_config()
return (
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
)
def get_config(self):
return TapasConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_sizes=self.type_vocab_sizes,
initializer_range=self.initializer_range,
positive_weight=self.positive_weight,
num_aggregation_labels=self.num_aggregation_labels,
num_labels=self.num_labels,
aggregation_loss_importance=self.aggregation_loss_importance,
use_answer_as_supervision=self.use_answer_as_supervision,
answer_loss_importance=self.answer_loss_importance,
use_normalized_answer_loss=self.use_normalized_answer_loss,
huber_loss_delta=self.huber_loss_delta,
temperature=self.temperature,
agg_temperature=self.agg_temperature,
use_gumbel_for_cells=self.use_gumbel_for_cells,
use_gumbel_for_agg=self.use_gumbel_for_agg,
average_approximation_function=self.average_approximation_function,
cell_selection_preference=self.cell_selection_preference,
answer_loss_cutoff=self.answer_loss_cutoff,
max_num_rows=self.max_num_rows,
max_num_columns=self.max_num_columns,
average_logits_per_cell=self.average_logits_per_cell,
select_one_column=self.select_one_column,
allow_empty_column_selection=self.allow_empty_column_selection,
init_cell_selection_weights_to_zero=self.init_cell_selection_weights_to_zero,
reset_position_index_per_cell=self.reset_position_index_per_cell,
disable_per_token_loss=self.disable_per_token_loss,
)
def create_and_check_model(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
model = TFTapasModel(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
inputs.pop("attention_mask")
result = model(inputs)
inputs.pop("token_type_ids")
result = model(inputs)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_for_masked_lm(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
model = TFTapasForMaskedLM(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"labels": token_labels,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_sequence_classification(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
config.num_labels = self.num_labels
model = TFTapasForSequenceClassification(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"labels": sequence_labels,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_question_answering(
self,
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
):
# inference: without aggregation head (SQA). Model only returns logits
sqa_config = copy.copy(config)
sqa_config.num_aggregation_labels = 0
sqa_config.use_answer_as_supervision = False
model = TFTapasForQuestionAnswering(config=sqa_config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
# inference: with aggregation head (WTQ, WikiSQL-supervised). Model returns logits and aggregation logits
model = TFTapasForQuestionAnswering(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
# training: can happen in 3 main ways
# case 1: conversational (SQA)
model = TFTapasForQuestionAnswering(config=sqa_config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"labels": labels,
}
result = model(inputs)
self.parent.assertEqual(result.loss.shape, (1,))
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
# case 2: weak supervision for aggregation (WTQ)
model = TFTapasForQuestionAnswering(config=config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"labels": labels,
"numeric_values": numeric_values,
"numeric_values_scale": numeric_values_scale,
"float_answer": float_answer,
}
result = model(inputs)
self.parent.assertEqual(result.loss.shape, (1,))
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
# case 3: strong supervision for aggregation (WikiSQL-supervised)
wikisql_config = copy.copy(config)
wikisql_config.use_answer_as_supervision = False
model = TFTapasForQuestionAnswering(config=wikisql_config)
inputs = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
"labels": labels,
"aggregation_labels": aggregation_labels,
}
result = model(inputs)
self.parent.assertEqual(result.loss.shape, (1,))
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.logits_aggregation.shape, (self.batch_size, self.num_aggregation_labels))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
token_type_ids,
sequence_labels,
token_labels,
labels,
numeric_values,
numeric_values_scale,
float_answer,
aggregation_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tensorflow_probability
@require_tf
class TFTapasModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFTapasModel,
TFTapasForMaskedLM,
TFTapasForSequenceClassification,
TFTapasForQuestionAnswering,
)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": TFTapasModel,
"fill-mask": TFTapasForMaskedLM,
"text-classification": TFTapasForSequenceClassification,
"zero-shot": TFTapasForSequenceClassification,
}
if is_tf_available()
else {}
)
test_head_masking = False
test_onnx = False
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
):
return True
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict:
inputs_dict = copy.deepcopy(inputs_dict)
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
inputs_dict = {
k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1))
if isinstance(v, tf.Tensor) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in get_values(TF_MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING):
inputs_dict["labels"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
)
inputs_dict["aggregation_labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
inputs_dict["numeric_values"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.float32
)
inputs_dict["numeric_values_scale"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.float32
)
inputs_dict["float_answer"] = tf.zeros(self.model_tester.batch_size, dtype=tf.float32)
elif model_class in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING):
inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
elif model_class in [
*get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
*get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING),
*get_values(TF_MODEL_FOR_MASKED_LM_MAPPING),
*get_values(TF_MODEL_FOR_PRETRAINING_MAPPING),
*get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
]:
inputs_dict["labels"] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32
)
return inputs_dict
def setUp(self):
self.model_tester = TFTapasModelTester(self)
self.config_tester = ConfigTester(self, config_class=TapasConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
@unittest.skip(reason="The default test gets NaN losses with the test-generated inputs")
def test_dataset_conversion(self):
pass
@unittest.skip(reason="The default test gets NaN losses with the test-generated inputs")
def test_keras_fit(self):
pass
@unittest.skip(reason="The default test gets NaN losses with the test-generated inputs")
def test_loss_computation(self):
pass
def prepare_tapas_single_inputs_for_inference():
# Here we prepare a single table-question pair to test TAPAS inference on:
data = {
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
"Age": ["33", "35"],
}
queries = "Which footballer is 33 years old?"
table = pd.DataFrame.from_dict(data)
return table, queries
def prepare_tapas_batch_inputs_for_inference():
# Here we prepare a batch of 2 table-question pairs to test TAPAS inference on:
data = {
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
"Age": ["33", "35"],
"Number of goals": ["712", "750"],
}
queries = ["Which footballer is 33 years old?", "How many goals does Ronaldo have?"]
table = pd.DataFrame.from_dict(data)
return table, queries
def prepare_tapas_batch_inputs_for_training():
# Here we prepare a DIFFERENT batch of 2 table-question pairs to test TAPAS training on:
data = {
"Footballer": ["Lionel Messi", "Cristiano Ronaldo"],
"Age": ["33", "35"],
"Number of goals": ["712", "750"],
}
queries = ["Which footballer is 33 years old?", "What's the total number of goals?"]
table = pd.DataFrame.from_dict(data)
answer_coordinates = [[(0, 0)], [(0, 2), (1, 2)]]
answer_text = [["Lionel Messi"], ["1462"]]
float_answer = [float("NaN"), float("1462")]
return table, queries, answer_coordinates, answer_text, float_answer
@require_tensorflow_probability
@require_tf
class TFTapasModelIntegrationTest(unittest.TestCase):
@cached_property
def default_tokenizer(self):
return TapasTokenizer.from_pretrained("google/tapas-base-finetuned-wtq")
@slow
def test_inference_no_head(self):
# ideally we want to test this with the weights of tapas_inter_masklm_base_reset,
# but since it's not straightforward to do this with the TF 1 implementation, we test it with
# the weights of the WTQ base model (i.e. tapas_wtq_wikisql_sqa_inter_masklm_base_reset)
model = TFTapasModel.from_pretrained("google/tapas-base-finetuned-wtq")
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="tf")
outputs = model(**inputs)
# test the sequence output
expected_slice = tf.constant(
[
[
[-0.141581565, -0.599805772, 0.747186482],
[-0.143664181, -0.602008104, 0.749218345],
[-0.15169853, -0.603363097, 0.741370678],
]
]
)
tf.debugging.assert_near(outputs.last_hidden_state[:, :3, :3], expected_slice, atol=0.0005)
# test the pooled output
expected_slice = tf.constant([[0.987518311, -0.970520139, -0.994303405]])
tf.debugging.assert_near(outputs.pooler_output[:, :3], expected_slice, atol=0.0005)
@unittest.skip(reason="Model not available yet")
def test_inference_masked_lm(self):
pass
# TapasForQuestionAnswering has 3 possible ways of being fine-tuned:
# - conversational set-up (SQA)
# - weak supervision for aggregation (WTQ, WikiSQL)
# - strong supervision for aggregation (WikiSQL-supervised)
# We test all of them:
@slow
def test_inference_question_answering_head_conversational(self):
# note that google/tapas-base-finetuned-sqa should correspond to tapas_sqa_inter_masklm_base_reset
model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-sqa")
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="tf")
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = tf.TensorShape([1, 21])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant(
[
[
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-9997.274,
-16.262585,
-10004.089,
15.435196,
15.435196,
15.435196,
-9990.443,
-16.327433,
-16.327433,
-16.327433,
-16.327433,
-16.327433,
-10004.84,
]
]
)
tf.debugging.assert_near(logits, expected_slice, atol=0.015)
@slow
def test_inference_question_answering_head_conversational_absolute_embeddings(self):
# note that google/tapas-small-finetuned-sqa should correspond to tapas_sqa_inter_masklm_small_reset
# however here we test the version with absolute position embeddings
model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-small-finetuned-sqa")
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="tf")
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = tf.TensorShape([1, 21])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant(
[
[
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-10000.041,
-18.369339,
-10014.692,
17.730324,
17.730324,
17.730324,
-9984.974,
-18.322773,
-18.322773,
-18.322773,
-18.322773,
-18.322773,
-10007.267,
]
]
)
tf.debugging.assert_near(logits, expected_slice, atol=0.01)
@slow
def test_inference_question_answering_head_weak_supervision(self):
# note that google/tapas-base-finetuned-wtq should correspond to tapas_wtq_wikisql_sqa_inter_masklm_base_reset
model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq")
tokenizer = self.default_tokenizer
# let's test on a batch
table, queries = prepare_tapas_batch_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, padding="longest", return_tensors="tf")
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = tf.TensorShape([2, 28])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant(
[
[-160.375504, -160.375504, -160.375504, -10072.3965, -10070.9414, -10094.9736],
[-9861.6123, -9861.6123, -9861.6123, -9861.6123, -9891.01172, 146.600677],
]
)
tf.debugging.assert_near(logits[:, -6:], expected_slice, atol=0.4)
# test the aggregation logits
logits_aggregation = outputs.logits_aggregation
expected_shape = tf.TensorShape([2, 4])
tf.debugging.assert_equal(logits_aggregation.shape, expected_shape)
expected_tensor = tf.constant(
[[18.8545208, -9.76614857, -6.3128891, -2.93525243], [-4.05782509, 40.0351, -5.35329962, 23.3978653]]
)
tf.debugging.assert_near(logits_aggregation, expected_tensor, atol=0.001)
# test the predicted answer coordinates and aggregation indices
EXPECTED_PREDICTED_ANSWER_COORDINATES = [[(0, 0)], [(1, 2)]]
EXPECTED_PREDICTED_AGGREGATION_INDICES = [0, 1]
predicted_answer_coordinates, predicted_aggregation_indices = tokenizer.convert_logits_to_predictions(
inputs, outputs.logits, outputs.logits_aggregation
)
tf.debugging.assert_equal(EXPECTED_PREDICTED_ANSWER_COORDINATES, predicted_answer_coordinates)
tf.debugging.assert_equal(EXPECTED_PREDICTED_AGGREGATION_INDICES, predicted_aggregation_indices)
@slow
def test_training_question_answering_head_weak_supervision(self):
# note that google/tapas-base-finetuned-wtq should correspond to tapas_wtq_wikisql_sqa_inter_masklm_base_reset
model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq")
tokenizer = self.default_tokenizer
# let's test on a batch
table, queries, answer_coordinates, answer_text, float_answer = prepare_tapas_batch_inputs_for_training()
inputs = tokenizer(
table=table,
queries=queries,
answer_coordinates=answer_coordinates,
answer_text=answer_text,
padding="longest",
return_tensors="tf",
)
# the answer should be prepared by the user
float_answer = tf.constant(float_answer, dtype=tf.float32)
outputs = model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
token_type_ids=inputs["token_type_ids"],
labels=inputs["labels"],
numeric_values=inputs["numeric_values"],
numeric_values_scale=inputs["numeric_values_scale"],
float_answer=float_answer,
)
# test the loss
loss = outputs.loss
expected_loss = tf.constant(3.3527612686157227e-08)
tf.debugging.assert_near(loss, expected_loss, atol=1e-6)
# test the logits on the first example
logits = outputs.logits
expected_shape = tf.TensorShape([2, 29])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant(
[
-160.0156,
-160.0156,
-160.0156,
-160.0156,
-160.0156,
-10072.2266,
-10070.8896,
-10092.6006,
-10092.6006,
]
)
tf.debugging.assert_near(logits[0, -9:], expected_slice, atol=1e-6)
# test the aggregation logits on the second example
logits_aggregation = outputs.logits_aggregation
expected_shape = tf.TensorShape([2, 4])
tf.debugging.assert_equal(logits_aggregation.shape, expected_shape)
expected_tensor = tf.constant([-4.0538, 40.0304, -5.3554, 23.3965])
tf.debugging.assert_near(logits_aggregation[1, -4:], expected_tensor, atol=1e-4)
@slow
def test_inference_question_answering_head_strong_supervision(self):
# note that google/tapas-base-finetuned-wikisql-supervised should correspond to tapas_wikisql_sqa_inter_masklm_base_reset
model = TFTapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wikisql-supervised")
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="tf")
outputs = model(**inputs)
# test the logits
logits = outputs.logits
expected_shape = tf.TensorShape([1, 21])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant(
[
[
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-10011.1084,
-18.6185989,
-10008.7969,
17.6355762,
17.6355762,
17.6355762,
-10002.4404,
-18.7111301,
-18.7111301,
-18.7111301,
-18.7111301,
-18.7111301,
-10007.0977,
]
]
)
tf.debugging.assert_near(logits, expected_slice, atol=0.02)
# test the aggregation logits
logits_aggregation = outputs.logits_aggregation
expected_shape = tf.TensorShape([1, 4])
tf.debugging.assert_equal(logits_aggregation.shape, expected_shape)
expected_tensor = tf.constant([[16.5659733, -3.06624889, -2.34152961, -0.970244825]])
tf.debugging.assert_near(logits_aggregation, expected_tensor, atol=0.003)
@slow
def test_inference_classification_head(self):
# note that google/tapas-base-finetuned-tabfact should correspond to tapas_tabfact_inter_masklm_base_reset
model = TFTapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact")
tokenizer = self.default_tokenizer
table, queries = prepare_tapas_single_inputs_for_inference()
inputs = tokenizer(table=table, queries=queries, return_tensors="tf")
outputs = model(**inputs)
# test the classification logits
logits = outputs.logits
expected_shape = tf.TensorShape([1, 2])
tf.debugging.assert_equal(logits.shape, expected_shape)
expected_slice = tf.constant([[0.795137286, 9.5572]])
tf.debugging.assert_near(logits, expected_slice, atol=0.05)
# Below: tests for Tapas utilities which are defined in modeling_tf_tapas.py.
# These are based on segmented_tensor_test.py of the original implementation.
# URL: https://github.com/google-research/tapas/blob/master/tapas/models/segmented_tensor_test.py
@require_tensorflow_probability
class TFTapasUtilsTest(unittest.TestCase):
def _prepare_tables(self):
"""Prepares two tables, both with three distinct rows.
The first table has two columns:
1.0, 2.0 | 3.0
2.0, 0.0 | 1.0
1.0, 3.0 | 4.0
The second table has three columns:
1.0 | 2.0 | 3.0
2.0 | 0.0 | 1.0
1.0 | 3.0 | 4.0
Returns:
SegmentedTensors with the tables.
"""
values = tf.constant(
[
[[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]],
[[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]],
]
)
row_index = IndexMap(
indices=[
[[0, 0, 0], [1, 1, 1], [2, 2, 2]],
[[0, 0, 0], [1, 1, 1], [2, 2, 2]],
],
num_segments=3,
batch_dims=1,
)
col_index = IndexMap(
indices=[
[[0, 0, 1], [0, 0, 1], [0, 0, 1]],
[[0, 1, 2], [0, 1, 2], [0, 1, 2]],
],
num_segments=3,
batch_dims=1,
)
return values, row_index, col_index
def test_product_index(self):
_, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
row_index_proj = cell_index.project_outer(cell_index)
col_index_proj = cell_index.project_inner(cell_index)
ind = cell_index.indices
self.assertEqual(cell_index.num_segments, 9)
# Projections should give back the original indices.
# we use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(row_index.indices.numpy(), row_index_proj.indices.numpy())
self.assertEqual(row_index.num_segments, row_index_proj.num_segments)
self.assertEqual(row_index.batch_dims, row_index_proj.batch_dims)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(col_index.indices.numpy(), col_index_proj.indices.numpy())
self.assertEqual(col_index.batch_dims, col_index_proj.batch_dims)
# The first and second "column" are identified in the first table.
for i in range(3):
self.assertEqual(ind[0, i, 0], ind[0, i, 1])
self.assertNotEqual(ind[0, i, 0], ind[0, i, 2])
# All rows are distinct in the first table.
for i, i_2 in zip(range(3), range(3)):
for j, j_2 in zip(range(3), range(3)):
if i != i_2 and j != j_2:
self.assertNotEqual(ind[0, i, j], ind[0, i_2, j_2])
# All cells are distinct in the second table.
for i, i_2 in zip(range(3), range(3)):
for j, j_2 in zip(range(3), range(3)):
if i != i_2 or j != j_2:
self.assertNotEqual(ind[1, i, j], ind[1, i_2, j_2])
def test_flatten(self):
_, row_index, col_index = self._prepare_tables()
row_index_flat = flatten(row_index)
col_index_flat = flatten(col_index)
shape = [3, 4, 5]
batched_index = IndexMap(indices=tf.zeros(shape, dtype=tf.int32), num_segments=1, batch_dims=3)
batched_index_flat = flatten(batched_index)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(
row_index_flat.indices.numpy(), [0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5]
)
np.testing.assert_array_equal(
col_index_flat.indices.numpy(), [0, 0, 1, 0, 0, 1, 0, 0, 1, 3, 4, 5, 3, 4, 5, 3, 4, 5]
)
self.assertEqual(batched_index_flat.num_segments.numpy(), np.prod(shape))
np.testing.assert_array_equal(batched_index_flat.indices.numpy(), range(np.prod(shape)))
def test_range_index_map(self):
batch_shape = [3, 4]
num_segments = 5
index = range_index_map(batch_shape, num_segments)
self.assertEqual(num_segments, index.num_segments)
self.assertEqual(2, index.batch_dims)
indices = index.indices
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(list(indices.shape), [3, 4, 5])
for i in range(batch_shape[0]):
for j in range(batch_shape[1]):
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(indices[i, j, :].numpy(), range(num_segments))
def test_reduce_sum(self):
values, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
row_sum, _ = reduce_sum(values, row_index)
col_sum, _ = reduce_sum(values, col_index)
cell_sum, _ = reduce_sum(values, cell_index)
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
np.testing.assert_allclose(row_sum.numpy(), [[6.0, 3.0, 8.0], [6.0, 3.0, 8.0]])
np.testing.assert_allclose(col_sum.numpy(), [[9.0, 8.0, 0.0], [4.0, 5.0, 8.0]])
np.testing.assert_allclose(
cell_sum.numpy(),
[[3.0, 3.0, 0.0, 2.0, 1.0, 0.0, 4.0, 4.0, 0.0], [1.0, 2.0, 3.0, 2.0, 0.0, 1.0, 1.0, 3.0, 4.0]],
)
def test_reduce_mean(self):
values, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
row_mean, _ = reduce_mean(values, row_index)
col_mean, _ = reduce_mean(values, col_index)
cell_mean, _ = reduce_mean(values, cell_index)
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
np.testing.assert_allclose(
row_mean.numpy(), [[6.0 / 3.0, 3.0 / 3.0, 8.0 / 3.0], [6.0 / 3.0, 3.0 / 3.0, 8.0 / 3.0]]
)
np.testing.assert_allclose(col_mean.numpy(), [[9.0 / 6.0, 8.0 / 3.0, 0.0], [4.0 / 3.0, 5.0 / 3.0, 8.0 / 3.0]])
np.testing.assert_allclose(
cell_mean.numpy(),
[
[3.0 / 2.0, 3.0, 0.0, 2.0 / 2.0, 1.0, 0.0, 4.0 / 2.0, 4.0, 0.0],
[1.0, 2.0, 3.0, 2.0, 0.0, 1.0, 1.0, 3.0, 4.0],
],
)
def test_reduce_max(self):
values = tf.convert_to_tensor([2.0, 1.0, 0.0, 3.0])
index = IndexMap(indices=tf.convert_to_tensor([0, 1, 0, 1]), num_segments=2)
maximum, _ = reduce_max(values, index)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(maximum.numpy(), [2, 3])
def test_reduce_sum_vectorized(self):
values = tf.convert_to_tensor([[1.0, 2.0, 3.0], [2.0, 3.0, 4.0], [3.0, 4.0, 5.0]])
index = IndexMap(indices=tf.convert_to_tensor([0, 0, 1]), num_segments=2, batch_dims=0)
sums, new_index = reduce_sum(values, index)
# We use np.testing.assert_allclose rather than Tensorflow's assertAllClose
np.testing.assert_allclose(sums.numpy(), [[3.0, 5.0, 7.0], [3.0, 4.0, 5.0]])
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(new_index.indices.numpy(), [0, 1])
np.testing.assert_array_equal(new_index.num_segments.numpy(), 2)
np.testing.assert_array_equal(new_index.batch_dims, 0)
def test_gather(self):
values, row_index, col_index = self._prepare_tables()
cell_index = ProductIndexMap(row_index, col_index)
# Compute sums and then gather. The result should have the same shape as
# the original table and each element should contain the sum the values in
# its cell.
sums, _ = reduce_sum(values, cell_index)
cell_sum = gather(sums, cell_index)
assert cell_sum.shape == values.shape
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_allclose(
cell_sum.numpy(),
[[[3.0, 3.0, 3.0], [2.0, 2.0, 1.0], [4.0, 4.0, 4.0]], [[1.0, 2.0, 3.0], [2.0, 0.0, 1.0], [1.0, 3.0, 4.0]]],
)
def test_gather_vectorized(self):
values = tf.constant([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
index = IndexMap(indices=tf.convert_to_tensor([[0, 1], [1, 0]]), num_segments=2, batch_dims=1)
result = gather(values, index)
# We use np.testing.assert_array_equal rather than Tensorflow's assertAllEqual
np.testing.assert_array_equal(result.numpy(), [[[1, 2], [3, 4]], [[7, 8], [5, 6]]])
| transformers/tests/models/tapas/test_modeling_tf_tapas.py/0 | {
"file_path": "transformers/tests/models/tapas/test_modeling_tf_tapas.py",
"repo_id": "transformers",
"token_count": 21105
} | 401 |
# coding=utf-8
# Copyright 2023 The Intel Team Authors, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.image_transforms import PaddingMode
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import TvpImageProcessor
class TvpImageProcessingTester(unittest.TestCase):
def __init__(
self,
parent,
do_resize: bool = True,
size: Dict[str, int] = {"longest_edge": 40},
do_center_crop: bool = False,
crop_size: Dict[str, int] = None,
do_rescale: bool = False,
rescale_factor: Union[int, float] = 1 / 255,
do_pad: bool = True,
pad_size: Dict[str, int] = {"height": 80, "width": 80},
fill: int = None,
pad_mode: PaddingMode = None,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = [0.48145466, 0.4578275, 0.40821073],
image_std: Optional[Union[float, List[float]]] = [0.26862954, 0.26130258, 0.27577711],
batch_size=2,
min_resolution=40,
max_resolution=80,
num_channels=3,
num_frames=2,
):
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
self.pad_size = pad_size
self.fill = fill
self.pad_mode = pad_mode
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.batch_size = batch_size
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.num_frames = num_frames
def prepare_image_processor_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"do_center_crop": self.do_center_crop,
"do_pad": self.do_pad,
"pad_size": self.pad_size,
}
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to TvpImageProcessor,
assuming do_resize is set to True with a scalar size.
"""
if not batched:
return (int(self.pad_size["height"]), int(self.pad_size["width"]))
else:
expected_values = []
for image in image_inputs:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_video_inputs(
batch_size=self.batch_size,
num_frames=self.num_frames,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class TvpImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = TvpImageProcessor if is_vision_available() else None
def setUp(self):
self.image_processor_tester = TvpImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "do_pad"))
self.assertTrue(hasattr(image_processing, "pad_size"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"longest_edge": 40})
image_processor = self.image_processing_class.from_dict(self.image_processor_dict, size={"longest_edge": 12})
self.assertEqual(image_processor.size, {"longest_edge": 12})
def test_call_pil(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PIL videos
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False)
for video in video_inputs:
self.assertIsInstance(video, list)
self.assertIsInstance(video[0], Image.Image)
# Test not batched input
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
self.assertEqual(
encoded_videos.shape,
(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
# Test batched
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True)
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_videos.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
def test_call_numpy(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
for video in video_inputs:
self.assertIsInstance(video, list)
self.assertIsInstance(video[0], np.ndarray)
# Test not batched input
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
self.assertEqual(
encoded_videos.shape,
(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
# Test batched
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True)
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_videos.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
def test_call_numpy_4_channels(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
for video in video_inputs:
self.assertIsInstance(video, list)
self.assertIsInstance(video[0], np.ndarray)
# Test not batched input
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
encoded_videos = image_processing(
video_inputs[0], return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first"
).pixel_values
self.assertEqual(
encoded_videos.shape,
(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
# Test batched
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True)
encoded_videos = image_processing(
video_inputs, return_tensors="pt", image_mean=0, image_std=1, input_data_format="channels_first"
).pixel_values
self.assertEqual(
encoded_videos.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
self.image_processor_tester.num_channels = 3
def test_call_pytorch(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True)
for video in video_inputs:
self.assertIsInstance(video, list)
self.assertIsInstance(video[0], torch.Tensor)
# Test not batched input
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
self.assertEqual(
encoded_videos.shape,
(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
# Test batched
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs, batched=True)
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_videos.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
| transformers/tests/models/tvp/test_image_processing_tvp.py/0 | {
"file_path": "transformers/tests/models/tvp/test_image_processing_tvp.py",
"repo_id": "transformers",
"token_count": 5453
} | 402 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Testing suite for the PyTorch VitMatte model. """
import unittest
from huggingface_hub import hf_hub_download
from transformers import VitMatteConfig
from transformers.testing_utils import (
require_torch,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import VitDetConfig, VitMatteForImageMatting
from transformers.models.vitmatte.modeling_vitmatte import VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import VitMatteImageProcessor
class VitMatteModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
patch_size=16,
num_channels=4,
is_training=True,
use_labels=False,
hidden_size=2,
num_hidden_layers=2,
num_attention_heads=2,
hidden_act="gelu",
type_sequence_label_size=10,
initializer_range=0.02,
scope=None,
out_features=["stage1"],
fusion_hidden_sizes=[128, 64, 32, 16],
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.scope = scope
self.out_features = out_features
self.fusion_hidden_sizes = fusion_hidden_sizes
self.seq_length = (self.image_size // self.patch_size) ** 2
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
raise NotImplementedError("Training is not yet supported")
config = self.get_config()
return config, pixel_values, labels
def get_backbone_config(self):
return VitDetConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
hidden_size=self.hidden_size,
is_training=self.is_training,
hidden_act=self.hidden_act,
out_features=self.out_features,
)
def get_config(self):
return VitMatteConfig(
backbone_config=self.get_backbone_config(),
backbone=None,
hidden_size=self.hidden_size,
fusion_hidden_sizes=self.fusion_hidden_sizes,
)
def create_and_check_model(self, config, pixel_values, labels):
model = VitMatteForImageMatting(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.alphas.shape, (self.batch_size, 1, self.image_size, self.image_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class VitMatteModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as VitMatte does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (VitMatteForImageMatting,) if is_torch_available() else ()
pipeline_model_mapping = {}
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = VitMatteModelTester(self)
self.config_tester = ConfigTester(self, config_class=VitMatteConfig, has_text_modality=False, hidden_size=37)
def test_config(self):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def create_and_test_config_common_properties(self):
return
@unittest.skip(reason="VitMatte does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="ViTMatte does not support input and output embeddings")
def test_model_common_attributes(self):
pass
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
for model_name in VITMATTE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
model = VitMatteForImageMatting.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(reason="ViTMatte does not support retaining gradient on attention logits")
def test_retain_grad_hidden_states_attentions(self):
pass
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[2, 2],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
print("Hello we're here")
check_hidden_states_output(inputs_dict, config, model_class)
@require_torch
class VitMatteModelIntegrationTest(unittest.TestCase):
@slow
def test_inference(self):
processor = VitMatteImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k")
model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k").to(torch_device)
filepath = hf_hub_download(
repo_id="hf-internal-testing/image-matting-fixtures", filename="image.png", repo_type="dataset"
)
image = Image.open(filepath).convert("RGB")
filepath = hf_hub_download(
repo_id="hf-internal-testing/image-matting-fixtures", filename="trimap.png", repo_type="dataset"
)
trimap = Image.open(filepath).convert("L")
# prepare image + trimap for the model
inputs = processor(images=image, trimaps=trimap, return_tensors="pt").to(torch_device)
with torch.no_grad():
alphas = model(**inputs).alphas
expected_shape = torch.Size((1, 1, 640, 960))
self.assertEqual(alphas.shape, expected_shape)
expected_slice = torch.tensor(
[[0.9977, 0.9987, 0.9990], [0.9980, 0.9998, 0.9998], [0.9983, 0.9998, 0.9998]], device=torch_device
)
self.assertTrue(torch.allclose(alphas[0, 0, :3, :3], expected_slice, atol=1e-4))
| transformers/tests/models/vitmatte/test_modeling_vitmatte.py/0 | {
"file_path": "transformers/tests/models/vitmatte/test_modeling_vitmatte.py",
"repo_id": "transformers",
"token_count": 4116
} | 403 |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFXLMRobertaModel
@require_tf
@require_sentencepiece
@require_tokenizers
class TFFlaubertModelIntegrationTest(unittest.TestCase):
@slow
def test_output_embeds_base_model(self):
model = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base")
features = {
"input_ids": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]], dtype=tf.int32), # "My dog is cute"
"attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]], dtype=tf.int32),
}
output = model(features)["last_hidden_state"]
expected_shape = tf.TensorShape((1, 6, 768))
self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice.
expected_slice = tf.convert_to_tensor(
[
[
[0.0681762, 0.10894451, 0.06772504],
[-0.06423668, 0.02366615, 0.04329344],
[-0.06057295, 0.09974135, -0.00070584],
]
],
dtype=tf.float32,
)
self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
| transformers/tests/models/xlm_roberta/test_modeling_tf_xlm_roberta.py/0 | {
"file_path": "transformers/tests/models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
"repo_id": "transformers",
"token_count": 850
} | 404 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import requests
from transformers import MODEL_FOR_VISION_2_SEQ_MAPPING, TF_MODEL_FOR_VISION_2_SEQ_MAPPING, is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_vision
class ImageToTextPipelineTests(unittest.TestCase):
model_mapping = MODEL_FOR_VISION_2_SEQ_MAPPING
tf_model_mapping = TF_MODEL_FOR_VISION_2_SEQ_MAPPING
def get_test_pipeline(self, model, tokenizer, processor):
pipe = pipeline("image-to-text", model=model, tokenizer=tokenizer, image_processor=processor)
examples = [
Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"),
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
return pipe, examples
def run_pipeline_test(self, pipe, examples):
outputs = pipe(examples)
self.assertEqual(
outputs,
[
[{"generated_text": ANY(str)}],
[{"generated_text": ANY(str)}],
],
)
@require_tf
def test_small_model_tf(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2", framework="tf")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(
outputs,
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
},
],
)
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
],
)
outputs = pipe(image, max_new_tokens=1)
self.assertEqual(
outputs,
[{"generated_text": "growth"}],
)
@require_torch
def test_small_model_pt(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-vit-gpt2")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(
outputs,
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
},
],
)
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
[
{
"generated_text": "growthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthgrowthGOGO"
}
],
],
)
@require_torch
def test_small_model_pt_conditional(self):
pipe = pipeline("image-to-text", model="hf-internal-testing/tiny-random-BlipForConditionalGeneration")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
prompt = "a photo of"
outputs = pipe(image, prompt=prompt)
self.assertTrue(outputs[0]["generated_text"].startswith(prompt))
@slow
@require_torch
def test_large_model_pt(self):
pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
],
)
@slow
@require_torch
def test_generation_pt_blip(self):
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
image = Image.open(requests.get(url, stream=True).raw)
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a pink pokemon pokemon with a blue shirt and a blue shirt"}])
@slow
@require_torch
def test_generation_pt_git(self):
pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
url = "https://huggingface.co/datasets/sayakpaul/sample-datasets/resolve/main/pokemon.png"
image = Image.open(requests.get(url, stream=True).raw)
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a cartoon of a purple character."}])
@slow
@require_torch
def test_conditional_generation_pt_blip(self):
pipe = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "a photography of"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "a photography of a volcano"}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@slow
@require_torch
def test_conditional_generation_pt_git(self):
pipe = pipeline("image-to-text", model="microsoft/git-base-coco")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "a photo of a"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "a photo of a tent with a tent and a tent in the background."}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@slow
@require_torch
def test_conditional_generation_pt_pix2struct(self):
pipe = pipeline("image-to-text", model="google/pix2struct-ai2d-base")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"
outputs = pipe(image, prompt=prompt)
self.assertEqual(outputs, [{"generated_text": "ash cloud"}])
with self.assertRaises(ValueError):
outputs = pipe([image, image], prompt=[prompt, prompt])
@slow
@require_tf
def test_large_model_tf(self):
pipe = pipeline("image-to-text", model="ydshieh/vit-gpt2-coco-en", framework="tf")
image = "./tests/fixtures/tests_samples/COCO/000000039769.png"
outputs = pipe(image)
self.assertEqual(outputs, [{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}])
outputs = pipe([image, image])
self.assertEqual(
outputs,
[
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
[{"generated_text": "a cat laying on a blanket next to a cat laying on a bed "}],
],
)
@slow
@require_torch
def test_conditional_generation_llava(self):
pipe = pipeline("image-to-text", model="llava-hf/bakLlava-v1-hf")
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
prompt = (
"<image>\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT:"
)
outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
self.assertEqual(
outputs,
[
{
"generated_text": "<image> \nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud?\nASSISTANT: Lava"
}
],
)
| transformers/tests/pipelines/test_pipelines_image_to_text.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_image_to_text.py",
"repo_id": "transformers",
"token_count": 4393
} | 405 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class Image:
@staticmethod
def open(*args, **kwargs):
pass
@is_pipeline_test
@require_vision
class ZeroShotImageClassificationPipelineTests(unittest.TestCase):
# Deactivating auto tests since we don't have a good MODEL_FOR_XX mapping,
# and only CLIP would be there for now.
# model_mapping = {CLIPConfig: CLIPModel}
# def get_test_pipeline(self, model, tokenizer, processor):
# if tokenizer is None:
# # Side effect of no Fast Tokenizer class for these model, so skipping
# # But the slow tokenizer test should still run as they're quite small
# self.skipTest("No tokenizer available")
# return
# # return None, None
# image_classifier = ZeroShotImageClassificationPipeline(
# model=model, tokenizer=tokenizer, feature_extractor=processor
# )
# # test with a raw waveform
# image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
# image2 = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
# return image_classifier, [image, image2]
# def run_pipeline_test(self, pipe, examples):
# image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
# outputs = pipe(image, candidate_labels=["A", "B"])
# self.assertEqual(outputs, {"text": ANY(str)})
# # Batching
# outputs = pipe([image] * 3, batch_size=2, candidate_labels=["A", "B"])
@require_torch
def test_small_model_pt(self):
image_classifier = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification",
)
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
output = image_classifier(image, candidate_labels=["a", "b", "c"])
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(output),
[
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
[{"score": 0.333, "label": "b"}, {"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}],
],
)
output = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2)
self.assertEqual(
nested_simplify(output),
# Pipeline outputs are supposed to be deterministic and
# So we could in theory have real values "A", "B", "C" instead
# of ANY(str).
# However it seems that in this particular case, the floating
# scores are so close, we enter floating error approximation
# and the order is not guaranteed anymore with batching.
[
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
],
)
@require_tf
def test_small_model_tf(self):
image_classifier = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification", framework="tf"
)
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
output = image_classifier(image, candidate_labels=["a", "b", "c"])
self.assertEqual(
nested_simplify(output),
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
)
output = image_classifier([image] * 5, candidate_labels=["A", "B", "C"], batch_size=2)
self.assertEqual(
nested_simplify(output),
# Pipeline outputs are supposed to be deterministic and
# So we could in theory have real values "A", "B", "C" instead
# of ANY(str).
# However it seems that in this particular case, the floating
# scores are so close, we enter floating error approximation
# and the order is not guaranteed anymore with batching.
[
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
[
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
{"score": 0.333, "label": ANY(str)},
],
],
)
@slow
@require_torch
def test_large_model_pt(self):
image_classifier = pipeline(
task="zero-shot-image-classification",
model="openai/clip-vit-base-patch32",
)
# This is an image of 2 cats with remotes and no planes
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
output = image_classifier(image, candidate_labels=["cat", "plane", "remote"])
self.assertEqual(
nested_simplify(output),
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
)
output = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2)
self.assertEqual(
nested_simplify(output),
[
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5,
)
@slow
@require_tf
def test_large_model_tf(self):
image_classifier = pipeline(
task="zero-shot-image-classification", model="openai/clip-vit-base-patch32", framework="tf"
)
# This is an image of 2 cats with remotes and no planes
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
output = image_classifier(image, candidate_labels=["cat", "plane", "remote"])
self.assertEqual(
nested_simplify(output),
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
)
output = image_classifier([image] * 5, candidate_labels=["cat", "plane", "remote"], batch_size=2)
self.assertEqual(
nested_simplify(output),
[
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5,
)
@slow
@require_torch
def test_siglip_model_pt(self):
image_classifier = pipeline(
task="zero-shot-image-classification",
model="google/siglip-base-patch16-224",
)
# This is an image of 2 cats with remotes and no planes
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
output = image_classifier(image, candidate_labels=["2 cats", "a plane", "a remote"])
self.assertEqual(
nested_simplify(output),
[
{"score": 0.198, "label": "2 cats"},
{"score": 0.0, "label": "a remote"},
{"score": 0.0, "label": "a plane"},
],
)
output = image_classifier([image] * 5, candidate_labels=["2 cats", "a plane", "a remote"], batch_size=2)
self.assertEqual(
nested_simplify(output),
[
[
{"score": 0.198, "label": "2 cats"},
{"score": 0.0, "label": "a remote"},
{"score": 0.0, "label": "a plane"},
]
]
* 5,
)
| transformers/tests/pipelines/test_pipelines_zero_shot_image_classification.py/0 | {
"file_path": "transformers/tests/pipelines/test_pipelines_zero_shot_image_classification.py",
"repo_id": "transformers",
"token_count": 5307
} | 406 |
import importlib
def is_sagemaker_available():
return importlib.util.find_spec("sagemaker") is not None
| transformers/tests/sagemaker/__init__.py/0 | {
"file_path": "transformers/tests/sagemaker/__init__.py",
"repo_id": "transformers",
"token_count": 36
} | 407 |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
class FeatureExtractorUtilTester(unittest.TestCase):
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
# This check we did call the fake head request
mock_head.assert_called()
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
_ = Wav2Vec2FeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json"
)
@is_staging_test
class FeatureExtractorPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-feature-extractor")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-feature-extractor-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-feature-extractor")
except HTTPError:
pass
def test_push_to_hub(self):
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("test-feature-extractor", token=self._token)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-feature-extractor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
tmp_dir, repo_id="test-feature-extractor", push_to_hub=True, token=self._token
)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
def test_push_to_hub_in_organization(self):
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("valid_org/test-feature-extractor", token=self._token)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-feature-extractor")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
tmp_dir, repo_id="valid_org/test-feature-extractor-org", push_to_hub=True, token=self._token
)
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org")
for k, v in feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_feature_extractor, k))
def test_push_to_hub_dynamic_feature_extractor(self):
CustomFeatureExtractor.register_for_auto_class()
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
feature_extractor.push_to_hub("test-dynamic-feature-extractor", token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map,
{"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
)
new_feature_extractor = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor", trust_remote_code=True
)
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")
| transformers/tests/test_feature_extraction_utils.py/0 | {
"file_path": "transformers/tests/test_feature_extraction_utils.py",
"repo_id": "transformers",
"token_count": 2408
} | 408 |
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import concurrent.futures
import json
import os
import shutil
import tempfile
import unittest
from transformers import AutoTokenizer, PreTrainedTokenizerFast
from transformers.testing_utils import require_tokenizers
from ..test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class PreTrainedTokenizationFastTest(TokenizerTesterMixin, unittest.TestCase):
rust_tokenizer_class = PreTrainedTokenizerFast
test_slow_tokenizer = False
test_rust_tokenizer = True
from_pretrained_vocab_key = "tokenizer_file"
def setUp(self):
self.test_rust_tokenizer = False # because we don't have pretrained_vocab_files_map
super().setUp()
self.test_rust_tokenizer = True
model_paths = ["robot-test/dummy-tokenizer-fast", "robot-test/dummy-tokenizer-wordlevel"]
self.bytelevel_bpe_model_name = "SaulLu/dummy-tokenizer-bytelevel-bpe"
# Inclusion of 2 tokenizers to test different types of models (Unigram and WordLevel for the moment)
self.tokenizers_list = [(PreTrainedTokenizerFast, model_path, {}) for model_path in model_paths]
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_paths[0])
tokenizer.save_pretrained(self.tmpdirname)
def test_tokenizer_mismatch_warning(self):
# We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any
# model
pass
@unittest.skip(
"We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any model"
)
def test_encode_decode_with_spaces(self):
pass
@unittest.skip(
"We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any model"
)
def test_added_tokens_serialization(self):
pass
@unittest.skip(
"We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any model"
)
def test_additional_special_tokens_serialization(self):
pass
def test_pretrained_model_lists(self):
# We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any
# model
pass
def test_prepare_for_model(self):
# We disable this test for PreTrainedTokenizerFast because it is the only tokenizer that is not linked to any
# model
pass
def test_rust_tokenizer_signature(self):
# PreTrainedTokenizerFast doesn't have tokenizer_file in its signature
pass
def test_training_new_tokenizer(self):
tmpdirname_orig = self.tmpdirname
# Here we want to test the 2 available tokenizers that use 2 different types of models: Unigram and WordLevel.
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
try:
self.tmpdirname = tempfile.mkdtemp()
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer.save_pretrained(self.tmpdirname)
super().test_training_new_tokenizer()
finally:
# Even if the test fails, we must be sure that the folder is deleted and that the default tokenizer
# is restored
shutil.rmtree(self.tmpdirname)
self.tmpdirname = tmpdirname_orig
def test_training_new_tokenizer_with_special_tokens_change(self):
tmpdirname_orig = self.tmpdirname
# Here we want to test the 2 available tokenizers that use 2 different types of models: Unigram and WordLevel.
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
try:
self.tmpdirname = tempfile.mkdtemp()
tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer.save_pretrained(self.tmpdirname)
super().test_training_new_tokenizer_with_special_tokens_change()
finally:
# Even if the test fails, we must be sure that the folder is deleted and that the default tokenizer
# is restored
shutil.rmtree(self.tmpdirname)
self.tmpdirname = tmpdirname_orig
def test_training_new_tokenizer_with_bytelevel(self):
tokenizer = self.rust_tokenizer_class.from_pretrained(self.bytelevel_bpe_model_name)
toy_text_iterator = ("a" for _ in range(1000))
new_tokenizer = tokenizer.train_new_from_iterator(text_iterator=toy_text_iterator, length=1000, vocab_size=50)
encoding_ids = new_tokenizer.encode("a🤗")
self.assertEqual(encoding_ids, [64, 172, 253, 97, 245])
def test_init_from_tokenizers_model(self):
from tokenizers import Tokenizer
sentences = ["Hello, y'all!", "How are you 😁 ? There should not be any issue right?"]
tokenizer = Tokenizer.from_pretrained("t5-base")
# Enable padding
tokenizer.enable_padding(pad_id=0, pad_token="<pad>", length=512, pad_to_multiple_of=8)
self.assertEqual(
tokenizer.padding,
{
"length": 512,
"pad_to_multiple_of": 8,
"pad_id": 0,
"pad_token": "<pad>",
"pad_type_id": 0,
"direction": "right",
},
)
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
tmpdirname = tempfile.mkdtemp()
fast_tokenizer.save_pretrained(tmpdirname)
fast_from_saved = PreTrainedTokenizerFast.from_pretrained(tmpdirname)
for tok in [fast_tokenizer, fast_from_saved]:
self.assertEqual(tok.pad_token_id, 0)
self.assertEqual(tok.padding_side, "right")
self.assertEqual(tok.pad_token, "<pad>")
self.assertEqual(tok.init_kwargs["max_length"], 512)
self.assertEqual(tok.init_kwargs["pad_to_multiple_of"], 8)
self.assertEqual(tok(sentences, padding = True), {'input_ids': [[8774, 6, 3, 63, 31, 1748, 55, 1, 0, 0, 0, 0,0, 0, 0, 0],[ 571, 33, 25, 3, 2, 3, 58, 290, 225, 59, 36, 136, 962, 269, 58, 1]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}) # fmt: skip
tokenizer.enable_truncation(8, stride=0, strategy="longest_first", direction="right")
self.assertEqual(
tokenizer.truncation, {"max_length": 8, "stride": 0, "strategy": "longest_first", "direction": "right"}
)
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
tmpdirname = tempfile.mkdtemp()
fast_tokenizer.save_pretrained(tmpdirname)
fast_from_saved = PreTrainedTokenizerFast.from_pretrained(tmpdirname)
for tok in [fast_tokenizer, fast_from_saved]:
self.assertEqual(tok.truncation_side, "right")
self.assertEqual(tok.init_kwargs["truncation_strategy"], "longest_first")
self.assertEqual(tok.init_kwargs["max_length"], 8)
self.assertEqual(tok.init_kwargs["stride"], 0)
# NOTE even if the model has a default max_length, it is not used...
# thus tok(sentences, truncation = True) does nothing and does not warn either
self.assertEqual(tok(sentences, truncation = True, max_length = 8), {'input_ids': [[8774, 6, 3, 63, 31, 1748, 55, 1],[ 571, 33, 25, 3, 2, 3, 58, 1]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1]]}) # fmt: skip
@require_tokenizers
class TokenizerVersioningTest(unittest.TestCase):
def test_local_versioning(self):
tokenizer = AutoTokenizer.from_pretrained("bert-base-cased")
json_tokenizer = json.loads(tokenizer._tokenizer.to_str())
json_tokenizer["model"]["vocab"]["huggingface"] = len(tokenizer)
with tempfile.TemporaryDirectory() as tmp_dir:
# Hack to save this in the tokenizer_config.json
tokenizer.init_kwargs["fast_tokenizer_files"] = ["tokenizer.4.0.0.json"]
tokenizer.save_pretrained(tmp_dir)
json.dump(json_tokenizer, open(os.path.join(tmp_dir, "tokenizer.4.0.0.json"), "w"))
# This should pick the new tokenizer file as the version of Transformers is > 4.0.0
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
self.assertEqual(len(new_tokenizer), len(tokenizer) + 1)
json_tokenizer = json.loads(new_tokenizer._tokenizer.to_str())
self.assertIn("huggingface", json_tokenizer["model"]["vocab"])
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old tokenizer file as the version of Transformers is < 4.0.0
shutil.move(os.path.join(tmp_dir, "tokenizer.4.0.0.json"), os.path.join(tmp_dir, "tokenizer.42.0.0.json"))
tokenizer.init_kwargs["fast_tokenizer_files"] = ["tokenizer.42.0.0.json"]
tokenizer.save_pretrained(tmp_dir)
new_tokenizer = AutoTokenizer.from_pretrained(tmp_dir)
self.assertEqual(len(new_tokenizer), len(tokenizer))
json_tokenizer = json.loads(new_tokenizer._tokenizer.to_str())
self.assertNotIn("huggingface", json_tokenizer["model"]["vocab"])
def test_repo_versioning(self):
# This repo has two tokenizer files, one for v4.0.0 and above with an added token, one for versions lower.
repo = "hf-internal-testing/test-two-tokenizers"
# This should pick the new tokenizer file as the version of Transformers is > 4.0.0
tokenizer = AutoTokenizer.from_pretrained(repo)
self.assertEqual(len(tokenizer), 28997)
json_tokenizer = json.loads(tokenizer._tokenizer.to_str())
self.assertIn("huggingface", json_tokenizer["model"]["vocab"])
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
old_transformers.tokenization_utils_base.__version__ = "3.0.0"
old_tokenizer = old_transformers.models.auto.AutoTokenizer.from_pretrained(repo)
self.assertEqual(len(old_tokenizer), 28996)
json_tokenizer = json.loads(old_tokenizer._tokenizer.to_str())
self.assertNotIn("huggingface", json_tokenizer["model"]["vocab"])
@require_tokenizers
class ReduceMutableBorrowTests(unittest.TestCase):
def test_async_share_tokenizer(self):
# See https://github.com/huggingface/transformers/pull/12550
# and https://github.com/huggingface/tokenizers/issues/537
tokenizer = PreTrainedTokenizerFast.from_pretrained("robot-test/dummy-tokenizer-wordlevel")
text = "The Matrix is a 1999 science fiction action film."
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [executor.submit(self.fetch, tokenizer, text) for i in range(10)]
return_value = [future.result() for future in futures]
self.assertEqual(return_value, [[1, 10, 0, 8, 0, 18, 0, 0, 0, 2] for i in range(10)])
def fetch(self, tokenizer, text):
return tokenizer.encode(text, truncation="longest_first", padding="longest")
| transformers/tests/tokenization/test_tokenization_fast.py/0 | {
"file_path": "transformers/tests/tokenization/test_tokenization_fast.py",
"repo_id": "transformers",
"token_count": 5163
} | 409 |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import doctest
import logging
import os
import unittest
from pathlib import Path
from typing import List, Union
import transformers
from transformers.testing_utils import require_tf, require_torch, slow
logger = logging.getLogger()
@unittest.skip("Temporarily disable the doc tests.")
@require_torch
@require_tf
@slow
class TestCodeExamples(unittest.TestCase):
def analyze_directory(
self,
directory: Path,
identifier: Union[str, None] = None,
ignore_files: Union[List[str], None] = None,
n_identifier: Union[str, List[str], None] = None,
only_modules: bool = True,
):
"""
Runs through the specific directory, looking for the files identified with `identifier`. Executes
the doctests in those files
Args:
directory (`Path`): Directory containing the files
identifier (`str`): Will parse files containing this
ignore_files (`List[str]`): List of files to skip
n_identifier (`str` or `List[str]`): Will not parse files containing this/these identifiers.
only_modules (`bool`): Whether to only analyze modules
"""
files = [file for file in os.listdir(directory) if os.path.isfile(os.path.join(directory, file))]
if identifier is not None:
files = [file for file in files if identifier in file]
if n_identifier is not None:
if isinstance(n_identifier, List):
for n_ in n_identifier:
files = [file for file in files if n_ not in file]
else:
files = [file for file in files if n_identifier not in file]
ignore_files = ignore_files or []
ignore_files.append("__init__.py")
files = [file for file in files if file not in ignore_files]
for file in files:
# Open all files
print("Testing", file)
if only_modules:
module_identifier = file.split(".")[0]
try:
module_identifier = getattr(transformers, module_identifier)
suite = doctest.DocTestSuite(module_identifier)
result = unittest.TextTestRunner().run(suite)
self.assertIs(len(result.failures), 0)
except AttributeError:
logger.info(f"{module_identifier} is not a module.")
else:
result = doctest.testfile(str(".." / directory / file), optionflags=doctest.ELLIPSIS)
self.assertIs(result.failed, 0)
def test_modeling_examples(self):
transformers_directory = Path("src/transformers")
files = "modeling"
ignore_files = [
"modeling_ctrl.py",
"modeling_tf_ctrl.py",
]
self.analyze_directory(transformers_directory, identifier=files, ignore_files=ignore_files)
def test_tokenization_examples(self):
transformers_directory = Path("src/transformers")
files = "tokenization"
self.analyze_directory(transformers_directory, identifier=files)
def test_configuration_examples(self):
transformers_directory = Path("src/transformers")
files = "configuration"
self.analyze_directory(transformers_directory, identifier=files)
def test_remaining_examples(self):
transformers_directory = Path("src/transformers")
n_identifiers = ["configuration", "modeling", "tokenization"]
self.analyze_directory(transformers_directory, n_identifier=n_identifiers)
def test_doc_sources(self):
doc_source_directory = Path("docs/source")
ignore_files = ["favicon.ico"]
self.analyze_directory(doc_source_directory, ignore_files=ignore_files, only_modules=False)
| transformers/tests/utils/test_doc_samples.py/0 | {
"file_path": "transformers/tests/utils/test_doc_samples.py",
"repo_id": "transformers",
"token_count": 1747
} | 410 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A script to add and/or update the attribute `pipeline_model_mapping` in model test files.
This script will be (mostly) used in the following 2 situations:
- run within a (scheduled) CI job to:
- check if model test files in the library have updated `pipeline_model_mapping`,
- and/or update test files and (possibly) open a GitHub pull request automatically
- being run by a `transformers` member to quickly check and update some particular test file(s)
This script is **NOT** intended to be run (manually) by community contributors.
"""
import argparse
import glob
import inspect
import os
import re
import unittest
from get_test_info import get_test_classes
from tests.test_pipeline_mixin import pipeline_test_mapping
PIPELINE_TEST_MAPPING = {}
for task, _ in pipeline_test_mapping.items():
PIPELINE_TEST_MAPPING[task] = {"pt": None, "tf": None}
# DO **NOT** add item to this set (unless the reason is approved)
TEST_FILE_TO_IGNORE = {
"tests/models/esm/test_modeling_esmfold.py", # The pipeline test mapping is added to `test_modeling_esm.py`
}
def get_framework(test_class):
"""Infer the framework from the test class `test_class`."""
if "ModelTesterMixin" in [x.__name__ for x in test_class.__bases__]:
return "pt"
elif "TFModelTesterMixin" in [x.__name__ for x in test_class.__bases__]:
return "tf"
elif "FlaxModelTesterMixin" in [x.__name__ for x in test_class.__bases__]:
return "flax"
else:
return None
def get_mapping_for_task(task, framework):
"""Get mappings defined in `XXXPipelineTests` for the task `task`."""
# Use the cached results
if PIPELINE_TEST_MAPPING[task].get(framework, None) is not None:
return PIPELINE_TEST_MAPPING[task][framework]
pipeline_test_class = pipeline_test_mapping[task]["test"]
mapping = None
if framework == "pt":
mapping = getattr(pipeline_test_class, "model_mapping", None)
elif framework == "tf":
mapping = getattr(pipeline_test_class, "tf_model_mapping", None)
if mapping is not None:
mapping = dict(mapping.items())
# cache the results
PIPELINE_TEST_MAPPING[task][framework] = mapping
return mapping
def get_model_for_pipeline_test(test_class, task):
"""Get the model architecture(s) related to the test class `test_class` for a pipeline `task`."""
framework = get_framework(test_class)
if framework is None:
return None
mapping = get_mapping_for_task(task, framework)
if mapping is None:
return None
config_classes = list({model_class.config_class for model_class in test_class.all_model_classes})
if len(config_classes) != 1:
raise ValueError("There should be exactly one configuration class from `test_class.all_model_classes`.")
# This could be a list/tuple of model classes, but it's rare.
model_class = mapping.get(config_classes[0], None)
if isinstance(model_class, (tuple, list)):
model_class = sorted(model_class, key=lambda x: x.__name__)
return model_class
def get_pipeline_model_mapping(test_class):
"""Get `pipeline_model_mapping` for `test_class`."""
mapping = [(task, get_model_for_pipeline_test(test_class, task)) for task in pipeline_test_mapping]
mapping = sorted([(task, model) for task, model in mapping if model is not None], key=lambda x: x[0])
return dict(mapping)
def get_pipeline_model_mapping_string(test_class):
"""Get `pipeline_model_mapping` for `test_class` as a string (to be added to the test file).
This will be a 1-line string. After this is added to a test file, `make style` will format it beautifully.
"""
framework = get_framework(test_class)
if framework == "pt":
framework = "torch"
default_value = "{}"
mapping = get_pipeline_model_mapping(test_class)
if len(mapping) == 0:
return ""
texts = []
for task, model_classes in mapping.items():
if isinstance(model_classes, (tuple, list)):
# A list/tuple of model classes
value = "(" + ", ".join([x.__name__ for x in model_classes]) + ")"
else:
# A single model class
value = model_classes.__name__
texts.append(f'"{task}": {value}')
text = "{" + ", ".join(texts) + "}"
text = f"pipeline_model_mapping = {text} if is_{framework}_available() else {default_value}"
return text
def is_valid_test_class(test_class):
"""Restrict to `XXXModelTesterMixin` and should be a subclass of `unittest.TestCase`."""
base_class_names = {"ModelTesterMixin", "TFModelTesterMixin", "FlaxModelTesterMixin"}
if not issubclass(test_class, unittest.TestCase):
return False
return len(base_class_names.intersection([x.__name__ for x in test_class.__bases__])) > 0
def find_test_class(test_file):
"""Find a test class in `test_file` to which we will add `pipeline_model_mapping`."""
test_classes = [x for x in get_test_classes(test_file) if is_valid_test_class(x)]
target_test_class = None
for test_class in test_classes:
# If a test class has defined `pipeline_model_mapping`, let's take it
if getattr(test_class, "pipeline_model_mapping", None) is not None:
target_test_class = test_class
break
# Take the test class with the shortest name (just a heuristic)
if target_test_class is None and len(test_classes) > 0:
target_test_class = sorted(test_classes, key=lambda x: (len(x.__name__), x.__name__))[0]
return target_test_class
def find_block_ending(lines, start_idx, indent_level):
end_idx = start_idx
for idx, line in enumerate(lines[start_idx:]):
indent = len(line) - len(line.lstrip())
if idx == 0 or indent > indent_level or (indent == indent_level and line.strip() == ")"):
end_idx = start_idx + idx
elif idx > 0 and indent <= indent_level:
# Outside the definition block of `pipeline_model_mapping`
break
return end_idx
def add_pipeline_model_mapping(test_class, overwrite=False):
"""Add `pipeline_model_mapping` to `test_class`."""
if getattr(test_class, "pipeline_model_mapping", None) is not None:
if not overwrite:
return "", -1
line_to_add = get_pipeline_model_mapping_string(test_class)
if len(line_to_add) == 0:
return "", -1
line_to_add = line_to_add + "\n"
# The code defined the class `test_class`
class_lines, class_start_line_no = inspect.getsourcelines(test_class)
# `inspect` gives the code for an object, including decorator(s) if any.
# We (only) need the exact line of the class definition.
for idx, line in enumerate(class_lines):
if line.lstrip().startswith("class "):
class_lines = class_lines[idx:]
class_start_line_no += idx
break
class_end_line_no = class_start_line_no + len(class_lines) - 1
# The index in `class_lines` that starts the definition of `all_model_classes`, `all_generative_model_classes` or
# `pipeline_model_mapping`. This assumes they are defined in such order, and we take the start index of the last
# block that appears in a `test_class`.
start_idx = None
# The indent level of the line at `class_lines[start_idx]` (if defined)
indent_level = 0
# To record if `pipeline_model_mapping` is found in `test_class`.
def_line = None
for idx, line in enumerate(class_lines):
if line.strip().startswith("all_model_classes = "):
indent_level = len(line) - len(line.lstrip())
start_idx = idx
elif line.strip().startswith("all_generative_model_classes = "):
indent_level = len(line) - len(line.lstrip())
start_idx = idx
elif line.strip().startswith("pipeline_model_mapping = "):
indent_level = len(line) - len(line.lstrip())
start_idx = idx
def_line = line
break
if start_idx is None:
return "", -1
# Find the ending index (inclusive) of the above found block.
end_idx = find_block_ending(class_lines, start_idx, indent_level)
# Extract `is_xxx_available()` from existing blocks: some models require specific libraries like `timm` and use
# `is_timm_available()` instead of `is_torch_available()`.
# Keep leading and trailing whitespaces
r = re.compile(r"\s(is_\S+?_available\(\))\s")
for line in class_lines[start_idx : end_idx + 1]:
backend_condition = r.search(line)
if backend_condition is not None:
# replace the leading and trailing whitespaces to the space character " ".
target = " " + backend_condition[0][1:-1] + " "
line_to_add = r.sub(target, line_to_add)
break
if def_line is None:
# `pipeline_model_mapping` is not defined. The target index is set to the ending index (inclusive) of
# `all_model_classes` or `all_generative_model_classes`.
target_idx = end_idx
else:
# `pipeline_model_mapping` is defined. The target index is set to be one **BEFORE** its start index.
target_idx = start_idx - 1
# mark the lines of the currently existing `pipeline_model_mapping` to be removed.
for idx in range(start_idx, end_idx + 1):
# These lines are going to be removed before writing to the test file.
class_lines[idx] = None # noqa
# Make sure the test class is a subclass of `PipelineTesterMixin`.
parent_classes = [x.__name__ for x in test_class.__bases__]
if "PipelineTesterMixin" not in parent_classes:
# Put `PipelineTesterMixin` just before `unittest.TestCase`
_parent_classes = [x for x in parent_classes if x != "TestCase"] + ["PipelineTesterMixin"]
if "TestCase" in parent_classes:
# Here we **assume** the original string is always with `unittest.TestCase`.
_parent_classes.append("unittest.TestCase")
parent_classes = ", ".join(_parent_classes)
for idx, line in enumerate(class_lines):
# Find the ending of the declaration of `test_class`
if line.strip().endswith("):"):
# mark the lines of the declaration of `test_class` to be removed
for _idx in range(idx + 1):
class_lines[_idx] = None # noqa
break
# Add the new, one-line, class declaration for `test_class`
class_lines[0] = f"class {test_class.__name__}({parent_classes}):\n"
# Add indentation
line_to_add = " " * indent_level + line_to_add
# Insert `pipeline_model_mapping` to `class_lines`.
# (The line at `target_idx` should be kept by definition!)
class_lines = class_lines[: target_idx + 1] + [line_to_add] + class_lines[target_idx + 1 :]
# Remove the lines that are marked to be removed
class_lines = [x for x in class_lines if x is not None]
# Move from test class to module (in order to write to the test file)
module_lines = inspect.getsourcelines(inspect.getmodule(test_class))[0]
# Be careful with the 1-off between line numbers and array indices
module_lines = module_lines[: class_start_line_no - 1] + class_lines + module_lines[class_end_line_no:]
code = "".join(module_lines)
moddule_file = inspect.getsourcefile(test_class)
with open(moddule_file, "w", encoding="UTF-8", newline="\n") as fp:
fp.write(code)
return line_to_add
def add_pipeline_model_mapping_to_test_file(test_file, overwrite=False):
"""Add `pipeline_model_mapping` to `test_file`."""
test_class = find_test_class(test_file)
if test_class:
add_pipeline_model_mapping(test_class, overwrite=overwrite)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--test_file", type=str, help="A path to the test file, starting with the repository's `tests` directory."
)
parser.add_argument(
"--all",
action="store_true",
help="If to check and modify all test files.",
)
parser.add_argument(
"--overwrite",
action="store_true",
help="If to overwrite a test class if it has already defined `pipeline_model_mapping`.",
)
args = parser.parse_args()
if not args.all and not args.test_file:
raise ValueError("Please specify either `test_file` or pass `--all` to check/modify all test files.")
elif args.all and args.test_file:
raise ValueError("Only one of `--test_file` and `--all` could be specified.")
test_files = []
if args.test_file:
test_files = [args.test_file]
else:
pattern = os.path.join("tests", "models", "**", "test_modeling_*.py")
for test_file in glob.glob(pattern):
# `Flax` is not concerned at this moment
if not test_file.startswith("test_modeling_flax_"):
test_files.append(test_file)
for test_file in test_files:
if test_file in TEST_FILE_TO_IGNORE:
print(f"[SKIPPED] {test_file} is skipped as it is in `TEST_FILE_TO_IGNORE` in the file {__file__}.")
continue
add_pipeline_model_mapping_to_test_file(test_file, overwrite=args.overwrite)
| transformers/utils/add_pipeline_model_mapping_to_test.py/0 | {
"file_path": "transformers/utils/add_pipeline_model_mapping_to_test.py",
"repo_id": "transformers",
"token_count": 5411
} | 411 |