licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
1299
using Strategems, Temporal, Indicators, Dates # define universe and gather data assets = ["CME_CL1", "CME_RB1"] universe = Universe(assets) function datasource(asset::String; save_downloads::Bool=true)::TS savedata_path = joinpath(dirname(pathof(Strategems)), "..", "data", "test", "$asset.csv") if isfile(savedata_path) return Temporal.tsread(savedata_path) else X = quandl("CHRIS/$asset") if save_downloads Temporal.tswrite(X, savedata_path) end return X end end gather!(universe, source=datasource) # define indicators and parameter space arg_names = [:fastlimit, :slowlimit] arg_defaults = [0.5, 0.05] arg_ranges = [0.01:0.01:0.99, 0.01:0.01:0.99] paramset = ParameterSet(arg_names, arg_defaults, arg_ranges) f(x; args...) = Indicators.mama(x; args...) indicator = Indicator(f, paramset) # define signals that will trigger trading decisions siglong = @signal MAMA ↑ FAMA sigshort = @signal MAMA ↓ FAMA sigexit = @signal MAMA == FAMA # define the trading rules longrule = @rule siglong β†’ long 100 shortrule = @rule sigshort β†’ short 100 exitrule = @rule sigexit β†’ liquidate 1.0 rules = (longrule, shortrule, exitrule) # run strategy strat = Strategy(universe, indicator, rules) backtest!(strat) optimize!(strat, samples=10)
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
1251
__precompile__(true) module Strategems using Dates using Temporal using Indicators using Random using ProgressMeter export # universe definitions Universe, gather!, get_overall_index, # parameter sets ParameterSet, count_runs, generate_combinations, generate_dict, # indicators Indicator, calculate, # signals Signal, prep_signal, ↑, ↓, @signal, # rules Rule, @rule, β†’, # portfolios Portfolio,#, update_portfolio!, # order AbstractOrder, MarketOrder, LimitOrder, StopOrder, liquidate, long, buy, short, sell, # strategy results Backtest, # summary statistic calculations cum_pnl, # strategies Strategy, generate_trades, generate_trades!, backtest, backtest!, optimize, optimize!, summarize_results include("model/universe.jl") include("model/paramset.jl") include("model/indicator.jl") include("model/signal.jl") include("model/rule.jl") include("model/portfolio.jl") include("model/order.jl") include("model/backtest.jl") include("model/strategy.jl") include("compute/backtest.jl") include("compute/optimize.jl") end
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
2622
using ProgressMeter function generate_trades(strat::Strategy; verbose::Bool=true)::Dict{String,TS} all_trades = Dict{String,TS}() verbose ? progress = Progress(length(strat.universe.assets), 1, "Generating Trades") : nothing for asset in strat.universe.assets verbose ? next!(progress) : nothing trades = TS(falses(size(strat.universe.data[asset],1), length(strat.rules)), strat.universe.data[asset].index) local indicator_data = calculate(strat.indicator, strat.universe.data[asset]) for (i,rule) in enumerate(strat.rules); trades[:,i] = rule.trigger.fun(indicator_data) end all_trades[asset] = trades end return all_trades end function generate_trades!(strat::Strategy; args...)::Nothing strat.backtest.trades = generate_trades(strat; args...) return nothing end #TODO: generalize this logic to incorporate order types function backtest(strat::Strategy; px_trade::Symbol=:Open, px_close::Symbol=:Settle, verbose::Bool=true)::Dict{String,TS{Float64}} if isempty(strat.backtest.trades) generate_trades!(strat, verbose=verbose) end result = Dict{String,TS}() verbose ? progress = Progress(length(strat.universe.assets), 1, "Running Backtest") : nothing for asset in strat.universe.assets verbose ? next!(progress) : nothing trades = strat.backtest.trades[asset].values N = size(trades, 1) summary_ts = strat.universe.data[asset] trade_price = summary_ts[px_trade].values close_price = summary_ts[px_close].values pos = zeros(Float64, N) pnl = zeros(Float64, N) do_trade = false for t in 2:N for (i,rule) in enumerate(strat.rules) if trades[t-1,i] != 0 do_trade = true order_side = rule.action in (long,buy) ? 1 : rule.action in (short,sell) ? -1 : 0 (order_qty,) = rule.args pos[t] = order_qty * order_side pnl[t] = pos[t] * (close_price[t] - trade_price[t]) end end if !do_trade pos[t] = pos[t-1] pnl[t] = pos[t] * (close_price[t]-close_price[t-1]) end do_trade = false end summary_ts = [summary_ts TS([pos pnl cumsum(pnl)], summary_ts.index, [:Pos,:PNL,:CumPNL])] result[asset] = summary_ts end return result end function backtest!(strat::Strategy; args...)::Nothing strat.backtest.backtest = backtest(strat; args...) return nothing end
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
1498
using Random, ProgressMeter import Base: copy copy(strat::Strategy) = Strategy(strat.universe, strat.indicator, strat.rules) #TODO: parallel processing function optimize(strat::Strategy; samples::Int=0, seed::Int=0, verbose::Bool=true, summary_fun::Function=cum_pnl, args...)::Matrix original = copy(strat) if samples > 0 seed >= 0 ? Random.seed!(seed) : nothing sample_index = rand(collect(1:samples), samples) else samples = count_runs(strat.indicator.paramset) sample_index = collect(1:samples) end combos = generate_combinations(strat.indicator.paramset)[sample_index,:] optimization = zeros(samples, 1) verbose ? progress = Progress(length(sample_index), 1, "Optimizing Backtest") : nothing for (i, combo) in enumerate(sample_index) verbose ? next!(progress) : nothing strat.indicator.paramset.arg_defaults = combos[i,:] generate_trades!(strat, verbose=false) backtest!(strat, verbose=false; args...) optimization[i] = summary_fun(strat.backtest) end # prevent out-of-scope alteration of strat object strat = original return [combos optimization] end function optimize!(strat::Strategy; samples::Int=0, seed::Int=0, verbose::Bool=true, summary_fun::Function=cum_pnl, args...)::Nothing optimization = optimize(strat, samples=samples, seed=seed, verbose=verbose, summary_fun=summary_fun; args...) strat.backtest.optimization = optimization return nothing end
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
696
#= methods for handling backtest results of strategy objects =# mutable struct Backtest trades::Dict{String,TS} backtest::Dict{String,TS{Float64}} optimization::Matrix{Float64} function Backtest(trades::Dict{String,TS}=Dict{String,TS}(), backtest::Dict{String,TS{Float64}}=Dict{String,TS{Float64}}(), optimization::Matrix{Float64}=Matrix{Float64}(undef,0,0)) return new(trades, backtest, optimization) end end function cum_pnl(results::Backtest)::Float64 result = 0.0 @inbounds for val in values(results.backtest) pnl::Vector = val[:PNL].values[:] result += sum(pnl) end return result end
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
990
import Base: show mutable struct Indicator fun::Function paramset::ParameterSet data::TS function Indicator(fun::Function, paramset::ParameterSet) data = TS() return new(fun, paramset, data) end end function calculate(indicator::Indicator, input::TS)::TS return indicator.fun(input; generate_dict(indicator.paramset)...) end # function calculate!(indicator::Indicator, input::TS)::Nothing # indicator.data = calculate(indicator, input) # return nothing # end function generate_dict(universe::Universe, indicator::Indicator)::Dict{String,Indicator} indicators = Dict{String,Indicator}() for asset in universe.assets local ind = Indicator(indicator.fun, indicator.paramset) calculate!(ind, universe.data[asset]) indicators[asset] = ind end return indicators end # TODO: add information about the calculation function function show(io::IO, indicator::Indicator) show(io, indicator.paramset) end
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
868
#= types and methods to facilitate the interaction between orders, rules, and portfolios =# abstract type AbstractOrder end struct MarketOrder <: AbstractOrder asset::String quantity::Number end struct LimitOrder <: AbstractOrder asset::String quantity::Number limit::Number end struct StopOrder <: AbstractOrder asset::String quantity::Number stop::Number end #TODO: complete this logic, enable interaction with strategy/portfolio objects #TODO: diffierentiate between buying vs. going long and the like (the latter should reverse position if short) #TODO: add logic whereby the order logic is altered by the type `T` of qty # (if T<:Int, order that many *shares*, else if T<:Float64, interpret qty as a fraction of the portfolio at time t) liquidate(qty) = qty long(qty) = qty buy(qty) = qty short(qty) = qty sell(qty) = qty
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
1827
import Base.show mutable struct ParameterSet arg_names::Vector{Symbol} arg_defaults::Vector arg_ranges::Vector arg_types::Vector{<:Type} n_args::Int #TODO: parameter constraints (e.g. ensure one parameter always greater than another) #TODO: refactor out the arg_ prefix (its redundant if they all start with it) function ParameterSet(arg_names::Vector{Symbol}, arg_defaults::Vector, arg_ranges::Vector=[x:x for x in arg_defaults]) @assert length(arg_names) == length(arg_defaults) == length(arg_ranges) @assert eltype.(arg_defaults) == eltype.(arg_ranges) arg_types::Vector{<:Type} = eltype.(arg_defaults) return new(arg_names, arg_defaults, arg_ranges, arg_types, length(arg_names)) end end function count_runs(ps::ParameterSet)::Int n_runs = 1 @inbounds for i in 1:ps.n_args n_runs *= length(ps.arg_ranges[i]) end return n_runs end function generate_dict(ps::ParameterSet; arg_values::Vector=ps.arg_defaults)::Dict{Symbol,Any} out_dict = Dict{Symbol,Any}() for j in 1:ps.n_args out_dict[ps.arg_names[j]] = arg_values[j] end return out_dict end function show(io::IO, ps::ParameterSet)::Nothing println(io, "# Parameters:") @inbounds for i in 1:ps.n_args println(io, TAB, "($i) $(ps.arg_names[i]) β†’ $(ps.arg_defaults[i]) ∈ {$(string(ps.arg_ranges[i]))} :: $(ps.arg_types[i])") end end function generate_combinations(ps::ParameterSet) A = collect(Iterators.product(ntuple(i->ps.arg_ranges[i], length(ps.arg_ranges))...)) B = A[:] T = Tuple(Array{arg_type}(undef, size(B,1)) for arg_type in ps.arg_types) for j in 1:length(ps.arg_ranges), i in 1:size(B,1) T[j][i] = B[i][j] end return hcat(T...) end
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
750
#= type and methods to track the evolution of a strategy's securities portfolio composition =# mutable struct Portfolio quantity::Matrix{Float64} weight::Matrix{Float64} entry_price::Matrix{Float64} close_price::Matrix{Float64} pnl::Matrix{Float64} idx::Vector{<:TimeType} function Portfolio(universe::Universe) idx = get_overall_index(universe) quantity = weight = entry_price = close_price = pnl = zeros(Float64, length(idx), length(universe.assets)) return new(quantity, weight, entry_price, close_price, pnl, idx) end end #function update_portfolio!(portfolio::Portfolio, order::Order, universe::Universe) # i = findfirst(portfolio.idx .> order.time) # quantity[i] #end
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
976
#= Type and methods facilitating simple but effective syntax interface for defining trading rules =# import Base: show #TODO: figure out how to make this a function that interfaces with the portfolio & account objects struct Rule{S,F,T} trigger::S action::F args::Tuple{Vararg{T}} function Rule(trigger::S, action::F, args::Tuple{Vararg{T}}) where {S<:Signal, F<:Function, T} return new{S,F,T}(trigger, action, args) end end macro rule(logic::Expr, args...) trigger = :($(logic.args[2])) #action = :($(logic.args[3])$((args...))) action = :($(logic.args[3])) args = :($(args)) return esc(:(Rule($trigger, $action, $args))) end β†’(a,b) = a ? b() : nothing function show(io::IO, rule::Rule) action_string = titlecase(split(string(rule.action), '.')[end]) arg_string = titlecase(string(rule.args...)) trigger_string = string(rule.trigger.switch) print(io, "$action_string $arg_string when $trigger_string") end
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
1375
#= type and methods for handling signals generating by consuming data exhaust from indicators =# struct Signal switch::Expr fun::Function function Signal(switch::Expr) @assert typeof(eval(switch.args[1])) <: Function a::Symbol = switch.args[2] b::Symbol = switch.args[3] #pair = eval(switch.args[1])::Function => Tuple{Symbol,Symbol}(switch.args[2]::Symbol, switch.args[3]::Symbol) #fun(x::TS)::BitVector = pair.first(x[pair.second[1]].values[:]::Vector, x[pair.second[2]].values[:]::Vector) function fun(x::TS)::BitVector #fld1::Symbol = switch.args[2] #fld2::Symbol = switch.args[3] vec1::Vector = x[a].values[:] vec2::Vector = x[b].values[:] comp::Function = eval(switch.args[1]) if comp == == comp(x,y) = broadcast(==, x, y) end out::BitVector = comp(vec1, vec2) return out end return new(switch, fun) end end function prep_signal(signal::Signal, indicator_data::TS)::Expr local switch = copy(signal.switch) for i in 2:length(switch.args) switch.args[i] = indicator_data[switch.args[i]] end return switch end macro signal(logic::Expr) return Signal(logic) end ↑(x, y) = Indicators.crossover(x, y) ↓(x, y) = Indicators.crossunder(x, y)
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
2198
#= Type definition and methods containing the overarching backtesting object fueling the engine =# import Base: show const TABWIDTH = 4 const TAB = ' ' ^ TABWIDTH mutable struct Strategy universe::Universe indicator::Indicator rules::Tuple{Vararg{Rule}} portfolio::Portfolio backtest::Backtest function Strategy(universe::Universe, indicator::Indicator, rules::Tuple{Vararg{Rule}}, portfolio::Portfolio=Portfolio(universe)) return new(universe, indicator, rules, portfolio, Backtest()) end end function show(io::IO, strat::Strategy) println(io, strat.indicator.paramset) println(io, "# Rules:") for rule in strat.rules println(io, TAB, rule) end println() show(io, strat.universe) end function summarize_results(strat::Strategy) holdings = TS() values = TS() profits = TS() for asset in strat.universe.assets asset_result = strat.backtest.backtest[asset] holding = asset_result[:Pos] holdings = [holdings holding] values = [values cl(asset_result) * holding] profits = [profits asset_result[:PNL]] end # data cleaning - field assignment and missing value replacement holdings.fields = Symbol.(strat.universe.assets) profits.fields = Symbol.(strat.universe.assets) values.fields = Symbol.(strat.universe.assets) holdings.values[isnan.(holdings.values)] .= 0.0 values.values[isnan.(values.values)] .= 0.0 profits.values[isnan.(profits.values)] .= 0.0 # portfolio weights, net exposure, and leverage calculations weights = values / apply(values, 1, fun=sum) weights.fields = Symbol.(strat.universe.assets) exposure = apply(weights, 1, fun=sum) leverage = apply(weights, 1, fun=x->(sum(abs.(x)))) weights = [weights exposure leverage] weights.fields[end-1:end] = [:Exposure, :Leverage] # compute other temporal totals and return profits = [profits apply(profits, 1, fun=sum)] profits.fields[end] = :Total values = [values apply(values, 1, fun=sum)] values.fields[end] = :Total return weights, holdings, values, profits end
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
2412
#= Type and methods to simplify data sourcing and management of the universe of tradable assets =# using ProgressMeter import Base: show const SEPARATORS = ['/', '_', '.'] # function guess_tickers(assets::Vector{String})::Vector{Symbol} # tickers = Symbol.([Temporal.namefix(split(asset, SEPARATORS)[end]) for asset in assets]) # @assert tickers == unique(tickers) "Non-unique ticker symbols found in universe" # return tickers # end mutable struct Universe assets::Vector{String} # tickers::Vector{Symbol} data::Dict{String,TS} from::TimeType thru::TimeType function Universe(assets::Vector{String}, from::TimeType=Dates.Date(0), thru::TimeType=Dates.today()) @assert assets == unique(assets) # tickers = guess_tickers(assets) data = Dict{String,TS}() @inbounds for asset in assets data[asset] = TS() end return new(assets, data, from, thru) end end #TODO: ensure type compatibility across variables (specifically with regard to TimeTypes) function gather!(universe::Universe; source::Function=Temporal.quandl, verbose::Bool=true)::Nothing t0 = Vector{Dates.Date}() tN = Vector{Dates.Date}() verbose ? progress = Progress(length(universe.assets), 1, "Gathering Universe Data") : nothing @inbounds for asset in universe.assets verbose ? next!(progress) : nothing indata = source(asset) push!(t0, indata.index[1]) push!(tN, indata.index[end]) universe.data[asset] = indata end universe.from = max(minimum(t0), universe.from) universe.thru = min(maximum(tN), universe.thru) return nothing end #FIXME: make robust to other time types function get_overall_index(universe::Universe)::Vector{Date} idx = Vector{Date}() for asset in universe.assets idx = union(idx, universe.data[asset].index) end return idx end function show(io::IO, universe::Universe) println(io, "# Universe:") for (i, asset) in enumerate(universe.assets ) println(io, TAB, "Asset $i:", TAB, asset) data = universe.data[asset] if isempty(data) println(io, TAB, TAB, "(No Data Gathered)") else println(io, TAB, TAB, "Range:", TAB, data.index[1], " to ", data.index[end]) println(io, TAB, TAB, "Fields:", TAB, join(String.(data.fields), " ")) end end end
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
code
2499
using Strategems, Temporal, Indicators using Dates using Test # define universe and gather data assets = ["Corn"] @testset "Universe" begin @testset "Construct" begin global universe = Universe(assets) @test universe.assets == assets end @testset "Gather" begin gather!(universe, source=(asset)->Temporal.tsread(joinpath(dirname(pathof(Temporal)), "..", "data/$asset.csv"))) @test length(setdiff(assets, collect(keys(universe.data)))) == 0 end end # define indicators and parameter space @testset "Parameter Set" begin global arg_names = [:fastlimit, :slowlimit] global arg_defaults = [0.5, 0.05] global arg_ranges = [0.01:0.01:0.99, 0.01:0.01:0.99] global paramset = ParameterSet(arg_names, arg_defaults, arg_ranges) @test paramset.arg_names == arg_names end @testset "Indicator" begin global f(x; args...) = Indicators.mama(x; args...) global indicator = Indicator(f, paramset) @test indicator.fun == f @test indicator.paramset == paramset end # define signals that will trigger trading decisions @testset "Signal" begin @testset "Construct" begin global siglong = @signal MAMA ↑ FAMA global sigshort = @signal MAMA ↓ FAMA global sigexit = @signal MAMA == FAMA @test siglong.fun.a == sigshort.fun.a == sigexit.fun.a == :MAMA @test siglong.fun.b == sigshort.fun.b == sigexit.fun.b == :FAMA end end # define the trading rules @testset "Rule" begin @testset "Construct" begin global longrule = @rule siglong β†’ long 100 global shortrule = @rule sigshort β†’ short 100 global exitrule = @rule sigexit β†’ liquidate 1.0 global rules = (longrule, shortrule, exitrule) @test longrule.action == long @test shortrule.action == short @test exitrule.action == liquidate end end # run strategy @testset "Strategy" begin @testset "Construct" begin global strat = Strategy(universe, indicator, rules) end @testset "Backtest" begin backtest!(strat) end @testset "Optimize" begin optimize!(strat, samples=10) @test size(strat.backtest.optimization,1) == 10 @test size(strat.backtest.optimization,2) == length(arg_names)+1 end end # test example(s) @testset "Examples" begin include("$(joinpath(dirname(pathof(Strategems)), "..", "examples", "mama.jl"))") @test assets == ["CME_CL1", "CME_RB1"] end
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.3.0
5c09f5af273dcee88449ab5a08c5aaa2102cd251
docs
6897
[![Build Status](https://travis-ci.org/dysonance/Strategems.jl.svg?branch=master)](https://travis-ci.org/dysonance/Strategems.jl) [![Coverage Status](https://coveralls.io/repos/github/dysonance/Strategems.jl/badge.svg?branch=master)](https://coveralls.io/github/dysonance/Strategems.jl?branch=master) [![codecov.io](http://codecov.io/github/dysonance/Strategems.jl/coverage.svg?branch=master)](http://codecov.io/github/dysonance/Strategems.jl?branch=master) # Strategems **Strategems** is a [Julia](https://julialang.org/) package aimed at simplifying and streamlining the process of developing, testing, and optimizing algorithmic/systematic trading strategies. This package is inspired in large part by the quantstrat<sup>[1](http://past.rinfinance.com/agenda/2013/workshop/Humme+Peterson.pdf)</sup><sup>,</sup><sup>[2](https://github.com/braverock/quantstrat)</sup> package in [R](https://www.r-project.org/), adopting a similar general structure to the building blocks that make up a *strategy*. Given the highly iterative nature of event-driven trading strategy development, Julia's high-performance design (particularly in the context of loops) and straightforward syntax would seem to make it a natural fit as a language for systematic strategy research and development. While this package remains early in development, with time the hope is to be able to rapidly implement a trading idea, construct a historical backtest, analyze its results, optimize over a given parameter set, and visualize all of this with great detail. ## Dependencies This package makes heavy use of the [**Temporal**](https://github.com/dysonance/Temporal.jl) package's `TS` time series type to facilitate the underlying computations involved in cleaning & preprocessing the data used when testing a `Strategy`. Additionally, the [**Indicators**](https://github.com/dysonance/Indicators.jl/) package offers many technical analysis functions that have been written/designed with the goal of a highly generalized systematic trading strategy research engine in mind, and should thus should simplify the process of working with this data quite a bit. ## Install The Strategems package can be installed using the standard Julia package manager functions. ```julia # Option A: Pkg.add("Strategems") # Option B: Pkg.clone("https://github.com/dysonance/Strategems.jl") ``` # Anatomy of a Strategy Below are the basic building blocks making up the general anatomy of a *Strategy* with respect to the `Strategems.jl` package design and the type definitions used to facilitate the research workflow. - `Universe`: encapsulation of the assets/securities the strategy is to be allowed to trade - `Indicator`: calculation done on each asset in the universe whose results we think have predictive potential for future price movement - `ParameterSet`: inputs/arguments to the indicator calculations - `Signal`: boolean flag sending messages to the trading logic/rules to be interpreted and acted upon - `Rule`: applications of trading logic derived from interpretations of prior calculations & signals at each time step - `Strategy`: overarching object encapsulating and directing all of the above logic and data to power the backtesting engine # Example Usage Below is a quick example demonstrating a simple use-case that one might use to get acquainted with how the package works. Note that the custom infix operators denoted by the uparrow and downarrow below are defined in this package as another way of expressing that one variable crosses over another. The intention of this infix operator definition is to hopefully make the definition of a strategy more syntactically expressive and intuitive. The key indicator used in this strategy is John Ehlers's MESA Adaptive Moving Average (or *MAMA* for short). This functionality is implemented in the `Indicators.jl` package described above, and outputs a `Matrix` (or `TS` object if one is passed as an input) of two columns, the first being the *MAMA* itself and the second being the *FAMA*, or following adaptive moving average. This strategy simply goes long when the *MAMA* crosses over the *FAMA*, and goes short when the *FAMA* crosses over the *MAMA*. Below is an implementation that shows how to set default arguments to the `Indicators.mama` function and run a simple backtest using those parameters, and also define specified ranges over which we might like to see how the strategy behaves under different parameter sets. ```julia using Strategems, Indicators, Temporal, Dates # define universe and gather data assets = ["CHRIS/CME_CL1", "CHRIS/CME_RB1"] universe = Universe(assets) function datasource(asset::String; save_downloads::Bool=true)::TS savedata_path = joinpath(dirname(pathof(Strategems)), "..", "data", "$asset.csv") if isfile(savedata_path) return Temporal.tsread(savedata_path) else X = quandl(asset) if save_downloads if !isdir(dirname(savedata_path)) mkdir(dirname(savedata_path)) end Temporal.tswrite(X, savedata_path) end return X end end gather!(universe, source=datasource) # define indicators and parameter space arg_names = [:fastlimit, :slowlimit] arg_defaults = [0.5, 0.05] arg_ranges = [0.01:0.01:0.99, 0.01:0.01:0.99] paramset = ParameterSet(arg_names, arg_defaults, arg_ranges) f(x; args...) = Indicators.mama(x; args...) indicator = Indicator(f, paramset) # define signals that will trigger trading decisions # note the uparrow infix operator is defined to simplify one variable crossing over another # (similarly for the downarrow infix operator for crossing under) siglong = @signal MAMA ↑ FAMA sigshort = @signal MAMA ↓ FAMA sigexit = @signal MAMA == FAMA # define the trading rules longrule = @rule siglong β†’ long 100 shortrule = @rule sigshort β†’ short 100 exitrule = @rule sigexit β†’ liquidate 1.0 rules = (longrule, shortrule, exitrule) # run strategy strat = Strategy(universe, indicator, rules) backtest!(strat) optimize!(strat, samples=0) # randomly sample the parameter space (0 -> use all combinations) # cumulative pnl for each combination of the parameter space strat.backtest.optimization # visualizing results with the Plots.jl package using Plots gr() (x, y, z) = (strat.backtest.optimization[:,i] for i in 1:3) surface(x, y, z) ``` ![alt text](https://raw.githubusercontent.com/dysonance/Strategems.jl/master/examples/mama_opt.png "Example Strategems Optimization") # Roadmap / Wish List * Get a sufficiently full-featured type system established to facilitate easy construction of simple strategies * Allow more intelligent logic for trading rules - Adjust order sizing based on portfolio/account at time *t* - Portfolio optimization logic - Risk limits * Stop loss rules * Define a more diverse set of order types - Limit orders * Stop orders
Strategems
https://github.com/dysonance/Strategems.jl.git
[ "MIT" ]
0.1.0
06a6480e0547122eccc20646a32cece3dbee08e2
code
2556
module PercolationModel using Judycon import Judycon: connect! struct Percolation grid :: Matrix{Bool} li :: LinearIndices dim :: Int wuf1 :: QuickUnion wuf2 :: QuickUnion topnode :: Int bottomnode :: Int end function Percolation(dim) grid = zeros(Bool, dim, dim) li = LinearIndices(grid) wuf1 = QuickUnion(dim^2+2) wuf2 = QuickUnion(dim^2+1) topnode = dim^2 + 1 bottomnode = topnode + 1 return Percolation(grid, li, dim, wuf1, wuf2, topnode, bottomnode) end function connect!(p::Percolation, i, j) connect!(p.wuf1, i, j) connect!(p.wuf2, i, j) end function isopen(p::Percolation, i, j) return p.grid[i,j] end function number_of_open(p::Percolation) return sum(p.grid) end function isfull(p::Percolation, i, j) !isopen(p, i, j) && return false return isconnected(p.wuf2, p.topnode, p.li[i,j]) end function percolates(p::Percolation) return isconnected(p.wuf1, p.topnode, p.bottomnode) end function open!(p::Percolation, i, j) isopen(p, i, j) && return p.grid[i, j] = true i == 1 && connect!(p, p.topnode, p.li[i, j]) i == p.dim && connect!(p.wuf1, p.bottomnode, p.li[i, j]) i > 1 && isopen(p, i-1, j) && connect!(p, p.li[i,j], p.li[i-1, j]) i < p.dim-1 && isopen(p, i+1, j) && connect!(p, p.li[i,j], p.li[i+1, j]) j > 1 && isopen(p, i, j-1) && connect!(p, p.li[i,j], p.li[i, j-1]) j < p.dim-1 && isopen(p, i, j+1) && connect!(p, p.li[i,j], p.li[i, j+1]) end using Statistics struct Result{T} samples :: Vector{T} mean :: Float64 stddev :: Float64 confidence_lo :: Float64 confidence_hi :: Float64 end const CONFIDENCE_95 = 1.96 function Result(samples) n = length(samples) m = mean(samples) s = std(samples) cl = m - CONFIDENCE_95 * s / sqrt(n) ch = m + CONFIDENCE_95 * s / sqrt(n) return Result(samples, m, s, cl, ch) end using Printf function Base.show(io::IO, r::Result) @printf("% 25s = %d\n", "samples", length(r.samples)) @printf("% 25s = %0.3f\n", "mean", r.mean) @printf("% 25s = %0.3f\n", "stddev", r.stddev) @printf("% 25s = [%0.3f, %0.3f]\n", "95% confidence interval", r.confidence_lo, r.confidence_hi) end function run_one(n) p = Percolation(n) while !percolates(p) open!(p, rand(1:n), rand(1:n)) end return p end function run(n, trials) thresholds = zeros(trials) for i=1:trials p = run_one(n) thresholds[i] = number_of_open(p) / n^2 end return Result(thresholds) end end
Judycon
https://github.com/ahojukka5/Judycon.jl.git
[ "MIT" ]
0.1.0
06a6480e0547122eccc20646a32cece3dbee08e2
code
1719
module Judycon """ QuickFind """ struct QuickFind id :: Vector{Int} end function QuickFind(n) id = collect(1:n) return QuickFind(id) end function find(qf::QuickFind, p::Int) id = qf.id return id[p] end function isconnected(qf::QuickFind, p::Int, q::Int) i = find(qf, p) j = find(qf, q) return isequal(i, j) end function connect!(qf::QuickFind, p::Int, q::Int) id = qf.id pid = id[p] qid = id[q] n = length(id) for i=1:n if isequal(getindex(id, i), pid) setindex!(id, qid, i) end end return end """ QuickUnion """ struct QuickUnion id :: Vector{Int} sz :: Vector{Int} weighted :: Bool compress :: Bool end function QuickUnion(n::Int, weighted=true, compress=true) id = collect(1:n) sz = zeros(Int, n) return QuickUnion(id, sz, weighted, compress) end function find(qu::QuickUnion, p::Int) id = qu.id while p != id[p] if qu.compress id[p] = id[id[p]] end p = id[p] end return p end function isconnected(qu::QuickUnion, p::Int, q::Int) i = find(qu, p) j = find(qu, q) return isequal(i, j) end """ connect(G, p, q) Connect p and q in G. If weighting is used, connect such a way that the depth of the tree is minimized. """ function connect!(qu::QuickUnion, p::Int, q::Int) id = qu.id i = find(qu, p) j = find(qu, q) if qu.weighted sz = qu.sz if (sz[i] < sz[j]) id[i] = j sz[j] += sz[i] else id[j] = i sz[i] += sz[j] end else id[i] = j end end export QuickFind, QuickUnion, connect!, isconnected, find end
Judycon
https://github.com/ahojukka5/Judycon.jl.git
[ "MIT" ]
0.1.0
06a6480e0547122eccc20646a32cece3dbee08e2
code
1298
using Judycon, Test # # 1 2---3 4---5 # | | | | | # 6---7 8 9 10 # G1 = QuickFind(10); G2 = QuickUnion(10, false, false); G3 = QuickUnion(10, true, false); G4 = QuickUnion(10, false, true); G5 = QuickUnion(10, true, true); function test(G) connect!(G, 1, 6) connect!(G, 6, 7) connect!(G, 7, 2) connect!(G, 2, 3) connect!(G, 3, 8) connect!(G, 9, 4) connect!(G, 4, 5) connect!(G, 5, 10) # `pts1` should form one set of connected components and `pts2` another, respectively. pts1 = [1, 2, 3, 6, 7, 8] pts2 = [4, 5, 9, 10] for p in pts1 for q in pts1 @test isconnected(G, p, q) @test isconnected(G, q, p) end for q in pts2 @test !isconnected(G, p, q) @test !isconnected(G, q, p) end end end @testset "Test Judycon.jl" begin @testset "Test QuickFind" begin test(G1) end @testset "Test QuickUnion without weighting and path compression" begin test(G2) end @testset "Test QuickUnion with weighting and without path compression" begin test(G3) end @testset "Test QuickUnion without weighting and with path compression" begin test(G4) end @testset "Test QuickUnion with weighting and path compression" begin test(G5) end end
Judycon
https://github.com/ahojukka5/Judycon.jl.git
[ "MIT" ]
0.1.0
06a6480e0547122eccc20646a32cece3dbee08e2
docs
5969
# Judycon.jl [![][travis-img]][travis-url] [![][coveralls-img]][coveralls-url] Package author: Jukka Aho (@ahojukka5) Judycon.jl implements dynamic connectivity algorithms for Julia programming language. In computing and graph theory, a [dynamic connectivity structure][1] is a data structure that dynamically maintains information about the connected components of a graph. Dynamic connectivity has a lot of applications. For example, dynamic connetivity [can be used][2] to determine functional connectivity change points in fMRI data. In below, percolation model is solved using the functions provided this package. For more information about the model, scroll down to the bottom of this readme file. ![](demos/percolation_320x320.gif) ## Implemented algorithms: - QuickFind - QuickUnion Both of the algorithms have same API, but the internal data structure is different. Typical use case is: ```julia using Judycon: QuickUnion, connect!, isconnected wuf = QuickUnion(10) connect!(wuf, 1, 2) connect!(wuf, 2, 3) connect!(wuf, 3, 4) isconnected(wuf, 1, 4) # output true ``` QuickFind is a simple data structure making it possible to very fast query, does points p and q belong to the same connected component, but connecting the points is slow, up to ~ N^2 in the worst case. QuickUnion makes it fast to connect points. Finding points is not that fast than with QuickFind, but with some common modifications, i.e. weighting and path compression, it gives good a performance. Weighted quick union with path compression makes it possible to solve problems that could not otherwise be addressed. In case of doubt which suits for your need, use that. The performance of the algorithms (M union-find operations on a set of N object) is given below. | algorithm | worst-case time | | ------------------------------ | --------------- | | quick-find | M N | | quick-union | M N | | weighted QU | M + N log N | | QU + path compression | M + N log N | | weighted QU + path compression | N + M lg N | ## Dynamic connectivity application: percolation Source: <https://en.wikipedia.org/wiki/Percolation> In physics, chemistry and materials science, percolation (from Latin percōlāre, "to filter" or "trickle through") refers to the movement and filtering of fluids through porous materials. It is described by Darcy's law. Broader applications have since been developed that cover connectivity of many systems modeled as lattices or graphs, analogous to connectivity of lattice components in the filtration problem that modulates capacity for percolation. During the last decades, percolation theory, the mathematical study of percolation, has brought new understanding and techniques to a broad range of topics in physics, materials science, complex networks, epidemiology, and other fields. For example, in geology, percolation refers to filtration of water through soil and permeable rocks. The water flows to recharge the groundwater in the water table and aquifers. In places where infiltration basins or septic drain fields are planned to dispose of substantial amounts of water, a percolation test is needed beforehand to determine whether the intended structure is likely to succeed or fail. Percolation typically exhibits universality. Statistical physics concepts such as scaling theory, renormalization, phase transition, critical phenomena and fractals are used to characterize percolation properties. Percolation is the downward movement of water through pores and other spaces in the soil due to gravity. Combinatorics is commonly employed to study percolation thresholds. Due to the complexity involved in obtaining exact results from analytical models of percolation, computer simulations are typically used. The current fastest algorithm for percolation was published in 2000 by Mark Newman and Robert Ziff. ### Use cases of percolation model - Coffee percolation, where the solvent is water, the permeable substance is the coffee grounds, and the soluble constituents are the chemical compounds that give coffee its color, taste, and aroma. - Movement of weathered material down on a slope under the earth's surface. - Cracking of trees with the presence of two conditions, sunlight and under the influence of pressure. - Collapse and robustness of biological virus shells to random subunit removal (experimentally verified fragmentation and disassembly of viruses). - Robustness of networks to random and targeted attacks. - Transport in porous media. - Epidemic spreading. - Surface roughening. - Dental percolation, increase rate of decay under crowns because of a conducive environment for strep mutants and lactobacillus - Potential sites for septic systems are tested by the "perk test". Example/theory: A hole (usually 6–10 inches in diameter) is dug in the ground surface (usually 12–24" deep). Water is filled in to the hole, and the time is measured for a drop of one inch in the water surface. If the water surface quickly drops, as usually seen in poorly-graded sands, then it is a potentially good place for a septic "leach field". If the hydraulic conductivity of the site is low (usually in clayey and loamy soils), then the site is undesirable. - Traffic percolation. From `demos`, you find a percolation model implemented using Judycon.jl The development of system from initial state to percolation is animated in the top of this file. [1]: https://en.wikipedia.org/wiki/Dynamic_connectivity [2]: https://www.frontiersin.org/articles/10.3389/fnins.2015.00285/full [travis-img]: https://travis-ci.org/ahojukka5/Judycon.jl.svg?branch=master [travis-url]: https://travis-ci.org/ahojukka5/Judycon.jl [coveralls-img]: https://coveralls.io/repos/github/ahojukka5/Judycon.jl/badge.svg?branch=master [coveralls-url]: https://coveralls.io/github/ahojukka5/Judycon.jl?branch=master
Judycon
https://github.com/ahojukka5/Judycon.jl.git
[ "MIT" ]
0.1.0
a537ef077e3b83cefbf0cfe6e8d73523e8c17cb7
code
255
module LeafletPluto include("leaflet.jl") export TileLayer, osm_tile_layer, osm_humanitarian_tile_layer, osm_tile_layers, stadia_tile_layers, LatLng, Path, MapOption, staticMapOption, to_dict, Polyline, Marker, Circle, Polygon, Map, build, leaflet end
LeafletPluto
https://github.com/florianfmmartin/LeafletPluto.jl.git
[ "MIT" ]
0.1.0
a537ef077e3b83cefbf0cfe6e8d73523e8c17cb7
code
15509
### A Pluto.jl notebook ### # v0.19.46 using Markdown using InteractiveUtils # ╔═║ 7c52b98c-3617-4ad4-bf12-930468793f89 using HypertextLiteral # ╔═║ baef2610-79dc-11ef-12f2-ad52aa82fd14 md""" # LeafletPluto.jl ### Displaying Leaflet maps in Pluto """ # ╔═║ e51f2cf3-7e90-4489-a5eb-59aefbdfc3db md""" Highly inspired by [PlutoMapPicker.jl](https://github.com/lukavdplas/PlutoMapPicker.jl/blob/main/src/map-picker.jl) Used [this LeafletJS page](https://leafletjs.com/reference.html) as a reference """ # ╔═║ 8db92502-e6cf-493b-9ade-a9f7bcf4ba70 md""" ## Tile layers !!! warning "Thanks to PlutoMapPicker.jl" This content was copied over from [PlutoMapPicker.jl](https://github.com/lukavdplas/PlutoMapPicker.jl/blob/main/src/map-picker.jl) """ # ╔═║ 2ed6631f-d845-48fb-be56-e4cffab14295 begin """ A tile layer that can be used in a Leaflet map. The configuration includes: - `url`: a url template to request tiles - `options`: a `Dict` with extra configurations, such as a minimum and maximum zoom level of the tiles. This is interpolated to a Javascript object using HypertextLiteral. The configuration is used to create a TileLayer in leaflet; see [leaflet's TileLayer documentation](https://leafletjs.com/reference.html#tilelayer) to read more about URL templates and the available options. """ struct TileLayer url::String options::Dict{String,Any} end attribution_stadia = "&copy; <a href='https://stadiamaps.com/'>Stadia Maps</a>" attribution_stamen = "&copy; <a href='https://stamen.com/'>Stamen Design</a>" attribution_openmaptiles = "&copy; <a href='https://openmaptiles.org/'>OpenMapTiles</a>" attribution_osm = "&copy; <a href='https://www.openstreetmap.org/copyright'>OpenStreetMap</a>" """ TileLayer for open street map. Please read OSM's [tile usage policy](https://operations.osmfoundation.org/policies/tiles/) to decide if your usage complies with it. """ osm_tile_layer = TileLayer( "https://tile.openstreetmap.org/{z}/{x}/{y}.png", Dict( "maxZoom" => 19, "attribution" => attribution_osm ) ) osm_humanitarian_tile_layer = TileLayer( "https://{s}.tile.openstreetmap.fr/hot/{z}/{x}/{y}.png", Dict( "maxZoom" => 19, "subdomains" => "ab", "attribution" => attribution_osm ) ) """ TileLayers for Open Street Map. Please read OSM's [tile usage policy](https://operations.osmfoundation.org/policies/tiles/) to decide if your usage complies with it. """ osm_tile_layers = ( standard = osm_tile_layer, humanitarian = osm_humanitarian_tile_layer, ) stadia_osm_bright_tile_layer = TileLayer( "https://tiles.stadiamaps.com/tiles/osm_bright/{z}/{x}/{y}{r}.png", Dict( "maxZoom" => 20, "attribution" => "$attribution_stadia $attribution_openmaptiles $attribution_osm", "referrerPolicy" => "origin", ) ) stadia_outdoors_tile_layer = TileLayer( "https://tiles.stadiamaps.com/tiles/outdoors/{z}/{x}/{y}{r}.png", Dict( "maxZoom" => 20, "attribution" => "$attribution_stadia $attribution_openmaptiles $attribution_osm", "referrerPolicy" => "origin", ) ) stadia_stamen_toner_tile_layer = TileLayer( "https://tiles.stadiamaps.com/tiles/stamen_toner/{z}/{x}/{y}{r}.png", Dict( "maxZoom" => 20, "attribution" => "$attribution_stadia $attribution_stamen $attribution_openmaptiles $attribution_osm", "referrerPolicy" => "origin", ) ) stadia_stamen_watercolor_tile_layer = TileLayer( "https://tiles.stadiamaps.com/tiles/stamen_watercolor/{z}/{x}/{y}.jpg", Dict( "maxZoom" => 16, "attribution" => "$attribution_stadia $attribution_stamen $attribution_openmaptiles $attribution_osm", "referrerPolicy" => "origin", ) ) """ Tile layers that retrieve tiles from Stadia Maps. See [the documentation of Stadia Maps](https://docs.stadiamaps.com/) for more information about their terms of service. ## Styles - `osm_bright`: similar to the OpenStreetMap layout. - `outdoors`: similar to `osm_bright`, but puts more focus on things like parks, hiking trails, mountains, etc. - `stamen_toner`: a high-contrast, black and white style. - `stamen_watercolor`: looks like a watercolour painting. ## Authentication Requests to Stadia Maps are not authenticated and do not contain an API key. At the time of writing, Stadia Maps allows unauthenticated requests from `localhost`, such as those from a local Pluto notebook. If you want to host your notebook online, you should request an API key from Stadia Maps and create a `TileLayer` that uses your API key. """ stadia_tile_layers = ( osm_bright = stadia_osm_bright_tile_layer, outdoors = stadia_outdoors_tile_layer, stamen_toner = stadia_stamen_toner_tile_layer, stamen_watercolor = stadia_stamen_watercolor_tile_layer, ) md""" Click the eye icon to see this content. """ end # ╔═║ e377c1ff-e618-4192-b351-9aad766d3e69 md""" ## Map """ # ╔═║ 87b5ce4e-756e-44b2-a725-451788c234bd md"### Some useful types" # ╔═║ 0f7abed3-56e3-4492-8592-5df441652314 """ `LatLng` is a type alias for `Tuple{Number, Number}`. Example: `(0, 0)` """ LatLng = Tuple{Number, Number} # ╔═║ 9c8ec369-8e24-4a9e-af45-0bd73946302d """ A `Path` contains some of the available options to render elements. In JS, it is a class that other types inherit from. Here in Julia, we use composition of this types inside the elements. It contains: - `stroke`: `true` to see the outline - `color`: any `String` that is a valid CSS color will color the stroke - `weight`: a `Number` for the width of the stroke - `fill`: `true` to fill in the shape - `fillColor`: any `String` that is a valid CSS color will color the fill """ @kwdef struct Path stroke::Bool = true color::String = "#3388ff" weight::Number = 3 fill::Bool = true fillColor::String = "#3388ff" end # ╔═║ a9e6e3d6-c607-4c3c-851d-8c1acf06322a md""" ### Elements These are things that can be put on to the map. """ # ╔═║ 50926132-f8e5-446c-ba18-ad0c275b1b94 """ A `Marker` is a location to put a pin on the `Map` """ struct Marker center::LatLng end # ╔═║ 8b3724ce-a96f-4aec-ab8b-4ac811ff0ce6 """ A `Polyline` is a line to display on the `Map` """ @kwdef struct Polyline latlngs::Vector{LatLng} path::Path = Path() end # ╔═║ 708af5fa-86b9-4f48-ab3b-bd58ee9f8c0f """ A `Polygon` is a polygon or shape to display on the `Map` """ @kwdef struct Polygon latlngs::Vector{LatLng} path::Path = Path() end # ╔═║ e4583488-4266-4ecd-87c0-6cb07b7908d2 """ A `Circle` is a circle to display on the `Map` """ @kwdef struct Circle center::LatLng radius::Number path::Path = Path() end # ╔═║ a258ecde-61ee-4e21-8afa-e55c45bcad77 """ A `MapOption` contains some of the available options to customize the `Map`. It contains: - `zoomControl`: `true` displays the zoom control buttons - `doubleClickZoom`: `true` allows to double-click to zoom - `scrollWheelZoom`: `true` allows the scroll-wheel to zoom - `dragging`: `true` allows the mouse to drag the map around """ @kwdef struct MapOption zoomControl::Bool = true doubleClickZoom::Bool = true scrollWheelZoom::Bool = true dragging::Bool = true end # ╔═║ 28e0f702-2791-49f1-9620-caa126ffded6 """ The `staticMapOption` is a function that returns a `MapOption` which creates a completly static `Map` rendering. """ function staticMapOption()::MapOption MapOption(false, false, false, false) end # ╔═║ eb8bcc8a-1125-40e9-be98-8a4a4a3cf847 """ A `Map` is a representation of map to be rendered. It contains: - `center`: a `LatLng` to center the map - `zoom`: a `Number` for the zoom amount `1` is wide and `10+` is zoomed in - `tile`: a `TileLayer` to change the look - `height`: an `Integer` to set the height - `lines`: a `Vector{Polyline}` for lines to display - `polygons`: a `Vector{Polygon}` for polygons to display - `circles`: a `Vector{Circle}` for circles to display - `markers`: a `Vector{Marker}` for markers to display - `option`: a `MapOption` to configure """ @kwdef mutable struct Map center::LatLng zoom::Number = 4 tile::TileLayer= osm_tile_layers.standard height::Integer = 500 lines::Vector{Polyline} = [] polygons::Vector{Polygon} = [] circles::Vector{Circle} = [] markers::Vector{Marker} = [] option::MapOption = MapOption() end # ╔═║ 7b64daba-0701-4981-b0d0-015b4126d16a md""" ### Custom @htl rendering The following cells define custom rendering methods for the map rendering to work. We extend `Base.show` and `HypertextLiteral.print_script` """ # ╔═║ 704362e3-be7f-43b4-8d45-80177668b86b """ The function `to_dict` is a little helper that is used for rendering struct correctly in JS. """ function to_dict(mo)::Dict{String, Any} Dict(String(key) => getfield(mo, key) for key in propertynames(mo)) end # ╔═║ af83beb6-1f07-4ef6-9fca-d6fa2ff2d2e1 function Base.show(io::IO, m::MIME"text/javascript", p::Polyline) tio1, tio2 = (IOBuffer(), IOBuffer()) HypertextLiteral.print_script(tio1, p.latlngs) HypertextLiteral.print_script(tio2, to_dict(p.path)) print(io, "L.polyline($(String(take!(tio1))), $(String(take!(tio2)))).addTo(zeMap);") end # ╔═║ 62bfb5e4-5a87-4391-90bd-137ff2d8d1ad function HypertextLiteral.print_script(io::IO, value::Vector{Marker}) foreach(p -> Base.show(io, MIME("text/javascript"), p), value) end # ╔═║ 29defb6b-1f55-4e94-a481-d735e2a882e3 function Base.show(io::IO, m::MIME"text/javascript", p::Marker) tio1 = IOBuffer() HypertextLiteral.print_script(tio1, p.center) print(io, "L.marker($(String(take!(tio1)))).addTo(zeMap);") end # ╔═║ 8d278e04-ffec-4730-b0f6-c01c91bd06dd function HypertextLiteral.print_script(io::IO, value::Vector{Polyline}) foreach(p -> Base.show(io, MIME("text/javascript"), p), value) end # ╔═║ 8e7197d6-1432-4302-ac47-75d04652a5b2 function Base.show(io::IO, m::MIME"text/javascript", p::Circle) tio1, tio2 = (IOBuffer(), IOBuffer()) HypertextLiteral.print_script(tio1, p.center) HypertextLiteral.print_script(tio2, to_dict(p.path)) print(io, "L.circle($(String(take!(tio1))), { radius: $(p.radius), ...$(String(take!(tio2))) }).addTo(zeMap);") end # ╔═║ 4bf06d7d-3705-4c7d-bae6-aa3cb92c6b99 function HypertextLiteral.print_script(io::IO, value::Vector{Circle}) foreach(p -> Base.show(io, MIME("text/javascript"), p), value) end # ╔═║ 91802110-663e-4fb4-9167-c68af3561dbf """ """ function Base.show(io::IO, m::MIME"text/javascript", p::Polygon) tio1, tio2 = (IOBuffer(), IOBuffer()) HypertextLiteral.print_script(tio1, p.latlngs) HypertextLiteral.print_script(tio2, to_dict(p.path)) print(io, "L.polygon($(String(take!(tio1))), $(String(take!(tio2)))).addTo(zeMap);") end # ╔═║ 7a563f43-4a2e-4e27-b153-ca33e126dc90 """ """ function HypertextLiteral.print_script(io::IO, value::Vector{Polygon}) foreach(p -> Base.show(io, MIME("text/javascript"), p), value) end # ╔═║ 54ab5a53-b023-427f-8918-cbd2abccc2da md"## Map building" # ╔═║ b10f75b0-b3be-4950-9644-127190284512 begin """ The `build` function takes a `Map` and a element and adds the element to its list of elements of the corresponding type. """ function build end """ Use this `build` to add a `Polyline` to your `Map`'s lines. """ function build(m::Map, l::Polyline) m.lines = [m.lines ; l] end """ Use this `build` to add a `Polygon` to your `Map`'s polygons. """ function build(m::Map, p::Polygon) m.polygons = [m.polygons ; p] end """ Use this `build` to add a `Circle` to your `Map`'s circles. """ function build(m::Map, c::Circle) m.circles = [m.circles ; c] end """ Use this `build` to add a `Marker` to your `Map`'s markers. """ function build(m::Map, k::Marker) m.markers = [m.markers ; k] end end # ╔═║ 2cc5f89f-042d-436c-bbbc-6be1a1d61e6c md"## Render a map" # ╔═║ 095c821d-60ee-401c-a51d-705a9ddd8e68 """ The `leaflet` function takes a `Map` and renders it to the cell in Pluto. It returns the `HypertextLiteral.Result` types. """ function leaflet(m::Map) @htl(""" <div> <link rel="stylesheet" href="https://unpkg.com/[email protected]/dist/leaflet.css" integrity="sha256-p4NxAoJBhIIN+hmNHrzRCf9tD/miZyoHS5obTRR9BMY=" crossorigin=""/> <script src="https://unpkg.com/[email protected]/dist/leaflet.js" integrity="sha256-20nQCchB9co0qIjJZRGuk2/Z9VM+kNiyxNV1lvTlZBo=" crossorigin=""></script> <div id="map"></div> <style> #map { height: $(m.height)px; } </style> <script> var parent = currentScript.parentElement; var mapElement = parent.querySelector("#map"); var zeMap = L.map(mapElement, $(to_dict(m.option))) .setView([$(m.center[1]), $(m.center[2])], $(m.zoom)); L.tileLayer($(m.tile.url), $(m.tile.options)).addTo(zeMap); $(m.lines) $(m.polygons) $(m.circles) $(m.markers) </script> </div> """) end # ╔═║ 96fbe075-8dfd-44cf-88a0-489bc361e62c md"## Demo" # ╔═║ 0edd50fd-e72f-4b36-869c-31d5465ac29a begin m = Map(center = (0, 0), option = staticMapOption()) build(m, Polyline(latlngs = [(0, 5), (0, 10), (0, 15)])) build(m, Polyline(latlngs = [(5, 0), (10, 0), (15, 0)], path = Path(color = "#88ff33"))) build(m, Polygon(latlngs = [(2, 6), (6, 6), (6, 10), (2, 10)])) build(m, Circle(center = (-4, -4), radius = 500_000, path = Path(color = "red"))) build(m, Marker((-4, -4))) leaflet(m) end # ╔═║ 7a84c7e1-8d2d-4742-81bf-a35be540b517 begin m2 = Map(center = (46.81411097653479, -71.20089272116749), option = staticMapOption(), zoom = 12, tile=stadia_tile_layers.outdoors) build(m2, Marker((46.81411097653479, -71.20089272116749))) leaflet(m2) end # ╔═║ 00000000-0000-0000-0000-000000000001 PLUTO_PROJECT_TOML_CONTENTS = """ [deps] HypertextLiteral = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" [compat] HypertextLiteral = "~0.9.5" """ # ╔═║ 00000000-0000-0000-0000-000000000002 PLUTO_MANIFEST_TOML_CONTENTS = """ # This file is machine-generated - editing it directly is not advised julia_version = "1.10.5" manifest_format = "2.0" project_hash = "5b37abdf7398dc5da4cd347d0609990238d895bb" [[deps.HypertextLiteral]] deps = ["Tricks"] git-tree-sha1 = "7134810b1afce04bbc1045ca1985fbe81ce17653" uuid = "ac1192a8-f4b3-4bfe-ba22-af5b92cd3ab2" version = "0.9.5" [[deps.Tricks]] git-tree-sha1 = "7822b97e99a1672bfb1b49b668a6d46d58d8cbcb" uuid = "410a4b4d-49e4-4fbc-ab6d-cb71b17b3775" version = "0.1.9" """ # ╔═║ Cell order: # β•Ÿβ”€baef2610-79dc-11ef-12f2-ad52aa82fd14 # β•Ÿβ”€e51f2cf3-7e90-4489-a5eb-59aefbdfc3db # ╠═7c52b98c-3617-4ad4-bf12-930468793f89 # β•Ÿβ”€8db92502-e6cf-493b-9ade-a9f7bcf4ba70 # β•Ÿβ”€2ed6631f-d845-48fb-be56-e4cffab14295 # β•Ÿβ”€e377c1ff-e618-4192-b351-9aad766d3e69 # β•Ÿβ”€87b5ce4e-756e-44b2-a725-451788c234bd # ╠═0f7abed3-56e3-4492-8592-5df441652314 # ╠═9c8ec369-8e24-4a9e-af45-0bd73946302d # β•Ÿβ”€a9e6e3d6-c607-4c3c-851d-8c1acf06322a # ╠═50926132-f8e5-446c-ba18-ad0c275b1b94 # ╠═8b3724ce-a96f-4aec-ab8b-4ac811ff0ce6 # ╠═708af5fa-86b9-4f48-ab3b-bd58ee9f8c0f # ╠═e4583488-4266-4ecd-87c0-6cb07b7908d2 # ╠═a258ecde-61ee-4e21-8afa-e55c45bcad77 # ╠═28e0f702-2791-49f1-9620-caa126ffded6 # ╠═eb8bcc8a-1125-40e9-be98-8a4a4a3cf847 # β•Ÿβ”€7b64daba-0701-4981-b0d0-015b4126d16a # ╠═91802110-663e-4fb4-9167-c68af3561dbf # ╠═7a563f43-4a2e-4e27-b153-ca33e126dc90 # ╠═8e7197d6-1432-4302-ac47-75d04652a5b2 # ╠═4bf06d7d-3705-4c7d-bae6-aa3cb92c6b99 # ╠═af83beb6-1f07-4ef6-9fca-d6fa2ff2d2e1 # ╠═8d278e04-ffec-4730-b0f6-c01c91bd06dd # ╠═29defb6b-1f55-4e94-a481-d735e2a882e3 # ╠═62bfb5e4-5a87-4391-90bd-137ff2d8d1ad # ╠═704362e3-be7f-43b4-8d45-80177668b86b # β•Ÿβ”€54ab5a53-b023-427f-8918-cbd2abccc2da # ╠═b10f75b0-b3be-4950-9644-127190284512 # β•Ÿβ”€2cc5f89f-042d-436c-bbbc-6be1a1d61e6c # ╠═095c821d-60ee-401c-a51d-705a9ddd8e68 # β•Ÿβ”€96fbe075-8dfd-44cf-88a0-489bc361e62c # ╠═0edd50fd-e72f-4b36-869c-31d5465ac29a # ╠═7a84c7e1-8d2d-4742-81bf-a35be540b517 # β•Ÿβ”€00000000-0000-0000-0000-000000000001 # β•Ÿβ”€00000000-0000-0000-0000-000000000002
LeafletPluto
https://github.com/florianfmmartin/LeafletPluto.jl.git
[ "MIT" ]
0.1.0
a537ef077e3b83cefbf0cfe6e8d73523e8c17cb7
code
617
using LeafletPluto using Test using HypertextLiteral @testset "LeafletPluto.jl" begin @testset "rendering works" begin m = Map(center = (0, 0), option = staticMapOption()) build(m, Polyline(latlngs = [(0, 5), (0, 10), (0, 15)])) build(m, Polyline(latlngs = [(5, 0), (10, 0), (15, 0)], path = Path(color = "#88ff33"))) build(m, Polygon(latlngs = [(2, 6), (6, 6), (6, 10), (2, 10)])) build(m, Circle(center = (-4, -4), radius = 500_000, path = Path(color = "red"))) build(m, Marker((-4, -4))) @test typeof(leaflet(m)) == HypertextLiteral.Result end end
LeafletPluto
https://github.com/florianfmmartin/LeafletPluto.jl.git
[ "MIT" ]
0.1.0
a537ef077e3b83cefbf0cfe6e8d73523e8c17cb7
docs
2423
# LeafletPluto.jl [![Build Status](https://github.com/florianfmmartin/LeafletPluto.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/florianfmmartin/LeafletPluto.jl/actions/workflows/CI.yml?query=branch%3Amain) A simple map widget for Pluto.jl notebooks. It creates a map using [Leaflet](https://leafletjs.com/). ![screenshot of a pluto notebook showing a cell with a map that has a few lines, a polygon, a circle and a marker.](./screenshot.png) ## Prerequisites LeafletPluto is a package for [Julia](https://julialang.org/). It is is designed to be used in [Pluto notebooks](https://github.com/fonsp/Pluto.jl). If you are using Pluto, you're ready to use this package! ## Usage Basic usage looks like this: ```julia using LeafletPluto # create a map m = Map(center = (0, 0), option = staticMapOption()) # add a few elements to it build(m, Polyline(latlngs = [(0, 5), (0, 10), (0, 15)])) build(m, Polyline(latlngs = [(5, 0), (10, 0), (15, 0)], path = Path(color = "#88ff33"))) build(m, Polygon(latlngs = [(2, 6), (6, 6), (6, 10), (2, 10)])) build(m, Circle(center = (-4, -4), radius = 500_000, path = Path(color = "red"))) build(m, Marker((-4, -4))) # display it leaflet(m) ``` ### Tile layer *This is inspired from PlutoMapPicker.jl* Maps use a _raster tile layer_ to show the actual map. This layer is built of images of the world map. To load in these tiles as needed, the map must request the tiles from an API. The default setting will request tiles from [Open Street Map](https://openstreetmap.org), but you can change this setting. The package also includes some ready-to-go configurations for [Stadia Maps](https://stadiamaps.com/). For example: ```julia Map(center=(0, 0), tile=stadia_tile_layers.outdoors) ``` You can also create a custom `TileLayer` to use a different server or make requests with an API key. Please note that PlutoMapPicker & LeafletPluto are not affiliated with Open Street Map or Stadia Maps. The `TileLayer` configurations for these services are provided for convenience, but it is up to you whether the way you're using these services complies with their usage policy. See [Open Street Map's usage policy](https://operations.osmfoundation.org/policies/tiles/) and [Stadia Map's documentation](https://docs.stadiamaps.com/) for more information. ## Licence This package is shared under an MIT licence. See [LICENSE](./LICENSE) for more information.
LeafletPluto
https://github.com/florianfmmartin/LeafletPluto.jl.git
[ "MIT" ]
0.1.0
7331fdf3771d283784487c57d10dc224138105b0
code
133
module ArrayRotations include("utils.jl") include("auxrot.jl") include("rev.jl") include("bridge.jl") include("gries-mills.jl") end
ArrayRotations
https://github.com/sadit/ArrayRotations.jl.git
[ "MIT" ]
0.1.0
7331fdf3771d283784487c57d10dc224138105b0
code
715
struct AuxRotation{T} buff::Vector{T} # each Thread must have an AuxRotation struct end export AuxRotation export rotate! """ rotate!(::AuxRotation, A::AbstractVector, tailpos::Integer) Rotates `A` on `tailpos` using at most `n / 2` extra memory, 3n/2 copy-write ops. """ function rotate!(aux::AuxRotation, A::AbstractVector, tailpos::Integer) m = tailpos - 1 n = length(A) - m if m <= n resize!(aux.buff, m) _copy!(aux.buff, 1, A, 1, m) _left_shift!(A, tailpos) _copy!(A, n+1, aux.buff, 1, m) else resize!(aux.buff, n) _copy!(aux.buff, 1, A, tailpos, n) _right_shift!(A, m) _copy!(A, 1, aux.buff, 1, n) end A end
ArrayRotations
https://github.com/sadit/ArrayRotations.jl.git
[ "MIT" ]
0.1.0
7331fdf3771d283784487c57d10dc224138105b0
code
2195
struct BridgeRotation{T} buff::Vector{T} end export BridgeRotation """ rotate!(bridge::BridgeRotation, A::AbstractVector, tailpos::Integer) Rotates `A` on `tailpos` using a small extra memory. ≀ a third of A and ≀ than n+n/3 copy-write ops. """ function rotate!(bridge::BridgeRotation, A::AbstractVector, tailpos::Integer) m = tailpos - 1 n = length(A) - m if m <= n _interchange_right_large!(A, bridge.buff, tailpos) else _interchange_left_large!(A, bridge.buff, tailpos) end A end """ _interchange_left_large!(A::AbstractVector, buff::AbstractVector, tail::Integer) Interchange and shift two subarrays ``` buffer ----- 4 5 6 7 8 9 1 2 3 ----- | head tail ``` must produce ``` prev head ----- 1 2 3 4 5 6 1 2 3 ----- ----- prev tail untouched ``` and finally, the buffer should be copied-back ``` prev head ----- 1 2 3 4 5 6 7 8 9 ----- ----- prev tail from buffer ``` """ @inline function _interchange_left_large!(A::AbstractVector, buff::AbstractVector, tail::Integer) m = length(A) n = m - tail + 1 # number of elements p = 2n resize!(buff, m - p) _copy!(buff, 1, A, n + 1, length(buff)) @inbounds for i in 1:n n += 1 A[n] = A[i] A[i] = A[tail] tail += 1 end _copy!(A, p + 1, buff, 1, length(buff)) A end """ _interchange_right_large!(A::AbstractVector, buff::AbstractVector, tail::Integer) Interchange and shift two subarrays ``` head buffer ----- ----- 7 8 9 1 2 3 4 5 6 | tail ``` must produce ``` prev tail prev head ----- ----- 1 2 3 1 2 3 7 8 9 ----- untouched ``` The centering block is then filled with the buffer. """ @inline function _interchange_right_large!(A::AbstractVector, buff::AbstractVector, tail::Integer) m = length(A) n = tail - 1 # number of elements p = 2n resize!(buff, m - p) _copy!(buff, 1, A, p + 1, length(buff)) @inbounds for i in n:-1:1 A[m] = A[i] A[i] = A[p] p -= 1 m -= 1 end _copy!(A, n + 1, buff, 1, length(buff)) A end
ArrayRotations
https://github.com/sadit/ArrayRotations.jl.git
[ "MIT" ]
0.1.0
7331fdf3771d283784487c57d10dc224138105b0
code
943
struct GriesMillsRotation end export GriesMillsRotation """ rotate!(aux::GriesMillsRotation, A::AbstractVector, tailpos::Integer) Rotates `A` on `tailpos` using a O(1) extra memory """ function rotate!(::GriesMillsRotation, A::AbstractVector, tailpos::Integer) sp = 1 ep = length(A) while sp < tailpos #sp < ep mid = (ep+sp) >> 1 if tailpos > mid # right is shorter n = ep - tailpos + 1 @inbounds for i in 0:n-1 tmp = A[sp+i] A[sp+i] = A[tailpos+i] A[tailpos+i] = tmp end sp = sp + n else # left is shorter n = tailpos - sp p = ep - n + 1 @inbounds for i in 0:n-1 tmp = A[sp+i] A[sp+i] = A[p+i] A[p+i] = tmp end ep = p - 1 tailpos = sp + n end end A end
ArrayRotations
https://github.com/sadit/ArrayRotations.jl.git
[ "MIT" ]
0.1.0
7331fdf3771d283784487c57d10dc224138105b0
code
389
struct RevRotation end export RevRotation """ rotate!(::RevRotation, A::AbstractVector, tailpos::Integer) Rotates `A` on `tailpos` using ``O(1)`` extra memory, yet using several 2n copy-write ops (triple reversing) """ function rotate!(::RevRotation, A::AbstractVector, tailpos::Integer) reverse!(A, 1, tailpos - 1) reverse!(A, tailpos, length(A)) reverse!(A) A end
ArrayRotations
https://github.com/sadit/ArrayRotations.jl.git
[ "MIT" ]
0.1.0
7331fdf3771d283784487c57d10dc224138105b0
code
1159
""" _copy!(dst::AbstractVector, dst_sp::Integer, src::AbstractVector, src_sp::Integer, n::Integer) Copies `n` contiguous elements from `src` (starting at `src_sp`) into `dst` (starting at `dst_sp`). """ @inline function _copy!(dst::AbstractVector, dst_sp::Integer, src::AbstractVector, src_sp::Integer, n::Integer) @inbounds for i in 1:n dst[dst_sp] = src[src_sp] dst_sp += 1 src_sp += 1 end dst end """ _left_shift!(A::AbstractVector, sp) Shifts `A[sp:end]` to the beggining of `A` """ @inline function _left_shift!(A::AbstractVector, sp) i = 1 @inbounds for j in sp:length(A) A[i] = A[j] i += 1 end A end """ _right_shift!(A::AbstractVector, ep) Shifts `A[1:ep]` to the end of `A` """ @inline function _right_shift!(A::AbstractVector, ep) i = length(A) @inbounds for j in ep:-1:1 A[i] = A[j] i -= 1 end A end #= @inline function _interchange!(A::AbstractVector, head, tail, n) @inbounds for i in 1:n tmp = A[head] A[head] = A[tail] A[tail] = tmp head += 1 tail += 1 end A end =#
ArrayRotations
https://github.com/sadit/ArrayRotations.jl.git
[ "MIT" ]
0.1.0
7331fdf3771d283784487c57d10dc224138105b0
code
2259
using ArrayRotations using ArrayRotations: _copy!, _left_shift!, _right_shift!, _interchange_left_large!, _interchange_right_large! using Test @testset "_copy!" begin A = [7, 8, 9, 10, 1, 2, 3, 4, 5, 6] B = zeros(Int, 20) _copy!(B, 1, A, 1, 10) @test B == [7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] reverse!(A) _copy!(B, 11, A, 1, 10) @test B == [7, 8, 9, 10, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 10, 9, 8, 7] B = zeros(Int, 100) A = collect(1:100) for i in 1:96 _copy!(B, i, A, i, 5) end @test A == B end @testset "_*_shift!" begin A = [7, 8, 9, 10, 1, 2, 3, 4, 5, 6] @test _left_shift!(A, 5) == [1, 2, 3, 4, 5, 6, 3, 4, 5, 6] A = [7, 8, 9, 10, 1, 2, 3, 4, 5, 6] _right_shift!(A, 4) == [7, 8, 9, 10, 1, 2, 7, 8, 9, 10] end @testset "AuxRotation" begin aux = AuxRotation(Int[]) A = [7, 8, 9, 10, 1, 2, 3, 4, 5, 6] @test rotate!(aux, A, 5) == collect(1:10) A = [7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6] @test rotate!(aux, A, 10) == collect(1:15) end @testset "RevRotation" begin aux = RevRotation() A = [7, 8, 9, 10, 1, 2, 3, 4, 5, 6] @test rotate!(aux, A, 5) == collect(1:10) A = [7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6] @test rotate!(aux, A, 10) == collect(1:15) end #= @testset "Interchange_*_large" begin A = [4, 5, 6, 7, 8, 9, 1, 2, 3] @test _interchange_left_large!(copy(A), 7) == [1, 2, 3, 4, 5, 6, 1, 2, 3] A = [7, 8, 9, 1, 2, 3, 4, 5, 6] @test _interchange_right_large!(copy(A), 4) == [1, 2, 3, 1, 2, 3, 7, 8, 9] end =# @testset "BridgeRotation" begin bridge = BridgeRotation(Int[]) A = [7, 8, 9, 10, 1, 2, 3, 4, 5, 6] @test rotate!(bridge, A, 5) == collect(1:10) A = [7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6] @test rotate!(bridge, A, 10) == collect(1:15) end @testset "GriesMillsRotation" begin gm = GriesMillsRotation() A = [3, 1, 2] @test rotate!(gm, A, 2) == collect(1:3) A = [2, 3, 1] @test rotate!(gm, A, 3) == collect(1:3) A = [7, 8, 9, 10, 1, 2, 3, 4, 5, 6] @test rotate!(gm, A, 5) == collect(1:10) A = [7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6] @test rotate!(gm, A, 10) == collect(1:15) end
ArrayRotations
https://github.com/sadit/ArrayRotations.jl.git
[ "MIT" ]
0.1.0
7331fdf3771d283784487c57d10dc224138105b0
docs
508
# Array rotations A small package with array rotation algorithms (block swap). Only 1D arrays (vectors). ## Usage: Call `rotate!(rot::Rotation, A::AbstractVector, tailpos::Integer)` to rotate the array `A` on the given tail position. A few algorithms are implemented: - AuxRotation: rotates using at most n/2 extra memory - BridgeRotation: rotates using at most n/3 extra memory - RevRotation: rotates using O(1) extra memory - GriesMillsRotation: Gries Mills algorithm, rotates using O(1) extra memory
ArrayRotations
https://github.com/sadit/ArrayRotations.jl.git
[ "MIT" ]
0.1.0
73ff501c057bda1c12679545d85ecf11b2765b19
code
618
using ElementarySymmetricFunctions using Documenter makedocs(; modules=[ElementarySymmetricFunctions], authors="Benjamin Deonovic", repo="https://github.com/bdeonovic/ElementarySymmetricFunctions.jl/blob/{commit}{path}#L{line}", sitename="ElementarySymmetricFunctions.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://bdeonovic.github.io/ElementarySymmetricFunctions.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/bdeonovic/ElementarySymmetricFunctions.jl", )
ElementarySymmetricFunctions
https://github.com/bdeonovic/ElementarySymmetricFunctions.jl.git
[ "MIT" ]
0.1.0
73ff501c057bda1c12679545d85ecf11b2765b19
code
372
module ElementarySymmetricFunctions import DSP.filt! import FFTW.fft! import SpecialFunctions.logbeta include("util.jl") include("esf.jl") include("poisbin.jl") export esf_sum, esf_sum_reg, esf_dc_fft, esf_dc_group, esf_dc_group_reg export poisbin_sum_taub, poisbin_fft, poisbin_chen, poisbin_dc_fft, poisbin_dc_group, poisbin_fft_cf end
ElementarySymmetricFunctions
https://github.com/bdeonovic/ElementarySymmetricFunctions.jl.git
[ "MIT" ]
0.1.0
73ff501c057bda1c12679545d85ecf11b2765b19
code
8628
function esf_sum!(S::AbstractArray{T,1}, x::AbstractArray{T,1}) where T <: Real n = length(x) fill!(S,zero(T)) S[1] = one(T) @inbounds for col in 1:n for r in 1:col row = col - r + 1 S[row+1] = x[col] * S[row] + S[row+1] end end end """ esf_sum(x) Compute the elementary symmetric functions of order k = 1, ..., n where n = length(x) # Examples ```julia-repl julia> esf_sum([3.5118, .6219, .2905, .8450, 1.8648]) 6-element Array{Float64,1}: 1.0 7.134 16.9493 16.7781 7.05289 0.999736 ``` """ function esf_sum(x::AbstractArray{T,1}) where T <: Real n = length(x) S = Vector{T}(undef,n+1) esf_sum!(S,x) return S end function esf_sum_reg!(S::AbstractArray{T,1}, x::AbstractArray{T,1}) where T <: Real n = length(x) fill!(S,zero(T)) S[1] = one(T) @inbounds for col in 1:n for r in 1:col row = col - r + 1 S[row+1] = ((col-row)/col) * S[row+1] + (row/col) * x[col] * S[row] end end end """ esf_sum_reg(x) Compute the elementary symmetric functions of order k = 1, ..., n where n = length(x). Values are computed regularized by the binomial coefficient binomial(n, k) to prevent over/under-flow. # Examples ```julia-repl julia> esf_sum_reg([3.5118, .6219, .2905, .8450, 1.8648]) 6-element Array{Float64,1}: 1.0 1.4268 1.69493 1.67781 1.41058 0.999736 ``` """ function esf_sum_reg(x::AbstractArray{T,1}) where T <: Real n = length(x) S = Vector{T}(undef,n+1) esf_sum_reg!(S,x) return S end #Regularized summation algorithm where one input is zeroed out (for computing derivatives) function esf_sum_reg2!(S::AbstractArray{T,1}, x::AbstractArray{T,1}) where T <: Real n = length(x) fill!(S,zero(T)) S[1] = one(T) adj = 0 @inbounds for col in 1:n if x[col] == 0.0 adj += 1 continue end for r in 1:(col-adj) row = (col-adj) - r + 1 S[row+1] = (col-adj-row)/(col-adj+1) * S[row+1] + (row+1)/(col-adj+1) * x[col] * S[row] end S[1] *= (col-adj)/(col-adj+1) end end #Regularized summation algorithm where two inputs are zeroed out (for computing derivatives) function esf_sum_reg3!(S::AbstractArray{T,1}, x::AbstractArray{T,1}) where T <: Real n = length(x) fill!(S,zero(T)) S[1] = one(T) adj = 0 @inbounds for col in 1:n if x[col] == 0.0 adj += 1 continue end for r in 1:(col-adj) row = (col-adj) - r + 1 S[row+1] = (col-adj-row)/(col-adj+2) * S[row+1] + (row+2)/(col-adj+2) * x[col] * S[row] end S[1] *= (col-adj) / (col-adj+2) end end function esf_sum_dervs_1(x::AbstractVector{T}) where T <: Real n = length(x) S = Vector{T}(undef,n+1) P = Array{T,2}(undef,n,n+1) esf_sum!(S, x) esf_sum_dervs_1!(P, x) return S, P end function esf_sum_dervs_1!(P::AbstractArray{T,2}, x::AbstractVector{T}) where T <: Real n = length(x) xj=zero(T) @inbounds for j in 1:n xj = x[j] x[j] = zero(T) @views esf_sum!(P[j,:], x) x[j] = xj end end function esf_sum_dervs_1_reg(x::AbstractVector{T}) where T <: Real n = length(x) S = Vector{T}(undef,n+1) P = Array{T,2}(undef,n,n+1) esf_sum_reg!(S, x) esf_sum_dervs_1_reg!(P, x) return S, P end function esf_sum_dervs_1_reg!(P::AbstractArray{T,2}, x::AbstractVector{T}) where T <: Real n = length(x) xj=zero(T) @inbounds for j in 1:n xj = x[j] x[j] = zero(T) @views esf_sum_reg2!(P[j,:], x) x[j] = xj end end function esf_sum_dervs_2(x::AbstractVector{T}) where T <: Real n = length(x) S = Vector{T}(undef,n+1) H = Array{T,3}(undef,n,n,n+1) esf_sum!(S, x) esf_sum_dervs_2!(H, x) return S, H end function esf_sum_dervs_2!(H::AbstractArray{T,3}, x::AbstractVector{T}) where T <: Real n = length(x) xj=zero(T) @inbounds for j in 1:n xj = x[j] x[j] = zero(T) for k in j:n xk = x[k] x[k] = zero(T) @views esf_sum!(H[j,k,:], x) H[k,j,:] .= H[j,k,:] x[k] = xk end x[j] = xj end end function esf_sum_dervs_2_reg(x::AbstractVector{T}) where T <: Real n = length(x) S = Vector{T}(undef,n+1) H = Array{T,3}(undef,n,n,n+1) esf_sum_reg!(S, x) esf_sum_dervs_2_reg!(H, x) return S, H end function esf_sum_dervs_2_reg!(H::AbstractArray{T,3}, x::AbstractVector{T}) where T <: Real n = length(x) xj=zero(T) @inbounds for j in 1:n xj = x[j] x[j] = zero(T) @views esf_sum_reg2!(H[j,j,:], x) for k in j+1:n xk = x[k] x[k] = zero(T) @views esf_sum_reg3!(H[j,k,:], x) H[k,j,:] .= H[j,k,:] x[k] = xk end x[j] = xj end end function esf_dc_fft!(S::AbstractArray{T,1}, tempS::AbstractArray{T,2}, x::AbstractArray{T,1}, k::D, group_sizes::AbstractArray{D,1}, group_start_idx::AbstractArray{D,1}) where {T <: Real, D <: Integer} n = length(x) M = size(tempS)[2] tempS .= zero(T) #convolve initial subsets @inbounds for g in 1:M @views esf_sum!(tempS[1:(group_sizes[g]+1),g], x[group_start_idx[g]:(group_start_idx[g]+group_sizes[g]-1)]) group_sizes[g] += 1 end while M > 1 next_avail_col = 1 @inbounds for g in 1:2:M m = group_sizes[g] + group_sizes[g+1] - 1 @views filt!(S[1:m], tempS[1:group_sizes[g],g], one(T), tempS[1:m,g+1]) @views copyto!(tempS[1:m,next_avail_col], S[1:m]) group_sizes[next_avail_col] = m next_avail_col += 1 end M = div(M,2) end end function esf_dc_fft(x::AbstractArray{T,1}, k::D=2) where {T <: Real, D <: Integer} n = length(x) k = min(floor(D, log2(n)), k) M = 2^k L = n/M r = rem(n,M) / M group_sizes = [fill(floor(D, L), D(M*(1-r))); fill(ceil(D, L), D(M*r))] group_start_idx = cumsum(group_sizes) .- (group_sizes .- 1) S = Vector{T}(undef,n+1) tempS = zeros(T, n+1,M) esf_dc_fft!(S, tempS, x, k, group_sizes, group_start_idx) return S end function esf_dc_group!(S::AbstractArray{T,1}, tempS::AbstractArray{T,2}, x::AbstractArray{T,1}, k::D, group_sizes::AbstractArray{D,1}, group_start_idx::AbstractArray{D,1}) where {T <: Real, D <: Integer} n = length(x) M = size(tempS)[2] #convolve initial subsets @inbounds for g in 1:M @views esf_sum!(tempS[1:(group_sizes[g]+1),g], x[group_start_idx[g]:(group_start_idx[g]+group_sizes[g]-1)]) group_sizes[g] += 1 end while M > 1 next_avail_col = 1 @inbounds for g in 1:2:M m = group_sizes[g] + group_sizes[g+1] - 1 @views join_groups!(S[1:m], tempS[1:group_sizes[g+1],g+1], tempS[1:group_sizes[g],g]) @views copyto!(tempS[1:m,next_avail_col], S[1:m]) group_sizes[next_avail_col] = m next_avail_col += 1 end M = div(M,2) end end function esf_dc_group(x::AbstractArray{T,1}, k::D=2) where {T <: Real, D <: Integer} n = length(x) k = min(floor(D, log2(n)), k) M = 2^k L = n/M r = rem(n,M) / M group_sizes = [fill(floor(D, L), D(M*(1-r))); fill(ceil(D, L), D(M*r))] group_start_idx = cumsum(group_sizes) .- (group_sizes .- 1) S = Vector{T}(undef,n+1) tempS = zeros(T, n+1,M) esf_dc_group!(S, tempS, x, k, group_sizes, group_start_idx) return S end function esf_dc_group_reg!(S::AbstractArray{T,1}, tempS::AbstractArray{T,2}, x::AbstractArray{T,1}, k::D, group_sizes::AbstractArray{D,1}, group_start_idx::AbstractArray{D,1}) where {T <: Real, D <: Integer} n = length(x) M = size(tempS)[2] tempS .= zero(T) #convolve initial subsets @inbounds for g in 1:M @views esf_sum_reg!(tempS[1:(group_sizes[g]+1),g], x[group_start_idx[g]:(group_start_idx[g]+group_sizes[g]-1)]) group_sizes[g] += 1 end while M > 1 next_avail_col = 1 @inbounds for g in 1:2:M m = group_sizes[g] + group_sizes[g+1] - 1 @views join_groups_reg!(S[1:m], tempS[1:group_sizes[g+1],g+1], tempS[1:group_sizes[g],g]) @views copyto!(tempS[1:m,next_avail_col], S[1:m]) group_sizes[next_avail_col] = m next_avail_col += 1 end M = div(M,2) end end function esf_dc_group_reg(x::AbstractArray{T,1}, k::D=2) where {T <: Real, D <: Integer} n = length(x) k = min(floor(D, log2(n)), k) M = 2^k L = n/M r = rem(n,M) / M group_sizes = [fill(floor(D, L), D(M*(1-r))); fill(ceil(D, L), D(M*r))] group_start_idx = cumsum(group_sizes) .- (group_sizes .- 1) S = Vector{T}(undef,n+1) tempS = zeros(T, n+1,M) esf_dc_group_reg!(S, tempS, x, k, group_sizes, group_start_idx) return S end
ElementarySymmetricFunctions
https://github.com/bdeonovic/ElementarySymmetricFunctions.jl.git
[ "MIT" ]
0.1.0
73ff501c057bda1c12679545d85ecf11b2765b19
code
6791
function poisbin_fft!(S::AbstractArray{T,1}, y::AbstractArray{Complex{T},1}, p::AbstractArray{T,1}) where T <: Real n = length(p) omega = 2pi/(n+1) @inbounds for k in 0:n for m in 1:n y[k+1] *= p[m] * exp(im * omega * k) + (1-p[m]) end end fft!(y) S .= real.(y) / (n+1) end function poisbin_fft(p::AbstractArray{T,1}) where T <: Real n = length(p) S = Vector{T}(undef,n+1) y = ones(Complex{T}, n+1) poisbin_fft!(S, y, p) return S end #implementation from Distributions.jl to compare function poisbin_fft_cf!(S::AbstractArray{T,1}, y::AbstractArray{Complex{T},1}, z::AbstractArray{Complex{T},1}, p::AbstractArray{T,1}) where T<: Real n = length(p) y[1] = one(Complex{T}) / (n+1) omega = 2 * one(T) / (n+1) kmax = ceil(Int, n/2) @inbounds for k in 1:kmax logz = zero(T) argz = zero(T) for j in 1:n zjl = 1 - p[j] + p[j] * cospi(omega*k) + im * p[j] * sinpi(omega*k) logz += log(abs(zjl)) argz += atan(imag(zjl), real(zjl)) end dl = exp(logz) y[k+1] = dl * cos(argz) / (n+1) + im * dl * sin(argz) / (n+1) if n + 1 - k > k y[n + 1 - k + 1] = conj(y[k+1]) end end _dft!(z, y) S .= real.(z) end # A simple implementation of a DFT to avoid introducing a dependency # on an external FFT package just for this one distribution function _dft!(y::Vector{T}, x::Vector{T}) where T n = length(x) y .= zero(T) @inbounds for j = 0:n-1, k = 0:n-1 y[k+1] += x[j+1] * cis(-Ο€ * T(2 * mod(j * k, n)) / n) end end function poisbin_fft_cf(p::AbstractArray{T,1}) where T <: Real n = length(p) S = Vector{T}(undef,n+1) y = ones(Complex{T}, n+1) z = Vector{Complex{T}}(undef,n+1) poisbin_fft_cf!(S, y, z, p) return S end function poisbin_sum_taub!(S::AbstractArray{T}, p::AbstractArray{T}) where T <: Real n = length(p) fill!(S,zero(T)) S[1] = 1-p[1] S[2] = p[1] @inbounds for col in 2:n for r in 1:col row = col - r + 1 S[row+1] = (1-p[col])*S[row+1] + p[col] * S[row] end S[1] *= 1-p[col] end end function poisbin_sum_taub_log!(S::AbstractArray{T}, p::AbstractArray{T}) where T <: Real n = length(p) fill!(S,-Inf) S[1] = log(1-p[1]) S[2] = log(p[1]) @inbounds for col in 2:n for r in 1:col row = col - r + 1 Sr = S[row] + log(p[col]) Sr1 = S[row+1] + log(1-p[col]) if (Sr1 > Sr) && (Sr1 > zero(T)) S[row+1] = Sr1 + log1p(exp(Sr - Sr1)) elseif (Sr >= Sr1) && (Sr > zero(T)) S[row+1] = Sr + log1p(exp(Sr1-Sr)) else S[row+1] = log(exp(Sr1) + exp(Sr)) end end S[1] += log(1-p[col]) end end function poisbin_sum_taub(p::AbstractArray{T,1}) where T <: Real n = length(p) S = Vector{T}(undef,n+1) poisbin_sum_taub!(S,p) return S end function poisbin_sum_taub_dervs_2(p::AbstractVector{T}) where T <: Real n = length(p) S = Vector{T}(undef,n+1) H = Array{T,3}(undef,n,n,n+1) poisbin_sum_taub!(S, p) poisbin_sum_taub_dervs_2!(H, p) return S, H end function poisbin_sum_taub_dervs_2!(H::AbstractArray{T,3}, p::AbstractVector{T}) where T <: Real n = length(p) pj=zero(T) @inbounds for j in 1:n pj = p[j] p[j] = zero(T) for k in j:n pk = p[k] p[k] = zero(T) @views poisbin_sum_taub!(H[j,k,:], p) H[k,j,:] .= H[j,k,:] p[k] = pk end p[j] = pj end end function poisbin_dc_fft!(S::AbstractArray{T,1}, tempS::AbstractArray{T,2}, p::AbstractArray{T,1}, k::D, group_sizes::AbstractArray{D,1}, group_start_idx::AbstractArray{D,1}) where {T <: Real, D <: Integer} n = length(p) M = size(tempS)[2] #convolve initial subsets @inbounds for g in 1:M @views poisbin_sum_taub!(tempS[1:(group_sizes[g]+1),g], p[group_start_idx[g]:(group_start_idx[g]+group_sizes[g]-1)]) group_sizes[g] += 1 end while M > 1 next_avail_col = 1 @inbounds for g in 1:2:M m = group_sizes[g] + group_sizes[g+1] - 1 @views filt!(S[1:m], tempS[1:group_sizes[g],g], 1, tempS[1:m,g+1]) @views copyto!(tempS[1:m,next_avail_col], S[1:m]) group_sizes[next_avail_col] = m next_avail_col += 1 end M = div(M,2) end end function poisbin_dc_fft(p::AbstractArray{T,1}, k::D=2) where {T <: Real, D <: Integer} n = length(p) k = min(floor(D, log2(n)), k) M = 2^k L = n/M r = rem(n,M) / M group_sizes = [fill(floor(D, L), D(M*(1-r))); fill(ceil(D, L), D(M*r))] group_start_idx = cumsum(group_sizes) .- (group_sizes .- 1) S = Vector{T}(undef,n+1) tempS = zeros(T, n+1,M) poisbin_dc_fft!(S, tempS, p, k, group_sizes, group_start_idx) return S end function poisbin_dc_group!(S::AbstractArray{T,1}, tempS::AbstractArray{T,2}, p::AbstractArray{T,1}, k::D, group_sizes::AbstractArray{D,1}, group_start_idx::AbstractArray{D,1}) where {T <: Real, D <: Integer} n = length(p) M = size(tempS)[2] tempS .= zero(T) #convolve initial subsets @inbounds for g in 1:M @views poisbin_sum_taub!(tempS[1:(group_sizes[g]+1),g], p[group_start_idx[g]:(group_start_idx[g]+group_sizes[g]-1)]) group_sizes[g] += 1 end while M > 1 next_avail_col = 1 @inbounds for g in 1:2:M m = group_sizes[g] + group_sizes[g+1] - 1 @views join_groups!(S[1:m], tempS[1:group_sizes[g+1],g+1], tempS[1:group_sizes[g],g]) @views copyto!(tempS[1:m,next_avail_col], S[1:m]) group_sizes[next_avail_col] = m next_avail_col += 1 end M = div(M,2) end end function poisbin_dc_group(p::AbstractArray{T,1}, k::D=2) where {T <: Real, D <: Integer} n = length(p) k = min(floor(D, log2(n)), k) M = 2^k L = n/M r = rem(n,M) / M group_sizes = [fill(floor(D, L), D(M*(1-r))); fill(ceil(D, L), D(M*r))] group_start_idx = cumsum(group_sizes) .- (group_sizes .- 1) S = Vector{T}(undef,n+1) tempS = zeros(T, n+1,M) poisbin_dc_group!(S, tempS, p, k, group_sizes, group_start_idx) return S end function poisbin_chen!(S::AbstractArray{T,1}, P::AbstractArray{T,1}, p::AbstractArray{T,1}) where T <: Real n = length(p) S[1] = one(T) @inbounds for i in 1:n S[1] *= (1 - p[i]) for j in 1:n P[j] += (p[i] / (1 - p[i])) ^ j end end @inbounds for i in 2:(n+1) k = i-1 for j in 1:k S[i] += (-one(T))^(j-1) * S[k-j+1] * P[j] end S[i] /= k end end function poisbin_chen(p::AbstractArray{T,1}) where T <: Real n = length(p) S = zeros(T, n+1) P = zeros(T, n) poisbin_chen!(S,P,p) return S end
ElementarySymmetricFunctions
https://github.com/bdeonovic/ElementarySymmetricFunctions.jl.git
[ "MIT" ]
0.1.0
73ff501c057bda1c12679545d85ecf11b2765b19
code
959
function join_groups!(S::AbstractArray{T,1}, gamma1::AbstractArray{T,1}, gamma2::AbstractArray{T,1}) where T <: Real k1 = length(gamma1) - 1 k2 = length(gamma2) - 1 fill!(S, zero(T)) @inbounds for g in 1:(k1+k2+1) for i in 1:g S[g] += (g-i+1 > length(gamma2)) || (i > length(gamma1)) ? 0.0 : gamma1[i] * gamma2[g-i+1] end end end function join_groups_reg!(S::AbstractArray{T,1}, gamma1::AbstractArray{T,1}, gamma2::AbstractArray{T,1}) where T <: Real k1 = length(gamma1) - 1 k2 = length(gamma2) - 1 fill!(S, zero(T)) S[1] = one(T) @inbounds for g in 2:(k1+k2+1) for i in 1:g S[g] += (g-i+1 > length(gamma2)) || (i > length(gamma1)) ? 0.0 : gamma1[i] * gamma2[g-i+1] * exp(lbinom(k1,i-1)+lbinom(k2,g-i)-lbinom(k1+k2,g-1)) end end end function lbinom(n::T, s::T) where T <: Real -log(n+1.0) - logbeta(n-s+1.0, s+1.0) end
ElementarySymmetricFunctions
https://github.com/bdeonovic/ElementarySymmetricFunctions.jl.git
[ "MIT" ]
0.1.0
73ff501c057bda1c12679545d85ecf11b2765b19
code
1232
using ElementarySymmetricFunctions using Test function naive_esf(x::AbstractVector{T}) where T <: Real n = length(x) S = zeros(T, n+1) states = hcat(reverse.(digits.(0:2^n-1,base=2,pad=n))...)' r_states = vec(mapslices(sum, states, dims=2)) for r in 0:n idx = findall(r_states .== r) S[r+1] = sum(mapslices(x->prod(x[x .!= 0]), states[idx, :] .* x', dims=2)) end return S end function naive_pb(p::AbstractVector{T}) where T <: Real x = p ./ (1 .- p) naive_esf(x) * prod(1 ./ (1 .+ x)) end @testset "ElementarySymmetricFunctions.jl" begin x = [3.5118, .6219, .2905, .8450, 1.8648] n = length(x) naive_sol = naive_esf(x) naive_sol_reg = naive_sol ./ binomial.(n,0:n) @test esf_sum(x) β‰ˆ naive_sol @test esf_sum_reg(x) β‰ˆ naive_sol_reg @test esf_dc_group(x) β‰ˆ naive_sol @test esf_dc_group_reg(x) β‰ˆ naive_sol_reg @test esf_dc_fft(x) β‰ˆ naive_sol p = x ./ (1 .+ x) naive_sol = naive_pb(p) @test poisbin_sum_taub(p) β‰ˆ naive_sol @test poisbin_fft(p) β‰ˆ naive_sol @test poisbin_fft_cf(p) β‰ˆ naive_sol @test poisbin_chen(p) β‰ˆ naive_sol @test poisbin_dc_fft(p) β‰ˆ naive_sol @test poisbin_dc_group(p) β‰ˆ naive_sol end
ElementarySymmetricFunctions
https://github.com/bdeonovic/ElementarySymmetricFunctions.jl.git
[ "MIT" ]
0.1.0
73ff501c057bda1c12679545d85ecf11b2765b19
docs
821
# ElementarySymmetricFunctions [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://bdeonovic.github.io/ElementarySymmetricFunctions.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://bdeonovic.github.io/ElementarySymmetricFunctions.jl/dev) [![Build Status](https://travis-ci.com/bdeonovic/ElementarySymmetricFunctions.jl.svg?branch=master)](https://travis-ci.com/bdeonovic/ElementarySymmetricFunctions.jl) [![Build Status](https://ci.appveyor.com/api/projects/status/github/bdeonovic/ElementarySymmetricFunctions.jl?svg=true)](https://ci.appveyor.com/project/bdeonovic/ElementarySymmetricFunctions-jl) [![Coverage](https://codecov.io/gh/bdeonovic/ElementarySymmetricFunctions.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/bdeonovic/ElementarySymmetricFunctions.jl)
ElementarySymmetricFunctions
https://github.com/bdeonovic/ElementarySymmetricFunctions.jl.git
[ "MIT" ]
0.1.0
73ff501c057bda1c12679545d85ecf11b2765b19
docs
164
```@meta CurrentModule = ElementarySymmetricFunctions ``` # ElementarySymmetricFunctions ```@index ``` ```@autodocs Modules = [ElementarySymmetricFunctions] ```
ElementarySymmetricFunctions
https://github.com/bdeonovic/ElementarySymmetricFunctions.jl.git
[ "MIT" ]
0.1.1
2fb3a2fb3e915c882ace77d2acbf2f515f0533c0
code
250
module XCrySDenStructureFormat using AtomsBase using Unitful using UnitfulAtomic using PeriodicTable: PeriodicTable const LENGTH_UNIT = u"Γ…" const FORCE_UNIT = u"Eh_au" / u"Γ…" export load_xsf export save_xsf include("fileio.jl") end # module XSD
XCrySDenStructureFormat
https://github.com/azadoks/XCrySDenStructureFormat.jl.git
[ "MIT" ]
0.1.1
2fb3a2fb3e915c882ace77d2acbf2f515f0533c0
code
11237
const KNOWN_PERIODIC_KEYWORDS = ("PRIMVEC", "CONVVEC", "PRIMCOORD", "CONVCOORD") # Count the number of boundary conditions which are AtomsBase.Periodic function count_periodic_bcs(bcs::AbstractVector{<:BoundaryCondition}) return count(Base.Fix2(isa, Periodic), bcs) end count_periodic_bcs(system::AbstractSystem) = count_periodic_bcs(boundary_conditions(system)) function check_system_properties(system::AbstractSystem) system_keys = keys(system) for key in system_keys if !in(key, (:bounding_box, :boundary_conditions,)) @warn "Ignoring unsupported property $(key)" end end end function check_atom_properties(atom::Atom) atom_keys = keys(atom) for key in atom_keys if !in(key, (:atomic_symbol, :atomic_number, :atomic_mass, :position, :force,)) @warn "Ignoring unsupported atomic property $(key)" end end end function check_atomic_mass(atom::Atom) if haskey(PeriodicTable.elements, atomic_symbol(atom)) if atomic_mass(atom) != PeriodicTable.elements[atomic_symbol(atom)].atomic_mass @warn "Atom atomic_mass in XSF cannot be mutated" end end end function check_atomic_symbol(atom::Atom) if atomic_symbol(atom) != Symbol(PeriodicTable.elements[atomic_number(atom)].symbol) @warn "Atom atomic_symbol in XSF must agree with atomic_mass" end end function check_system(system::AbstractSystem) check_system_properties(system) check_atom_properties.(system) check_atomic_mass.(system) check_atomic_symbol.(system) return nothing end # Custom version of `iterate(::Base.EachLine)` which cleans lines for parsing # and skips comment / empty lines function iterate_xsf(itr::Base.EachLine) eof(itr.stream) && return itr.ondone() line = readline(itr.stream; keep=itr.keep) clean_line = strip(first(split(line, "#"))) isempty(clean_line) && return iterate_xsf(itr) return string(clean_line) end # Get boundary conditions in the XSF convention from the system type keyword # NOTE: the XSF documentation talks about a keyword `MOLECULE`, but it isn't # mentioned in the ase.io parser nor in any of the examples, so it is not # implemented here function parse_boundary_conditions(line) occursin("ATOMS", line) && return [DirichletZero(), DirichletZero(), DirichletZero()] occursin("POLYMER", line) && return [Periodic(), DirichletZero(), DirichletZero()] occursin("SLAB", line) && return [Periodic(), Periodic(), DirichletZero()] occursin("CRYSTAL", line) && return [Periodic(), Periodic(), Periodic()] return error("Unknown structure type $(line)") end # Parse blocks like PRIMVEC and CONVVEC function parse_vec_block(T::Type{<:Real}, lines) return map(1:3) do _ return parse.(T, split(iterate_xsf(lines))) .* LENGTH_UNIT end end # Parse an atomic position line, which is formed as either: # atomic_number x y z # or # atomic_number x y z Fx Fy Fz function parse_coord_line(T::Type{<:Real}, line) words = split(line) number = parse(Int, words[1]) atomic_symbol = Symbol(PeriodicTable.elements[number].symbol) position = parse.(T, words[2:4]) .* LENGTH_UNIT if length(words) == 7 force = parse.(T, words[5:7]) .* FORCE_UNIT return Atom(; atomic_symbol, position, force=force) else return Atom(; atomic_symbol, position) end end # Parse an entire block of atomic coordinates in a periodic system, # i.e. when the number of atoms is provided explicitly function parse_coord_block(T::Type{<:Real}, lines) line = iterate_xsf(lines) n_atoms = parse(Int, first(split(line))) return map(1:n_atoms) do _ return parse_coord_line(T, iterate_xsf(lines)) end end # Parse an arbitrary block from a periodic file # Supported keywords are PRIMVEC, CONVVEC, PRIMCOORD, and CONVCOORD, i.e. # DATAGRID_[2,3]D blocks are not (yet) supported function parse_xsf_block(T::Type{<:Real}, keyword, lines) if keyword in ("PRIMVEC", "CONVVEC") return parse_vec_block(T, lines) elseif keyword in ("PRIMCOORD", "CONVCOORD") return parse_coord_block(T, lines) else error("Unknown keyword $(keyword)") end end # Parse a frame (ANIMSTEP in XSF lingo) from a periodic file # The first frame will have at least PRIMVEC and PRIMCOORD and possibly CONVVEC # and CONVCOORD blocks # Following frames will have at least PRIMCOORD (PRIMVEC and others are optional) # If a frame doesn't have PRIMVEC, the bounding box (PRIMVEC) from the previous frame needs # to be brought forward function parse_periodic_frame(T::Type{<:Real}, lines, bcs, previous_frame) should_parse = true i = 0 io_pos = position(lines.stream) blocks = Dict() # Maximum 4 blocks (PRIMVEC, PRIMCOORD, CONVVEC, CONVCOORD) while should_parse && i <= 4 line = iterate_xsf(lines) if isnothing(line) # We've reached the end of the file should_parse = false elseif (keyword = first(split(line))) in KNOWN_PERIODIC_KEYWORDS if haskey(blocks, keyword) # If we've already seen this keyword, we're in the next block should_parse = false seek(lines.stream, io_pos) # Go back to the keyword line else blocks[keyword] = parse_xsf_block(T, keyword, lines) io_pos = position(lines.stream) end else # We've reached the end of the frame should_parse = false seek(lines.stream, io_pos) end end @assert haskey(blocks, "PRIMCOORD") "Found no PRIMCOORD block in the current frame" if !haskey(blocks, "PRIMVEC") if !isnothing(previous_frame) blocks["PRIMVEC"] = bounding_box(previous_frame) else error("Found no PRIMVEC block in the current frame and have no previous frame") end end return atomic_system(blocks["PRIMCOORD"], blocks["PRIMVEC"], bcs) end # Parse a frame (ANIMSTEP in XSF lingo) from a non-periodic file (ATOMS) function parse_atoms_frame(T::Type{<:Real}, lines) line = iterate_xsf(lines) atoms = [] # Go until the end of the file or until we see another frame (ATOMS) or data grid (BEGIN) while !isnothing(line) && !startswith(line, "ATOMS") && !startswith(line, "BEGIN") atom = parse_coord_line(T, line) push!(atoms, atom) line = iterate_xsf(lines) end return isolated_system(atoms) end # Load all the frames from an XSF file function load_xsf(T::Type{<:Real}, file::Union{AbstractString,IOStream}) lines = eachline(file; keep=false) # The first line should be "ANIMSTEPS [N]" for a trajectory (in which case, the system # type is in the second line) or one of the system type keywords (ATOMS, POLYMER, SLAB, # CRYSTAL), in which case the number of frames is 1 line = iterate_xsf(lines) if occursin("ANIMSTEPS", line) n_frames = parse(Int, last(split(line))) line = iterate_xsf(lines) else n_frames = 1 end bcs = BoundaryCondition[] try bcs = parse_boundary_conditions(line) catch return [] end frames = AbstractSystem{3}[] for _ in 1:n_frames # Check how many boundary conditions are Periodic to determine whether we have # ATOMS or one of POLYMER, SLAB, CRYSTAL if count(Base.Fix2(isa, AtomsBase.Periodic), bcs) == 0 push!(frames, parse_atoms_frame(T, lines)) else # We need to pass the previous frame because if the unit cell is fixed, # it is written only in the first frame and we need to pass it through # frame-by-frame previous_frame = isempty(frames) ? nothing : last(frames) push!(frames, parse_periodic_frame(T, lines, bcs, previous_frame)) end end return frames end # Set a default floating-point type of Float64 load_xsf(file::Union{AbstractString,IOStream}) = load_xsf(Float64, file) function write_system_type(io::IO, n_periodic_bcs::Int) types = Dict{Int,String}(1 => "POLYMER", 2 => "SLAB", 3 => "CRYSTAL") println(io, types[n_periodic_bcs]) return nothing end function write_atom(io::IO, atom) n = atomic_number(atom) x, y, z = ustrip.(uconvert.(LENGTH_UNIT, position(atom))) if haskey(atom, :force) fx, fy, fz = ustrip.(uconvert.(FORCE_UNIT, get(atom, :force, nothing))) println(io, "$(n) $(x) $(y) $(z) $(fx) $(fy) $(fz)") else println(io, "$(n) $(x) $(y) $(z)") end return nothing end # Write the atomic numbers, positions[, forces] of an ATOMS block or [PRIM,CONV]COORD block function write_atoms(io::IO, system::AbstractSystem; header="") !isempty(header) && println(io, strip(header)) return map(Base.Fix1(write_atom, io), system[:]) end # Write a bounding box block (optionally with a header, i.e. PRIMVEC or CONVVEC) function write_bounding_box(io::IO, system::AbstractSystem; header="") !isempty(header) && println(io, strip(header)) for i in 1:3 x, y, z = ustrip.(uconvert.(LENGTH_UNIT, bounding_box(system)[i])) println(io, "$(x) $(y) $(z)") end return nothing end # Write the PRIMVEC, CONVVEC, and PRIMCOORD blocks which make up a frame of a # periodic trajectory function write_periodic_frame(io::IO, system::AbstractSystem; frame="") n_atoms = length(system) write_bounding_box(io, system; header="PRIMVEC $(frame)") write_bounding_box(io, system; header="CONVVEC $(frame)") write_atoms(io, system; header="PRIMCOORD $(frame)\n$(n_atoms) 1") return nothing end # Write an ATOMS frame or periodic frame depending on the periodicity of the system # This function is used for writing the frames of animated files (not for single # structures). function write_frame(io::IO, system::AbstractSystem; frame="") if count_periodic_bcs(system) == 0 write_atoms(io, system; header="ATOMS $(frame)") else write_periodic_frame(io, system; frame) end return nothing end function save_xsf(io::IO, frames::AbstractVector{<:AbstractSystem}) # Check the frames and warn about unsupported properties. check_system.(frames) # Make sure all structures have the same boundary conditions and get those boundary # conditions. bcs = only(unique(boundary_conditions.(frames))) # Count the number of periodic boundary conditions. n_periodic_bcs = count(Base.Fix2(isa, Periodic), bcs) # Write the animation line if more than one frame is provided. is_animated = length(frames) > 1 is_animated && println(io, "ANIMSTEPS $(length(frames))") # For periodic systems, write the system type line. n_periodic_bcs > 0 && write_system_type(io, n_periodic_bcs) # Write the structural and force information for each frame. for i in eachindex(frames) write_frame(io, frames[i], frame=is_animated ? i : "") end return nothing end function save_xsf(file::AbstractString, frames::AbstractVector{<:AbstractSystem}) open(file, "w") do io return save_xsf(io, frames) end end function save_xsf(file_or_io::Union{IO, AbstractString}, frame::AbstractSystem) return save_xsf(file_or_io, [frame]) end
XCrySDenStructureFormat
https://github.com/azadoks/XCrySDenStructureFormat.jl.git
[ "MIT" ]
0.1.1
2fb3a2fb3e915c882ace77d2acbf2f515f0533c0
docs
1211
# XCrySDenStructureFormat.jl This package provides read / write functionality for [XCrySDen XSF](http://www.xcrysden.org/doc/XSF.html) atomic structure files. It is **strongly** recommended **not** to use this package directly, but rather through [AtomsIO.jl](https://github.com/mfherbst/AtomsIO.jl), which provides a uniform interface (based on [AtomsBase](https://github.com/JuliaMolSim/AtomsBase.jl)) for reading and writing a large range of atomistic structure files. ## Feature support Currently supports - r/w of molecular structures (`ATOMS`) - r/w of periodic structures (`POLYMER` 1D, `SLAB` 2D, `CRYSTAL` 3D) - r/w of molecular/periodic trajectories (`.axsf` / `ANIMSTEPS`) - r/w of forces, using the data key `:force` in parsed `AtomsBase.Atom` instances Currently does _not_ support - Data grids (2D and 3D) - Band grids (`.bxsf`) ## Installation This package is registered in the General registry, so installation of the latest stable release is as simple as pressing `]` to enter `pkg>` mode in the Julia REPL, and then entering: ```julia pkg> add XCrySDenStructureFormat ``` or for the development version: ```julia pkg> dev https://github.com/azadoks/XCrySDenStructureFormat.jl ```
XCrySDenStructureFormat
https://github.com/azadoks/XCrySDenStructureFormat.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
1318
using Pkg CI = get(ENV, "CI", nothing) == "true" || get(ENV, "GITHUB_TOKEN", nothing) !== nothing CI && Pkg.activate(@__DIR__) CI && Pkg.instantiate() using Documenter, Neighborhood using DocumenterTools: Themes for w in ("light", "dark") header = read(joinpath(@__DIR__, "style.scss"), String) theme = read(joinpath(@__DIR__, "$(w)defs.scss"), String) write(joinpath(@__DIR__, "$(w).scss"), header*"\n"*theme) end Themes.compile(joinpath(@__DIR__, "light.scss"), joinpath(@__DIR__, "src/assets/themes/documenter-light.css")) Themes.compile(joinpath(@__DIR__, "dark.scss"), joinpath(@__DIR__, "src/assets/themes/documenter-dark.css")) # %% actually make the docs makedocs( modules=[Neighborhood], sitename= "Neighborhood.jl", authors = "George Datseris.", format = Documenter.HTML( prettyurls = CI, assets = [ "assets/logo.ico", asset("https://fonts.googleapis.com/css?family=Montserrat|Source+Code+Pro&display=swap", class=:css), ], collapselevel = 2, ), doctest=false, pages = [ "Public API" => "index.md", "Dev Docs" => "dev.md", ] ) if CI deploydocs( repo = "github.com/JuliaNeighbors/Neighborhood.jl.git", target = "build", push_preview = true ) end
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
316
module Neighborhood using Distances export Euclidean, Chebyshev, Cityblock, Minkowski include("util.jl") include("api.jl") include("theiler.jl") include("bruteforce.jl") include("kdtree.jl") include("Testing.jl") "Currently supported search structures" const SSS = [BruteForce, KDTree] end # module Neighborhood
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
4742
"""Utilities for testing search structures.""" module Testing using Test using Neighborhood using Neighborhood: bruteforcesearch export cmp_search_results, cmp_bruteforce, search_allfuncs, check_search_results, test_bulksearch """ Get arguments tuple to `search`, using the 3-argument version if `skip=nothing`. """ get_search_args(ss, query, t, skip) = isnothing(skip) ? (ss, query, t) : (ss, query, t, skip) """ cmp_search_results(results...)::Bool Compare two or more sets of search results (`(idxs, ds)` tuples) and check that they are identical up to ordering. """ function cmp_search_results(results::Tuple{Vector, Vector}...) length(results) < 2 && error("Expected at least two sets of results") idxs1, ds1 = results[1] rest = results[2:end] idxset = Set(idxs1) dist_map = Dict(i => d for (i, d) in zip(idxs1, ds1)) for (idxs_i, ds_i) in rest Set(idxs_i) == idxset || return false all(dist_map[i] == d for (i, d) in zip(idxs_i, ds_i)) || return false end return true end """ cmp_bruteforce(results, data, metric, query, t[, skip])::Bool Check whether `results` returned from [`search`](@ref) match those computed with [`Neighborhood.bruteforcesearch`](@ref)`(data, metric, query, t[, skip])` (up to order). `skip` may be `nothing`, which calls the 4-argument method. **Caution:** results of a `NeighborNumber` search are only expected to match if the distances from `query` to each point in `data` are all distinct, otherwise there may be some ambiguity in which data points are included. """ function cmp_bruteforce(results, data, metric, query, t, skip=nothing) bf = bruteforcesearch(data, metric, query, t, skip) return cmp_search_results(results, bf) end """ search_allfuncs(ss, query, t[, skip]) Call [`search`](@ref)`(ss, query, t[, skip])` and check that the result matches those for [`isearch`](@ref) and [`knn`](@ref)/[`inrange`](@ref) (depending on search type) for the equivalent arguments. `skip` may be `nothing`, in which case the 3-argument methods of all functions will be called. Uses `Test.@test` internally. """ function search_allfuncs(ss, query, t, skip=nothing) args = get_search_args(ss, query, t, skip) idxs, ds = result = search(args...) @test Set(isearch(args...)) == Set(idxs) cmp_search_results(result, _alt_search_func(args...)) return result end # Call inrange() or knn() given arguments to search() function _alt_search_func(ss, query, t::WithinRange, args...) inrange(ss, query, t.r, args...) end function _alt_search_func(ss, query, t::NeighborNumber, args...) knn(ss, query, t.k, args...) end """ check_search_results(data, metric, results, query, t[, skip]) Check that `results = search(ss, query, t[, skip])` make sense for a search structure `ss` with data `data` and metric `metric`. Note that this does not calculate the known correct value to compare to (which may be expensive for large data sets), just that the results have the expected properties. Use [`cmp_bruteforce`] for a more exact test. `skip` may be `nothing`, in which case the 3-argument methods of all functions will be called. Uses `Test.@test` internally. Checks the following: * `results` is a 2-tuple of `(idxs, ds)`. * `ds[i] == metric(query, data[i])`. * `skip(i)` is false for all `i` in `idxs`. * For `t::NeighborNumber`: * `length(idxs) <= t.k`. * For `t::WithinRange`: * `d <= t.r` for all `d` in `ds`. """ function check_search_results(data, metric, results, query, t, skip=nothing) idxs, ds = results @test ds == [metric(query, data[i]) for i in idxs] !isnothing(skip) && @test !any(map(skip, idxs)) _check_search_results(data, metric, results, query, t, skip) end function _check_search_results(data, metric, (idxs, ds), query, t::NeighborNumber, skip) @test length(idxs) <= t.k end function _check_search_results(data, metric, (idxs, ds), query, t::WithinRange, skip) @test all(<=(t.r), ds) end """ test_bulksearch(ss, queries, t[, skip=nothing]) Test that [`bulksearch`](@ref) gives the same results as individual applications of [`search`](@ref). `skip` may be `nothing`, in which case the 3-argument methods of both functions will be called. Uses `Test.@test` internally. """ function test_bulksearch(ss, queries, t, skip=nothing) args = get_search_args(ss, queries, t, skip) bidxs, bds = bulksearch(args...) @test bulkisearch(args...) == bidxs for (i, query) in enumerate(queries) result = if isnothing(skip) search(ss, query, t) else iskip = j -> skip(i, j) search(ss, query, t, iskip) end @test result == (bidxs[i], bds[i]) end end end # module
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
5277
"`alwaysfalse(ags...; kwargs...) = false`" alwaysfalse(ags...; kwargs...) = false export WithinRange, NeighborNumber, SearchType export searchstructure export search, isearch, inrange, knn, inrangecount export bulksearch, bulkisearch """ Supertype of all possible search types of the Neighborhood.jl common API. """ abstract type SearchType end """ searchstructure(S, data, metric; kwargs...) β†’ ss Create a search structure `ss` of type `S` (e.g. `KDTree, BKTree, VPTree` etc.) based on the given `data` and `metric`. The data types and supported metric types are package-specific, but typical choices are subtypes of `<:Metric` from Distances.jl. Some common metrics are re-exported by Neighborhood.jl. """ function searchstructure(::Type{S}, data::D, metric::M; kwargs...) where {S, D, M} error("Given type $(S) has not implemented the Neighborhood.jl public API "* "for data type $(D) and metric type $(M).") end """ WithinRange(r::Real) <: SearchType Search type representing all neighbors with distance `≀ r` from the query (according to the search structure's metric). """ struct WithinRange{R} <: SearchType; r::R; end """ NeighborNumber(k::Int) <: SearchType Search type representing the `k` nearest neighbors of the query (or approximate neighbors, depending on the search structure). """ struct NeighborNumber <: SearchType; k::Int; end """ datatype(::Type{S}) :: Type Get the type of the data points (arguments to the metric function) of a search struture of type `S`. """ datatype(::Type) = Any datatype(ss) = datatype(typeof(ss)) """ getmetric(ss) Get the metric function used by the search structure `ss`. """ function getmetric end """ search(ss, query, t::SearchType [, skip]; kwargs... ) β†’ idxs, ds Perform a neighbor search in the search structure `ss` for the given `query` with search type `t` (see [`SearchType`](@ref)). Return the indices of the neighbors (in the original data) and the distances from the query. Available search types are: - [`NeighborNumber`](@ref) - [`WithinRange`](@ref) Optional `skip` function takes as input the index of the found neighbor (in the original data) `skip(i)` and returns `true` if this neighbor should be skipped. Package-specific keywords are possible. """ function search(ss::S, query::Q, t::T; kwargs...) where {S, Q, T<: SearchType} error("Given type $(S) has not implemented the Neighborhood.jl public API "* "for data type $(Q) and search type $(T).") end function search(ss::S, query::Q, t::T, skip; kwargs...) where {S, Q, T<: SearchType} error("Given type $(S) has not implemented the Neighborhood.jl public API "* "for data type $(Q), search type $(T) and skip function.") end """ isearch(args...; kwargs... ) β†’ idxs Same as [`search`](@ref) but only return the neighbor indices. """ isearch(args...; kwargs...) = search(args...; kwargs...)[1] """ inrange(ss, query, r::Real [, skip]; kwargs...) [`search`](@ref) for `WithinRange(r)` search type. """ inrange(a, b, r, args...; kwargs...) = search(a, b, WithinRange(r), args...; kwargs...) """ inrangecount(ss, query, r::Real; kwargs....) β†’ n::Int Count the amount of points `n` in the search structure `ss` that are witnin range `r` of the `query`. Typically provided that performs better than just getting the `length` of [`search`](@ref) with `WithinRange(r)`. """ function inrangecount(a, b, r; kwargs...) idxs = isearch(a, b, WithinRange(r); kwargs...) return length(idxs) end """ knn(ss, query, k::Int [, skip]; kwargs...) [`search`](@ref) for `NeighborNumber(k)` search type. """ knn(a, b, k::Integer, args...; kwargs...) = search(a, b, NeighborNumber(k), args...; kwargs...) ########################################################################################### # Bulk ########################################################################################### """ bulksearch(ss, queries, t::SearchType [, skip]; kwargs... ) β†’ vec_of_idxs, vec_of_ds Same as [`search`](@ref) but many searches are done for many input query points. In this case `skip` takes two arguments `skip(i, j)` where now `j` is simply the index of the query that we are currently searching for (`j` is the index in `queries` and goes from 1 to `length(queries)`). """ function bulksearch(ss, queries, t; kwargs...) i1, d1 = search(ss, queries[1], t; kwargs...) idxs, ds = [i1], [d1] sizehint!(idxs, length(queries)) sizehint!(ds, length(queries)) for j in 2:length(queries) i, d = search(ss, queries[j], t; kwargs...) push!(idxs, i); push!(ds, d) end return idxs, ds end function bulksearch(ss, queries, t, skip; kwargs...) i1, d1 = search(ss, queries[1], t, i -> skip(i, 1); kwargs...) idxs, ds = [i1], [d1] sizehint!(idxs, length(queries)) sizehint!(ds, length(queries)) for j in 2:length(queries) sk = k -> skip(j, k) i, d = search(ss, queries[j], t, sk; kwargs...) push!(idxs, i); push!(ds, d) end return idxs, ds end """ bulkisearch(ss, queries, t::SearchType [, skip]; kwargs... ) β†’ vec_of_idxs Same as [`bulksearch`](@ref) but return only the indices. """ bulkisearch(args...; kwargs...) = bulksearch(args...; kwargs...)[1]
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
1531
export BruteForce """ bruteforcesearch(data, metric, query, t::SearchType[, skip]) Perform a brute-force search of type `t` against data array `data` (by calculating the metric for `query` and and every point in `data`). """ function bruteforcesearch end function bruteforcesearch(data, metric, query, t::NeighborNumber, skip=nothing) dists = [metric(query, d) for d in data] indices = sortperm(dists) !isnothing(skip) && filter!(i -> !skip(i), indices) length(indices) > t.k && resize!(indices, t.k) return indices, dists[indices] end function bruteforcesearch(data, metric, query, t::WithinRange, skip=nothing) indices = Int[] dists = metricreturntype(metric, first(data))[] for (i, datum) in enumerate(data) !isnothing(skip) && skip(i) && continue d = metric(query, datum) if d <= t.r push!(indices, i) push!(dists, d) end end return indices, dists end """ BruteForce A "search structure" which simply performs a brute-force search through the entire data array. """ struct BruteForce{T, M} data::Vector{T} metric::M BruteForce(data::Vector, metric) = new{eltype(data), typeof(metric)}(data, metric) end searchstructure(::Type{BruteForce}, data, metric) = BruteForce(data, metric) datatype(::Type{<:BruteForce{T}}) where T = T getmetric(bf::BruteForce) = bf.metric function search(bf::BruteForce, query, t::SearchType, skip=alwaysfalse) bruteforcesearch(bf.data, bf.metric, query, t, skip) end
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
4120
import NearestNeighbors import NearestNeighbors: KDTree export KDTree ########################################################################################### # Standard API ########################################################################################### function Neighborhood.searchstructure(::Type{KDTree}, data, metric; kwargs...) return KDTree(data, metric; kwargs...) end datatype(::Type{<:KDTree{V}}) where V = V getmetric(tree::KDTree) = tree.metric function Neighborhood.search(tree::KDTree, query, t::NeighborNumber, skip=alwaysfalse; sortds=true) return NearestNeighbors.knn(tree, query, t.k, sortds, skip) end function Neighborhood.search(tree::KDTree, query, t::WithinRange, skip=alwaysfalse; sortds=true) idxs = NearestNeighbors.inrange(tree, query, t.r) skip β‰  alwaysfalse && filter!(!skip, idxs) ds = _NN_get_ds(tree, query, idxs) if sortds # sort according to distances sp = sortperm(ds) sort!(ds) idxs = idxs[sp] end return idxs, ds end function Neighborhood.inrangecount(tree::KDTree, query, r::Real) return NearestNeighbors.inrangecount(tree, query, r) end function _NN_get_ds(tree::KDTree, query, idxs) if tree.reordered ds = [ evaluate(tree.metric, query, tree.data[ findfirst(isequal(i), tree.indices) ]) for i in idxs] else ds = [evaluate(tree.metric, query, tree.data[i]) for i in idxs] end end # Performance method when distances are not required (can't sort then) function Neighborhood.isearch(tree::KDTree, query, t::WithinRange, skip=alwaysfalse; sortds=false) idxs = NearestNeighbors.inrange(tree, query, t.r, sortds) skip β‰  alwaysfalse && filter!(!skip, idxs) return idxs end ########################################################################################### # Bulk and skip predicates ########################################################################################### function Neighborhood.bulksearch(tree::KDTree, queries, t::NeighborNumber; sortds=true) return NearestNeighbors.knn(tree, queries, t.k, sortds) end # no easy skip version for knn bulk search function Neighborhood.bulksearch(tree::KDTree, queries, t::NeighborNumber, skip; sortds=true) k, N = t.k, length(queries) dists = [Vector{eltype(queries[1])}(undef, k) for _ in 1:N] idxs = [Vector{Int}(undef, k) for _ in 1:N] for j in 1:N # Notice that this `_skip` definition matches our API definition! _skip = i -> skip(i, j) @inbounds NearestNeighbors.knn_point!(tree, queries[j], sortds, dists[j], idxs[j], _skip) end return idxs, dists end # but there is an easy skip version for inrange bulk isearch! function Neighborhood.bulkisearch(tree::KDTree, queries, t::WithinRange, skip=alwaysfalse) vec_of_idxs = NearestNeighbors.inrange(tree, queries, t.r) skip β‰  alwaysfalse && vecskipfilter!(vec_of_idxs, skip) return vec_of_idxs end function Neighborhood.bulksearch(tree::KDTree, queries, t::WithinRange, skip=alwaysfalse; sortds=true) vec_of_idxs = NearestNeighbors.inrange(tree, queries, t.r) vec_of_ds = [ _NN_get_ds(tree, queries[j], vec_of_idxs[j]) for j in 1:length(queries)] skip β‰  alwaysfalse && vecskipfilter!(vec_of_idxs, vec_of_ds, skip) if sortds # sort according to distances for i in 1:length(queries) @inbounds ds = vec_of_ds[i] length(ds) ≀ 1 && continue sp = sortperm(ds) sort!(ds) vec_of_idxs[i] = vec_of_idxs[i][sp] end end return vec_of_idxs, vec_of_ds end function vecskipfilter!(vec_of_idxs, skip) for j in 1:length(vec_of_idxs) @inbounds idxs = vec_of_idxs[j] filter!(i -> !skip(i, j), idxs) end return vec_of_idxs end function vecskipfilter!(vec_of_idxs, vec_of_ds, skip) for j in 1:length(vec_of_idxs) @inbounds idxs = vec_of_idxs[j] todelete = [i for i in 1:length(idxs) if skip(idxs[i], j)] deleteat!(idxs, todelete) deleteat!(vec_of_ds[j], todelete) end return vec_of_idxs end
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
1448
""" Theiler(w::Int, nidxs = nothing) Struct that generates skip functions representing a Theiler window of size `w β‰₯ 0`. This is useful when the query of a search is also part of the data used to create the search structure, typical in timeseries analysis. In this case, you do not want to find the query itself as its neighbor, and you typically want to avoid points with indices very close to the query as well. Giving `w=0` excludes the query itself as its neighbor, see the boolean expressions below. Let `theiler = Theiler(w)`. Then, `theiler` by itself can be used as a skip function in [`bulksearch`](@ref), because `theiler(i, j) ≑ abs(i-j) ≀ w`. In addition, if the given argument `nidxs` is _not_ `nothing`, then `theiler(i, j) ≑ abs(i-nidxs[j]) ≀ w`. (useful to give as `nidxs` the indices of the queries in the original data) However `theiler` can also be used in single searches. `theiler(n)` (with one argument) generates the function `i -> abs(i-n) ≀ w`. So `theiler(n)` can be given to [`search`](@ref) as the `skip` argument. Notice that `theiler` is an instance of `Theiler`, and in summary you'd have to do `Theiler(w)(n)` and give that to [`search`](@ref). """ struct Theiler{R} <: Function w::Int nidxs::R end Theiler(w) = Theiler(w, nothing) Theiler() = Theiler(0) (t::Theiler)(n) = i -> abs(i-n) ≀ t.w (t::Theiler{Nothing})(i, j) = abs(i-j) ≀ t.w (t::Theiler)(i, j) = abs(i - t.nidxs[j]) ≀ t.w export Theiler
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
497
""" metricreturntype(metric, x, y=x) Get the expected return type of `metric(x, y)`. This is inferred statically if possible, otherwise the function is actually called with the supplied arguments. Always returns a concrete type. """ function metricreturntype(metric, x, y=x) # The following should return a concrete type if metric is type stable: T = Core.Compiler.return_type(metric, Tuple{typeof(x), typeof(y)}) isconcretetype(T) && return T return typeof(metric(x, y)) end
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
338
@testset "cmp_search_results" begin idxs = shuffle!(randsubseq(1:100, 0.5)) ds = rand(Float64, length(idxs)) p = randperm(length(idxs)) @test cmp_search_results((idxs, ds), (idxs[p], ds[p])) @test !cmp_search_results((idxs, ds), (idxs[2:end], ds[2:end])) @test !cmp_search_results((idxs, ds), (idxs[p], ds)) end
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
1823
metric = Euclidean() dists = [metric(query, d) for d in data] ss = searchstructure(BruteForce, data, metric) skip3(i) = i % 3 == 0 skip3inv(i) = !skip3(i) skip3bulk(i, j) = skip3(i + j) @testset "Search structure attributes" begin @test datatype(ss) === datatype(typeof(ss)) === eltype(data) @test getmetric(ss) === ss.metric end @testset "NeighborNumber" begin t = NeighborNumber(k) # Using bruteforcesearch function idxs1, ds1 = results1 = bruteforcesearch(data, metric, query, t) @test idxs1 == sortperm(dists)[1:k] check_search_results(data, metric, results1, query, t) # Using BruteForce instance @test search_allfuncs(ss, query, t) == results1 # Again with skip function idxs2, ds2 = results2 = bruteforcesearch(data, metric, query, t, skip3) @test idxs2 == filter(skip3inv, sortperm(dists))[1:k] check_search_results(data, metric, results2, query, t, skip3) @test search_allfuncs(ss, query, t, skip3) == results2 end @testset "WithinRange" begin t = WithinRange(r) # Using bruteforcesearch function idxs1, ds1 = results1 = bruteforcesearch(data, metric, query, t) @test Set(ds1) == Set(filter(<=(r), dists)) check_search_results(data, metric, results1, query, t) # Using BruteForce instance @test search_allfuncs(ss, query, t) == results1 # Again with skip function idxs2, ds2 = results2 = bruteforcesearch(data, metric, query, t, skip3) @test idxs2 == filter(skip3inv, idxs1) check_search_results(data, metric, results2, query, t, skip3) @test search_allfuncs(ss, query, t, skip3) == results2 end @testset "Bulk search" begin for t in [NeighborNumber(k), WithinRange(r)] for skip in [nothing, skip3bulk] test_bulksearch(ss, queries, t, skip) end end end
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
3541
using Distances @testset "KDTree" begin tree1 = searchstructure(KDTree, data, Euclidean(); reorder = true) tree2 = searchstructure(KDTree, data, Euclidean(); reorder = false) @test datatype(tree1) === datatype(typeof(tree1)) === eltype(data) @test getmetric(tree1) === tree1.metric @test datatype(tree2) === datatype(typeof(tree2)) === eltype(data) @test getmetric(tree2) === tree2.metric idxs, ds = knn(tree1, query, 5) @test issorted(ds) @test isearch(tree1, query, NeighborNumber(5)) == idxs @test search(tree1, query, NeighborNumber(5)) == (idxs, ds) ridxs, rds = inrange(tree1, query, maximum(ds)) @test issorted(rds) @test ridxs == idxs @test rds == ds ridxs_srt, rds_srt = inrange(tree2, query, maximum(ds)) @test ridxs_srt == idxs @test rds_srt == ds __idxs, = inrange(tree1, queries[1], 0.005) @test sort!(__idxs) == 48:52 __idxs, = inrange(tree1, queries[1], 0.005, theiler1(nidxs[1])) @test sort!(__idxs) == 50:52 __idxs, = inrange(tree1, queries[2], 0.005, theiler2(nidxs[2])) @test isempty(__idxs) vec_of_idxs, vec_of_ds = bulksearch(tree1, queries, NeighborNumber(k)) @test length(vec_of_idxs) == length(nidxs) @test vec_of_idxs[1] == 48:52 @test vec_of_idxs[3] == 52:-1:48 @test sort(vec_of_idxs[1]) == sort(vec_of_idxs[2]) @test vec_of_ds[1] == vec_of_ds[3] == [(i-1)*0.001 for i in 1:5] # also tests sorting vec_of_idxs, vec_of_ds = bulksearch(tree1, queries, NeighborNumber(k), theiler1) @test 48 βˆ‰ vec_of_idxs[1] @test 49 βˆ‰ vec_of_idxs[1] @test 50 ∈ vec_of_idxs[1] @test 51 βˆ‰ vec_of_idxs[3] @test 52 βˆ‰ vec_of_idxs[3] @test 50 ∈ vec_of_idxs[3] @test 48 ∈ vec_of_idxs[2] @test 52 ∈ vec_of_idxs[2] @test 50 βˆ‰ vec_of_idxs[2] vec_of_idxs, vec_of_ds = bulksearch(tree1, queries, NeighborNumber(k), theiler2) @test vec_of_idxs[1] == isearch(tree1, queries[1], NeighborNumber(k), theiler2(48)) for j in 48:52 @test j βˆ‰ vec_of_idxs[2] end _vec_of_idxs = bulkisearch(tree1, queries, WithinRange(0.002)) @test length.(_vec_of_idxs) == [3, 5, 3] vec_of_idxs, vec_of_ds = bulksearch(tree1, queries, WithinRange(0.002)) for ds in vec_of_ds @test issorted(ds) end @test vec_of_idxs[1] == [48, 49, 50] @test sort(vec_of_idxs[2]) == [48, 49, 50, 51, 52] # final test, theiler window vec_of_idxs, vec_of_ds = bulksearch(tree1, queries, WithinRange(0.002), theiler1) @test vec_of_idxs[1] == vec_of_idxs[3] == [50] @test vec_of_ds[1] == vec_of_ds[3] == [0.002] @test vec_of_idxs[2] == [48, 52] @test vec_of_ds[2] == [0.002, 0.002] vec_of_idxs, vec_of_ds = bulksearch(tree1, queries, WithinRange(0.002), theiler2) for (x, y) in zip(vec_of_idxs, vec_of_ds) @test isempty(x) @test isempty(y) end @testset "inrangecount" begin N = 10 x = [rand(SVector{3}) for i = 1:N] D = pairwise(Euclidean(), x) ds = [sort(D[setdiff(1:N, i), i]) for i = 1:N] min_ds = minimum.(ds) max_ds = maximum.(ds) tree = KDTree(x, Euclidean()) # Slightly extend bounds to check for both none and all neighbors. rmins = [(min_ds[i] * 0.99) for (i, xα΅’) in enumerate(x)] rmaxs = [(max_ds[i] * 1.01) for (i, xα΅’) in enumerate(x)] ns_min = [inrangecount(tree, xα΅’, rmins[i]) - 1 for (i, xα΅’) in enumerate(x)] ns_max = [inrangecount(tree, xα΅’, rmaxs[i]) - 1 for (i, xα΅’) in enumerate(x)] @test all(ns_min .== 0) @test all(ns_max .== N - 1) # For each point, there should be exactly three neighbors within these radii r3s = [(ds[i][3] * 1.01) for (i, xα΅’) in enumerate(x)] ns_3s = [inrangecount(tree, xα΅’, r3s[i]) - 1 for (i, xα΅’) in enumerate(x)] @test all(ns_3s .== 3) end end
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
754
using Test, Neighborhood, StaticArrays, Random, Distances using Neighborhood: datatype, getmetric, bruteforcesearch using Neighborhood.Testing Random.seed!(54525) data = [rand(SVector{3}) for i in 1:1000] query = SVector(0.99, 0.99, 0.99) # Theiler window and skip predicate related data[48:52] .= [SVector(0.0, 0.0, i*0.001) for i in 1:5] nidxs = 48:2:52 queries = [data[i] for i in nidxs] theiler1 = Theiler(1, nidxs) theiler2 = Theiler(2, nidxs) r = 0.1 k = 5 @testset "Neighborhood" begin @testset "Utils" begin include("util.jl") end @testset "Neighborhood.Testing" begin include("Testing.jl") end @testset "Brute force" begin include("bruteforce.jl") end @testset "NearestNeighbors" begin include("nearestneighbors.jl") end end
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
code
1128
using Neighborhood: metricreturntype const metric = Euclidean() # Retuns same value as metric but compiler cannot infer type based on arguments function typeunstable_metric(x, y) isnan(x[1]) && return "foo" # Confuse the compiler return metric(x, y) end # Wraps a function and records if it was called struct CalledChecker{F} f::F called::Ref{Bool} CalledChecker(f) = new{typeof(f)}(f, Ref(false)) end function (c::CalledChecker)(args...) c.called[] = true return c.f(args...) end @testset "metricreturntype" begin for T in [Float64, Float32, Int] x = zeros(T, 3) metric_checked = CalledChecker(metric) @test metricreturntype(metric_checked, x) === typeof(metric(x, x)) @test !metric_checked.called[] # Function should never have actually been called # Return value should itself be inferrable @inferred metricreturntype(metric, x) # No inference possible, but should still get the correct result by calling the function @test metricreturntype(typeunstable_metric, x) === typeof(typeunstable_metric(x, x)) end end
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
docs
559
# Neighborhood.jl | **Documentation** | **Tests** | Gitter | |:--------:|:-------------------:|:-----:| |[![](https://img.shields.io/badge/docs-latest-blue.svg)](https://JuliaNeighbors.github.io/Neighborhood.jl/dev) | [![CI](https://github.com/julianeighbors/Neighborhood.jl/workflows/CI/badge.svg)](https://github.com/JuliaNeighbors/Neighborhood.jl/actions) | [![Gitter](https://img.shields.io/gitter/room/nwjs/nw.js.svg)](https://gitter.im/JuliaDynamics/Lobby) A common API for finding nearest neighbors in Julia. See the documentation for more!
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
docs
2840
# Dev Docs Here is what you have to do to bring your package into Neighborhood.jl. * Add your package as a dependency to Neighborhood.jl. * Add the search type into the constant `SSS` in `src/Neighborhood.jl` and export it. * Then, proceed through this page and add as many methods as you can. An example implementation for KDTrees of NearestNeighbors.jl is in `src/kdtree.jl`. ## Mandatory methods Let `S` be the type of the search structure of your package. To participate in this common API you should extend the following methods: ```julia searchstructure(::Type{S}, data, metric; kwargs...) β†’ ss search(ss::S, query, t::SearchType; kwargs...) β†’ idxs, ds ``` for both types of `t`: `WithinRange, NeighborNumber`. `search` returns the indices of the neighbors (in the original `data`) and their distances from the `query`. Notice that `::Type{S}` only needs the supertype, e.g. `KDTree`, without the type-parameters. ## Performance methods The following methods are implemented automatically from Neighborhood.jl if you extend the mandatory methods. However, if there are performance benefits you should write your own extensions. ```julia isearch(ss::S, query, t::SearchType; kwargs...) β†’ idxs # only indices bulksearch(ss::S, queries, ::SearchType; kwargs...) β†’ vec_of_idxs, vec_of_ds bulkisearch(ss::S, queries, ::SearchType; kwargs...) β†’ vec_of_idxs ``` ## Predicate methods The following methods are **extremely useful** in e.g. timeseries analysis. ```julia search(ss::S, query, t::SearchType, skip; kwargs...) bulksearch(ss::S, queries, t::SearchType, skip; kwargs...) ``` (and their "i" complements, `isearch, bulkisearch`). These methods "skip" found neighbors depending on `skip`. In the first method `skip` takes one argument: `skip(i)` the index of the found neighbor (in the original data) and returns `true` if this neighbor should be skipped. In the second version, `skip` takes two arguments `skip(i, j)` where now `j` is simply the index of the query that we are currently searching for. You can kill two birds with one stone and directly implement one method: ```julia search(ss::S, query, t::SearchType, skip = alwaysfalse; kwargs...) ``` to satisfy both mandatory API as well as this one. ## Insertion/deletion methods Simply extend `Base.insert!` and `Base.deleteat!` for your search structure. ## Testing The [`Neighborhood.Testing`](@ref) submodule contains utilities for testing the return value of [`search`](@ref) and related functions for your search structure. Most of these functions use `Test.@test` internally, so just call within a `@testset` in your unit tests. ```@docs Neighborhood.Testing Neighborhood.Testing.cmp_search_results Neighborhood.Testing.cmp_bruteforce Neighborhood.Testing.search_allfuncs Neighborhood.Testing.check_search_results Neighborhood.Testing.test_bulksearch ```
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.2.4
fdea60ca30d724e76cc3b3d90d7f9d29d3d5cab5
docs
1327
# Public API Neighborhood.jl is a Julia package that provides a unified interface for doing neighbor searches in Julia. This interface is described in this page. ## Search Structures ```@docs searchstructure ``` All currently supported search structures are: ```@example sss using Neighborhood # hide for ss in Neighborhood.SSS # hide println(ss) # hide end # hide ``` The following functions are defined for search structures: ```@docs Neighborhood.datatype Neighborhood.getmetric ``` ## Search functions ```@docs search isearch inrange inrangecount knn ``` ## Search types ```@docs SearchType WithinRange NeighborNumber ``` ## Bulk searches Some packages support higher performance when doing bulk searches (instead of individually calling `search` many times). ```@docs bulksearch bulkisearch ``` ## Brute force searches The [`BruteForce`](@ref) "search structure" performs a linear search through its data array, calculating the distance from the query to each data point. This is the slowest possible implementation but can be used to check results from other search structures for correctness. The [`Neighborhood.bruteforcesearch`](@ref) function can be used instead without having to create the search structure. ```@docs Neighborhood.bruteforcesearch BruteForce ``` ## Theiler window ```@docs Theiler ```
Neighborhood
https://github.com/JuliaNeighbors/Neighborhood.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
656
push!(LOAD_PATH,"../src/") using Documenter using StatsModels, DataFrames, VegaLite using LinearRegressionKit makedocs(sitename="LinearRegressionKit.jl", modules = [LinearRegressionKit] , pages = Any[ "Home" => "index.md", "Tutorials" => Any[ "Basic" => "basic_tutorial.md", "Multiple regression" => "multi_tutorial.md", "Weighted regression" => "weighted_regression_tutorial.md", "Ridge regression" => "ridge_regression_tutorial.md" ] ]) deploydocs( repo = "github.com/ericqu/LinearRegressionKit.jl.git", push_preview = false, devbranch = "main", devurl = "dev", )
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
38987
module LinearRegressionKit export regress, predict_in_sample, predict_out_of_sample, linRegRes, kfold, ridge, ridgeRegRes, sweep_linreg using Base: Tuple, Int64, Float64, Bool using StatsBase:eltype, isapprox, length, coefnames, push!, append! using Distributions, HypothesisTests, LinearAlgebra using Printf, NamedArrays, FreqTables # FreqTables for check_cardinality using StatsBase, Random, StatsModels, DataFrames using VegaLite include("sweep_operator.jl") include("utilities.jl") include("vl_utilities.jl") include("newey_west.jl") include("kfold.jl") include("ridge.jl") """ struct linRegRes Store results from the regression """ struct linRegRes extended_inverse::Matrix # Store the extended inverse matrix coefs::Vector # Store the coefficients of the fitted model white_types::Union{Nothing,Vector} # Store the type of White's covariance estimator(s) used hac_types::Union{Nothing,Vector} # Store the type of White's covariance estimator(s) used stderrors::Union{Nothing,Vector} # Store the standard errors for the fitted model white_stderrors::Union{Nothing,Vector} # Store the standard errors modified for the White's covariance estimator hac_stderrors::Union{Nothing,Vector} # Store the standard errors modified for the Newey-West covariance estimator t_values::Union{Nothing,Vector} # Store the t values for the fitted model white_t_values::Union{Nothing,Vector} # Store the t values modified for the White's covariance estimator hac_t_values::Union{Nothing,Vector} # Store the t values modified for the Newey-West covariance estimator p::Int64 # Store the number of parameters (including the intercept as a parameter) MSE::Union{Nothing,Float64} # Store the Mean squared error for the fitted model intercept::Bool # Indicate if the model has an intercept R2::Union{Nothing,Float64} # Store the R-squared value for the fitted model ADJR2::Union{Nothing,Float64} # Store the adjusted R-squared value for the fitted model RMSE::Union{Nothing,Float64} # Store the Root mean square error for the fitted model AIC::Union{Nothing,Float64} # Store the Akaike information criterion for the fitted model ΟƒΜ‚Β²::Union{Nothing,Float64} # Store the ΟƒΜ‚Β² for the fitted model p_values::Union{Nothing,Vector} # Store the p values for the fitted model white_p_values::Union{Nothing,Vector} # Store the p values modified for the White's covariance estimator hac_p_values::Union{Nothing,Vector} # Store the p values modified for the Newey-West covariance estimator ci_up::Union{Nothing,Vector} # Store the upper values confidence interval of the coefficients ci_low::Union{Nothing,Vector} # Store the lower values confidence interval of the coefficients white_ci_up::Union{Nothing,Vector} # Store the upper values confidence interval of the coefficients for White covariance estimators white_ci_low::Union{Nothing,Vector} # Store the upper values confidence interval of the coefficients for White covariance estimators hac_ci_up::Union{Nothing,Vector} # Store the upper values confidence interval of the coefficients for Newey-West covariance estimators hac_ci_low::Union{Nothing,Vector} # Store the upper values confidence interval of the coefficients for Newey-West covariance estimators observations # Store the number of observations used in the model t_statistic::Union{Nothing,Float64} # Store the t statistic VIF::Union{Nothing,Vector} # Store the Variance inflation factor Type1SS::Union{Nothing,Vector} # Store the Type 1 Sum of Squares Type2SS::Union{Nothing,Vector} # Store the Type 2 Sum of Squares pcorr1::Union{Nothing,Vector{Union{Missing, Float64}}} # Store the squared partial correlation coefficients using Type1SS pcorr2::Union{Nothing,Vector{Union{Missing, Float64}}} # Store the squared partial correlation coefficients using Type2SS scorr1::Union{Nothing,Vector{Union{Missing, Float64}}} # Store the squared semi-partial correlation coefficient using Type1SS scorr2::Union{Nothing,Vector{Union{Missing, Float64}}} # Store the squared semi-partial correlation coefficient using Type2SS modelformula # Store the model formula dataschema # Store the dataschema updformula # Store the updated model formula (after the dataschema has been applied) alpha # Store the alpha used to compute the confidence interval of the coefficients KS_test::Union{Nothing,String} # Store results of the Kolmogorov-Smirnov test AD_test::Union{Nothing,String} # Store results of the Anderson–Darling test JB_test::Union{Nothing,String} # Store results of the Jarque-Bera test White_test::Union{Nothing,String} # Store results of the White test BP_test::Union{Nothing,String} # Store results of the Breusch-Pagan test weighted::Bool # Indicates if this is a weighted regression weights::Union{Nothing,String} # Indicates which column of the dataframe contains the analytical weights PRESS::Union{Nothing,Float64} # Store the PRESS statistic cond::Union{Nothing,Float64} # Store Condition number of the design matrix f_value::Union{Nothing,Float64} # Store F Value (also known as F Statistic) of the fitted model f_pvalue::Union{Nothing,Float64} # Store p_value of F Value of the fitted model dof_model::Union{Nothing,Float64} # Store degree of freedom of fitted model dof_error::Union{Nothing,Float64} # Store degree of freedom of the error part end """ function Base.show(io::IO, lr::linRegRes) Display information about the fitted model """ function Base.show(io::IO, lr::linRegRes) if lr.weighted println(io, "Weighted regression") end println(io, "Model definition:\t", lr.modelformula) println(io, "Used observations:\t", lr.observations) if !isnothing(lr.cond) println(io, "Condition number:\t", lr.cond) end println(io, "Model statistics:") # Display stats when available if !isnothing(lr.R2) && !isnothing(lr.ADJR2) @printf(io, " RΒ²: %g\t\t\tAdjusted RΒ²: %g\n", lr.R2, lr.ADJR2) elseif !isnothing(lr.R2) @printf(io, " RΒ²: %g\n", lr.R2) end if !isnothing(lr.MSE) && !isnothing(lr.RMSE) @printf(io, " MSE: %g\t\t\tRMSE: %g\n", lr.MSE, lr.RMSE) elseif !isnothing(lr.MSE) @printf(io, " MSE: %g\n", lr.MSE) end if !isnothing(lr.PRESS) @printf(io, " PRESS: %g\n", lr.PRESS) end if length(lr.white_types) + length(lr.hac_types) == 0 if !isnothing(lr.ΟƒΜ‚Β²) && !isnothing(lr.AIC) @printf(io, " ΟƒΜ‚Β²: %g\t\t\tAIC: %g\n", lr.ΟƒΜ‚Β², lr.AIC) elseif !isnothing(lr.ΟƒΜ‚Β²) @printf(io, " ΟƒΜ‚Β²: %g\n", lr.ΟƒΜ‚Β²) elseif !isnothing(lr.AIC) @printf(io, " AIC: %g\n", lr.AIC) end end if !isnothing(lr.f_value) @printf(io, " F Value: %g with degrees of freedom %g and %g, Pr > F (p-value): %g\n", lr.f_value, lr.dof_model, lr.dof_error, lr.f_pvalue) end if !isnothing(lr.ci_low) || !isnothing(lr.ci_up) @printf(io, "Confidence interval: %g%%\n", (1 - lr.alpha) * 100 ) end vec_stats_title = ["Coefs", "Std err", "t", "Pr(>|t|)", "code", "low ci", "high ci", "VIF", "Type1 SS", "Type2 SS", "PCorr1", "PCorr2", "SCorr1", "SCorr2"] r_signif_codes::Union{Nothing,Vector{String}} = nothing if length(lr.white_types) + length(lr.hac_types) == 0 r_signif_codes = nothing if !isnothing(lr.p_values) r_signif_codes = get_r_significance_code.(lr.p_values) end helper_print_table(io, "Coefficients statistics:", [lr.coefs, lr.stderrors, lr.t_values, lr.p_values, r_signif_codes, lr.ci_low, lr.ci_up, lr.VIF, lr.Type1SS, lr.Type2SS, lr.pcorr1, lr.pcorr2, lr.scorr1, lr.scorr2], deepcopy(vec_stats_title), lr.updformula) if !isnothing(r_signif_codes) @printf(io, "\n\tSignif. codes: 0 β€˜***’ 0.001 β€˜**’ 0.01 β€˜*’ 0.05 β€˜.’ 0.1 β€˜ ’ 1\n") end end if length(lr.white_types) > 0 for (cur_i, cur_type) in enumerate(lr.white_types) r_signif_codes = nothing if !isnothing(lr.p_values) r_signif_codes = get_r_significance_code.(lr.white_p_values[cur_i]) end helper_print_table(io, "White's covariance estimator ($(Base.Unicode.uppercase(string(cur_type)))):", [lr.coefs, lr.white_stderrors[cur_i], lr.white_t_values[cur_i], lr.white_p_values[cur_i], r_signif_codes, lr.white_ci_low[cur_i], lr.white_ci_up[cur_i], lr.VIF, lr.Type1SS, lr.Type2SS, lr.pcorr1, lr.pcorr2, lr.scorr1, lr.scorr2], deepcopy(vec_stats_title), lr.updformula) if !isnothing(r_signif_codes) @printf(io, "\n\tSignif. codes: 0 β€˜***’ 0.001 β€˜**’ 0.01 β€˜*’ 0.05 β€˜.’ 0.1 β€˜ ’ 1\n") end end end if length(lr.hac_types) > 0 for (cur_i, cur_type) in enumerate(lr.hac_types) r_signif_codes = nothing if !isnothing(lr.p_values) r_signif_codes = get_r_significance_code.(lr.hac_p_values[cur_i]) end helper_print_table(io, "Newey-West's covariance estimator:", [lr.coefs, lr.hac_stderrors[cur_i], lr.hac_t_values[cur_i], lr.hac_p_values[cur_i], r_signif_codes, lr.hac_ci_low[cur_i], lr.hac_ci_up[cur_i], lr.VIF, lr.Type1SS, lr.Type2SS, lr.pcorr1, lr.pcorr2, lr.scorr1, lr.scorr2], deepcopy(vec_stats_title), lr.updformula) if !isnothing(r_signif_codes) @printf(io, "\n\tSignif. codes: 0 β€˜***’ 0.001 β€˜**’ 0.01 β€˜*’ 0.05 β€˜.’ 0.1 β€˜ ’ 1\n") end end end if !isnothing(lr.KS_test) || !isnothing(lr.AD_test) || !isnothing(lr.JB_test) || !isnothing(lr.White_test) || !isnothing(lr.BP_test) println(io, "\nDiagnostic Tests:\n") !isnothing(lr.KS_test) && print(io, lr.KS_test) !isnothing(lr.AD_test) && print(io, lr.AD_test) !isnothing(lr.JB_test) && print(io, lr.JB_test) !isnothing(lr.White_test) && print(io, lr.White_test) !isnothing(lr.BP_test) && print(io, lr.BP_test) end end """ function getVIF(x, intercept, p) (internal) Calculates the VIF, Variance Inflation Factor, for a given regression (the X). When the regression has an intercept uses the simplified formula. When there is no intercept uses the classical formula. """ function getVIF(x, intercept, p) if intercept if p == 1 return [0., 1.] end return vcat(0, diag(inv(cor(@view(x[:, 2:end]))))) else if p == 1 return [0.] end return diag(inv(cor(x))) end end """ function getSST(y, intercept) (internal) Calculates "total sum of squares" see link for description. https://en.wikipedia.org/wiki/Total_sum_of_squares When the mode has no intercept the SST becomes the sum of squares of y """ function getSST(y, intercept) SST = zero(eltype(y)) if intercept yΜ„ = mean(y) SST = sum(abs2.(y .- yΜ„)) else SST = sum(abs2.(y)) end return SST end """ function getSST(y, intercept, weights, ridge=false) (internal) Calculates "total sum of squares" for weighted regression see link for description. https://en.wikipedia.org/wiki/Total_sum_of_squares When the mode has no intercept the SST becomes the sum of squares of y. When called from ridge regression the ys are not weighted, when called from regression the ys are already weighted. """ function getSST(y, intercept, weights, ridge=false) SST = zero(eltype(y)) unweightedys = nothing if ridge unweightedys = y else unweightedys = y ./ sqrt.(weights) end if intercept yΜ„ = mean(unweightedys, aweights(weights)) SST = sum(weights .* abs2.(unweightedys .- yΜ„)) else SST = sum(weights .* abs2.(unweightedys)) end return SST end """ function lr_predict(xs, coefs, intercept::Bool) (internal) Predict the yΜ‚ given the x(s) and the coefficients of the linear regression. """ function lr_predict(xs, coefs, intercept::Bool) if intercept return muladd(@view(xs[:, 2:end]), @view(coefs[2:end]), coefs[1]) else return muladd(xs, coefs, zero(eltype(coefs))) end end """ function hasintercept!(f::StatsModels.FormulaTerm) (internal) return a tuple with the first item being true when the formula has an intercept term, the second item being the potentially updated formula. If there is no intercept indicated add one. If the intercept is specified as absent (y ~ 0 + x) then do not change. """ function hasintercept!(f::StatsModels.FormulaTerm) intercept = true if f.rhs isa ConstantTerm{Int64} intercept = convert(Bool, f.rhs.n) return intercept, f elseif f.rhs isa Tuple for t in f.rhs if t isa ConstantTerm{Int64} intercept = convert(Bool, t.n) return intercept, f end end end f = FormulaTerm(f.lhs, InterceptTerm{true}() + f.rhs) return intercept, f end """ function get_pcorr(typess, sse, intercept) (internal) Get squared partial correlation coefficient given a TYPE1SS or Type2SS. """ function get_pcorr(typess, sse, intercept) pcorr = Vector{Union{Missing, Float64}}(undef, length(typess)) if intercept @inbounds pcorr[1] = missing @inbounds for i in 2:length(typess) pcorr[i] = typess[i] / (typess[i] + sse) end else @inbounds for i in 1:length(typess) pcorr[i] = typess[i] / (typess[i] + sse) end end return pcorr end """ function get_scorr(typess, sst, intercept) (internal) Get squared semi-partial correlation coefficient given a TYPE1SS or Type2SS. """ function get_scorr(typess, sst, intercept) scorr = Vector{Union{Missing, Float64}}(undef, length(typess)) if intercept @inbounds scorr[1] = missing @inbounds for i in 2:length(typess) scorr[i] = typess[i] / sst end else @inbounds for i in 1:length(typess) scorr[i] = typess[i] / sst end end return scorr end """ function design_matrix!(f::StatsModels.FormulaTerm, df::DataFrames.AbstractDataFrame; weights::Union{Nothing,String}=nothing, remove_missing=false, contrasts=nothing) (Internal) Give a design matrix (with x and y separated) given a formula and dataframe. Uses weights, and contrasts when given. Updates the formula and to removes ambiguity about the intercept term. Potentially provide a new dataframe """ function design_matrix!(f::StatsModels.FormulaTerm, df::DataFrames.AbstractDataFrame; weights::Union{Nothing,String}=nothing, remove_missing=false, contrasts=nothing, ridge=false) intercept, f = hasintercept!(f) copieddf = df if remove_missing copieddf = copy(df[: , Symbol.(keys(schema(f, df).schema))]) dropmissing!(copieddf) end if isa(weights, String) if !in(Symbol(weights), propertynames(copieddf)) println("Weights have been specified being the column $(weights) however such colum does not exist in the dataframe provided. Regression will be done without weights") weights = nothing else if remove_missing copieddf[!, weights] = df[!, weights] end allowmissing!(copieddf, weights) copieddf[!, weights][copieddf[!, weights] .<= 0] .= missing dropmissing!(copieddf) end end isweighted = !isnothing(weights) if isnothing(contrasts) dataschema = schema(f, copieddf) else dataschema = schema(f, copieddf, contrasts) end updatedformula = apply_schema(f, dataschema) y, x = modelcols(updatedformula, copieddf) n, p = size(x) if isweighted && ridge == false x = x .* sqrt.(copieddf[!, weights]) y = y .* sqrt.(copieddf[!, weights]) end return x, y, n, p, intercept, f, copieddf, updatedformula, isweighted, dataschema end """ function regress(f::StatsModels.FormulaTerm, df::AbstractDataFrame, req_plots; Ξ±::Float64=0.05, req_stats=["default"], weights::Union{Nothing,String}=nothing, remove_missing=false, cov=[:none], contrasts=nothing, plot_args=Dict("plot_width" => 400, "loess_bw" => 0.6, "residuals_with_density" => false)) Estimate the coefficients of the regression, given a dataset and a formula. and provide the requested plot(s). A dictionary of the generated plots indexed by the descritption of the plots. It is possible to indicate the width of the plots, and the bandwidth of the Loess smoother. """ function regress(f::StatsModels.FormulaTerm, df::AbstractDataFrame, req_plots; Ξ±::Float64=0.05, req_stats=["default"], weights::Union{Nothing,String}=nothing, remove_missing=false, cov=[:none], contrasts=nothing, plot_args=Dict("plot_width" => 400, "loess_bw" => 0.6, "residuals_with_density" => false)) all_plots = Dict{String,VegaLite.VLSpec}() neededplots = get_needed_plots(req_plots) lm = regress(f, df, Ξ±=Ξ±, req_stats=req_stats, remove_missing=remove_missing, cov=cov, contrasts=contrasts, weights=weights) results = predict_in_sample(lm, df, req_stats="all") if :fit in neededplots fitplot!(all_plots, results, lm, plot_args) end if :residuals in neededplots residuals_plots!(all_plots, results, lm, plot_args) end if :normal_checks in neededplots normality_plots!(all_plots, results, lm, plot_args) end if :homoscedasticity in neededplots scalelocation_plot!(all_plots, results, lm, plot_args) end if :cooksd in neededplots cooksd_plot!(all_plots, results, lm, plot_args) end if :leverage in neededplots leverage_plot!(all_plots, results, lm, plot_args) end return (lm, all_plots) end """ function regress(f::StatsModels.FormulaTerm, df::DataFrames.AbstractDataFrame; Ξ±::Float64=0.05, req_stats=["default"], weights::Union{Nothing,String}=nothing, remove_missing=false, cov=[:none], contrasts=nothing) Estimate the coefficients of the regression, given a dataset and a formula. The formula details are provided in the StatsModels package and the behaviour aims to be similar as what the Julia GLM package provides. The data shall be provided as a DataFrame without missing data. If remove_missing is set to true a copy of the dataframe will be made and the row with missing data will be removed. Some robust covariance estimator(s) can be requested through the `cov` argument. Default contrast is dummy coding, other contrasts can be requested through the `contrasts` argument. For a weighted regression, the name of column containing the analytical weights shall be identified by the `weights` argument. """ function regress(f::StatsModels.FormulaTerm, df::DataFrames.AbstractDataFrame; Ξ±::Float64=0.05, req_stats=["default"], weights::Union{Nothing,String}=nothing, remove_missing=false, cov=[:none], contrasts=nothing) (Ξ± > 0. && Ξ± < 1.) || throw(ArgumentError("Ξ± must be between 0 and 1")) needed_stats = get_needed_model_stats(req_stats) # stats initialization total_scalar_stats = Set([:sse, :mse, :sst, :r2, :adjr2, :rmse, :aic, :sigma, :t_statistic, :press, :cond ]) total_vector_stats = Set([:coefs, :stderror, :t_values, :p_values, :ci, :vif, :t1ss, :t2ss, :pcorr1, :pcorr2, :scorr1, :scorr2]) total_diag_stats = Set([:diag_ks, :diag_ad, :diag_jb, :diag_white, :diag_bp]) scalar_stats = Dict{Symbol,Union{Nothing,Float64}}(intersect(total_scalar_stats, needed_stats) .=> nothing) vector_stats = Dict{Symbol,Union{Nothing,Vector}}(intersect(total_vector_stats, needed_stats) .=> nothing) diag_stats = Dict{Symbol,Union{Nothing,String}}(intersect(total_diag_stats, needed_stats) .=> nothing) sse = nothing x, y, n, p, intercept, f, copieddf, updatedformula, isweighted, dataschema = design_matrix!(f, df, weights=weights, remove_missing=remove_missing, contrasts=contrasts) xy = [x y] if :cond in needed_stats scalar_stats[:cond] = cond(x) end xytxy = xy' * xy try if :t1ss in needed_stats sse, vector_stats[:t1ss] = sweep_op_fullT1SS!(xytxy) else sse = sweep_op_full!(xytxy) end catch ae throw(ae) finally check_cardinality(copieddf, updatedformula) end coefs = xytxy'[1:p, end] mse = xytxy'[p + 1, p + 1] / (n - p) if :sst in needed_stats if isweighted scalar_stats[:sst] = getSST(y, intercept, copieddf[!, weights]) else scalar_stats[:sst] = getSST(y, intercept) end end if :r2 in needed_stats scalar_stats[:r2] = 1. - (sse / scalar_stats[:sst]) end if :adjr2 in needed_stats scalar_stats[:adjr2] = 1. - ((n - convert(Int64, intercept)) * (1. - scalar_stats[:r2])) / (n - p) end if :rmse in needed_stats scalar_stats[:rmse] = real_sqrt(mse) end if :aic in needed_stats scalar_stats[:aic] = n * log(sse / n) + 2p end if :sigma in needed_stats scalar_stats[:sigma] = mse end if :t_statistic in needed_stats scalar_stats[:t_statistic] = quantile(TDist(n - p), 1 - Ξ± / 2) end if :t2ss in needed_stats vector_stats[:t2ss] = get_TypeIISS(xytxy) end if :pcorr1 in needed_stats vector_stats[:pcorr1] = get_pcorr(vector_stats[:t1ss], sse, intercept) end if :pcorr2 in needed_stats vector_stats[:pcorr2] = get_pcorr(vector_stats[:t2ss], sse, intercept) end if :scorr1 in needed_stats vector_stats[:scorr1] = get_scorr(vector_stats[:t1ss], scalar_stats[:sst], intercept) end if :scorr2 in needed_stats vector_stats[:scorr2] = get_scorr(vector_stats[:t2ss], scalar_stats[:sst], intercept) end if :stderror in needed_stats vector_stats[:stderror] = real_sqrt.(diag(mse * @view(xytxy'[1:end - 1, 1:end - 1]))) end if :t_values in needed_stats vector_stats[:t_values] = coefs ./ vector_stats[:stderror] end if :p_values in needed_stats vector_stats[:p_values] = ccdf.(Ref(FDist(1., (n - p))), abs2.(vector_stats[:t_values])) end if :f_stats in needed_stats dof_model = p - 1 dof_error = n - 1 - dof_model if !intercept dof_model = p dof_error = n -dof_model end ssmodel = scalar_stats[:sst] - sse scalar_stats[:f_value] = ssmodel / dof_model / mse scalar_stats[:dof_model] = dof_model scalar_stats[:dof_error] = dof_error scalar_stats[:f_pvalue] = ccdf.(Ref(FDist(dof_model, dof_error)), scalar_stats[:f_value]) end if :ci in needed_stats vector_stats[:ci] = vector_stats[:stderror] * scalar_stats[:t_statistic] end if :vif in needed_stats vector_stats[:vif] = getVIF(x, intercept, p) end if length(intersect(needed_stats, Set([:diag_ks, :diag_ad, :diag_jb, :diag_white, :diag_bp]))) > 0 residuals = y - lr_predict(x, coefs, intercept) if :diag_ks in needed_stats diag_stats[:diag_ks] = present_kolmogorov_smirnov_test(residuals, Ξ±) end if :diag_ad in needed_stats diag_stats[:diag_ad] = present_anderson_darling_test(residuals, Ξ±) end if :diag_jb in needed_stats diag_stats[:diag_jb] = present_jarque_bera_test(residuals, Ξ±) end if :diag_white in needed_stats if intercept && !isweighted diag_stats[:diag_white] = present_white_test(x, residuals, Ξ±) else println("White test diagnostic for heteroscedasticity was requested but it requires a non-weighted model with intercept") end end if :diag_bp in needed_stats if intercept && !isweighted diag_stats[:diag_bp] = present_breusch_pagan_test(x, residuals, Ξ±) else println("Breusch-Pagan test diagnostic for heteroscedasticity was requested but it requires a non weighted model with intercept") end end end needed_white, needed_hac = get_needed_robust_cov_stats(cov) # robust estimators stats white_types = Vector{Symbol}() white_stds = Vector{Vector}() white_t_vals = Vector{Vector}() white_p_vals = Vector{Vector}() white_ci_up = Vector{Vector}() white_ci_low = Vector{Vector}() hac_types = Vector{Symbol}() hac_stds = Vector{Vector}() hac_t_vals = Vector{Vector}() hac_p_vals = Vector{Vector}() hac_ci_up = Vector{Vector}() hac_ci_low = Vector{Vector}() # statistics requiring predictions (robust estimator and PRESS) if length(needed_white) > 0 || length(needed_hac) > 0 || :press in needed_stats predict_results = predict_internal(copieddf, f, updatedformula, isweighted, weights, xytxy, coefs, intercept, length(needed_white) > 0, length(needed_hac) > 0, mse, scalar_stats[:t_statistic], p, n; Ξ±= Ξ±, req_stats=[:residuals, :press], dropmissingvalues = false) residuals = predict_results.residuals presses = predict_results.press scalar_stats[:press] = sum(presses.^2) if length(needed_white) > 0 for t in needed_white if t in white_types continue end cur_type, cur_std = heteroscedasticity(t, x, y, residuals, n, p, xytxy') push!(white_types, cur_type) push!(white_stds, cur_std) if !isnothing(get(vector_stats, :t_values, nothing)) cur_t_vals = coefs ./ cur_std push!(white_t_vals, cur_t_vals) else white_t_vals = nothing end if !isnothing(get(vector_stats, :p_values, nothing)) cur_p_vals = ccdf.(Ref(FDist(1., (n - p))), abs2.(cur_t_vals)) push!(white_p_vals, cur_p_vals) else white_p_vals = nothing end if !isnothing(get(vector_stats, :ci, nothing)) cur_ci = cur_std * scalar_stats[:t_statistic] cur_ci_up = coefs .+ cur_ci cur_ci_low = coefs .- cur_ci push!(white_ci_up, cur_ci_up) push!(white_ci_low, cur_ci_low) else white_ci_up = nothing white_ci_low = nothing end end end if length(needed_hac) > 0 for t in needed_hac if t in hac_types continue end cur_type, cur_std = HAC(t, x, y, residuals, n, p) push!(hac_types, cur_type) push!(hac_stds, cur_std) if !isnothing(get(vector_stats, :t_values, nothing)) cur_t_vals = coefs ./ cur_std push!(hac_t_vals, cur_t_vals) else hac_t_vals = nothing end if !isnothing(get(vector_stats, :p_values, nothing)) cur_p_vals = ccdf.(Ref(FDist(1., (n - p))), abs2.(cur_t_vals)) push!(hac_p_vals, cur_p_vals) else hac_p_vals = nothing end if !isnothing(get(vector_stats, :ci, nothing)) cur_ci = cur_std * scalar_stats[:t_statistic] cur_ci_up = coefs .+ cur_ci cur_ci_low = coefs .- cur_ci push!(hac_ci_up, cur_ci_up) push!(hac_ci_low, cur_ci_low) else hac_ci_up = nothing hac_ci_low = nothing end end end end sres = linRegRes(xytxy', coefs, white_types, hac_types, get(vector_stats, :stderror, nothing), white_stds, hac_stds, get(vector_stats, :t_values, nothing), white_t_vals, hac_t_vals, p, mse, intercept, get(scalar_stats, :r2, nothing), get(scalar_stats, :adjr2, nothing), get(scalar_stats, :rmse, nothing), get(scalar_stats, :aic, nothing), get(scalar_stats, :sigma, nothing), get(vector_stats, :p_values, nothing), white_p_vals, hac_p_vals, haskey(vector_stats, :ci) ? coefs .+ vector_stats[:ci] : nothing, haskey(vector_stats, :ci) ? coefs .- vector_stats[:ci] : nothing, white_ci_up, white_ci_low, hac_ci_up, hac_ci_low, n, get(scalar_stats, :t_statistic, nothing), get(vector_stats, :vif, nothing), get(vector_stats, :t1ss, nothing), get(vector_stats, :t2ss, nothing), get(vector_stats, :pcorr1, nothing), get(vector_stats, :pcorr2, nothing), get(vector_stats, :scorr1, nothing), get(vector_stats, :scorr2, nothing), f, dataschema, updatedformula, Ξ±, get(diag_stats, :diag_ks, nothing), get(diag_stats, :diag_ad, nothing), get(diag_stats, :diag_jb, nothing), get(diag_stats, :diag_white, nothing), get(diag_stats, :diag_bp, nothing), isweighted, weights, get(scalar_stats, :press, nothing), get(scalar_stats, :cond, nothing), get(scalar_stats, :f_value, nothing), # F value get(scalar_stats, :f_pvalue, nothing), # p_value of F Value get(scalar_stats, :dof_model, nothing), # degree of freedom (model) get(scalar_stats, :dof_error, nothing), # degree of freedome (error) ) return sres end """ function HAC(t::Symbol, x, y, residuals, n, p) (Internal) Return the relevant HAC (heteroskedasticity and autocorrelation consistent) estimator. In the current version only Newey-West is implemented. """ function HAC(t::Symbol, x, y, residuals, n, p) inv_xtx = inv(x' * x) xe = x .* residuals return (t, sqrt.(diag(n * inv_xtx * newey_west(xe) * inv_xtx))) end """ function heteroscedasticity(t::Symbol, x, y, residuals, n, p, xytxy) (Internal) Compute the standard errors modified for the White's covariance estimator. Currently support HC0, HC1, HC2 and HC3. When :white is passed, select HC3 when the number of observation is below 250 otherwise select HC0. """ function heteroscedasticity(t::Symbol, x, y, residuals, n, p, xytxy) inv_xtx = inv(x' * x) XX = @view(xytxy[1:end - 1, 1:end - 1]) xe = x .* residuals if t == :white && n <= 250 t = :hc3 elseif t == :white && n > 250 t = :hc0 end if t == :hc0 xetxe = xe' * xe return (:hc0, real_sqrt.(diag(XX * xetxe * XX))) elseif t == :hc1 scale = (n / (n - p)) xetxe = xe' * xe return (:hc1, real_sqrt.(diag(XX * xetxe * XX .* scale))) elseif t == :hc2 leverage = diag(x * inv(x'x) * x') scale = @.( 1. / (1. - leverage)) xe = @.(xe .* real_sqrt(scale)) xetxe = xe' * xe return (t, sqrt.(diag(XX * xetxe * XX))) elseif t == :hc3 leverage = diag(x * inv(x'x) * x') scale = @.( 1. / (1. - leverage)^2) xe = @.(xe .* real_sqrt(scale)) xetxe = xe' * xe return (t, sqrt.(diag(XX * xetxe * XX))) else throw(error("Unknown symbol ($(t)) used as the White's covariance estimator")) end end """ function predict_internal(df::AbstractDataFrame, modelformula, updatedformula, weighted, weights, extended_inverse, coefs, intercept, needed_white, needed_hac, ΟƒΜ‚Β², t_statistic, p, n, oos=false; Ξ±=0.05, req_stats=["none"], dropmissingvalues=true) Internal, users should use `predict_in_sample` or `predict_out_of_sample`. This should be used only when the `struct linRegRes` is not constructed yet. """ function predict_internal(df::AbstractDataFrame, modelformula, updatedformula, weighted, weights, extended_inverse, coefs, intercept, needed_white, needed_hac, ΟƒΜ‚Β², t_statistic, p, n, oos=false; Ξ±=0.05, req_stats=["none"], dropmissingvalues=true) copieddf = df if oos copieddf = df[: , Symbol.(keys(schema(modelformula.rhs, df).schema))] else copieddf = df[: , Symbol.(keys(schema(modelformula, df).schema))] end if dropmissingvalues == true dropmissing!(copieddf) end if weighted if !in(Symbol(weights), propertynames(df)) println(io, "Weights have been specified being the column $(weights) however such colum does not exist in the dataframe provided. Regression will be done without weights") weights = nothing else copieddf[!, weights] = df[!, weights] allowmissing!(copieddf, weights) copieddf[!, weights][copieddf[!, weights] .<= 0] .= missing dropmissing!(copieddf) end end y = nothing x = nothing if oos x = modelcols(updatedformula.rhs, copieddf) else y, x = modelcols(updatedformula, copieddf) end needed, present = get_prediction_stats(req_stats) needed_stats = Dict{Symbol,Vector}() for sym in needed needed_stats[sym] = zeros(length(n)) end if :leverage in needed pinverse = @view(extended_inverse[1:end - 1, 1:end - 1]) if weighted needed_stats[:leverage] = copieddf[!, weights] .* diag(x * pinverse * x') else needed_stats[:leverage] = diag(x * pinverse * x') end end if :predicted in needed needed_stats[:predicted] = lr_predict(x, coefs, intercept) end if :residuals in needed && oos == false needed_stats[:residuals] = y .- needed_stats[:predicted] end if :stdp in needed if isnothing(ΟƒΜ‚Β²) throw(ArgumentError(":stdp requires that the ΟƒΜ‚Β² (:sigma) was previously calculated through the regression")) end warn_sigma(needed_white, needed_hac, :stdp) if weighted needed_stats[:stdp] = real_sqrt.(needed_stats[:leverage] .* ΟƒΜ‚Β² ./ copieddf[!, weights]) else needed_stats[:stdp] = real_sqrt.(needed_stats[:leverage] .* ΟƒΜ‚Β²) end end if :stdi in needed if isnothing(ΟƒΜ‚Β²) throw(ArgumentError(":stdi requires that the ΟƒΜ‚Β² (:sigma) was previously calculated through the regression")) end warn_sigma(needed_white, needed_hac, :stdi) if weighted needed_stats[:stdi] = real_sqrt.((1. .+ needed_stats[:leverage]) .* ΟƒΜ‚Β² ./ copieddf[!, weights]) else needed_stats[:stdi] = real_sqrt.((1. .+ needed_stats[:leverage]) .* ΟƒΜ‚Β²) end end if :stdr in needed if isnothing(ΟƒΜ‚Β²) throw(ArgumentError(":stdr requires that the ΟƒΜ‚Β² (:sigma) was previously calculated through the regression")) end warn_sigma(needed_white, needed_hac, :stdr) if weighted needed_stats[:stdr] = real_sqrt.((1. .- needed_stats[:leverage]) .* ΟƒΜ‚Β² ./ copieddf[!, weights] ) else needed_stats[:stdr] = real_sqrt.((1. .- needed_stats[:leverage]) .* ΟƒΜ‚Β²) end end if :student in needed && oos == false warn_sigma(needed_white, needed_hac, :student) needed_stats[:student] = needed_stats[:residuals] ./ needed_stats[:stdr] end if :rstudent in needed && oos == false warn_sigma(needed_white, needed_hac, :rstudent) needed_stats[:rstudent] = needed_stats[:student] .* real_sqrt.( (n .- p .- 1 ) ./ (n .- p .- needed_stats[:student].^2 ) ) end if :lcli in needed warn_sigma(needed_white, needed_hac, :lcli) needed_stats[:lcli] = needed_stats[:predicted] .- (t_statistic .* needed_stats[:stdi]) end if :ucli in needed warn_sigma(needed_white, needed_hac, :ucli) needed_stats[:ucli] = needed_stats[:predicted] .+ (t_statistic .* needed_stats[:stdi]) end if :lclp in needed warn_sigma(needed_white, needed_hac, :lclp) needed_stats[:lclp] = needed_stats[:predicted] .- (t_statistic .* needed_stats[:stdp]) end if :uclp in needed warn_sigma(needed_white, needed_hac, :uclp) needed_stats[:uclp] = needed_stats[:predicted] .+ (t_statistic .* needed_stats[:stdp]) end if :press in needed && oos == false needed_stats[:press] = needed_stats[:residuals] ./ (1. .- needed_stats[:leverage]) end if :cooksd in needed && oos == false warn_sigma(needed_white, needed_hac, :cooksd) needed_stats[:cooksd] = needed_stats[:stdp].^2 ./ needed_stats[:stdr].^2 .* needed_stats[:student].^2 .* (1 / p) end for sym in present copieddf[!, sym] = needed_stats[sym] end return copieddf end """ function predict_in_sample(lr::linRegRes, df::AbstractDataFrame; Ξ±=0.05, req_stats=["none"], dropmissingvalues=true) Using the estimated coefficients from the regression make predictions, and calculate related statistics. """ function predict_in_sample(lr::linRegRes, df::AbstractDataFrame; Ξ±=0.05, req_stats=["none"], dropmissingvalues=true) predict_internal(df, lr.modelformula, lr.updformula, lr.weighted, lr.weights, lr.extended_inverse, lr.coefs, lr.intercept, lr.white_types, lr.hac_types, lr.ΟƒΜ‚Β², lr.t_statistic, lr.p, lr.observations; Ξ±=Ξ±, req_stats=req_stats, dropmissingvalues=dropmissingvalues) end """ function predict_out_of_sample(lr::linRegRes, df::AbstractDataFrame; Ξ±=0.05, req_stats=["none"], dropmissingvalues=true) Similar to `predict_in_sample` although it does not expect a response variable nor produce statistics requiring a response variable. """ function predict_out_of_sample(lr::linRegRes, df::AbstractDataFrame; Ξ±=0.05, req_stats=["none"], dropmissingvalues=true) predict_internal(df, lr.modelformula, lr.updformula, lr.weighted, lr.weights, lr.extended_inverse, lr.coefs, lr.intercept, lr.white_types, lr.hac_types, lr.ΟƒΜ‚Β², lr.t_statistic, lr.p, lr.observations, true; Ξ±=Ξ±, req_stats=req_stats, dropmissingvalues=dropmissingvalues) end end # end of module definition
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
1252
""" function kfold(f, df, k, r = 1, shuffle=true; kwargs...) Provide a simple `k` fold(s) cross-validation, repeated `r` time(s). `kwargs` arguments are passed to the `regress` function call. This feature overlap in part with the PRESS statistics. """ function kfold(f, df, k, r = 1, shuffle=true; kwargs...) totalrows = nrow(df) gindexes = Vector(undef, k) resvec = Vector(undef, k*r) sdf = @view df[!, :] for cr in 1:r if shuffle sdf = @view df[shuffle(axes(df, 1)), :] end for ck in 1:k gindexes[ck] = ck:k:totalrows end for ck in 1:k training_range = reduce(vcat, map(x->gindexes[x], filter(x->x!=ck, 1:k))) training = @view sdf[training_range, :] testing = @view sdf[gindexes[ck], :] lr = regress(f, training; kwargs...) cres = predict_in_sample(lr, testing, req_stats=[:residuals]) t_mse= mean(cres.residuals .^2) resvec[ (k * (cr -1)) + ck] = (R2 = lr.R2, ADJR2 = lr.ADJR2, TRAIN_MSE = lr.MSE, TRAIN_RMSE = lr.RMSE, TEST_MSE= t_mse , TEST_RMSE= √t_mse ) end end return DataFrame(resvec) end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
1039
# Newey-West covariance estimator # from https://github.com/mcreel/Econometrics/blob/508aee681ca42ff1f361fd48cd64de6565ece221/src/NP/NeweyWest.jl # under MIT licence https://github.com/mcreel/Econometrics/blob/508aee681ca42ff1f361fd48cd64de6565ece221/LICENSE # and adapted """ function newey_west(Z,nlags=0) Returns the Newey-West estimator of the asymptotic variance matrix INPUTS: Z, a nxk matrix with rows the vector zt' nlags, the number of lags OUTPUTS: omegahat, the Newey-West estimator of the covariance matrix """ function newey_west(Z,nlags=0) n,k = size(Z) # de-mean the variables Z = Z .- mean(Z,dims=1) omegahat = Z'*Z/n # sample variance # automatic lags? if nlags == 0 nlags = max(1, round(Int, n^0.25)) end # sample autocovariances for i = 1:nlags Zlag = @view(Z[1:n-i,:]) ZZ = @view(Z[i+1:n,:]) gamma = (ZZ'*Zlag)/n weight = 1.0 - (i/(nlags+1.0)) omegahat += weight*(gamma + gamma') end return omegahat end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
9335
# # Ridge regression adapted from the SAS fomulas # # see https://blogs.sas.com/content/iml/2013/03/20/compute-ridge-regression.html """ function ridge(f::StatsModels.FormulaTerm, df::DataFrames.AbstractDataFrame, k::Float64 ; weights::Union{Nothing,String}=nothing, remove_missing=false, contrasts=nothing) Ridge regression, expects a k parameter (also known as k). When weights are provided, result in a weighted ridge regression. """ function ridge(f::StatsModels.FormulaTerm, df::DataFrames.AbstractDataFrame, k::Float64 ; weights::Union{Nothing,String}=nothing, remove_missing=false, contrasts=nothing) X, y, n, p, intercept, f, copieddf, updatedformula, isweighted, dataschema = design_matrix!(f, df, weights=weights, remove_missing=remove_missing, contrasts=contrasts, ridge=true) cweights = nothing if !isnothing(weights) cweights = copieddf[!, weights] end coefs, vifs = iridge(X, y, intercept, k, cweights) mse, rmse, r2, adjr2 = iridge_stats(X, y, coefs, intercept, n, p, cweights) res_ridge_reg = ridgeRegRes( k, p, n, intercept, coefs, vifs, mse, rmse, r2, adjr2, f, updatedformula, dataschema, isweighted, weights) return res_ridge_reg end """ function ridge(f::StatsModels.FormulaTerm, df::DataFrames.AbstractDataFrame, ks::AbstractRange ; weights::Union{Nothing,String}=nothing, remove_missing=false, contrasts=nothing, traceplots=false) Ridge regression, expects a range of k parameter (also known as k). When weights are provided, result in a weighted ridge regression. When traceplots are requested, also return a dictionnary of trace plots. """ function ridge(f::StatsModels.FormulaTerm, df::DataFrames.AbstractDataFrame, ks::AbstractRange ; weights::Union{Nothing,String}=nothing, remove_missing=false, contrasts=nothing, traceplots = false ) X, y, n, p, intercept, f, copieddf, updatedformula, isweighted, dataschema = design_matrix!(f, df, weights=weights, remove_missing=remove_missing, contrasts=contrasts, ridge=true) vcoefs, vvifs = iridge(X, y, intercept, ks) cweights = nothing if !isnothing(weights) cweights = copieddf[!, weights] end vcoefs, vvifs = iridge(X, y, intercept, ks, cweights) vmse = Vector{Float64}(undef, length(ks)) vrmse = Vector{Float64}(undef, length(ks)) vr2 = Vector{Float64}(undef, length(ks)) vadjr2 = Vector{Float64}(undef, length(ks)) for (i, x) in enumerate(ks) vmse[i], vrmse[i], vr2[i], vadjr2[i] = iridge_stats(X, y, vcoefs[i], intercept, n, p, cweights) end coefs_names = encapsulate_string(string.(StatsBase.coefnames(updatedformula.rhs))) vifs_names = "vif " .* coefs_names cv = [ks vmse vrmse vr2 vadjr2 transpose(hcat(vcoefs...)) transpose(hcat(vvifs...)) ] all_names = ["k", "MSE", "RMSE", "R2", "ADJR2", coefs_names..., vifs_names... ] df = DataFrame(cv, all_names) if traceplots == false return df else return df, ridge_traceplots(df) end end """ function prepare_ridge(X_orig, y_orig, intercept, weights::Union{Nothing,Vector{Float64}}=nothing) (internal) Prepare the design matrix for ridge regression by centering the data (potentially weighted). """ function prepare_ridge(X_orig, y_orig, intercept, weights::Union{Nothing,Vector{Float64}}=nothing) X = deepcopy(X_orig) y = deepcopy(y_orig) # removes the intercept (assumed to be the first column) if intercept X = X[:, deleteat!(collect(axes(X, 2)), 1)] end Xmeans = nothing ymean = nothing if !isnothing(weights) Xmeans = mean(X, aweights(weights), dims=1) ymean = mean(y, aweights(weights)) else # get the means the Xs and ys Xmeans = mean(X, dims=1) ymean = mean(y) end # center the X and y for i in 1:size(X, 2) X[:, i] .-= Xmeans[i] end y .-= ymean # if needed apply weights to the centered X and y if !isnothing(weights) X = X .* sqrt.(weights) y = y .* sqrt.(weights) end XTX = X'X D = Diagonal(diag(XTX)) Z = X / sqrt(D) ZTZ = Z'Z return XTX, D, Z, ZTZ, ymean, Xmeans, y, X end """ function iridge(X_orig, y_orig, intercept, k::Float64, weights::Union{Nothing,Vector{Float64}}=nothing) XTX, D, Z, ZTZ, ymean, Xmeans, y, X = prepare_ridge(X_orig, y_orig, intercept, weights) (internal) compute the coefficient(s) and the VIF of a ridge regression given a scalar k. """ function iridge(X_orig, y_orig, intercept, k::Float64, weights::Union{Nothing,Vector{Float64}}=nothing) XTX, D, Z, ZTZ, ymean, Xmeans, y, X = prepare_ridge(X_orig, y_orig, intercept, weights) invZTZ = pinv(ZTZ + k * I) coefs = invZTZ * (Z' * y) ./ (sqrt.(diag(XTX))) vifs = diag(invZTZ * ZTZ * invZTZ) if (intercept) # get intercept back interceptvalue = ymean - sum(vec(Xmeans) .* coefs) coefs = vec([interceptvalue coefs...]) vifs = vec([0. vifs...]) end return coefs, vifs end """ function iridge(X_orig, y_orig, intercept, ks::AbstractRange, weights::Union{Nothing,Vector{Float64}}=nothing) XTX, D, Z, ZTZ, ymean, Xmeans, y, X = prepare_ridge(X_orig, y_orig, intercept, weights) (internal) compute the coefficient(s) and the VIF for each ridge regression with a range of k. """ function iridge(X_orig, y_orig, intercept, ks::AbstractRange, weights::Union{Nothing,Vector{Float64}}=nothing) XTX, D, Z, ZTZ, ymean, Xmeans, y, X = prepare_ridge(X_orig, y_orig, intercept, weights) vcoefs = Vector{Vector{}}(undef, length(ks)) vvifs = Vector{Vector{}}(undef, length(ks)) for (i, k) in enumerate(ks) invZTZ = pinv(ZTZ + k * I) vcoefs[i] = invZTZ * (Z' * y) ./ (sqrt.(diag(XTX))) vvifs[i] = diag(invZTZ * ZTZ * invZTZ) if (intercept) # get intercept back interceptvalue = ymean - sum(vec(Xmeans) .* vcoefs[i]) vcoefs[i] = vec([interceptvalue vcoefs[i]...]) vvifs[i] = vec([0. vvifs[i]...]) end end return vcoefs, vvifs end """ function iridge_stats(X, y, coefs, intercept, n, p, weights::Union{Nothing,Vector{Float64}}=nothing) (internal) compute the limited stats from a ridge regression. """ function iridge_stats(X, y, coefs, intercept, n, p, weights::Union{Nothing,Vector{Float64}}=nothing) yΜ‚ = lr_predict(X, coefs, intercept) residuals = y .- yΜ‚ sse = nothing if isnothing(weights) sse = sum(residuals.^2) else sse = sum(residuals.^2, aweights(weights)) end mse = sse / (n - p) rmse = real_sqrt(mse) sst = nothing if isnothing(weights) sst = getSST(y, intercept) else sst = getSST(y, intercept, weights, true) end r2 = 1. - (sse / sst) adjr2 = 1. - ((n - convert(Int64, intercept)) * (1. - r2)) / (n - p) return mse, rmse, r2, adjr2 end """ Store the result of a single ridge (potentially weighted) regression """ struct ridgeRegRes k::Float64 p::Float64 observations intercept::Bool coefs::Vector VIF::Vector MSE::Float64 RMSE::Float64 R2::Float64 ADJR2::Float64 modelformula updatedformula dataschema weighted::Bool weights::Union{Nothing,String} end """ function Base.show(io::IO, rr::ridgeRegRes) Display information about the fitted ridge regression model """ function Base.show(io::IO, rr::ridgeRegRes) if rr.weighted println(io, "Weighted Ridge regression") else println(io, "Ridge Regression") end println(io, "Constant k:\t", rr.k) println(io, "Model definition:\t", rr.modelformula) println(io, "Used observations:\t", rr.observations) println(io, "Model statistics:") @printf(io, " RΒ²: %g\t\t\tAdjusted RΒ²: %g\n", rr.R2, rr.ADJR2) @printf(io, " MSE: %g\t\t\tRMSE: %g\n", rr.MSE, rr.RMSE) helper_print_table(io, "Coefficients statistics:", [rr.coefs, rr.VIF], ["Coefs", "VIF"], rr.updatedformula) end """ function predict_in_sample(rr::ridgeRegRes, df::AbstractDataFrame; dropmissingvalues=true) Using the estimated coefficients from the regression make predictions, and calculate related statistics. """ function predict_in_sample(rr::ridgeRegRes, df::AbstractDataFrame; dropmissingvalues=true) predict_internal(df, rr.modelformula, rr.updatedformula, rr.weighted, rr.weights, nothing, rr.coefs, rr.intercept, nothing, nothing, nothing, nothing, rr.p, rr.observations, false; Ξ±=nothing, req_stats=[:predicted, :residuals], dropmissingvalues=dropmissingvalues) end """ function predict_out_of_sample(rr::ridgeRegRes, df::AbstractDataFrame; dropmissingvalues=true) Similar to `predict_in_sample` although it does not expect a response variable nor produce statistics requiring a response variable. """ function predict_out_of_sample(rr::ridgeRegRes, df::AbstractDataFrame; dropmissingvalues=true) predict_internal(df, rr.modelformula, rr.updatedformula, rr.weighted, rr.weights, nothing, rr.coefs, rr.intercept, nothing, nothing, nothing, nothing, rr.p, rr.observations, true; Ξ±=nothing, req_stats=[:predicted], dropmissingvalues=dropmissingvalues) end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
4100
using LinearAlgebra import LinearAlgebra:checksquare """ function sweep_linreg(x, y) Convenience function when the design matrix (the xs and ys) are known. And when only the coefficients are needed. Uses the normal equations and the sweep operator. similar to the x \\ y operator. """ function sweep_linreg(x, y) nn, p = size(x) if ndims(y) == 2 n, pp = size(y) else pp = 1 end back = pp - 1 xy = [x y] xytxy = xy' * xy sweep_op_full!(xytxy) return xytxy'[1:p, end-back:end] end """ function sweep_op_internal!(A::AbstractMatrix{Float64}, k::Int64) Implement the naive sweep operator described by Goodnight, J. (1979). "A Tutorial on the SWEEP Operator." The American Statistician. The algorithm is modified to work on column major to limit cache misses (although comment are referring to the original algorithm). It gives the transpose of the results. """ function sweep_op_internal!(A::AbstractMatrix{Float64}, k::Int64) p = checksquare(A) if k >= p throw(ArgumentError("Incorrect k value")) end @inbounds D = A[k, k] # step 1 D = Aβ‚–β‚– if D == zero(eltype(A)) throw(ArgumentError("sweep_op_internal!: the element $k,$k of the matrix is zero. Is the Design Matrix symmetric positive definite?")) end @inbounds for i in 1:p A[i, k] = A[i, k] / D # step 2 divide row k by D end @inbounds for i in 1:(k - 1) # step 3: for every other row i != k B = A[k, i] # let B = Aα΅’β‚– for j in 1:p A[j, i] = A[j, i] - B * A[j, k] # Subtract B * row k from row i end A[k, i] = - B / D # set Aα΅’β‚– = -B/D end @inbounds for i in k + 1:p # step 3: for every other row i != k B = A[k, i] # let B = Aα΅’β‚– for j in 1:p A[j, i] = A[j, i] - B * A[j, k] # Subtract B * row k from row i end A[k, i] = - B / D # set Aα΅’β‚– = -B/D end @inbounds A[k,k] = 1 / D # step 4 Set Aβ‚–β‚– = 1/D return nothing end # function sweep_op!(A::AbstractMatrix{Float64}, k::Int64) # sweep_op_internal!(A, k) # end # function sweep_op!(A::AbstractMatrix{Float64}, ks::AbstractVector{Int64}) # for k in ks # sweep_op_internal!(A, k) # end # return A # end """ function sweep_op_full!(A::AbstractMatrix{Float64}) (internal) Get SSE, error sum of squares, for the full model. """ function sweep_op_full!(A::AbstractMatrix{Float64}) n , p = size(A) for k in 1:p-1 sweep_op_internal!(A, k) end return A[p,p] end """ function sweep_op_fullT1SS!(A::AbstractMatrix{Float64}) (internal) Get SSE, error sum of squares for the full model. Also give Type I SS for all independent variables. """ function sweep_op_fullT1SS!(A::AbstractMatrix{Float64}) n , p = size(A) TypeISS = Vector{Float64}(undef, p-1) for k in 1:p-1 preSSE = A[p,p] sweep_op_internal!(A, k) TypeISS[k] = preSSE - A[p,p] end return A[p,p], TypeISS end # """ # function sweep_op_fullT1SS!(A::AbstractMatrix{Float64}) # (internal) Get SSE, error sum of squares for all (p-1) models. # Also give Type I SS for all independent variables. # """ # function sweep_op_allT1SS!(A::AbstractMatrix{Float64}) # n , p = size(A) # TypeISS = Vector{Float64}(undef, p-1) # SSEs = Vector{Float64}(undef, p-1) # for k in 1:p-1 # preSSE = A[p,p] # sweep_op_internal!(A, k) # SSEs[k] = A[p, p] # TypeISS[k] = preSSE - A[p,p] # end # return SSEs, TypeISS # end """ function get_TypeIISS(extended_inverse::AbstractMatrix{Float64}) (internal) Get Type II SS for all independent variables given an extended inverse (sweep operator already applied) """ function get_TypeIISS(extended_inverse::AbstractMatrix{Float64}) n, p = size(extended_inverse') TypeIISS = Vector{Float64}(undef, p-1) for k in 1:p-1 TypeIISS[k] = extended_inverse'[k, end]^2 / extended_inverse'[k, k] end return TypeIISS end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
1656
# The content of this file is copied from https://github.com/JuliaStats/StatsModels.jl/blob/master/test/extension.jl (in December 2021) # The license hereafter is associated with this content # Copyright (c) 2016: Dave Kleinschmidt. # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. poly(x, n) = x^n abstract type PolyModel end struct PolyTerm <: AbstractTerm term::Symbol deg::Int end PolyTerm(t::Term, deg::ConstantTerm) = PolyTerm(t.sym, deg.n) StatsModels.apply_schema(t::FunctionTerm{typeof(poly)}, sch, ::Type{<:PolyModel}) = PolyTerm(t.args_parsed...) StatsModels.modelcols(p::PolyTerm, d::NamedTuple) = reduce(hcat, [d[p.term].^n for n in 1:p.deg])
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
17066
get_all_plots_types() = Set([:fit, :residuals, :normal_checks, :cooksd, :leverage, :homoscedasticity]) get_needed_plots(s::String) = return get_needed_plots([s]) get_needed_plots(s::Symbol) = return get_needed_plots([s]) get_needed_plots(s::Vector{String}) = return get_needed_plots(Symbol.(lowercase.(s))) get_needed_plots(::Vector{Any}) = return get_needed_plots([:none]) get_needed_plots(::Set{Any}) = return get_needed_plots([:none]) get_needed_plots(s::Set{Symbol}) = return get_needed_plots(collect(s)) function get_needed_plots(p::Vector{Symbol}) needed_plots = Set{Symbol}() length(p) == 0 && return needed_plots :none in p && return needed_plots if :all in p return get_all_plots_types() end :fit in p && push!(needed_plots, :fit) :residuals in p && push!(needed_plots, :residuals) :normal_checks in p && push!(needed_plots, :normal_checks) :cooksd in p && push!(needed_plots, :cooksd) :leverage in p && push!(needed_plots, :leverage) :homoscedasticity in p && push!(needed_plots, :homoscedasticity) return needed_plots end """ function get_robust_cov_stats() Return all robust covariance estimators. """ get_all_robust_cov_stats() = Set([:white, :nw, :hc0, :hc1, :hc2, :hc3]) get_needed_robust_cov_stats(s::String) = return get_needed_robust_cov_stats([s]) get_needed_robust_cov_stats(s::Symbol) = return get_needed_robust_cov_stats([s]) get_needed_robust_cov_stats(s::Vector{String}) = return get_needed_robust_cov_stats(Symbol.(lowercase.(s))) get_needed_robust_cov_stats(::Vector{Any}) = return get_needed_robust_cov_stats([:none]) get_needed_robust_cov_stats(::Set{Any}) = return get_needed_robust_cov_stats(Set([:none])) get_needed_robust_cov_stats(s::Set{Symbol}) = return get_needed_robust_cov_stats(collect(s)) function get_needed_robust_cov_stats(s::Vector{Symbol}) needed_white = Vector{Symbol}() needed_hac = Vector{Symbol}() length(s) == 0 && return (needed_white, needed_hac) :none in s && return (needed_white, needed_hac) if :all in s s = collect(get_all_robust_cov_stats()) end :white in s && push!(needed_white, :white) :hc0 in s && push!(needed_white, :hc0) :hc1 in s && push!(needed_white, :hc1) :hc2 in s && push!(needed_white, :hc2) :hc3 in s && push!(needed_white, :hc3) :nw in s && push!(needed_hac, :nw) return (needed_white, needed_hac) end """ function get_all_model_stats() Returns all statistics availble for the fitted model. """ get_all_model_stats() = Set([:coefs, :sse, :mse, :sst, :rmse, :aic, :sigma, :t_statistic, :vif, :r2, :adjr2, :stderror, :t_values, :p_values, :ci, :diag_normality, :diag_ks, :diag_ad, :diag_jb, :diag_heteroskedasticity, :diag_white, :diag_bp, :press, :t1ss, :t2ss, :pcorr1, :pcorr2 , :scorr1, :scorr2, :cond, :f_stats ]) get_needed_model_stats(req_stats::String) = return get_needed_model_stats([req_stats]) get_needed_model_stats(req_stats::Symbol) = return get_needed_model_stats(Set([req_stats])) get_needed_model_stats(req_stats::Vector{String}) = return get_needed_model_stats(Symbol.(lowercase.(req_stats))) get_needed_model_stats(::Vector{Any}) = return get_needed_model_stats([:none]) get_needed_model_stats(::Set{Any}) = return get_needed_model_stats(Set([:none])) get_needed_model_stats(req_stats::Set{Symbol}) = get_needed_model_stats(collect(req_stats)) """ function get_needed_model_stats(req_stats::Vector{Symbol}) return the list of needed statistics given the list of statistics about the model the caller wants. """ function get_needed_model_stats(req_stats::Vector{Symbol}) needed = Set([:coefs, :sse, :mse]) default = Set([:coefs, :sse, :mse, :sst, :rmse, :sigma, :t_statistic, :r2, :adjr2, :stderror, :t_values, :p_values, :ci, :f_stats]) full = get_all_model_stats() unique!(req_stats) length(req_stats) == 0 && return needed :none in req_stats && return needed :all in req_stats && return full :default in req_stats && union!(needed, default) :sst in req_stats && push!(needed, :sst) :t1ss in req_stats && push!(needed, :t1ss) :t2ss in req_stats && push!(needed, :t2ss) :press in req_stats && push!(needed, :press) :rmse in req_stats && push!(needed, :rmse) :aic in req_stats && push!(needed, :aic) :sigma in req_stats && push!(needed, :sigma) :t_statistic in req_stats && push!(needed, :t_statistic) :vif in req_stats && push!(needed, :vif) :diag_ks in req_stats && push!(needed, :diag_ks) :diag_ad in req_stats && push!(needed, :diag_ad) :diag_jb in req_stats && push!(needed, :diag_jb) :diag_white in req_stats && push!(needed, :diag_white) :diag_bp in req_stats && push!(needed, :diag_bp) :cond in req_stats && push!(needed, :cond) # :f_stats in req_stats && push!(needed, :sst) # :f_stats in req_stats && push!(needed, :f_stats) if :f_stats in req_stats push!(needed, :sst) push!(needed, :f_stats) end if :diag_normality in req_stats push!(needed, :diag_ks) push!(needed, :diag_ad) push!(needed, :diag_jb) end if :diag_heteroskedasticity in req_stats push!(needed, :diag_white) push!(needed, :diag_bp) end if :pcorr1 in req_stats push!(needed, :t1ss) push!(needed, :pcorr1) end if :pcorr2 in req_stats push!(needed, :t2ss) push!(needed, :pcorr2) end if :scorr1 in req_stats push!(needed, :sst) push!(needed, :t1ss) push!(needed, :scorr1) end if :scorr2 in req_stats push!(needed, :sst) push!(needed, :t2ss) push!(needed, :scorr2) end if :r2 in req_stats push!(needed, :sst) push!(needed, :r2) end if :adjr2 in req_stats push!(needed, :sst) push!(needed, :r2) push!(needed, :adjr2) end if :stderror in req_stats push!(needed, :sigma) push!(needed, :stderror) end if :t_values in req_stats push!(needed, :sigma) push!(needed, :stderror) push!(needed, :t_values) end if :p_values in req_stats push!(needed, :sigma) push!(needed, :stderror) push!(needed, :t_values) push!(needed, :p_values) end if :ci in req_stats push!(needed, :sigma) push!(needed, :stderror) push!(needed, :t_statistic) push!(needed, :ci) end return needed end """ function get_all_prediction_stats() get all the available statistics about the values predicted by a fitted model """ get_all_prediction_stats() = Set([:predicted, :residuals, :leverage, :stdp, :stdi, :stdr, :student, :rstudent, :lcli, :ucli, :lclp, :uclp, :press, :cooksd]) get_prediction_stats(req_stats::String) = return get_prediction_stats([req_stats]) get_prediction_stats(req_stats::Vector{String}) = return get_prediction_stats(Symbol.(lowercase.(req_stats))) get_prediction_stats(::Vector{Any}) = return get_prediction_stats([:none]) get_prediction_stats(::Set{Any}) = return get_prediction_stats(Set([:none])) get_prediction_stats(req_stats::Set{Symbol}) = return get_prediction_stats(collect(req_stats)) """ function get_prediction_stats(req_stats::Vector{Symbol}) return the list of needed statistics and the statistics that need to be presentd given the list of statistics about the predictions the caller wants. """ function get_prediction_stats(req_stats::Vector{Symbol}) needed = Set([:predicted]) full = get_all_prediction_stats() present = Set([:predicted]) unique!(req_stats) length(req_stats) == 0 && return needed, present :none in req_stats && return needed, present :all in req_stats && return full, full :leverage in req_stats && push!(present, :leverage) :residuals in req_stats && push!(present, :residuals) if :stdp in req_stats push!(needed, :leverage) push!(present, :stdp) end if :stdi in req_stats push!(needed, :leverage) push!(present, :stdi) end if :stdr in req_stats push!(needed, :leverage) push!(present, :stdr) end if :student in req_stats push!(needed, :leverage) push!(needed, :residuals) push!(needed, :stdr) push!(present, :student) end if :rstudent in req_stats push!(needed, :leverage) push!(needed, :residuals) push!(needed, :stdr) push!(needed, :student) push!(present, :rstudent) end if :lcli in req_stats push!(needed, :leverage) push!(needed, :stdi) push!(present, :lcli) end if :ucli in req_stats push!(needed, :leverage) push!(needed, :stdi) push!(present, :ucli) end if :lclp in req_stats push!(needed, :leverage) push!(needed, :stdp) push!(present, :lclp) end if :uclp in req_stats push!(needed, :leverage) push!(needed, :stdp) push!(present, :uclp) end if :press in req_stats push!(needed, :residuals) push!(needed, :leverage) push!(present, :press) end if :cooksd in req_stats push!(needed, :leverage) push!(needed, :stdp) push!(needed, :stdr) push!(needed, :residuals) push!(needed, :student) push!(present, :cooksd) end union!(needed, present) return needed, present end """ function encapsulate_string(s) (internal) Only used to encapsulate a string into an array. used exclusively to handle the function ```StatsBase.coefnames``` which sometime return an array or when there is only one element the element alone. """ function encapsulate_string(s::String) return [s] end """ function encapsulate_string(v) (internal) Only used to encapsulate a string into an array. used exclusively to handle the function ```StatsBase.coefnames``` which sometime return an array or when there is only one element the element alone. """ function encapsulate_string(v::Vector{String}) return v end import Printf """ macro gprintf(fmt::String) (internal) used to format with %g Taken from message published by user o314 at https://discourse.julialang.org/t/printf-with-variable-format-string/3805/6 """ macro gprintf(fmt::String) :((io::IO, arg) -> Printf.@printf(io, $fmt, arg)) end """ function fmt_pad(s::String, value, pad=0) (internal) helper to format and pad string for results display """ function fmt_pad(s::String, value, pad=0) fmt = @gprintf("%g") return rpad(s * sprint(fmt, value), pad) end using NamedArrays """ function my_namedarray_print([io::IO = stdout], n::NamedArray) (internal) Print the NamedArray without the type annotation (on the first line). """ function my_namedarray_print(io::IO, n) tmpio = IOBuffer() show(tmpio, MIME"text/plain"(), n) println(io, split(replace(String(take!(tmpio)), @raw_str("\"")=>@raw_str(" ")), "\n", limit=2)[2]) end my_namedarray_print(n::NamedArray) = my_namedarray_print(stdout::IO, n) """ function helper_print_table(io, title, stats::Vector, stats_name::Vector, updformula) (Internal) Convenience function to display a table of statistics to the user. """ function helper_print_table(io::IO, title, stats::Vector, stats_name::Vector, updformula) println(io, "\n$title") todelete = [i for (i, v) in enumerate(stats) if isnothing(v)] deleteat!(stats, todelete) deleteat!(stats_name, todelete) m_all_stats = reduce(hcat, stats) if m_all_stats isa Vector m_all_stats = reshape(m_all_stats, length(m_all_stats), 1) end na = NamedArray(m_all_stats) setnames!(na, encapsulate_string(string.(StatsBase.coefnames(updformula.rhs))), 1) setnames!(na, encapsulate_string(string.(stats_name)), 2) setdimnames!(na, ("Terms", "Stats")) my_namedarray_print(io, na) end function present_breusch_pagan_test(X, residuals, Ξ±) bpt = HypothesisTests.BreuschPaganTest(X, residuals) pval = pvalue(bpt) alpha_value= round((1 - Ξ±)*100, digits=3) topresent = string("Breush-Pagan Test (homoskedasticity of residuals):\n T*RΒ² statistic: $(round(bpt.lm, sigdigits=6)) degrees of freedom: $(round(bpt.dof, digits=6)) p-value: $(round(pval, digits=6))\n") if pval > Ξ± topresent *= " with $(alpha_value)% confidence: fail to reject null hyposthesis.\n" else topresent *= " with $(alpha_value)% confidence: reject null hyposthesis.\n" end return topresent end function present_white_test(X, residuals, Ξ±) bpt = HypothesisTests.WhiteTest(X, residuals) pval = pvalue(bpt) alpha_value= round((1 - Ξ±)*100, digits=3) topresent = string("White Test (homoskedasticity of residuals):\n T*RΒ² statistic: $(round(bpt.lm, sigdigits=6)) degrees of freedom: $(round(bpt.dof, digits=6)) p-value: $(round(pval, digits=6))\n") if pval > Ξ± topresent *= " with $(alpha_value)% confidence: fail to reject null hyposthesis.\n" else topresent *= " with $(alpha_value)% confidence: reject null hyposthesis.\n" end return topresent end function present_kolmogorov_smirnov_test(residuals, Ξ±) fitted_residuals = fit(Normal, residuals) kst = HypothesisTests.ApproximateOneSampleKSTest(residuals, fitted_residuals) pval = pvalue(kst) KS_stat = sqrt(kst.n)*kst.Ξ΄ alpha_value= round((1 - Ξ±)*100, digits=3) topresent = string("Kolmogorov-Smirnov test (Normality of residuals):\n KS statistic: $(round(KS_stat, sigdigits=6)) observations: $(kst.n) p-value: $(round(pval, digits=6))\n") if pval > Ξ± topresent *= " with $(alpha_value)% confidence: fail to reject null hyposthesis.\n" else topresent *= " with $(alpha_value)% confidence: reject null hyposthesis.\n" end end function present_anderson_darling_test(residuals, Ξ±) fitted_residuals = fit(Normal, residuals) adt = HypothesisTests.OneSampleADTest(residuals, fitted_residuals) pval = pvalue(adt) alpha_value= round((1 - Ξ±)*100, digits=3) topresent = string("Anderson–Darling test (Normality of residuals):\n AΒ² statistic: $(round(adt.AΒ², digits=6)) observations: $(adt.n) p-value: $(round(pval, digits=6))\n") if pval > Ξ± topresent *= " with $(alpha_value)% confidence: fail to reject null hyposthesis.\n" else topresent *= " with $(alpha_value)% confidence: reject null hyposthesis.\n" end end function present_jarque_bera_test(residuals, Ξ±) jbt = HypothesisTests.JarqueBeraTest(residuals) pval = pvalue(jbt) alpha_value= round((1 - Ξ±)*100, digits=3) topresent = string("Jarque-Bera test (Normality of residuals):\n JB statistic: $(round(jbt.JB, digits=6)) observations: $(jbt.n) p-value: $(round(pval, digits=6))\n") if pval > Ξ± topresent *= " with $(alpha_value)% confidence: fail to reject null hyposthesis.\n" else topresent *= " with $(alpha_value)% confidence: reject null hyposthesis.\n" end end function warn_sigma(lm, stat) warn_sigma(lm.white_types, lm.hac_types , stat) end function warn_sigma(white_needed, hac_needed, stat) if length(white_needed) > 0 || length(hac_needed) > 0 println(io, "The $(stat) statistic that relies on Sigma^2 has been requested. At least one robust covariance have been requested indicating that the assumptions needed for Sigma^2 may not be present.") end end function real_sqrt(x) return @. real(sqrt(complex(x, 0))) end isnotintercept(t::AbstractTerm) = t isa InterceptTerm ? false : true isnotconstant(t::AbstractTerm) = t isa ConstantTerm ? false : true iscontinuousterm(t::AbstractTerm) = t isa ContinuousTerm ? true : false iscategorical(t::AbstractTerm) = t isa CategoricalTerm ? true : false function check_cardinality(df::AbstractDataFrame, f, verbose=false) cate_terms = [a.sym for a in filter(iscategorical, terms(f.rhs))] if length(cate_terms) > 0 freqt = freqtable(df, cate_terms...) if count(i -> (i == 0), freqt) > 0 println("At least one group of categories have no observation. Use frequency tables to identify which one(s).") println(my_namedarray_print(freqt)) elseif verbose == true println("No issue identified.") end end end """ get_r_significance_code(v::Real) (internal) to transform the p value into the code used in lm (R language) reference text from R: "Signif. codes: 0 β€˜***’ 0.001 β€˜**’ 0.01 β€˜*’ 0.05 β€˜.’ 0.1 β€˜ ’ 1" used exclusively to handle the function ```StatsBase.coefnames``` which sometime return an array or when there is only one element the element alone. """ function get_r_significance_code(v::Real) if v < 0.001 return "***" elseif v < 0.01 return "**" elseif v < 0.05 return "*" elseif v < 0.1 return "." end return " " end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
13204
using StatsBase, LinearAlgebra , Distributions # for the density/histogram plot function fitplot!(all_plots, results, lm, plot_args) lhs = terms(lm.updformula.lhs) rhs_noint = filter(isnotintercept, terms(lm.updformula.rhs)) length(rhs_noint) == 0 && return nothing length(rhs_noint) > 1 && begin println("LinearRegressionKit: Fit plot was requested but not appropriate for regression with multiple independent variables") return nothing end length(lhs) == 0 && return nothing actx = first(rhs_noint).sym acty = first(lhs).sym acttitle = "Fit Plot: " * string(actx) * " vs " * string(acty) pred_interval = @vlplot( mark = {:errorband, color = "lightgrey"}, y = { field = :ucli, type = :quantitative, title = acty} , y2 = { field = :lcli, type = :quantitative }, x = {actx, type = :quantitative}) if lm.weighted pred_interval = @vlplot( mark = {:errorbar, ticks=true, color = "dimgrey"}, y = { field = :ucli, type = :quantitative, title = acty} , y2 = { field = :lcli, type = :quantitative }, x = {actx, type = :quantitative}) end fp = select(results, [actx, acty, :ucli, :lcli, :uclp, :lclp, :predicted]) |> @vlplot() + pred_interval+ @vlplot( mark = {:errorband, color = "darkgrey" }, y = { field = :uclp, type = :quantitative, title = acty}, y2 = { field = :lclp, type = :quantitative }, x = {actx, type = :quantitative} ) + @vlplot( mark = { :line, color = "darkorange" }, x = {actx, type = :quantitative}, y = {:predicted, type = :quantitative}) + @vlplot( :point, x = { actx, type = :quantitative, axis = {grid = false}, scale = {zero = false}}, y = { acty, type = :quantitative, axis = {grid = false}, scale = {zero = false}}, title = acttitle, width = plot_args["plot_width"], height = plot_args["plot_width"] ) all_plots["fit"] = fp end function simple_residuals_plot(results, dep_var=nothing, show_density=false, st_res=false; plot_width=400, loess_bandwidth::Union{Nothing,Float64}=0.99) if isnothing(dep_var) dep_var = :predicted end yaxis = :residuals if st_res == true yaxis = :student end loess_p = @vlplot() if !isnothing(loess_bandwidth) loess_p = @vlplot( transform = [ { loess = yaxis, on = dep_var, bandwidth = loess_bandwidth } ], mark = {:line, color = "firebrick"}, x = {dep_var, type = :quantitative}, y = {yaxis, type = :quantitative} ) end title = "Residuals plot: $(string(dep_var))" if st_res == true title = "st " * title end sresults = select(results, [yaxis, dep_var]) p = sresults |> @vlplot(title = title, width = plot_width, height = plot_width, x = {type = :quantitative, axis = {grid = false}, scale = {zero = false, padding = 5}}, y = {type = :quantitative, axis = {grid = false}}) + @vlplot(:point, x = {dep_var, type = :quantitative}, y = {yaxis, type = :quantitative}) + loess_p + @vlplot(mark = {:rule, color = :darkgrey}, y = {type = :quantitative, datum = 0}) if show_density == false return p end mp = sresults |> @vlplot( width = 100, height = plot_width, mark = {:area, orient = "horizontal"}, transform = [{density = yaxis, bandwidth = 0.5}], x = {"density:q", title = nothing, axis = nothing}, y = {"value:q", title = nothing, axis = nothing } ) tp = @vlplot(bounds = :flush, spacing = 5, config = {view = {stroke = :transparent}}) + [p mp] return tp end function residuals_plots!(all_plots, results, lm, plot_args) rhs_noint = filter(isnotintercept, terms(lm.updformula.rhs)) plots = Vector{VegaLite.VLSpec}() length(rhs_noint) == 0 && return nothing plot_width = get(plot_args, "plot_width", 400) loess_bw = get(plot_args, "loess_bw", 0.6) density_requested = get(plot_args, "residuals_with_density", false) # main residual plot all_plots["residuals"] = simple_residuals_plot(results, plot_width=plot_width, loess_bandwidth=loess_bw) all_plots["st residuals"] = simple_residuals_plot(results,nothing, false, true, plot_width=plot_width, loess_bandwidth=loess_bw) # additional plot per dependent variable for c_dependent_var in rhs_noint if ! isa(c_dependent_var, ConstantTerm) c_sym = c_dependent_var.sym show_density = density_requested && iscontinuousterm(c_dependent_var) all_plots[string("residuals ", string(c_sym))] = simple_residuals_plot(results, c_sym, show_density, plot_width=plot_width, loess_bandwidth=loess_bw) all_plots[string("st residuals ", string(c_sym))] = simple_residuals_plot(results, c_sym, show_density, true, plot_width=plot_width, loess_bandwidth=loess_bw) end end end function qqplot(results, fitted_residuals, plot_width) n = length(results.residuals) grid = [1 / (n - 1):1 / (n - 1):1 - (1 / (n - 1));] qu_theo = quantile.(fitted_residuals, grid) qu_empi = quantile(results.residuals, grid) qqdf = DataFrame(x=qu_theo, y=qu_empi) qqline = [first(qu_theo), last(qu_theo)] qqldf = DataFrame(x=qqline, y=qqline) qqplot = qqdf |> @vlplot() + @vlplot( title = "Residuals QQ-Plot", width = plot_width, height = plot_width, :point, x = { :x, type = :quantitative, title = "Theoritical quantiles", axis = {grid = false}, scale = {zero = false, padding = 5} }, y = { :y, type = :quantitative, title = "Empirical quantiles", axis = {grid = false}, scale = {zero = false, padding = 5} } ) + @vlplot( {:line, color = "darkgrey"}, data = qqldf, x = {:x, type = :quantitative}, y = {:y, type = :quantitative} ) return qqplot end function default_range(dist::Distribution, alpha=0.0001) minval = isfinite(minimum(dist)) ? minimum(dist) : quantile(dist, alpha) maxval = isfinite(maximum(dist)) ? maximum(dist) : quantile(dist, 1 - alpha) minval, maxval end rice_rule(obs) = round(Int, 2. * obs^(1 / 3)) function histogram_density(results, fitted_residuals, plot_width) # data for the density curve frmin, frmax = default_range(fitted_residuals) rangetest = (frmax - frmin) / plot_width qpdf = [pdf(fitted_residuals, x) for x in frmin:rangetest:frmax] xs = [x for x in frmin:rangetest:frmax] tdf = DataFrame(x=xs, y=qpdf) # data for the histogram hhh = fit(Histogram, results.residuals) nhh = normalize(hhh) all_edges = collect(first(nhh.edges)) bin_starts = [x for x in all_edges[1:end - 1]] bin_ends = [x for x in all_edges[2:end]] counts = nhh.weights hdf = DataFrame(bs=bin_starts, be=bin_ends, y=counts) step_size = bin_starts[2] - bin_starts[1] hdplot = hdf |> @vlplot(width = plot_width, height = plot_width, title = "Residuals: histogram and PDF") + @vlplot( :bar, x = {:bs, type = :quantitative, title = "residuals", bin = {binned = true, step = step_size}, axis = {grid = false}}, x2 = {:be, type = :quantitative}, y = {:y, type = :quantitative, stack = "zero", axis = {grid = false} } ) + @vlplot( data = tdf, {:line, color = "darkorange"}, x = {:x, type = :quantitative, scale = {zero = false}, axis = {grid = false}}, y = {:y, type = :quantitative, scale = {zero = false}, axis = {grid = false}} ) return hdplot end function normality_plots!(all_plots, results, lm, plot_args) # plots = Vector{VegaLite.VLSpec}() plot_width = get(plot_args, "plot_width", nothing) fitted_residuals = fit(Normal, results.residuals) all_plots["qq plot"] = qqplot(results, fitted_residuals, plot_width) all_plots["histogram density"] = histogram_density(results, fitted_residuals, plot_width) end function cooksd_plot!(all_plots, results, lm, plot_args) plot_width = get(plot_args, "plot_width", nothing) plot_height = plot_width / 2 sdf = select(results, [:cooksd]) sdf.Observations = rownumber.(eachrow(sdf)) threshold_cooksd = 4 / lm.observations p = sdf |> @vlplot(title = "Cook's Distance", width = plot_width, height = plot_height) + @vlplot(mark = {:rule, color = :darkgrey}, y = {type = :quantitative, datum = threshold_cooksd}) + @vlplot( mark = {:rule, color = :steelblue}, x = {:Observations, type = :quantitative, axis = {grid = false}}, y = {type = :quantitative, datum = 0}, y2 = {:cooksd, type = :quantitative} ) all_plots["cooksd"] = p end function scalelocation_plot!(all_plots, results, lm, plot_args) plot_width = get(plot_args, "plot_width", nothing) sdf = select(results, [:predicted, :student]) sdf.sqrtstudent = sqrt.(abs.(sdf.student)) p = sdf |> @vlplot() + @vlplot( title = "Scale and location plot" , width = plot_width , height = plot_width, :point, x = {:predicted, type = :quantitative, scale = {zero = false}, axis = { grid = false} }, y = {:sqrtstudent, type = :quantitative, title = "√student", scale = {zero = false}, axis = { grid = false} }) + @vlplot( transform = [ { loess = :sqrtstudent, on = :predicted, bandwidth = 0.6 } ], mark = {:line, color = "firebrick"}, x = {:predicted, type = :quantitative}, y = {:sqrtstudent, type = :quantitative} ) all_plots["scale location"] = p end function leverage_plot!(all_plots, results, lm, plot_args) threshold_leverage = 2 * lm.p / lm.observations plot_width = plot_args["plot_width"] p = select(results, [:leverage, :rstudent]) |> @vlplot(title = "Leverage vs Rstudent", width = plot_width, height = plot_width, x = {axis = {grid = false}}, y = {axis = {grid = false}} ) + @vlplot(:point, x = {:leverage, type = :quantitative}, y = {:rstudent, type = :quantitative}) + @vlplot(mark = {:rule, color = :darkgrey}, y = {datum = -2}) + @vlplot(mark = {:rule, color = :darkgrey}, x = {datum = threshold_leverage}) + @vlplot(mark = {:rule, color = :darkgrey}, y = {datum = 2}) all_plots["leverage"] = p end function escape_javascript!(vec) for i in 1:length(vec) vec[i] = replace(vec[i], "&"=>" ampersand ") end end function ridge_traceplots(rdf::AbstractDataFrame; width=400) nb_coefs = round(Int, (ncol(rdf) - 5) / 2) dfstats = names(rdf)[2:5] dfcoefs = nothing dfvifs = nothing all_names = names(rdf) escape_javascript!(all_names) if all_names[6] == "(Intercept)" dfcoefs = all_names[7:6 - 1 + nb_coefs] push!(dfcoefs, "(Intercept)") dfvifs = all_names[end - nb_coefs + 2:end] else dfcoefs = all_names[6:6 - 1 + nb_coefs] dfvifs = all_names[end - nb_coefs + 2:end] end traceplot = rdf |> @vlplot(title = "Ridge trace plot", width = width, height = width, transform = [ {fold = dfcoefs}, ], mark = :line, x = {field = :k , type = :quantitative, scale = {zero = false}, axis = { grid = false}} , y = {field = :value, type = :quantitative, scale = {zero = false}, axis = { grid = false}}, color = {field = :key, type = :nominal}, ) viftraceplot = rdf |> @vlplot(title = "VIF trace plot", width = width, height = width, transform = [ {fold = dfvifs}, ], mark = :line, x = {field = :k, type = :quantitative, scale = {zero = false}, axis = { grid = false}} , y = {field = :value, type = :quantitative, scale = {type = :linear, zero = false}, axis = { grid = false} }, color = {field = :key, type = :nominal}, ) viftraceplotlog = rdf |> @vlplot(title = "VIF trace plot", width = width, height = width, transform = [ {fold = dfvifs}, ], mark = :line, x = {field = :k, type = :quantitative, scale = {zero = false}, axis = { grid = false}} , y = {field = :value, type = :quantitative, scale = {type = :log, zero = false}, axis = { grid = false} }, color = {field = :key, type = :nominal}, ) rmse_r2_plot = select(rdf, ["k", "RMSE", "R2"]) |> @vlplot(title = "Trace plot", width = width, height = width, transform = [ {fold = ["RMSE", "R2"]}, ], mark = :line, x = {field = :k, type = :quantitative, scale = {zero = false}, axis = { grid = false}} , y = {field = :value, type = :quantitative, scale = {zero = false}, axis = { grid = false}}, color = {field = :key, type = :nominal}, ) return Dict([("coefs traceplot", traceplot), ("vifs traceplot", viftraceplot), ("vifs traceplot log", viftraceplotlog), ("rmse r2 plot", rmse_r2_plot)]) end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
371
using LinearRegressionKit using Test, DataFrames, StatsModels leaq(a,b) = (a <= b) || (a β‰ˆ b) include("test_sweep_operator.jl") include("test_utilities.jl") include("test_LinearRegression.jl") include("test_cooksd.jl") include("test_lessthanfullrank.jl") include("test_noint.jl") include("test_heteroscedasticity.jl") include("test_kfold.jl") include("test_ridge.jl")
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
15594
@testset "from glm" begin fdf = DataFrame(Carb=[0.1,0.3,0.5,0.6,0.7,0.9], OptDen=[0.086,0.269,0.446,0.538,0.626,0.782]) lm1 = regress(@formula(OptDen ~ 1 + Carb), fdf, req_stats="all") target_coefs = [0.005085714285713629, 0.8762857142857156] @test isapprox(target_coefs, lm1.coefs) @test lm1.p == 2 @test isapprox(lm1.R2, 0.9990466748057584) @test isapprox(lm1.ADJR2, 0.998808343507198) @test isapprox(lm1.AIC, -55.43694668654871) # using the SAS formula rather than the Julia-Statsmodel-GLM @test isapprox(lm1.stderrors, [0.007833679251299831, 0.013534536322659505]) @test isapprox(lm1.t_values, [0.6492114525712505, 64.74442074669666]) @test isapprox(lm1.p_values, [0.5515952883836446, 3.409192065429258e-7]) @test isapprox(lm1.p_values, [0.5515952883836446, 3.409192065429258e-7]) @test isapprox(lm1.ci_low, [-0.016664066127247305, 0.8387078171615459]) @test isapprox(lm1.ci_up, [0.02683549469867456, 0.9138636114098853]) @test isapprox(lm1.t_statistic, 2.7764451051977934) @test isapprox(lm1.VIF, [0., 1.]) @test isapprox(lm1.PRESS, 0.0010755278041106075) @test isapprox(lm1.Type1SS, [1.2576681666666665, 0.3135496333333334]) @test isapprox(lm1.Type2SS, [3.152636815919868e-5, 0.31354963333333363]) @test isapprox(lm1.f_value, 4191.84) @test leaq(lm1.f_pvalue, 0.001) end @testset "from glm regresspredict" begin fdf = DataFrame(Carb=[0.1,0.3,0.5,0.6,0.7,0.9], OptDen=[0.086,0.269,0.446,0.538,0.626,0.782]) lm1 = regress(@formula(OptDen ~ 1 + Carb), fdf, Ξ±=0.05, req_stats=[:default, :aic, :vif, :press, :t1ss, :t2ss]) target_coefs = [0.005085714285713629, 0.8762857142857156] @test isapprox(target_coefs, lm1.coefs) @test lm1.p == 2 @test isapprox(lm1.R2, 0.9990466748057584) @test isapprox(lm1.ADJR2, 0.998808343507198) @test isapprox(lm1.AIC, -55.43694668654871) # using the SAS formula rather than the Julia-Statsmodel-GLM @test isapprox(lm1.stderrors, [0.007833679251299831, 0.013534536322659505]) @test isapprox(lm1.t_values, [0.6492114525712505, 64.74442074669666]) @test isapprox(lm1.p_values, [0.5515952883836446, 3.409192065429258e-7]) @test isapprox(lm1.p_values, [0.5515952883836446, 3.409192065429258e-7]) @test isapprox(lm1.ci_low, [-0.016664066127247305, 0.8387078171615459]) @test isapprox(lm1.ci_up, [0.02683549469867456, 0.9138636114098853]) @test isapprox(lm1.t_statistic, 2.7764451051977934) @test isapprox(lm1.VIF, [0., 1.]) @test isapprox(lm1.PRESS, 0.0010755278041106075) @test isapprox(lm1.Type1SS, [1.2576681666666665, 0.3135496333333334]) @test isapprox(lm1.Type2SS, [3.152636815919868e-5, 0.31354963333333363]) lm1 = regress(@formula(OptDen ~ 1 + Carb), fdf, Ξ±=0.05, req_stats=["none"]) target_coefs = [0.005085714285713629, 0.8762857142857156] @test isapprox(target_coefs, lm1.coefs) @test lm1.p == 2 lm1 = regress(@formula(OptDen ~ 1 + Carb), fdf, Ξ±=0.05, req_stats=["r2", "P_values"]) target_coefs = [0.005085714285713629, 0.8762857142857156] @test isapprox(target_coefs, lm1.coefs) @test lm1.p == 2 @test isapprox(lm1.R2, 0.9990466748057584) @test isapprox(lm1.p_values, [0.5515952883836446, 3.409192065429258e-7]) df = DataFrame(y=[1., 3., 3., 2., 2., 1.], x1=[1., 2., 3., 1., 2., 3.], x2=[1., 1., 1., -1., -1., -1.]) lm2 = regress(@formula(y ~ 1 + x1 + x2), df, req_stats=["default", "r2"]) @test isapprox([1.5, 0.25, 0.3333333333333333], lm2.coefs) @test isapprox(0.22916666666666663, lm2.R2) @test isapprox(0.445945946, lm2.f_value) @test 2 == lm2.dof_model @test 3 == lm2.dof_error @test isapprox(0.676769425, lm2.f_pvalue) lm2 = regress(@formula(y ~ 0 + x1 + x2), df) @test isapprox(0.8210034013605, lm2.R2) @test isapprox(9.1733966745843, lm2.f_value) @test 2 == lm2.dof_model @test 4 == lm2.dof_error @test isapprox(0.032039782324494, lm2.f_pvalue) y = [3.547744106900422, 9.972950249405148, 16.471345464154027, 22.46768807351274, 20.369933318011807, 21.18590757820348, 29.962620198209024, 30.684400502954748, 29.28429078492597, 34.272759386588824, 33.05504692986838, 45.09273876302829, 45.28374262744938, 54.54563960566191, 46.86173948296966, 46.85926120310666, 67.54337216713414, 66.0400205145086, 64.77001443647681, 63.98759256558095, 15.016939388490687, 12.380885701920008, 10.221963402745288, 24.826987790646672, 22.231511892187548, 18.05125492502642, 21.809661866284717, 28.533306224702308, 24.70476800009685, 39.592181057942916, 37.425282624708906, 33.89372811236659, 44.07442335927311, 42.61943719318272, 52.32531447897055, 44.12096163880534, 49.19965880584543, 52.304114239221036, 59.79488104919937, 65.00419916894333, 10.978506745605673, 12.944637189081874, 16.96525561080181, 15.93489355798633, 33.559135307088305, 28.887571687420433, 28.296418324622593, 32.2405215537489, 31.466024917490223, 37.78855308849255, 48.09725215994402, 40.70190542438069, 43.2525436240948, 44.75159242105558, 52.553066965996074, 53.265851121437095, 60.092700204726015, 62.78014347092756, 69.07895282754228, 74.27890668517966, 10.57283140105129, 7.290600131361426, 16.10299402050687, 14.428954773831242, 22.418180226673464, 28.21022852582732, 29.60436622143203, 33.648588929669636, 37.451930576147994, 43.85548900583812, 41.44168340404242, 43.48815266671309, 54.72835160956764, 53.55177468229062, 50.62088969800169, 50.863408563713335, 47.40251347184729, 64.29413401802115, 64.20687412126479, 73.66653216085827, 15.820723594639162, 21.973463928234743, 23.804440715385162, 15.139822408433913, 30.015089890369985, 28.08454394421385, 33.041880065463566, 28.49429418531324, 38.33763660905526, 34.503176013521724, 48.748946870573235, 45.45351516824085, 53.522908096188765, 45.95216131836423, 63.13018379633756, 63.4236036208151, 65.28265579397677, 55.43500146374922, 76.50187470137375, 67.22421998359037, 19.289152114521762, 27.63557010588222, 17.700031078096686, 25.462368278660957, 22.94613580060685, 36.19731649621813, 35.22216995579936, 25.526434727578838, 45.882864925557726, 38.71433797181679, 50.617762276434554, 41.96951039650285, 52.265123328453214, 45.383991138243765, 62.7923270665056, 64.40670612696276, 74.89775274405821, 72.89056716347118, 66.37071343209973, 76.32913721410918, 29.923781174452596, 16.465832617450324, 30.530915733275403, 30.512411156491954, 28.04012351007911, 26.315140074869376, 37.18491928428231, 41.958551085353626, 48.370736387628895, 49.419917216561835, 48.67296268029715, 55.484477112881166, 51.120639229597025, 54.797092949987224, 61.92608065418044, 69.79495109420618, 64.43521939892794, 74.35280205157255, 77.22355341160723, 68.90654715174155, 10.87752158238755, 20.25006748725279, 31.71957876614495, 31.42898857400639, 32.505052996368256, 34.1225641368903, 35.66496173153403, 31.76371648643483, 42.97107454773545, 47.41827763710622] x2 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8] x3 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] df = DataFrame(y=y, x2=x2, x3=x3) lrint = regress(@formula(y ~ x2 +x3), df, req_stats=["default", "pcorr1", "pcorr2", "scorr1", "scorr2", "vif"]) end @testset "weighted regression" begin tw = [ 2.3 7.4 0.058 3.0 7.6 0.073 2.9 8.2 0.114 4.8 9.0 0.144 1.3 10.4 0.151 3.6 11.7 0.119 2.3 11.7 0.119 4.6 11.8 0.114 3.0 12.4 0.073 5.4 12.9 0.035 6.4 14.0 0 ] # data from https://blogs.sas.com/content/iml/2016/10/05/weighted-regression.html df = DataFrame(tw, [:y,:x,:w]) f = @formula(y ~ x) lm = regress(f, df, weights="w", req_stats=["default", "t1ss", "t2ss"]) @test isapprox([2.328237176867885, 0.08535712911515277], lm.coefs) @test isapprox(0.014954934572439349, lm.R2) @test isapprox(-0.10817569860600562, lm.ADJR2) @test isapprox([2.551864989438224, 0.24492357920520605], lm.stderrors) @test isapprox([0.3882424860021164, 0.7364546437428148], lm.p_values) @test isapprox([10.272024999999998, 0.02220919946016564], lm.Type1SS) @test isapprox([0.15221363313265734, 0.022209199460165682], lm.Type2SS) res = predict_in_sample(lm, df, req_stats="all") @test isapprox([2.9598799323200153, 2.976951358143046, 3.0281656356121376, 3.09645133890426, 3.2159513196654737, 3.326915587515172, 3.326915587515172, 3.335451300426688, 3.386665577895779, 3.4293441424533553], res.predicted) @test isapprox([0.2149107957203927, 0.24394048660618184, 0.27451117660671137, 0.22039739135761363, 0.15181541173049415, 0.19864023422787455, 0.19864023422787455, 0.20135117925989024, 0.18147639530421758, 0.1143166949587325], res.leverage) @test isapprox([1.957110958921382, 1.765206920504513, 1.4298044633303422, 1.244877562198597, 1.1810280676815839, 1.3571510747551465, 1.3571510747551465, 1.388160919947073, 1.7203164594367346, 2.412834568973736], res.stdi) @test isapprox([0.8231374655094712, 0.7816957716988308, 0.6635670917274183, 0.5290286945664605, 0.4287722865207785, 0.5524810400784785, 0.5524810400784785, 0.568305570562634, 0.6742266146509985, 0.7728194750528609], res.stdp) @test isapprox([1.5732681689017483, 1.3761754659974743, 1.0787484567368795, 0.9949760929369788, 1.0134771577471209, 1.1096794313749598, 1.1096794313749598, 1.1318340411046413, 1.4318958288930972, 2.151109196482762], res.stdr) @test isapprox([0.02407872915271305, 4.5252332002240634e-5, 0.0026705586843115184, 0.414368722166146, 0.31984274220916814, 0.0075059979227238794, 0.10614122824505004, 0.15735260690358094, 0.008083642818377243, 0.054162396113877506], res.cooksd) @test isapprox([1.0617215330136984, 1.1743576761339307, 1.4979771781033089, 1.8765089815923404, 2.2272006538876132, 2.0528920244723023, 2.0528920244723023, 2.024936304649691, 1.8318962164458708, 1.6472192372151455], res.lclp) @test isapprox([4.858038331626332, 4.779545040152161, 4.5583540931209665, 4.3163936962161795, 4.204701985443334, 4.600939150558042, 4.600939150558042, 4.645966296203685, 4.941434939345688, 5.2114690476915655], res.uclp) @test isapprox([-1.5532260320060822, -1.093623100031372, -0.2689693693610047, 0.225758532651414, 0.49249571179955565, 0.19731959703302637, 0.19731959703302637, 0.13434647869991867, -0.5803912914251206, -2.134662351163641], res.lcli) @test isapprox([7.472985896646113, 7.047525816317464, 6.325300640585279, 5.967144145157105, 5.939406927531392, 6.456511577997318, 6.456511577997318, 6.536556122153457, 7.353722447216679, 8.993350636070351], res.ucli) @test isapprox([-0.41943258330883165, 0.01674833073720578, -0.11880956567004286, 1.7121503453084896, -1.8904731152742318, 0.24609306504533465, -0.9254164387302033, 1.117256288156119, -0.2700375055877384, 0.9161114929771242], res.student) @test isapprox([-0.39672963851269843, 0.015666903524005342, -0.1112343500884851, 2.0120993810497283, -2.3774333761244986, 0.23107529120204373, -0.9160676175777195, 1.1376116334771753, -0.25375610179858576, 0.9057709902138592], res.rstudent) @test isapprox([-0.8405158658696843, 0.03048522166395697, -0.1766610752356951, 2.1851500267069777, -2.2588848537963426, 0.3407762956775175, -1.2814663667643953, 1.5833601286751433, -0.47239392447269685, 2.225011859577532], res.press) end @testset "predictions statistics" begin t_carb = [0.1, 0.3, 0.5, 0.6, 0.7, 0.9] t_optden = [0.086, 0.269, 0.446, 0.538, 0.626, 0.782] t_leverage = [0.5918367346938774, 0.2816326530612245, 0.1673469387755102, 0.1836734693877552, 0.24897959183673485, 0.5265306122448984] t_predicted = [0.09271428571428536, 0.26797142857142836, 0.44322857142857136, 0.5308571428571429, 0.6184857142857143, 0.7937428571428573] t_residuals = [-0.006714285714285367, 0.0010285714285716563, 0.002771428571428647, 0.0071428571428571175, 0.007514285714285696, -0.011742857142857277] t_stdp = [0.0066535244611503905, 0.00458978457544483, 0.0035380151243903845, 0.003706585424647827, 0.004315515434962329, 0.006275706318490394] t_stdi = [0.01091189203370195, 0.009791124677432761, 0.009344386069745653, 0.009409504530540022, 0.009665592246181276, 0.010685714285717253] t_stdr = [0.00552545131594831, 0.00733033952495041, 0.007891923021648551, 0.007814168189246363, 0.0074950868260910365, 0.005951093194035971] t_student = [-1.2151560714878948, 0.1403170242074994, 0.3511727830880084, 0.9140905301586566, 1.0025615297914663, -1.9732268946192373] t_rstudent = [-1.3249515797718379, 0.12181828539462737, 0.3089239861926457, 0.8900235681358146, 1.003419757326401, -10.478921731163984] t_lcli = [0.06241801648886679, 0.24078690838638886, 0.4172843964641476, 0.5047321700609886, 0.5916497280049665, 0.7640745580187355] t_ucli = [0.12301055493970393, 0.2951559487564679, 0.4691727463929951, 0.5569821156532972, 0.6453217005664621, 0.8234111562669791] t_lclp = [0.07424114029181057, 0.2552281436530222, 0.43340546665434193, 0.520566011897882, 0.6065039225799076, 0.7763187030532258] t_uclp = [0.11118743113676015, 0.2807147134898345, 0.4530516762028008, 0.5411482738164038, 0.630467505991521, 0.8111670112324888] t_press = [-0.016449999999999146, 0.001431818181818499, 0.0033284313725491102, 0.00874999999999997, 0.010005434782608673, -0.02480172413793134] t_cooksd = [1.0705381016035724, 0.0038594654616162225, 0.012392684477580572, 0.09400066844914513, 0.16661116000566892, 2.1649894168822432] fdf = DataFrame([[0.1,0.3,0.5,0.6,0.7,0.9],[0.086,0.269,0.446,0.538,0.626,0.782]], [:Carb, :OptDen]) lm1 = regress(@formula(OptDen ~ 1 + Carb), fdf) results = predict_in_sample(lm1, fdf, Ξ±=0.05, req_stats=["all"]) @test isapprox(t_leverage, results.leverage) @test isapprox(t_predicted, results.predicted) @test isapprox(t_residuals, results.residuals) @test isapprox(t_stdp, results.stdp) @test isapprox(t_stdi, results.stdi) @test isapprox(t_stdr, results.stdr) @test isapprox(t_student, results.student) @test isapprox(t_rstudent, results.rstudent) @test isapprox(t_lcli, results.lcli) @test isapprox(t_ucli, results.ucli) @test isapprox(t_lclp, results.lclp) @test isapprox(t_uclp, results.uclp) @test isapprox(t_press, results.press) @test isapprox(t_cooksd, results.cooksd) results = predict_in_sample(lm1, fdf, Ξ±=0.05, req_stats=["none"]) @test isapprox(t_predicted, results.predicted) @test_throws ArgumentError("column name :leverage not found in the data frame") t_leverage == results.leverage results = predict_out_of_sample(lm1, fdf) @test isapprox(t_predicted, results.predicted) @test_throws ArgumentError("column name :leverage not found in the data frame") t_leverage == results.leverage end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
1031
# using DataFrames, CSV # include("../src/LinearRegressionKit.jl") @testset "Cook's Distance" begin st_df = DataFrame( Y=[6.4, 7.4, 10.4, 15.1, 12.3 , 11.4], XA=[1.5, 6.5, 11.5, 19.9, 17.0, 15.5], XB=[1.8, 7.8, 11.8, 20.5, 17.3, 15.8], XC=[3., 13., 23., 39.8, 34., 31.], # values from SAS proc reg CooksD_base=[1.4068501943, 0.176809102, 0.0026655177, 1.0704009915, 0.0875726457, 0.1331183932], CooksD_multi=[1.7122291956, 18.983407026, 0.000118078, 0.8470797843, 0.0715921999, 0.1105843157], ) t_lm_base = regress(@formula(Y ~ 1+ XA), st_df) results = predict_in_sample(t_lm_base, st_df, req_stats=["all"]) @test isapprox(st_df.CooksD_base, results.cooksd) t_lm_multi = regress(@formula(Y ~ 1+ XA + XB), st_df) results = predict_in_sample(t_lm_multi, st_df, req_stats=["all"]) @test isapprox(st_df.CooksD_multi, results.cooksd) end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
70734
@testset "White's covariance estimators" begin # using data from Nerlove Cobb-Douglas model from https://github.com/mcreel/Econometrics/blob/master/Examples/Data/nerlove.csv cost = [0.082, 0.661, 0.99, 0.315, 0.197, 0.098, 0.949, 0.675, 0.525, 0.501, 1.194, 0.67, 0.349, 0.423, 0.501, 0.55, 0.795, 0.664, 0.705, 0.903, 1.504, 1.615, 1.127, 0.718, 2.414, 1.13, 0.992, 1.554, 1.225, 1.565, 1.936, 3.154, 2.599, 3.298, 2.441, 2.031, 4.666, 1.834, 2.072, 2.039, 3.398, 3.083, 2.344, 2.382, 2.657, 1.705, 3.23, 5.049, 3.814, 4.58, 4.358, 4.714, 4.357, 3.919, 3.442, 4.898, 3.584, 5.535, 4.406, 4.289, 6.731, 6.895, 5.112, 5.141, 5.72, 4.691, 6.832, 4.813, 6.754, 5.127, 6.388, 4.509, 7.185, 6.8, 7.743, 7.968, 8.858, 8.588, 6.449, 8.488, 8.877, 10.274, 6.024, 8.258, 13.376, 10.69, 8.308, 6.082, 9.284, 10.879, 8.477, 6.877, 15.106, 8.031, 8.082, 10.866, 8.596, 8.673, 15.437, 8.211, 11.982, 16.674, 12.62, 12.905, 11.615, 9.321, 12.962, 16.932, 9.648, 18.35, 17.333, 12.015, 11.32, 22.337, 19.035, 12.205, 17.078, 25.528, 24.021, 32.197, 26.652, 20.164, 14.132, 21.41, 23.244, 29.845, 32.318, 21.988, 35.229, 17.467, 22.828, 33.154, 32.228, 34.168, 40.594, 33.354, 64.542, 41.238, 47.993, 69.878, 44.894, 67.12, 73.05, 139.422, 119.939] output = [2, 3, 4, 4, 5, 9, 11, 13, 13, 22, 25, 25, 35, 39, 43, 63, 68, 81, 84, 73, 99, 101, 119, 120, 122, 130, 138, 149, 196, 197, 209, 214, 220, 234, 235, 253, 279, 290, 290, 295, 299, 324, 333, 338, 353, 353, 416, 420, 456, 484, 516, 550, 563, 566, 592, 671, 696, 719, 742, 795, 800, 808, 811, 855, 860, 909, 913, 924, 984, 991, 1000, 1098, 1109, 1118, 1122, 1137, 1156, 1166, 1170, 1215, 1279, 1291, 1290, 1331, 1373, 1420, 1474, 1497, 1545, 1649, 1668, 1782, 1831, 1833, 1838, 1787, 1918, 1930, 2028, 2057, 2084, 2226, 2304, 2341, 2353, 2367, 2451, 2457, 2507, 2530, 2576, 2607, 2870, 2993, 3202, 3286, 3312, 3498, 3538, 3794, 3841, 4014, 4217, 4305, 4494, 4764, 5277, 5283, 5668, 5681, 5819, 6000, 6119, 6136, 7193, 7886, 8419, 8642, 8787, 9484, 9956, 11477, 11796, 14359, 16719] labor = [2.09, 2.05, 2.05, 1.83, 2.12, 2.12, 1.98, 2.05, 2.19, 1.72, 2.09, 1.68, 1.81, 2.3, 1.75, 1.76, 1.98, 2.29, 2.19, 1.75, 2.2, 1.66, 1.92, 1.77, 2.09, 1.82, 1.8, 1.92, 1.92, 2.19, 1.92, 1.52, 1.92, 2.2, 2.11, 1.92, 2.05, 1.66, 1.8, 1.77, 1.7, 2.05, 2.19, 1.85, 2.19, 2.13, 1.54, 1.52, 2.09, 1.75, 2.3, 2.05, 2.32, 2.31, 1.92, 2.05, 1.76, 1.7, 2.04, 2.24, 1.7, 1.68, 2.29, 2.0, 2.31, 1.45, 1.7, 1.76, 1.7, 2.09, 1.55, 2.11, 2.05, 2.3, 2.19, 2.04, 2.31, 1.7, 2.05, 2.19, 2.0, 2.32, 1.55, 2.13, 2.2, 2.2, 1.85, 1.76, 1.8, 2.32, 1.8, 2.13, 1.98, 1.76, 1.45, 2.24, 1.69, 1.81, 2.11, 1.76, 1.77, 2.0, 2.3, 2.04, 1.69, 1.76, 2.04, 2.2, 1.76, 2.31, 1.92, 1.76, 1.76, 2.31, 2.3, 1.61, 1.68, 2.09, 2.09, 2.05, 2.29, 2.11, 1.53, 2.11, 2.04, 2.19, 1.92, 2.04, 2.11, 1.76, 1.79, 2.11, 1.54, 1.92, 2.12, 1.61, 2.32, 2.24, 2.31, 2.11, 1.68, 2.24, 2.12, 2.31, 2.3] fuel = [17.9, 35.1, 35.1, 32.2, 28.6, 28.6, 35.5, 35.1, 29.1, 15.0, 17.9, 39.7, 22.6, 23.6, 42.8, 10.3, 35.5, 28.5, 29.1, 42.8, 36.2, 33.4, 22.5, 21.3, 17.9, 38.9, 20.2, 22.5, 29.1, 29.1, 22.5, 27.5, 22.5, 36.2, 24.4, 22.5, 35.1, 33.4, 20.2, 21.3, 26.9, 35.1, 29.1, 24.6, 29.1, 10.7, 26.2, 27.5, 30.0, 42.8, 23.6, 35.1, 31.9, 33.5, 22.5, 35.1, 10.3, 26.9, 20.7, 26.5, 26.9, 39.7, 28.5, 34.3, 33.5, 17.6, 26.9, 10.3, 26.9, 30.0, 28.2, 24.4, 35.1, 23.6, 29.1, 20.7, 33.5, 26.9, 35.1, 29.1, 34.3, 31.9, 28.2, 30.0, 36.2, 36.2, 24.6, 10.3, 20.2, 31.9, 20.2, 10.7, 35.5, 10.3, 17.6, 26.5, 12.9, 22.6, 24.4, 10.3, 21.3, 34.3, 23.6, 20.7, 12.9, 10.3, 20.7, 36.2, 10.3, 33.5, 22.5, 10.3, 10.3, 33.5, 23.6, 17.8, 28.8, 30.0, 30.0, 35.1, 28.5, 24.4, 18.1, 24.4, 20.7, 29.1, 29.1, 20.7, 24.4, 10.3, 18.5, 24.4, 26.2, 22.5, 28.6, 17.8, 31.9, 26.5, 33.5, 24.4, 28.8, 26.5, 28.6, 33.5, 23.6] capital = [183, 174, 171, 166, 233, 195, 206, 150, 155, 188, 170, 167, 213, 164, 170, 161, 210, 158, 156, 176, 170, 192, 164, 175, 180, 176, 202, 227, 186, 183, 169, 168, 164, 164, 170, 158, 177, 195, 176, 188, 187, 152, 157, 163, 143, 167, 217, 144, 178, 176, 167, 158, 162, 198, 164, 164, 161, 174, 157, 185, 157, 203, 178, 183, 168, 196, 166, 172, 158, 174, 225, 168, 177, 161, 162, 158, 176, 183, 166, 164, 207, 175, 225, 178, 157, 138, 163, 168, 158, 177, 170, 183, 162, 177, 196, 164, 158, 157, 163, 161, 156, 217, 161, 183, 167, 161, 163, 170, 174, 197, 162, 155, 167, 176, 170, 183, 190, 170, 176, 159, 157, 161, 172, 203, 167, 195, 161, 159, 177, 157, 196, 183, 189, 160, 162, 178, 199, 182, 190, 165, 203, 151, 148, 212, 162] ndf = DataFrame(cost=cost, output=output, labor=labor, fuel=fuel, capital=capital) f = @formula(log(cost) ~ 1 + log(output) + log(labor) + log(fuel) + log(capital)) lr2 = regress(f, ndf, cov=[:hc0, :hc1, :hc2, :hc3, :nw]) @test [:hc0, :hc1, :hc2, :hc3] == lr2.white_types @test [:nw] == lr2.hac_types @test isapprox([1.6887096637865764, 0.03203057017940859, 0.2413635423569017, 0.07416986820706634, 0.3181801843194431], lr2.white_stderrors[1]) @test isapprox([-2.088282503859893, 22.490828975090466, 1.807817355217008, 5.750542145660426, -0.6910812225036552], first(lr2.white_t_values)) @test isapprox([0.03858351163194079, 2.515671235586196e-48, 0.07278163877804528, 5.358556751845478e-8, 0.4906588080040115], lr2.white_p_values[1]) @test isapprox([1.718600650948449, 0.03259752694088162, 0.24563579513121173, 0.07548271115809448, 0.3238121292347976], lr2.white_stderrors[2]) @test isapprox([-2.0519617765991467, 22.099654283167162, 1.7763746548274086, 5.650525087387196, -0.6790615017279884], lr2.white_t_values[2]) @test isapprox([0.04203687115328462, 1.7165028470144865e-47, 0.07784320772633291, 8.6256319578862e-8, 0.49821998002922296], lr2.white_p_values[2]) @test isapprox([1.7404789466388655, 0.033024377914589426, 0.24759483158894688, 0.07606559302904324, 0.327665011037017], lr2.white_stderrors[3]) @test isapprox([-2.0261680566690297, 21.814008964615727, 1.762319503962301, 5.607225765004714, -0.6710766891466415], lr2.white_t_values[3]) @test isapprox([0.04464696168598006, 7.061145309349196e-47, 0.0801976916093005, 1.0583954671852304e-7, 0.5032773613193346], lr2.white_p_values[3]) @test isapprox([1.794226207499838, 0.03405163218075088, 0.25404375612619956, 0.07802173599290865, 0.3375082813724026], lr2.white_stderrors[4]) @test isapprox([-1.96547282067551, 21.155933790655254, 1.717582858335255, 5.466642694307393, -0.6515050530368971], lr2.white_t_values[4]) @test isapprox([0.05133862483580867, 1.909213828296015e-45, 0.08808381706940926, 2.0436000920232382e-7, 0.5157885588309656], lr2.white_p_values[4]) @test isapprox([1.5413337169817793, 0.04558343812215214, 0.250278670841928, 0.07289639728036612, 0.2651138982712092], lr2.hac_stderrors[1]) @test isapprox([-2.287955428555851, 15.803855644877787, 1.7434214402754615, 5.851001818682364, -0.8294108765696443], lr2.hac_t_values[1]) @test isapprox([0.02363824106367065, 6.252423796307023e-33, 0.08345530926614206, 3.306228013288088e-8, 0.4082838999795607], first(lr2.hac_p_values)) end @testset "Newey-West covariance estimators" begin # using Data from https://raw.githubusercontent.com/mcreel/Econometrics/master/Examples/Data/sp500.csv # based on the Econometrics code from https://github.com/mcreel/Econometrics/blob/master/Examples/TimeSeries/SP500.jl y = [0.002583702575676502, 0.3079890371414663, 0.2218233792549798, 0.07975000051131587, 0.22310573843696402, 0.0016145767310154937, 0.00021506066259480462, 0.1347348238545566, 0.7244128703617047, 0.0011828566361204594, 0.07002289701258912, 0.37366185926285417, 0.0007702828176743898, 0.002139278700879984, 0.053836464007526154, 1.650675513088037, 1.16748122425437, 0.27856093459188397, 0.019058258961000864, 0.16136521150410382, 0.08224579148911378, 0.004024360208805437, 0.7653817220257503, 4.4510953200179815, 0.25957822569124633, 0.37137008090011087, 1.0357988095863304, 1.2389842387287384, 0.4324607874947091, 5.269593589329902, 0.5621803938941623, 0.03477934257291081, 1.4619965090681062, 1.7365164047084427, 0.028582510379680535, 1.1864719119647948, 0.00017403544878260159, 0.32998873142007473, 0.23548033193902543, 0.019210839894924763, 0.4530222091064397, 0.36620714829237433, 0.033215060313819496, 0.36313208130177793, 0.01484899619985411, 4.698840747702183e-6, 0.22943861446916383, 0.0693734390306599, 0.5194246266697191, 2.254208363566848, 0.000711991818247004, 0.03227740032396568, 0.0002067872176035323, 0.0008581956571378268, 0.25524877190609313, 0.0006603091802297528, 1.362499153127377, 0.08577309821496772, 0.8919014915087333, 0.5230148340571447, 0.3562150939685192, 0.3562150939685192, 0.1096908647583281, 0.20407089519132424, 0.1968720725392859, 0.48739080592383005, 0.04061200146027687, 0.20350016132170584, 0.6452477732061614, 0.4935279378347359, 0.08269231898382176, 0.010974942559581268, 1.6116941048352218, 1.1928108856953, 0.15213049376092777, 1.1501296327247874, 4.425046102227064, 0.8991160278122725, 0.6456958173927121, 0.4580013476284833, 1.0730853116158547, 0.02257630017653147, 0.12632124277322926, 0.19019934287306395, 0.05196206322855161, 0.02692636386162153, 0.635005506129145, 0.0972247251099256, 0.22760365264589139, 0.07938909838989823, 0.00028864197438840976, 0.014932056591780294, 0.03840574490115696, 0.8190214201900288, 0.30950765751926473, 0.01831369772284331, 0.021621005780058804, 0.9430252521456538, 0.0012103784072304167, 0.22155472706333956, 0.8627598292464865, 0.1347165223919831, 0.13961685134675358, 0.396375900478387, 0.6152459263002183, 0.061040907672904716, 0.17837935923383433, 0.3582749524196826, 0.011621160871505566, 0.2727183192294628, 0.03317357438251278, 0.005996550580435087, 0.0012854244709616827, 0.03435859450068371, 0.4084641127852834, 0.2156258703166822, 0.009693582456685656, 0.00017760650614569273, 0.11942646862758109, 0.5276094841987697, 0.09066065784318494, 0.009929957262853248, 0.052145347173973046, 0.5724172922392592, 0.014649269664895301, 0.03913792721866548, 0.0013455493423829188, 0.3953058983299156, 0.22439797677280424, 0.01227838224650002, 0.03605488081864467, 0.001879662186147144, 0.4409922694618947, 0.003946687216989506, 0.3092252935097444, 0.15935751264549847, 0.47063574021947513, 0.1922336294839871, 0.16143647680511083, 0.017894712219287973, 0.24489610764512534, 0.03229765751935813, 0.15918992781905314, 1.436885125027776, 1.0319324805303918, 0.04264171592814084, 0.2528556838239409, 0.033424334783545964, 0.0004900776090921828, 0.23388375032149153, 0.0009505823861797834, 0.1835680041079445, 5.796064815787655e-5, 4.0806986460067876, 0.08346313295260399, 0.5272289742049457, 0.9931513138005919, 1.0850581417353803e-6, 0.30014196696728745, 1.2968901911493473, 0.078242727820577, 0.02386976812780534, 0.4251328893584252, 0.1979793262794858, 2.6160527648452464e-7, 0.6926779466296006, 0.25803324018763996, 0.062248616253323265, 0.08765575761459778, 0.04120106917205882, 0.25067625966553186, 0.008562886172120192, 0.00022500000084360892, 0.020053628341366012, 0.1011039485999002, 0.004543950646515702, 0.004090312768752987, 0.024199736620066938, 0.23609140197946205, 0.08782228599374417, 0.4200776046483452, 0.1309926797100626, 0.006665392855877088, 0.34397553423331073, 0.006744069891373599, 0.5680539834354023, 0.015620473802026125, 0.24491747714212983, 0.0021386494864975964, 0.6407900944133236, 0.3431802914429819, 0.6204188359136701, 2.63173564256491, 0.6698705449027024, 0.054904693752213116, 0.06797321779763552, 1.767005817528848, 0.0011152537338764798, 1.2128283813183613, 0.0184390507113931, 2.3766787146086807, 3.0079507122335087, 4.258404245487947, 1.3115650352289032, 2.8165805348731867, 0.025905717699369488, 0.664907800923179, 0.0011444411916685549, 1.7241447201716487, 0.8370970621184224, 3.7284109849477085, 0.5113090444749049, 1.4257963182829891, 0.5167011440300261, 0.02526566428379101, 1.3757506587868202, 0.012755883561513673, 0.37649443520629744, 1.3193112989834972, 4.815314748655017e-5, 0.06997476757293467, 0.2934423572024434, 0.14542305380085527, 0.0015900672702848092, 0.10233979942471935, 0.005630546906068476, 0.006469621166966418, 0.002964489964671273, 0.0006010368661893317, 0.005049890932956196, 0.2841651168698957, 0.03239227448552545, 0.0437699743603815, 0.25004113429080693, 0.09896237374382906, 0.008348297582788964, 0.06578790089468022, 0.06653433188654503, 0.4642751904757431, 0.39519374748374775, 0.13476408975837945, 0.014546447433743066, 0.03048312954732133, 0.4971181043026032, 0.0018662766285030344, 2.6278158118829213, 0.1835022400764073, 2.47514809706536, 0.4902999631428375, 0.6470801794417882, 3.786416800758203, 5.710830088843509, 0.20926417831010427, 0.1581341399810609, 0.027658022936031913, 0.00026667083846736194, 0.1238659117684014, 0.0063843628083706545, 0.2568548171899579, 1.0711977658880973, 0.0013630664009920536, 3.30352005277502, 0.879937452995484, 1.3685169188596928, 3.1345899818323706, 0.6720940644275492, 0.6578195141762373, 0.07532735309925823, 0.34805685820061716, 0.842015572726283, 1.7087250120723894, 0.029488252214740676, 0.24182332479734264, 2.284138680208943, 0.31894040973928284, 0.061151112591218436, 1.7538966941844074, 1.8268492450043812, 0.8870968872656356, 1.6888231118637285, 1.6087801518278428, 2.019083717365777, 0.1684290942528512, 1.0410453692042765, 0.10908074809402096, 0.1908436042909946, 1.1155471867184612, 5.844220501773345e-8, 0.9173794532331626, 0.17207017942125807, 0.019631404095377558, 6.555129538971182e-5, 0.00982371335634011, 0.35698824532156515, 0.0007820153496087637, 0.08405923604797942, 0.008030119032879519, 0.019637432372691947, 0.08906498732956161, 0.34791881304822925, 0.1888647288187308, 0.18720383176890742, 0.013171865708443678, 2.044673633104564, 0.15459915234264454, 2.7340068188035773, 0.05613079127103884, 1.524501016813576, 0.3659967127896868, 1.767352893320553, 0.10153648063314294, 1.435364000364032, 0.2167276648091159, 0.8031751357843536, 0.032374505789632385, 0.3751207540409881, 2.149188191296807, 0.0569958712551922, 0.04589654437267971, 1.5084140556081869, 0.7492740902741857, 0.1656337374812022, 0.11493729848117477, 0.4580338241879098, 0.051352422239383536, 0.07530480863923807, 0.19846467652836752, 0.27377279396793475, 0.1987303527859933, 0.026353024881242783, 0.23472445370635528, 0.003034692953906944, 1.316931342061209, 0.8390005939171763, 0.01754342967885931, 0.2469866860516095, 0.057710642895835086, 0.051701050550059705, 0.17219583486604545, 0.07883443523184595, 0.15164278691054486, 1.021923484986976, 1.1332130435385828, 0.0956724321770484, 1.4033171247754346, 0.18694570389475104, 0.1313883092766454, 1.7455074139725115, 0.24915777761962332, 0.08740574923380957, 0.0006376809234389431, 1.0984572099386032, 0.00929021796449848, 0.08574866678963247, 0.0023646622324457658, 0.00929021785769423, 0.06095506448679574, 0.05073967134751741, 1.0752853369569975, 0.813834965372417, 0.013766648374547249, 0.4010969177159289, 0.03954033174282336, 0.0107168060720065, 0.051118343620808644, 0.7264977807132222, 0.0295394916335375, 0.40768478136598163, 0.0005107261219950305, 1.3835791642534696, 0.05082592741617635, 0.5182288196996737, 0.20847353016272271, 0.31457673259478647, 0.03854852878681378, 0.9355254491638486, 0.2808480238401504, 0.3979094654666121, 0.003576278721621333, 0.5286854122427138, 0.09093614772575773, 0.0008980702651302059, 4.506337756442705, 0.0628419448477344, 0.5120521952985422, 0.005285361135176275, 0.1292140484977512, 0.3828250468549696, 2.8142650757929815, 0.04403330176973427, 1.4896474672190718, 1.206052602820401, 0.19957580371050726, 0.0024332886984693245, 0.6014342222138763, 0.01140756420168566, 0.005377842609848153, 0.17604244197404836, 0.05760422812917011, 0.31250381829377694, 1.1490894921751678, 0.32317018839483974, 1.477363382486283, 0.5145477322334638, 0.00044536297985431025, 0.03722728387531214, 0.10378974208240024, 0.04986984116156657, 0.10029440871562356, 0.5982456162589183, 0.07998428351762868, 1.5670089066470347, 0.8722840563055405, 0.0073673753922654595, 0.017523748116534052, 0.15166069792511527, 0.2647333138240556, 0.07087804020640305, 0.6665559662655085, 4.465561571362131, 10.40555472376894, 16.357949944570567, 1.8201377363046138, 14.44889082735589, 5.777626475633906, 0.0012396712566665454, 0.6883883094000172, 8.861699000902632, 3.1943960598716226, 0.011490096079574411, 2.3567955489581562, 6.115447204722121, 1.8989595298996975, 0.26058211927209585, 0.18129924094686936, 0.14887662516273448, 1.6450471835892526, 0.7236768307417346, 0.05850914274620028, 2.662184941920464, 0.21830373822980817, 1.5939020924298253, 0.03694131138650948, 0.10559458810404099, 0.0024689384133387868, 6.783973349246389, 0.010398398911134211, 3.3524729267239373, 0.068279431966427, 2.0162990366951843, 3.28019301227849, 0.11927888704886429, 0.6265796292912164, 0.7748629517746713, 0.006076061991189065, 0.013128366319410133, 0.4488822636762288, 0.2354825292028072, 2.209225500280821, 0.19817768183084417, 0.002926153051489738, 0.019247637042804473, 0.36352165683014365, 2.7112274772259863, 1.2192855982919537, 0.044840887285913816, 0.056805932987708904, 1.3494592480103418, 0.0013576460417352443, 0.2242100355383555, 1.3618848691363492, 0.07975331131097356, 0.11782991085393398, 0.014381096371652689, 0.0017168415935754928, 0.9583105878100994, 0.024554390730871872, 0.11866843195091219, 1.9632576325544924, 1.2646413642305825, 2.155179950498865, 0.01581167729278044, 2.544402790787023, 0.011883784671174378, 0.14682683497024251, 0.014799396019231316, 0.016969808531168, 0.0002806611450338811, 0.0027712499496886185, 0.1768016741246593, 1.0107010248365031, 1.1670828567876885, 2.0758158009107004, 3.9421882611486314, 0.44865444108316177, 0.41854806373328796, 0.6038449480901684, 0.048182822003452724, 3.872119837986092, 0.24572661055217634, 1.0824271647473727, 2.03779299856089, 2.24255529227242, 3.263758245708823, 0.6011732417563199, 0.7879168968089538, 1.5050527610036375, 0.025441763685205794, 0.04546771822433159, 1.0865854705464866, 0.5184737462324385, 0.910142321772268, 2.286511011661547, 0.03842941438688528, 1.7247351272464149, 5.824146531510543, 1.2275181867210987, 0.007635716199518582, 0.6376029845125641, 6.433776369887999, 2.6511260306327085, 4.7012118510676935, 0.004347054808087411, 1.3659555616858692, 0.24570121720140126, 4.073627148727174, 2.421056718500661, 1.9251272852839614, 1.1711801545005558, 0.27715925852263584, 5.565322930135341, 0.0009579624668431065, 3.481273317628789, 0.2516299228341998, 0.021401362682114608, 3.4939583654402, 1.983427037787052, 0.0035237228726767754, 0.0020569783634058533, 1.5677078198252883, 3.7527934289121045, 2.662250670402008, 2.710828525609125, 0.21585584855319767, 4.351194233101605e-6, 2.0510428949246498, 1.5360618675912747, 0.18582604017048446, 1.306272035777689, 0.03919095545102478, 0.6862750084437098, 5.573613903979422, 0.1703233717825925, 0.13130228089646268, 0.09800057883604318, 0.009598337681838763, 1.2360761565697687, 0.2301996571176748, 0.0012030825891027046, 2.5884984445887227, 0.014820775781172928, 0.03219035087883163, 0.3389309399247959, 0.40782563342972156, 0.174415708647101, 0.013136952864563189, 0.004999242998317165, 0.4249259448217729, 0.0013205614013213534, 0.0028123552076516883, 0.7868471672769553, 0.1833852057359362, 0.04349210760699473, 0.4056241084484814, 0.11084892073550408, 1.0130429443072781, 1.0914632328925065, 1.4490325408381783, 0.07340161990758948, 0.07208089577358524, 0.9189331941156488, 0.9950856118029908, 1.4757545294127993e-5, 0.009985690118679568, 0.4440624343427734, 0.09396965438944942, 0.005941963128194226, 0.26524574628999026, 8.22865063234208e-6, 0.03219996480514713, 0.029022332981481352, 0.03705667977313132, 0.8565969851329813, 0.2667246033735577, 0.5873038079830065, 0.7544028206125967, 0.3534000062803314, 0.0010673040857031, 0.10641747032439862, 0.006743164041479742, 1.5151748468672672, 0.9082197477491177, 6.00611111378366e-5, 0.7592059305274265, 0.9514315044323035, 0.9155569359195882, 0.0005729044894809509, 0.13396099842071768, 0.35612588639461673, 0.03291967439965614, 1.7835250613851086, 0.46535213486548405, 2.2890401090842216e-5, 0.1697874694586328, 0.009181282586632885, 0.014428021431883162, 0.07327111169524764, 0.07719069688098099, 0.2386765746730553, 0.021151820703514634, 0.10117839668330411, 0.028587544356908454, 0.8442957886076867, 0.6669902604644344, 0.03311263636671677, 0.0260970648495329, 0.08500568162075645, 0.10965349882925712, 0.3466110038677883, 0.0662619529917042, 0.025608597520586286, 1.712442003477771, 13.300237353327269, 3.3009254902353966, 3.0610154169935098, 2.838291793764177, 1.8598323545243238, 0.030852749611046233, 0.4716075610867205, 0.29537007408977667, 0.008282943401236243, 2.2468064683584106, 0.1256023130608896, 0.49645792315995513, 5.527171786059049e-5, 0.27374446623212906, 0.00952083061718175, 0.06180425502658006, 0.01894107118695491, 0.1847286840616142, 0.1401438184149155, 0.20231760203480303, 0.08177228385295082, 0.00079104764983973, 0.010017859656537101, 0.01863291170930948, 0.02365535332003779, 0.014329635910613195, 0.39443315701474363, 0.08586140751153488, 0.0019274133276433627, 0.6851756940473963, 0.005311998850043209, 0.0017024959555922987, 0.079688894718958, 0.22008320587901115, 0.008130608536134967, 0.08510524420987187, 0.29682965621648394, 0.028338802589761864, 0.05011453282274803, 0.02104371353267891, 0.0018935209969263623, 0.03713120970097753, 0.26128043499760933, 0.01942085910485509, 0.02409474450511849, 0.2586053664787466, 0.038606498086274865, 0.06127251225564271, 4.7751707769901346e-5, 0.1835721577393485, 0.09056041030997672, 0.00027112998387032923, 0.052429812659836525, 6.03971060870506, 2.073913523576319, 2.2353248178138454, 0.003027384071535517, 1.0051156181575258, 0.15144269337829147, 0.00010578097131303075, 0.00040398676844760964, 1.189210215892407, 0.4085511322933493, 0.3050386957011653, 0.729340228548671, 0.3861413223970852, 0.2689323689592784, 0.856462644552892, 0.6109684123883636, 0.10548780428401248, 0.2340838798352385, 0.1777146984711078, 0.002958576511911419, 0.10710288496433198, 0.2103252201669941, 1.539517691333209, 0.013022405694318602, 0.09721162451566145, 0.0004450999776792177, 0.10044411808050144, 0.37033849738013236, 0.053624759748461814, 0.02230205845284987, 7.067652115930854e-5, 0.21197286681136482, 0.1226659239582447, 0.0319877674614164, 0.08340411873281124, 0.10434005192264394, 0.00010704532120576496, 0.469542294582416, 0.42238872403469113, 0.19906499754072418, 0.025611051627757477, 4.7584503819435815, 0.15288208712720827, 1.1719774681176782, 0.046314819022991664, 0.02596355838457836, 0.00011293349290798197, 0.5438027191907789, 0.025513367954121367, 0.21552863937083835, 0.053438858962943384, 0.5447817034365408, 0.04341513767062041, 0.006306507791694165, 0.15943016116215442, 0.2675947791253387, 0.016672345318286222, 0.06227164917694632, 0.1402194735857296, 0.002166155678603786, 0.3300636020729472, 0.11718001922823885, 1.6385072924932298, 0.05414217650787199, 0.3617840605745264, 0.013052553097741575, 0.41975632687895537, 0.6506558695291546, 0.1451019274177716, 0.031169863735291094, 0.04177842691590757, 0.12613322282896455, 0.05627174041462594, 0.03593303679676961, 0.012905521172021369, 0.05407880270522265, 0.6953072159182692, 0.000619616509593883, 0.18444785797066962, 0.6182056858262527, 0.33837639055534086, 0.005093817751051703, 0.12886772639154007, 0.122308865377569, 0.00013129235104194828, 0.0732684331815726, 0.04497864379020792, 0.03514296697730362, 0.08832896925862935, 0.031055691034788224, 0.13043429709465412, 0.10941541868394032, 0.06314815563956179, 0.41099443705370803, 0.649567483868346, 0.005868020937729122, 0.009268333268147229, 0.3735101732583879, 0.004563294063522422, 0.0002635501993347267, 0.004327989402044048, 0.5052475934321649, 0.039312233429900666, 0.00014915203351702864, 0.005954858596661586, 0.3230989285791853, 0.13772568488281842, 0.26392342935831414, 0.1558730238088185, 0.24761261238104038, 0.006686102464138949, 0.025214691642705556, 0.3555708368894157, 0.010309331346734675, 0.0025358538925498776, 0.018647625366932926, 0.013679714648336727, 0.060052297952910345, 1.7956473189152413, 0.35439058459450185, 0.0019429284643071047, 0.09083090787269694, 0.09447004403016364, 0.04575136490335676, 0.006459371442439489, 0.11261868468888157, 0.0008209421471136433, 0.12181384224474495, 0.6576428425169688, 0.020840193947308763, 0.018653988817572152, 0.03556092834428674, 1.5674535023655984, 0.03843923840553641, 0.011252969161252612, 0.005254626037166597, 0.013576570624271495, 0.5195953788449381, 0.012800912700290658, 0.08391698079169817, 0.05250545865232042, 0.024563216320698793, 0.001980376901751918, 0.0933614612590033, 0.041709311922108486, 0.00670696954123109, 0.003734452871888666, 0.017996718703772972, 0.1540165935245423, 0.4461858257869078, 0.7288837326380754, 0.0875387940731562, 0.03252182159753454, 0.594101714982668, 0.09108890408323, 1.1342438934197567, 0.3712756969567675, 0.0018965862018593643, 0.0031481901627399447, 0.04113192757760038, 0.043020824844486105, 0.005927464499773701, 0.01576473650159528, 0.004771527495940785, 0.16513905402476844, 0.000166970350633535, 0.007524462046500157, 0.011935856891056891, 0.04110830032928077, 0.027671082401395663, 0.23876646919202865, 0.005310444163454746, 3.2854037560380474, 0.12292849398403076, 0.44532821773541253, 0.2662274979472321, 0.038634887727501496, 0.05594401038358628, 0.19755036943015952, 0.0004998730758698305, 0.012231449286693084, 0.0022726809126874096, 0.5652303300137818, 0.11488282090519102, 0.006013619799989586, 0.07881511743641124, 0.02266188087562861, 0.0008754202237340968, 0.011336656440702482, 0.00506698056456099, 0.19819404671256646, 0.010338183204109248, 0.047905709657831086, 0.0004568750550543027, 0.6708609989917624, 0.4217972007628798, 0.0026318892298838295, 0.002719595459366587, 0.020284471517469056, 0.0013320109303731043, 0.630492468309407, 0.7277083660370265, 0.7241872447638558, 0.023724489647558626, 0.05138674088550191, 0.021448912084270546, 0.8619674915569887, 0.38240964212404543, 0.011394573776611744, 0.006195031904820567, 0.5321505794035981, 0.03476180036672574, 0.20761893732966868, 6.614553720211809e-5, 0.0045540622128015075, 0.2700275145518658, 0.0004590234378390465, 0.004780601680297542, 0.003162747088893576, 0.06484165500543976, 0.0006062057863821437, 0.009312544262156252, 0.018338734134179264, 0.0024768190702265484, 0.04608470029150553, 0.0015657264045072893, 0.04264129020384843, 0.03034473852077423, 0.03137127332388284, 0.05535957456012246, 0.0016332519194396443, 2.104519814572286, 0.016457382385387628, 0.9458640190004752, 0.00044500592757794745, 0.01922651966030125, 2.3971676820772814, 0.038115265259816185, 0.012377547214999052, 0.9891011251988212, 0.11912349644921691, 0.043634576818667274, 0.03473849386968508, 0.0005251161795553847, 0.009394108093578026, 0.2012677700571407, 0.33105007341867876, 0.03670862278189504, 0.557441397840061, 0.10245342291065757, 0.0006738403062835575, 0.01995637730106744, 1.1293509658245315, 0.12438037953709719, 0.003009163689409014, 0.005973332697882615, 0.020769058359085234, 0.029675107098423546, 0.010852212268150191, 0.00289880220414353, 0.08264763970799936, 0.0011547941025428492, 0.04131703753618656, 0.0004851928442598332, 0.15876421970281124, 0.011499295615757537, 0.13069478215454425, 0.16362702728250397, 0.04753117394466431, 0.014462090488644521, 0.3223872165627712, 0.01623668829463393, 0.028773205740287088, 0.05903144938946727, 0.027584016345301467, 0.03135092212005554, 0.01465998756732385, 0.023170153237071733, 0.005515099777242529, 0.004997741362145888, 0.0019802775112162108, 0.2394790336151675, 0.13777829486273757, 0.02355171060769022, 0.22357412371274132, 0.015639662820261795, 0.6477503708567071, 0.10550058390024825, 0.008912867718160461, 0.02655740743491055, 0.0003319678551520233, 0.09634330959638235, 0.01673604647160506, 0.0036267047995161283, 0.03330076447941435, 0.1385829568068526, 0.00792529183858699, 0.009362805469398846, 0.055454328812437115, 0.2959020601481385, 0.6536180197581768, 0.07140230259919765, 0.018291032043038915, 0.42956359413553497, 0.006847680885935154, 0.04203295066189019, 0.0012501854265941762, 0.9716207558868816, 0.0023378035023157266, 0.6465288454659239, 0.04200635699421544, 0.010768580670454402, 0.13253355422904062] x1 = [2.6788212845035386, 0.002583702575676502, 0.3079890371414663, 0.2218233792549798, 0.07975000051131587, 0.22310573843696402, 0.0016145767310154937, 0.00021506066259480462, 0.1347348238545566, 0.7244128703617047, 0.0011828566361204594, 0.07002289701258912, 0.37366185926285417, 0.0007702828176743898, 0.002139278700879984, 0.053836464007526154, 1.650675513088037, 1.16748122425437, 0.27856093459188397, 0.019058258961000864, 0.16136521150410382, 0.08224579148911378, 0.004024360208805437, 0.7653817220257503, 4.4510953200179815, 0.25957822569124633, 0.37137008090011087, 1.0357988095863304, 1.2389842387287384, 0.4324607874947091, 5.269593589329902, 0.5621803938941623, 0.03477934257291081, 1.4619965090681062, 1.7365164047084427, 0.028582510379680535, 1.1864719119647948, 0.00017403544878260159, 0.32998873142007473, 0.23548033193902543, 0.019210839894924763, 0.4530222091064397, 0.36620714829237433, 0.033215060313819496, 0.36313208130177793, 0.01484899619985411, 4.698840747702183e-6, 0.22943861446916383, 0.0693734390306599, 0.5194246266697191, 2.254208363566848, 0.000711991818247004, 0.03227740032396568, 0.0002067872176035323, 0.0008581956571378268, 0.25524877190609313, 0.0006603091802297528, 1.362499153127377, 0.08577309821496772, 0.8919014915087333, 0.5230148340571447, 0.3562150939685192, 0.3562150939685192, 0.1096908647583281, 0.20407089519132424, 0.1968720725392859, 0.48739080592383005, 0.04061200146027687, 0.20350016132170584, 0.6452477732061614, 0.4935279378347359, 0.08269231898382176, 0.010974942559581268, 1.6116941048352218, 1.1928108856953, 0.15213049376092777, 1.1501296327247874, 4.425046102227064, 0.8991160278122725, 0.6456958173927121, 0.4580013476284833, 1.0730853116158547, 0.02257630017653147, 0.12632124277322926, 0.19019934287306395, 0.05196206322855161, 0.02692636386162153, 0.635005506129145, 0.0972247251099256, 0.22760365264589139, 0.07938909838989823, 0.00028864197438840976, 0.014932056591780294, 0.03840574490115696, 0.8190214201900288, 0.30950765751926473, 0.01831369772284331, 0.021621005780058804, 0.9430252521456538, 0.0012103784072304167, 0.22155472706333956, 0.8627598292464865, 0.1347165223919831, 0.13961685134675358, 0.396375900478387, 0.6152459263002183, 0.061040907672904716, 0.17837935923383433, 0.3582749524196826, 0.011621160871505566, 0.2727183192294628, 0.03317357438251278, 0.005996550580435087, 0.0012854244709616827, 0.03435859450068371, 0.4084641127852834, 0.2156258703166822, 0.009693582456685656, 0.00017760650614569273, 0.11942646862758109, 0.5276094841987697, 0.09066065784318494, 0.009929957262853248, 0.052145347173973046, 0.5724172922392592, 0.014649269664895301, 0.03913792721866548, 0.0013455493423829188, 0.3953058983299156, 0.22439797677280424, 0.01227838224650002, 0.03605488081864467, 0.001879662186147144, 0.4409922694618947, 0.003946687216989506, 0.3092252935097444, 0.15935751264549847, 0.47063574021947513, 0.1922336294839871, 0.16143647680511083, 0.017894712219287973, 0.24489610764512534, 0.03229765751935813, 0.15918992781905314, 1.436885125027776, 1.0319324805303918, 0.04264171592814084, 0.2528556838239409, 0.033424334783545964, 0.0004900776090921828, 0.23388375032149153, 0.0009505823861797834, 0.1835680041079445, 5.796064815787655e-5, 4.0806986460067876, 0.08346313295260399, 0.5272289742049457, 0.9931513138005919, 1.0850581417353803e-6, 0.30014196696728745, 1.2968901911493473, 0.078242727820577, 0.02386976812780534, 0.4251328893584252, 0.1979793262794858, 2.6160527648452464e-7, 0.6926779466296006, 0.25803324018763996, 0.062248616253323265, 0.08765575761459778, 0.04120106917205882, 0.25067625966553186, 0.008562886172120192, 0.00022500000084360892, 0.020053628341366012, 0.1011039485999002, 0.004543950646515702, 0.004090312768752987, 0.024199736620066938, 0.23609140197946205, 0.08782228599374417, 0.4200776046483452, 0.1309926797100626, 0.006665392855877088, 0.34397553423331073, 0.006744069891373599, 0.5680539834354023, 0.015620473802026125, 0.24491747714212983, 0.0021386494864975964, 0.6407900944133236, 0.3431802914429819, 0.6204188359136701, 2.63173564256491, 0.6698705449027024, 0.054904693752213116, 0.06797321779763552, 1.767005817528848, 0.0011152537338764798, 1.2128283813183613, 0.0184390507113931, 2.3766787146086807, 3.0079507122335087, 4.258404245487947, 1.3115650352289032, 2.8165805348731867, 0.025905717699369488, 0.664907800923179, 0.0011444411916685549, 1.7241447201716487, 0.8370970621184224, 3.7284109849477085, 0.5113090444749049, 1.4257963182829891, 0.5167011440300261, 0.02526566428379101, 1.3757506587868202, 0.012755883561513673, 0.37649443520629744, 1.3193112989834972, 4.815314748655017e-5, 0.06997476757293467, 0.2934423572024434, 0.14542305380085527, 0.0015900672702848092, 0.10233979942471935, 0.005630546906068476, 0.006469621166966418, 0.002964489964671273, 0.0006010368661893317, 0.005049890932956196, 0.2841651168698957, 0.03239227448552545, 0.0437699743603815, 0.25004113429080693, 0.09896237374382906, 0.008348297582788964, 0.06578790089468022, 0.06653433188654503, 0.4642751904757431, 0.39519374748374775, 0.13476408975837945, 0.014546447433743066, 0.03048312954732133, 0.4971181043026032, 0.0018662766285030344, 2.6278158118829213, 0.1835022400764073, 2.47514809706536, 0.4902999631428375, 0.6470801794417882, 3.786416800758203, 5.710830088843509, 0.20926417831010427, 0.1581341399810609, 0.027658022936031913, 0.00026667083846736194, 0.1238659117684014, 0.0063843628083706545, 0.2568548171899579, 1.0711977658880973, 0.0013630664009920536, 3.30352005277502, 0.879937452995484, 1.3685169188596928, 3.1345899818323706, 0.6720940644275492, 0.6578195141762373, 0.07532735309925823, 0.34805685820061716, 0.842015572726283, 1.7087250120723894, 0.029488252214740676, 0.24182332479734264, 2.284138680208943, 0.31894040973928284, 0.061151112591218436, 1.7538966941844074, 1.8268492450043812, 0.8870968872656356, 1.6888231118637285, 1.6087801518278428, 2.019083717365777, 0.1684290942528512, 1.0410453692042765, 0.10908074809402096, 0.1908436042909946, 1.1155471867184612, 5.844220501773345e-8, 0.9173794532331626, 0.17207017942125807, 0.019631404095377558, 6.555129538971182e-5, 0.00982371335634011, 0.35698824532156515, 0.0007820153496087637, 0.08405923604797942, 0.008030119032879519, 0.019637432372691947, 0.08906498732956161, 0.34791881304822925, 0.1888647288187308, 0.18720383176890742, 0.013171865708443678, 2.044673633104564, 0.15459915234264454, 2.7340068188035773, 0.05613079127103884, 1.524501016813576, 0.3659967127896868, 1.767352893320553, 0.10153648063314294, 1.435364000364032, 0.2167276648091159, 0.8031751357843536, 0.032374505789632385, 0.3751207540409881, 2.149188191296807, 0.0569958712551922, 0.04589654437267971, 1.5084140556081869, 0.7492740902741857, 0.1656337374812022, 0.11493729848117477, 0.4580338241879098, 0.051352422239383536, 0.07530480863923807, 0.19846467652836752, 0.27377279396793475, 0.1987303527859933, 0.026353024881242783, 0.23472445370635528, 0.003034692953906944, 1.316931342061209, 0.8390005939171763, 0.01754342967885931, 0.2469866860516095, 0.057710642895835086, 0.051701050550059705, 0.17219583486604545, 0.07883443523184595, 0.15164278691054486, 1.021923484986976, 1.1332130435385828, 0.0956724321770484, 1.4033171247754346, 0.18694570389475104, 0.1313883092766454, 1.7455074139725115, 0.24915777761962332, 0.08740574923380957, 0.0006376809234389431, 1.0984572099386032, 0.00929021796449848, 0.08574866678963247, 0.0023646622324457658, 0.00929021785769423, 0.06095506448679574, 0.05073967134751741, 1.0752853369569975, 0.813834965372417, 0.013766648374547249, 0.4010969177159289, 0.03954033174282336, 0.0107168060720065, 0.051118343620808644, 0.7264977807132222, 0.0295394916335375, 0.40768478136598163, 0.0005107261219950305, 1.3835791642534696, 0.05082592741617635, 0.5182288196996737, 0.20847353016272271, 0.31457673259478647, 0.03854852878681378, 0.9355254491638486, 0.2808480238401504, 0.3979094654666121, 0.003576278721621333, 0.5286854122427138, 0.09093614772575773, 0.0008980702651302059, 4.506337756442705, 0.0628419448477344, 0.5120521952985422, 0.005285361135176275, 0.1292140484977512, 0.3828250468549696, 2.8142650757929815, 0.04403330176973427, 1.4896474672190718, 1.206052602820401, 0.19957580371050726, 0.0024332886984693245, 0.6014342222138763, 0.01140756420168566, 0.005377842609848153, 0.17604244197404836, 0.05760422812917011, 0.31250381829377694, 1.1490894921751678, 0.32317018839483974, 1.477363382486283, 0.5145477322334638, 0.00044536297985431025, 0.03722728387531214, 0.10378974208240024, 0.04986984116156657, 0.10029440871562356, 0.5982456162589183, 0.07998428351762868, 1.5670089066470347, 0.8722840563055405, 0.0073673753922654595, 0.017523748116534052, 0.15166069792511527, 0.2647333138240556, 0.07087804020640305, 0.6665559662655085, 4.465561571362131, 10.40555472376894, 16.357949944570567, 1.8201377363046138, 14.44889082735589, 5.777626475633906, 0.0012396712566665454, 0.6883883094000172, 8.861699000902632, 3.1943960598716226, 0.011490096079574411, 2.3567955489581562, 6.115447204722121, 1.8989595298996975, 0.26058211927209585, 0.18129924094686936, 0.14887662516273448, 1.6450471835892526, 0.7236768307417346, 0.05850914274620028, 2.662184941920464, 0.21830373822980817, 1.5939020924298253, 0.03694131138650948, 0.10559458810404099, 0.0024689384133387868, 6.783973349246389, 0.010398398911134211, 3.3524729267239373, 0.068279431966427, 2.0162990366951843, 3.28019301227849, 0.11927888704886429, 0.6265796292912164, 0.7748629517746713, 0.006076061991189065, 0.013128366319410133, 0.4488822636762288, 0.2354825292028072, 2.209225500280821, 0.19817768183084417, 0.002926153051489738, 0.019247637042804473, 0.36352165683014365, 2.7112274772259863, 1.2192855982919537, 0.044840887285913816, 0.056805932987708904, 1.3494592480103418, 0.0013576460417352443, 0.2242100355383555, 1.3618848691363492, 0.07975331131097356, 0.11782991085393398, 0.014381096371652689, 0.0017168415935754928, 0.9583105878100994, 0.024554390730871872, 0.11866843195091219, 1.9632576325544924, 1.2646413642305825, 2.155179950498865, 0.01581167729278044, 2.544402790787023, 0.011883784671174378, 0.14682683497024251, 0.014799396019231316, 0.016969808531168, 0.0002806611450338811, 0.0027712499496886185, 0.1768016741246593, 1.0107010248365031, 1.1670828567876885, 2.0758158009107004, 3.9421882611486314, 0.44865444108316177, 0.41854806373328796, 0.6038449480901684, 0.048182822003452724, 3.872119837986092, 0.24572661055217634, 1.0824271647473727, 2.03779299856089, 2.24255529227242, 3.263758245708823, 0.6011732417563199, 0.7879168968089538, 1.5050527610036375, 0.025441763685205794, 0.04546771822433159, 1.0865854705464866, 0.5184737462324385, 0.910142321772268, 2.286511011661547, 0.03842941438688528, 1.7247351272464149, 5.824146531510543, 1.2275181867210987, 0.007635716199518582, 0.6376029845125641, 6.433776369887999, 2.6511260306327085, 4.7012118510676935, 0.004347054808087411, 1.3659555616858692, 0.24570121720140126, 4.073627148727174, 2.421056718500661, 1.9251272852839614, 1.1711801545005558, 0.27715925852263584, 5.565322930135341, 0.0009579624668431065, 3.481273317628789, 0.2516299228341998, 0.021401362682114608, 3.4939583654402, 1.983427037787052, 0.0035237228726767754, 0.0020569783634058533, 1.5677078198252883, 3.7527934289121045, 2.662250670402008, 2.710828525609125, 0.21585584855319767, 4.351194233101605e-6, 2.0510428949246498, 1.5360618675912747, 0.18582604017048446, 1.306272035777689, 0.03919095545102478, 0.6862750084437098, 5.573613903979422, 0.1703233717825925, 0.13130228089646268, 0.09800057883604318, 0.009598337681838763, 1.2360761565697687, 0.2301996571176748, 0.0012030825891027046, 2.5884984445887227, 0.014820775781172928, 0.03219035087883163, 0.3389309399247959, 0.40782563342972156, 0.174415708647101, 0.013136952864563189, 0.004999242998317165, 0.4249259448217729, 0.0013205614013213534, 0.0028123552076516883, 0.7868471672769553, 0.1833852057359362, 0.04349210760699473, 0.4056241084484814, 0.11084892073550408, 1.0130429443072781, 1.0914632328925065, 1.4490325408381783, 0.07340161990758948, 0.07208089577358524, 0.9189331941156488, 0.9950856118029908, 1.4757545294127993e-5, 0.009985690118679568, 0.4440624343427734, 0.09396965438944942, 0.005941963128194226, 0.26524574628999026, 8.22865063234208e-6, 0.03219996480514713, 0.029022332981481352, 0.03705667977313132, 0.8565969851329813, 0.2667246033735577, 0.5873038079830065, 0.7544028206125967, 0.3534000062803314, 0.0010673040857031, 0.10641747032439862, 0.006743164041479742, 1.5151748468672672, 0.9082197477491177, 6.00611111378366e-5, 0.7592059305274265, 0.9514315044323035, 0.9155569359195882, 0.0005729044894809509, 0.13396099842071768, 0.35612588639461673, 0.03291967439965614, 1.7835250613851086, 0.46535213486548405, 2.2890401090842216e-5, 0.1697874694586328, 0.009181282586632885, 0.014428021431883162, 0.07327111169524764, 0.07719069688098099, 0.2386765746730553, 0.021151820703514634, 0.10117839668330411, 0.028587544356908454, 0.8442957886076867, 0.6669902604644344, 0.03311263636671677, 0.0260970648495329, 0.08500568162075645, 0.10965349882925712, 0.3466110038677883, 0.0662619529917042, 0.025608597520586286, 1.712442003477771, 13.300237353327269, 3.3009254902353966, 3.0610154169935098, 2.838291793764177, 1.8598323545243238, 0.030852749611046233, 0.4716075610867205, 0.29537007408977667, 0.008282943401236243, 2.2468064683584106, 0.1256023130608896, 0.49645792315995513, 5.527171786059049e-5, 0.27374446623212906, 0.00952083061718175, 0.06180425502658006, 0.01894107118695491, 0.1847286840616142, 0.1401438184149155, 0.20231760203480303, 0.08177228385295082, 0.00079104764983973, 0.010017859656537101, 0.01863291170930948, 0.02365535332003779, 0.014329635910613195, 0.39443315701474363, 0.08586140751153488, 0.0019274133276433627, 0.6851756940473963, 0.005311998850043209, 0.0017024959555922987, 0.079688894718958, 0.22008320587901115, 0.008130608536134967, 0.08510524420987187, 0.29682965621648394, 0.028338802589761864, 0.05011453282274803, 0.02104371353267891, 0.0018935209969263623, 0.03713120970097753, 0.26128043499760933, 0.01942085910485509, 0.02409474450511849, 0.2586053664787466, 0.038606498086274865, 0.06127251225564271, 4.7751707769901346e-5, 0.1835721577393485, 0.09056041030997672, 0.00027112998387032923, 0.052429812659836525, 6.03971060870506, 2.073913523576319, 2.2353248178138454, 0.003027384071535517, 1.0051156181575258, 0.15144269337829147, 0.00010578097131303075, 0.00040398676844760964, 1.189210215892407, 0.4085511322933493, 0.3050386957011653, 0.729340228548671, 0.3861413223970852, 0.2689323689592784, 0.856462644552892, 0.6109684123883636, 0.10548780428401248, 0.2340838798352385, 0.1777146984711078, 0.002958576511911419, 0.10710288496433198, 0.2103252201669941, 1.539517691333209, 0.013022405694318602, 0.09721162451566145, 0.0004450999776792177, 0.10044411808050144, 0.37033849738013236, 0.053624759748461814, 0.02230205845284987, 7.067652115930854e-5, 0.21197286681136482, 0.1226659239582447, 0.0319877674614164, 0.08340411873281124, 0.10434005192264394, 0.00010704532120576496, 0.469542294582416, 0.42238872403469113, 0.19906499754072418, 0.025611051627757477, 4.7584503819435815, 0.15288208712720827, 1.1719774681176782, 0.046314819022991664, 0.02596355838457836, 0.00011293349290798197, 0.5438027191907789, 0.025513367954121367, 0.21552863937083835, 0.053438858962943384, 0.5447817034365408, 0.04341513767062041, 0.006306507791694165, 0.15943016116215442, 0.2675947791253387, 0.016672345318286222, 0.06227164917694632, 0.1402194735857296, 0.002166155678603786, 0.3300636020729472, 0.11718001922823885, 1.6385072924932298, 0.05414217650787199, 0.3617840605745264, 0.013052553097741575, 0.41975632687895537, 0.6506558695291546, 0.1451019274177716, 0.031169863735291094, 0.04177842691590757, 0.12613322282896455, 0.05627174041462594, 0.03593303679676961, 0.012905521172021369, 0.05407880270522265, 0.6953072159182692, 0.000619616509593883, 0.18444785797066962, 0.6182056858262527, 0.33837639055534086, 0.005093817751051703, 0.12886772639154007, 0.122308865377569, 0.00013129235104194828, 0.0732684331815726, 0.04497864379020792, 0.03514296697730362, 0.08832896925862935, 0.031055691034788224, 0.13043429709465412, 0.10941541868394032, 0.06314815563956179, 0.41099443705370803, 0.649567483868346, 0.005868020937729122, 0.009268333268147229, 0.3735101732583879, 0.004563294063522422, 0.0002635501993347267, 0.004327989402044048, 0.5052475934321649, 0.039312233429900666, 0.00014915203351702864, 0.005954858596661586, 0.3230989285791853, 0.13772568488281842, 0.26392342935831414, 0.1558730238088185, 0.24761261238104038, 0.006686102464138949, 0.025214691642705556, 0.3555708368894157, 0.010309331346734675, 0.0025358538925498776, 0.018647625366932926, 0.013679714648336727, 0.060052297952910345, 1.7956473189152413, 0.35439058459450185, 0.0019429284643071047, 0.09083090787269694, 0.09447004403016364, 0.04575136490335676, 0.006459371442439489, 0.11261868468888157, 0.0008209421471136433, 0.12181384224474495, 0.6576428425169688, 0.020840193947308763, 0.018653988817572152, 0.03556092834428674, 1.5674535023655984, 0.03843923840553641, 0.011252969161252612, 0.005254626037166597, 0.013576570624271495, 0.5195953788449381, 0.012800912700290658, 0.08391698079169817, 0.05250545865232042, 0.024563216320698793, 0.001980376901751918, 0.0933614612590033, 0.041709311922108486, 0.00670696954123109, 0.003734452871888666, 0.017996718703772972, 0.1540165935245423, 0.4461858257869078, 0.7288837326380754, 0.0875387940731562, 0.03252182159753454, 0.594101714982668, 0.09108890408323, 1.1342438934197567, 0.3712756969567675, 0.0018965862018593643, 0.0031481901627399447, 0.04113192757760038, 0.043020824844486105, 0.005927464499773701, 0.01576473650159528, 0.004771527495940785, 0.16513905402476844, 0.000166970350633535, 0.007524462046500157, 0.011935856891056891, 0.04110830032928077, 0.027671082401395663, 0.23876646919202865, 0.005310444163454746, 3.2854037560380474, 0.12292849398403076, 0.44532821773541253, 0.2662274979472321, 0.038634887727501496, 0.05594401038358628, 0.19755036943015952, 0.0004998730758698305, 0.012231449286693084, 0.0022726809126874096, 0.5652303300137818, 0.11488282090519102, 0.006013619799989586, 0.07881511743641124, 0.02266188087562861, 0.0008754202237340968, 0.011336656440702482, 0.00506698056456099, 0.19819404671256646, 0.010338183204109248, 0.047905709657831086, 0.0004568750550543027, 0.6708609989917624, 0.4217972007628798, 0.0026318892298838295, 0.002719595459366587, 0.020284471517469056, 0.0013320109303731043, 0.630492468309407, 0.7277083660370265, 0.7241872447638558, 0.023724489647558626, 0.05138674088550191, 0.021448912084270546, 0.8619674915569887, 0.38240964212404543, 0.011394573776611744, 0.006195031904820567, 0.5321505794035981, 0.03476180036672574, 0.20761893732966868, 6.614553720211809e-5, 0.0045540622128015075, 0.2700275145518658, 0.0004590234378390465, 0.004780601680297542, 0.003162747088893576, 0.06484165500543976, 0.0006062057863821437, 0.009312544262156252, 0.018338734134179264, 0.0024768190702265484, 0.04608470029150553, 0.0015657264045072893, 0.04264129020384843, 0.03034473852077423, 0.03137127332388284, 0.05535957456012246, 0.0016332519194396443, 2.104519814572286, 0.016457382385387628, 0.9458640190004752, 0.00044500592757794745, 0.01922651966030125, 2.3971676820772814, 0.038115265259816185, 0.012377547214999052, 0.9891011251988212, 0.11912349644921691, 0.043634576818667274, 0.03473849386968508, 0.0005251161795553847, 0.009394108093578026, 0.2012677700571407, 0.33105007341867876, 0.03670862278189504, 0.557441397840061, 0.10245342291065757, 0.0006738403062835575, 0.01995637730106744, 1.1293509658245315, 0.12438037953709719, 0.003009163689409014, 0.005973332697882615, 0.020769058359085234, 0.029675107098423546, 0.010852212268150191, 0.00289880220414353, 0.08264763970799936, 0.0011547941025428492, 0.04131703753618656, 0.0004851928442598332, 0.15876421970281124, 0.011499295615757537, 0.13069478215454425, 0.16362702728250397, 0.04753117394466431, 0.014462090488644521, 0.3223872165627712, 0.01623668829463393, 0.028773205740287088, 0.05903144938946727, 0.027584016345301467, 0.03135092212005554, 0.01465998756732385, 0.023170153237071733, 0.005515099777242529, 0.004997741362145888, 0.0019802775112162108, 0.2394790336151675, 0.13777829486273757, 0.02355171060769022, 0.22357412371274132, 0.015639662820261795, 0.6477503708567071, 0.10550058390024825, 0.008912867718160461, 0.02655740743491055, 0.0003319678551520233, 0.09634330959638235, 0.01673604647160506, 0.0036267047995161283, 0.03330076447941435, 0.1385829568068526, 0.00792529183858699, 0.009362805469398846, 0.055454328812437115, 0.2959020601481385, 0.6536180197581768, 0.07140230259919765, 0.018291032043038915, 0.42956359413553497, 0.006847680885935154, 0.04203295066189019, 0.0012501854265941762, 0.9716207558868816, 0.0023378035023157266, 0.6465288454659239, 0.04200635699421544, 0.010768580670454402] x2 = [0.09610941706095852, 2.6788212845035386, 0.002583702575676502, 0.3079890371414663, 0.2218233792549798, 0.07975000051131587, 0.22310573843696402, 0.0016145767310154937, 0.00021506066259480462, 0.1347348238545566, 0.7244128703617047, 0.0011828566361204594, 0.07002289701258912, 0.37366185926285417, 0.0007702828176743898, 0.002139278700879984, 0.053836464007526154, 1.650675513088037, 1.16748122425437, 0.27856093459188397, 0.019058258961000864, 0.16136521150410382, 0.08224579148911378, 0.004024360208805437, 0.7653817220257503, 4.4510953200179815, 0.25957822569124633, 0.37137008090011087, 1.0357988095863304, 1.2389842387287384, 0.4324607874947091, 5.269593589329902, 0.5621803938941623, 0.03477934257291081, 1.4619965090681062, 1.7365164047084427, 0.028582510379680535, 1.1864719119647948, 0.00017403544878260159, 0.32998873142007473, 0.23548033193902543, 0.019210839894924763, 0.4530222091064397, 0.36620714829237433, 0.033215060313819496, 0.36313208130177793, 0.01484899619985411, 4.698840747702183e-6, 0.22943861446916383, 0.0693734390306599, 0.5194246266697191, 2.254208363566848, 0.000711991818247004, 0.03227740032396568, 0.0002067872176035323, 0.0008581956571378268, 0.25524877190609313, 0.0006603091802297528, 1.362499153127377, 0.08577309821496772, 0.8919014915087333, 0.5230148340571447, 0.3562150939685192, 0.3562150939685192, 0.1096908647583281, 0.20407089519132424, 0.1968720725392859, 0.48739080592383005, 0.04061200146027687, 0.20350016132170584, 0.6452477732061614, 0.4935279378347359, 0.08269231898382176, 0.010974942559581268, 1.6116941048352218, 1.1928108856953, 0.15213049376092777, 1.1501296327247874, 4.425046102227064, 0.8991160278122725, 0.6456958173927121, 0.4580013476284833, 1.0730853116158547, 0.02257630017653147, 0.12632124277322926, 0.19019934287306395, 0.05196206322855161, 0.02692636386162153, 0.635005506129145, 0.0972247251099256, 0.22760365264589139, 0.07938909838989823, 0.00028864197438840976, 0.014932056591780294, 0.03840574490115696, 0.8190214201900288, 0.30950765751926473, 0.01831369772284331, 0.021621005780058804, 0.9430252521456538, 0.0012103784072304167, 0.22155472706333956, 0.8627598292464865, 0.1347165223919831, 0.13961685134675358, 0.396375900478387, 0.6152459263002183, 0.061040907672904716, 0.17837935923383433, 0.3582749524196826, 0.011621160871505566, 0.2727183192294628, 0.03317357438251278, 0.005996550580435087, 0.0012854244709616827, 0.03435859450068371, 0.4084641127852834, 0.2156258703166822, 0.009693582456685656, 0.00017760650614569273, 0.11942646862758109, 0.5276094841987697, 0.09066065784318494, 0.009929957262853248, 0.052145347173973046, 0.5724172922392592, 0.014649269664895301, 0.03913792721866548, 0.0013455493423829188, 0.3953058983299156, 0.22439797677280424, 0.01227838224650002, 0.03605488081864467, 0.001879662186147144, 0.4409922694618947, 0.003946687216989506, 0.3092252935097444, 0.15935751264549847, 0.47063574021947513, 0.1922336294839871, 0.16143647680511083, 0.017894712219287973, 0.24489610764512534, 0.03229765751935813, 0.15918992781905314, 1.436885125027776, 1.0319324805303918, 0.04264171592814084, 0.2528556838239409, 0.033424334783545964, 0.0004900776090921828, 0.23388375032149153, 0.0009505823861797834, 0.1835680041079445, 5.796064815787655e-5, 4.0806986460067876, 0.08346313295260399, 0.5272289742049457, 0.9931513138005919, 1.0850581417353803e-6, 0.30014196696728745, 1.2968901911493473, 0.078242727820577, 0.02386976812780534, 0.4251328893584252, 0.1979793262794858, 2.6160527648452464e-7, 0.6926779466296006, 0.25803324018763996, 0.062248616253323265, 0.08765575761459778, 0.04120106917205882, 0.25067625966553186, 0.008562886172120192, 0.00022500000084360892, 0.020053628341366012, 0.1011039485999002, 0.004543950646515702, 0.004090312768752987, 0.024199736620066938, 0.23609140197946205, 0.08782228599374417, 0.4200776046483452, 0.1309926797100626, 0.006665392855877088, 0.34397553423331073, 0.006744069891373599, 0.5680539834354023, 0.015620473802026125, 0.24491747714212983, 0.0021386494864975964, 0.6407900944133236, 0.3431802914429819, 0.6204188359136701, 2.63173564256491, 0.6698705449027024, 0.054904693752213116, 0.06797321779763552, 1.767005817528848, 0.0011152537338764798, 1.2128283813183613, 0.0184390507113931, 2.3766787146086807, 3.0079507122335087, 4.258404245487947, 1.3115650352289032, 2.8165805348731867, 0.025905717699369488, 0.664907800923179, 0.0011444411916685549, 1.7241447201716487, 0.8370970621184224, 3.7284109849477085, 0.5113090444749049, 1.4257963182829891, 0.5167011440300261, 0.02526566428379101, 1.3757506587868202, 0.012755883561513673, 0.37649443520629744, 1.3193112989834972, 4.815314748655017e-5, 0.06997476757293467, 0.2934423572024434, 0.14542305380085527, 0.0015900672702848092, 0.10233979942471935, 0.005630546906068476, 0.006469621166966418, 0.002964489964671273, 0.0006010368661893317, 0.005049890932956196, 0.2841651168698957, 0.03239227448552545, 0.0437699743603815, 0.25004113429080693, 0.09896237374382906, 0.008348297582788964, 0.06578790089468022, 0.06653433188654503, 0.4642751904757431, 0.39519374748374775, 0.13476408975837945, 0.014546447433743066, 0.03048312954732133, 0.4971181043026032, 0.0018662766285030344, 2.6278158118829213, 0.1835022400764073, 2.47514809706536, 0.4902999631428375, 0.6470801794417882, 3.786416800758203, 5.710830088843509, 0.20926417831010427, 0.1581341399810609, 0.027658022936031913, 0.00026667083846736194, 0.1238659117684014, 0.0063843628083706545, 0.2568548171899579, 1.0711977658880973, 0.0013630664009920536, 3.30352005277502, 0.879937452995484, 1.3685169188596928, 3.1345899818323706, 0.6720940644275492, 0.6578195141762373, 0.07532735309925823, 0.34805685820061716, 0.842015572726283, 1.7087250120723894, 0.029488252214740676, 0.24182332479734264, 2.284138680208943, 0.31894040973928284, 0.061151112591218436, 1.7538966941844074, 1.8268492450043812, 0.8870968872656356, 1.6888231118637285, 1.6087801518278428, 2.019083717365777, 0.1684290942528512, 1.0410453692042765, 0.10908074809402096, 0.1908436042909946, 1.1155471867184612, 5.844220501773345e-8, 0.9173794532331626, 0.17207017942125807, 0.019631404095377558, 6.555129538971182e-5, 0.00982371335634011, 0.35698824532156515, 0.0007820153496087637, 0.08405923604797942, 0.008030119032879519, 0.019637432372691947, 0.08906498732956161, 0.34791881304822925, 0.1888647288187308, 0.18720383176890742, 0.013171865708443678, 2.044673633104564, 0.15459915234264454, 2.7340068188035773, 0.05613079127103884, 1.524501016813576, 0.3659967127896868, 1.767352893320553, 0.10153648063314294, 1.435364000364032, 0.2167276648091159, 0.8031751357843536, 0.032374505789632385, 0.3751207540409881, 2.149188191296807, 0.0569958712551922, 0.04589654437267971, 1.5084140556081869, 0.7492740902741857, 0.1656337374812022, 0.11493729848117477, 0.4580338241879098, 0.051352422239383536, 0.07530480863923807, 0.19846467652836752, 0.27377279396793475, 0.1987303527859933, 0.026353024881242783, 0.23472445370635528, 0.003034692953906944, 1.316931342061209, 0.8390005939171763, 0.01754342967885931, 0.2469866860516095, 0.057710642895835086, 0.051701050550059705, 0.17219583486604545, 0.07883443523184595, 0.15164278691054486, 1.021923484986976, 1.1332130435385828, 0.0956724321770484, 1.4033171247754346, 0.18694570389475104, 0.1313883092766454, 1.7455074139725115, 0.24915777761962332, 0.08740574923380957, 0.0006376809234389431, 1.0984572099386032, 0.00929021796449848, 0.08574866678963247, 0.0023646622324457658, 0.00929021785769423, 0.06095506448679574, 0.05073967134751741, 1.0752853369569975, 0.813834965372417, 0.013766648374547249, 0.4010969177159289, 0.03954033174282336, 0.0107168060720065, 0.051118343620808644, 0.7264977807132222, 0.0295394916335375, 0.40768478136598163, 0.0005107261219950305, 1.3835791642534696, 0.05082592741617635, 0.5182288196996737, 0.20847353016272271, 0.31457673259478647, 0.03854852878681378, 0.9355254491638486, 0.2808480238401504, 0.3979094654666121, 0.003576278721621333, 0.5286854122427138, 0.09093614772575773, 0.0008980702651302059, 4.506337756442705, 0.0628419448477344, 0.5120521952985422, 0.005285361135176275, 0.1292140484977512, 0.3828250468549696, 2.8142650757929815, 0.04403330176973427, 1.4896474672190718, 1.206052602820401, 0.19957580371050726, 0.0024332886984693245, 0.6014342222138763, 0.01140756420168566, 0.005377842609848153, 0.17604244197404836, 0.05760422812917011, 0.31250381829377694, 1.1490894921751678, 0.32317018839483974, 1.477363382486283, 0.5145477322334638, 0.00044536297985431025, 0.03722728387531214, 0.10378974208240024, 0.04986984116156657, 0.10029440871562356, 0.5982456162589183, 0.07998428351762868, 1.5670089066470347, 0.8722840563055405, 0.0073673753922654595, 0.017523748116534052, 0.15166069792511527, 0.2647333138240556, 0.07087804020640305, 0.6665559662655085, 4.465561571362131, 10.40555472376894, 16.357949944570567, 1.8201377363046138, 14.44889082735589, 5.777626475633906, 0.0012396712566665454, 0.6883883094000172, 8.861699000902632, 3.1943960598716226, 0.011490096079574411, 2.3567955489581562, 6.115447204722121, 1.8989595298996975, 0.26058211927209585, 0.18129924094686936, 0.14887662516273448, 1.6450471835892526, 0.7236768307417346, 0.05850914274620028, 2.662184941920464, 0.21830373822980817, 1.5939020924298253, 0.03694131138650948, 0.10559458810404099, 0.0024689384133387868, 6.783973349246389, 0.010398398911134211, 3.3524729267239373, 0.068279431966427, 2.0162990366951843, 3.28019301227849, 0.11927888704886429, 0.6265796292912164, 0.7748629517746713, 0.006076061991189065, 0.013128366319410133, 0.4488822636762288, 0.2354825292028072, 2.209225500280821, 0.19817768183084417, 0.002926153051489738, 0.019247637042804473, 0.36352165683014365, 2.7112274772259863, 1.2192855982919537, 0.044840887285913816, 0.056805932987708904, 1.3494592480103418, 0.0013576460417352443, 0.2242100355383555, 1.3618848691363492, 0.07975331131097356, 0.11782991085393398, 0.014381096371652689, 0.0017168415935754928, 0.9583105878100994, 0.024554390730871872, 0.11866843195091219, 1.9632576325544924, 1.2646413642305825, 2.155179950498865, 0.01581167729278044, 2.544402790787023, 0.011883784671174378, 0.14682683497024251, 0.014799396019231316, 0.016969808531168, 0.0002806611450338811, 0.0027712499496886185, 0.1768016741246593, 1.0107010248365031, 1.1670828567876885, 2.0758158009107004, 3.9421882611486314, 0.44865444108316177, 0.41854806373328796, 0.6038449480901684, 0.048182822003452724, 3.872119837986092, 0.24572661055217634, 1.0824271647473727, 2.03779299856089, 2.24255529227242, 3.263758245708823, 0.6011732417563199, 0.7879168968089538, 1.5050527610036375, 0.025441763685205794, 0.04546771822433159, 1.0865854705464866, 0.5184737462324385, 0.910142321772268, 2.286511011661547, 0.03842941438688528, 1.7247351272464149, 5.824146531510543, 1.2275181867210987, 0.007635716199518582, 0.6376029845125641, 6.433776369887999, 2.6511260306327085, 4.7012118510676935, 0.004347054808087411, 1.3659555616858692, 0.24570121720140126, 4.073627148727174, 2.421056718500661, 1.9251272852839614, 1.1711801545005558, 0.27715925852263584, 5.565322930135341, 0.0009579624668431065, 3.481273317628789, 0.2516299228341998, 0.021401362682114608, 3.4939583654402, 1.983427037787052, 0.0035237228726767754, 0.0020569783634058533, 1.5677078198252883, 3.7527934289121045, 2.662250670402008, 2.710828525609125, 0.21585584855319767, 4.351194233101605e-6, 2.0510428949246498, 1.5360618675912747, 0.18582604017048446, 1.306272035777689, 0.03919095545102478, 0.6862750084437098, 5.573613903979422, 0.1703233717825925, 0.13130228089646268, 0.09800057883604318, 0.009598337681838763, 1.2360761565697687, 0.2301996571176748, 0.0012030825891027046, 2.5884984445887227, 0.014820775781172928, 0.03219035087883163, 0.3389309399247959, 0.40782563342972156, 0.174415708647101, 0.013136952864563189, 0.004999242998317165, 0.4249259448217729, 0.0013205614013213534, 0.0028123552076516883, 0.7868471672769553, 0.1833852057359362, 0.04349210760699473, 0.4056241084484814, 0.11084892073550408, 1.0130429443072781, 1.0914632328925065, 1.4490325408381783, 0.07340161990758948, 0.07208089577358524, 0.9189331941156488, 0.9950856118029908, 1.4757545294127993e-5, 0.009985690118679568, 0.4440624343427734, 0.09396965438944942, 0.005941963128194226, 0.26524574628999026, 8.22865063234208e-6, 0.03219996480514713, 0.029022332981481352, 0.03705667977313132, 0.8565969851329813, 0.2667246033735577, 0.5873038079830065, 0.7544028206125967, 0.3534000062803314, 0.0010673040857031, 0.10641747032439862, 0.006743164041479742, 1.5151748468672672, 0.9082197477491177, 6.00611111378366e-5, 0.7592059305274265, 0.9514315044323035, 0.9155569359195882, 0.0005729044894809509, 0.13396099842071768, 0.35612588639461673, 0.03291967439965614, 1.7835250613851086, 0.46535213486548405, 2.2890401090842216e-5, 0.1697874694586328, 0.009181282586632885, 0.014428021431883162, 0.07327111169524764, 0.07719069688098099, 0.2386765746730553, 0.021151820703514634, 0.10117839668330411, 0.028587544356908454, 0.8442957886076867, 0.6669902604644344, 0.03311263636671677, 0.0260970648495329, 0.08500568162075645, 0.10965349882925712, 0.3466110038677883, 0.0662619529917042, 0.025608597520586286, 1.712442003477771, 13.300237353327269, 3.3009254902353966, 3.0610154169935098, 2.838291793764177, 1.8598323545243238, 0.030852749611046233, 0.4716075610867205, 0.29537007408977667, 0.008282943401236243, 2.2468064683584106, 0.1256023130608896, 0.49645792315995513, 5.527171786059049e-5, 0.27374446623212906, 0.00952083061718175, 0.06180425502658006, 0.01894107118695491, 0.1847286840616142, 0.1401438184149155, 0.20231760203480303, 0.08177228385295082, 0.00079104764983973, 0.010017859656537101, 0.01863291170930948, 0.02365535332003779, 0.014329635910613195, 0.39443315701474363, 0.08586140751153488, 0.0019274133276433627, 0.6851756940473963, 0.005311998850043209, 0.0017024959555922987, 0.079688894718958, 0.22008320587901115, 0.008130608536134967, 0.08510524420987187, 0.29682965621648394, 0.028338802589761864, 0.05011453282274803, 0.02104371353267891, 0.0018935209969263623, 0.03713120970097753, 0.26128043499760933, 0.01942085910485509, 0.02409474450511849, 0.2586053664787466, 0.038606498086274865, 0.06127251225564271, 4.7751707769901346e-5, 0.1835721577393485, 0.09056041030997672, 0.00027112998387032923, 0.052429812659836525, 6.03971060870506, 2.073913523576319, 2.2353248178138454, 0.003027384071535517, 1.0051156181575258, 0.15144269337829147, 0.00010578097131303075, 0.00040398676844760964, 1.189210215892407, 0.4085511322933493, 0.3050386957011653, 0.729340228548671, 0.3861413223970852, 0.2689323689592784, 0.856462644552892, 0.6109684123883636, 0.10548780428401248, 0.2340838798352385, 0.1777146984711078, 0.002958576511911419, 0.10710288496433198, 0.2103252201669941, 1.539517691333209, 0.013022405694318602, 0.09721162451566145, 0.0004450999776792177, 0.10044411808050144, 0.37033849738013236, 0.053624759748461814, 0.02230205845284987, 7.067652115930854e-5, 0.21197286681136482, 0.1226659239582447, 0.0319877674614164, 0.08340411873281124, 0.10434005192264394, 0.00010704532120576496, 0.469542294582416, 0.42238872403469113, 0.19906499754072418, 0.025611051627757477, 4.7584503819435815, 0.15288208712720827, 1.1719774681176782, 0.046314819022991664, 0.02596355838457836, 0.00011293349290798197, 0.5438027191907789, 0.025513367954121367, 0.21552863937083835, 0.053438858962943384, 0.5447817034365408, 0.04341513767062041, 0.006306507791694165, 0.15943016116215442, 0.2675947791253387, 0.016672345318286222, 0.06227164917694632, 0.1402194735857296, 0.002166155678603786, 0.3300636020729472, 0.11718001922823885, 1.6385072924932298, 0.05414217650787199, 0.3617840605745264, 0.013052553097741575, 0.41975632687895537, 0.6506558695291546, 0.1451019274177716, 0.031169863735291094, 0.04177842691590757, 0.12613322282896455, 0.05627174041462594, 0.03593303679676961, 0.012905521172021369, 0.05407880270522265, 0.6953072159182692, 0.000619616509593883, 0.18444785797066962, 0.6182056858262527, 0.33837639055534086, 0.005093817751051703, 0.12886772639154007, 0.122308865377569, 0.00013129235104194828, 0.0732684331815726, 0.04497864379020792, 0.03514296697730362, 0.08832896925862935, 0.031055691034788224, 0.13043429709465412, 0.10941541868394032, 0.06314815563956179, 0.41099443705370803, 0.649567483868346, 0.005868020937729122, 0.009268333268147229, 0.3735101732583879, 0.004563294063522422, 0.0002635501993347267, 0.004327989402044048, 0.5052475934321649, 0.039312233429900666, 0.00014915203351702864, 0.005954858596661586, 0.3230989285791853, 0.13772568488281842, 0.26392342935831414, 0.1558730238088185, 0.24761261238104038, 0.006686102464138949, 0.025214691642705556, 0.3555708368894157, 0.010309331346734675, 0.0025358538925498776, 0.018647625366932926, 0.013679714648336727, 0.060052297952910345, 1.7956473189152413, 0.35439058459450185, 0.0019429284643071047, 0.09083090787269694, 0.09447004403016364, 0.04575136490335676, 0.006459371442439489, 0.11261868468888157, 0.0008209421471136433, 0.12181384224474495, 0.6576428425169688, 0.020840193947308763, 0.018653988817572152, 0.03556092834428674, 1.5674535023655984, 0.03843923840553641, 0.011252969161252612, 0.005254626037166597, 0.013576570624271495, 0.5195953788449381, 0.012800912700290658, 0.08391698079169817, 0.05250545865232042, 0.024563216320698793, 0.001980376901751918, 0.0933614612590033, 0.041709311922108486, 0.00670696954123109, 0.003734452871888666, 0.017996718703772972, 0.1540165935245423, 0.4461858257869078, 0.7288837326380754, 0.0875387940731562, 0.03252182159753454, 0.594101714982668, 0.09108890408323, 1.1342438934197567, 0.3712756969567675, 0.0018965862018593643, 0.0031481901627399447, 0.04113192757760038, 0.043020824844486105, 0.005927464499773701, 0.01576473650159528, 0.004771527495940785, 0.16513905402476844, 0.000166970350633535, 0.007524462046500157, 0.011935856891056891, 0.04110830032928077, 0.027671082401395663, 0.23876646919202865, 0.005310444163454746, 3.2854037560380474, 0.12292849398403076, 0.44532821773541253, 0.2662274979472321, 0.038634887727501496, 0.05594401038358628, 0.19755036943015952, 0.0004998730758698305, 0.012231449286693084, 0.0022726809126874096, 0.5652303300137818, 0.11488282090519102, 0.006013619799989586, 0.07881511743641124, 0.02266188087562861, 0.0008754202237340968, 0.011336656440702482, 0.00506698056456099, 0.19819404671256646, 0.010338183204109248, 0.047905709657831086, 0.0004568750550543027, 0.6708609989917624, 0.4217972007628798, 0.0026318892298838295, 0.002719595459366587, 0.020284471517469056, 0.0013320109303731043, 0.630492468309407, 0.7277083660370265, 0.7241872447638558, 0.023724489647558626, 0.05138674088550191, 0.021448912084270546, 0.8619674915569887, 0.38240964212404543, 0.011394573776611744, 0.006195031904820567, 0.5321505794035981, 0.03476180036672574, 0.20761893732966868, 6.614553720211809e-5, 0.0045540622128015075, 0.2700275145518658, 0.0004590234378390465, 0.004780601680297542, 0.003162747088893576, 0.06484165500543976, 0.0006062057863821437, 0.009312544262156252, 0.018338734134179264, 0.0024768190702265484, 0.04608470029150553, 0.0015657264045072893, 0.04264129020384843, 0.03034473852077423, 0.03137127332388284, 0.05535957456012246, 0.0016332519194396443, 2.104519814572286, 0.016457382385387628, 0.9458640190004752, 0.00044500592757794745, 0.01922651966030125, 2.3971676820772814, 0.038115265259816185, 0.012377547214999052, 0.9891011251988212, 0.11912349644921691, 0.043634576818667274, 0.03473849386968508, 0.0005251161795553847, 0.009394108093578026, 0.2012677700571407, 0.33105007341867876, 0.03670862278189504, 0.557441397840061, 0.10245342291065757, 0.0006738403062835575, 0.01995637730106744, 1.1293509658245315, 0.12438037953709719, 0.003009163689409014, 0.005973332697882615, 0.020769058359085234, 0.029675107098423546, 0.010852212268150191, 0.00289880220414353, 0.08264763970799936, 0.0011547941025428492, 0.04131703753618656, 0.0004851928442598332, 0.15876421970281124, 0.011499295615757537, 0.13069478215454425, 0.16362702728250397, 0.04753117394466431, 0.014462090488644521, 0.3223872165627712, 0.01623668829463393, 0.028773205740287088, 0.05903144938946727, 0.027584016345301467, 0.03135092212005554, 0.01465998756732385, 0.023170153237071733, 0.005515099777242529, 0.004997741362145888, 0.0019802775112162108, 0.2394790336151675, 0.13777829486273757, 0.02355171060769022, 0.22357412371274132, 0.015639662820261795, 0.6477503708567071, 0.10550058390024825, 0.008912867718160461, 0.02655740743491055, 0.0003319678551520233, 0.09634330959638235, 0.01673604647160506, 0.0036267047995161283, 0.03330076447941435, 0.1385829568068526, 0.00792529183858699, 0.009362805469398846, 0.055454328812437115, 0.2959020601481385, 0.6536180197581768, 0.07140230259919765, 0.018291032043038915, 0.42956359413553497, 0.006847680885935154, 0.04203295066189019, 0.0012501854265941762, 0.9716207558868816, 0.0023378035023157266, 0.6465288454659239, 0.04200635699421544] df = DataFrame(y=y, x1=x1, x2=x2) f = @formula(y ~ x1 + x2) lr2 = regress(f, df, cov="nw") @test isapprox(0.14294512360920375, lr2.R2) @test isapprox(0.141222400239574, lr2.ADJR2) @test [] == lr2.white_types @test [:nw] == lr2.hac_types @test isapprox([0.04903317561314946, 0.06022964615347672, 0.07414158887070771], lr2.hac_stderrors[1]) @test isapprox([6.306088088824664, 4.169867149620186, 2.8751798612414263], lr2.hac_t_values[1]) @test isapprox([4.296835456090843e-10, 3.313459203977476e-5, 0.004124044653585188], lr2.hac_p_values[1]) @test isapprox([0.2129872220097398, 0.13295791474690624, 0.06767857989564119], lr2.hac_ci_low[1]) @test isapprox([0.40542782737291977, 0.3693413311103545, 0.35866222650735935], lr2.hac_ci_up[1]) end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
3395
@testset "K-Fold cross-validation" begin target_R2 = [0.46405795117804827, 0.4314854720368352, 0.4471605188073827, 0.4650281295531955, 0.5353418610442862] target_ADJR2 = [0.45098619388970795, 0.41761926403773364, 0.433839085525633, 0.45213724110869413, 0.5241452793827027] target_TRAIN_MSE = [1.5167244045363427e6, 1.728038497400901e6, 1.766104797959807e6, 1.824818743281271e6, 1.6143508602587546e6] target_TRAIN_RMSE = [1231.5536547533536, 1314.548780913398, 1328.9487567095305, 1350.8585208234322, 1270.5710764293176] target_TEST_MSE = [2.430733983431065e6, 1.619864225581008e6, 1.447032419711302e6, 1.1981745824179968e6, 2.5641127272976018e6] target_TEST_RMSE = [1559.0811343323558, 1272.7388677890717, 1202.926606119967, 1094.61161259051, 1601.28471150436] year = [2011, 2011, 2011, 2011, 2012, 2010, 2011, 2010, 2011, 2010, 2010, 2011, 2011, 2010, 2011, 2011, 2010, 2010, 2011, 2011, 2010, 2010, 2011, 2010, 2009, 2010, 2010, 2010, 2010, 2009, 2010, 2009, 2011, 2011, 2009, 2010, 2011, 2010, 2010, 2010, 2010, 2010, 2010, 2009, 2010, 2010, 2010, 2010, 2009, 2009, 2010, 2010, 2010, 2009, 2010, 2010, 2010, 2009, 2009, 2009, 2010, 2010, 2009, 2009, 2009, 2010, 2010, 2010, 2009, 2009, 2009, 2009, 2010, 2009, 2010, 2009, 2009, 2010, 2010, 2010, 2009, 2009, 2007, 2010, 2010, 2010, 2009, 2009, 2009, 2008, 2009, 2009, 2009, 2010, 2010, 2008, 2008, 2009, 2009, 2008, 2009, 2010, 2008, 2009, 2010, 2008, 2008] mileage = [7413, 10926, 7351, 11613, 8367, 25125, 27393, 21026, 32655, 36116, 40539, 9199, 9388, 32058, 15367, 16368, 19926, 36049, 11662, 32069, 16035, 39943, 36685, 24920, 20019, 29338, 7784, 35636, 22029, 33107, 36306, 34419, 4867, 18948, 24030, 33036, 23967, 37905, 28955, 11165, 44813, 36469, 22143, 34046, 32703, 35894, 38275, 24855, 29501, 35394, 36447, 35318, 24929, 23785, 15167, 13541, 20278, 46126, 53733, 21108, 21721, 26716, 26887, 36252, 9450, 31414, 37185, 48174, 50533, 36713, 34888, 38380, 35574, 27528, 33302, 43369, 64055, 41342, 34503, 16573, 32403, 34846, 39665, 21325, 32743, 40058, 42325, 44518, 53902, 127327, 27136, 45813, 31538, 29517, 35871, 49787, 36323, 39211, 44789, 45996, 54988, 49720, 36322, 39222, 44089, 45993, 50988] price = [21992, 20995, 19995, 17809, 17500, 17495, 17000, 16995, 16995, 16995, 16995, 16992, 16950, 16950, 16000, 15999, 15999, 15995, 15992, 15992, 15988, 15980, 15899, 15889, 15688, 15500, 15499, 15499, 15298, 14999, 14999, 14995, 14992, 14992, 14992, 14990, 14989, 14906, 14900, 14893, 14761, 14699, 14677, 14549, 14499, 14495, 14495, 14480, 14477, 14355, 14299, 14275, 14000, 13999, 13997, 13995, 13995, 13995, 13995, 13992, 13992, 13992, 13992, 13991, 13950, 13950, 13950, 13895, 13888, 13845, 13799, 13742, 13687, 13663, 13599, 13584, 13425, 13384, 13383, 13350, 12999, 12998, 12997, 12995, 12995, 12995, 12995, 12995, 12995, 12995, 12992, 12990, 12988, 12849, 12780, 12777, 12704, 12595, 12507, 12500, 12500, 12773, 12704, 12595, 12519, 12333, 12399] df = DataFrame(Year = year, Mileage = mileage , Price = price) res = kfold(@formula(Price ~ 1 + Year + Mileage ), df, 5, 1, false) @test isapprox(target_R2, res.R2) @test isapprox(target_ADJR2, res.ADJR2) @test isapprox(target_TRAIN_MSE, res.TRAIN_MSE) @test isapprox(target_TRAIN_RMSE, res.TRAIN_RMSE) @test isapprox(target_TEST_MSE, res.TEST_MSE) @test isapprox(target_TEST_RMSE, res.TEST_RMSE) end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
3242
using StatsBase: isapprox @testset "Less than full rank regression behaviour" begin # The package does not remove collinear terms (when there is a less than full rank matrix). # This test only checks that the behaviour is similar to other software package (such as R). year = [2011, 2011, 2011, 2011, 2012, 2010, 2011, 2010, 2011, 2010, 2010, 2011, 2011, 2010, 2011, 2011, 2010, 2010, 2011, 2011, 2010, 2010, 2011, 2010, 2009, 2010, 2010, 2010, 2010, 2009, 2010, 2009, 2011, 2011, 2009, 2010, 2011, 2010, 2010, 2010, 2010, 2010, 2010, 2009, 2010, 2010, 2010, 2010, 2009, 2009, 2010, 2010, 2010, 2009, 2010, 2010, 2010, 2009, 2009, 2009, 2010, 2010, 2009, 2009, 2009, 2010, 2010, 2010, 2009, 2009, 2009, 2009, 2010, 2009, 2010, 2009, 2009, 2010, 2010, 2010, 2009, 2009, 2007, 2010, 2010, 2010, 2009, 2009, 2009, 2008, 2009, 2009, 2009, 2010, 2010, 2008, 2008, 2009, 2009, 2008, 2009, 2010, 2008, 2009, 2010, 2008, 2008] mileage = [7413, 10926, 7351, 11613, 8367, 25125, 27393, 21026, 32655, 36116, 40539, 9199, 9388, 32058, 15367, 16368, 19926, 36049, 11662, 32069, 16035, 39943, 36685, 24920, 20019, 29338, 7784, 35636, 22029, 33107, 36306, 34419, 4867, 18948, 24030, 33036, 23967, 37905, 28955, 11165, 44813, 36469, 22143, 34046, 32703, 35894, 38275, 24855, 29501, 35394, 36447, 35318, 24929, 23785, 15167, 13541, 20278, 46126, 53733, 21108, 21721, 26716, 26887, 36252, 9450, 31414, 37185, 48174, 50533, 36713, 34888, 38380, 35574, 27528, 33302, 43369, 64055, 41342, 34503, 16573, 32403, 34846, 39665, 21325, 32743, 40058, 42325, 44518, 53902, 127327, 27136, 45813, 31538, 29517, 35871, 49787, 36323, 39211, 44789, 45996, 54988, 49720, 36322, 39222, 44089, 45993, 50988] price = [21992, 20995, 19995, 17809, 17500, 17495, 17000, 16995, 16995, 16995, 16995, 16992, 16950, 16950, 16000, 15999, 15999, 15995, 15992, 15992, 15988, 15980, 15899, 15889, 15688, 15500, 15499, 15499, 15298, 14999, 14999, 14995, 14992, 14992, 14992, 14990, 14989, 14906, 14900, 14893, 14761, 14699, 14677, 14549, 14499, 14495, 14495, 14480, 14477, 14355, 14299, 14275, 14000, 13999, 13997, 13995, 13995, 13995, 13995, 13992, 13992, 13992, 13992, 13991, 13950, 13950, 13950, 13895, 13888, 13845, 13799, 13742, 13687, 13663, 13599, 13584, 13425, 13384, 13383, 13350, 12999, 12998, 12997, 12995, 12995, 12995, 12995, 12995, 12995, 12995, 12992, 12990, 12988, 12849, 12780, 12777, 12704, 12595, 12507, 12500, 12500, 12773, 12704, 12595, 12519, 12333, 12399] df = DataFrame(Year = year, Mileage = mileage , Price = price) clm = regress(@formula( Price ~ 1 + Year + Mileage ), df) @test isapprox([-2.1875899220039356e6, 1096.1497198779816, -0.023836779513595294] , clm.coefs) @test isapprox([352441.774385393, 175.28249088168033, 0.009841450356317822] , clm.stderrors) @test isapprox([-6.2069541155238275, 6.2536178848457125, -2.4220799425455644], clm.t_values) @test isapprox(3, clm.p) @test isapprox(1.697508841124793e6, clm.MSE) @test true == clm.intercept @test isapprox(0.4643179971701117, clm.R2) @test isapprox(0.4540164201926138, clm.ADJR2) @test isapprox(1302.884814987416, clm.RMSE) @test isapprox([1.1199586251463344e-8, 9.016454363548383e-9, 0.017161942174616873], clm.p_values) end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
9673
@testset "no intercept model1" begin x = [-5.0, -4.8, -4.6, -4.4, -4.2, -4.0, -3.8, -3.6, -3.4, -3.2, -3.0, -2.8, -2.6, -2.4, -2.2, -2.0, -1.8, -1.6, -1.4, -1.2, -1.0, -0.8, -0.6, -0.4, -0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0] y = [32.76095293186829, 32.114646881731815, 30.482249790567508, 30.172132123809526, 28.858546806301607, 27.55525364876047, 26.748316399220183, 25.47632057519211, 24.178757213602406, 23.115113146604088, 21.67768685139419, 20.667430892918777, 19.25030326250073, 17.969338480523586, 16.92778066296735, 16.01093498430364, 14.972217418295738, 14.129273625410654, 12.528548495622791, 11.995655292690893, 10.437691863433523, 9.04875056404323, 8.352545547062054, 6.595027421481294, 5.769353744384407, 4.656766397706274, 3.2769464299313293, 2.557398138612538, 1.8697655690559674, 0.1758423094007262, -1.1812180900645513, -2.4595328718334226, -3.224902727206241, -4.52850811714283, -5.620262454732497, -6.65705617649476, -8.109350054557144, -8.964028166630365, -9.764063784932889, -11.49260887582183, -12.144819717782108, -13.843175083307838, -14.603379688823846, -15.335111221096993, -16.28627855774275, -17.73382957392828, -19.156926371425502, -20.641255379884615, -21.17362575264, -22.5708673184868, -23.072613984429083] df = DataFrame(x=x, y=y) lrnoint = regress(@formula(y ~ 0 + x), df, req_stats=[:default, :aic, :vif]) @test isapprox(0.9252939081, lrnoint.R2) @test isapprox(0.9237997863, lrnoint.ADJR2) @test isapprox(160.90768623, lrnoint.AIC) @test isapprox([0.], lrnoint.VIF) @test isapprox(619.2894615, lrnoint.f_value) @test leaq(lrnoint.f_pvalue, 0.001) results = predict_in_sample(lrnoint, df, Ξ±=0.05, req_stats=["default", "rstudent"]) @test isapprox([28.385804339677044, 27.25037216608996, 26.114939992502876, 24.9795078189158, 23.84407564532872, 22.708643471741635, 21.57321129815455, 20.43777912456747, 19.30234695098039, 18.16691477739331, 17.031482603806225, 15.896050430219143, 14.760618256632062, 13.62518608304498, 12.4897539094579, 11.354321735870817, 10.218889562283735, 9.083457388696655, 7.948025215109571, 6.81259304152249, 5.677160867935409, 4.541728694348327, 3.406296520761245, 2.2708643471741636, 1.1354321735870818, 0.0, -1.1354321735870818, -2.2708643471741636, -3.406296520761245, -4.541728694348327, -5.677160867935409, -6.81259304152249, -7.948025215109571, -9.083457388696655, -10.218889562283735, -11.354321735870817, -12.4897539094579, -13.62518608304498, -14.760618256632062, -15.896050430219143, -17.031482603806225, -18.16691477739331, -19.30234695098039, -20.43777912456747, -21.57321129815455, -22.708643471741635, -23.84407564532872, -24.9795078189158, -26.114939992502876, -27.25037216608996, -28.385804339677044] , results.predicted) @test isapprox([0.938033258871313, 1.0426179367896207, 0.9319648731276958, 1.1097378448312425, 1.0685340559242513, 1.0299419326232258, 1.0993609703148552, 1.0677740527805426, 1.0309373482675432, 1.0448144116724511, 0.978326230602586, 1.0038487427946268, 0.9422793707140289, 0.9101464457061582, 0.9291611309816967, 0.9748389070719975, 0.9946108960924838, 1.0563303532318353, 0.9563424123040439, 1.0843302339300107, 0.993564396349128, 0.9392838550370636, 1.032388388246509, 0.9000336054567951, 0.9655586062937045, 0.97036522335683, 0.9185810103197727, 1.007013102837162, 1.1028816259631355, 0.9840106274248026, 0.9373227029099432, 0.9074862070811145, 0.9866973636129569, 0.9515650780179017, 0.9616191528659762, 0.9835165279774034, 0.9168886277207625, 0.9778135787709513, 1.0509330791271387, 0.9250288747899885, 1.0300270784500691, 0.910564302144073, 0.992654638302146, 1.0816862270131862, 1.1237223658970572, 1.0578001520839455, 0.9973186697257519, 0.9236477076314706, 1.0570827343881202, 1.0021858611232244, 1.1440369678715858] , results.rstudent) y = [3.547744106900422, 9.972950249405148, 16.471345464154027, 22.46768807351274, 20.369933318011807, 21.18590757820348, 29.962620198209024, 30.684400502954748, 29.28429078492597, 34.272759386588824, 33.05504692986838, 45.09273876302829, 45.28374262744938, 54.54563960566191, 46.86173948296966, 46.85926120310666, 67.54337216713414, 66.0400205145086, 64.77001443647681, 63.98759256558095, 15.016939388490687, 12.380885701920008, 10.221963402745288, 24.826987790646672, 22.231511892187548, 18.05125492502642, 21.809661866284717, 28.533306224702308, 24.70476800009685, 39.592181057942916, 37.425282624708906, 33.89372811236659, 44.07442335927311, 42.61943719318272, 52.32531447897055, 44.12096163880534, 49.19965880584543, 52.304114239221036, 59.79488104919937, 65.00419916894333, 10.978506745605673, 12.944637189081874, 16.96525561080181, 15.93489355798633, 33.559135307088305, 28.887571687420433, 28.296418324622593, 32.2405215537489, 31.466024917490223, 37.78855308849255, 48.09725215994402, 40.70190542438069, 43.2525436240948, 44.75159242105558, 52.553066965996074, 53.265851121437095, 60.092700204726015, 62.78014347092756, 69.07895282754228, 74.27890668517966, 10.57283140105129, 7.290600131361426, 16.10299402050687, 14.428954773831242, 22.418180226673464, 28.21022852582732, 29.60436622143203, 33.648588929669636, 37.451930576147994, 43.85548900583812, 41.44168340404242, 43.48815266671309, 54.72835160956764, 53.55177468229062, 50.62088969800169, 50.863408563713335, 47.40251347184729, 64.29413401802115, 64.20687412126479, 73.66653216085827, 15.820723594639162, 21.973463928234743, 23.804440715385162, 15.139822408433913, 30.015089890369985, 28.08454394421385, 33.041880065463566, 28.49429418531324, 38.33763660905526, 34.503176013521724, 48.748946870573235, 45.45351516824085, 53.522908096188765, 45.95216131836423, 63.13018379633756, 63.4236036208151, 65.28265579397677, 55.43500146374922, 76.50187470137375, 67.22421998359037, 19.289152114521762, 27.63557010588222, 17.700031078096686, 25.462368278660957, 22.94613580060685, 36.19731649621813, 35.22216995579936, 25.526434727578838, 45.882864925557726, 38.71433797181679, 50.617762276434554, 41.96951039650285, 52.265123328453214, 45.383991138243765, 62.7923270665056, 64.40670612696276, 74.89775274405821, 72.89056716347118, 66.37071343209973, 76.32913721410918, 29.923781174452596, 16.465832617450324, 30.530915733275403, 30.512411156491954, 28.04012351007911, 26.315140074869376, 37.18491928428231, 41.958551085353626, 48.370736387628895, 49.419917216561835, 48.67296268029715, 55.484477112881166, 51.120639229597025, 54.797092949987224, 61.92608065418044, 69.79495109420618, 64.43521939892794, 74.35280205157255, 77.22355341160723, 68.90654715174155, 10.87752158238755, 20.25006748725279, 31.71957876614495, 31.42898857400639, 32.505052996368256, 34.1225641368903, 35.66496173153403, 31.76371648643483, 42.97107454773545, 47.41827763710622] x2 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8] x3 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] df = DataFrame(y=y, x2=x2, x3=x3) lrnoint = regress(@formula(y ~ 0 + x2 +x3), df, req_stats=["default", "pcorr1", "pcorr2", "scorr1", "scorr2", "vif"]) @test isapprox([207017.27329467665, 84364.93565847247], lrnoint.Type1SS) @test isapprox([6502.255171530228, 84364.93565847244], lrnoint.Type2SS) @test isapprox([0.9814816505541067, 0.9557504161506739], lrnoint.pcorr1) @test isapprox([0.6247239646866073, 0.9557504161506739], lrnoint.pcorr2) @test isapprox([0.7010686580206047, 0.28570375449728647], lrnoint.scorr1) @test isapprox([0.02202003356851988, 0.28570375449728636], lrnoint.scorr2) @test isapprox([1.0099808403511108, 1.0099808403511117], lrnoint.VIF) @test isapprox(0.9867724125178912, lrnoint.R2) @test isapprox(0.9865936613357005, lrnoint.ADJR2) @test isapprox(5520.3685951, lrnoint.f_value) @test leaq(lrnoint.f_pvalue, 0.001) end @testset "no intercept weighted regression" begin tw = [ 2.3 7.4 0.058 3.0 7.6 0.073 2.9 8.2 0.114 4.8 9.0 0.144 1.3 10.4 0.151 3.6 11.7 0.119 2.3 11.7 0.119 4.6 11.8 0.114 3.0 12.4 0.073 5.4 12.9 0.035 6.4 14.0 0 ] # data from https://blogs.sas.com/content/iml/2016/10/05/weighted-regression.html df = DataFrame(tw, [:y,:x,:w]) f = @formula(y ~ 0 + x) lm = regress(f, df, weights="w") @test isapprox([0.3056575637534476], lm.coefs) @test isapprox(0.8626294380695502, lm.R2) @test isapprox(0.8473660422995002, lm.ADJR2) @test isapprox([0.040658241629241754], lm.stderrors) @test isapprox([3.6247531175150984e-5], lm.p_values) @test isapprox(56.51622031, lm.f_value) end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
4175
@testset "ridge regression" begin M = [ 1. 1. 1. 1. 1. 2. 1. 3. 1. 3. 1. 3. 1. 1. -1. 2. 1. 2. -1. 2. 1. 3. -1. 1. ] df = DataFrame(M, [:x0, :x1, :x2, :y]) # Simple t_coefs = [1.5454545454545454, 0.22727272727272727, 0.30303030303030304] t_mse = 1.03030303030303 t_rmse = 1.0150384378451045 t_vifs = [0.0, 0.8264462809917354, 0.8264462809917352] t_r2 = 0.2272727272727274 # coefs, mse, rmse, r2, vifs = ridge(@formula(y ~ x1 + x2), df, 0.1) rr = ridge(@formula(y ~ x1 + x2), df, 0.1) @test isapprox(t_coefs, rr.coefs) @test isapprox(t_mse, rr.MSE) @test isapprox(t_rmse, rr.RMSE) @test isapprox(t_vifs, rr.VIF) @test isapprox(t_r2, rr.R2) # series of simple ridge regression t_intercepts = [1.5, 1.5454545454545454, 1.5833333333333333] t_x1s = [0.25, 0.22727272727272727, 0.20833333333333334] t_x2s = [0.3333333333333333, 0.30303030303030304, 0.2777777777777778] t_vifintercepts = [0.0, 0.0, 0.0] t_vifx1s = [1.0, 0.8264462809917354, 0.6944444444444445] t_vifx2s = [0.9999999999999998, 0.8264462809917352, 0.6944444444444445] t_mse = [1.0277777777777777, 1.03030303030303, 1.0362654320987652] t_rmse = [1.0137937550497031, 1.0150384378451045, 1.0179712334338162] t_r2 = [0.22916666666666674, 0.2272727272727274, 0.22280092592592604] t_adjr2 = [-0.2847222222222221, -0.2878787878787876, -0.2953317901234567] rdf = ridge(@formula(y ~ x1 + x2), df, 0:0.1:0.2) coefs_names = ["(Intercept)", "x1" , "x2" ] vifs_names = "vif " .* coefs_names @test isapprox(t_intercepts, rdf[!, coefs_names[1]]) @test isapprox(t_x1s, rdf[!, coefs_names[2]]) @test isapprox(t_x2s, rdf[!, coefs_names[3]]) @test isapprox(t_vifintercepts, rdf[!, vifs_names[1]]) @test isapprox(t_vifx1s, rdf[!, vifs_names[2]]) @test isapprox(t_vifx2s, rdf[!, vifs_names[3]]) @test isapprox(t_mse, rdf[!, "MSE"]) @test isapprox(t_rmse, rdf[!, "RMSE"]) @test isapprox(t_r2, rdf[!, "R2"]) @test isapprox(t_adjr2, rdf[!, "ADJR2"]) # test weighted ridge regression using LinearRegressionKit using Test, DataFrames, StatsModels tw = [ 2.3 7.4 0.058 3.0 7.6 0.073 2.9 8.2 0.114 4.8 9.0 0.144 1.3 10.4 0.151 3.6 11.7 0.119 2.3 11.7 0.119 4.6 11.8 0.114 3.0 12.4 0.073 5.4 12.9 0.035 12. 11. -0.1 ] df = DataFrame(tw, [:y,:x,:w]) f = @formula(y ~ x) lm, ps = regress(f, df, "all", weights="w", req_stats=["default", "vif"]) lm = regress(f, df, weights="w", req_stats=["default", "vif"]) rr = ridge(f, df, 0., weights="w") @test isapprox(lm.coefs, rr.coefs) @test isapprox(lm.VIF, rr.VIF) @test isapprox(lm.R2, rr.R2) @test isapprox(lm.ADJR2, rr.ADJR2) @test isapprox(lm.MSE, rr.MSE) @test isapprox(lm.RMSE, rr.RMSE) t_predis = predict_in_sample(lm, df, req_stats=req_stats=[:predicted, :residuals]) predis = predict_in_sample(rr, df) @test isapprox(t_predis.predicted, predis.predicted) @test isapprox(t_predis.residuals, predis.residuals) predos = predict_out_of_sample(rr, df) @test isapprox(t_predis.predicted, predos.predicted) wrdf = ridge(f, df, 0:0.1:0.2, weights="w") @test isapprox(0.:0.1:0.2 , wrdf.k) @test isapprox([0.1828582250674794, 0.18288116845535146, 0.18293534034338269], wrdf.MSE) @test isapprox([0.42761925245185045, 0.42764607849874114, 0.42770941109985255], wrdf.RMSE) @test isapprox([0.014954934572438905, 0.014831340071840282, 0.014539519723204886], wrdf.R2) @test isapprox([-0.10817569860600629, -0.10831474241917971, -0.10864304031139449], wrdf.ADJR2) @test isapprox([2.3282371768678907, 2.4079428880617186, 2.4743643140565754], wrdf[!, "(Intercept)"]) @test isapprox([0.08535712911515224, 0.07759739010468385, 0.07113094092929353], wrdf[!, "x"]) @test isapprox([0. , 0. , 0.], wrdf[!, "vif (Intercept)"]) @test isapprox([1.0, 0.8264462809917354, 0.6944444444444445], wrdf[!, "vif x"]) end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
3811
include("../src/sweep_operator.jl") @testset "Sweep Operator Correctness" begin correct_result = [1.1666666666666667 -0.5 -0.0 1.5; -0.5 0.25 -0.0 0.25; 0.0 -0.0 0.16666666666666666 0.3333333333333333; -1.5 -0.25 -0.3333333333333333 3.0833333333333335] correct_T1SS = [24.0, 0.25, 0.6666666666666665] correct_T2SS = [1.9285714285714284, 0.25, 0.6666666666666666] correct_last_see = 3.0833333333 M = [ 1. 1. 1. 1. 1. 2. 1. 3. 1. 3. 1. 3. 1. 1. -1. 2. 1. 2. -1. 2. 1. 3. -1. 1. ] M0 = M' * M sweepedM0 = sweep_op_full!(M0') @test isapprox(correct_result, M0) M0 = M' * M SSE, TypeISS = sweep_op_fullT1SS!(M0') @test isapprox(correct_last_see, SSE) @test isapprox(correct_result, M0) @test isapprox(correct_T1SS, TypeISS) @test isapprox(correct_T2SS, get_TypeIISS(M0)) A = [0.6694830121789994; 0.21314246720926422; 0.6529660250873977; 0.6385918132605166; 0.037358200179362755; 0.2875097674400453; 0.21811874684632737; 0.4232050450926038; 0.9734084003457419; 0.4895213360877587; 0.22107794000504877;;] B = [0.1092789425428552 0.7682468044279679 0.9375459449272519 0.3016008879920138 0.6350731353296186 0.6391931975313466 0.7931988086444425 0.1547756065020972 0.7551009672990262 0.2043390054901021 0.37466999909368104; 0.7518732467227479 0.17404612464595814 0.761770033509471 0.2770864478415873 0.7543141370258291 0.32310676567293395 0.33347421997349236 0.4534191137643454 0.5128610834497598 0.9341505398911903 0.7536289774998648; 0.8217480529578403 0.34093452577281813 0.962711302240167 0.749580537971113 0.6119080109928845 0.4898631756099011 0.22873586091225762 0.7556388096116227 0.5482875796771497 0.3019759415002481 0.24383237803532276; 0.9205908572601128 0.9838016151616238 0.9380559252830013 0.33900574573219244 0.0583887229946799 0.4679092112776474 0.39026963404013393 0.5418546773143993 0.6935042985856147 0.3282403487260446 0.6961565982332839; 0.1414240797001498 0.3412940519296852 0.8408526865689825 0.462294772065576 0.31393723531549245 0.8748575543600328 0.14699174692940986 0.39306278859334387 0.10912929212661415 0.9141524544576278 0.29686130512125486; 0.37906779731717744 0.8475450403582677 0.2038618175296657 0.4683061428672235 0.9297014862588634 0.5466002831094359 0.6751069695895096 0.9743862251742357 0.9564283751044231 0.6116585273083751 0.7909339981249403; 0.5359109396842612 0.012988843952200346 0.9835824622845665 0.8686665313226049 0.45336455279489085 0.5839037022748381 0.9157470648204125 0.7116357064138576 0.5183459854159834 0.08679668241144856 0.2799014486961946; 0.7554124198898702 0.9323865537553858 0.8678647805277917 0.038064063816100724 0.3429878578591379 0.31534343578500357 0.475130227302884 0.36996903727864516 0.030115361864833545 0.34244322477966027 0.4523144307547967; 0.8336756262881949 0.5216976063941485 0.28203838317254926 0.7373358446522794 0.5620614410329805 0.057089029616333886 0.2616440484472927 0.7340293213619165 0.7384112237773132 0.7537099230023115 0.6503159099088369; 0.5551618374419353 0.03118050811467732 0.23476295981821782 0.917221770950081 0.223897520609306 0.5216802455519959 0.365440442059882 0.7394898203765863 0.09923845623220229 0.4348799692321885 0.10475084732823181; 0.9893186829830513 0.5621839305113805 0.278541900532278 0.10896953976431789 0.31531406921972904 0.5869378617853271 0.4820934500666002 0.9326376745113245 0.8775590942514956 0.7887445296205713 0.6274169456020134] correct_coefs = [0.8626528683885901; 0.7799120469808962; -0.3648600566802049; 1.0021645622078064; 0.2748318846779194; -0.16712897766519763; 0.09387657451235487; -1.251063803103481; 0.46242701312864226; 0.27040571287723963; -0.8997388730388888;;] @test isapprox(sweep_linreg(B, A), correct_coefs) end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
code
11395
include("../src/utilities.jl") @testset "Plots request massaging" begin wanted = "all" needed = Set([:fit, :residuals, :normal_checks, :cooksd, :leverage, :homoscedasticity]) @test needed == get_needed_plots(wanted) wanted = [] needed = Set([]) @test needed == get_needed_plots(wanted) wanted = :none needed = Set() @test needed == get_needed_plots(wanted) wanted = Set() needed = Set() @test needed == get_needed_plots(wanted) wanted = ["fit", "cooksd", "homoscedasticity"] needed = Set([:fit, :cooksd, :homoscedasticity]) @test needed == get_needed_plots(wanted) wanted = [:residuals, :normal_checks] needed = Set([:residuals, :normal_checks]) @test needed == get_needed_plots(wanted) wanted = :leverage needed = Set([:leverage]) @test needed == get_needed_plots(wanted) end @testset "Covariance estimator stats massaging" begin wanted = [:white, :white , :bogus , :nw] needed = ([:white], [:nw]) @test needed == get_needed_robust_cov_stats(wanted) wanted = [:hc0, :hc1, :nw] needed = ([:hc0, :hc1], [:nw]) @test needed == get_needed_robust_cov_stats(wanted) wanted = ["White", "HC0" , "nw" , "nothing"] needed = ([:white, :hc0], [:nw]) @test needed == get_needed_robust_cov_stats(wanted) wanted = ["Hc1", "HC0" , "nothing"] needed = ([:hc0 , :hc1], []) @test needed == get_needed_robust_cov_stats(wanted) wanted = "Nw" needed = ([], [:nw]) @test needed == get_needed_robust_cov_stats(wanted) wanted = :hc0 needed = ([:hc0], []) @test needed == get_needed_robust_cov_stats(wanted) wanted = :hc0 needed = ([:hc0], []) @test needed == get_needed_robust_cov_stats(wanted) wanted = [] needed = ([], []) @test needed == get_needed_robust_cov_stats(wanted) wanted = :none needed = ([], []) @test needed == get_needed_robust_cov_stats(wanted) wanted = :all needed = ([:white, :hc0, :hc1, :hc2, :hc3], [:nw]) @test needed == get_needed_robust_cov_stats(wanted) end @testset "model stats massaging" begin wanted = ["default"] needed = Set([:coefs, :sse, :mse, :sst, :rmse, :sigma, :t_statistic, :r2, :adjr2, :stderror, :t_values, :p_values, :ci, :f_stats]) @test needed == get_needed_model_stats(wanted) wanted = [:default, :vif] needed = Set([:coefs, :sse, :vif, :mse, :sst, :rmse, :sigma, :t_statistic, :r2, :adjr2, :stderror, :t_values, :p_values, :ci, :f_stats]) @test needed == get_needed_model_stats(wanted) wanted = [:default, :diag_ks] needed = Set([:coefs, :sse, :diag_ks, :mse, :sst, :rmse, :sigma, :t_statistic, :r2, :adjr2, :stderror, :t_values, :p_values, :ci, :f_stats]) @test needed == get_needed_model_stats(wanted) wanted = [:default, :diag_normality] needed = Set([:coefs, :sse, :diag_ks, :diag_ad, :diag_jb, :mse, :sst, :rmse, :sigma, :t_statistic, :r2, :adjr2, :stderror, :t_values, :p_values, :ci, :f_stats]) @test needed == get_needed_model_stats(wanted) wanted = [:default, :diag_heteroskedasticity] needed = Set([:coefs, :sse, :diag_white, :diag_bp, :mse, :sst, :rmse, :sigma, :t_statistic, :r2, :adjr2, :stderror, :t_values, :p_values, :ci, :f_stats]) @test needed == get_needed_model_stats(wanted) wanted = ["r2", "rmse"] needed = Set([:r2, :rmse, :coefs, :sse, :mse, :sst]) @test needed == get_needed_model_stats(wanted) wanted = ["aic"] needed = Set([:coefs, :mse, :sse, :aic]) @test needed == get_needed_model_stats(wanted) wanted = ["Ci"] needed = Set([:coefs, :mse, :sse, :ci, :sigma, :stderror, :t_statistic]) @test needed == get_needed_model_stats(wanted) wanted = ["Adjr2"] needed = Set([:coefs, :mse, :sse, :r2, :adjr2, :sst]) @test needed == get_needed_model_stats(wanted) wanted = ["stderror"] needed = Set([:coefs, :mse, :sse, :stderror, :sigma]) @test needed == get_needed_model_stats(wanted) wanted = ["t_values"] needed = Set([:coefs, :mse, :sse, :t_values, :stderror, :sigma]) @test needed == get_needed_model_stats(wanted) wanted = ["p_values"] needed = Set([:coefs, :mse, :sse, :p_values, :t_values, :stderror, :sigma]) @test needed == get_needed_model_stats(wanted) wanted = ["ci", "P_values"] needed = Set([:coefs, :mse, :sse, :p_values, :t_values, :stderror, :sigma, :ci, :t_statistic]) @test needed == get_needed_model_stats(wanted) wanted = ["none"] needed = Set([:coefs, :mse, :sse]) @test needed == get_needed_model_stats(wanted) wanted = ["all"] needed = Set([:coefs, :sse, :mse, :sst, :rmse, :aic, :sigma, :t_statistic, :vif, :r2, :adjr2, :stderror, :t_values, :p_values, :ci, :diag_normality, :diag_ks, :diag_ad, :diag_jb, :diag_heteroskedasticity, :diag_white, :diag_bp, :press, :t1ss, :t2ss, :pcorr1, :pcorr2, :scorr1, :scorr2, :cond, :f_stats]) @test needed == get_needed_model_stats(wanted) wanted = [ ] needed = Set([:coefs, :mse, :sse]) @test needed == get_needed_model_stats(wanted) wanted = ["press" ] needed = Set([:coefs, :mse, :sse, :press]) @test needed == get_needed_model_stats(wanted) wanted = ["t1ss" ] needed = Set([:coefs, :mse, :sse, :t1ss]) @test needed == get_needed_model_stats(wanted) wanted = ["t2ss", "t1ss" ] needed = Set([:coefs, :mse, :sse, :t1ss, :t2ss]) @test needed == get_needed_model_stats(wanted) wanted = ["pcorr1" ] needed = Set([:coefs, :mse, :sse, :t1ss, :pcorr1]) @test needed == get_needed_model_stats(wanted) wanted = ["pcorr1", "pcorr2" ] needed = Set([:coefs, :mse, :sse, :t1ss, :t2ss, :pcorr1, :pcorr2]) @test needed == get_needed_model_stats(wanted) wanted = [:scorr1 ] needed = Set([:coefs, :mse, :sse, :sst, :t1ss, :scorr1]) @test needed == get_needed_model_stats(wanted) wanted = [:scorr1, :scorr2 ] needed = Set([:coefs, :mse, :sse, :sst, :t1ss, :t2ss, :scorr1, :scorr2]) @test needed == get_needed_model_stats(wanted) wanted = [ "bogus"] needed = Set([:coefs, :mse, :sse]) @test needed == get_needed_model_stats(wanted) wanted = [ "cond"] needed = Set([:coefs, :mse, :sse, :cond]) @test needed == get_needed_model_stats(wanted) wanted = ["stderror", "Bogus"] needed = Set([:coefs, :mse, :sse, :stderror, :sigma]) @test needed == get_needed_model_stats(wanted) wanted = [ "f_stats"] needed = Set([:coefs, :mse, :sse, :sst, :f_stats]) @test needed == get_needed_model_stats(wanted) wanted = Set([:stderror, :Bogus]) needed = Set([:coefs, :mse, :sse, :stderror, :sigma]) @test needed == get_needed_model_stats(wanted) wanted = Set() needed = Set([:coefs, :mse, :sse]) @test needed == get_needed_model_stats(wanted) end @testset "prediction stats massaging" begin wanted = ["none"] target_need = Set([:predicted]) target_present = Set([:predicted]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = ["all"] target_need = Set([:predicted, :residuals, :leverage, :stdp, :stdi, :stdr, :student, :rstudent, :lcli, :ucli, :lclp, :uclp, :press, :cooksd]) target_present = Set([:predicted, :residuals, :leverage, :stdp, :stdi, :stdr, :student, :rstudent, :lcli, :ucli, :lclp, :uclp, :press, :cooksd]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = ["CooksD"] target_need = Set([:predicted, :residuals, :leverage, :stdp, :stdr, :student, :cooksd]) target_present = Set([:predicted, :cooksd]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = ["CooksD", "lcli"] target_need = Set([:predicted, :residuals, :leverage, :stdp, :stdr, :student, :cooksd, :stdi, :lcli]) target_present = Set([:predicted, :cooksd, :lcli]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = ["CooksD", "Bogus", "lcli"] target_need = Set([:predicted, :residuals, :leverage, :stdp, :stdr, :student, :cooksd, :stdi, :lcli]) target_present = Set([:predicted, :cooksd, :lcli]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = ["PRESS"] target_need = Set([:predicted, :residuals, :leverage, :press]) target_present = Set([:predicted, :press]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = ["lclp"] target_need = Set([:predicted, :stdp, :leverage, :lclp]) target_present = Set([:predicted, :lclp]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = ["uclp"] target_need = Set([:predicted, :stdp, :leverage, :uclp]) target_present = Set([:predicted, :uclp]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = ["ucli"] target_need = Set([:predicted, :stdi, :leverage, :ucli]) target_present = Set([:predicted, :ucli]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = ["ucli", "LCLP"] target_need = Set([:predicted, :stdi, :leverage, :ucli, :lclp, :stdp]) target_present = Set([:predicted, :ucli, :lclp]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = ["student"] target_need = Set([:predicted, :residuals, :leverage, :stdr, :student]) target_present = Set([:predicted, :student]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = [:rstudent] target_need = Set([:predicted, :residuals, :leverage, :stdr, :student, :rstudent]) target_present = Set([:predicted, :rstudent]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = [:stdp] target_need = Set([:predicted, :leverage, :stdp]) target_present = Set([:predicted, :stdp]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = [:stdp, :stdi] target_need = Set([:predicted, :leverage, :stdp, :stdi]) target_present = Set([:predicted, :stdp, :stdi]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = [:stdpp, :stdr] target_need = Set([:predicted, :leverage, :stdr]) target_present = Set([:predicted, :stdr]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = [] target_need = Set([:predicted]) target_present = Set([:predicted]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present wanted = Set() target_need = Set([:predicted]) target_present = Set([:predicted]) need, present = get_prediction_stats(wanted) @test target_need == need @test target_present == present end
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
docs
13813
[![](https://img.shields.io/badge/docs-dev-blue.svg)](https://ericqu.github.io/LinearRegressionKit.jl/dev/) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://ericqu.github.io/LinearRegressionKit.jl/stable) # LinearRegressionKit.jl LinearRegressionKit.jl implements linear regression using the least-squares algorithm (relying on the sweep operator). This package is in the beta stage. Hence it is likely that some bugs exist. Furthermore, the API might change in future versions. User's or prospective users' feedback is welcome. # Installation Enter the Pkg REPL by pressing ] from the Julia REPL. Then install the package with: ``` pkg> add LinearRegressionKit ``` or ```pkg> add https://github.com/ericqu/LinearRegressionKit.jl.git ```. To uninstall use ``` pkg> rm LinearRegressionKit``` # Usage The following is a simple usage: ```julia using LinearRegressionKit, DataFrames, StatsModels x = [0.68, 0.631, 0.348, 0.413, 0.698, 0.368, 0.571, 0.433, 0.252, 0.387, 0.409, 0.456, 0.375, 0.495, 0.55, 0.576, 0.265, 0.299, 0.612, 0.631] y = [15.72, 14.86, 6.14, 8.21, 17.07, 9.07, 14.68, 10.37, 5.18, 9.36, 7.61, 10.43, 8.93, 10.33, 14.46, 12.39, 4.06, 4.67, 13.73, 14.75] df = DataFrame(y=y, x=x) lr = regress(@formula(y ~ 1 + x), df) ``` which outputs the following information: ``` Model definition: y ~ 1 + x Used observations: 20 Model statistics: RΒ²: 0.938467 Adjusted RΒ²: 0.935049 MSE: 1.01417 RMSE: 1.00706 ΟƒΜ‚Β²: 1.01417 F Value: 274.526 with degrees of freedom 1 and 18, Pr > F (p-value): 2.41337e-12 Confidence interval: 95% Coefficients statistics: Terms β•² Stats β”‚ Coefs Std err t Pr(>|t|) code low ci high ci ──────────────┼────────────────────────────────────────────────────────────────────────────────────────── (Intercept) β”‚ -2.44811 0.819131 -2.98867 0.007877 ** -4.16904 -0.727184 x β”‚ 27.6201 1.66699 16.5688 2.41337e-12 *** 24.1179 31.1223 Signif. codes: 0 β€˜***’ 0.001 β€˜**’ 0.01 β€˜*’ 0.05 β€˜.’ 0.1 β€˜ ’ 1 ``` # Contrasts with Julia Stats GLM package First, the GLM package provides more than linear regression with Ordinary Least-Squares through the Generalized Linear Model with Maximum Likelihood Estimation. LinearRegressionKit accepts model without intercept. Like models made with GLM the intercept is implicit, and to enable the no intercept the user must specify it in the formula (for instance ```y ~ 0 + x```). LinearRegressionKit supports analytical weights; GLM supports frequency weights. Both LinearRegressionKit and GLM rely on StatsModels.jl for the model's description (@formula); hence it is easy to move between the two packages. Similarly, contrasts and categorical variables are defined in the same way facilitating moving from one to the other when needed. LinearRegressionKit relies on the Sweep operator to estimate the coefficients, and GLM depends on Cholesky and QR factorizations. The Akaike information criterion (AIC) is calculated with the formula relevant only for Linear Regression hence enabling comparison between linear regressions (AIC=n log(SSE / n) + 2p; where SSE is the Sum of Squared Errors and p is the number of predictors). On the other hand, the AIC calculated with GLM is more general (based on log-likelihood), enabling comparison between a broader range of models. LinearRegressionKit package provides access to some robust covariance estimators (for Heteroscedasticity: White, HC0, HC1, HC2 and HC3 and for HAC: Newey-West) Ridge Regression (potentially with analytical weights) is implemented in the LinearRegressionKit package. # List of Statistics ## List of Statistics calculated about the linear regression model: - AIC: Akaike information criterion with the formula AIC=n log(SSE / n) + 2p; where SSE is the Sum of Squared Errors and p is the number of predictors. - SSE Sum of Squared Errors as the output from the sweep operator. - SST as the Total Sum of Squares as the sum over all squared differences between the observations and their overall mean. - RΒ² as 1 - SSE/SST. - Adjusted RΒ². - ΟƒΜ‚Β² (sigma) Estimate of the error variance. - Variance Inflation Factor. - CI the confidence interval based the \alpha default value of 0.05 giving the 95% confidence interval. - The t-statistic. - The mean squared error. - The root of the mean squared error. - The standard errors and their equivalent with a Heteroscedasticity or HAC covariance estimator - The t values and their equivalent with a Heteroscedasticity or HAC covariance estimator - P values for each predictor and their equivalent with a Heteroscedasticity or HAC covariance estimator - Type 1 & 2 Sum of squares - Squared partial correlation coefficient, squared semi-partial correlation coefficient. - PRESS as the sum of square of predicted residuals errors - F Value (SAS naming) F Statistic (R naming) is presented with its p-value ## List of Statistics about the predicted values: - The predicted values - The residuals values (as the actual values minus the predicted ones) - The Leverage or the i-th diagonal element of the projection matrix. - STDI is the standard error of the individual predicted value. - STDP is the standard error of the mean predicted value - STDR is the standard error of the residual - Student as the studentized residuals also knows as the Standardized residuals or internally studentized residuals. - Rstudent is the studentized residual with the current observation deleted. - LCLI is the lower bound of the confidence interval for the individual prediction. - UCLI is the upper bound of the confidence interval for the individual prediction. - LCLP is the lower bound of the confidence interval for the expected (mean) value. - UCLP is the upper bound of the confidence interval for the expected (mean) value. - Cook's Distance - PRESS as predicted residual errors # Questions and Feedback Please post your questions, feedabck or issues in the Issues tabs. As much as possible, please provide relevant contextual information. # Credits and additional information - Goodnight, J. (1979). "A Tutorial on the SWEEP Operator." The American Statistician. - Gordon, R. A. (2015). Regression Analysis for the Social Sciences. New York and London: Routledge. - https://blogs.sas.com/content/iml/2021/07/14/performance-ls-regression.html - https://github.com/joshday/SweepOperator.jl - http://hua-zhou.github.io/teaching/biostatm280-2019spring/slides/12-sweep/sweep.html - https://github.com/mcreel/Econometrics for the Newey-West implementation - https://blogs.sas.com/content/iml/2013/03/20/compute-ridge-regression.html - Code from StatsModels https://github.com/JuliaStats/StatsModels.jl/blob/master/test/extension.jl (in December 2021) # Examples The following is a short example illustrating some statistics about the predicted data. First, a simulation of some data with a polynomial function. ```julia using LinearRegressionKit, DataFrames, StatsModels using Distributions # for the data generation with Normal() and Uniform() using VegaLite # Data simulation f(x) = @. (x^3 + 2.2345x - 1.2345 + rand(Normal(0, 20))) xs = [x for x in -2:0.1:8] ys = f(xs) vdf = DataFrame(y=ys, x=xs) ``` Then we can make the first model and look at the results: ```julia lr, ps = regress(@formula(y ~ 1 + x), vdf, "all", req_stats=["default", "vif", "AIC"], plot_args=Dict("plot_width" => 200)) lr ``` ``` Model definition: y ~ 1 + x Used observations: 101 Model statistics: RΒ²: 0.758985 Adjusted RΒ²: 0.75655 MSE: 5660.28 RMSE: 75.2348 ΟƒΜ‚Β²: 5660.28 AIC: 874.744 F Value: 311.762 with degrees of freedom 1 and 99, Pr > F (p-value): 2.35916e-32 Confidence interval: 95% Coefficients statistics: Terms β•² Stats β”‚ Coefs Std err t Pr(>|t|) code low ci high ci VIF ──────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────── (Intercept) β”‚ -26.6547 10.7416 -2.48145 0.0147695 * -47.9683 -5.34109 0.0 x β”‚ 45.3378 2.56773 17.6568 2.35916e-32 *** 40.2429 50.4327 1.0 Signif. codes: 0 β€˜***’ 0.001 β€˜**’ 0.01 β€˜*’ 0.05 β€˜.’ 0.1 β€˜ ’ 1 ``` This is okay, so let's further review some diagnostic plots. ```julia [[ps["fit"] ps["residuals"]] [ps["histogram density"] ps["qq plot"]]] ``` ![Illustrative Overview Plots](https://github.com/ericqu/LinearRegressionKit.jl/raw/main/assets/asset_exe_072_01.svg "Illustrative Overview Plots") Please note that for the fit plot, the orange line shows the regression line, in dark grey the confidence interval for the mean, and in light grey the interval for the individuals predictions. Plots are indicating the potential presence of a polynomial component. Hence one might try to add one by doing the following: ```julia lr, ps = regress(@formula(y ~ 1 + x^3 ), vdf, "all", req_stats=["default", "vif", "AIC"], plot_args=Dict("plot_width" => 200 )) ``` Giving: ``` Model definition: y ~ 1 + :(x ^ 3) Used observations: 101 Model statistics: RΒ²: 0.984023 Adjusted RΒ²: 0.983861 MSE: 375.233 RMSE: 19.3709 ΟƒΜ‚Β²: 375.233 AIC: 600.662 F Value: 6097.23 with degrees of freedom 1 and 99, Pr > F (p-value): 9.55196e-91 Confidence interval: 95% Coefficients statistics: Terms β•² Stats β”‚ Coefs Std err t Pr(>|t|) code low ci high ci VIF ──────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────── (Intercept) β”‚ -0.0637235 2.38304 -0.0267404 0.978721 -4.7922 4.66475 0.0 x ^ 3 β”‚ 1.05722 0.0135394 78.0847 9.55196e-91 *** 1.03036 1.08409 1.0 Signif. codes: 0 β€˜***’ 0.001 β€˜**’ 0.01 β€˜*’ 0.05 β€˜.’ 0.1 β€˜ ’ 1 ``` ![Illustrative Overview Plots](https://github.com/ericqu/LinearRegressionKit.jl/raw/main/assets/asset_exe_072_02.svg "Illustrative Overview Plots") Further, in addition to the diagnostic plots helping confirm if the residuals are normally distributed, a few tests can be requested: ```julia # Data simulation f(x) = @. (x^3 + 2.2345x - 1.2345 + rand(Uniform(0, 20))) xs = [x for x in -2:0.001:8] ys = f(xs) vdf = DataFrame(y=ys, x=xs) lr = regress(@formula(y ~ 1 + x^3 ), vdf, req_stats=["default", "vif", "AIC", "diag_normality"]) ``` Giving: ``` Model definition: y ~ 1 + :(x ^ 3) Used observations: 10001 Model statistics: RΒ²: 0.99795 Adjusted RΒ²: 0.99795 MSE: 43.4904 RMSE: 6.59472 ΟƒΜ‚Β²: 43.4904 AIC: 37731.2 F Value: 4.868e+06 with degrees of freedom 1 and 9999, Pr > F (p-value): 0 Confidence interval: 95% Coefficients statistics: Terms β•² Stats β”‚ Coefs Std err t Pr(>|t|) code low ci high ci VIF ──────────────┼─────────────────────────────────────────────────────────────────────────────────────────────────────── (Intercept) β”‚ 11.3419 0.0816199 138.96 0.0 *** 11.1819 11.5019 0.0 x ^ 3 β”‚ 1.04021 0.000471459 2206.35 0.0 *** 1.03928 1.04113 1.0 Signif. codes: 0 β€˜***’ 0.001 β€˜**’ 0.01 β€˜*’ 0.05 β€˜.’ 0.1 β€˜ ’ 1 Diagnostic Tests: Kolmogorov-Smirnov test (Normality of residuals): KS statistic: 3.05591 observations: 10001 p-value: 0.0 with 95.0% confidence: reject null hyposthesis. Anderson–Darling test (Normality of residuals): AΒ² statistic: 25.508958 observations: 10001 p-value: 0.0 with 95.0% confidence: reject null hyposthesis. Jarque-Bera test (Normality of residuals): JB statistic: 240.520153 observations: 10001 p-value: 0.0 with 95.0% confidence: reject null hyposthesis. ``` Here is how to request the robust covariance estimators: ```julia lr = regress(@formula(y ~ 1 + x^3 ), vdf, cov=["white", "nw"]) ``` Giving: ``` Model definition: y ~ 1 + :(x ^ 3) Used observations: 10001 Model statistics: RΒ²: 0.99795 Adjusted RΒ²: 0.99795 MSE: 43.4904 RMSE: 6.59472 PRESS: 435034 F Value: 4.868e+06 with degrees of freedom 1 and 9999, Pr > F (p-value): 0 Confidence interval: 95% White's covariance estimator (HC0): Terms β•² Stats β”‚ Coefs Std err t Pr(>|t|) code low ci high ci ──────────────┼────────────────────────────────────────────────────────────────────────────────────────── (Intercept) β”‚ 11.3419 0.0828903 136.83 0.0 *** 11.1794 11.5044 x ^ 3 β”‚ 1.04021 0.000471604 2205.67 0.0 *** 1.03928 1.04113 Signif. codes: 0 β€˜***’ 0.001 β€˜**’ 0.01 β€˜*’ 0.05 β€˜.’ 0.1 β€˜ ’ 1 Newey-West's covariance estimator: Terms β•² Stats β”‚ Coefs Std err t Pr(>|t|) code low ci high ci ──────────────┼────────────────────────────────────────────────────────────────────────────────────────── (Intercept) β”‚ 11.3419 0.158717 71.46 0.0 *** 11.0308 11.653 x ^ 3 β”‚ 1.04021 0.000863819 1204.19 0.0 *** 1.03851 1.0419 Signif. codes: 0 β€˜***’ 0.001 β€˜**’ 0.01 β€˜*’ 0.05 β€˜.’ 0.1 β€˜ ’ 1 ``` Finally if you would like more examples I encourage you to go to the documentation as it gives a few more examples. ## Notable changes since version 0.7.10 - allow more recent dependent packages
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
docs
2695
## Tutorial Linear Regression Basics This tutorial details a simple regression analysis based on the "Formaldehyde" dataset. ### First, creating the dataset This is done relying on the `DataFrames.jl` package. ```@example basic1 using DataFrames df = DataFrame(Carb=[0.1,0.3,0.5,0.6,0.7,0.9], OptDen=[0.086,0.269,0.446,0.538,0.626,0.782]) ``` ### Second, the model is defined We want OptDen as the dependent variable (the response) and Carb as the independent variable (the predictor). Our model will have an intercept; however, the package will implicitly add the intercept to the model. We define the model as `Optden ~ Carb`; the variable's names need to be column names from the DataFrame, which is the second argument to the `regress` function. The `lm` object will then present essential information from the regression. ```@example basic1 using LinearRegressionKit using StatsModels # this is requested to use the @formula lm = regress(@formula(OptDen ~ Carb), df) ``` ### Third, some illustration about the model is created Here we will only look at the fit-plot. To obtain it, we only need to add a third argument to the `regress` function. Namely, the name of the plot requested ("fit"). When at least one plot is requested, the `regress` function will return a pair of objects: the information about the regression (as before), and an object (`Dict`) to access the requested plot(s). ```@example basic1 using VegaLite # this is the package use for plotting lm, ps = regress(@formula(OptDen ~ Carb), df, "fit") ps["fit"] ``` The response is plotted on the y-axis, and the predictor is plotted on the x-axis. The dark orange line represents the regression equation. The dark grey band represents the confidence interval given the Ξ± (which defaults to 0.05 and gives a 95% confidence interval). The light grey band represents the individual prediction interval. Finally, the blue circles represent the actual observations from the dataset. #### Fourth, generate the predictions from the model Here we get the predicted values from the model using the same Dataframe. ```@example basic1 results = predict_in_sample(lm, df) ``` #### Fifth, generate the others statistics about the model In order to get all the statistics, one can use the "all" keyword as an argument of the `req_stats` argument. ```@example basic1 results = predict_in_sample(lm, df, req_stats="all") ``` #### Sixth, generate prediction for new data We first create a new DataFrame that needs to use the same column names used in the model. In our case, there is only one column: "Carb". ```@example basic1 ndf = DataFrame(Carb= [0.11, 0.22, 0.55, 0.77]) predictions = predict_out_of_sample(lm, ndf) ```
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
docs
15294
# LinearRegressionKit.jl Documentation LinearRegressionKit.jl implements linear regression using the least-squares algorithm (relying on the sweep operator). This package is in the alpha stage. Hence it is likely that some bugs exist. Furthermore, the API might change in future versions. The usage aims to be straightforward, a call to ```regress``` to build a linear regression model, and a call to ```predict_in_sample``` to predict data using the built linear regression model. When predicting on data not present during the regression, use the ```predict_out_of_sample``` function as this does not require a response value (consequently, statistics that need a response, as the residuals, are not available.) The regress call will compute some statistics about the fitted model in addition to the coefficients. The statistics computed depend on the value of the ```req_stats``` argument. The prediction functions compute predicted values together with some statistics. Like for the regress calls, the statistics computed depend on the value of the ```req_stats``` argument. When some analytical positive weights are used, a weighted regression is performed. ### Statistics related to the regression (the fitting) Fitting the model generates some statistics dependent on the `req_stats` argument of the `regress` function. - ``n``, ``p``, `"coefs"` and `"see"` are always computed - `"mse"`, `"sst"`, `"rmse"`, `"aic"`, `"sigma"`, `"t_statistic"`, `"vif"`, `"r2"`, `"adjr2"`, `"stderror"`, `"t_values"`, `"p_values"`, `"ci"`, `"press"`, and `"cond"` are computed upon request. - some diagnostics can be requested as well. Here is the full list as Symbols `[:diag_normality, :diag_ks, :diag_ad, :diag_jb, :diag_heteroskedasticity, :diag_white, :diag_bp ]`, `"diag_normality"` is a shortcut for `[:diag_ks, :diag_ad, :diag_jb]` and `:diag_heteroskedasticity` is a shortcut for `[:diag_white, :diag_bp]`. - "default", includes the mandatory stats, and some of the optional statistics here as Symbols: `[:coefs, :sse, :mse, :sst, :rmse, :sigma, :t_statistic, :r2, :adjr2, :stderror, :t_values, :p_values, :ci, :f_stats]` - `"all"` includes all availble statistics - `"none"` include only the mandatory statistics The meaning for these statistics is given below. #### Number of observations and variables The number of observations ``n`` used to fit the model. The number of independent variables ``p`` used in the model. #### Total Sum of Squares The Total Sum of Squares (SST) is calculated but not presented to the user. In case of model with intercept the SST is computed with the following: ```math \mathrm{SST}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^2 ``` And when there is no intercept with the following: ```math \mathrm{SST}=\sum_{i=1}^{n} y_{i}^2 ``` #### Error Sum of Squares The Error Sum of Squares (or SSE) also known as Residual Sum of Square (RSS). This package uses the sweep operator (Goodnight, J. (1979). "A Tutorial on the SWEEP Operator." The American Statistician.) to compute the SSE. #### Mean Squared Error The Mean Squared Error (MSE) is calculated as ```math \mathrm{MSE} = \displaystyle{\frac{{\mathrm{SSE}}}{{n - p}}} ``` The Root Mean Squared Error (RMSE) is calculated as ```math \mathrm{RMSE} = \sqrt{\mathrm{MSE}} ``` The MSE is the estimator of ΟƒΜ‚Β² unless at least one robust covariance estimator is requested. #### RΒ² and Adjusted RΒ² The RΒ² (R2 or R-squared) see (https://en.wikipedia.org/wiki/Coefficient_of_determination) is calculated with the following formula: ```math \mathrm{R}^2 = 1 - \displaystyle{\frac{{\mathrm{SSE}}}{{\mathrm{SST}}}} ``` The Adjusted RΒ² (ADJR2) is computed with the following formulas: when it is a model with an intercept: ```math \mathrm{ADJR}^2 = 1 - \displaystyle \frac{(n-1)(1-\mathrm{R}^2)}{n-p} ``` And when there is no intercept: ```math \mathrm{ADJR}^2 = 1 - \displaystyle \frac{(n)(1-\mathrm{R}^2)}{n-p} ``` #### Akaike information criterion The Akaike information criterion is calculated with the Linear Regression specific formula: ```math \mathrm{AIC} = \displaystyle n \ln \left( \frac{\mathrm{SSE}}{n} \right) + 2p ``` #### t\_statistic and confidence interval The t\_statistic is computed by using the inverse cumulative t_distribution (with ```quantile()```) with parameter (``n - p``) at ``1 - \frac{Ξ±}{2}``. The standard errors of the coefficients are calculated by multiplying the Sigma (estimated by the MSE) with the pseudo inverse matrix (resulting from the sweep operator), out of which the square root of the diagonal elements are extracted. The t-values are calculated as the coefficients divided by their standard deviation. The upper bound of the confidence interval for each coefficient is calculated as the coeffiecent + coefficient's standard error * t\_statistic. The lower bound of the confidence interval for each coefficient is calculated as the coeffiecent - coefficient's standard error * t\_statistic. #### p-values The p-values are computed using the F Distribution, the degree of freedom for each coefficent. #### F Value (F Statistic) The F Value (F Statistic) is computed using the F Distribution, the degree of freedom for the exaplined and unexplained variance. #### Variance inflation factor Variance inflation factor (VIF) is calculated by taking the diagonal elements of the inverse of the correlation matrix formed by the independent variables. #### PRESS predicted residual error sum of squares The predicted residual error sum of squares is calculated by taking the sum of squares from the `PRESS` (see below the statistics related to predictions) of each observations. #### Condition number (cond) The condition number of the design matrix is computed using the function `cond` from `LinearAlgebra`. it give some information indicating how severly ill-condition the problem is. See [Wikipedia page](https://en.wikipedia.org/wiki/Condition_number) and [Julia documentation](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.cond) for more information. ### Robust covariance estimators Robust Covariance estimator can be requested through the `cov` argument of the `regress` function. The options are (as Symbols): - `:white`: Heteroscedasticity - `:hc0`: Heteroscedasticity - `:hc1`: Heteroscedasticity) - `:hc2`: Heteroscedasticity) - `:hc3`: Heteroscedasticity) - `:nw`: HAC (Heteroskedasticity and Autocorrelation Consistent estimator) #### Heteroscedasticity estimators The user can select estimators from above list. If the user select `:white` as an estimator then HC3 will be selected for a small size (n <= 250) otherwise HC0 will be selected. (see "Using Heteroscedasticity Consitent Standard Errors in the Linear Regression Model" J. Scott Long and Laurie H. Ervin (1998-2000)). If another estimator is requested it is provided. A list of estimator can be requested as in for instance `cov=[:hc2, hc3]`. Comprehensive descriptions of the estimators and their applications shoudl in found in a text book, here only a brief description of the implementation is provided. ##### HC0 Having InvMat the pseudo inverse resulting from the sweep operator. And having ``xe`` being the matrix of the independent variables times the residuals. Then HC0 is calculated as: ```math \textup{HC0} = \sqrt{diag(\textup{InvMat } \textup{xe}' \textup{xe} \textup{ InvMat})} ``` ##### HC1 Having n being the number of observations and p the number of variables. Then HC1 is calculated as: ```math \textup{HC1} = \sqrt{diag(\textup{InvMat } \textup{xe}' \textup{xe} \textup{ InvMat } \frac{n}{n-p})} ``` ##### HC2 The leverage or hat matrix is calculated as: ```math \textup{H} = \textup{X} (\textup{X'X})^{-1}\textup{X'} ``` ``xe`` is scaled by ``\frac{1}{1 - H}`` then ```math \textup{HC2} = \sqrt{diag(\textup{InvMat } \textup{xe}' \textup{xe} \textup{ InvMat } )} ``` ##### HC3 ``xe`` is scaled by ``\frac{1}{{\left( 1 - H \right)^2}}`` then ```math \textup{HC3} = \sqrt{diag(\textup{InvMat } \textup{xe}' \textup{xe} \textup{ InvMat } )} ``` #### Heteroskedasticity and autocorrelation consistent estimator (HAC) Newey-West estimator calculation is not documented yet. See [reference implementation](https://github.com/mcreel/Econometrics/blob/508aee681ca42ff1f361fd48cd64de6565ece221/src/NP/NeweyWest.jl) [current implementation](https://github.com/ericqu/LinearRegressionKit.jl/blob/docu/src/newey_west.jl) for details. ### Statistics related to the prediction Predicting values using independent variables and a model will generate predicted values and some additional statistics dependent on the value of the `req_stats` argument of the `predict*` functions. Here is a list of the available statistics: [:predicted, :residuals, :leverage, :stdp, :stdi, :stdr, :student, :rstudent, :lcli, :ucli, :lclp, :uclp, :press, :cooksd] #### Predicted The predicted value is the sum of the dependant variable(s) multiplied by the coefficients from the regression and the intercept (if the model has one). The predicted value is also known as the Y-hat. #### Residuals The residuals are here defined as the known responses variables minus the predicted values. #### Leverage The leverage for the i-th independent observation x_i when it is not a weighted regression is calculated as: ```math \mathrm{h_i} = \mathrm{x_i' (X' X)^{-1} x_i} ``` And as per below when it is a weighted regression with a vector of weights ``W`` with the i-th weight being ``w_i`` then the i-th leverage is calculated as such: ```math \mathrm{h_i} = \mathrm{w_i \cdot x_i' (X' W X)^{-1} x_i} ``` #### STDP STDP is the standard error of the mean predicted value, and is calculated as ```math \textup{STDP} = \sqrt{\hat{\sigma}^2 h_i } ``` and for a weighted regression as: ```math \textup{STDP} = \sqrt{\hat{\sigma}^2 h_i / w_i} ``` #### STDI STDI is the standard error of the individual predicted value, and is calculated as ```math \textup{STDI} = \sqrt{\hat{\sigma}^2 (1 + h_i)} ``` and for a weighted regression as: ```math \textup{STDI} = \sqrt{\hat{\sigma}^2 (1 + h_i) / w_i} ``` #### STDR STDR is the standard error of the residual, and is calculated as ```math \textup{STDR} = \sqrt{\hat{\sigma}^2 (1 - h_i) } ``` and for a weighted regression as: ```math \textup{STDR} = \sqrt{\hat{\sigma}^2 (1 - h_i) / w_i} ``` #### Student Student represents the standardized residuals, and is calculated by using the residuals over the standard error of the residuals. #### RStudent RStudent is the studentized residuals calculated as ```math \textup{RSTUDENT} = \sqrt{ \frac{n - p - 1}{n - p - \textup{student}^2}} ``` #### LCLI LCLI is the lower bound of the prediction interval and is calculated as: ```math \textup{LCLI} = \mathrm{predicted} - ( \mathrm{t\_statistic} \cdot \mathrm{STDI} ) ``` #### UCLI UCLI is the upper bound of the prediction interval and is calculated as: ```math \textup{UCLI} = \mathrm{predicted} + ( \mathrm{t\_statistic} \cdot \mathrm{STDI} ) ``` #### LCLP LCLP is the lower bound of the predicted mean confidence interval and is calculated as: ```math \textup{LCLP} = \mathrm{predicted} - ( \mathrm{t\_statistic} \cdot \mathrm{STDP} ) ``` #### UCLP UCLP is the upper bound of the predicted mean confidence interval and is calculated as: ```math \textup{UCLI} = \mathrm{predicted} + ( \mathrm{t\_statistic} \cdot \mathrm{STDP} ) ``` #### COOKSD COOKSD is the Cook's Distance for each predicted value, and is calculated as ```math \textup{COOKSD} = \frac{1}{p} \frac{\textup{STDP}^2}{\textup{STDR}^2 \cdot \textup{student}^2} ``` #### PRESS PRESS is the predicted residual error sum of squares and is calculated as ```math \textup{PRESS} = \frac{\textup{residuals}}{1 - \textup{leverage}} ``` #### Type 1 SS Type 1 Sum of squares, are calculated as a by-product of the sweep operator. #### Type 2 SS Type 2 Sum of squares, are calculated using the pseudo-inverse matrix. The Type 2 SS of the ith independent variable is the square of the coefficient of the independent variable divided by the ith element of the diagonal from the pseudo-inverse matrix. #### Pcorr 1 and 2 `pcorr1` and `pcorr2` are the squared partial correlation coefficient calculated as: ```math \textup{pcorr1} = \frac{\textup{Type 1 SS}}{\textup{Type 1 SS}+ \textup{SSE}} ``` ```math \textup{pcorr2} = \frac{\textup{Type 2 SS}}{\textup{Type 2 SS}+ \textup{SSE}} ``` When there is an intercept in the model the `pcorr1` and `pcorr2` are considered `missing` for the intercept. #### Scorr 1 and 2 `scorr1` and `scorr2` are the squared semi-partial correlation coefficient calculated as: ```math \textup{scorr1} = \frac{\textup{Type 1 SS}}{\textup{SST}} ``` ```math \textup{scorr2} = \frac{\textup{Type 2 SS}}{\textup{SST}} ``` When there is an intercept in the model the `scorr1` and `scorr2` are considered `missing` for the intercept. ### Ridge Regression and Weighthed Ridge Regression Ridge regression and weighthed ridge regression are possible using the `ridge` functions; please note that only the following statistics are available: `MSE`, `RMSE`, `R2`, `ADJR2`, and `VIF`. The ridge constant `k` can be specified as scalar or as a range (`AbstractRange`). The coefficients calculation is inspired by the details given in [SAS blog post](https://blogs.sas.com/content/iml/2013/03/20/compute-ridge-regression.html). >Let ``X`` be the matrix of the independent variables after centering [and scaling]the data, and let ``Y`` be a vector corresponding to the [centered]dependent variable. Let ``D`` be a diagonal matrix with diagonal elements as in ``X`X``. The ridge regression estimate corresponding to the ridge constant k can be computed as ``D^{-1/2} * (Z^{T}Z + k*I)^{-1} * Z^{T}Y ``. ### General remarks For all options and parameters they can be passed as a `Vector{String}` or a `Vector{Symbol}` or alternatively if only options is needed as a single `String` or `Symbol`. For instance `"all"`, `:all` or `["R2", "VIF"]` or `[:r2, :vif]`. ## Functions ```@docs regress(f::StatsModels.FormulaTerm, df::AbstractDataFrame, req_plots; Ξ±::Float64=0.05, req_stats=["default"], weights::Union{Nothing,String}=nothing, remove_missing=false, cov=[:none], contrasts=nothing, plot_args=Dict("plot_width" => 400, "loess_bw" => 0.6, "residuals_with_density" => false)) regress(f::StatsModels.FormulaTerm, df::DataFrames.AbstractDataFrame; Ξ±::Float64=0.05, req_stats=["default"], weights::Union{Nothing,String}=nothing, remove_missing=false, cov=[:none], contrasts=nothing) predict_out_of_sample(lr::linRegRes, df::AbstractDataFrame; Ξ±=0.05, req_stats=["none"], dropmissingvalues=true) predict_in_sample(lr::linRegRes, df::AbstractDataFrame; Ξ±=0.05, req_stats=["none"], dropmissingvalues=true) kfold(f, df, k, r = 1, shuffle=true; kwargs...) ridge(f::StatsModels.FormulaTerm, df::DataFrames.AbstractDataFrame, k::Float64; weights::Union{Nothing,String}=nothing, remove_missing=false, contrasts=nothing) ridge(f::StatsModels.FormulaTerm, df::DataFrames.AbstractDataFrame, ks::AbstractRange ; weights::Union{Nothing,String}=nothing, remove_missing=false, contrasts=nothing, traceplots = false) predict_in_sample(rr::ridgeRegRes, df::AbstractDataFrame; dropmissingvalues=true) predict_out_of_sample(rr::ridgeRegRes, df::AbstractDataFrame; dropmissingvalues=true) ``` ## Index ```@index ``` ## Content ```@contents ```
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
docs
3393
## Tutorial multiple linear regression with categorical variables This tutorial details a multiple regression analysis based on the "carseat" dataset (Information about car seat sales in 400 stores). This tutorial follows roughly the same steps done the datasets in the "An Introduction to Statistical Learning" book (https://www.statlearning.com/), from pages 119, 120, and 124. ### First, creating the dataset. We create the dataset with the help of the `DataFrames.jl` and `Download` packages. ```@example multir using Downloads, DataFrames, CSV df = DataFrame(CSV.File(Downloads.download("https://raw.githubusercontent.com/Kulbear/ISLR-Python/master/data/Carseats.csv"))) describe(df) ``` ### Second, basic analysis. We make a model with all variables and a couple of interactions. ```@example multir using LinearRegressionKit, StatsModels lm = regress(@formula(Sales ~ CompPrice + Income + Advertising + Population + Price + ShelveLoc + Age + Education + Urban + US + Income & Advertising + Price & Age), df) ``` To have better explainability, we choose to set the base for the Shelve Location (ShelveLoc) as "Medium" so that the results highlight what happens when it is "Bad" or "Good". Furthermore, to form an idea about how collinear the predictors are, we request the Variance inflation factor (VIF). ```@example multir lm = regress(@formula(Sales ~ CompPrice + Income + Advertising + Population + Price + ShelveLoc + Age + Education + Urban + US + Income & Advertising + Price & Age), df, req_stats=["default", "vif"], contrasts= Dict(:ShelveLoc => DummyCoding(base="Medium"), :Urban => DummyCoding(base="No"), :US => DummyCoding(base="No") )) ``` Now let's assume we want our response to be Sales and the predictors to be Price, Urban, and US: ```@example multir lm = regress(@formula(Sales ~ Price + Urban + US), df, contrasts= Dict(:ShelveLoc => DummyCoding(base="Medium"), :Urban => DummyCoding(base="No"), :US => DummyCoding(base="No") )) ``` Indeed, we note that "Urban:Yes" appears to have a low significance. Hence we could decide to make our model without this predictor: ```@example multir lm = regress(@formula(Sales ~ Price + US), df, contrasts= Dict(:ShelveLoc => DummyCoding(base="Medium"), :Urban => DummyCoding(base="No"), :US => DummyCoding(base="No") )) ``` To identify potential outliers and high leverage variables, we choose to plot the Cook's Distance and the leverage plot. ```@example multir using VegaLite lm, ps = regress(@formula(Sales ~ Price + US), df, "all", req_stats=["default", "vif"], contrasts= Dict(:ShelveLoc => DummyCoding(base="Medium"), :Urban => DummyCoding(base="No"), :US => DummyCoding(base="No") )) p = [ps["leverage"] ps["cooksd"]] ``` Alternatively, we can also use the predicted values and their statistics to create a new data frame with the entries of interest (here, we show only the first three entries). ```@example multir results = predict_in_sample(lm, df, req_stats="all") threshold_cooksd = 4 / lm.observations potential_outliers = results[ results.cooksd .> threshold_cooksd , :] potential_outliers[1:3, 1:3] ``` ```@example multir threshold_leverage = 2 * lm.p / lm.observations potential_highleverage = results[ abs.(results.leverage) .> threshold_leverage , : ] potential_highleverage[1:3, 1:3] ```
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
docs
2934
## Tutorial ridge regression This tutorial gives a brief introduction to ridge regression. The tutorial makes use of the acetylene dataset from "Marquardt, D. W., and Snee, R. D. (1975). β€œRidge Regression in Practice.” American Statistician 29:3–20.", and the follow the same outline as the [SAS documentation](https://documentation.sas.com/doc/en/statug/15.2/statug_reg_examples05.htm) ### First, creating the dataset. We create the dataset with the help of the `DataFrames.jl` package. ```@example ridgeregression using DataFrames x1 = [1300, 1300, 1300, 1300, 1300, 1300, 1200, 1200, 1200, 1200, 1200, 1200, 1100, 1100, 1100, 1100] x2 = [7.5, 9.0, 11.0, 13.5, 17.0, 23.0, 5.3, 7.5, 11.0, 13.5, 17.0, 23.0, 5.3, 7.5, 11.0, 17.0] x3 = [0.012, 0.012, 0.0115, 0.013, 0.0135, 0.012, 0.04, 0.038, 0.032, 0.026, 0.034, 0.041, 0.084, 0.098, 0.092, 0.086] y = [49.0, 50.2, 50.5, 48.5, 47.5, 44.5, 28.0, 31.5, 34.5, 35.0, 38.0, 38.5, 15.0, 17.0, 20.5, 29.5] df = DataFrame(x1= x1, x2= x2, x3= x3, y= y) ``` ### Second, make a least square regression We make a ordinary least squares (OLS) regression for comparison. ```@example ridgeregression using LinearRegressionKit, StatsModels using VegaLite f = @formula(y ~ x1 + x2 + x3 + x1 & x2 + x1^2) lm, ps = regress(f, df, "all", req_stats=["default", "vif"]) lm ``` We observe that the VIF for the coefficients are highs, and hence indicate likely multicollinearity. ### Ridge regression Ridge regression requires a parameter (k), while there are methods to numerically identify k. It is also possible to trace the coefficients and VIFs values to let the analyst choose a k. Here we are going to trace for the k between 0.0 and 0.1 by increment of 0.0005. We display only the results for the first 5 k. ```@example ridgeregression rdf, ps = ridge(f, df, 0.0:0.0005:0.1, traceplots=true) rdf[1:5 , :] ``` Here is the default trace plot for the coefficients: ```@example ridgeregression ps["coefs traceplot"] ``` !!! note It is an issue that the `&` in the variable names are replaced by ` ampersand ` because otherwise it would cause issue either on the web display or on the SVG display. This only affect the plot generate with the library. One can directly use the DataFrame to generate its own plots. And here is the default trace plot for the VIFs: ```@example ridgeregression ps["vifs traceplot"] ``` As it is difficult to see the VIFs traces, it is also possible to request the version of hte plot with the y-axis log scaled. ```@example ridgeregression ps["vifs traceplot log"] ``` Once a `k` has been selected (in this case 0.004) a regular ridge regression with this value can executed. ```@example ridgeregression rlm = ridge(f, df, 0.004) ``` From there the regular `predict_*` functions can be used, although only the `predicted` and potentially the `residuals` statistics will be calculated. ```@example ridgeregression res = predict_in_sample(rlm, df) ```
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
0.7.11
779527a9e0d0979ff6804f39721ed7afa52930c6
docs
2037
## Tutorial weighted regression This tutorial gives a brief introduction to simple weighted regression using analytical weights. The tutorial makes use of the short dataset available on this [sas blog post](https://blogs.sas.com/content/iml/2016/10/05/weighted-regression.html). ### First, creating the dataset. We create the dataset with the help of the `DataFrames.jl` package. ```@example weightedregression using DataFrames tw = [ 2.3 7.4 0.058 3.0 7.6 0.073 2.9 8.2 0.114 4.8 9.0 0.144 1.3 10.4 0.151 3.6 11.7 0.119 2.3 11.7 0.119 4.6 11.8 0.114 3.0 12.4 0.073 5.4 12.9 0.035 6.4 14.0 0 ] df = DataFrame(tw, [:y,:x,:w]) ``` ### Second, make a basic analysis We make a simple linear regression. ```@example weightedregression using LinearRegressionKit, StatsModels using VegaLite f = @formula(y ~ x) lms, pss = regress(f, df, "fit") lms ``` And then the weighted regression version: ```@example weightedregression lmw, psw = regress(f, df, "fit", weights="w") lmw ``` The output of the model indicates that this is a weighted regression. We also note that the number of observations is 10 instead of 11 for the simple regression. This is because the last observation weights 0, and as the package only uses positive weights, it is not used to fit the regression model. For comparison, we fit the simple regression with only the first 10 observations. ```@example weightedregression df = first(df, 10) lms, pss = regress(f, df, "fit") lms ``` We can now realise that the coefficients are indeed differents with the weighted regression. We can then contrast the fit plot from both regressions. ```@example weightedregression [pss["fit"] psw["fit"]] ``` We note that the regression line is indeed "flatter" in the weighted regression case. We also note that the prediction interval is presented differently (using error bars), and it shows a different shape, reflecting the weights' importance.
LinearRegressionKit
https://github.com/ericqu/LinearRegressionKit.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
49
using Nevanlinna; Nevanlinna.comonicon_install()
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
652
using Nevanlinna using Documenter DocMeta.setdocmeta!(Nevanlinna, :DocTestSetup, :(using Nevanlinna); recursive=true) makedocs(; modules=[Nevanlinna], authors="Hiroshi Shinaoka <[email protected]> and contributors", repo="https://github.com/shinaoka/Nevanlinna.jl/blob/{commit}{path}#{line}", sitename="Nevanlinna.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://shinaoka.github.io/Nevanlinna.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/shinaoka/Nevanlinna.jl", devbranch="main", )
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
4938
module Nevanlinna using LinearAlgebra using GenericLinearAlgebra using Optim using Zygote using Comonicon using TOML # Some hack using MultiFloats function Base.convert(t::Type{Float64x2}, ::Irrational{:Ο€}) return Float64x2(BigFloat(Ο€, precision=128)) end function Float64x2(::Irrational{:Ο€}) return Float64x2(BigFloat(Ο€, precision=128)) end #== # log2 is not implemented in MultiFloats. # This will use the BigFloat implementation of # log2, which will not be as fast as a pure-MultiFloat implementation. MultiFloats.use_bigfloat_transcendentals() ==# include("export.jl") include("util.jl") include("data.jl") include("solver.jl") include("ham_solver.jl") include("hardy.jl") #include("nevanlinna_impl.jl") include("core.jl") include("schur.jl") include("optimize.jl") @cast function bare(input_data::String, input_param::String, output_data::String) f= open(input_data, "r") data = split.(readlines(f),'\t') close(f) wn = im.*parse.(BigFloat, collect(Iterators.flatten(data))[1:3:end]) gw = parse.(BigFloat,collect(Iterators.flatten(data))[2:3:end]) .+ im.*parse.(BigFloat,collect(Iterators.flatten(data))[3:3:end]) param = TOML.parsefile(input_param) N_real::Int64 = param["basic"]["N_real"] w_max::Float64 = param["basic"]["w_max"] eta::Float64 = param["basic"]["eta"] sum_rule::Float64 = param["basic"]["sum_rule"] H_max::Int64 = param["basic"]["H_max"] iter_tol::Int64 = param["basic"]["iter_tol"] lambda::Float64 = param["basic"]["lambda"] verbose::Bool = false pick_check::Bool = true optimization::Bool = true ini_iter_tol::Int64 = 500 mesh::Symbol = :linear if haskey(param, "option") if haskey(param["option"], "verbose") verbose = param["option"]["verbose"] end if haskey(param["option"], "pick_check") pick_check = param["option"]["pick_check"] end if haskey(param["option"], "optimization") optimization = param["option"]["optimization"] end if haskey(param["option"], "ini_iter_tol") ini_iter_tol = param["option"]["ini_iter_tol"] end if haskey(param["option"], "mesh") mesh = param["option"]["mesh"] end end sol = NevanlinnaSolver(wn, gw, N_real, w_max, eta, sum_rule, H_max, iter_tol, lambda, verbose=verbose, pick_check = pick_check, optimization=optimization, ini_iter_tol=ini_iter_tol, mesh=mesh) if optimization solve!(sol) end open(output_data, "w") do f for i in 1:N_real println(f, Float64(real(sol.reals.freq[i])), "\t", Float64(imag(sol.reals.val[i]))/pi) end end end @cast function hamburger(input_data::String, input_moment::String, input_param::String, output_data::String) f= open(input_data, "r") data = split.(readlines(f),'\t') close(f) wn = im.*parse.(BigFloat, collect(Iterators.flatten(data))[1:3:end]) gw = parse.(BigFloat,collect(Iterators.flatten(data))[2:3:end]) .+ im.*parse.(BigFloat,collect(Iterators.flatten(data))[3:3:end]) f = open(input_moment, "r") moments = Complex{BigFloat}.(parse.(Float64, readlines(f))) close(f) param = TOML.parsefile(input_param) N_real::Int64 = param["basic"]["N_real"] w_max::Float64 = param["basic"]["w_max"] eta::Float64 = param["basic"]["eta"] sum_rule::Float64 = param["basic"]["sum_rule"] H_max::Int64 = param["basic"]["H_max"] iter_tol::Int64 = param["basic"]["iter_tol"] lambda::Float64 = param["basic"]["lambda"] verbose::Bool = false pick_check::Bool = true optimization::Bool = true ini_iter_tol::Int64 = 500 mesh::Symbol = :linear if haskey(param, "option") if haskey(param["option"], "verbose") verbose = param["option"]["verbose"] end if haskey(param["option"], "pick_check") pick_check = param["option"]["pick_check"] end if haskey(param["option"], "optimization") optimization = param["option"]["optimization"] end if haskey(param["option"], "ini_iter_tol") ini_iter_tol = param["option"]["ini_iter_tol"] end if haskey(param["option"], "mesh") mesh = param["option"]["mesh"] end end sol = HamburgerNevanlinnaSolver(moments, wn, gw, N_real, w_max, eta, sum_rule, H_max, iter_tol, lambda, verbose=verbose, pick_check = pick_check, optimization = optimization, ini_iter_tol=ini_iter_tol, mesh = mesh) if optimization solve!(sol) end open(output_data, "w") do f for i in 1:N_real println(f, Float64(real(sol.nev_st.reals.freq[i])), "\t", Float64(imag(sol.val[i]))/pi) end end end @main end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
3615
function calc_phis(imags::ImagDomainData{T})::Vector{Complex{T}} where {T<:Real} phis = Array{Complex{T}}(undef, imags.N_imag) abcds = Array{Complex{T}}(undef, 2, 2, imags.N_imag) phis[1] = imags.val[1] for i in 1:imags.N_imag view(abcds,:,:,i) .= Matrix{Complex{T}}(I, 2, 2) end for j in 1:imags.N_imag-1 for k in j+1:imags.N_imag prod = Array{Complex{T}}(undef, 2, 2) prod[1,1] = (imags.freq[k] - imags.freq[j]) / (imags.freq[k] - conj(imags.freq[j])) prod[1,2] = phis[j] prod[2,1] = conj(phis[j]) * (imags.freq[k] - imags.freq[j]) / (imags.freq[k] - conj(imags.freq[j])) prod[2,2] = one(T) view(abcds,:,:,k) .= view(abcds,:,:,k)*prod end phis[j+1] = (-abcds[2,2,j+1]*imags.val[j+1] + abcds[1,2,j+1]) / (abcds[2,1,j+1]*imags.val[j+1] - abcds[1,1,j+1]) end return phis end function calc_abcd(imags::ImagDomainData{T}, reals::RealDomainData{T}, phis::Vector{Complex{T}} )::Array{Complex{T},3} where {T<:Real} abcd = Array{Complex{T}}(undef, 2, 2, reals.N_real) for i in 1:reals.N_real result = Matrix{Complex{T}}(I, 2, 2) z::Complex{T} = reals.freq[i] for j in 1:imags.N_imag prod = Array{Complex{T}}(undef, 2, 2) prod[1,1] = (z - imags.freq[j]) / (z - conj(imags.freq[j])) prod[1,2] = phis[j] prod[2,1] = conj(phis[j])*(z - imags.freq[j]) / (z - conj(imags.freq[j])) prod[2,2] = one(T) result *= prod end abcd[:,:,i] .= result end return abcd end function check_causality(hardy_matrix::Array{Complex{T},2}, ab_coeff::Vector{Complex{S}}; verbose::Bool=false )::Bool where {S<:Real, T<:Real} param = hardy_matrix*ab_coeff max_theta = findmax(abs.(param))[1] if max_theta <= 1.0 if verbose println("max_theta=",max_theta) println("hardy optimization was success.") end causality = true else if verbose println("max_theta=",max_theta) println("hardy optimization was failure.") end causality = false end return causality end function evaluation!(sol::NevanlinnaSolver{T}; verbose::Bool=false )::Bool where {T<:Real} causality = check_causality(sol.hardy_matrix, sol.ab_coeff, verbose=verbose) if causality param = sol.hardy_matrix*sol.ab_coeff theta = (sol.abcd[1,1,:].* param .+ sol.abcd[1,2,:]) ./ (sol.abcd[2,1,:].*param .+ sol.abcd[2,2,:]) sol.reals.val .= im * (one(T) .+ theta) ./ (one(T) .- theta) end return causality end function hamburger_evaluation!( sol ::HamburgerNevanlinnaSolver{T}; verbose::Bool=false )::Bool where {T<:Real} causality = check_causality(sol.nev_st.hardy_matrix, sol.nev_st.ab_coeff, verbose=verbose) if causality param = sol.nev_st.hardy_matrix*sol.nev_st.ab_coeff theta = (sol.nev_st.abcd[1,1,:].* param .+ sol.nev_st.abcd[1,2,:]) ./ (sol.nev_st.abcd[2,1,:].*param .+ sol.nev_st.abcd[2,2,:]) sol.nev_st.reals.val .= im * (one(T) .+ theta) ./ (one(T) .- theta) P, Q, G, D = calc_PQGD(sol.mat_real_omega, sol.p, sol.q, sol.gamma, sol.delta) sol.val .= (- G .- sol.nev_st.reals.val .* D) ./ (P .+ sol.nev_st.reals.val .* Q) end return causality end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
3375
struct ImagDomainData{T<:Real} N_imag::Int64 #The number of points used in Nevanlinna algorithm freq ::Array{Complex{T},1} #The values of Matsubara frequencies val ::Array{Complex{T},1} #The values of negative of Green function end function ImagDomainData(wn ::Array{Complex{T},1}, gw ::Array{Complex{T},1}, N_imag ::Int64; verbose::Bool = false )::ImagDomainData{T} where {T<:Real} val = Array{Complex{T}}(undef, N_imag) freq = Array{Complex{T}}(undef, N_imag) for i in 1:N_imag freq[i] = wn[i] val[i] = (-gw[i] - im) / (-gw[i] + im) end Pick = Array{Complex{T}}(undef, N_imag, N_imag) for j in 1:N_imag for i in 1:N_imag freq_i = (freq[i] - im) / (freq[i] + im) freq_j = (freq[j] - im) / (freq[j] + im) nom = one(T) - val[i] * conj(val[j]) den = one(T) - freq_i * conj(freq_j) Pick[i,j] = nom / den end Pick[j,j] += T(1e-250) end success = issuccess(cholesky(Pick,check = false)) if verbose if success println("Pick matrix is positive semi-definite.") else println("Pick matrix is non positive semi-definite matrix in Schur method.") end end freq = reverse(freq) val = reverse(val) return ImagDomainData(N_imag, freq, val) end struct RealDomainData{T<:Real} N_real ::Int64 #The number of mesh in real axis w_max ::Float64 #The energy cutoff of real axis eta ::Float64 #The paramer. The retarded Green function is evaluated at omega+i*eta sum_rule::Float64 #The value of sum of spectral function freq ::Array{Complex{T},1} #The values of frequencies of retarded Green function val ::Array{Complex{T},1} #The values of negative of retarded Green function end function RealDomainData(N_real ::Int64, w_max ::Float64, eta ::Float64, sum_rule::Float64 ; T::Type=BigFloat, small_omega::Float64 = 1e-5, mesh::Symbol=:linear )::RealDomainData{T} if mesh === :linear val = Array{Complex{T}}(collect(LinRange(-w_max, w_max, N_real))) freq = val .+ eta * im return RealDomainData(N_real, w_max, eta, sum_rule, freq, val) elseif mesh === :log half_N = N_real Γ· 2 mesh = exp.(LinRange(log.(small_omega), log.(w_max), half_N)) val = Array{Complex{T}}([reverse(-mesh); mesh]) freq = val .+ eta * im return RealDomainData(N_real, w_max, eta, sum_rule, freq, val) elseif mesh === :test val = Array{Complex{T}}(undef, N_real) freq = Array{Complex{T}}(undef, N_real) inter::T = big(2.0*w_max) / (N_real-1) temp ::T = big(-w_max) freq[1] = -big(w_max) + big(eta)*im for i in 2:N_real temp += inter freq[i] = temp + big(eta)*im end return RealDomainData(N_real, w_max, eta, sum_rule, freq, val) else throw(ArgumentError("Invalid mesh")) end end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
71
export NevanlinnaSolver export HamburgerNevanlinnaSolver export solve!
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
10191
mutable struct HamburgerNevanlinnaSolver{T<:Real} moments ::Vector{Complex{T}} N_moments_ ::Int64 N ::Int64 n1 ::Int64 n2 ::Int64 isPSD ::Bool isSingular ::Bool isProper ::Bool isDegenerate ::Bool p ::Vector{Complex{T}} q ::Vector{Complex{T}} gamma ::Vector{Complex{T}} delta ::Vector{Complex{T}} hankel ::Array{Complex{T},2} mat_real_omega::Array{Complex{T},2} val ::Vector{Complex{T}} nev_st ::NevanlinnaSolver{T} verbose ::Bool end function HamburgerNevanlinnaSolver( moments ::Vector{Complex{T}}, wn ::Vector{Complex{T}}, gw ::Vector{Complex{T}}, N_real ::Int64, w_max ::Float64, eta ::Float64, sum_rule ::Float64, H_max ::Int64, iter_tol ::Int64, lambda ::Float64 ; verbose ::Bool=false, pick_check ::Bool=true, optimization::Bool=true, ini_iter_tol::Int64=500, mesh ::Symbol=:linear )::HamburgerNevanlinnaSolver{T} where {T<:Real} N_moments_ = length(moments) if N_moments_ % 2 == 0 error("invalid moment number. Moment number should be odd.") end N = div((N_moments_ + 1) , 2) #generate hankel matrix hankel = Array{Complex{T}}(undef, N, N) for i in 1:N, j in 1:N hankel[i,j] = moments[i+j-1] end n1, n2, isDegenerate, isPSD, isSingular, isProper = existence_condition(hankel, verbose) p, q, gamma, delta = coefficient_lists(moments, hankel, n1, n2, isDegenerate, isPSD, isSingular, isProper) if N_real%2 == 1 error("N_real must be even number!") end @assert length(wn) == length(gw) N_imag = length(wn) embed_nev_val = Vector{Complex{T}}(undef, N_imag) for i in 1:N_imag z::Complex{T} = wn[i] P, Q, G, D = calc_PQGD(z, p, q, gamma, delta) nev_val = -gw[i] embed_nev_val[i] = (- nev_val * P - G) / (nev_val * Q + D) end nev_sol = NevanlinnaSolver(wn, -embed_nev_val, N_real, w_max, eta, sum_rule, H_max, iter_tol, lambda, ini_iter_tol=ini_iter_tol, verbose=verbose, ham_option=true) mat_real_omega = Array{Complex{T}}(undef, N_real, n2+1) for i in 1:N_real, j in 1:(n2 + 1) mat_real_omega[i,j] = nev_sol.reals.freq[i]^(j-1) end val = zeros(Complex{T}, N_real) ham_nev_sol = HamburgerNevanlinnaSolver(moments, N_moments_, N, n1, n2, isPSD, isSingular, isProper, isDegenerate, p, q, gamma, delta, hankel, mat_real_omega, val, nev_sol, verbose) if optimization calc_H_min(ham_nev_sol) else hamburger_evaluation!(ham_nev_sol) end return ham_nev_sol end function calc_H_min(sol::HamburgerNevanlinnaSolver{T})::Nothing where {T<:Real} H_bound::Int64 = 50 for iH in 1:H_bound if sol.verbose println("H=$(iH)") end zero_ab_coeff = zeros(ComplexF64, 2*iH) causality, optim = hardy_optim!(sol, iH, zero_ab_coeff, iter_tol=500) #break if we find optimal H in which causality is preserved and optimize is successful if causality && optim sol.nev_st.H_min = sol.nev_st.H break end if isdefined(Main, :IJulia) Main.IJulia.stdio_bytes[] = 0 end if iH == H_bound error("H_min does not exist") end end end function solve!(sol::HamburgerNevanlinnaSolver{T})::Nothing where {T<:Real} ab_coeff = copy(sol.nev_st.ab_coeff) for iH in sol.nev_st.H_min:sol.nev_st.H_max if sol.verbose println("H=$(iH)") end causality, optim = hardy_optim!(sol, iH, ab_coeff) #break if we face instability of optimization if !(causality && optim) break end ab_coeff = copy(sol.nev_st.ab_coeff) push!(ab_coeff, 0.0+0.0*im) push!(ab_coeff, 0.0+0.0*im) if isdefined(Main, :IJulia) Main.IJulia.stdio_bytes[] = 0 end end end function existence_condition( hankel::Matrix{Complex{T}}, verbose::Bool )::Tuple{Int64, Int64, Bool, Bool, Bool, Bool} where {T<:Real} N = size(hankel,1) #compute rank n1::Int64 = rank(hankel) n2::Int64 = 2*N - n1 if verbose println("Rank of Hankel matrix:$(n1)") end if n1 == 0 error("Meeting degenerate 0 matrix.") end #check degeneracy if hankel[1,:] == zeros(Complex{T},N) && hankel[:,1] == zeros(Complex{T},N) error("Degenerate") isDegenerate = true else if verbose println("Non-degenerate") end isDegenerate = false end #check positive semi-definiteness PSD_test = hankel .+ T(1e-250).*Matrix{Complex{T}}(I, N, N) isPSD = issuccess(cholesky(PSD_test,check = false)) if isPSD if verbose println("Postive semi-definite") end else error("Meeting non positive semi-definite matrix in moment calculation.") end #check singularity if n1 < N isSingular = true if verbose println("Singular") end else isSingular = false if verbose println("Non-singular") end if isPSD if verbose println("Positive definite") end end end #check properness tl_hankel = hankel[1:n1, 1:n1] if rank(tl_hankel) < n1 isProper = false error("Non-proper") else isProper = true if verbose println("Proper") end end return n1, n2, isDegenerate, isPSD, isSingular, isProper end function coefficient_lists( moments ::Vector{Complex{T}}, hankel ::Matrix{Complex{T}}, n1 ::Int64, n2 ::Int64, isDegenerate::Bool, isPSD ::Bool, isSingular ::Bool, isProper ::Bool )::Tuple{Vector{Complex{T}}, Vector{Complex{T}}, Vector{Complex{T}}, Vector{Complex{T}}} where {T<:Real} N = size(hankel,1) #fill extended hankel matrix for calculation if !(isSingular) extended_hankel = zeros(Complex{T}, N+1, N+1) extended_hankel[1:N,1:N] .= hankel for i in 1:(N-1) extended_hankel[i, N+1] = moments[i+N] end for j in 1:(N-1) extended_hankel[N+1, j] = moments[j+N] end extended_hankel[N, N+1] = Complex{T}(1.0) else extended_hankel = copy(hankel) end #p, q p = zeros(Complex{T},n1+1) q = zeros(Complex{T},n2+1) orthogonal_polynomial(extended_hankel, p, n1) orthogonal_polynomial(extended_hankel, q, n1 - 1) #gamma, delta sym_p = symmetrizer(p[2:(n1+1)]) sym_q = symmetrizer(q[2:(n2+1)]) gamma = sym_p * moments[1:n1] delta = sym_q * moments[1:n2] return p, q, gamma, delta end function symmetrizer(vec::Vector{Complex{T}} )::Matrix{Complex{T}} where {T<:Real} dim::Int64 = length(vec) mat = Array{Complex{T}}(undef,dim,dim) for i in 1:dim for j in 1:(dim-i+1) mat[i,j] = vec[i+j-1] end for j in (dim-i+2):dim mat[i,j] = Complex{T}(0.0) end end return mat end function removeColumn( matrix ::Matrix{Complex{T}}, colToRemove::Int64 )::Matrix{Complex{T}} where {T<:Real} numCols::Int64 = size(matrix,2) if colToRemove == 1 rem_matrix = matrix[:,2:numCols] elseif colToRemove == numCols rem_matrix = matrix[:,1:numCols-1] else leftmat = matrix[:,1:colToRemove-1] rightmat = matrix[:,colToRemove+1:numCols] rem_matrix = hcat(leftmat,rightmat) end return rem_matrix end function orthogonal_polynomial( mat ::Matrix{Complex{T}}, vec ::Vector{Complex{T}}, order::Int64 )::Nothing where {T<:Real} sliced_mat = mat[1:order, 1:(order+1)] #get cofactor of sliced matrix, as coefficients of the polynomial vector for i in 1:(order+1) temp = copy(sliced_mat) temp = removeColumn(temp, i) vec[i] = (-1)^(i+order) * det(temp) end norm::Complex{T} = vec[order+1] for i in 1:(order+1) vec[i] /= norm end end function calc_PQGD(z ::Complex{T}, p ::Vector{Complex{T}}, q ::Vector{Complex{T}}, gamma::Vector{Complex{T}}, delta::Vector{Complex{T}} )::Tuple{Complex{T},Complex{T},Complex{T},Complex{T}} where {T<:Real} n2::Int64 = length(delta) poly_val = Vector{Complex{T}}(undef, (n2 + 1)) for i in 1:(n2 + 1) poly_val[i] = z^(i-1) end P = sum(poly_val[1:length(p)] .* p) Q = sum(poly_val[1:length(q)] .* q) G = sum(poly_val[1:length(gamma)] .* gamma) D = sum(poly_val[1:length(delta)] .* delta) return P, Q, G, D end function calc_PQGD(matz ::Matrix{Complex{T}}, p ::Vector{Complex{T}}, q ::Vector{Complex{T}}, gamma::Vector{Complex{T}}, delta::Vector{Complex{T}} )::Tuple{Vector{Complex{T}},Vector{Complex{T}},Vector{Complex{T}},Vector{Complex{T}}} where {T<:Real} n2::Int64 = length(delta) P = matz[:,1:length(p)] * p Q = matz[:,1:length(q)] * q G = matz[:,1:length(gamma)] * gamma D = matz[:,1:length(delta)] * delta return P, Q, G, D end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
660
function hardy_basis(z::Complex{T}, k::Int64) where {T<:Real} w = (z-im)/(z+im) 0.5*im*(w^(k+1)-w^k)/(sqrt(pi)) end #function hardy_basis(x::Float64, y::Float64, k::Int64) # z::Complex{T} = T(x) +im*T(y) # return hardy_basis(z, k) #end function calc_hardy_matrix(reals::RealDomainData{T}, H::Int64 )::Array{Complex{T}, 2} where {T<:Real} hardy_matrix = Array{Complex{T}}(undef, reals.N_real, 2*H) for k in 1:H hardy_matrix[:,2*k-1] .= hardy_basis.(reals.freq,k-1) hardy_matrix[:,2*k] .= conj(hardy_basis.(reals.freq,k-1)) end return hardy_matrix end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
4124
function calc_functional( sol::NevanlinnaSolver{T}, H::Int64, ab_coeff::Vector{Complex{S}}, hardy_matrix::Array{Complex{T},2}; )::Float64 where {S<:Real, T<:Real} param = hardy_matrix*ab_coeff theta = (sol.abcd[1,1,:].* param .+ sol.abcd[1,2,:]) ./ (sol.abcd[2,1,:].*param .+ sol.abcd[2,2,:]) green = im * (one(T) .+ theta) ./ (one(T) .- theta) A = Float64.(imag(green)./pi) tot_int = integrate(sol.reals.freq, A) second_der = integrate_squared_second_deriv(sol.reals.freq, A) max_theta = findmax(abs.(param))[1] func = abs(sol.reals.sum_rule-tot_int)^2 + sol.lambda*second_der return func end function hardy_optim!( sol::NevanlinnaSolver{T}, H::Int64, ab_coeff::Array{ComplexF64,1}; iter_tol::Int64=sol.iter_tol, )::Tuple{Bool, Bool} where {T<:Real} loc_hardy_matrix = calc_hardy_matrix(sol.reals, H) function functional(x::Vector{ComplexF64})::Float64 return calc_functional(sol, H, x, loc_hardy_matrix) end function jacobian(J::Vector{ComplexF64}, x::Vector{ComplexF64}) J .= gradient(functional, x)[1] end res = optimize(functional, jacobian, ab_coeff, BFGS(), Optim.Options(iterations = iter_tol, show_trace = sol.verbose)) if !(Optim.converged(res)) && sol.verbose println("Faild to optimize!") end causality = check_causality(loc_hardy_matrix, Optim.minimizer(res), verbose=sol.verbose) if causality && (Optim.converged(res)) sol.H = H sol.ab_coeff = Optim.minimizer(res) sol.hardy_matrix = loc_hardy_matrix evaluation!(sol, verbose=false) end return causality, (Optim.converged(res)) end function calc_functional( sol ::HamburgerNevanlinnaSolver{T}, H ::Int64, ab_coeff ::Vector{Complex{S}}, hardy_matrix::Array{Complex{T},2}; )::Float64 where {S<:Real, T<:Real} param = hardy_matrix*ab_coeff theta = (sol.nev_st.abcd[1,1,:].* param .+ sol.nev_st.abcd[1,2,:]) ./ (sol.nev_st.abcd[2,1,:].*param .+ sol.nev_st.abcd[2,2,:]) nev_val = im * (one(T) .+ theta) ./ (one(T) .- theta) P, Q, G, D = calc_PQGD(sol.mat_real_omega, sol.p, sol.q, sol.gamma, sol.delta) val = (- G .- nev_val .* D) ./ (P .+ nev_val .* Q) A = Float64.(imag(val)./pi) tot_int = integrate(sol.nev_st.reals.freq, A) second_der = integrate_squared_second_deriv(sol.nev_st.reals.freq, A) func = abs(sol.nev_st.reals.sum_rule-tot_int)^2 + sol.nev_st.lambda*second_der return func end function hardy_optim!( sol ::HamburgerNevanlinnaSolver{T}, H ::Int64, ab_coeff::Array{ComplexF64,1}; iter_tol::Int64=sol.nev_st.iter_tol, )::Tuple{Bool, Bool} where {T<:Real} loc_hardy_matrix = calc_hardy_matrix(sol.nev_st.reals, H) function functional(x::Vector{ComplexF64})::Float64 return calc_functional(sol, H, x, loc_hardy_matrix) end function jacobian(J::Vector{ComplexF64}, x::Vector{ComplexF64}) J .= gradient(functional, x)[1] end res = optimize(functional, jacobian, ab_coeff, BFGS(), Optim.Options(iterations = iter_tol, show_trace = sol.verbose)) if !(Optim.converged(res)) && sol.verbose println("Faild to optimize!") end causality = check_causality(loc_hardy_matrix, Optim.minimizer(res), verbose=sol.verbose) #causality = evaluation!(reals, abcd, H, Optim.minimizer(res), hardy_matrix, verbose=verbose) if causality && (Optim.converged(res)) sol.nev_st.H = H sol.nev_st.ab_coeff = Optim.minimizer(res) sol.nev_st.hardy_matrix = loc_hardy_matrix hamburger_evaluation!(sol, verbose=false) end return causality, (Optim.converged(res)) end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
1126
function calc_opt_N_imag(N ::Int64, wn ::Array{Complex{T},1}, gw ::Array{Complex{T},1}; verbose::Bool=false )::Int64 where {T<:Real} @assert N == length(wn) @assert N == length(gw) freq = (wn .- im) ./ (wn .+ im) val = (-gw .- im) ./ (-gw .+ im) k::Int64 = 0 success::Bool = true while success k += 1 Pick = Array{Complex{T}}(undef, k, k) for j in 1:k for i in 1:k num = one(T) - val[i] * conj(val[j]) den = one(T) - freq[i] * conj(freq[j]) Pick[i,j] = num / den end Pick[j,j] += T(1e-250) end success = issuccess(cholesky(Pick,check = false)) if k == N break end end if verbose if !(success) println("N_imag is setted as $(k-1)") else println("N_imag is setted as $(N)") end end if !(success) return (k-1) else return (N) end end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
3817
mutable struct NevanlinnaSolver{T<:Real} imags::ImagDomainData{T} #imaginary domain data reals::RealDomainData{T} #real domain data phis::Vector{Complex{T}} #phis in schur algorithm abcd::Array{Complex{T},3} #continued fractions H_max::Int64 #upper cut off of H H_min::Int64 #lower cut off of H H::Int64 #current value of H ab_coeff::Vector{ComplexF64} #current solution for H hardy_matrix::Array{Complex{T},2} #hardy_matrix for H iter_tol::Int64 #upper bound of iteration lambda::Float64 #regularization parameter for second derivative term ini_iter_tol::Int64 #upper bound of iteration for H_min verbose::Bool end function NevanlinnaSolver( wn ::Vector{Complex{T}}, gw ::Vector{Complex{T}}, N_real ::Int64, w_max ::Float64, eta ::Float64, sum_rule ::Float64, H_max ::Int64, iter_tol ::Int64, lambda ::Float64 ; verbose ::Bool=false, pick_check ::Bool=true, optimization::Bool=true, ini_iter_tol::Int64=500, mesh ::Symbol=:linear, ham_option ::Bool=false #option for using in Hamburger moment problem )::NevanlinnaSolver{T} where {T<:Real} if N_real%2 == 1 error("N_real must be even number!") end @assert length(wn) == length(gw) N_imag = length(wn) if pick_check opt_N_imag = calc_opt_N_imag(N_imag, wn, gw, verbose=verbose) else opt_N_imag = N_imag end imags = ImagDomainData(wn, gw, opt_N_imag) reals = RealDomainData(N_real, w_max, eta, sum_rule, T=T, mesh=mesh) phis = calc_phis(imags) abcd = calc_abcd(imags, reals, phis) H_min::Int64 = 1 ab_coeff = zeros(ComplexF64, 2*H_min) hardy_matrix = calc_hardy_matrix(reals, H_min) sol = NevanlinnaSolver(imags, reals, phis, abcd, H_max, H_min, H_min, ab_coeff, hardy_matrix, iter_tol, lambda, ini_iter_tol, verbose) if ham_option return sol end if optimization calc_H_min(sol) else evaluation!(sol) end return sol end function calc_H_min(sol::NevanlinnaSolver{T},)::Nothing where {T<:Real} H_bound::Int64 = 50 for iH in 1:H_bound if sol.verbose println("H=$(iH)") end zero_ab_coeff = zeros(ComplexF64, 2*iH) causality, optim = hardy_optim!(sol, iH, zero_ab_coeff, iter_tol=sol.ini_iter_tol) #break if we find optimal H in which causality is preserved and optimize is successful if causality && optim sol.H_min = sol.H break end if isdefined(Main, :IJulia) Main.IJulia.stdio_bytes[] = 0 end if iH == H_bound error("H_min does not exist") end end end function solve!(sol::NevanlinnaSolver{T})::Nothing where {T<:Real} ab_coeff = copy(sol.ab_coeff) for iH in sol.H_min:sol.H_max if sol.verbose println("H=$(iH)") end causality, optim = hardy_optim!(sol, iH, ab_coeff) #break if we face instability of optimization if !(causality && optim) break end ab_coeff = copy(sol.ab_coeff) push!(ab_coeff, 0.0+0.0*im) push!(ab_coeff, 0.0+0.0*im) if isdefined(Main, :IJulia) Main.IJulia.stdio_bytes[] = 0 end end end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
1198
""" Compute second derivative If the length of `x` and `y` is `N`, the length of the returned vector is `N-2`. """ function second_deriv(x::AbstractVector, y::AbstractVector) if length(x) != length(y) throw(ArgumentError("x and y must be the same length")) end N = length(x) dx_backward = view(x, 2:(N-1)) - view(x, 1:(N-2)) dx_forward = view(x, 3:N) - view(x, 2:(N-1)) y_forward = view(y, 3:N) y_mid = view(y, 2:(N-1)) y_backward = view(y, 1:(N-2)) n = dx_backward .* y_forward + dx_forward .* y_backward - (dx_forward + dx_backward) .* y_mid d = (dx_forward.^2) .* dx_backward + (dx_backward.^2) .* dx_forward return 2 .* n ./ d end function integrate(x::AbstractVector, y::AbstractVector) N = length(x) dx = view(x, 2:N) .- view(x, 1:(N-1)) y_forward = view(y, 2:N) y_backward = view(y, 1:(N-1)) return sum(0.5 * (y_forward .+ y_backward) .* dx) end """ Integrate the squarre of the abs of the second derivative """ function integrate_squared_second_deriv(x::AbstractVector, y::AbstractVector) N = length(x) sd = second_deriv(x, y) x_sd = view(x, 2:(N-1)) return integrate(x_sd, abs.(sd) .^ 2) end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
9804
function calc_H_min(p::Vector{Complex{T}}, q::Vector{Complex{T}}, gamma::Vector{Complex{T}}, delta::Vector{Complex{T}}, mat_real_omega::Array{Complex{T},2}, reals::RealDomainData, abcd::Array{Complex{T},3}, lambda::Float64, verbose::Bool=false )::Tuple{Vector{Complex{T}}, RealDomainData{T}, Int64, Array{ComplexF64,1}} where {T<:Real} for iH in 1:50 println("H=$(iH)") zero_ab_coeff = zeros(ComplexF64, 2*iH) hardy_matrix = calc_hardy_matrix(reals, iH) opt_val, opt_reals, ab_coeff, causality, optim = Nevanlinna_Schur(p, q, gamma, delta, mat_real_omega, reals, abcd, iH, zero_ab_coeff, hardy_matrix, 500, lambda, verbose) #break if we find optimal H in which causality is preserved and optimize is successful if causality && optim return opt_val, opt_reals, iH, ab_coeff break end if isdefined(Main, :IJulia) Main.IJulia.stdio_bytes[] = 0 end end error("H_min does not exist") end function Nevanlinna_Schur(p::Vector{Complex{T}}, q::Vector{Complex{T}}, gamma::Vector{Complex{T}}, delta::Vector{Complex{T}}, mat_real_omega::Array{Complex{T},2}, reals::RealDomainData{T}, abcd::Array{Complex{T},3}, H::Int64, ab_coeff::Array{ComplexF64,1}, hardy_matrix::Array{Complex{T},2}, iter_tol::Int64, lambda::Float64, verbose::Bool=false )::Tuple{Vector{Complex{T}}, RealDomainData{T}, Array{ComplexF64,1}, Bool, Bool} where {T<:Real} function functional(x::Vector{ComplexF64})::Float64 return calc_functional(p, q, gamma, delta, mat_real_omega, reals, abcd, H, x, hardy_matrix, lambda=lambda) end function jacobian(J::Vector{ComplexF64}, x::Vector{ComplexF64}) J .= gradient(functional, x)[1] end res = optimize(functional, jacobian, ab_coeff, BFGS(), Optim.Options(iterations = iter_tol, show_trace = verbose)) if !(Optim.converged(res)) println("Faild to optimize!") end causality = evaluation!(reals, abcd, H, Optim.minimizer(res), hardy_matrix, verbose=verbose) val = zeros(Complex{T}, reals.N_real) hamburger_evaluation!(p, q, gamma, delta, val, reals, abcd, Optim.minimizer(res), hardy_matrix,verbose=verbose) return val, reals, Optim.minimizer(res), causality, (Optim.converged(res)) end function calc_functional(p::Vector{Complex{T}}, q::Vector{Complex{T}}, gamma::Vector{Complex{T}}, delta::Vector{Complex{T}}, mat_real_omega::Array{Complex{T},2}, reals::RealDomainData{T}, abcd::Array{Complex{T},3}, H::Int64, ab_coeff::Vector{Complex{S}}, hardy_matrix::Array{Complex{T},2}; lambda::Float64 = 1e-5 )::Float64 where {S<:Real, T<:Real} param = hardy_matrix*ab_coeff theta = (abcd[1,1,:].* param .+ abcd[1,2,:]) ./ (abcd[2,1,:].*param .+ abcd[2,2,:]) nev_val = im * (one(T) .+ theta) ./ (one(T) .- theta) val = zeros(Complex{T}, reals.N_real) #= for i in 1:reals.N_real z::Complex{T} = reals.freq[i] P, Q, G, D = calc_PQGD(z, p, q, gamma, delta) val[i] = (- G - nev_val[i] * D) / (P + nev_val[i] * Q) end =# P, Q, G, D = calc_PQGD(mat_real_omega, p, q, gamma, delta) val = (- G .- nev_val .* D) ./ (P .+ nev_val .* Q) A = Float64.(imag(val)./pi) tot_int = integrate(reals.freq, A) second_der = integrate_squared_second_deriv(reals.freq, A) max_theta = findmax(abs.(param))[1] func = abs(reals.sum-tot_int)^2 + lambda*second_der return func end function hamburger_evaluation!(p::Vector{Complex{T}}, q::Vector{Complex{T}}, gamma::Vector{Complex{T}}, delta::Vector{Complex{T}}, val::Vector{Complex{T}}, reals::RealDomainData{T}, abcd::Array{Complex{T},3}, ab_coeff::Vector{Complex{S}}, hardy_matrix::Array{Complex{T},2}; verbose::Bool=false )::Bool where {S<:Real, T<:Real} param = hardy_matrix * ab_coeff max_theta = findmax(abs.(param))[1] if max_theta <= 1.0 #if verbose # println("max_theta=",max_theta) # println("hardy optimization was success.") #end causality = true theta = (abcd[1,1,:].* param .+ abcd[1,2,:]) ./ (abcd[2,1,:].*param .+ abcd[2,2,:]) reals.val .= im * (one(T) .+ theta) ./ (one(T) .- theta) for i in 1:reals.N_real z::Complex{T} = reals.freq[i] P, Q, G, D = calc_PQGD(z, p, q, gamma, delta) val[i] = (- G - reals.val[i] * D) / (P + reals.val[i] * Q) end else println("max_theta=",max_theta) println("hardy optimization was failure.") causality = false end return causality end function calc_functional(reals::RealDomainData{T}, abcd::Array{Complex{T},3}, H::Int64, ab_coeff::Vector{Complex{S}}, hardy_matrix::Array{Complex{T},2}; lambda::Float64 = 1e-5 )::Float64 where {S<:Real, T<:Real} param = hardy_matrix*ab_coeff theta = (abcd[1,1,:].* param .+ abcd[1,2,:]) ./ (abcd[2,1,:].*param .+ abcd[2,2,:]) green = im * (one(T) .+ theta) ./ (one(T) .- theta) A = Float64.(imag(green)./pi) tot_int = integrate(reals.freq, A) second_der = integrate_squared_second_deriv(reals.freq, A) max_theta = findmax(abs.(param))[1] func = abs(reals.sum-tot_int)^2 + lambda*second_der return func end function evaluation!(reals::RealDomainData{T}, abcd::Array{Complex{T},3}, H::Int64, ab_coeff::Vector{Complex{S}}, hardy_matrix::Array{Complex{T},2}; verbose::Bool=false )::Bool where {S<:Real, T<:Real} causality = check_causality(hardy_matrix, ab_coeff, verbose=verbose) param = hardy_matrix*ab_coeff if causality theta = (abcd[1,1,:].* param .+ abcd[1,2,:]) ./ (abcd[2,1,:].*param .+ abcd[2,2,:]) reals.val .= im * (one(T) .+ theta) ./ (one(T) .- theta) end #= param = hardy_matrix*ab_coeff max_theta = findmax(abs.(param))[1] if max_theta <= 1.0 if verbose println("max_theta=",max_theta) println("hardy optimization was success.") end causality = true theta = (abcd[1,1,:].* param .+ abcd[1,2,:]) ./ (abcd[2,1,:].*param .+ abcd[2,2,:]) reals.val .= im * (one(T) .+ theta) ./ (one(T) .- theta) else println("max_theta=",max_theta) println("hardy optimization was failure.") causality = false end =# return causality end function Nevanlinna_Schur(reals::RealDomainData{T}, abcd::Array{Complex{T},3}, H::Int64, ab_coeff::Array{ComplexF64,1}, hardy_matrix::Array{Complex{T},2}, iter_tol::Int64, lambda::Float64, verbose::Bool=false )::Tuple{RealDomainData{T}, Array{ComplexF64,1}, Bool, Bool} where {T<:Real} function functional(x::Vector{ComplexF64})::Float64 return calc_functional(reals, abcd, H, x, hardy_matrix, lambda=lambda) end function jacobian(J::Vector{ComplexF64}, x::Vector{ComplexF64}) J .= gradient(functional, x)[1] end res = optimize(functional, jacobian, ab_coeff, BFGS(), Optim.Options(iterations = iter_tol, show_trace = verbose)) if !(Optim.converged(res)) println("Faild to optimize!") end causality = evaluation!(reals, abcd, H, Optim.minimizer(res), hardy_matrix, verbose=verbose) return reals, Optim.minimizer(res), causality, (Optim.converged(res)) end function calc_H_min(reals::RealDomainData, abcd::Array{Complex{T},3}, lambda::Float64, verbose::Bool=false )::Tuple{RealDomainData{T}, Int64, Array{ComplexF64,1}} where {T<:Real} for iH in 1:50 println("H=$(iH)") zero_ab_coeff = zeros(ComplexF64, 2*iH) hardy_matrix = calc_hardy_matrix(reals, iH) opt_reals, ab_coeff, causality, optim = Nevanlinna_Schur(reals, abcd, iH, zero_ab_coeff, hardy_matrix, 500, lambda, verbose) #break if we find optimal H in which causality is preserved and optimize is successful if causality && optim return opt_reals, iH, ab_coeff break end if isdefined(Main, :IJulia) Main.IJulia.stdio_bytes[] = 0 end end error("H_min does not exist") end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
2912
@testset "core" begin T = BigFloat gaussian(x, mu, sigma) = exp(-((x-mu)/sigma)^2)/(sqrt(Ο€)*sigma) rho(omega) = 0.8*gaussian(omega, -1.0, 1.6) + 0.2*gaussian(omega, 3, 1) setprecision(256) hnw = 38 test_gw = Array{Complex{T}}(undef, hnw) test_smpl = Array{Complex{T}}(undef, hnw) f = open((@__DIR__) * "/c++/result/green.dat", "r") for i in 1:hnw list = readline(f) s = split(list,'\t') o = parse(BigFloat, s[1]) re = parse(BigFloat, s[2]) ii = parse(BigFloat, s[3]) test_smpl[i] = im*o test_gw[i] = re + ii*im end close(f) N_real = 6000 omega_max = 10.0 eta = 0.001 H_max = 50 ab_coeff = zeros(ComplexF64, 2*H_max) lambda = 1e-5 iter_tol = 1000 N_imag = Nevanlinna.calc_opt_N_imag(hnw, test_smpl, test_gw) imaginary = Nevanlinna.ImagDomainData(test_smpl, test_gw, N_imag) raw_reals = Nevanlinna.RealDomainData(N_real, omega_max, eta, 1.0, T=T, mesh=:test) phis = Nevanlinna.calc_phis(imaginary) abcd = Nevanlinna.calc_abcd(imaginary, raw_reals, phis) H_min::Int64 = 1 ab_coeff = zeros(ComplexF64, 2*H_min) hardy_matrix = Nevanlinna.calc_hardy_matrix(raw_reals, H_min) sol = NevanlinnaSolver(imaginary, raw_reals, phis, abcd, H_max, H_min, H_min, ab_coeff, hardy_matrix, iter_tol, lambda, 1, false) Nevanlinna.evaluation!(sol) spec = imag.(sol.reals.val)/pi cpp_phis = Array{Complex{T}}(undef, N_imag) f = open((@__DIR__) * "/c++/result/phis.dat", "r") for i in 1:N_imag list = readline(f) s = split(list,'\t') real_phi = parse(BigFloat, s[1]) imag_phi = parse(BigFloat, s[2]) cpp_phis[i] = real_phi + imag_phi*im end close(f) @test cpp_phis β‰ˆ phis cpp_abcd = Array{Complex{T}}(undef, 2, 2, N_real) f = open((@__DIR__) * "/c++/result/abcd.dat", "r") for i in 1:N_real list = readline(f) s = split(list,'\t') real_11 = parse(BigFloat, s[1]) imag_11 = parse(BigFloat, s[2]) real_12 = parse(BigFloat, s[3]) imag_12 = parse(BigFloat, s[4]) real_21 = parse(BigFloat, s[5]) imag_21 = parse(BigFloat, s[6]) real_22 = parse(BigFloat, s[7]) imag_22 = parse(BigFloat, s[8]) cpp_abcd[1,1,i] = real_11 + imag_11*im cpp_abcd[1,2,i] = real_12 + imag_12*im cpp_abcd[2,1,i] = real_21 + imag_21*im cpp_abcd[2,2,i] = real_22 + imag_22*im end close(f) @test cpp_abcd β‰ˆ abcd cpp_spec = Array{Float64}(undef, N_real) f = open((@__DIR__) * "/c++/result/out_spec.dat", "r") for i in 1:N_real list = readline(f) s = split(list,'\t') spectral = parse(Float64, s[2]) cpp_spec[i] = spectral end close(f) @test (cpp_spec) β‰ˆ Float64.(spec) end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
2112
@testset "moment" begin T = BigFloat setprecision(2048) #define spectral function gaussian(x, mu, sigma) = exp(-0.5*((x-mu)/sigma)^2)/(sqrt(2*Ο€)*sigma) rho(omega) = 0.5*gaussian(omega, 2.0, 1.0) + 0.5*gaussian(omega, -2.0, 1.0) function generate_input_data(rho::Function, beta::Float64) lambda = 1e+4 wmax = lambda/beta basis = SparseIR.FiniteTempBasisSet(beta, wmax, 1e-15) rhol = [overlap(basis.basis_f.v[l], rho) for l in 1:length(basis.basis_f)] gl = - basis.basis_f.s .* rhol gw = evaluate(basis.smpl_wn_f, gl) hnw = length(basis.smpl_wn_f.sampling_points)Γ·2 #To exclude effect of enviroment, we limit data until 30th input_smpl = Array{Complex{T}}(undef, 31) input_gw = Array{Complex{T}}(undef, 31) for i in 1:31 input_smpl[i]= SparseIR.valueim(basis.smpl_wn_f.sampling_points[hnw+i], beta) input_gw[i] = gw[hnw+i] end return input_smpl, input_gw end beta = 100. #inverse temperature input_smpl, input_gw = generate_input_data(rho, beta) N_real = 1000 #demension of array of output omega_max = 10.0 #energy cutoff of real axis eta = 0.001 #broaden parameter sum_rule = 1.0 #sum rule H_max = 50 #cutoff of Hardy basis lambda = 1e-4 #regularization parameter iter_tol = 1000 #upper bound of iteration moments = Complex{T}.([1, 0, 5, 0, 43]) sol = Nevanlinna.HamburgerNevanlinnaSolver(moments, input_smpl, input_gw, N_real, omega_max, eta, sum_rule, H_max, iter_tol, lambda, optimization=false) calc_moment = Vector{Float64}(undef,5) for i in 1:5 xk = real.(sol.nev_st.reals.freq).^(i-1) y = Float64.(imag.(sol.val))/pi .* xk calc_moment[i] = Float64(Nevanlinna.integrate(real.(sol.nev_st.reals.freq), y)) end test_moment = ([0.9999328252706802, 2.1117052430510528e-10, 5.005359475447759, -8.294576805137473e-9, 43.293142029878446]) @test isapprox(calc_moment, test_moment; atol = 1e-4) println(calc_moment) end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
103
using Nevanlinna using SparseIR using Test include("util.jl") include("core.jl") include("moment.jl")
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
code
787
@testset "util.second_deriv" begin # f(x) = x^2 # f''(x) = 2 xmax = 3 N = 1000 #x = collect(LinRange(0, xmax, N)) x = collect(LinRange(0, sqrt(xmax), N)) .^ 2 # Non-uniform mesh res = Nevanlinna.second_deriv(x, x.^2) #println(x) #println(res) @test all(isapprox.(res, 2.0, rtol=0, atol=1e-5)) end @testset "util.integrate_squared_second_deriv" begin # f(x) = x^3 # f''(x) = 6*x # ∫_0^xmax (f''(x))^2 =12 xmax^3 xmax = 3 N = 10000 #x = collect(LinRange(0, xmax, N)) x = collect(LinRange(0, sqrt(xmax), N)) .^ 2 # Non-uniform mesh coeff = im res = Nevanlinna.integrate_squared_second_deriv(x, coeff .* x.^3) #println(res) @test isapprox(res, 12*xmax^3, atol=0, rtol=1e-3) #println(12 * xmax^3) end
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git