licenses
sequencelengths 1
3
| version
stringclasses 677
values | tree_hash
stringlengths 40
40
| path
stringclasses 1
value | type
stringclasses 2
values | size
stringlengths 2
8
| text
stringlengths 25
67.1M
| package_name
stringlengths 2
41
| repo
stringlengths 33
86
|
---|---|---|---|---|---|---|---|---|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 1339 | module Constants
using HTTP
using RelocatableFolders
export PACKAGE_DIR, DATA_PATH,
GET, POST, PUT, DELETE, PATCH, HEAD, OPTIONS, CONNECT, TRACE,
HTTP_METHODS,
WEBSOCKET, STREAM,
SPECIAL_METHODS, METHOD_ALIASES, TYPE_ALIASES,
SWAGGER_VERSION, REDOC_VERSION
# Generate a reliable path to our package directory
const PACKAGE_DIR = @path @__DIR__
# Generate a reliable path to our internal data folder that works when the
# package is used with PackageCompiler.jl
const DATA_PATH = @path joinpath(@__DIR__, "..", "data")
# HTTP Methods
const GET = "GET"
const POST = "POST"
const PUT = "PUT"
const DELETE = "DELETE"
const PATCH = "PATCH"
const HEAD = "HEAD"
const OPTIONS = "OPTIONS"
const CONNECT = "CONNECT"
const TRACE = "TRACE"
const HTTP_METHODS = Set{String}([GET, POST, PUT, DELETE, PATCH, HEAD, OPTIONS, CONNECT, TRACE])
# Special Methods
const WEBSOCKET = "WEBSOCKET"
const STREAM = "STREAM"
const SPECIAL_METHODS = Set{String}([WEBSOCKET, STREAM])
# Sepcial Method Aliases
const METHOD_ALIASES = Dict{String,String}(
WEBSOCKET => GET,
STREAM => GET
)
const TYPE_ALIASES = Dict{String, Type}(
WEBSOCKET => HTTP.WebSockets.WebSocket,
STREAM => HTTP.Streams.Stream
)
const SWAGGER_VERSION = "[email protected]"
const REDOC_VERSION = "[email protected]"
end | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 3260 | module AppContext
import Base: @kwdef, wait, close, isopen
import Base.Threads: ReentrantLock
using HTTP
using HTTP: Server, Router
using ..Types
export Context, CronContext, TasksContext, Documenation, Service, history, wait, close, isopen
function defaultSchema() :: Dict
Dict(
"openapi" => "3.0.0",
"info" => Dict(
"title" => "API Overview",
"version" => "1.0.0"
),
"paths" => Dict()
)
end
@kwdef struct CronContext
run :: Ref{Bool} = Ref{Bool}(false) # Flag used to stop all running jobs
active_jobs :: Set{ActiveCron} = Set() # Set of all running tasks
registered_jobs :: Set{RegisteredCron} = Set() # Set of cron expressions and functions (expression, name, function)
job_definitions :: Set{CronDefinition} = Set() # Cron job definitions registered through the router() (path, httpmethod, cron_expression)
end
@kwdef struct TasksContext
active_tasks :: Set{ActiveTask} = Set() # Set of all running tasks which contains (task_id, timer)
registered_tasks :: Set{RegisteredTask} = Set() # Vector of repeat task definitions (path, httpmethod, interval)
task_definitions :: Set{TaskDefinition} = Set() # Set of all registered task definitions ()
end
@kwdef struct Documenation
enabled :: Ref{Bool} = Ref{Bool}(true)
router :: Ref{Nullable{Router}} = Ref{Nullable{Router}}(nothing) # used for docs & metrics internal endpoints
docspath :: Ref{String} = Ref{String}("/docs")
schemapath :: Ref{String} = Ref{String}("/schema")
schema :: Dict = defaultSchema()
taggedroutes :: Dict{String, TaggedRoute} = Dict{String, TaggedRoute}() # used to group routes by tag
end
@kwdef struct Service
server :: Ref{Nullable{Server}} = Ref{Nullable{Server}}(nothing)
router :: Router = Router()
custommiddleware :: Dict{String, Tuple} = Dict{String, Tuple}()
middleware_cache :: Dict{String, Function} = Dict{String, Function}()
history :: History = History(1_000_000)
history_lock :: ReentrantLock = ReentrantLock()
end
@kwdef struct Context
service :: Service = Service()
docs :: Documenation = Documenation()
cron :: CronContext = CronContext()
tasks :: TasksContext = TasksContext()
end
Base.isopen(service::Service) = !isnothing(service.server[]) && isopen(service.server[])
Base.close(service::Service) = !isnothing(service.server[]) && close(service.server[])
Base.wait(service::Service) = !isnothing(service.server[]) && wait(service.server[])
# @eval begin
# """
# Context(ctx::Context; kwargs...)
# Create a new `Context` object by copying an existing one and optionally overriding some of its fields with keyword arguments.
# """
# function Context(ctx::Context; $([Expr(:kw ,k, :(ctx.$k)) for k in fieldnames(Context)]...))
# return Context($(fieldnames(Context)...))
# end
# end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 24865 | module Core
using Base: @kwdef
using HTTP
using HTTP: Router
using Sockets
using JSON3
using Base
using Dates
using Reexport
using RelocatableFolders
using DataStructures: CircularDeque
import Base.Threads: lock
include("util.jl"); @reexport using .Util
include("types.jl"); @reexport using .Types
include("constants.jl"); @reexport using .Constants
include("handlers.jl"); @reexport using .Handlers
include("context.jl"); @reexport using .AppContext
include("middleware.jl"); @reexport using .Middleware
include("routerhof.jl"); @reexport using .RouterHOF
include("cron.jl"); @reexport using .Cron
include("repeattasks.jl"); @reexport using .RepeatTasks
include("metrics.jl"); @reexport using .Metrics
include("reflection.jl"); @reexport using .Reflection
include("extractors.jl"); @reexport using .Extractors
include("autodoc.jl"); @reexport using .AutoDoc
export start, serve, serveparallel, terminate,
internalrequest, staticfiles, dynamicfiles
kitten_title = raw"""
, ,
/|_/ o _|_ _|_ _
|\ | | | |/ /|/|
| \_/ |/ |_/ |_/ |_/ | |_/
"""
function serverwelcome(host::String, port::Int, docs::Bool, metrics::Bool, parallel::Bool, docspath::String)
printstyled(kitten_title, color=:blue, bold=true)
@info "π¦ Version 0.1.0 (2024-06-18)"
@info "β
Started server: http://$host:$port"
if docs
@info "π Documentation: http://$host:$port$docspath"
end
if docs && metrics
@info "π Metrics: http://$host:$port$docspath/metrics"
end
if parallel
@info "π Running in parallel mode with $(Threads.nthreads()) threads"
end
end
"""
serve(; middleware::Vector=[], handler=stream_handler, host="127.0.0.1", port=8080, async=false, parallel=false, serialize=true, catch_errors=true, docs=true, metrics=true, show_errors=true, show_banner=true, docs_path="/docs", schema_path="/schema", kwargs...)
Start the webserver with your own custom request handler
"""
function serve(ctx::Context;
middleware = [],
handler = stream_handler,
host = "127.0.0.1",
port = 8080,
async = false,
parallel = false,
serialize = true,
catch_errors= true,
docs = true,
metrics = true,
show_errors = true,
show_banner = true,
docs_path = "/docs",
schema_path = "/schema",
kwargs...) :: Server
# overwrite docs & schema paths
ctx.docs.enabled[] = docs
ctx.docs.docspath[] = docs_path
ctx.docs.schemapath[] = schema_path
# intitialize documenation router (used by docs and metrics)
ctx.docs.router[] = Router()
# compose our middleware ahead of time (so it only has to be built up once)
configured_middelware = setupmiddleware(ctx; middleware, serialize, catch_errors, docs, metrics, show_errors)
# setup the primary stream handler function (can be customized by the caller)
handle_stream = handler(configured_middelware)
if parallel
if Threads.nthreads() <= 1
@warn "serveparallel() only has 1 thread available to use, try launching julia like this: \"julia -t auto\" to leverage multiple threads"
end
if haskey(kwargs, :queuesize)
@warn "Deprecated: The `queuesize` parameter is no longer used / supported in serveparallel()"
end
# wrap top level handler with parallel handler
handle_stream = parallel_stream_handler(handle_stream)
end
# The cleanup of resources are put at the topmost level in `methods.jl`
return startserver(ctx; host, port, show_banner, docs, metrics, parallel, async, kwargs, start=(kwargs) ->
HTTP.serve!(handle_stream, host, port; kwargs...))
end
"""
terminate(ctx)
stops the webserver immediately
"""
function terminate(context::Context)
if isopen(context.service)
# stop background cron jobs
stopcronjobs(context.cron)
clearcronjobs(context.cron)
# stop repeating tasks
stoptasks(context.tasks)
cleartasks(context.tasks)
# stop server
close(context.service)
end
end
"""
Register all cron jobs defined through our router() HOF
"""
function registercronjobs(ctx::Context)
for job in ctx.cron.job_definitions
path, httpmethod, expression = job.path, job.httpmethod, job.expression
cron(ctx.cron.registered_jobs, expression, path, () -> internalrequest(ctx, HTTP.Request(httpmethod, path)))
end
end
"""
Register all repeat tasks defined through our router() HOF
"""
function registertasks(ctx::Context)
for task_def in ctx.tasks.task_definitions
path, httpmethod, interval = task_def.path, task_def.httpmethod, task_def.interval
task(ctx.tasks.registered_tasks, interval, path, () -> internalrequest(ctx, HTTP.Request(httpmethod, path)))
end
end
"""
decorate_request(ip::IPAddr)
This function can be used to add additional usefull metadata to the incoming
request context dictionary. At the moment, it just inserts the caller's ip address
"""
function decorate_request(ip::IPAddr, stream::HTTP.Stream)
return function (handle)
return function (req::HTTP.Request)
req.context[:ip] = ip
req.context[:stream] = stream
handle(req)
end
end
end
"""
This is our root stream handler used in both serve() and serveparallel().
This function determines how we handle all incoming requests
"""
function stream_handler(middleware::Function)
return function (stream::HTTP.Stream)
# extract the caller's ip address
ip, _ = Sockets.getpeername(stream)
# build up a streamhandler to handle our incoming requests
handle_stream = HTTP.streamhandler(middleware |> decorate_request(ip, stream))
# handle the incoming request
return handle_stream(stream)
end
end
"""
parallel_stream_handler(handle_stream::Function)
This function uses `Threads.@spawn` to schedule a new task on any available thread.
Inside this task, `@async` is used for cooperative multitasking, allowing the task to yield during I/O operations.
"""
function parallel_stream_handler(handle_stream::Function)
function (stream::HTTP.Stream)
task = Threads.@spawn begin
handle = @async handle_stream(stream)
wait(handle)
end
wait(task)
end
end
"""
Compose the user & internally defined middleware functions together. Practically, this allows
users to 'chain' middleware functions like `serve(handler1, handler2, handler3)` when starting their
application and have them execute in the order they were passed (left to right) for each incoming request
"""
function setupmiddleware(ctx::Context; middleware::Vector=[], docs::Bool=true, metrics::Bool=true, serialize::Bool=true, catch_errors::Bool=true, show_errors=true)::Function
# determine if we have any special router or route-specific middleware
custom_middleware = !isempty(ctx.service.custommiddleware) ? [compose(ctx.service.router, middleware, ctx.service.custommiddleware, ctx.service.middleware_cache)] : reverse(middleware)
# Docs middleware should only be available at runtime when serve() or serveparallel is called
docs_middleware = docs && !isnothing(ctx.docs.router[]) ? [DocsMiddleware(ctx.docs.router[], ctx.docs.docspath[])] : []
# check if we should use our default serialization middleware function
serializer = serialize ? [DefaultSerializer(catch_errors; show_errors)] : []
# check if we need to track metrics
collect_metrics = metrics ? [MetricsMiddleware(ctx.service, metrics)] : []
# combine all our middleware functions
return reduce(|>, [
ctx.service.router,
serializer...,
custom_middleware...,
collect_metrics...,
docs_middleware...,
])
end
"""
Internal helper function to launch the server in a consistent way
"""
function startserver(ctx::Context; host, port, show_banner=false, docs=false, metrics=false, parallel=false, async=false, kwargs, start)::Server
docs && setupdocs(ctx)
metrics && setupmetrics(ctx)
show_banner && serverwelcome(host, port, docs, metrics, parallel, ctx.docs.docspath[])
# start the HTTP server
ctx.service.server[] = start(preprocesskwargs(kwargs))
# Register & Start all repeat tasks
registertasks(ctx)
starttasks(ctx.tasks)
# Register & Start all cron jobs
registercronjobs(ctx)
startcronjobs(ctx.cron)
if !async
try
wait(ctx.service)
catch error
!isa(error, InterruptException) && @error "ERROR: " exception = (error, catch_backtrace())
finally
println() # this pushes the "[ Info: Server on 127.0.0.1:8080 closing" to the next line
end
end
return ctx.service.server[]
end
"""
Used to overwrite defaults to any incoming keyword arguments
"""
function preprocesskwargs(kwargs)
kwargs_dict = Dict{Symbol,Any}(kwargs)
# always set to streaming mode (regardless of what was passed)
kwargs_dict[:stream] = true
# user passed no loggin preferences - use defualt logging format
if isempty(kwargs_dict) || !haskey(kwargs_dict, :access_log)
kwargs_dict[:access_log] = logfmt"$time_iso8601 - $remote_addr:$remote_port - \"$request\" $status"
end
return kwargs_dict
end
"""
internalrequest(req::HTTP.Request; middleware::Vector=[], serialize::Bool=true, catch_errors::Bool=true)
Directly call one of our other endpoints registered with the router, using your own middleware
and bypassing any globally defined middleware
"""
function internalrequest(ctx::Context, req::HTTP.Request; middleware::Vector=[], metrics::Bool=false, serialize::Bool=true, catch_errors=true)::HTTP.Response
req.context[:ip] = "INTERNAL" # label internal requests
return req |> setupmiddleware(ctx; middleware, metrics, serialize, catch_errors)
end
function DocsMiddleware(docsrouter::Router, docspath::String)
return function (handle)
return function (req::HTTP.Request)
if startswith(req.target, docspath)
response = docsrouter(req)
else
response = handle(req)
end
format_response!(req, response)
return req.response
end
end
end
"""
Create a default serializer function that handles HTTP requests and formats the responses.
"""
function DefaultSerializer(catch_errors::Bool; show_errors::Bool)
return function (handle)
return function (req::HTTP.Request)
return handlerequest(catch_errors; show_errors) do
response = handle(req)
format_response!(req, response)
return req.response
end
end
end
end
function MetricsMiddleware(service::Service, catch_errors::Bool)
return function (handler)
return function (req::HTTP.Request)
return handlerequest(catch_errors) do
start_time = time()
# Handle the request
response = handler(req)
# Log response time
response_time = (time() - start_time) * 1000
# Make sure we update the History object in a thread-safe way
lock(service.history_lock) do
if response.status == 200
push_history(service.history, HTTPTransaction(
string(req.context[:ip]),
string(req.target),
now(UTC),
response_time,
true,
response.status,
nothing
))
else
push_history(service.history, HTTPTransaction(
string(req.context[:ip]),
string(req.target),
now(UTC),
response_time,
false,
response.status,
text(response)
))
end
end
return response
end
end
end
end
function parse_route(httpmethod::String, route::Union{String,Function})::String
# check if path is a callable function (that means it's a router higher-order-function)
if isa(route, Function)
# This is true when the user passes the router() directly to the path.
# We call the generated function without args so it uses the default args
# from the parent function.
if countargs(route) == 1
route = route()
end
# If it's still a function, then that means this is from the 3rd inner function
# defined in the createrouter() function.
if countargs(route) == 2
route = route(httpmethod)
end
end
# if the route is still a function, then it's from the 3rd inner function
# defined in the createrouter() function when the 'router()' function is passed directly.
if isa(route, Function)
route = route(httpmethod)
end
!isa(route, String) && throw("The `route` parameter is not a String, but is instead a: $(typeof(route))")
return route
end
function parse_func_params(route::String, func::Function)
"""
Parsing Rules:
1. path parameters are detected by their presence in the route string
2. query parameters are not in the route string and can have default values
3. path extractors can be used instead of traditional path parameters
4. extrators can be used alongside traditional path & query params
"""
info = splitdef(func, start=2) # skip the indentifying first arg
# collect path param definitions from the route string
hasBraces = r"({)|(})"
route_params = Vector{Symbol}()
for value in HTTP.URIs.splitpath(route)
if contains(value, hasBraces)
variable = replace(value, hasBraces => "") |> strip
push!(route_params, Symbol(variable))
end
end
# Identify all path & query params (can be declared as regular variables or extractors)
pathnames = Vector{Symbol}()
querynames = Vector{Symbol}()
headernames = Vector{Symbol}()
bodynames = Vector{Symbol}()
path_params = []
query_params = []
header_params = []
body_params = []
for param in info.args
# case 1: it's an extractor type
if param.type <: Extractor
innner_type = param.type |> extracttype
# push the variables from the struct into the params array
if param.type <: Path
append!(pathnames, fieldnames(innner_type))
push!(path_params, param)
elseif param.type <: Query
append!(querynames, fieldnames(innner_type))
push!(query_params, param)
elseif param.type <: Header
append!(headernames, fieldnames(innner_type))
push!(header_params, param)
else
append!(bodynames, fieldnames(innner_type))
push!(body_params, param)
end
# case 2: It's a path parameter
elseif param.name in route_params
push!(pathnames, param.name)
push!(path_params, param)
# Case 3: It's a query parameter
else
push!(querynames, param.name)
push!(query_params, param)
end
end
# make sure all the path params are present in the route
if !isempty(route_params)
missing_params = [
route_param
for route_param in route_params
if !any(path_param -> path_param == route_param, pathnames)
]
if !isempty(missing_params)
throw(ArgumentError("Your request handler is missing path parameters: {$(join(missing_params, ", "))} defined in this route: $route"))
end
end
return (
info=info, pathparams=path_params,
pathnames=pathnames, queryparams=query_params,
querynames=querynames, headers=header_params,
headernames=headernames, bodyargs=body_params,
bodynames=bodynames
)
end
"""
register(ctx::Context, httpmethod::String, route::String, func::Function)
Register a request handler function with a path to the ROUTER
"""
function register(ctx::Context, httpmethod::String, route::Union{String,Function}, func::Function)
# Parse & validate path parameters
route = parse_route(httpmethod, route)
func_details = parse_func_params(route, func)
# only generate the schema if the docs are enabled
if ctx.docs.enabled[]
# Pull out the request parameters
queryparams = func_details.queryparams
pathparams = func_details.pathparams
headers = func_details.headers
bodyparams = func_details.bodyargs
# Register the route schema with out autodocs module
registerschema(ctx.docs, route, httpmethod, pathparams, queryparams, headers, bodyparams, Base.return_types(func))
end
# Register the route with the router
registerhandler(ctx.service.router, httpmethod, route, func, func_details)
end
"""
This alternaive registers a route wihout generating any documentation for it. Used primarily for internal routes like
docs and metrics
"""
function register(router::Router, httpmethod::String, route::Union{String,Function}, func::Function)
# Parse & validate path parameters
route = parse_route(httpmethod, route)
func_details = parse_func_params(route, func)
# Register the route with the router
registerhandler(router, httpmethod, route, func, func_details)
end
"""
Given an incoming request, parse out each argument and prepare it to get passed to the
corresponding handler.
"""
function extract_params(req::HTTP.Request, func_details)::Vector{Any}
info = func_details.info
pathparams = func_details.pathnames
queryparams = func_details.querynames
lazy_req = LazyRequest(request=req)
parameters = Vector{Any}()
for param in info.sig
name = string(param.name)
if param.type <: Extractor
push!(parameters, extract(param, lazy_req))
elseif param.name in pathparams
raw_pathparams = Types.pathparams(lazy_req)
push!(parameters, parseparam(param.type, raw_pathparams[name]))
elseif param.name in queryparams
raw_queryparams = Types.queryvars(lazy_req)
# if the query parameter is not present, use the default value if available
if !haskey(raw_queryparams, name) && param.hasdefault
push!(parameters, param.default)
else
push!(parameters, parseparam(param.type, raw_queryparams[name]))
end
end
end
return parameters
end
function registerhandler(router::Router, httpmethod::String, route::String, func::Function, func_details::NamedTuple)
# Get information about the function's arguments
method = first(methods(func))
no_args = method.nargs == 1
# check if handler has a :request kwarg
info = func_details.info
has_req_kwarg = :request in Base.kwarg_decl(method)
has_path_params = !isempty(info.args)
# Generate the function handler based on the input types
arg_type = first_arg_type(method, httpmethod)
func_handle = select_handler(arg_type, has_req_kwarg, has_path_params; no_args=no_args)
# Figure out if we need to include parameter parsing logic for this route
if isempty(info.sig)
handle = function (req::HTTP.Request)
func_handle(req, func)
end
else
handle = function (req::HTTP.Request)
path_parameters = extract_params(req, func_details)
func_handle(req, func; pathParams=path_parameters)
end
end
# Use method aliases for special methods
resolved_httpmethod = get(METHOD_ALIASES, httpmethod, httpmethod)
HTTP.register!(router, resolved_httpmethod, route, handle)
end
function setupdocs(ctx::Context)
setupdocs(ctx.docs.router[], ctx.docs.schema, ctx.docs.docspath[], ctx.docs.schemapath[])
end
# add the swagger and swagger/schema routes
function setupdocs(router::Router, schema::Dict, docspath::String, schemapath::String)
full_schema = "$docspath$schemapath"
register(router, "GET", "$docspath", () -> swaggerhtml(full_schema, docspath))
register(router, "GET", "$docspath/swagger", () -> swaggerhtml(full_schema, docspath))
register(router, "GET", "$docspath/redoc", () -> redochtml(full_schema, docspath))
register(router, "GET", full_schema, () -> schema)
end
function setupmetrics(context::Context)
setupmetrics(context.docs.router[], context.service.history, context.docs.docspath[], context.service.history_lock)
end
# add the swagger and swagger/schema routes
function setupmetrics(router::Router, history::History, docspath::String, history_lock::ReentrantLock)
# This allows us to customize the path to the metrics dashboard
function loadfile(filepath)::String
content = readfile(filepath)
# only replace content if it's in a generated file
ext = lowercase(last(splitext(filepath)))
if ext in [".html", ".css", ".js"]
return replace(content, "/123e4567-e89b-12d3-a456-426614174000/" => "$docspath/metrics/")
else
return content
end
end
staticfiles(router, "$DATA_PATH/dashboard", "$docspath/metrics"; loadfile=loadfile)
# Create a thread-safe copy of the history object and it's internal data
function safe_get_transactions(history::History)::Vector{HTTPTransaction}
transactions = []
lock(history_lock) do
transactions = collect(history)
end
return transactions
end
function innermetrics(req::HTTP.Request, window::Nullable{Int}, latest::Nullable{DateTime})
# create a threadsafe copy of the current transactions in our history object
transactions = safe_get_transactions(history)
# Figure out how far back to read from the history object
window_value = !isnothing(window) && window > 0 ? Minute(window) : nothing
lower_bound = !isnothing(latest) ? latest : window_value
return Dict(
"server" => server_metrics(transactions, nothing),
"endpoints" => all_endpoint_metrics(transactions, nothing),
"errors" => error_distribution(transactions, nothing),
"avg_latency_per_second" => avg_latency_per_unit(transactions, Second, lower_bound) |> prepare_timeseries_data(),
"requests_per_second" => requests_per_unit(transactions, Second, lower_bound) |> prepare_timeseries_data(),
"avg_latency_per_minute" => avg_latency_per_unit(transactions, Minute, lower_bound) |> prepare_timeseries_data(),
"requests_per_minute" => requests_per_unit(transactions, Minute, lower_bound) |> prepare_timeseries_data()
)
end
register(router, GET, "$docspath/metrics/data/{window}/{latest}", innermetrics)
end
"""
staticfiles(folder::String, mountdir::String; headers::Vector{Pair{String,String}}=[], loadfile::Union{Function,Nothing}=nothing)
Mount all files inside the /static folder (or user defined mount point).
The `headers` array will get applied to all mounted files
"""
function staticfiles(router::HTTP.Router,
folder::String,
mountdir::String="static";
headers::Vector=[],
loadfile::Nullable{Function}=nothing
)
# remove the leading slash
if first(mountdir) == '/'
mountdir = mountdir[2:end]
end
function addroute(currentroute, filepath)
resp = file(filepath; loadfile=loadfile, headers=headers)
register(router, GET, currentroute, () -> resp)
end
mountfolder(folder, mountdir, addroute)
end
"""
dynamicfiles(folder::String, mountdir::String; headers::Vector{Pair{String,String}}=[], loadfile::Union{Function,Nothing}=nothing)
Mount all files inside the /static folder (or user defined mount point),
but files are re-read on each request. The `headers` array will get applied to all mounted files
"""
function dynamicfiles(router::Router,
folder::String,
mountdir::String="static";
headers::Vector=[],
loadfile::Nullable{Function}=nothing
)
# remove the leading slash
if first(mountdir) == '/'
mountdir = mountdir[2:end]
end
function addroute(currentroute, filepath)
register(router, GET, currentroute, () -> file(filepath; loadfile=loadfile, headers=headers))
end
mountfolder(folder, mountdir, addroute)
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 19046 | module Cron
using Base: @kwdef
using Dates
using ..Types: ActiveCron, RegisteredCron, Nullable
using ..AppContext: CronContext
export cron, startcronjobs, stopcronjobs, clearcronjobs
"""
Builds a new CRON job definition and appends it to hte list of cron jobs
"""
function cron(cronjobs::Set{RegisteredCron}, expression::String, name::String, f::Function)
job_id = hash((expression, name, f))
job = RegisteredCron(job_id, expression, name, f)
push!(cronjobs, job)
end
"""
stopcronjobs()
Stop each background task by toggling a global reference that all cron jobs reference
"""
function stopcronjobs(cron::CronContext)
cron.run[] = false
# clear the set of all running job ids
empty!(cron.active_jobs)
end
"""
Clears all cron job defintions
"""
function clearcronjobs(cron::CronContext)
# clear all job definitions
empty!(cron.registered_jobs)
end
"""
startcronjobs()
Start all the cron cronjobs within their own async task. Each individual task will loop conintually
and sleep untill the next time it's suppost to
"""
function startcronjobs(cron::CronContext)
if isempty(cron.registered_jobs)
return
end
# set the global run flag to true
cron.run[] = true
# pull out all ids for the current running tasks
running_tasks = Set{UInt}(job.id for job in cron.active_jobs)
# filter out any jobs that are already running
filtered_jobs = filter(cron.registered_jobs) do cronjob
# (job_id, expression, name, func) = cronjob
if cronjob.id in running_tasks
printstyled("[ Cron: $(cronjob.name) is already running\n", color = :yellow)
return false
else
return true
end
end
# exit function early if no jobs to start
if isempty(filtered_jobs)
return
end
println()
printstyled("[ Starting $(length(filtered_jobs)) Cron Job(s)\n", color = :green, bold = true)
for job in filtered_jobs
job_id, expression, name, func = job.id, job.expression, job.name, job.action
# add job it to set of running jobs
push!(cron.active_jobs, ActiveCron(job_id, job))
printstyled("[ Cron: ", color = :green, bold = true)
println("{ expr: $expression, name: $name }")
# Assuming name and expression are your variables
Threads.@spawn begin
try
while cron.run[]
# get the current datetime object
current_time::DateTime = now()
# get the next datetime object that matches this cron expression
next_date = next(expression, current_time)
# figure out how long we need to wait
ms_to_wait = sleep_until(current_time, next_date)
# breaking the sleep into 1-second intervals
while ms_to_wait > 0 && cron.run[]
sleep_time = min(1000, ms_to_wait) # Sleep for 1 second or the remaining time
sleep(Millisecond(sleep_time))
ms_to_wait -= sleep_time # Reduce the wait time
end
# Execute the function if it's time and if we are still running
if ms_to_wait <= 0 && cron.run[]
try
@async func() # for ordinary functions
catch error
@error "ERROR in CRON job { id: $job_id, expr: $expression, name: $name }: " exception=(error, catch_backtrace())
end
end
end
finally
# remove job id if the job fails
delete!(cron.active_jobs, job_id)
end
end
end
end
weeknames = Dict(
"SUN" => 7,
"MON" => 1,
"TUE" => 2,
"WED" => 3,
"THU" => 4,
"FRI" => 5,
"SAT" => 6,
)
monthnames = Dict(
"JAN" => 1,
"FEB" => 2,
"MAR" => 3,
"APR" => 4,
"MAY" => 5,
"JUN" => 6,
"JUL" => 7,
"AUG" => 8,
"SEP" => 9,
"OCT" => 10,
"NOV" => 11,
"DEC" => 12
)
function translate(input::AbstractString)
if haskey(weeknames, input)
return weeknames[input]
elseif haskey(monthnames, input)
return monthnames[input]
else
return input
end
end
function customparse(type, input)
if isa(input, type)
return input
end
return parse(type, input)
end
# https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/support/CronExpression.html
# https://crontab.cronhub.io/
"""
return the date for the last weekday (Friday) of the month
"""
function lastweekdayofmonth(time::DateTime)
current = lastdayofmonth(time)
while dayofweek(current) > 5
current -= Day(1)
end
return current
end
function isweekday(time::DateTime)
daynumber = dayofweek(time)
return daynumber >= 1 && daynumber <= 5
end
"""
Return the date of the weekday that's nearest to the nth day of the month
"""
function nthweekdayofmonth(time::DateTime, n::Int64)
if n < 1 || n > Dates.daysinmonth(time)
error("n must be between 1 and $(Dates.daysinmonth(time))")
end
target = DateTime(year(time), month(time), day(n))
if isweekday(target)
return target
end
current_month = month(time)
before = DateTime(year(time), month(time), day(max(1, n-1)))
after = DateTime(year(time), month(time), day(min(n+1, Dates.daysinmonth(time))))
while true
if isweekday(before) && month(before) == current_month
return before
elseif isweekday(after) && month(after) == current_month
return after
end
if day(after) < Dates.daysinmonth(time)
after += Day(1)
else
break
end
end
end
"""
return the date for the last weekday (Friday) of the week
"""
function lastweekday(time::DateTime)
current = lastdayofweek(time)
while dayofweek(current) > 5
current -= Day(1)
end
return current
end
function lasttargetdayofmonth(time::DateTime, daynumber::Int64)
last_day = lastdayofmonth(time)
current = DateTime(year(last_day), month(last_day), day(Dates.daysinmonth(time)))
while dayofweek(current) != daynumber
current -= Day(1)
end
return current
end
function getoccurance(time::DateTime, daynumber::Int64, occurance::Int64)
baseline = firstdayofmonth(time)
# increment untill we hit the daytype we want
while dayofweek(baseline) !== daynumber
baseline += Day(1)
end
# keep jumping by 7 days untill we the the target occurance
while dayofweekofmonth(baseline) !== occurance
baseline += Day(7)
end
return baseline
end
function matchexpression(input::Nullable{AbstractString}, time::DateTime, converter, maxvalue, adjustedmax=nothing) :: Bool
try
# base case: return true if
if isnothing(input)
return true
end
# Handle sole week or month expressions
if haskey(weeknames, input) || haskey(monthnames, input)
input = translate(input)
end
numericvalue = isa(input, Int64) ? input : tryparse(Int64, input)
current = converter(time)
# need to convert zero based max values to their "real world" equivalent
if !isnothing(adjustedmax) && current == 0
current = adjustedmax
end
# Every Second
if input == "*"
return true
# At X seconds past the minute
elseif numericvalue !== nothing
# If this field is zero indexed and set to 0
if !isnothing(adjustedmax) && current == adjustedmax
return numericvalue == (current - adjustedmax)
else
return numericvalue == current
end
elseif contains(input, ",")
lowerbound, upperbound = split(input, ",")
lowerbound, upperbound = translate(lowerbound), translate(upperbound)
return current == customparse(Int64, lowerbound) || current === customparse(Int64, upperbound)
elseif contains(input, "-")
lowerbound, upperbound = split(input, "-")
lowerbound, upperbound = translate(lowerbound), translate(upperbound)
if lowerbound == "*"
return current <= customparse(Int64, upperbound)
elseif upperbound == "*"
return current >= customparse(Int64, lowerbound)
else
return current >= customparse(Int64, lowerbound) && current <= customparse(Int64, upperbound)
end
elseif contains(input, "/")
numerator, denominator = split(input, "/")
numerator, denominator = translate(numerator), translate(denominator)
# Every second, starting at Y seconds past the minute
if denominator == "*"
numerator = customparse(Int64, numerator)
return current >= numerator
elseif numerator == "*"
# Every X seconds
denominator = customparse(Int64, denominator)
return current % denominator == 0
else
# Every X seconds, starting at Y seconds past the minute
numerator = customparse(Int64, numerator)
denominator = customparse(Int64, denominator)
return current % denominator == 0 && current >= numerator
end
end
return false
catch
return false
end
end
function match_special(input::Nullable{AbstractString}, time::DateTime, converter, maxvalue, adjustedmax=nothing) :: Bool
# base case: return true if
if isnothing(input)
return true
end
# Handle sole week or month expressions
if haskey(weeknames, input) || haskey(monthnames, input)
input = translate(input)
end
numericvalue = isa(input, Int64) ? input : tryparse(Int64, input)
current = converter(time)
# if given a datetime as a max value, means this is a special case expression
if maxvalue isa Function
maxvalue = converter(maxvalue(time))
end
current = converter(time)
# need to convert zero based max values to their "real world" equivalent
if !isnothing(adjustedmax) && current == 0
current = adjustedmax
end
# At X seconds past the minute
if numericvalue !== nothing
# If this field is zero indexed and set to 0
if !isnothing(adjustedmax) && current == adjustedmax
return numericvalue == (current - adjustedmax)
else
return numericvalue == current
end
elseif input == "?" || input == "*"
return true
# comamnd: Return the last valid value for this field
elseif input == "L"
return current == maxvalue
# command: the last weekday of the month
elseif input == "LW"
return current == converter(lastweekdayofmonth(time))
# command negative offset (i.e. L-n), it means "nth-to-last day of the month".
elseif contains(input, "L-")
return current == maxvalue - customparse(Int64, replace(input, "L-" => ""))
# ex.) "11W" = on the weekday nearest day 11th of the month
elseif match(r"[0-9]+W", input) !== nothing
daynumber = parse(Int64, replace(input, "W" => ""))
return current == dayofmonth(nthweekdayofmonth(time, daynumber))
# ex.) "4L" = last Thursday of the month
elseif match(r"[0-9]+L", input) !== nothing
daynumber = parse(Int64, replace(input, "L" => ""))
return dayofmonth(time) == dayofmonth(lasttargetdayofmonth(time, daynumber))
# ex.) "THUL" = last Thursday of the month
elseif match(r"([A-Z]+)L", input) !== nothing
dayabbreviation = match(r"([A-Z]+)L", input)[1]
daynumber = weeknames[dayabbreviation]
return dayofmonth(time) == dayofmonth(lasttargetdayofmonth(time, daynumber))
# ex.) 5#2" = the second Friday in the month
elseif match(r"([0-9])#([0-9])", input) !== nothing
daynumber, position = match(r"([0-9])#([0-9])", input).captures
target = getoccurance(time, parse(Int64, daynumber), parse(Int64, position))
return dayofmonth(time) == dayofmonth(target)
# ex.) "MON#1" => the first Monday in the month
elseif match(r"([A-Z]+)#([0-9])", input) !== nothing
daynumber, position = match(r"([A-Z]+)#([0-9])", input).captures
target = getoccurance(time, weeknames[daynumber], parse(Int64, position))
return dayofmonth(time) == dayofmonth(target)
else
return false
end
end
function iscronmatch(expression::String, time::DateTime) :: Bool
parsed_expression::Vector{Nullable{AbstractString}} = split(strip(expression), " ")
# fill in any missing arguments with nothing, so the array is always
fill_length = 6 - length(parsed_expression)
if fill_length > 0
parsed_expression = vcat(parsed_expression, fill(nothing, fill_length))
end
# extract individual expressions
seconds_expression, minute_expression, hour_expression,
dayofmonth_expression, month_expression, dayofweek_expression = parsed_expression
if !match_month(month_expression, time)
return false
end
if !match_dayofmonth(dayofmonth_expression, time)
return false
end
if !match_dayofweek(dayofweek_expression, time)
return false
end
if !match_hour(hour_expression, time)
return false
end
if !match_minutes(minute_expression, time)
return false
end
if !match_seconds(seconds_expression, time)
return false
end
return true
end
function match_seconds(seconds_expression, time::DateTime)
return matchexpression(seconds_expression, time, second, 59, 60)
end
function match_minutes(minute_expression, time::DateTime)
return matchexpression(minute_expression, time, minute, 59, 60)
end
function match_hour(hour_expression, time::DateTime)
return matchexpression(hour_expression, time, hour, 23, 24)
end
function match_dayofmonth(dayofmonth_expression, time::DateTime)
return match_special(dayofmonth_expression, time, dayofmonth, lastdayofmonth) || matchexpression(dayofmonth_expression, time, dayofmonth, lastdayofmonth)
end
function match_month(month_expression, time::DateTime)
return match_special(month_expression, time, month, 12) || matchexpression(month_expression, time, month, 12)
end
function match_dayofweek(dayofweek_expression, time::DateTime)
return match_special(dayofweek_expression, time, dayofweek, lastdayofweek) || matchexpression(dayofweek_expression, time, dayofweek, lastdayofweek)
end
"""
This function takes a cron expression and a start_time and returns the next datetime object that matches this
expression
"""
function next(cron_expr::String, start_time::DateTime)::DateTime
parsed_expression::Vector{Nullable{AbstractString}} = split(strip(cron_expr), " ")
# fill in any missing arguments with nothing, so the array is always
fill_length = 6 - length(parsed_expression)
if fill_length > 0
parsed_expression = vcat(parsed_expression, fill(nothing, fill_length))
end
# extract individual expressions
seconds_expression, minute_expression, hour_expression,
dayofmonth_expression, month_expression, dayofweek_expression = parsed_expression
# initialize a candidate time with start_time plus one second
candidate_time = start_time + Second(1)
# loop until candidate time matches all fields of cron expression
while true
# check if candidate time matches second field
if !match_seconds(seconds_expression, candidate_time)
# increment candidate time by one second
candidate_time += Second(1)
continue
end
# check if candidate time matches minute field
if !match_minutes(minute_expression, candidate_time)
# increment candidate time by one minute and reset second
# to minimum value
candidate_time += Minute(1) - Second(second(candidate_time))
continue
end
# check if candidate time matches hour field
if !match_hour(hour_expression, candidate_time)
# increment candidate time by one hour and reset minute
# and second to minimum values
candidate_time += Hour(1) - Minute(minute(candidate_time)) -
Second(second(candidate_time))
continue
end
# check if candidate time matches day of week field
if !match_dayofweek(dayofweek_expression, candidate_time)
# increment candidate time by one day and reset hour,
# minute and second to minimum values
candidate_time += Day(1) - Hour(hour(candidate_time)) -
Minute(minute(candidate_time)) -
Second(second(candidate_time))
continue
end
# check if candidate time matches day of month field
if !match_dayofmonth(dayofmonth_expression, candidate_time)
# increment candidate time by one day and reset hour,
# minute and second to minimum values
candidate_time += Day(1) - Hour(hour(candidate_time)) -
Minute(minute(candidate_time)) -
Second(second(candidate_time))
continue
end
# check if candidate time matches month field
if !match_month(month_expression, candidate_time)
# increment candidate time by one month and reset day, hour,
# minute and second to minimum values
candidate_time += Month(1) - Day(day(candidate_time)) + Day(1) -
Hour(hour(candidate_time)) -
Minute(minute(candidate_time)) -
Second(second(candidate_time))
continue
end
break # exit the loop as all fields match
end
return remove_milliseconds(candidate_time) # return the next matching tme
end
# remove the milliseconds from a datetime by rounding down at the seconds
function remove_milliseconds(dt::DateTime)
return floor(dt, Dates.Second)
end
function sleep_until(now::DateTime, future::DateTime)
# Check if the future datetime is later than the current datetime
if future > now
# Convert the difference between future and now to milliseconds
ms = Dates.value(future - now)
# Return the milliseconds to sleep
return ms
else
# Return zero if the future datetime is not later than the current datetime
return 0
end
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 829 | # Some deprecated stuff
function enabledocs()
@warn "This function is deprecated in favour of keyword argument `docs` in serve"
end
function disabledocs()
throw("This function is deprecated in favour of keyword argument `docs` in serve")
end
function isdocsenabled()
@warn "This function is deprecated in favour of keyword argument `docs` in serve"
return true # as set in serve
end
"""
configdocs(docspath::String = "/docs", schemapath::String = "/schema")
Configure the default docs and schema endpoints
"""
function configdocs(docspath::String = "/docs", schemapath::String = "/schema")
@warn "This function is deprecated in favour of keyword argument `docs_path` and `schema_path` in serve"
CONTEXT[].docs.docspath[] = docspath
CONTEXT[].docs.schemapath[] = schemapath
return
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 5360 | module Extractors
using JSON3
using Base: @kwdef
using HTTP
using Dates
using StructTypes
using ..Util: text, json, formdata, parseparam
using ..Reflection: struct_builder, extract_struct_info
using ..Types
export Extractor, extract, validate, extracttype, isextractor, isreqparam, isbodyparam,
Path, Query, Header, Json, JsonFragment, Form, Body
abstract type Extractor{T} end
"""
Given a classname, build a new Extractor class
"""
macro extractor(class_name)
quote
struct $(Symbol(class_name)){T} <: Extractor{T}
payload::Union{T, Nothing}
validate::Union{Function, Nothing}
type::Type{T}
# Only pass a validator
$(Symbol(class_name)){T}(f::Function) where T = new{T}(nothing, f, T)
# Pass Type for payload
$(Symbol(class_name))(::Type{T}) where T = new{T}(nothing, nothing, T)
# Pass Type for payload & validator
$(Symbol(class_name))(::Type{T}, f::Function) where T = new{T}(nothing, f, T)
# Pass object directly
$(Symbol(class_name))(payload::T) where T = new{T}(payload, nothing, T)
# Pass object directly & validator
$(Symbol(class_name))(payload::T, f::Function) where T = new{T}(payload, f, T)
end
end |> esc
end
## RequestParts Extractors
@extractor Path
@extractor Query
@extractor Header
## RequestContent Extractors
@extractor Json
@extractor JsonFragment
@extractor Form
@extractor Body
function extracttype(::Type{U}) where {T, U <: Extractor{T}}
return T
end
function isextractor(::Param{T}) where {T}
return T <: Extractor
end
function isreqparam(::Param{U}) where {T, U <: Extractor{T}}
return U <: Union{Path{T}, Query{T}, Header{T}}
end
function isbodyparam(::Param{U}) where {T, U <: Extractor{T}}
return U <: Union{Json{T}, JsonFragment{T}, Form{T}, Body{T}}
end
# Generic validation function - if no validate function is defined for a type, return true
validate(type::T) where {T} = true
"""
This function will try to validate an instance of a type using both global and local validators.
If both validators pass, the instance is returned. If either fails, an ArgumentError is thrown.
"""
function try_validate(param::Param{U}, instance::T) :: T where {T, U <: Extractor{T}}
# Case 1: Use global validate function - returns true if one isn't defined for this type
if !validate(instance)
impl = Base.which(validate, (T,))
throw(ArgumentError("Validation failed for $(param.name): $T \n|> $instance \n|> $impl"))
end
# Case 2: Use custom validate function from an Extractor (if defined)
if param.hasdefault && param.default isa U && !isnothing(param.default.validate)
if !param.default.validate(instance)
impl = Base.which(param.default.validate, (T,))
throw(ArgumentError("Validation failed for $(param.name): $T \n|> $instance \n|> $impl"))
end
end
return instance
end
"""
Extracts a JSON object from a request and converts it into a custom struct
"""
function extract(param::Param{Json{T}}, request::LazyRequest) :: Json{T} where {T}
instance = JSON3.read(textbody(request), T)
valid_instance = try_validate(param, instance)
return Json(valid_instance)
end
"""
Extracts a part of a json object from the body of a request and converts it into a custom struct
"""
function extract(param::Param{JsonFragment{T}}, request::LazyRequest) :: JsonFragment{T} where {T}
body = Types.jsonbody(request)[param.name]
instance = struct_builder(T, body)
valid_instance = try_validate(param, instance)
return JsonFragment(valid_instance)
end
"""
Extracts the body from a request and convert it into a custom type
"""
function extract(param::Param{Body{T}}, request::LazyRequest) :: Body{T} where {T}
instance = parseparam(T, textbody(request); escape=false)
valid_instance = try_validate(param, instance)
return Body(valid_instance)
end
"""
Extracts a Form from a request and converts it into a custom struct
"""
function extract(param::Param{Form{T}}, request::LazyRequest) :: Form{T} where {T}
form = Types.formbody(request)
instance = struct_builder(T, form)
valid_instance = try_validate(param, instance)
return Form(valid_instance)
end
"""
Extracts path parameters from a request and convert it into a custom struct
"""
function extract(param::Param{Path{T}}, request::LazyRequest) :: Path{T} where {T}
params = Types.pathparams(request)
instance = struct_builder(T, params)
valid_instance = try_validate(param, instance)
return Path(valid_instance)
end
"""
Extracts query parameters from a request and convert it into a custom struct
"""
function extract(param::Param{Query{T}}, request::LazyRequest) :: Query{T} where {T}
params = Types.queryvars(request)
instance = struct_builder(T, params)
valid_instance = try_validate(param, instance)
return Query(valid_instance)
end
"""
Extracts Headers from a request and convert it into a custom struct
"""
function extract(param::Param{Header{T}}, request::LazyRequest) :: Header{T} where {T}
headers = Types.headers(request)
instance = struct_builder(T, headers)
valid_instance = try_validate(param, instance)
return Header(valid_instance)
end
end | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 3813 | module Handlers
using HTTP
using ..Types: Nullable
using ..Core: SPECIAL_METHODS, TYPE_ALIASES
export select_handler, first_arg_type
# Union type of supported Handlers
HandlerArgType = Union{HTTP.Messages.Request, HTTP.WebSockets.WebSocket, HTTP.Streams.Stream}
"""
Determine how to call each handler based on the arguments it takes.
"""
function get_invoker_stategy(has_req_kwarg::Bool, has_path_params::Bool, no_args::Bool)
if has_req_kwarg
if no_args
return function (func::Function, _::HandlerArgType, req::HTTP.Messages.Request, _::Nullable{Vector})
func(; request=req)
end
elseif has_path_params
return function (func::Function, arg::HandlerArgType, req::HTTP.Messages.Request, pathParams::Nullable{Vector})
func(arg, pathParams...; request=req)
end
else
return function (func::Function, arg::HandlerArgType, req::HTTP.Messages.Request, _::Nullable{Vector})
func(arg; request=req)
end
end
else
if no_args
return function (func::Function, _::HandlerArgType, _::HTTP.Messages.Request, _::Nullable{Vector})
func()
end
elseif has_path_params
return function (func::Function, arg::HandlerArgType, _::HTTP.Messages.Request, pathParams::Nullable{Vector})
func(arg, pathParams...)
end
else
return function (func::Function, arg::HandlerArgType, _::HTTP.Messages.Request, _::Nullable{Vector})
func(arg)
end
end
end
end
"""
select_handler(::Type{T})
This base case, returns a handler for `HTTP.Request` objects.
"""
function select_handler(::Type{T}, has_req_kwarg::Bool, has_path_params::Bool; no_args=false) where {T}
invoker = get_invoker_stategy(has_req_kwarg, has_path_params, no_args)
function (req::HTTP.Request, func::Function; pathParams::Nullable{Vector}=nothing)
invoker(func, req, req, pathParams)
end
end
"""
select_handler(::Type{HTTP.Streams.Stream})
Returns a handler for `HTTP.Streams.Stream` types
"""
function select_handler(::Type{HTTP.Streams.Stream}, has_req_kwarg::Bool, has_path_params::Bool; no_args=false)
invoker = get_invoker_stategy(has_req_kwarg, has_path_params, no_args)
function (req::HTTP.Request, func::Function; pathParams::Nullable{Vector}=nothing)
invoker(func, req.context[:stream], req, pathParams)
end
end
"""
select_handler(::Type{HTTP.WebSockets.WebSocket})
Returns a handler for `HTTP.WebSockets.WebSocket`types
"""
function select_handler(::Type{HTTP.WebSockets.WebSocket}, has_req_kwarg::Bool, has_path_params::Bool; no_args=false)
invoker = get_invoker_stategy(has_req_kwarg, has_path_params, no_args)
function (req::HTTP.Request, func::Function; pathParams::Nullable{Vector}=nothing)
HTTP.WebSockets.isupgrade(req) && HTTP.WebSockets.upgrade(ws -> invoker(func, ws, req, pathParams), req.context[:stream])
end
end
"""
first_arg_type(method::Method, httpmethod::String)
Determine the type of the first argument of a given method.
If the `httpmethod` is in `Constants.SPECIAL_METHODS`, the function will return the
corresponding type from `TYPE_ALIASES` if it exists, or `Type{HTTP.Request}` as a default.
Otherwise, it will return the type of the second field of the method's signature.
"""
function first_arg_type(method::Method, httpmethod::String) :: Type
if httpmethod in SPECIAL_METHODS
return get(TYPE_ALIASES, httpmethod, HTTP.Request)
else
# either grab the first argument type or default to HTTP.Request
field_types = fieldtypes(method.sig)
return length(field_types) < 2 ? HTTP.Request : field_types[2]
end
end
end | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2447 | module Instances
using RelocatableFolders
export instance
function escape_path_if_windows(path::String)
return Sys.iswindows() ? replace(path, "\\" => "\\\\") : path
end
function fullpath(path::AbstractString) :: String
absolute_path = @path abspath(joinpath(@__DIR__, path))
return absolute_path |> String |> escape_path_if_windows
end
function extract_filename(include_str::String, include_regex::Regex)
# Regular expression to match the pattern include("filename")
match_result = match(include_regex, include_str)
if match_result !== nothing
return match_result.captures[1] # Return the captured filename
end
end
function preprocess_includes(content::String, include_regex::Regex = r"include\(\"(.*)\"\)")
# Function to replace include calls with absolute paths
function replace_include(match)
# Extract the path from the match
path = extract_filename(String(match), include_regex)
absolute_path = fullpath(path)
# Return the updated include call
return "include(\"$absolute_path\")"
end
# Replace all include calls in the content
return replace(content, include_regex => replace_include)
end
"""
load(path::String)
Load a module from a file specified by `path`. The file should define a module.
The module is loaded into the current scope under the name `custom_module`.
"""
function load(path::String)
absolute_path = fullpath(path)
!isfile(absolute_path) && throw("not a valid file")
# Read the file content
content = read(absolute_path, String)
# Preprocess includes to adjust paths
processed_content = preprocess_includes(content)
quote
# Execute the preprocessed content
custom_module = include_string(@__MODULE__, $(processed_content))
using .custom_module
end
end
"""
instance()
Create a new self-containedinstance of the Kitten module.
This done by creating a new unique module at runtime and loading the Kitten module into it.
This results in a unique instance of the Kernel module that can be used independently.
"""
function instance()
# Create the module definition with the macro call for the function definition
mod_def = Expr(:module, false, gensym(),
Expr(:block,
:(using Base),
load("Kitten.jl")
)
)
# Evaluate the module definition to actually create it
return eval(mod_def)
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 10413 | # This is where methods are coupled to a global state
"""
resetstate()
Reset all the internal state variables
"""
function resetstate()
# prevent context reset when created at compile-time
if (@__MODULE__) == Kitten
CONTEXT[] = Kitten.Core.Context()
end
end
function serve(; kwargs...)
async = Base.get(kwargs, :async, false)
try
# return the resulting HTTP.Server object
return Kitten.Core.serve(CONTEXT[]; kwargs...)
finally
# close server on exit if we aren't running asynchronously
if !async
terminate()
# only reset state on exit if we aren't running asynchronously & are running it interactively
isinteractive() && resetstate()
end
end
end
"""
serveparallel(; middleware::Vector=[], handler=stream_handler, host="127.0.0.1", port=8080, serialize=true, async=false, catch_errors=true, docs=true, metrics=true, kwargs...)
"""
function serveparallel(; kwargs...)
serve(; parallel=true, kwargs...)
end
### Routing Macros ###
"""
@get(path::String, func::Function)
Used to register a function to a specific endpoint to handle GET requests
"""
macro get(path, func)
path, func = adjustparams(path, func)
:(@route [GET] $(esc(path)) $(esc(func)))
end
"""
@post(path::String, func::Function)
Used to register a function to a specific endpoint to handle POST requests
"""
macro post(path, func)
path, func = adjustparams(path, func)
:(@route [POST] $(esc(path)) $(esc(func)))
end
"""
@put(path::String, func::Function)
Used to register a function to a specific endpoint to handle PUT requests
"""
macro put(path, func)
path, func = adjustparams(path, func)
:(@route [PUT] $(esc(path)) $(esc(func)))
end
"""
@patch(path::String, func::Function)
Used to register a function to a specific endpoint to handle PATCH requests
"""
macro patch(path, func)
path, func = adjustparams(path, func)
:(@route [PATCH] $(esc(path)) $(esc(func)))
end
"""
@delete(path::String, func::Function)
Used to register a function to a specific endpoint to handle DELETE requests
"""
macro delete(path, func)
path, func = adjustparams(path, func)
:(@route [DELETE] $(esc(path)) $(esc(func)))
end
"""
@stream(path::String, func::Function)
Used to register a function to a specific endpoint to handle Streaming requests
"""
macro stream(path, func)
path, func = adjustparams(path, func)
:(@route [STREAM] $(esc(path)) $(esc(func)))
end
"""
@websocket(path::String, func::Function)
Used to register a function to a specific endpoint to handle WebSocket connections
"""
macro websocket(path, func)
path, func = adjustparams(path, func)
:(@route [WEBSOCKET] $(esc(path)) $(esc(func)))
end
"""
@route(methods::Array{String}, path::String, func::Function)
Used to register a function to a specific endpoint to handle mulitiple request types
"""
macro route(methods, path, func)
:(route($(esc(methods)), $(esc(path)), $(esc(func))))
end
"""
adjustparams(path, func)
Adjust the order of `path` and `func` based on their types. This is used to support the `do ... end` syntax for
the routing macros.
"""
function adjustparams(path, func)
# case 1: do ... end block syntax was used
if isa(path, Expr) && path.head == :->
func, path
# case 2: regular syntax was used
else
path, func
end
end
### Core Routing Functions ###
function route(methods::Vector{String}, path::Union{String,Function}, func::Function)
for method in methods
Kitten.Core.register(CONTEXT[], method, path, func)
end
end
# This variation supports the do..block syntax
route(func::Function, methods::Vector{String}, path::Union{String,Function}) = route(methods, path, func)
### Special Routing Functions Support for do..end Syntax ###
stream(func::Function, path::String) = route([STREAM], path, func)
stream(func::Function, path::Function) = route([STREAM], path, func)
websocket(func::Function, path::String) = route([WEBSOCKET], path, func)
websocket(func::Function, path::Function) = route([WEBSOCKET], path, func)
### Core Routing Functions Support for do..end Syntax ###
get(func::Function, path::String) = route([GET], path, func)
get(func::Function, path::Function) = route([GET], path, func)
post(func::Function, path::String) = route([POST], path, func)
post(func::Function, path::Function) = route([POST], path, func)
put(func::Function, path::String) = route([PUT], path, func)
put(func::Function, path::Function) = route([PUT], path, func)
patch(func::Function, path::String) = route([PATCH], path, func)
patch(func::Function, path::Function) = route([PATCH], path, func)
delete(func::Function, path::String) = route([DELETE], path, func)
delete(func::Function, path::Function) = route([DELETE], path, func)
"""
@staticfiles(folder::String, mountdir::String, headers::Vector{Pair{String,String}}=[])
Mount all files inside the /static folder (or user defined mount point)
"""
macro staticfiles(folder, mountdir="static", headers=[])
printstyled("@staticfiles macro is deprecated, please use the staticfiles() function instead\n", color=:red, bold=true)
quote
staticfiles($(esc(folder)), $(esc(mountdir)); headers=$(esc(headers)))
end
end
"""
@dynamicfiles(folder::String, mountdir::String, headers::Vector{Pair{String,String}}=[])
Mount all files inside the /static folder (or user defined mount point),
but files are re-read on each request
"""
macro dynamicfiles(folder, mountdir="static", headers=[])
printstyled("@dynamicfiles macro is deprecated, please use the dynamicfiles() function instead\n", color=:red, bold=true)
quote
dynamicfiles($(esc(folder)), $(esc(mountdir)); headers=$(esc(headers)))
end
end
staticfiles(
folder::String,
mountdir::String="static";
headers::Vector=[],
loadfile::Nullable{Function}=nothing
) = Kitten.Core.staticfiles(CONTEXT[].service.router, folder, mountdir; headers, loadfile)
dynamicfiles(
folder::String,
mountdir::String="static";
headers::Vector=[],
loadfile::Nullable{Function}=nothing
) = Kitten.Core.dynamicfiles(CONTEXT[].service.router, folder, mountdir; headers, loadfile)
internalrequest(req::Kitten.Request; middleware::Vector=[], metrics::Bool=false, serialize::Bool=true, catch_errors=true) =
Kitten.Core.internalrequest(CONTEXT[], req; middleware, metrics, serialize, catch_errors)
function router(prefix::String="";
tags::Vector{String}=Vector{String}(),
middleware::Nullable{Vector}=nothing,
interval::Nullable{Real}=nothing,
cron::Nullable{String}=nothing)
return Kitten.Core.router(CONTEXT[], prefix; tags, middleware, interval, cron)
end
mergeschema(route::String, customschema::Dict) = Kitten.Core.mergeschema(CONTEXT[].docs.schema, route, customschema)
mergeschema(customschema::Dict) = Kitten.Core.mergeschema(CONTEXT[].docs.schema, customschema)
"""
getschema()
Return the current internal schema for this app
"""
function getschema()
return CONTEXT[].docs.schema
end
"""
setschema(customschema::Dict)
Overwrites the entire internal schema
"""
function setschema(customschema::Dict)
empty!(CONTEXT[].docs.schema)
merge!(CONTEXT[].docs.schema, customschema)
return
end
"""
@repeat(interval::Real, func::Function)
Registers a repeat task. This will extract either the function name
or the random Id julia assigns to each lambda function.
"""
macro repeat(interval, func)
quote
Kitten.Core.task($(CONTEXT[].tasks.registered_tasks), $(esc(interval)), string($(esc(func))), $(esc(func)))
end
end
"""
@repeat(interval::Real, name::String, func::Function)
This variation provides way manually "name" a registered repeat task. This information
is used by the server on startup to log out all cron jobs.
"""
macro repeat(interval, name, func)
quote
Kitten.Core.task($(CONTEXT[].tasks.registered_tasks), $(esc(interval)), string($(esc(name))), $(esc(func)))
end
end
"""
@cron(expression::String, func::Function)
Registers a function with a cron expression. This will extract either the function name
or the random Id julia assigns to each lambda function.
"""
macro cron(expression, func)
quote
Kitten.Core.cron($(CONTEXT[].cron.registered_jobs), $(esc(expression)), string($(esc(func))), $(esc(func)))
end
end
"""
@cron(expression::String, name::String, func::Function)
This variation provides way manually "name" a registered function. This information
is used by the server on startup to log out all cron jobs.
"""
macro cron(expression, name, func)
quote
Kitten.Core.cron($(CONTEXT[].cron.registered_jobs), $(esc(expression)), string($(esc(name))), $(esc(func)))
end
end
## Cron Job Functions ##
function startcronjobs(ctx::Context)
Kitten.Core.registercronjobs(ctx)
Kitten.Core.startcronjobs(ctx.cron)
end
startcronjobs() = startcronjobs(CONTEXT[])
stopcronjobs(ctx::Context) = Kitten.Core.stopcronjobs(ctx.cron)
stopcronjobs() = stopcronjobs(CONTEXT[])
clearcronjobs(ctx::Context) = Kitten.Core.clearcronjobs(ctx.cron)
clearcronjobs() = clearcronjobs(CONTEXT[])
### Repeat Task Functions ###
function starttasks(context::Context)
Kitten.Core.registertasks(context)
Kitten.Core.starttasks(context.tasks)
end
starttasks() = starttasks(CONTEXT[])
stoptasks(context::Context) = Kitten.Core.stoptasks(context.tasks)
stoptasks() = stoptasks(CONTEXT[])
cleartasks(context::Context) = Kitten.Core.cleartasks(context.tasks)
cleartasks() = cleartasks(CONTEXT[])
### Terminate Function ###
terminate(context::Context) = Kitten.Core.terminate(context)
terminate() = terminate(CONTEXT[])
### Setup Docs Strings ###
for method in [:serve, :terminate, :staticfiles, :dynamicfiles, :internalrequest]
eval(quote
@doc (@doc(Kitten.Core.$method)) $method
end)
end
# Docs Methods
for method in [:router, :mergeschema]
eval(quote
@doc (@doc(Kitten.Core.AutoDoc.$method)) $method
end)
end
# Repeat Task methods
for method in [:starttasks, :stoptasks, :cleartasks]
eval(quote
@doc (@doc(Kitten.Core.RepeatTasks.$method)) $method
end)
end
# Cron methods
for method in [:startcronjobs, :stopcronjobs, :clearcronjobs]
eval(quote
@doc (@doc(Kitten.Core.Cron.$method)) $method
end)
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 9654 | module Metrics
using HTTP
using JSON3
using Dates
using DataStructures
using Statistics
using RelocatableFolders
using ..Util
using ..Types
export MetricsMiddleware, get_history, push_history,
server_metrics,
all_endpoint_metrics,
capture_metrics, bin_and_count_transactions,
bin_transactions, requests_per_unit, avg_latency_per_unit,
timeseries, series_format, error_distribution,
prepare_timeseries_data
struct TimeseriesRecord
timestamp::DateTime
value::Number
end
function push_history(history::History, transaction::HTTPTransaction)
pushfirst!(history, transaction)
end
function get_history(history::History) :: Vector{HTTPTransaction}
return collect(history)
end
# Helper function to calculate percentile
function percentile(values, p)
index = ceil(Int, p / 100 * length(values))
return sort(values)[index]
end
# Function to group HTTPTransaction objects by URI prefix with a maximum depth limit
function group_transactions(transactions::Vector{HTTPTransaction}, max_depth::Int)
# Create a dictionary to store the grouped transactions
grouped_transactions = Dict{String, Vector{HTTPTransaction}}()
for transaction in transactions
# Split the URI by '/' to get the segments
uri_parts = split(transaction.uri, '/')
# Determine the depth and create the prefix
depth = min(length(uri_parts), max_depth + 1)
prefix = join(uri_parts[1:depth], '/')
# Check if the prefix exists in the dictionary, if not, create an empty vector
if !haskey(grouped_transactions, prefix)
grouped_transactions[prefix] = []
end
# Append the transaction to the corresponding prefix
push!(grouped_transactions[prefix], transaction)
end
return grouped_transactions
end
### Helper function to calculate metrics for a set of transactions
function get_transaction_metrics(transactions::Vector{HTTPTransaction})
if isempty(transactions)
return Dict(
"total_requests" => 0,
"avg_latency" => 0,
"min_latency" => 0,
"max_latency" => 0,
"percentile_latency_95th" => 0,
"error_rate" => 0
)
end
total_requests = length(transactions)
latencies = [t.duration for t in transactions if t.duration != 0.0]
successes = [t.success for t in transactions]
has_records = !isempty(latencies)
has_successes = !isempty(successes)
avg_latency = has_records ? mean(latencies) : 0
min_latency = has_records ? minimum(latencies) : 0
max_latency = has_records ? maximum(latencies) : 0
percentile_95_latency = has_records ? percentile(latencies, 95) : 0
total_errors = has_successes ? count(!, successes) : 0
error_rate = total_requests > 0 ? total_errors / total_requests : 0
return Dict(
"total_requests" => total_requests,
"total_errors" => total_errors,
"avg_latency" => avg_latency,
"min_latency" => min_latency,
"max_latency" => max_latency,
"percentile_latency_95th" => percentile_95_latency,
"error_rate" => error_rate
)
end
### Helper function to group transactions by endpoint
function recent_transactions(history::Vector{HTTPTransaction}, ::Nothing) :: Vector{HTTPTransaction}
return history
end
function recent_transactions(history::Vector{HTTPTransaction}, lower_bound::Dates.Period) :: Vector{HTTPTransaction}
current_time = now(UTC)
adjusted = lower_bound + Second(1)
return filter(t -> current_time - t.timestamp <= adjusted, history)
end
# Needs coverage
function recent_transactions(history::Vector{HTTPTransaction}, lower_bound::Dates.DateTime) :: Vector{HTTPTransaction}
adjusted = lower_bound + Second(1)
return filter(t -> t.timestamp >= adjusted, history)
end
"""
Group transactions by URI depth with a maximum depth limit using the function
"""
function all_endpoint_metrics(history::Vector{HTTPTransaction}, lower_bound=Minute(15); max_depth=4)
transactions = recent_transactions(history, lower_bound)
groups = group_transactions(transactions, max_depth)
return Dict(k => get_transaction_metrics(v) for (k,v) in groups)
end
function server_metrics(history::Vector{HTTPTransaction}, lower_bound=Minute(15))
transactions = recent_transactions(history, lower_bound)
get_transaction_metrics(transactions)
end
# Needs coverage
function endpoint_metrics(history::Vector{HTTPTransaction}, endpoint_uri::String)
endpoint_transactions = filter(t -> t.uri == endpoint_uri, history)
return get_transaction_metrics(endpoint_transactions)
end
function error_distribution(history::Vector{HTTPTransaction}, lower_bound=Minute(15))
metrics = all_endpoint_metrics(history, lower_bound)
failed_counts = Dict{String, Int}()
for (group_prefix, transaction_metrics) in metrics
failures = transaction_metrics["total_errors"]
if failures > 0
failed_counts[group_prefix] = get(failed_counts, group_prefix, 0) + failures
end
end
return failed_counts
end
# """
# Helper function used to convert internal data so that it can be viewd by a graph more easily
# """
# function prepare_timeseries_data(unit::Dates.TimePeriod=Second(1))
# function(binned_records::Dict)
# binned_records |> timeseries |> fill_missing_data(unit, fill_to_current=true, sort=false) |> series_format
# end
# end
function prepare_timeseries_data()
function(binned_records::Dict)
binned_records |> timeseries |> series_format
end
end
# function fill_missing_data(unit::Dates.TimePeriod=Second(1); fill_to_current::Bool=false, sort::Bool=true)
# return function(records::Vector{TimeseriesRecord})
# return fill_missing_data(records, unit, fill_to_current=fill_to_current, sort=sort)
# end
# end
# function fill_missing_data(records::Vector{TimeseriesRecord}, unit::Dates.TimePeriod=Second(1); fill_to_current::Bool=false, sort::Bool=true)
# # Ensure the input is sorted by timestamp
# if sort
# sort!(records, by = x -> x.timestamp)
# end
# filled_records = Vector{TimeseriesRecord}()
# last_record_time = nothing # Initialize variable to store the time of the last record
# for i in 1:length(records)
# # Add the current record to the filled_records
# push!(filled_records, records[i])
# last_record_time = records[i].timestamp # Update the time of the last record
# # If this is not the last record, check the gap to the next record
# if i < length(records)
# next_time = records[i+1].timestamp
# while last_record_time + unit < next_time
# last_record_time += unit
# push!(filled_records, TimeseriesRecord(last_record_time, 0))
# end
# end
# end
# # If fill_to_current is true, fill in the gap between the last record and the current time
# if fill_to_current && !isnothing(last_record_time)
# current_time = now(UTC)
# while last_record_time + unit < current_time
# last_record_time += unit
# push!(filled_records, TimeseriesRecord(last_record_time, 0))
# end
# end
# return filled_records
# end
"""
Convert a dictionary of timeseries data into an array of sorted records
"""
function timeseries(data) :: Vector{TimeseriesRecord}
# Convert the dictionary into an array of [timestamp, value] pairs
timestamp_value_pairs = [TimeseriesRecord(k, v) for (k, v) in data]
# Sort the array based on the timestamps (the first element in each pair)
return sort(timestamp_value_pairs, by=x->x.timestamp)
end
"""
Convert a TimeseriesRecord into a matrix format that works better with apex charts
"""
function series_format(data::Vector{TimeseriesRecord}) :: Vector{Vector{Union{DateTime,Number}}}
return [[item.timestamp, item.value] for item in data]
end
"""
Helper function to group transactions within a given timeframe
"""
function bin_transactions(history::Vector{HTTPTransaction}, lower_bound=Minute(15), unit=Minute, strategy=nothing) :: Dict{DateTime,Vector{HTTPTransaction}}
transactions = recent_transactions(history, lower_bound)
binned = Dict{DateTime, Vector{HTTPTransaction}}()
for t in transactions
# create bin's based on the given unit
bin_value = floor(t.timestamp, unit)
if !haskey(binned, bin_value)
binned[bin_value] = [t]
else
push!(binned[bin_value], t)
end
if !isnothing(strategy)
strategy(bin_value, t)
end
end
return binned
end
function requests_per_unit(history::Vector{HTTPTransaction}, unit, lower_bound=Minute(15))
bin_counts = Dict{DateTime, Int}()
function count_transactions(bin, transaction)
bin_counts[bin] = get(bin_counts, bin, 0) + 1
end
bin_transactions(history, lower_bound, unit, count_transactions)
return bin_counts
end
"""
Return the average latency per minute for the server
"""
function avg_latency_per_unit(history::Vector{HTTPTransaction}, unit, lower_bound=Minute(15))
bin_counts = Dict{DateTime, Vector{Number}}()
function strategy(bin, transaction)
if haskey(bin_counts, bin)
push!(bin_counts[bin], transaction.duration)
else
bin_counts[bin] = [transaction.duration]
end
end
bin_transactions(history, lower_bound, unit, strategy)
averages = Dict{DateTime, Number}()
for (k,v) in bin_counts
averages[k] = mean(v)
end
return averages
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2379 | module Middleware
using HTTP
export compose, genkey
"""
This function is used to generate dictionary keys which lookup middleware for routes
"""
function genkey(httpmethod::String, path::String)::String
return "$httpmethod|$path"
end
"""
This function is used to build up the middleware chain for all our endpoints
"""
function buildmiddleware(key::String, handler::Function, globalmiddleware::Vector, custommiddleware::Dict) :: Function
# lookup the middleware for this path
routermiddleware, routemiddleware = get(custommiddleware, key, (nothing, nothing))
# sanitize outputs (either value can be nothing)
routermiddleware = isnothing(routermiddleware) ? [] : routermiddleware
routemiddleware = isnothing(routemiddleware) ? [] : routemiddleware
# initialize our middleware layers
layers::Vector{Function} = [handler]
# append the middleware in reverse order (so when we reduce over it, it's in the correct order)
append!(layers, routemiddleware)
append!(layers, routermiddleware)
append!(layers, globalmiddleware)
# combine all the middleware functions together
return reduce(|>, layers)
end
"""
This function dynamically determines which middleware functions to apply to a request at runtime.
If router or route specific middleware is defined, then it's used instead of the globally defined
middleware.
"""
function compose(router::HTTP.Router, globalmiddleware::Vector, custommiddleware::Dict, middleware_cache::Dict)
return function (handler)
return function (req::HTTP.Request)
innerhandler, path, _ = HTTP.Handlers.gethandler(router, req)
# Check if the current request matches one of our predefined routes
if innerhandler !== nothing
# Check if we already have a cached middleware function for this specific route
key = genkey(req.method, path)
func = get(middleware_cache, key, nothing)
if !isnothing(func)
return func(req)
end
# Combine all the middleware functions together
strategy = buildmiddleware(key, handler, globalmiddleware, custommiddleware)
middleware_cache[key] = strategy
return strategy(req)
end
return handler(req)
end
end
end
end | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 14380 | module Reflection
using StructTypes
using Base: @kwdef
using ..Types
export splitdef, struct_builder, extract_struct_info
"""
Helper function to access the underlying value of any global references
"""
function getargvalue(arg)
return isa(arg, GlobalRef) ? getfield(arg.mod, arg.name) : arg
end
"""
Return all parameter name & types and keyword argument names from a function
"""
function getsignames(f::Function; start=2)
return getsignames(methods(f), start=start)
end
"""
Return parameter name & types and keyword argument names from a list of methods
"""
function getsignames(func_methods::Base.MethodList; start=2)
arg_names = Vector{Symbol}()
arg_types = Vector{Type}()
kwarg_names = Vector{Symbol}()
# track position & types of parameters in the function signature
positions = Dict{Symbol, Int}()
for m in func_methods
argnames = Base.method_argnames(m)[start:end]
argtypes = fieldtypes(m.sig)[start:end]
for (i, (argname, type)) in enumerate(zip(argnames, argtypes))
if argname β arg_names
push!(arg_names, argname)
push!(arg_types, type)
positions[argname] = i
end
end
for kwarg in Base.kwarg_decl(m)
if kwarg β kwarg_names && kwarg != :...
push!(kwarg_names, kwarg)
end
end
end
return arg_names, arg_types, kwarg_names
end
function walkargs(predicate::Function, expr)
if isdefined(expr, :args)
for arg in expr.args
if predicate(arg)
return true
end
walkargs(predicate, arg)
end
end
return false
end
function reconstruct(info::Core.CodeInfo, func_name::Symbol)
# Track which index the function signature can be found on
sig_index = nothing
# create a dictionary of statements
statements = Dict{Core.SSAValue, Any}()
assignments = Dict{Core.SlotNumber, Any}()
# create a unique flag for each call to mark missing values
NO_VALUES = gensym()
function rebuild!(values::AbstractVector)
return rebuild!.(values)
end
function rebuild!(expr::Expr)
expr.args = rebuild!.(expr.args)
return expr
end
function rebuild!(ssa::Core.SSAValue)
return rebuild!(statements[ssa])
end
function rebuild!(slot::Core.SlotNumber)
value = get(assignments, slot, NO_VALUES)
return value == NO_VALUES ? slot : rebuild!(value)
end
function rebuild!(value::Any)
return value
end
for (index, expr) in enumerate(info.code)
ssa_index = Core.SSAValue(index)
statements[ssa_index] = expr
if expr isa Expr
if expr.head == :(=)
(lhs, rhs) = expr.args
try
assignments[lhs] = eval(rebuild!(rhs))
catch
end
# identify the function signature
elseif isdefined(expr, :args) && expr.head == :call
for arg in expr.args
if arg isa Core.SlotNumber && arg.id == 1
sig_index = ssa_index
end
end
end
end
end
# Recursively build an expression of the actual type of each argument in the function signature
evaled_sig = rebuild!(statements[sig_index])
default_values = []
for arg in evaled_sig.args
contains_func_name = walkargs(arg) do x
# Super generic check to see if the function name is in the expression
return contains("$x", "$func_name")
end
if contains_func_name || arg == NO_VALUES || arg isa GlobalRef && contains("$(arg.name)", "$func_name")
continue
end
if arg isa Expr
push!(default_values, eval(arg))
else
push!(default_values, arg)
end
end
return default_values
end
"""
Returns true if the CodeInfo object has a function signature
Most funtion signatures follow this general pattern
- The second to last expression is used as the function signature
- The last argument is a Return node
Below are a couple different examples of this in pattern in action:
# Standard function signature
CodeInfo(
1 β %1 = (#self#)(req, a, path, qparams, 23)
βββ return %1
)
# Extractor example (as a default value)
CodeInfo(
1 β #22 = %new(Main.RunTests.ExtractorTests.:(var"#22#37"))
β %2 = #22
β %3 = Main.RunTests.ExtractorTests.Header(Main.RunTests.ExtractorTests.Sample, %2)
β %4 = (#self#)(req, %3)
βββ return %4
)
# This kind of function signature happens when a keyword argument is defined without at default value
CodeInfo(
1 β %1 = "default"
β c = %1
β %3 = true
β d = %3
β %5 = Core.UndefKeywordError(:request)
β %6 = Core.throw(%5)
β request = %6
β %8 = Core.getfield(#self#, Symbol("#8#9"))
β %9 = c
β %10 = d
β %11 = request
β %12 = (%8)(%9, %10, %11, #self#, a, b)
βββ return %12
)
"""
function has_sig_expr(c::Core.CodeInfo) :: Bool
statements_length = length(c.code)
# prevent index out of bounds
if statements_length < 2
return false
end
# check for our pattern of a function signature followed by a return statement
last_expr = c.code[statements_length]
second_to_last_expr = c.code[statements_length - 1]
if last_expr isa Core.ReturnNode && second_to_last_expr isa Expr && second_to_last_expr.head == :call
# recursivley search expression to see if we have a SlotNumber(1) in the args
return walkargs(second_to_last_expr) do arg
return isa(arg, Core.SlotNumber) && arg.id == 1
end
end
return false
end
"""
Given a list of CodeInfo objects, extract any default values assigned to parameters & keyword arguments
"""
function extract_defaults(info::Vector{Core.CodeInfo}, func_name::Symbol, param_names::Vector{Symbol}, kwarg_names::Vector{Symbol})
# These store the mapping between parameter names and their default values
param_defaults = Dict()
kwarg_defaults = Dict()
# Given the params, we can take an educated guess and map the slot number to the parameter name
slot_mapping = Dict(i + 1 => p for (i, p) in enumerate(vcat(param_names, kwarg_names)))
# skip parsing if no parameters or keyword arguments are found
if isempty(param_names) && isempty(kwarg_names)
return param_defaults, kwarg_defaults
end
for c in info
# skip code info objects that don't have a function signature
if !has_sig_expr(c)
continue
end
# rebuild the function signature with the default values included
sig_args = reconstruct(c, func_name)
sig_length = length(sig_args)
self_index = findfirst([isa(x, Core.SlotNumber) && x.id == 1 for x in sig_args])
for (index, arg) in enumerate(sig_args)
# for keyword arguments
if index < self_index
# derive the current slot name
slot_number = sig_length - abs(self_index - index) + 1
slot_name = slot_mapping[slot_number]
# don't store slot numbers when no default is given
value = getargvalue(arg)
if !isa(value, Core.SlotNumber)
kwarg_defaults[slot_name] = value
end
# for regular arguments
elseif index > self_index
# derive the current slot name
slot_number = abs(self_index - index) + 1
slot_name = slot_mapping[slot_number]
# don't store slot numbers when no default is given
value = getargvalue(arg)
if !isa(value, Core.SlotNumber)
param_defaults[slot_name] = value
end
end
end
end
return param_defaults, kwarg_defaults
end
# Return the more specific type
function select_type(t1::Type, t2::Type)
# case 1: only t1 is any
if t1 == Any && t2 != Any
return t2
# case 2: only t2 is any
elseif t2 == Any && t1 != Any
return t1
# case 3: Niether / Both types are Any, chose the more specific type
else
if t1 <: t2
return t1
elseif t2 <: t1
return t2
else
# if the types are the same, return the first type
return t1
end
end
end
# Merge two parameter objects, defaultint to the original params value
function mergeparams(p1::Param, p2::Param) :: Param
return Param(
name = p1.name,
type = select_type(p1.type, p2.type),
default = coalesce(p1.default, p2.default),
hasdefault = p1.hasdefault || p2.hasdefault
)
end
"""
Used to extract the function signature from regular Julia functions.
"""
function splitdef(f::Function; start=1)
method_defs = methods(f)
func_name = first(method_defs).name
return splitdef(Base.code_lowered(f), methods(f), func_name, start=start)
end
"""
Used to extract the function signature from regular Julia Structs.
This function merges the signature map at the end, because it's common
for structs to have multiple constructors with the same parameter names as both
keyword args and regular args.
"""
function splitdef(t::DataType; start=1)
results = splitdef(Base.code_lowered(t), methods(t), nameof(t), start=start)
sig_map = Dict{Symbol,Param}()
for param in results.sig
# merge parameters with the same name
if haskey(sig_map, param.name)
sig_map[param.name] = mergeparams(sig_map[param.name], param)
# add unique parameter to the map
else
sig_map[param.name] = param
end
end
merge!(results.sig_map, sig_map)
return results
end
function splitdef(info::Vector{Core.CodeInfo}, method_defs::Base.MethodList, func_name::Symbol; start=1)
# Extract parameter names and types
param_names, param_types, kwarg_names = getsignames(method_defs)
# Extract default values
param_defaults, kwarg_defaults = extract_defaults(info, func_name, param_names, kwarg_names)
# Create a list of Param objects from parameters
params = Vector{Param}()
for (name, type) in zip(param_names, param_types)
if haskey(param_defaults, name)
# inferr the type of the parameter based on the default value
param_default = param_defaults[name]
inferred_type = type == Any ? typeof(param_default) : type
push!(params, Param(name=name, type=inferred_type, default=param_default, hasdefault=true))
else
push!(params, Param(name=name, type=type))
end
end
# Create a list of Param objects from keyword arguments
keyword_args = Vector{Param}()
for name in kwarg_names
# Don't infer the type of the keyword argument, since julia doesn't support types on kwargs
if haskey(kwarg_defaults, name)
push!(keyword_args, Param(name=name, type=Any, default=kwarg_defaults[name], hasdefault=true))
else
push!(keyword_args, Param(name=name, type=Any))
end
end
sig_params = vcat(params, keyword_args)[start:end]
return (
name = func_name,
args = params[start:end],
kwargs = keyword_args[start:end],
sig = sig_params,
sig_map = Dict{Symbol,Param}(param.name => param for param in sig_params)
)
end
"""
has_kwdef_constructor(T::Type) :: Bool
Returns true if type `T` has a constructor that takes only keyword arguments and matches the order and field names of `T`.
Otherwise, it returns `false`.
Practically, this check is used to check if `@kwdef` was used to define the struct.
"""
function has_kwdef_constructor(T::Type) :: Bool
fieldnames = Base.fieldnames(T)
for constructor in methods(T)
if length(Base.method_argnames(constructor)) == 1 &&
Tuple(Base.kwarg_decl(constructor)) == fieldnames
return true
end
end
return false
end
# Function to extract field names, types, and default values
function extract_struct_info(T::Type)
field_names = fieldnames(T)
type_map = Dict(name => fieldtype(T, name) for name in field_names)
return (names=field_names, map=type_map)
end
function parsetype(target_type::Type{T}, value::Any) :: T where {T}
if value isa T
return value
elseif value isa AbstractString
return parse(target_type, value)
else
return convert(target_type, value)
end
end
"""
struct_builder(::Type{T}, parameters::Dict{String,String}) where {T}
Constructs an object of type `T` using the parameters in the dictionary `parameters`.
"""
function struct_builder(::Type{T}, params::AbstractDict) :: T where {T}
has_kwdef = has_kwdef_constructor(T)
params_with_symbols = Dict(Symbol(k) => v for (k, v) in params)
if has_kwdef
# case 1: Use slower converter to handle structs with default values
return kwarg_struct_builder(T, params_with_symbols)
else
# case 2: Use faster converter to handle structs with no defaults
return StructTypes.constructfrom(T, params_with_symbols)
end
end
"""
kwarg_struct_builder(TargetType::Type{T}, params::AbstractDict) where {T}
"""
function kwarg_struct_builder(TargetType::Type{T}, params::AbstractDict) where {T}
info = extract_struct_info(TargetType)
param_dict = Dict{Symbol, Any}()
for param_name in info.names
# ignore unkown parameters
if haskey(params, param_name)
param_value = params[param_name]
target_type = info.map[param_name]
# Figure out how to parse the current param
if target_type == Any || target_type == String
parsed_value = param_value
elseif isstructtype(target_type)
parsed_value = struct_builder(target_type, param_value)
else
parsed_value = parsetype(target_type, param_value)
end
param_dict[param_name] = parsed_value
end
end
return TargetType(;param_dict...)
end
end | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2155 | module RepeatTasks
using HTTP
using ..Types: RegisteredTask, TaskDefinition, ActiveTask
using ..AppContext: TasksContext
export starttasks, stoptasks, cleartasks, task
"""
Create a repeat task and register it with the tasks context
"""
function task(repeattasks::Set{RegisteredTask}, interval::Real, name::String, f::Function)
task_id = hash((name, interval, f))
task = RegisteredTask(task_id, name, interval, f)
push!(repeattasks, task)
end
"""
starttasks()
Start all background repeat tasks
"""
function starttasks(tasks::TasksContext)
# exit function early if no tasks are register
if isempty(tasks.registered_tasks)
return
end
# pull out all ids for the current running tasks
running_tasks = Set{UInt}(task.id for task in tasks.active_tasks)
# filter out any tasks that are already running
filtered_tasks = filter(tasks.registered_tasks) do repeattask
if repeattask.id in running_tasks
printstyled("[ Task: $(repeattask.name) is already running\n", color = :yellow)
return false
else
return true
end
end
# exit function early if no tasks to start
if isempty(filtered_tasks)
return
end
# Start any remaining tasks
println()
printstyled("[ Starting $(length(filtered_tasks)) Repeat Task(s)\n", color = :magenta, bold = true)
for task in filtered_tasks
printstyled("[ Task: ", color = :magenta, bold = true)
println("{ interval: $(task.interval) seconds, name: $(task.name) }")
action = (timer) -> task.action()
timer = Timer(action, 0, interval=task.interval)
push!(tasks.active_tasks, ActiveTask(task.id, timer))
end
end
"""
stoptasks()
Stop all background repeat tasks
"""
function stoptasks(tasks::TasksContext)
for task in tasks.active_tasks
if isopen(task.timer)
close(task.timer)
end
end
empty!(tasks.active_tasks)
end
"""
cleartasks(ct::Context)
Clear any stored repeat task definitions
"""
function cleartasks(tasks::TasksContext)
empty!(tasks.registered_tasks)
end
end | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 4326 | module RouterHOF
using HTTP
using ..Middleware: genkey
using ..AppContext: Context, Documenation
using ..Types: TaggedRoute, TaskDefinition, CronDefinition, Nullable
export router
"""
This functions assists registering routes with a specific prefix.
You can optionally assign tags either at the prefix and/or route level which
are used to group and organize the autogenerated documentation
"""
function router(ctx::Context, prefix::String="";
tags::Vector{String}=Vector{String}(),
middleware::Nullable{Vector}=nothing,
interval::Nullable{Real}=nothing,
cron::Nullable{String}=nothing)
return createrouter(ctx, prefix, tags, middleware, interval, cron)
end
function createrouter(ctx::Context, prefix::String,
routertags::Vector{String},
routermiddleware::Nullable{Vector},
routerinterval::Nullable{Real},
routercron::Nullable{String}=nothing)
# appends a "/" character to the given string if doesn't have one.
function fixpath(path::String)
path = String(strip(path))
if !isnothing(path) && !isempty(path) && path !== "/"
return startswith(path, "/") ? path : "/$path"
end
return ""
end
# This function takes input from the user next to the request handler
return function (path=nothing;
tags::Vector{String}=Vector{String}(),
middleware::Nullable{Vector}=nothing,
interval::Nullable{Real}=routerinterval,
cron::Nullable{String}=routercron)
# this is called inside the @register macro (only it knows the exact httpmethod associated with each path)
return function (httpmethod::String)
"""
This scenario can happen when the user passes a router object directly like so:
@get router("/math/power/{a}/{b}") function (req::HTTP.Request, a::Float64, b::Float64)
return a ^ b
end
Under normal circumstances, the function returned by the router call is used when registering routes.
However, in this specific case, the call to router returns a higher-order function (HOF) that's nested one
layer deeper than expected.
Due to the way we call these functions to derive the path for the currently registered route,
the path argument can sometimes be mistakenly set to the HTTP method (e.g., "GET", "POST").
This can lead to the path getting concatenated with the HTTP method string.
To account for this specific use case, we've added a check in the inner function to verify whether
path matches the current passed in httpmethod. If it does, we assume that path has been incorrectly
set to the HTTP method, and we update path to use the router prefix instead.
"""
if path === httpmethod
path = prefix
else
# combine the current routers prefix with this specfic path
path = !isnothing(path) ? "$(fixpath(prefix))$(fixpath(path))" : fixpath(prefix)
end
if !(isnothing(routermiddleware) && isnothing(middleware))
# add both router & route-sepecific middleware
ctx.service.custommiddleware[genkey(httpmethod, path)] = (routermiddleware, middleware)
end
# register interval for this route
if !isnothing(interval) && interval >= 0.0
task = TaskDefinition(path, httpmethod, interval)
push!(ctx.tasks.task_definitions, task)
end
# register cron expression for this route
if !isnothing(cron) && !isempty(cron)
job = CronDefinition(path, httpmethod, cron)
push!(ctx.cron.job_definitions, job)
end
combinedtags = [tags..., routertags...]
# register tags
if !haskey(ctx.docs.taggedroutes, path)
ctx.docs.taggedroutes[path] = TaggedRoute([httpmethod], combinedtags)
else
combinedmethods = vcat(httpmethod, ctx.docs.taggedroutes[path].httpmethods)
ctx.docs.taggedroutes[path] = TaggedRoute(combinedmethods, combinedtags)
end
#return path
return path
end
end
end
end | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 3633 | module Types
"""
This module holds Structs that are used throughout the application
"""
using HTTP
using Sockets
using JSON3
using Dates
using Base: @kwdef
using DataStructures: CircularDeque
using ..Util
export Server, History, HTTPTransaction, TaggedRoute, Nullable,
ActiveTask, RegisteredTask, TaskDefinition,
ActiveCron, RegisteredCron, CronDefinition,
Param, isrequired, LazyRequest, headers, pathparams, queryvars, jsonbody, formbody, textbody
const Nullable{T} = Union{T, Nothing}
# Represents a running task
struct ActiveTask
id :: UInt
timer :: Timer
end
struct RegisteredTask
id :: UInt
name :: String
interval:: Real
action :: Function
end
# A task defined through the router() HOF
struct TaskDefinition
path :: String
httpmethod :: String
interval :: Real
end
# A cron job defined through the router() HOF
struct CronDefinition
path :: String
httpmethod :: String
expression :: String
end
struct RegisteredCron
id :: UInt
expression :: String
name :: String
action :: Function
end
# Represents a running cron job
struct ActiveCron
id :: UInt
job :: RegisteredCron
end
struct TaggedRoute
httpmethods :: Vector{String}
tags :: Vector{String}
end
struct HTTPTransaction
# Intristic Properties
ip :: String
uri :: String
timestamp :: DateTime
# derived properties
duration :: Float64
success :: Bool
status :: Int16
error_message :: Nullable{String}
end
const Server = HTTP.Server
const History = CircularDeque{HTTPTransaction}
@kwdef struct Param{T}
name::Symbol
type::Type{T}
default::Union{T, Missing} = missing
hasdefault::Bool = false
end
function isrequired(p::Param{T}) where T
return !p.hasdefault || (ismissing(p.default) && !(T <: Missing))
end
# Lazily init frequently used components of a request to be used between parameters when parsing
@kwdef struct LazyRequest
request :: HTTP.Request
headers = Ref{Nullable{Dict{String,String}}}(nothing)
pathparams = Ref{Nullable{Dict{String,String}}}(nothing)
queryparams = Ref{Nullable{Dict{String,String}}}(nothing)
formbody = Ref{Nullable{Dict{String,String}}}(nothing)
jsonbody = Ref{Nullable{JSON3.Object}}(nothing)
textbody = Ref{Nullable{String}}(nothing)
end
function headers(req::LazyRequest) :: Nullable{Dict{String,String}}
if isnothing(req.headers[])
req.headers[] = Dict(String(k) => String(v) for (k,v) in HTTP.headers(req.request))
end
return req.headers[]
end
function pathparams(req::LazyRequest) :: Nullable{Dict{String,String}}
if isnothing(req.pathparams[])
req.pathparams[] = HTTP.getparams(req.request)
end
return req.pathparams[]
end
function queryvars(req::LazyRequest) :: Nullable{Dict{String,String}}
if isnothing(req.queryparams[])
req.queryparams[] = Util.queryparams(req.request)
end
return req.queryparams[]
end
function jsonbody(req::LazyRequest) :: Nullable{JSON3.Object}
if isnothing(req.jsonbody[])
req.jsonbody[] = json(req.request)
end
return req.jsonbody[]
end
function formbody(req::LazyRequest) :: Nullable{Dict{String,String}}
if isnothing(req.formbody[])
req.formbody[] = formdata(req.request)
end
return req.formbody[]
end
function textbody(req::LazyRequest) :: Nullable{String}
if isnothing(req.textbody[])
req.textbody[] = text(req.request)
end
return req.textbody[]
end
end | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 194 | module Util
# Bring all our utilities under one module
include("utilities/bodyparsers.jl");
include("utilities/render.jl");
include("utilities/misc.jl");
include("utilities/fileutil.jl");
end | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2331 | using Requires
const PNG = MIME"image/png"()
const SVG = MIME"image/svg+xml"()
const PDF = MIME"application/pdf"()
const HTML = MIME"text/html"()
"""
response(content::String, status=200, headers=[]) :: HTTP.Response
Convert a template string `content` into a valid HTTP Response object.
The content type header is automatically generated based on the content's mimetype
- `content`: The string content to be included in the HTTP response body.
- `status`: The HTTP status code (default is 200).
- `headers`: Additional HTTP headers to include (default is an empty array).
Returns an `HTTP.Response` object with the specified content, status, and headers.
"""
function response(content::String, status=200, headers=[]; detect=true) :: HTTP.Response
response = HTTP.Response(status, headers, content)
detect && HTTP.setheader(response, "Content-Type" => HTTP.sniff(content))
HTTP.setheader(response, "Content-Length" => string(sizeof(content)))
return response
end
function __init__()
################################################################
# Serialization Extensions #
################################################################
@require ProtoBuf = "3349acd9-ac6a-5e09-bcdb-63829b23a429" include("serialization/protobuf.jl")
################################################################
# Templating Extensions #
################################################################
@require Mustache="ffc61752-8dc7-55ee-8c37-f3e9cdd09e70" include("templating/mustache.jl")
@require OteraEngine="b2d7f28f-acd6-4007-8b26-bc27716e5513" include("templating/oteraengine.jl")
################################################################
# Plotting Extensions #
################################################################
@require CairoMakie="13f3f980-e62b-5c42-98c6-ff1f3baf88f0" include("plotting/cairomakie.jl")
@require Bonito="824d6782-a2ef-11e9-3a09-e5662e0c26f8" include("plotting/bonito.jl")
@require WGLMakie="276b4fcb-3e11-5398-bf8b-a0c2d153d008" begin
@require Bonito="824d6782-a2ef-11e9-3a09-e5662e0c26f8" begin
include("plotting/wglmakie.jl")
end
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 968 | import HTTP
import .Core.Util: html # import the html function from util so we can override it
import .Bonito: Page, App
export html
"""
Converts a Figure object to the designated MIME type and wraps it inside an HTTP response.
"""
function response(content::App, mime_type::MIME, status::Int, headers::Vector)
# Force inlining all data & js dependencies
Page(exportable=true, offline=true)
# Convert & load the figure into an IOBuffer
io = IOBuffer()
show(io, mime_type, content)
body = take!(io)
# format the response
resp = HTTP.Response(status, headers, body)
HTTP.setheader(resp, "Content-Type" => string(mime_type))
HTTP.setheader(resp, "Content-Length" => string(sizeof(body)))
return resp
end
"""
html(app::Bonito.App) :: HTTP.Response
Convert a Bonito.App to HTML and wrap it inside an HTTP response.
"""
html(app::App, status=200, headers=[]) :: HTTP.Response = response(app, HTML, status, headers)
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 1524 | import HTTP
import .CairoMakie: Figure
import .Core.Util: html # import the html function from util so we can override it
export png, svg, pdf, html
"""
Converts a Figure object to the designated MIME type and wraps it inside an HTTP response.
"""
function response(fig::Figure, mime_type::MIME, status::Int, headers::Vector) :: HTTP.Response
# Convert & load the figure into an IOBuffer
io = IOBuffer()
show(io, mime_type, fig)
body = take!(io)
# format the response
resp = HTTP.Response(status, headers, body)
HTTP.setheader(resp, "Content-Type" => string(mime_type))
HTTP.setheader(resp, "Content-Length" => string(sizeof(body)))
return resp
end
"""
svg(fig::Figure) :: HTTP.Response
Convert a figure to an PNG and wrap it inside an HTTP response.
"""
png(fig::Figure, status=200, headers=[]) :: HTTP.Response = response(fig, PNG, status, headers)
"""
svg(fig::Figure) :: HTTP.Response
Convert a figure to an SVG and wrap it inside an HTTP response.
"""
svg(fig::Figure, status=200, headers=[]) :: HTTP.Response = response(fig, SVG, status, headers)
"""
pdf(fig::Figure) :: HTTP.Response
Convert a figure to a PDF and wrap it inside an HTTP response.
"""
pdf(fig::Figure, status=200, headers=[]) :: HTTP.Response = response(fig, PDF, status, headers)
"""
html(fig::Figure) :: HTTP.Response
Convert a figure to HTML and wrap it inside an HTTP response.
"""
html(fig::Figure, status=200, headers=[]) :: HTTP.Response = response(fig, HTML, status, headers) | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 1026 | import HTTP
import .Core.Util: html # import the html function from util so we can override it
import .WGLMakie.Makie: FigureLike
import .Bonito: Page, App
export html
"""
Converts a Figure object to the designated MIME type and wraps it inside an HTTP response.
"""
function response(content::FigureLike, mime_type::MIME, status::Int, headers::Vector)
# Force inlining all data & js dependencies
Page(exportable=true, offline=true)
# Convert & load the figure into an IOBuffer
io = IOBuffer()
show(io, mime_type, content)
body = take!(io)
# format the response
resp = HTTP.Response(status, headers, body)
HTTP.setheader(resp, "Content-Type" => string(mime_type))
HTTP.setheader(resp, "Content-Length" => string(sizeof(body)))
return resp
end
"""
html(fig::Makie.FigureLike) :: HTTP.Response
Convert a Makie figure to HTML and wrap it inside an HTTP response.
"""
html(fig::FigureLike, status=200, headers=[]) :: HTTP.Response = response(fig, HTML, status, headers)
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2993 | import HTTP
import .ProtoBuf: encode, decode, ProtoDecoder, ProtoEncoder
import .Core.Extractors: Extractor, extract, try_validate
export protobuf, ProtoBuffer, extract
"""
protobuf(request::HTTP.Request, type::Type{T}) :: T where {T}
Decode a protobuf message from the body of an HTTP request.
# Arguments
- `request`: An HTTP request object containing the protobuf message in its body.
- `type`: The type of the protobuf message to decode.
# Returns
- The decoded protobuf message of the specified type.
"""
function protobuf(request::HTTP.Request, type::Type{T}) :: T where {T}
io = IOBuffer(request.body)
return decode(ProtoDecoder(io), type)
end
function protobuf(response::HTTP.Response, type::Type{T}) :: T where {T}
io = IOBuffer(response.body)
return decode(ProtoDecoder(io), type)
end
"""
protobuf(content::T, url::String, method::String = "POST") :: HTTP.Request where {T}
Encode a protobuf message into the body of an HTTP.Request
# Arguments
- `content`: The protobuf message to encode.
- `target`: The target (URL) to which the request will be sent.
- `method`: The HTTP method for the request (default is "POST").
- `headers`: The HTTP headers for the request (default is an empty list).
# Returns
- An HTTP request object with the encoded protobuf message in its body.
"""
function protobuf(content::T, target::String; method = "POST", headers = []) :: HTTP.Request where {T}
io = IOBuffer()
encode(ProtoEncoder(io), content)
body = take!(io)
# Format the request
request = HTTP.Request(method, target, headers, body)
HTTP.setheader(request, "Content-Type" => "application/octet-stream")
HTTP.setheader(request, "Content-Length" => string(sizeof(body)))
return request
end
"""
protobuf(content::T; status = 200, headers = []) :: HTTP.Response where {T}
Encode a protobuf message into the body of an HTTP.Response
# Arguments
- `content`: The protobuf message to encode.
- `status`: The HTTP status code for the response (default is 200).
- `headers`: The HTTP headers for the response (default is an empty list).
# Returns
- An HTTP response object with the encoded protobuf message in its body.
"""
function protobuf(content::T; status = 200, headers = []) :: HTTP.Response where {T}
io = IOBuffer()
encode(ProtoEncoder(io), content)
body = take!(io)
# Format the response
response = HTTP.Response(status, headers, body = body)
HTTP.setheader(response, "Content-Type" => "application/octet-stream")
HTTP.setheader(response, "Content-Length" => string(sizeof(body)))
return response
end
struct ProtoBuffer{T} <: Extractor{T}
payload::T
end
"""
Extracts a Protobuf message from a request and converts it into a custom struct
"""
function extract(param::Param{ProtoBuffer{T}}, request::LazyRequest) :: ProtoBuffer{T} where {T}
instance = protobuf(request.request, T)
valid_instance = try_validate(param, instance)
return ProtoBuffer(valid_instance)
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 3088 | using HTTP
using MIMEs
using .Mustache
export mustache
"""
mustache(template::String; kwargs...)
Create a function that renders a Mustache `template` string with the provided `kwargs`.
If `template` is a file path, it reads the file content as the template string.
Returns a function that takes a dictionary `data`, optional `status`, and `headers`, and
returns an HTTP Response object with the rendered content.
To get more info read the docs here: https://github.com/jverzani/Mustache.jl
"""
function mustache(template::String; mime_type=nothing, from_file=false, kwargs...)
mime_is_known = !isnothing(mime_type)
# Case 1: a path to a file was passed
if from_file
if mime_is_known
return open(io -> mustache(io; mime_type=mime_type, kwargs...), template)
else
# deterime the mime type based on the extension type
content_type = mime_from_path(template, MIME"application/octet-stream"()) |> contenttype_from_mime
return open(io -> mustache(io; mime_type=content_type, kwargs...), template)
end
end
# Case 2: A string template was passed directly
function(data::AbstractDict = Dict(); status=200, headers=[])
content = Mustache.render(template, data; kwargs...)
resp_headers = mime_is_known ? [["Content-Type" => mime_type]; headers] : headers
response(content, status, resp_headers; detect=!mime_is_known)
end
end
"""
mustache(tokens::Mustache.MustacheTokens; kwargs...)
Create a function that renders a Mustache template defined by `tokens` with the provided `kwargs`.
Returns a function that takes a dictionary `data`, optional `status`, and `headers`, and
returns an HTTP Response object with the rendered content.
To get more info read the docs here: https://github.com/jverzani/Mustache.jl
"""
function mustache(tokens::Mustache.MustacheTokens; mime_type=nothing, kwargs...)
mime_is_known = !isnothing(mime_type)
return function(data::AbstractDict = Dict(); status=200, headers=[])
content = Mustache.render(tokens, data; kwargs...)
resp_headers = mime_is_known ? [["Content-Type" => mime_type]; headers] : headers
response(content, status, resp_headers; detect=!mime_is_known)
end
end
"""
mustache(file::IO; kwargs...)
Create a function that renders a Mustache template from a file `file` with the provided `kwargs`.
Returns a function that takes a dictionary `data`, optional `status`, and `headers`, and
returns an HTTP Response object with the rendered content.
To get more info read the docs here: https://github.com/jverzani/Mustache.jl
"""
function mustache(file::IO; mime_type=nothing, kwargs...)
template = read(file, String)
mime_is_known = !isnothing(mime_type)
return function(data::AbstractDict = Dict(); status=200, headers=[])
content = Mustache.render(template, data; kwargs...)
resp_headers = mime_is_known ? [["Content-Type" => mime_type]; headers] : headers
response(content, status, resp_headers; detect=!mime_is_known)
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2707 | using HTTP
using MIMEs
using .OteraEngine
export otera
"""
otera(template::String; kwargs...)
Create a function that renders an Otera `template` string with the provided `kwargs`.
If `template` is a file path, it reads the file content as the template string.
Returns a function that takes a dictionary `data` (default is an empty dictionary),
optional `status`, `headers`, and `template_kwargs`, and returns an HTTP Response object
with the rendered content.
To get more info read the docs here: https://github.com/MommaWatasu/OteraEngine.jl
"""
function otera(template::String; mime_type=nothing, from_file=false, kwargs...)
mime_is_known = !isnothing(mime_type)
# Case 1: a path to a file was passed
if from_file
if mime_is_known
return open(io -> otera(io; mime_type=mime_type, kwargs...), template)
else
# deterime the mime type based on the extension type
content_type = mime_from_path(template, MIME"application/octet-stream"()) |> contenttype_from_mime
return open(io -> otera(io; mime_type=content_type, kwargs...), template)
end
end
# Case 2: A string template was passed directly
tmp = Template(template, path=from_file; kwargs...)
return function(data = nothing; status=200, headers=[], template_kwargs...)
combined_kwargs = Dict{Symbol, Any}(template_kwargs)
if data !== nothing
combined_kwargs[:init] = data
end
content = tmp(; combined_kwargs...)
resp_headers = mime_is_known ? [["Content-Type" => mime_type]; headers] : headers
response(content, status, resp_headers; detect=!mime_is_known)
end
end
"""
otera(file::IO; kwargs...)
Create a function that renders an Otera template from a file `file` with the provided `kwargs`.
Returns a function that takes a dictionary `data`, optional `status`, `headers`, and `template_kwargs`,
and returns an HTTP Response object with the rendered content.
To get more info read the docs here: https://github.com/MommaWatasu/OteraEngine.jl
"""
function otera(file::IO; mime_type=nothing, kwargs...)
template = read(file, String)
mime_is_known = !isnothing(mime_type)
tmp = Template(template, path=false; kwargs...)
return function(data = nothing; status=200, headers=[], template_kwargs...)
combined_kwargs = Dict{Symbol, Any}(template_kwargs)
if data !== nothing
combined_kwargs[:init] = data
end
content = tmp(; combined_kwargs...)
resp_headers = mime_is_known ? [["Content-Type" => mime_type]; headers] : headers
response(content, status, resp_headers; detect=!mime_is_known)
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2570 |
using HTTP
using JSON3
using StructTypes
export text, binary, json, formdata
### Helper functions used to parse the body of a HTTP.Request object
"""
text(request::HTTP.Request)
Read the body of a HTTP.Request as a String
"""
function text(req::HTTP.Request) :: String
body = IOBuffer(HTTP.payload(req))
return eof(body) ? nothing : read(seekstart(body), String)
end
"""
formdata(request::HTTP.Request)
Read the html form data from the body of a HTTP.Request
"""
function formdata(req::HTTP.Request) :: Dict
return HTTP.URIs.queryparams(text(req))
end
"""
binary(request::HTTP.Request)
Read the body of a HTTP.Request as a Vector{UInt8}
"""
function binary(req::HTTP.Request) :: Vector{UInt8}
body = IOBuffer(HTTP.payload(req))
return eof(body) ? nothing : readavailable(body)
end
"""
json(request::HTTP.Request; keyword_arguments...)
Read the body of a HTTP.Request as JSON with additional arguments for the read/serializer.
"""
function json(req::HTTP.Request; kwargs...)
body = IOBuffer(HTTP.payload(req))
return eof(body) ? nothing : JSON3.read(body; kwargs...)
end
"""
json(request::HTTP.Request, classtype; keyword_arguments...)
Read the body of a HTTP.Request as JSON with additional arguments for the read/serializer into a custom struct.
"""
function json(req::HTTP.Request, classtype::Type{T}; kwargs...) :: T where {T}
body = IOBuffer(HTTP.payload(req))
return eof(body) ? nothing : JSON3.read(body, classtype; kwargs...)
end
### Helper functions used to parse the body of an HTTP.Response object
"""
text(response::HTTP.Response)
Read the body of a HTTP.Response as a String
"""
function text(response::HTTP.Response) :: String
return String(response.body)
end
"""
formdata(request::HTTP.Response)
Read the html form data from the body of a HTTP.Response
"""
function formdata(response::HTTP.Response) :: Dict
return HTTP.URIs.queryparams(text(response))
end
"""
json(response::HTTP.Response; keyword_arguments)
Read the body of a HTTP.Response as JSON with additional keyword arguments
"""
function json(response::HTTP.Response; kwargs...) :: JSON3.Object
return JSON3.read(response.body; kwargs...)
end
"""
json(response::HTTP.Response, classtype; keyword_arguments)
Read the body of a HTTP.Response as JSON with additional keyword arguments and serialize it into a custom struct
"""
function json(response::HTTP.Response, classtype::Type{T}; kwargs...) :: T where {T}
return JSON3.read(response.body, classtype; kwargs...)
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2784 | using HTTP
export readfile, mountfolder
"""
readfile(filepath::String)
Reads a file as a String
"""
function readfile(filepath::String)
return read(filepath, String)
end
"""
getfiles(folder::String)
Return all files inside a folder (searches nested folders)
"""
function getfiles(folder::String)
target_files::Array{String} = []
for (root, _, files) in walkdir(folder)
for file in files
push!(target_files, joinpath(root, file))
end
end
return target_files
end
"""
iteratefiles(func::Function, folder::String)
Walk through all files in a directory and apply a function to each file
"""
function iteratefiles(func::Function, folder::String)
for filepath in getfiles(folder)
func(filepath)
end
end
"""
Helper function that returns everything before a designated substring
"""
function getbefore(input::String, target) :: String
result = findfirst(target, input)
index = first(result) - 1
return input[begin:index]
end
"""
mountfolder(folder::String, mountdir::String, addroute::Function)
This function is used to discover files & register them to the router while
leaving the `addroute` function to determine how to register the files
"""
function mountfolder(folder::String, mountdir::String, addroute)
separator = Base.Filesystem.path_separator
# track all registered paths
paths = Dict{String, Bool}()
iteratefiles(folder) do filepath
# remove the first occurrence of the root folder from the filepath before "mounting"
cleanedmountpath = replace(filepath, "$(folder)$(separator)" => "", count=1)
# make sure to replace any system path separator with "/"
cleanedmountpath = replace(cleanedmountpath, separator => "/")
# generate the path to mount the file to
mountpath = mountdir == "/" || isnothing(mountdir) || isempty(mountdir) || all(isspace, mountdir) ? "/$cleanedmountpath" : "/$mountdir/$cleanedmountpath"
paths[mountpath] = true
# register the file route
addroute(mountpath, filepath)
# also register file to the root of each subpath if this file is an index.html
if endswith(mountpath, "/index.html")
# /docs/metrics and /docs/metrics/ are the same path
# when HTTP is considered.
# # add the route with the trailing "/" character
# trimmedpath = getbefore(mountpath, "index.html")
# paths[trimmedpath] = true
# addroute(trimmedpath, filepath)
# add the route without the trailing "/" character
bare_path = getbefore(mountpath, "/index.html")
paths[bare_path] = true
addroute(bare_path, filepath)
end
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 9889 | using HTTP
using JSON3
using Dates
export countargs, recursive_merge, parseparam,
queryparams, redirect, handlerequest,
format_response!, set_content_size!, format_sse_message
### Request helper functions ###
"""
queryparams(request::HTTP.Request)
Parse's the query parameters from the Requests URL and return them as a Dict
"""
function queryparams(req::HTTP.Request) :: Dict
local uri = HTTP.URI(req.target)
return HTTP.queryparams(uri.query)
end
"""
redirect(path::String; code = 308)
return a redirect response
"""
function redirect(path::String; code = 307) :: HTTP.Response
return HTTP.Response(code, ["Location" => path])
end
function handlerequest(getresponse::Function, catch_errors::Bool; show_errors::Bool = true)
if !catch_errors
return getresponse()
else
try
return getresponse()
catch error
if show_errors && !isa(error, InterruptException)
@error "ERROR: " exception=(error, catch_backtrace())
end
return json(("message" => "The Server encountered a problem"), status = 500)
end
end
end
"""
countargs(func)
Return the number of arguments of the first method of the function `f`.
# Arguments
- `f`: The function to get the number of arguments for.
"""
function countargs(f::Function)
return methods(f) |> first |> x -> x.nargs
end
# https://discourse.julialang.org/t/multi-layer-dict-merge/27261/7
recursive_merge(x::AbstractDict...) = merge(recursive_merge, x...)
recursive_merge(x...) = x[end]
function recursive_merge(x::AbstractVector...)
elements = Dict()
parameters = []
flattened = cat(x...; dims=1)
for item in flattened
if !(item isa Dict) || !haskey(item, "name")
continue
end
if haskey(elements, item["name"])
elements[item["name"]] = recursive_merge(elements[item["name"]], item)
else
elements[item["name"]] = item
if !(item["name"] in parameters)
push!(parameters, item["name"])
end
end
end
if !isempty(parameters)
return [ elements[name] for name in parameters ]
else
return flattened
end
end
"""
Path Parameter Parsing functions
"""
function parseparam(::Type{Any}, rawvalue::String; escape=true)
return escape ? HTTP.unescapeuri(rawvalue) : rawvalue
end
function parseparam(::Type{String}, rawvalue::String; escape=true)
return escape ? HTTP.unescapeuri(rawvalue) : rawvalue
end
function parseparam(::Type{T}, rawvalue::String; escape=true) where {T <: Enum}
return T(parse(Int, escape ? HTTP.unescapeuri(rawvalue) : rawvalue))
end
function parseparam(::Type{T}, rawvalue::String; escape=true) where {T <: Union{Date, DateTime}}
return parse(T, escape ? HTTP.unescapeuri(rawvalue) : rawvalue)
end
function parseparam(::Type{T}, rawvalue::String; escape=true) where {T <: Union{Number, Char, Bool, Symbol}}
return parse(T, escape ? HTTP.unescapeuri(rawvalue) : rawvalue)
end
function parseparam(::Type{T}, rawvalue::String; escape=true) where {T}
return JSON3.read(escape ? HTTP.unescapeuri(rawvalue) : rawvalue, T)
end
"""
Iterate over the union type and parse the value with the first type that
doesn't throw an erorr
"""
function parseparam(type::Union, rawvalue::String; escape=true)
value::String = escape ? HTTP.unescapeuri(rawvalue) : rawvalue
result = value
for current_type in Base.uniontypes(type)
try
result = parseparam(current_type, value)
break
catch
continue
end
end
return result
end
"""
Response Formatter functions
"""
function format_response!(req::HTTP.Request, resp::HTTP.Response)
# Return Response's as is without any modifications
req.response = resp
end
function format_response!(req::HTTP.Request, content::AbstractString)
# Dynamically determine the content type when given a string
body = string(content)
HTTP.setheader(req.response, "Content-Type" => HTTP.sniff(body))
HTTP.setheader(req.response, "Content-Length" => string(sizeof(body)))
req.response.status = 200
req.response.body = content
end
function format_response!(req::HTTP.Request, content::Union{Number, Bool, Char, Symbol})
# Convert all primitvies to a string and set the content type to text/plain
body = string(content)
HTTP.setheader(req.response, "Content-Type" => "text/plain; charset=utf-8")
HTTP.setheader(req.response, "Content-Length" => string(sizeof(body)))
req.response.status = 200
req.response.body = body
end
function format_response!(req::HTTP.Request, content::Any)
# Convert anthything else to a JSON string
body = JSON3.write(content)
HTTP.setheader(req.response, "Content-Type" => "application/json; charset=utf-8")
HTTP.setheader(req.response, "Content-Length" => string(sizeof(body)))
req.response.status = 200
req.response.body = body
end
"""
format_sse_message(data::String; event::Union{String, Nothing} = nothing, id::Union{String, Nothing} = nothing)
Create a properly formatted Server-Sent Event (SSE) string.
# Arguments
- `data`: The data to send. This should be a string. Newline characters in the data will be replaced with separate "data:" lines.
- `event`: (optional) The type of event to send. If not provided, no event type will be sent. Should not contain newline characters.
- `retry`: (optional) The reconnection time for the event in milliseconds. If not provided, no retry time will be sent. Should be an integer.
- `id`: (optional) The ID of the event. If not provided, no ID will be sent. Should not contain newline characters.
# Notes
This function follows the Server-Sent Events (SSE) specification for sending events to the client.
"""
function format_sse_message(
data :: String;
event :: Union{String, Nothing} = nothing,
retry :: Union{Int, Nothing} = nothing,
id :: Union{String, Nothing} = nothing) :: String
has_id = !isnothing(id)
has_retry = !isnothing(retry)
has_event = !isnothing(event)
# check if event or id contain newline characters
if has_id && contains(id, '\n')
throw(ArgumentError("ID property cannot contain newline characters: $id"))
end
if has_event && contains(event, '\n')
throw(ArgumentError("Event property cannot contain newline characters: $event"))
end
if has_retry && retry <= 0
throw(ArgumentError("Retry property must be a positive integer: $retry"))
end
io = IOBuffer()
# Make sure we don't send any newlines in the data proptery
for line in split(data, '\n')
write(io, "data: $line\n")
end
# Optional properties
has_id && write(io, "id: $id\n")
has_retry && write(io, "retry: $retry\n")
has_event && write(io, "event: $event\n")
# Terminate the event, by marking it with a doubule newline
write(io, "\n")
# return the content of the buffer as a string
return String(take!(io))
end
"""
set_content_size!(body::Base.CodeUnits{UInt8, String}, headers::Vector; add::Bool, replace::Bool)
Set the "Content-Length" header in the `headers` vector based on the length of the `body`.
# Arguments
- `body`: The body of the HTTP response. This should be a `Base.CodeUnits{UInt8, String}`.
- `headers`: A vector of headers for the HTTP response.
- `add`: A boolean flag indicating whether to add the "Content-Length" header if it doesn't exist. Default is `false`.
- `replace`: A boolean flag indicating whether to replace the "Content-Length" header if it exists. Default is `false`.
"""
function set_content_size!(body::Union{Base.CodeUnits{UInt8, String}, Vector{UInt8}}, headers::Vector; add::Bool, replace::Bool)
content_length_found = false
for i in 1:length(headers)
if headers[i].first == "Content-Length"
if replace
headers[i] = "Content-Length" => string(sizeof(body))
end
content_length_found = true
break
end
end
if add && !content_length_found
push!(headers, "Content-Length" => string(sizeof(body)))
end
end
# """
# generate_parser(func::Function, pathparams::Vector{Tuple{String,Type}})
# This function generates a parsing function specifically tailored to a given path.
# It generates parsing expressions for each parameter and then passes them to the given function.
# ```julia
# # Here's an exmaple endpoint
# @get "/" function(req::HTTP.Request, a::Float64, b::Float64)
# return a + b
# end
# # Here's the function that's generated by the macro
# function(func::Function, req::HTTP.Request)
# # Extract the path parameters
# params = HTTP.getparams(req)
# # Generate the parsing expressions
# a = parseparam(Float64, params["a"])
# b = parseparam(Float64, params["b"])
# # Call the original function with the parsed parameters in the order they appear
# func(req, a, b)
# end
# ```
# """
# function generate_parser(pathparams)
# # Extract the parameter names
# func_args = [Symbol(param[1]) for param in pathparams]
# # Create the parsing expressions for each path parameter
# parsing_exprs = [
# :( $(Symbol(param_name)) = parseparam($(param_type), params[$("$param_name")]) )
# for (param_name, param_type) in pathparams
# ]
# quote
# function(func::Function, req::HTTP.Request)
# # Extract the path parameters
# params = HTTP.getparams(req)
# # Generate the parsing expressions
# $(parsing_exprs...)
# # Pass the func at runtime, so that revise can work with this
# func(req, $(func_args...))
# end
# end |> eval
# end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 5394 |
using HTTP
using JSON3
using MIMEs
export html, text, json, xml, js, css, binary, file
"""
html(content::String; status::Int, headers::Vector{Pair}) :: HTTP.Response
A convenience function to return a String that should be interpreted as HTML
"""
function html(content::String; status = 200, headers = []) :: HTTP.Response
response = HTTP.Response(status, headers, body = content)
HTTP.setheader(response, "Content-Type" => "text/html; charset=utf-8")
HTTP.setheader(response, "Content-Length" => string(sizeof(content)))
return response
end
"""
text(content::String; status::Int, headers::Vector{Pair}) :: HTTP.Response
A convenience function to return a String that should be interpreted as plain text
"""
function text(content::String; status = 200, headers = []) :: HTTP.Response
response = HTTP.Response(status, headers, body = content)
HTTP.setheader(response, "Content-Type" => "text/plain; charset=utf-8")
HTTP.setheader(response, "Content-Length" => string(sizeof(content)))
return response
end
"""
json(content::Any; status::Int, headers::Vector{Pair}) :: HTTP.Response
A convenience function to return a String that should be interpreted as JSON
"""
function json(content::Any; status = 200, headers = []) :: HTTP.Response
body = JSON3.write(content)
response = HTTP.Response(status, headers, body = body)
HTTP.setheader(response, "Content-Type" => "application/json; charset=utf-8")
HTTP.setheader(response, "Content-Length" => string(sizeof(body)))
return response
end
"""
json(content::Vector{UInt8}; status::Int, headers::Vector{Pair}) :: HTTP.Response
A helper function that can be passed binary data that should be interpreted as JSON.
No conversion is done on the content since it's already in binary format.
"""
function json(content::Vector{UInt8}; status = 200, headers = []) :: HTTP.Response
response = HTTP.Response(status, headers, body = content)
HTTP.setheader(response, "Content-Type" => "application/json; charset=utf-8")
HTTP.setheader(response, "Content-Length" => string(sizeof(content)))
return response
end
"""
xml(content::String; status::Int, headers::Vector{Pair}) :: HTTP.Response
A convenience function to return a String that should be interpreted as XML
"""
function xml(content::String; status = 200, headers = []) :: HTTP.Response
response = HTTP.Response(status, headers, body = content)
HTTP.setheader(response, "Content-Type" => "application/xml; charset=utf-8")
HTTP.setheader(response, "Content-Length" => string(sizeof(content)))
return response
end
"""
js(content::String; status::Int, headers::Vector{Pair}) :: HTTP.Response
A convenience function to return a String that should be interpreted as JavaScript
"""
function js(content::String; status = 200, headers = []) :: HTTP.Response
response = HTTP.Response(status, headers, body = content)
HTTP.setheader(response, "Content-Type" => "application/javascript; charset=utf-8")
HTTP.setheader(response, "Content-Length" => string(sizeof(content)))
return response
end
"""
css(content::String; status::Int, headers::Vector{Pair}) :: HTTP.Response
A convenience function to return a String that should be interpreted as CSS
"""
function css(content::String; status = 200, headers = []) :: HTTP.Response
response = HTTP.Response(status, headers, body = content)
HTTP.setheader(response, "Content-Type" => "text/css; charset=utf-8")
HTTP.setheader(response, "Content-Length" => string(sizeof(content)))
return response
end
"""
binary(content::Vector{UInt8}; status::Int, headers::Vector{Pair}) :: HTTP.Response
A convenience function to return a Vector of UInt8 that should be interpreted as binary data
"""
function binary(content::Vector{UInt8}; status = 200, headers = []) :: HTTP.Response
response = HTTP.Response(status, headers, body = content)
HTTP.setheader(response, "Content-Type" => "application/octet-stream")
HTTP.setheader(response, "Content-Length" => string(sizeof(content)))
return response
end
"""
file(filepath::String; loadfile=nothing, status = 200, headers = []) :: HTTP.Response
Reads a file and returns a HTTP.Response. The file is read as binary. If the file does not exist,
an ArgumentError is thrown. The MIME type and the size of the file are added to the headers.
# Arguments
- `filepath`: The path to the file to be read.
- `loadfile`: An optional function to load the file. If not provided, the file is read using the `open` function.
- `status`: The HTTP status code to be used in the response. Defaults to 200.
- `headers`: Any additional headers to be included in the response. Defaults to an empty array.
# Returns
- A HTTP response.
"""
function file(filepath::String; loadfile = nothing, status = 200, headers = []) :: HTTP.Response
has_loadfile = !isnothing(loadfile)
content = has_loadfile ? loadfile(filepath) : read(filepath, String)
content_length = has_loadfile ? string(sizeof(content)) : string(filesize(filepath))
content_type = mime_from_path(filepath, MIME"application/octet-stream"()) |> contenttype_from_mime
response = HTTP.Response(status, headers, body = content)
HTTP.setheader(response, "Content-Type" => content_type)
HTTP.setheader(response, "Content-Length" => content_length)
return response
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 7310 |
module BodyParserTests
using Test
using HTTP
using StructTypes
using Kitten
using Kitten: set_content_size!
struct rank
title :: String
power :: Float64
end
# added supporting structype
StructTypes.StructType(::Type{rank}) = StructTypes.Struct()
req = HTTP.Request("GET", "/json", [], """{"message":["hello",1.0]}""")
json(req)
@testset "formdata() Request struct keyword tests" begin
req = HTTP.Request("POST", "/", [], "message=hello world&value=3")
data = formdata(req)
@test data["message"] == "hello world"
@test data["value"] == "3"
end
@testset "formdata() Response struct keyword tests" begin
req = HTTP.Response("message=hello world&value=3")
data = formdata(req)
@test data["message"] == "hello world"
@test data["value"] == "3"
end
@testset "set_content_size!" begin
headers = ["Content-Type" => "text/plain"]
body = Vector{UInt8}("Hello, World!")
@testset "when add is false and replace is false" begin
set_content_size!(body, headers, add=false, replace=false)
@test length(headers) == 1
@test headers[1].first == "Content-Type"
@test headers[1].second == "text/plain"
end
@testset "when add is true and replace is false" begin
set_content_size!(body, headers, add=true, replace=false)
@test length(headers) == 2
@test headers[1].first == "Content-Type"
@test headers[1].second == "text/plain"
@test headers[2].first == "Content-Length"
@test headers[2].second == "13"
end
@testset "when add is false and replace is true" begin
headers = ["Content-Length" => "0", "Content-Type" => "text/plain"]
set_content_size!(body, headers, add=false, replace=true)
@test length(headers) == 2
@test headers[1].first == "Content-Length"
@test headers[1].second == "13"
@test headers[2].first == "Content-Type"
@test headers[2].second == "text/plain"
end
@testset "when add is true and replace is true" begin
headers = ["Content-Type" => "text/plain"]
set_content_size!(body, headers, add=true, replace=true)
@test length(headers) == 2
@test headers[1].first == "Content-Type"
@test headers[1].second == "text/plain"
@test headers[2].first == "Content-Length"
@test headers[2].second == "13"
end
end
@testset "json() Request struct keyword tests" begin
@testset "json() Request struct keyword tests" begin
req = HTTP.Request("GET", "/json", [], "{\"message\":[NaN,1.0]}")
@test isnan(json(req, allow_inf = true)["message"][1])
@test !isnan(json(req, allow_inf = true)["message"][2])
req = HTTP.Request("GET", "/json", [], "{\"message\":[Inf,1.0]}")
@test isinf(json(req, allow_inf = true)["message"][1])
req = HTTP.Request("GET", "/json", [], "{\"message\":[null,1.0]}")
@test isnothing(json(req, allow_inf = false)["message"][1])
end
@testset "json() Request stuct keyword with classtype" begin
req = HTTP.Request("GET","/", [],"""{"title": "viscount", "power": NaN}""")
myjson = json(req, rank, allow_inf = true)
@test isnan(myjson.power)
req = HTTP.Request("GET","/", [],"""{"title": "viscount", "power": 9000.1}""")
myjson = json(req, rank, allow_inf = false)
@test myjson.power == 9000.1
end
@testset "regular Request json() tests" begin
req = HTTP.Request("GET", "/json", [], "{\"message\":[null,1.0]}")
@test isnothing(json(req)["message"][1])
@test json(req)["message"][2] == 1
req = HTTP.Request("GET", "/json", [], """{"message":["hello",1.0]}""")
@test json(req)["message"][1] == "hello"
@test json(req)["message"][2] == 1
req = HTTP.Request("GET", "/json", [], "{\"message\":[3.4,4.0]}")
@test json(req)["message"][1] == 3.4
@test json(req)["message"][2] == 4
req = HTTP.Request("GET", "/json", [], "{\"message\":[null,1.0]}")
@test isnothing(json(req)["message"][1])
end
@testset "json() Request with classtype" begin
req = HTTP.Request("GET","/", [],"""{"title": "viscount", "power": NaN}""")
myjson = json(req, rank)
@test isnan(myjson.power)
req = HTTP.Request("GET","/", [],"""{"title": "viscount", "power": 9000.1}""")
myjson = json(req, rank)
@test myjson.power == 9000.1
# test invalid json
req = HTTP.Request("GET","/", [],"""{}""")
@test_throws MethodError json(req, rank)
# test extra key
req = HTTP.Request("GET","/", [],"""{"title": "viscount", "power": 9000.1, "extra": "hi"}""")
myjson = json(req, rank)
@test myjson.power == 9000.1
end
@testset "json() Response" begin
res = HTTP.Response("""{"title": "viscount", "power": 9000.1}""")
myjson = json(res)
@test myjson["power"] == 9000.1
res = HTTP.Response("""{"title": "viscount", "power": 9000.1}""")
myjson = json(res, rank)
@test myjson.power == 9000.1
end
@testset "json() Response struct keyword tests" begin
req = HTTP.Response("{\"message\":[NaN,1.0]}")
@test isnan(json(req, allow_inf = true)["message"][1])
@test !isnan(json(req, allow_inf = true)["message"][2])
req = HTTP.Response("{\"message\":[Inf,1.0]}")
@test isinf(json(req, allow_inf = true)["message"][1])
req = HTTP.Response("{\"message\":[null,1.0]}")
@test isnothing(json(req, allow_inf = false)["message"][1])
end
@testset "json() Response stuct keyword with classtype" begin
req = HTTP.Response("""{"title": "viscount", "power": NaN}""")
myjson = json(req, rank, allow_inf = true)
@test isnan(myjson.power)
req = HTTP.Response("""{"title": "viscount", "power": 9000.1}""")
myjson = json(req, rank, allow_inf = false)
@test myjson.power == 9000.1
end
@testset "regular json() Response tests" begin
req = HTTP.Response("{\"message\":[null,1.0]}")
@test isnothing(json(req)["message"][1])
@test json(req)["message"][2] == 1
req = HTTP.Response("""{"message":["hello",1.0]}""")
@test json(req)["message"][1] == "hello"
@test json(req)["message"][2] == 1
req = HTTP.Response("{\"message\":[3.4,4.0]}")
@test json(req)["message"][1] == 3.4
@test json(req)["message"][2] == 4
req = HTTP.Response("{\"message\":[null,1.0]}")
@test isnothing(json(req)["message"][1])
end
@testset "json() Response with classtype" begin
req = HTTP.Response("""{"title": "viscount", "power": NaN}""")
myjson = json(req, rank)
@test isnan(myjson.power)
req = HTTP.Response("""{"title": "viscount", "power": 9000.1}""")
myjson = json(req, rank)
@test myjson.power == 9000.1
# test invalid json
req = HTTP.Response("""{}""")
@test_throws MethodError json(req, rank)
# test extra key
req = HTTP.Response("""{"title": "viscount", "power": 9000.1, "extra": "hi"}""")
myjson = json(req, rank)
@test myjson.power == 9000.1
end
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 165 | module Constants
export HOST, PORT, localhost
const HOST = "127.0.0.1"
const PORT = 6060 # 8080 port is frequently used
const localhost = "http://$HOST:$PORT"
end | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 567 | module CronManagementTests
using Test
using Kitten; @oxidise
const iterations = Ref{Int}(0)
get(router("/three", cron="*/3")) do
iterations[] += 1
end
@cron "*/2" function()
iterations[] += 1
end
@cron "*/5" function()
iterations[] += 1
end
startcronjobs()
startcronjobs() # all active cron jobs should be filtered out and not started again
# register a new cron job after the others have already began
@cron "*/4" function()
iterations[] += 1
end
startcronjobs()
while iterations[] < 15
sleep(1)
end
stopcronjobs()
clearcronjobs()
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 24449 | module CronTests
using Test
using HTTP
using JSON3
using StructTypes
using Sockets
using Dates
using Kitten
using Kitten.Cron: iscronmatch, isweekday, lastweekdayofmonth,
next, sleep_until, lastweekday, nthweekdayofmonth,
matchexpression, translate
using ..Constants
@testset "Cron Module Tests" begin
@testset "translate function tests" begin
# Day translations
@test translate("SUN") == 7
@test translate("MON") == 1
@test translate("TUE") == 2
@test translate("WED") == 3
@test translate("THU") == 4
@test translate("FRI") == 5
@test translate("SAT") == 6
# Month translations
@test translate("JAN") == 1
@test translate("FEB") == 2
@test translate("MAR") == 3
@test translate("APR") == 4
@test translate("MAY") == 5
@test translate("JUN") == 6
@test translate("JUL") == 7
@test translate("AUG") == 8
@test translate("SEP") == 9
@test translate("OCT") == 10
@test translate("NOV") == 11
@test translate("DEC") == 12
# Unmatched Translations
@test translate("XYZ") == "XYZ"
@test translate("WOW") == "WOW"
@test translate("") == ""
end
@testset "methods" begin
@test lastweekday(DateTime(2022,1,1,0,0,0)) == DateTime(2021,12,31,0,0,0)
@test lastweekday(DateTime(2022,1,3,0,0,0)) != DateTime(2022,1,8,0,0,0)
@test lastweekday(DateTime(2022,1,3,0,0,0)) == DateTime(2022,1,7,0,0,0)
@test lastweekday(DateTime(2022,1,3,0,0,0)) != DateTime(2022,1,6,0,0,0)
end
@testset "lastweekdayofmonth" begin
@test lastweekdayofmonth(DateTime(2022,1,1,0,0,0)) == DateTime(2022,1,31,0,0,0)
end
@testset "nthweekdayofmonth" begin
@test_throws ErrorException nthweekdayofmonth(DateTime(2022,1,1,0,0,0), -1)
@test_throws ErrorException nthweekdayofmonth(DateTime(2022,1,1,0,0,0), 50)
@test nthweekdayofmonth(DateTime(2024, 4, 27), 27) == DateTime(2024, 4, 26)
@test nthweekdayofmonth(DateTime(2024, 5, 5), 5) == DateTime(2024, 5, 6)
@test nthweekdayofmonth(DateTime(2022, 5, 1), 1) == DateTime(2022, 5, 2)
@test nthweekdayofmonth(DateTime(2024, 6, 1), 1) == DateTime(2024, 6, 3)
# Test with n as the first day of the month and the first day is a weekday
@test nthweekdayofmonth(DateTime(2022, 3, 1), 1) == DateTime(2022, 3, 1)
# Test with n as the last day of the month and the last day is a weekday
@test nthweekdayofmonth(DateTime(2022, 4, 30), 30) == DateTime(2022, 4, 29)
# Test with n as a day in the middle of the month and the day is a weekend
@test nthweekdayofmonth(DateTime(2022, 5, 15), 15) == DateTime(2022, 5, 16)
# Test with n as a day in the middle of the month and the day is a weekend
@test nthweekdayofmonth(DateTime(2022, 6, 18), 18) == DateTime(2022, 6, 17)
# Test with n as a day in the middle of the month and the day and the day before are weekends
@test nthweekdayofmonth(DateTime(2022, 7, 17), 17) == DateTime(2022, 7, 18)
# Test with n as a day in the middle of the month and the day, the day before and the day after are weekends
@test nthweekdayofmonth(DateTime(2022, 12, 25), 25) == DateTime(2022, 12, 26)
end
@testset "sleep_until" begin
@test sleep_until(now(), DateTime(2020,1,1,0,0,0)) == 0
end
@testset "lastweekdayofmonth function tests" begin
# Test when last day of the month is a Friday
time = DateTime(2023, 9, 20)
@test lastweekdayofmonth(time) == DateTime(2023, 9, 29)
# Test when last day of the month is a Saturday
time = DateTime(2023, 4, 15)
@test lastweekdayofmonth(time) == DateTime(2023, 4, 28)
# Test when last day of the month is a Sunday
time = DateTime(2023, 10, 10)
@test lastweekdayofmonth(time) == DateTime(2023, 10, 31) # Corrected date
# Test when last day of the month is a weekday (Monday-Thursday)
time = DateTime(2023, 11, 15)
@test lastweekdayofmonth(time) == DateTime(2023, 11, 30)
# Test with a leap year (February)
time = DateTime(2024, 2, 20)
@test lastweekdayofmonth(time) == DateTime(2024, 2, 29)
# Test with a non-leap year (February)
time = DateTime(2023, 2, 20)
@test lastweekdayofmonth(time) == DateTime(2023, 2, 28) # Corrected date
end
@testset "next function tests" begin
# Test all fields with asterisk (wildcard)
start_time = DateTime(2023, 4, 3, 12, 30, 45)
@test next("* * * * * *", start_time) == start_time + Second(1)
# Test matching specific fields
start_time = DateTime(2023, 1, 1, 0, 0, 0)
@test next("30 15 10 5 2 *", start_time) == DateTime(2023, 2, 5, 10, 15, 30)
# Test edge case: leap year
start_time = DateTime(2020, 1, 1, 0, 0, 0)
@test next("0 0 0 29 2 *", start_time) == DateTime(2020, 2, 29, 0, 0, 0)
# Test edge case: end of the month
start_time = DateTime(2023, 12, 30, 23, 59, 59)
@test next("0 0 0 31 12 *", start_time) == DateTime(2023, 12, 31, 0, 0, 0)
# Test edge case: end of the year
start_time = DateTime(2022, 12, 31, 23, 59, 59)
@test next("0 0 0 1 1 *", start_time) == DateTime(2023, 1, 1, 0, 0, 0)
# Test day of the week
start_time = DateTime(2023, 4, 3, 11, 59, 59)
@test next("0 0 12 * * 1", start_time) == DateTime(2023, 4, 3, 12, 0, 0)
# Test ranges and increments
start_time = DateTime(2023, 4, 3, 10, 35, 0)
@test next("0 */10 8-18 * * *", start_time) == DateTime(2023, 4, 3, 10, 40, 0)
# Test wrapping around years
start_time = DateTime(2023, 12, 31, 23, 59, 59)
@test next("0 0 0 1 1 *", start_time) == DateTime(2024, 1, 1, 0, 0, 0)
# Test wrapping around months
start_time = DateTime(2023, 12, 31, 23, 59, 59)
@test next("0 0 0 1 * *", start_time) == DateTime(2024, 1, 1, 0, 0, 0)
# Test wrapping around days
start_time = DateTime(2023, 4, 3, 23, 59, 59)
@test next("0 0 * * * *", start_time) == DateTime(2023, 4, 4, 0, 0, 0)
# Test wrapping around hours
start_time = DateTime(2023, 4, 3, 23, 59, 59)
@test next("0 * * * * *", start_time) == DateTime(2023, 4, 4, 0, 0, 0)
# Test wrapping around minutes
start_time = DateTime(2023, 4, 3, 23, 59, 59)
@test next("* * * * * *", start_time) == DateTime(2023, 4, 4, 0, 0, 0)
# Test case with only seconds field
start_time = DateTime(2023, 4, 3, 12, 30, 29)
@test next("30 * * * * *", start_time) == DateTime(2023, 4, 3, 12, 30, 30)
end
@testset "next() whole hour normalization tests" begin
# these would work fine
@test next("1 0 13", DateTime("2024-05-01T10:00:00")) == DateTime("2024-05-01T13:00:01")
@test next("0 1 13", DateTime("2024-05-01T10:00:00")) == DateTime("2024-05-01T13:01:00")
# these wouldn't previously be normalized with zero values
@test next("0 0 13", DateTime("2024-05-01T10:00:00")) == DateTime("2024-05-01T13:00:00")
@test next("0 0 13", DateTime("2024-05-01T14:00:00")) == DateTime("2024-05-02T13:00:00")
# Test cases where the current time is exactly on the hour
@test next("0 0 14", DateTime("2024-05-01T14:00:00")) == DateTime("2024-05-02T14:00:00")
@test next("0 0 0", DateTime("2024-05-01T00:00:00")) == DateTime("2024-05-02T00:00:00")
# Test cases where the current time is exactly one second before the hour
@test next("0 0 15", DateTime("2024-05-01T14:59:59")) == DateTime("2024-05-01T15:00:00")
@test next("0 0 1", DateTime("2024-05-01T00:59:59")) == DateTime("2024-05-01T01:00:00")
# Test cases where the current time is exactly one second after the hour
@test next("0 0 16", DateTime("2024-05-01T16:00:01")) == DateTime("2024-05-02T16:00:00")
@test next("0 0 2", DateTime("2024-05-01T02:00:01")) == DateTime("2024-05-02T02:00:00")
# Test cases where the current time is exactly on the half hour
@test next("0 30 17", DateTime("2024-05-01T17:30:00")) == DateTime("2024-05-02T17:30:00")
@test next("0 30 3", DateTime("2024-05-01T03:30:00")) == DateTime("2024-05-02T03:30:00")
# Test cases where the current time is exactly one second before the half hour
@test next("0 30 18", DateTime("2024-05-01T18:29:59")) == DateTime("2024-05-01T18:30:00")
@test next("0 30 4", DateTime("2024-05-01T04:29:59")) == DateTime("2024-05-01T04:30:00")
# Test cases where the current time is exactly one second after the half hour
@test next("0 30 19", DateTime("2024-05-01T19:30:01")) == DateTime("2024-05-02T19:30:00")
@test next("0 30 5", DateTime("2024-05-01T05:30:01")) == DateTime("2024-05-02T05:30:00")
# Test case for second
@test next("* * * * *", DateTime(2022, 5, 15, 14, 30, 0)) == DateTime(2022, 5, 15, 14, 30, 1)
# Test case for minute
@test next("0 * * * *", DateTime(2022, 5, 15, 14, 30)) == DateTime(2022, 5, 15, 14, 31)
# Test case for hour
@test next("0 0 * *", DateTime(2022, 5, 15, 14, 30)) == DateTime(2022, 5, 15, 15, 0)
# Test case for day of month
@test next("0 0 0 * *", DateTime(2022, 5, 15)) == DateTime(2022, 5, 16)
# # Test case for month
@test next("0 0 0 1 *", DateTime(2022, 5, 15)) == DateTime(2022, 6, 1)
# Test case for day of week
@test next("0 0 * * * MON", DateTime(2022, 5, 15)) == DateTime(2022, 5, 16)
# invalid valude for day of month
# @test next("0 0 0 0 *", DateTime(2022, 5, 15)) == DateTime(2022, 5, 16)
end
@testset "matchexpression function tests" begin
time = DateTime(2023, 4, 3, 23, 59, 59)
minute = Dates.minute
second = Dates.second
@test matchexpression(SubString("*"), time, minute, 59) == true
@test matchexpression(SubString("59"), time, minute, 59) == true
@test matchexpression(SubString("15"), time, minute, 59) == false
@test matchexpression(SubString("45,59"), time, second, 59) == true
@test matchexpression(SubString("15,30"), time, second, 59) == false
@test matchexpression(SubString("50-59"), time, second, 59) == true
@test matchexpression(SubString("10-40"), time, second, 59) == false
@test matchexpression(SubString("59-*"), time, minute, 59) == true
@test matchexpression(SubString("*-58"), time, minute, 59) == false
@test matchexpression(SubString("*/10"), time, minute, 59) == false
@test matchexpression(SubString("25/5"), time, minute, 59) == false
end
@testset "seconds tests" begin
# check exact second
@test iscronmatch("5/*", DateTime(2022,1,1,1,0,5)) == true
@test iscronmatch("7/*", DateTime(2022,1,1,1,0,7)) == true
# check between ranges
@test iscronmatch("5-*", DateTime(2022,1,1,1,0,7)) == true
@test iscronmatch("*-10", DateTime(2022,1,1,1,0,7)) == true
end
@testset "static matches" begin
# Exact second match
@test iscronmatch("0", DateTime(2022,1,1,1,0,0)) == true
@test iscronmatch("1", DateTime(2022,1,1,1,0,1)) == true
@test iscronmatch("5", DateTime(2022,1,1,1,0,5)) == true
@test iscronmatch("7", DateTime(2022,1,1,1,0,7)) == true
@test iscronmatch("39", DateTime(2022,1,1,1,0,39)) == true
@test iscronmatch("59", DateTime(2022,1,1,1,0,59)) == true
# Exact minute match
@test iscronmatch("* 0", DateTime(2022,1,1,1,0,0)) == true
@test iscronmatch("* 1", DateTime(2022,1,1,1,1,0)) == true
@test iscronmatch("* 5", DateTime(2022,1,1,1,5,0)) == true
@test iscronmatch("* 7", DateTime(2022,1,1,1,7,0)) == true
@test iscronmatch("* 39", DateTime(2022,1,1,1,39,0)) == true
@test iscronmatch("* 59", DateTime(2022,1,1,1,59,0)) == true
# Exact hour match
@test iscronmatch("* * 0", DateTime(2022,1,1,0,0,0)) == true
@test iscronmatch("* * 1", DateTime(2022,1,1,1,0,0)) == true
@test iscronmatch("* * 5", DateTime(2022,1,1,5,0,0)) == true
@test iscronmatch("* * 12", DateTime(2022,1,1,12,0,0)) == true
@test iscronmatch("* * 20", DateTime(2022,1,1,20,0,0)) == true
@test iscronmatch("* * 23", DateTime(2022,1,1,23,0,0)) == true
# Exact day match
@test iscronmatch("* * * 1", DateTime(2022,1,1,1,0,0)) == true
@test iscronmatch("* * * 5", DateTime(2022,1,5,1,0,0)) == true
@test iscronmatch("* * * 12", DateTime(2022,1,12,1,0,0)) == true
@test iscronmatch("* * * 20", DateTime(2022,1,20,1,0,0)) == true
@test iscronmatch("* * * 31", DateTime(2022,1,31,1,0,0)) == true
# Exact month match
@test iscronmatch("* * * * 1", DateTime(2022,1,1,0,0,0)) == true
@test iscronmatch("* * * * 4", DateTime(2022,4,1,1,0,0)) == true
@test iscronmatch("* * * * 5", DateTime(2022,5,1,1,0,0)) == true
@test iscronmatch("* * * * 9", DateTime(2022,9,1,1,0,0)) == true
@test iscronmatch("* * * * 12", DateTime(2022,12,1,1,0,0)) == true
# Exact day of week match
@test iscronmatch("* * * * * MON", DateTime(2022,1,3,0,0,0)) == true
@test iscronmatch("* * * * * MON", DateTime(2022,1,10,0,0,0)) == true
@test iscronmatch("* * * * * MON", DateTime(2022,1,17,0,0,0)) == true
@test iscronmatch("* * * * * TUE", DateTime(2022,1,4,0,0,0)) == true
@test iscronmatch("* * * * * TUE", DateTime(2022,1,11,0,0,0)) == true
@test iscronmatch("* * * * * TUE", DateTime(2022,1,18,0,0,0)) == true
@test iscronmatch("* * * * * WED", DateTime(2022,1,5,0,0,0)) == true
@test iscronmatch("* * * * * WED", DateTime(2022,1,12,0,0,0)) == true
@test iscronmatch("* * * * * WED", DateTime(2022,1,19,0,0,0)) == true
@test iscronmatch("* * * * * THU", DateTime(2022,1,6,0,0,0)) == true
@test iscronmatch("* * * * * THU", DateTime(2022,1,13,0,0,0)) == true
@test iscronmatch("* * * * * THU", DateTime(2022,1,20,0,0,0)) == true
@test iscronmatch("* * * * * FRI", DateTime(2022,1,7,0,0,0)) == true
@test iscronmatch("* * * * * FRI", DateTime(2022,1,14,0,0,0)) == true
@test iscronmatch("* * * * * FRI", DateTime(2022,1,21,0,0,0)) == true
@test iscronmatch("* * * * * SAT", DateTime(2022,1,8,0,0,0)) == true
@test iscronmatch("* * * * * SAT", DateTime(2022,1,15,0,0,0)) == true
@test iscronmatch("* * * * * SAT", DateTime(2022,1,22,0,0,0)) == true
@test iscronmatch("* * * * * SUN", DateTime(2022,1,2,0,0,0)) == true
@test iscronmatch("* * * * * SUN", DateTime(2022,1,9,0,0,0)) == true
@test iscronmatch("* * * * * SUN", DateTime(2022,1,16,0,0,0)) == true
end
# # More specific test cases
# # "0 0 * * * *" = the top of every hour of every day.
# # "*/10 * * * * *" = every ten seconds.
# # "0 0 8-10 * * *" = 8, 9 and 10 o'clock of every day.
# # "0 0 6,19 * * *" = 6:00 AM and 7:00 PM every day.
# # "0 0/30 8-10 * * *" = 8:00, 8:30, 9:00, 9:30, 10:00 and 10:30 every day.
# # "0 0 9-17 * * MON-FRI" = on the hour nine-to-five weekdays
# # "0 0 0 25 12 ?" = every Christmas Day at midnight
# # "0 0 0 L * *" = last day of the month at midnight
# # "0 0 0 L-3 * *" = third-to-last day of the month at midnight
# # "0 0 0 1W * *" = first weekday of the month at midnight
# # "0 0 0 LW * *" = last weekday of the month at midnight
# # "0 0 0 * * 5L" = last Friday of the month at midnight
# # "0 0 0 * * THUL" = last Thursday of the month at midnight
# # "0 0 0 ? * 5#2" = the second Friday in the month at midnight
# # "0 0 0 ? * MON#1" = the first Monday in the month at midnight
@testset "the top of every hour of every day" begin
for hour in 0:23
@test iscronmatch("0 0 * * * *", DateTime(2022,1,1,hour,0,0)) == true
end
end
@testset "the 16th minute of every hour of every day" begin
for hour in 0:23
@test iscronmatch("0 16 * * * *", DateTime(2022,1,1,hour,16,0)) == true
end
end
@testset "8, 9 and 10 o'clock of every day." begin
for hour in 0:23
@test iscronmatch("0 0 8-10 * * *", DateTime(2022,1,1,hour,0,0)) == (hour >= 8 && hour <= 10)
end
end
@testset "every 10 seconds" begin
@test iscronmatch("*/10 * * * * *", DateTime(2022,1,9,1,0,0)) == true
@test iscronmatch("*/10 * * * * *", DateTime(2022,1,9,1,0,10)) == true
@test iscronmatch("*/10 * * * * *", DateTime(2022,1,9,1,0,20)) == true
@test iscronmatch("*/10 * * * * *", DateTime(2022,1,9,1,0,30)) == true
@test iscronmatch("*/10 * * * * *", DateTime(2022,1,9,1,0,40)) == true
@test iscronmatch("*/10 * * * * *", DateTime(2022,1,9,1,0,50)) == true
end
@testset "every 7 seconds" begin
@test iscronmatch("*/7 * * * * *", DateTime(2022,1,9,1,0,0)) == false
@test iscronmatch("*/7 * * * * *", DateTime(2022,1,9,1,0,7)) == true
@test iscronmatch("*/7 * * * * *", DateTime(2022,1,9,1,0,14)) == true
@test iscronmatch("*/7 * * * * *", DateTime(2022,1,9,1,0,21)) == true
@test iscronmatch("*/7 * * * * *", DateTime(2022,1,9,1,0,28)) == true
@test iscronmatch("*/7 * * * * *", DateTime(2022,1,9,1,0,35)) == true
@test iscronmatch("*/7 * * * * *", DateTime(2022,1,9,1,0,42)) == true
@test iscronmatch("*/7 * * * * *", DateTime(2022,1,9,1,0,49)) == true
@test iscronmatch("*/7 * * * * *", DateTime(2022,1,9,1,0,56)) == true
end
@testset "every 15 seconds" begin
@test iscronmatch("*/15 * * * * *", DateTime(2022,1,9,1,0,0)) == true
@test iscronmatch("*/15 * * * * *", DateTime(2022,1,9,1,0,15)) == true
@test iscronmatch("*/15 * * * * *", DateTime(2022,1,9,1,0,30)) == true
@test iscronmatch("*/15 * * * * *", DateTime(2022,1,9,1,0,45)) == true
end
@testset "6:00 AM and 7:00 PM every day" begin
for day in 1:20
for hour in 0:23
@test iscronmatch("0 0 6,19 * * *", DateTime(2022,1,day,hour,0,0)) == (hour == 6 || hour == 19)
end
end
end
@testset "8:00, 8:30, 9:00, 9:30, 10:00 and 10:30 every day" begin
for day in 1:20
for hour in 0:23
@test iscronmatch("0 0/30 8-10 * * *", DateTime(2022,1,day,hour,30,0)) == (hour >= 8 && hour <= 10)
@test iscronmatch("0 0/30 8-10 * * *", DateTime(2022,1,day,hour,0,0)) == (hour >= 8 && hour <= 10)
end
end
end
@testset "on the hour nine-to-five weekdays" begin
for day in 1:20
if isweekday(DateTime(2022,1,day,0,0,0))
for hour in 0:23
@test iscronmatch("0 0 9-17 * * MON-FRI", DateTime(2022,1,day,hour,0,0)) == (hour >= 9 && hour <= 17)
end
end
end
end
@testset "every Christmas Day at midnight" begin
for month in 1:12
for hour in 0:23
@test iscronmatch("0 0 0 25 12 ?", DateTime(2022,month,25,hour,0,0)) == (month == 12 && hour == 0)
end
end
end
@testset "last day of the month at midnight" begin
for month in 1:12
num_days = daysinmonth(2022, month)
for day in 1:num_days
for hour in 0:23
@test iscronmatch("0 0 0 L * *", DateTime(2022,month,day,hour,0,0)) == (day == num_days && hour == 0)
end
end
end
end
@testset "third-to-last day of the month at midnight" begin
for month in 1:12
num_days = daysinmonth(2022, month)
for day in 1:num_days
for hour in 0:23
@test iscronmatch("0 0 0 L-3 * *", DateTime(2022,month,day,hour,0,0)) == (day == (num_days-3) && hour == 0)
end
end
end
end
@testset "first weekday of the month at midnight" begin
@test iscronmatch("0 0 0 1W * *", DateTime(2022, 1, 3, 0, 0, 0))
@test iscronmatch("0 0 0 9W * *", DateTime(2022, 1, 10, 0, 0, 0))
@test iscronmatch("0 0 0 13W * *", DateTime(2022, 1, 13, 0, 0, 0))
@test iscronmatch("0 0 0 15W * *", DateTime(2022, 1, 14, 0, 0, 0))
@test iscronmatch("0 0 0 22W * *", DateTime(2022, 1, 21, 0, 0, 0))
@test iscronmatch("0 0 0 31W * *", DateTime(2022, 1, 31, 0, 0, 0))
end
@testset "last weekday of the month at midnight" begin
@test iscronmatch("0 0 0 LW * *", DateTime(2022, 1, 28, 0, 0, 0)) == false
@test iscronmatch("0 0 0 LW * *", DateTime(2022, 1, 29, 0, 0, 0)) == false
@test iscronmatch("0 0 0 LW * *", DateTime(2022, 1, 30, 0, 0, 0)) == false
@test iscronmatch("0 0 0 LW * *", DateTime(2022, 1, 30, 0, 0, 0)) == false
@test iscronmatch("0 0 0 LW * *", DateTime(2022, 1, 31, 0, 0, 0))
end
@testset "last Friday of the month at midnight" begin
@test iscronmatch("0 0 0 * * 5L", DateTime(2022, 1, 28, 0, 0, 0))
@test iscronmatch("0 0 0 * * 5L", DateTime(2022, 1, 29, 0, 0, 0)) == false
@test iscronmatch("0 0 0 * * 5L", DateTime(2022, 1, 29, 0, 0, 0)) == false
@test iscronmatch("0 0 0 * * 5L", DateTime(2022, 2, 25, 0, 0, 0))
end
@testset "last Thursday of the month at midnight" begin
@test iscronmatch("0 0 0 * * THUL", DateTime(2022, 1, 26, 0, 0, 0)) == false
@test iscronmatch("0 0 0 * * THUL", DateTime(2022, 1, 27, 0, 0, 0))
@test iscronmatch("0 0 0 * * THUL", DateTime(2022, 1, 28, 0, 0, 0)) == false
@test iscronmatch("0 0 0 * * THUL", DateTime(2022, 2, 3, 0, 0, 0)) == false
end
@testset "the second Friday in the month at midnight" begin
@test iscronmatch("0 0 0 ? * 5#2", DateTime(2022, 1, 14, 0, 0, 0))
@test iscronmatch("0 0 0 ? * 5#2", DateTime(2022, 2, 11, 0, 0, 0))
@test iscronmatch("0 0 0 ? * 5#2", DateTime(2022, 3, 11, 0, 0, 0))
@test iscronmatch("0 0 0 ? * 5#2", DateTime(2022, 4, 8, 0, 0, 0))
@test iscronmatch("0 0 0 ? * 5#2", DateTime(2022, 5, 13, 0, 0, 0))
end
@testset "the first Monday in the month at midnight" begin
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 1, 2, 0, 0, 0)) == false
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 1, 3, 0, 0, 0))
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 1, 4, 0, 0, 0)) == false
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 2, 6, 0, 0, 0)) == false
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 2, 7, 0, 0, 0))
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 2, 8, 0, 0, 0)) == false
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 3, 6, 0, 0, 0)) == false
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 3, 7, 0, 0, 0))
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 3, 8, 0, 0, 0)) == false
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 4, 3, 0, 0, 0)) == false
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 4, 4, 0, 0, 0))
@test iscronmatch("0 0 0 ? * MON#1", DateTime(2022, 4, 5, 0, 0, 0)) == false
end
localhost = "http://127.0.0.1:$PORT"
crondata = Dict("api_value" => 0)
@get router("/cron-increment", cron="*") function(req)
crondata["api_value"] = crondata["api_value"] + 1
return crondata["api_value"]
end
@get "/get-cron-increment" function()
return crondata["api_value"]
end
server = serve(async=true, port=PORT, show_banner=false)
sleep(3)
try
internalrequest(HTTP.Request("GET", "/cron-increment"))
internalrequest(HTTP.Request("GET", "/cron-increment"))
@testset "Testing CRON API access" begin
r = internalrequest(HTTP.Request("GET", "/get-cron-increment"))
@test r.status == 200
@test parse(Int64, text(r)) > 0
end
catch e
println(e)
finally
close(server)
end
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 8516 | module ExtractorTests
using Base: @kwdef
using Test
using HTTP
using Suppressor
using ProtoBuf
using ..Constants
using Kitten; @oxidise
using Kitten: extract, Param, LazyRequest, Extractor
# extend the built-in validate function
import Kitten: validate
include("extensions/protobuf/messages/test_pb.jl")
using .test_pb: MyMessage
struct Person
name::String
age::Int
end
@kwdef struct Home
address::String
owner::Person
end
# Add a lower bound to age with a global validator
validate(p::Person) = p.age >= 0
@testset "Extactor builder sytnax" begin
@test Json{Person}(x -> x.age >= 25) isa Extractor
@test Json(Person) isa Extractor
@test Json(Person, x -> x.age >= 25) isa Extractor
p = Person("joe", 25)
@test Json(p) isa Extractor
@test Json(p, x -> x.age >= 25) isa Extractor
end
@testset "JSON extract" begin
req = HTTP.Request("GET", "/", [], """{"name": "joe", "age": 25}""")
param = Param(:person, Json{Person}, missing, false)
p = extract(param, LazyRequest(request=req)).payload
@test p.name == "joe"
@test p.age == 25
end
@testset "kwarg_struct_builder Nested test" begin
req = HTTP.Request("GET", "/", [], """
{
"address": "123 main street",
"owner": {
"name": "joe",
"age": 25
}
}
""")
param = Param(:person, Json{Home}, missing, false)
p = extract(param, LazyRequest(request=req)).payload
@test p isa Home
@test p.owner isa Person
@test p.address == "123 main street"
@test p.owner.name == "joe"
@test p.owner.age == 25
end
@testset "Partial JSON extract" begin
req = HTTP.Request("GET", "/", [], """{ "person": {"name": "joe", "age": 25} }""")
param = Param(:person, JsonFragment{Person}, missing, false)
p = extract(param, LazyRequest(request=req)).payload
@test p.name == "joe"
@test p.age == 25
end
@testset "Form extract" begin
req = HTTP.Request("GET", "/", [], """name=joe&age=25""")
param = Param(:form, Form{Person}, missing, false)
p = extract(param, LazyRequest(request=req)).payload
@test p.name == "joe"
@test p.age == 25
# Test that negative age trips the global validator
req = HTTP.Request("GET", "/", [], """name=joe&age=-4""")
param = Param(:form, Form{Person}, missing, false)
@test_throws ArgumentError extract(param, LazyRequest(request=req))
# Test that age < 25 trips the local validator
req = HTTP.Request("GET", "/", [], """name=joe&age=10""")
default_value = Form{Person}(x -> x.age > 25)
param = Param(:form, Form{Person}, default_value, true)
@test_throws ArgumentError extract(param, LazyRequest(request=req))
end
@testset "Path extract" begin
req = HTTP.Request("GET", "/person/john/20", [])
req.context[:params] = Dict("name" => "john", "age" => "20") # simulate path params
param = Param(:path, Path{Person}, missing, false)
p = extract(param, LazyRequest(request=req)).payload
@test p.name == "john"
@test p.age == 20
end
@testset "Query extract" begin
req = HTTP.Request("GET", "/person?name=joe&age=30", [])
param = Param(:query, Query{Person}, missing, false)
p = extract(param, LazyRequest(request=req)).payload
@test p.name == "joe"
@test p.age == 30
# test custom instance validator
req = HTTP.Request("GET", "/person?name=joe&age=30", [])
default_value = Query{Person}(x -> x.age > 25)
param = Param(:query, Query{Person}, default_value, true)
p = extract(param, LazyRequest(request=req)).payload
@test p.name == "joe"
@test p.age == 30
end
@testset "Header extract" begin
req = HTTP.Request("GET", "/person", ["name" => "joe", "age" => "19"])
param = Param(:header, Header{Person}, missing, false)
p = extract(param, LazyRequest(request=req)).payload
@test p.name == "joe"
@test p.age == 19
end
@testset "Body extract" begin
# Parse Float64 from body
req = HTTP.Request("GET", "/", [], "3.14")
param = Param(:form, Body{Float64}, missing, false)
value = extract(param, LazyRequest(request=req)).payload
@test value == 3.14
# Parse String from body
req = HTTP.Request("GET", "/", [], "Here's a regular string")
param = Param(:form, Body{String}, missing, false)
value = extract(param, LazyRequest(request=req)).payload
@test value == "Here's a regular string"
end
@kwdef struct Sample
limit::Int
skip::Int = 33
end
@kwdef struct PersonWithDefault
name::String
age::Int
value::Float64 = 1.5
end
struct Parameters
b::Int
end
@testset "Api tests" begin
get("/") do
text("home")
end
@get "/headers" function(req, headers = Header(Sample, s -> s.limit > 5))
return headers.payload
end
post("/form") do req, form::Form{Sample}
return form.payload |> json
end
get("/query") do req, query::Query{Sample}
return query.payload |> json
end
post("/body/string") do req, body::Body{String}
return body.payload
end
post("/body/float") do req, body::Body{Float64}
return body.payload
end
@post "/json" function(req, data = Json{PersonWithDefault}(s -> s.value < 10))
return data.payload
end
post("/protobuf") do req, data::ProtoBuffer{MyMessage}
return protobuf(data.payload)
end
post("/json/partial") do req, p1::JsonFragment{PersonWithDefault}, p2::JsonFragment{PersonWithDefault}
return json((p1=p1.payload, p2=p2.payload))
end
@get "/path/add/{a}/{b}" function(req, a::Int, path::Path{Parameters}, qparams::Query{Sample}, c::Nullable{Int}=23)
return a + path.payload.b
end
r = internalrequest(HTTP.Request("GET", "/"))
@test r.status == 200
@test text(r) == "home"
r = internalrequest(HTTP.Request("GET", "/path/add/3/7?limit=10"))
@test r.status == 200
@test text(r) == "10"
r = internalrequest(HTTP.Request("POST", "/form", [], """limit=10&skip=25"""))
@test r.status == 200
data = json(r)
@test data["limit"] == 10
@test data["skip"] == 25
r = internalrequest(HTTP.Request("GET", "/query?limit=10&skip=25"))
@test r.status == 200
data = json(r)
@test data["limit"] == 10
@test data["skip"] == 25
r = internalrequest(HTTP.Request("POST", "/body/string", [], """Hello World!"""))
@test r.status == 200
@test text(r) == "Hello World!"
r = internalrequest(HTTP.Request("POST", "/body/float", [], """3.14"""))
@test r.status == 200
@test parse(Float64, text(r)) == 3.14
@suppress_err begin
# should fail since we are missing query params
r = internalrequest(HTTP.Request("GET", "/path/add/3/7"))
@test r.status == 500
end
r = internalrequest(HTTP.Request("GET", "/headers", ["limit" => "10"], ""))
@test r.status == 200
data = json(r)
@test data["limit"] == 10
@test data["skip"] == 33
@suppress_err begin
# should fail since we are missing query params
r = internalrequest(HTTP.Request("GET", "/headers", ["limit" => "3"], ""))
@test r.status == 500
end
@suppress_err begin
# value is higher than the limit set in the validator
r = internalrequest(HTTP.Request("POST", "/json", [], """
{
"name": "joe",
"age": 24,
"value": 12.0
}
"""))
@test r.status == 500
end
r = internalrequest(HTTP.Request("POST", "/json", [], """
{
"name": "joe",
"age": 24,
"value": 4.8
}
"""))
data = json(r)
@test data["name"] == "joe"
@test data["age"] == 24
@test data["value"] == 4.8
r = internalrequest(HTTP.Request("POST", "/json/partial", [], """
{
"p1": {
"name": "joe",
"age": "24"
},
"p2": {
"name": "kim",
"age": "25",
"value": 100.0
}
}
"""))
@test r.status == 200
data = json(r)
p1 = data["p1"]
p2 = data["p2"]
@test p1["name"] == "joe"
@test p1["age"] == 24
@test p1["value"] == 1.5
@test p2["name"] == "kim"
@test p2["age"] == 25
@test p2["value"] == 100
message = MyMessage(-1, ["a", "b"])
r = internalrequest(protobuf(message, "/protobuf"))
decoded_msg = protobuf(r, MyMessage)
@test decoded_msg isa MyMessage
@test decoded_msg.a == -1
@test decoded_msg.b == ["a", "b"]
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 1269 | module HandlerTests
using Test
using HTTP
using ..Constants
using Kitten; @oxidise
@get "/noarg" function(;request)
@test isa(request, HTTP.Request)
return text("Hello World")
end
@get "/params/double/{a}" function(req, a::Float64; request::HTTP.Request)
@test isa(request, HTTP.Request)
return text("$(a*2)")
end
@get "/singlearg" function(req; request)
@test isa(req, HTTP.Request)
@test isa(request, HTTP.Request)
return text("Hello World")
end
serve(port=PORT, host=HOST, async=true, show_errors=false, show_banner=false, access_log=nothing)
@testset "Handler request Injection Tests" begin
@testset "Inject request into no arg function" begin
response = HTTP.get("$localhost/noarg")
@test response.status == 200
@test text(response) == "Hello World"
end
@testset "Inject request into function with path params" begin
response = HTTP.get("$localhost/params/double/5")
@test response.status == 200
@test text(response) == "10.0"
end
@testset "Inject request into function with single arg" begin
response = HTTP.get("$localhost/singlearg")
@test response.status == 200
@test text(response) == "Hello World"
end
end
terminate()
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 1745 | module MultiInstanceTests
using Test
using HTTP
using Kitten
using ..Constants
# Setup the first app
app1 = instance()
app1.get("/") do
"welcome to server #1"
end
app1.get("/subtract/{a}/{b}") do req, a::Int, b::Int
Dict("answer" => a - b) |> json
end
# Setup the second app
app2 = instance()
app2.get("/") do
"welcome to server #2"
end
app2.get("/add/{a}/{b}") do req, a::Int, b::Int
Dict("answer" => a + b) |> json
end
# start both servers together
app1.serve(port=PORT, async=true, show_errors=false, show_banner=false)
app2.serve(port=PORT + 1, async=true, show_errors=false, show_banner=false)
@testset "testing unqiue instances" begin
r = app1.internalrequest(HTTP.Request("GET", "/"))
@test r.status == 200
@test text(r) == "welcome to server #1"
r = app2.internalrequest(HTTP.Request("GET", "/"))
@test r.status == 200
@test text(r) == "welcome to server #2"
end
@testset "testing add and subtract endpoints" begin
# Test subtract endpoint on server #1
r = app1.internalrequest(HTTP.Request("GET", "/subtract/10/5"))
@test r.status == 200
@test json(r)["answer"] == 5
# Test add endpoint on server #2
r = app2.internalrequest(HTTP.Request("GET", "/add/10/5"))
@test r.status == 200
@test json(r)["answer"] == 15
# Test subtract endpoint with negative result on server #1
r = app1.internalrequest(HTTP.Request("GET", "/subtract/5/10"))
@test r.status == 200
@test json(r)["answer"] == -5
# Test add endpoint with negative numbers on server #2
r = app2.internalrequest(HTTP.Request("GET", "/add/-10/-5"))
@test r.status == 200
@test json(r)["answer"] == -15
end
# clean it up
app1.terminate()
app2.terminate()
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 5461 | module MetricsTests
using Test
using Dates
using HTTP
using Kitten
using ..Constants
using Kitten.Core.Metrics:
percentile, HTTPTransaction, TimeseriesRecord, get_history, push_history,
group_transactions, get_transaction_metrics, recent_transactions,
all_endpoint_metrics, server_metrics, error_distribution,
prepare_timeseries_data, timeseries, series_format,
bin_transactions, requests_per_unit, avg_latency_per_unit,
endpoint_metrics
# Mock Data
const MOCK_TIMESTAMP = DateTime(2021, 1, 1, 12, 0, 0)
const MOCK_HTTP_TRANSACTION = HTTPTransaction("192.168.1.1", "/test", MOCK_TIMESTAMP, 0.5, true, 200, nothing)
# Helper Function to Create Mock Transactions
function create_mock_transactions(n::Int)
[HTTPTransaction("192.168.1.$i", "/test/$i", MOCK_TIMESTAMP, 0.1 * i, i % 2 == 0, 200 + i, nothing) for i in 1:n]
end
const HISTORY = Kitten.History(1_000_000)
function clear_history()
empty!(HISTORY)
end
@testset "Metrics Module Tests" begin
# Test for push_history and get_history
@testset "History Management" begin
clear_history()
push_history(HISTORY, MOCK_HTTP_TRANSACTION)
@test length(get_history(HISTORY)) == 1
@test get_history(HISTORY)[1] === MOCK_HTTP_TRANSACTION
end
# Test for percentile
@testset "Percentile Calculation" begin
values = [1, 2, 3, 4, 5]
@test percentile(values, 50) == 3
end
# Test for group_transactions
@testset "Transaction Grouping" begin
transactions = create_mock_transactions(10)
grouped = group_transactions(transactions, 2)
@test length(grouped) > 0
end
# Test for get_transaction_metrics
@testset "Transaction Metrics Calculation" begin
transactions = create_mock_transactions(10)
metrics = get_transaction_metrics(transactions)
@test metrics["total_requests"] == 10
@test metrics["avg_latency"] > 0
end
# Test for recent_transactions
@testset "Recent Transactions Retrieval" begin
transactions = recent_transactions(get_history(HISTORY), Minute(15))
@test all(t -> now(UTC) - t.timestamp <= Minute(15) + Second(1), transactions)
end
# Test for all_endpoint_metrics
@testset "All Endpoint Metrics Calculation" begin
metrics = all_endpoint_metrics(get_history(HISTORY))
@test metrics isa Dict
end
# Test for server_metrics
@testset "Server Metrics Calculation" begin
metrics = server_metrics(get_history(HISTORY))
@test metrics["total_requests"] >= 0
end
# Test for error_distribution
@testset "Error Distribution Calculation" begin
distribution = error_distribution(get_history(HISTORY))
@test typeof(distribution) == Dict{String, Int}
end
# Test for timeseries and series_format
@testset "Timeseries Conversion and Formatting" begin
data = Dict(MOCK_TIMESTAMP => 1, MOCK_TIMESTAMP + Minute(1) => 2)
ts = timeseries(data)
formatted = series_format(ts)
@test length(formatted) == 2
end
# Test for bin_transactions, requests_per_unit, and avg_latency_per_unit
@testset "Transaction Binning and Metrics" begin
bin_transactions(get_history(HISTORY), Minute(15))
req_per_unit = requests_per_unit(get_history(HISTORY), Minute(1))
avg_latency = avg_latency_per_unit(get_history(HISTORY), Minute(1))
@test typeof(req_per_unit) == Dict{Dates.DateTime, Int}
@test typeof(avg_latency) == Dict{Dates.DateTime, Number}
end
@testset "Recent Transactions with DateTime Lower Bound" begin
clear_history()
push_history(HISTORY, HTTPTransaction("192.168.1.1", "/test", DateTime(2023, 1, 1, 12), 0.5, true, 200, nothing))
push_history(HISTORY, HTTPTransaction("192.168.1.2", "/test", DateTime(2023, 1, 1, 13), 0.5, true, 200, nothing))
push_history(HISTORY, HTTPTransaction("192.168.1.3", "/test", DateTime(2023, 1, 1, 14), 0.5, true, 200, nothing))
transactions = recent_transactions(get_history(HISTORY), DateTime(2023, 1, 1, 13))
@test length(transactions) == 1
@test all(t -> t.timestamp >= DateTime(2023, 1, 1, 13), transactions)
end
@testset "Endpoint Metrics Calculation" begin
clear_history()
push_history(HISTORY, HTTPTransaction("192.168.1.1", "/test", now(), 0.5, true, 200, nothing))
push_history(HISTORY, HTTPTransaction("192.168.1.2", "/test", now(), 1.0, false, 500, "Error"))
metrics = endpoint_metrics(get_history(HISTORY), "/test")
@test metrics["total_requests"] == 2
@test metrics["avg_latency"] == 0.75
@test metrics["total_errors"] == 1
end
end
module A
using Kitten; @oxidise
@get "/" function()
text("server A")
end
end
@testset "metrics collection & calculations" begin
try
A.serve(host=HOST, port=PORT, async=true, show_banner=false, access_log=nothing)
# send a couple requests so we can collect metrics
for i in 1:10
@test HTTP.get("$localhost/").status == 200
end
r = HTTP.get("$localhost/docs/metrics/data/15/null")
@test r.status == 200
data = json(r)
@test data["server"]["total_requests"] == 10
@test data["server"]["total_requests"] == 10
@test data["server"]["total_errors"] == 0
finally
A.terminate()
end
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 1354 | module MiddlewareTests
using Test
using HTTP
using Kitten; @oxidise
invocation = []
function handler1(handler)
return function(req::HTTP.Request)
push!(invocation, 1)
handler(req)
end
end
function handler2(handler)
return function(req::HTTP.Request)
push!(invocation, 2)
handler(req)
end
end
function handler3(handler)
return function(req::HTTP.Request)
push!(invocation, 3)
handler(req)
end
end
@get "/multiply/{a}/{b}" function(req, a::Float64, b::Float64)
return a * b
end
r = internalrequest(HTTP.Request("GET", "/multiply/3/6"), middleware=[handler1, handler2, handler3], catch_errors=false)
@test r.status == 200
@test invocation == [1,2,3] # enusre the handlers are called in the correct order
@test text(r) == "18.0"
empty!(invocation)
r = internalrequest(HTTP.Request("GET", "/multiply/3/6"), middleware=[handler3, handler1, handler2], catch_errors=false)
@test r.status == 200
@test invocation == [3,1,2] # enusre the handlers are called in the correct order
@test text(r) == "18.0"
empty!(invocation)
r = internalrequest(HTTP.Request("GET", "/multiply/3/6"), middleware=[handler3, handler2, handler1], catch_errors=false)
@test r.status == 200
@test invocation == [3,2, 1] # enusre the handlers are called in the correct order
@test text(r) == "18.0"
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 20248 | module OriginalTests
using Test
using HTTP
using JSON3
using StructTypes
using Sockets
using Dates
using Suppressor
using Kitten; @oxidise
using ..Constants
struct Person
name::String
age::Int
end
struct Book
name::String
author::String
end
configdocs("/docs", "/schema")
StructTypes.StructType(::Type{Person}) = StructTypes.Struct()
# mount all files inside the content folder under /static
#@staticfiles "content"
staticfiles("content")
# mount files under /dynamic
#@dynamicfiles "content" "/dynamic"
dynamicfiles("content", "/dynamic")
@get "/killserver" function ()
terminate()
end
@get "/anonymous" function()
return "no args"
end
@get "/anyparams/{message}" function(req, message::Any)
return message
end
@get "/test" function(req)
return "hello world!"
end
@get "/testredirect" function(req)
return redirect("/test")
end
function errormiddleware(handler)
return function(req::HTTP.Request)
throw("an random error")
handler(req)
end
end
@get router("/middleware-error", middleware=[errormiddleware]) function ()
return "shouldn't get here"
end
@get "/customerror" function ()
function processtring(input::String)
"<$input>"
end
processtring(3)
end
@get "/data" function ()
return Dict("message" => "hello world")
end
@get "/undefinederror" function ()
asdf
end
@get "/unsupported-struct" function ()
return Book("mobdy dick", "blah")
end
try
@get "/mismatched-params/{a}/{b}" function (a,c)
return "$a, $c"
end
catch e
@test true
end
@get "/add/{a}/{b}" function (req, a::Int32, b::Int64)
return a + b
end
@get "/divide/{a}/{b}" function (req, a, b)
return parse(Float64, a) / parse(Float64, b)
end
# path is missing function parameter
try
@get "/mismatched-params/{a}/{b}" function (req, a,b,c)
return "$a, $b, $c"
end
catch e
@test true
end
# request handler is missing a parameter
try
@get "/mismatched-params/{a}/{b}" function (req, a)
return "$a, $b, $c"
end
catch e
@test true
end
@get "/file" function(req)
return file("content/sample.html")
end
@get "/multiply/{a}/{b}" function(req, a::Float64, b::Float64)
return a * b
end
@get "/person" function(req)
return Person("joe", 20)
end
@get "/text" function(req)
return text(req)
end
@get "/binary" function(req)
return binary(req)
end
@get "/json" function(req)
return json(req)
end
@get "/person-json" function(req)
return json(req, Person)
end
@get "/html" function(req)
return html("""
<!DOCTYPE html>
<html>
<body>
<h1>hello world</h1>
</body>
</html>
""")
end
@route ["GET"] "/get" function()
return "get"
end
@get "/query" function(req)
return queryparams(req)
end
@post "/post" function(req)
return text(req)
end
@put "/put" function(req)
return "put"
end
@patch "/patch" function(req)
return "patch"
end
@delete "/delete" function(req)
return "delete"
end
@enum Fruit apple=1 orange=2 kiwi=3
struct Student
name :: String
age :: Int8
end
StructTypes.StructType(::Type{Student}) = StructTypes.Struct()
StructTypes.StructType(::Type{Complex{Float64}}) = StructTypes.Struct()
@get "/fruit/{fruit}" function(req, fruit::Fruit)
return fruit
end
@get "/date/{date}" function(req, date::Date)
return date
end
@get "/datetime/{datetime}" function(req, datetime::DateTime)
return datetime
end
@get "/complex/{complex}" function(req, complex::Complex{Float64})
return complex
end
@get "/list/{list}" function(req, list::Vector{Float32})
return list
end
@get "/dict/{dict}" function(req, dict::Dict{String, Any})
return dict
end
@get "/tuple/{tuple}" function(req, tuple::Tuple{String, String})
return tuple
end
@get "/union/{value}" function(req, value::Union{Bool, String})
return value
end
@get "/boolean/{bool}" function(req, bool::Bool)
return bool
end
@get "/struct/{student}" function(req, student::Student)
return student
end
@get "/float/{float}" function (req, float::Float32)
return float
end
routerdict = Dict("value" => 0)
repeat = router("/repeat", interval = 0.5, tags=["repeat"])
@get "/getroutervalue" function(req)
return routerdict["value"]
end
@get repeat("/increment", tags=["increment"]) function(req)
routerdict["value"] += 1
return routerdict["value"]
end
function middleware1(handler)
return function(req::HTTP.Request)
handler(req)
end
end
function middleware2(handler)
return function(req::HTTP.Request)
handler(req)
end
end
function middleware3(handler)
return function(req::HTTP.Request)
handler(req)
end
end
function middleware4(handler)
return function(req::HTTP.Request)
handler(req)
end
end
# case 1: no middleware setup, uses the global middleware by default
@get "/math/add/{a}/{b}" function (req::HTTP.Request, a::Float64, b::Float64)
return a + b
end
# case 1: no middleware is defined at any level -> use global middleware
@get router("/math/power/{a}/{b}") function (req::HTTP.Request, a::Float64, b::Float64)
return a ^ b
end
math = router("/math", middleware=[middleware3])
# case 2: middleware is cleared at route level so don't register any middleware
@get math("/cube/{a}", middleware=[]) function(req, a::Float64)
return a * a * a
end
# case 3: router-level is empty & route-level is defined
other = router("/math", middleware=[])
@get other("/multiply/{a}/{b}", middleware=[middleware3]) function (req::HTTP.Request, a::Float64, b::Float64)
return a * b
end
# case 4 (both defined)
@get math("/divide/{a}/{b}", middleware=[middleware4]) function(req::HTTP.Request, a::Float64, b::Float64)
return a / b
end
# case 5: only router level is defined
@get math("/subtract/{a}/{b}") function(req::HTTP.Request, a::Float64, b::Float64)
return a - b
end
# case 6: only route level middleware is defined
empty = router()
@get empty("/math/square/{a}", middleware=[middleware3]) function(req, a::Float64)
return a * a
end
emptyrouter = router()
@get router("emptyrouter") function(req)
return "emptyrouter"
end
emptysubpath = router("/emptysubpath", tags=["empty"])
@get emptysubpath("", middleware=[middleware1]) function(req)
return "emptysubpath"
end
# added another request hanlder for post requests on the same route
@post emptysubpath("") function(req)
return "emptysubpath - post"
end
serve(async=true, port=PORT, show_errors=false, show_banner=true)
# query metrics endpoints
r = internalrequest(HTTP.Request("GET", "/docs/metrics/data/15/null"), metrics=true)
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/anonymous"))
@test r.status == 200
@test text(r) == "no args"
r = internalrequest(HTTP.Request("GET", "/fake-endpoint"))
@test r.status == 404
r = internalrequest(HTTP.Request("GET", "/test"))
@test r.status == 200
@test text(r) == "hello world!"
r = internalrequest(HTTP.Request("GET", "/testredirect"))
@test r.status == 307
@test Dict(r.headers)["Location"] == "/test"
r = internalrequest(HTTP.Request("GET", "/multiply/5/8"))
@test r.status == 200
@test text(r) == "40.0"
r = internalrequest(HTTP.Request("GET", "/person"))
@test r.status == 200
@test json(r, Person) == Person("joe", 20)
r = internalrequest(HTTP.Request("GET", "/html"))
@test r.status == 200
@test Dict(r.headers)["Content-Type"] == "text/html; charset=utf-8"
# path param tests
# boolean
r = internalrequest(HTTP.Request("GET", "/boolean/true"))
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/boolean/false"))
@test r.status == 200
@suppress global r = internalrequest(HTTP.Request("GET", "/boolean/asdf"))
@test r.status == 500
# Test parsing of Any type inside a request handler
r = internalrequest(HTTP.Request("GET", "/anyparams/hello"))
@test r.status == 200
@test text(r) == "hello"
# # enums
r = internalrequest(HTTP.Request("GET", "/fruit/1"))
@test r.status == 200
@suppress global r = internalrequest(HTTP.Request("GET", "/fruit/4"))
@test r.status == 500
@suppress global r = internalrequest(HTTP.Request("GET", "/fruit/-3"))
@test r.status == 500
# date
r = internalrequest(HTTP.Request("GET", "/date/2022"))
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/date/2022-01-01"))
@test r.status == 200
@suppress global r = internalrequest(HTTP.Request("GET", "/date/-3"))
@test r.status == 500
# # datetime
r = internalrequest(HTTP.Request("GET", "/datetime/2022-01-01"))
@test r.status == 200
@suppress global r = internalrequest(HTTP.Request("GET", "/datetime/2022"))
@test r.status == 500
@suppress global r = internalrequest(HTTP.Request("GET", "/datetime/-3"))
@test r.status == 500
# complex
r = internalrequest(HTTP.Request("GET", "/complex/3.2e-1"))
@test r.status == 200
# list
r = internalrequest(HTTP.Request("GET", "/list/[1,2,3]"))
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/list/[]"))
@test r.status == 200
# dictionary
r = internalrequest(HTTP.Request("GET", """/dict/{"msg": "hello world"}"""))
@test r.status == 200
@test json(r)["msg"] == "hello world"
r = internalrequest(HTTP.Request("GET", "/dict/{}"))
@test r.status == 200
# tuple
r = internalrequest(HTTP.Request("GET", """/tuple/["a","b"]"""))
@test r.status == 200
@test text(r) == """["a","b"]"""
r = internalrequest(HTTP.Request("GET", """/tuple/["a","b","c"]"""))
@test r.status == 200
@test text(r) == """["a","b"]"""
# union
r = internalrequest(HTTP.Request("GET", "/union/true"))
@test r.status == 200
@test Dict(r.headers)["Content-Type"] == "text/plain; charset=utf-8"
r = internalrequest(HTTP.Request("GET", "/union/false"))
@test r.status == 200
@test Dict(r.headers)["Content-Type"] == "text/plain; charset=utf-8"
r = internalrequest(HTTP.Request("GET", "/union/asdfasd"))
@test r.status == 200
@test Dict(r.headers)["Content-Type"] == "text/plain; charset=utf-8"
# struct
r = internalrequest(HTTP.Request("GET", """/struct/{"name": "jim", "age": 20}"""))
@test r.status == 200
@test json(r, Student) == Student("jim", 20)
@suppress global r = internalrequest(HTTP.Request("GET", """/struct/{"aged": 20}"""))
@test r.status == 500
@suppress global r = internalrequest(HTTP.Request("GET", """/struct/{"aged": 20}"""))
@test r.status == 500
# float
r = internalrequest(HTTP.Request("GET", "/float/3.5"))
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/float/3"))
@test r.status == 200
# GET, PUT, POST, PATCH, DELETE, route macro tests
r = internalrequest(HTTP.Request("GET", "/get"))
@test r.status == 200
@test text(r) == "get"
r = internalrequest(HTTP.Request("POST", "/post", [], "this is some data"))
@test r.status == 200
@test text(r) == "this is some data"
r = internalrequest(HTTP.Request("PUT", "/put"))
@test r.status == 200
@test text(r) == "put"
r = internalrequest(HTTP.Request("PATCH", "/patch"))
@test r.status == 200
@test text(r) == "patch"
# # Query params tests
r = internalrequest(HTTP.Request("GET", "/query?message=hello"))
@test r.status == 200
@test json(r)["message"] == "hello"
r = internalrequest(HTTP.Request("GET", "/query?message=hello&value=5"))
data = json(r)
@test r.status == 200
@test data["message"] == "hello"
@test data["value"] == "5"
# Get mounted static files
r = internalrequest(HTTP.Request("GET", "/static/test.txt"))
body = text(r)
@test r.status == 200
@test Dict(r.headers)["Content-Type"] == "text/plain; charset=utf-8"
@test body == file("content/test.txt") |> text
@test body == "this is a sample text file"
r = internalrequest(HTTP.Request("GET", "/static/sample.html"))
@test r.status == 200
@test Dict(r.headers)["Content-Type"] == "text/html; charset=utf-8"
@test text(r) == file("content/sample.html") |> text
r = internalrequest(HTTP.Request("GET", "/static/index.html"))
@test r.status == 200
@test Dict(r.headers)["Content-Type"] == "text/html; charset=utf-8"
@test text(r) == file("content/index.html") |> text
r = internalrequest(HTTP.Request("GET", "/static/"))
@test r.status == 200
@test Dict(r.headers)["Content-Type"] == "text/html; charset=utf-8"
@test text(r) == file("content/index.html") |> text
# # Body transformation tests
r = internalrequest(HTTP.Request("GET", "/text", [], "hello there!"))
@test r.status == 200
@test text(r) == "hello there!"
r = internalrequest(HTTP.Request("GET", "/binary", [], "hello there!"))
@test r.status == 200
@test String(r.body) == "[104,101,108,108,111,32,116,104,101,114,101,33]"
r = internalrequest(HTTP.Request("GET", "/json", [], "{\"message\": \"hi\"}"))
@test r.status == 200
@test json(r)["message"] == "hi"
r = internalrequest(HTTP.Request("GET", "/person"))
person = json(r, Person)
@test r.status == 200
@test person.name == "joe"
@test person.age == 20
r = internalrequest(HTTP.Request("GET", "/person-json", [], "{\"name\":\"jim\",\"age\":25}"))
person = json(r, Person)
@test r.status == 200
@test person.name == "jim"
@test person.age == 25
r = internalrequest(HTTP.Request("GET", "/file"))
@test r.status == 200
@test text(r) == file("content/sample.html") |> text
r = internalrequest(HTTP.Request("GET", "/dynamic/sample.html"))
@test r.status == 200
@test text(r) == file("content/sample.html") |> text
r = internalrequest(HTTP.Request("GET", "/static/sample.html"))
@test r.status == 200
@test text(r) == file("content/sample.html") |> text
@suppress global r = internalrequest(HTTP.Request("GET", "/multiply/a/8"))
@test r.status == 500
# don't suppress error reporting for this test
@suppress global r = internalrequest(HTTP.Request("GET", "/multiply/a/8"))
@test r.status == 500
# hit endpoint that doesn't exist
@suppress global r = internalrequest(HTTP.Request("GET", "asdfasdf"))
@test r.status == 404
@suppress global r = internalrequest(HTTP.Request("GET", "asdfasdf"))
@test r.status == 404
@suppress global r = internalrequest(HTTP.Request("GET", "/somefakeendpoint"))
@test r.status == 404
@suppress global r = internalrequest(HTTP.Request("GET", "/customerror"))
@test r.status == 500
# NOTE: previosly metrics were enabled by default and it was were the errors were handled previously
# This is due to fact that the `custom_middleware` is before `serializer` middleware. This may be
# an intended behaviour to seperate error handling of the router and that of the `custom_middleware`.
# A fix would be seperating error handling middleware from serializer and put it before `custom_middleware`.
@suppress global r = internalrequest(HTTP.Request("GET", "/middleware-error"), metrics=true)
@test r.status == 500
@suppress global r = internalrequest(HTTP.Request("GET", "/undefinederror"))
@test r.status == 500
try
# apparently you don't need to have StructTypes setup on a custom type with the latest JSON3 library
r = internalrequest(HTTP.Request("GET", "/unsupported-struct"))
catch e
@test e isa ArgumentError
end
## docs related tests
# should be set to true by default
@test isdocsenabled() == true
@test_throws "" disabledocs()
#@test isdocsenabled() == false
enabledocs()
@test isdocsenabled() == true
terminate()
#enabledocs()
@async serve(docs=true, port=PORT, show_errors=false, show_banner=false)
sleep(5)
# ## Router related tests
# case 1
r = internalrequest(HTTP.Request("GET", "/math/add/6/5"))
@test r.status == 200
@test text(r) == "11.0"
# case 1
r = internalrequest(HTTP.Request("GET", "/math/power/6/5"))
@test r.status == 200
@test text(r) == "7776.0"
# case 2
r = internalrequest(HTTP.Request("GET", "/math/cube/3"))
@test r.status == 200
@test text(r) == "27.0"
# case 3
r = internalrequest(HTTP.Request("GET", "/math/multiply/3/5"))
@test r.status == 200
@test text(r) == "15.0"
# case 4
r = internalrequest(HTTP.Request("GET", "/math/divide/3/5"))
@test r.status == 200
@test text(r) == "0.6"
# case 5
r = internalrequest(HTTP.Request("GET", "/math/subtract/3/5"))
@test r.status == 200
@test text(r) == "-2.0"
# case 6
r = internalrequest(HTTP.Request("GET", "/math/square/3"))
@test r.status == 200
@test text(r) == "9.0"
r = internalrequest(HTTP.Request("GET", "/getroutervalue"))
@test r.status == 200
@test parse(Int64, text(r)) > 0
r = internalrequest(HTTP.Request("GET", "/emptyrouter"))
@test r.status == 200
@test text(r) == "emptyrouter"
r = internalrequest(HTTP.Request("GET", "/emptysubpath"))
@test r.status == 200
@test text(r) == "emptysubpath"
r = internalrequest(HTTP.Request("POST", "/emptysubpath"))
@test r.status == 200
@test text(r) == "emptysubpath - post"
# kill any background tasks still running
stoptasks()
## internal docs and metrics tests
r = internalrequest(HTTP.Request("GET", "/get"))
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/docs"))
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/docs/swagger"))
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/docs/redoc"))
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/docs/schema"))
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/docs/metrics"), metrics=true)
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/docs/metrics/data/15/null"), metrics=true)
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/docs"), middleware=[middleware1])
@test r.status == 200
r = internalrequest(HTTP.Request("GET", "/docs/schema"))
@test r.status == 200
@test Dict(r.headers)["Content-Type"] == "application/json; charset=utf-8"
# test emtpy dict (which should be skipped)
mergeschema(Dict(
"paths" => Dict(
"/multiply/{a}/{b}" => Dict(
"get" => Dict(
"description" => "returns the result of a * b",
"parameters" => [
Dict()
]
)
)
)
))
mergeschema(Dict(
"paths" => Dict(
"/multiply/{a}/{b}" => Dict(
"get" => Dict(
"description" => "returns the result of a * b",
"parameters" => [
Dict(
"name" => "a",
"in" => "path",
"required" => true,
"schema" => Dict(
"type" => "number"
)
),
Dict(
"name" => "b",
"in" => "path",
"required" => true,
"schema" => Dict(
"type" => "number"
)
)
]
)
)
)
))
@assert getschema()["paths"]["/multiply/{a}/{b}"]["get"]["description"] == "returns the result of a * b"
mergeschema("/put",
Dict(
"put" => Dict(
"description" => "returns a string on PUT",
"parameters" => []
)
)
)
@assert getschema()["paths"]["/put"]["put"]["description"] == "returns a string on PUT"
data = Dict("msg" => "this is not a valid schema dictionary")
setschema(data)
@assert getschema() == data
terminate()
@async serve(middleware=[middleware1, middleware2, middleware3], port=PORT, show_errors=false, show_banner=false)
sleep(1)
r = internalrequest(HTTP.Request("GET", "/get"))
@test r.status == 200
# redundant terminate() calls should have no affect
terminate()
terminate()
terminate()
function errorcatcher(handle)
function(req)
try
response = handle(req)
return response
catch e
return HTTP.Response(500, "here's a custom error response")
end
end
end
# Test default handler by turning off serializaiton
@async serve(serialize=false, middleware=[error_catcher], catch_errors=false, show_banner=false)
sleep(3)
r = internalrequest(HTTP.Request("GET", "/get"), catch_errors=false)
@test r.status == 200
try
# test the error handler inside the default handler
r = HTTP.get("$localhost/undefinederror"; readtimeout=1)
catch e
@test true
end
try
# service should not have started and get requests should throw some error
r = HTTP.get("$localhost/data"; readtimeout=1)
catch e
@test true
finally
terminate()
end
terminate()
resetstate()
clearcronjobs()
cleartasks()
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 342 | module OxidiseTest
using Test
using HTTP
using ..Constants
using Kitten; @oxidise
@get "/test" function(req)
return "Hello World"
end
serve(port=PORT, host=HOST, async=true, show_errors=false, show_banner=false)
r = internalrequest(HTTP.Request("GET", "/test"))
@test r.status == 200
@test text(r) == "Hello World"
terminate()
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2149 | module ParallelTests
using Test
using HTTP
using Suppressor
using Kitten; @oxidise
using ..Constants
@testset "parallel tests" begin
invocation = []
function handler1(handler)
return function(req::HTTP.Request)
push!(invocation, 1)
handler(req)
end
end
function handler2(handler)
return function(req::HTTP.Request)
push!(invocation, 2)
handler(req)
end
end
function handler3(handler)
return function(req::HTTP.Request)
push!(invocation, 3)
handler(req)
end
end
get("/get") do
return "Hello World"
end
post("/post") do req::Request
return text(req)
end
@get("/customerror") do
function processtring(input::String)
"<$input>"
end
processtring(3)
end
if Threads.nthreads() <= 1
# the service should work even when we only have a single thread available (not ideal)
@async serveparallel(port=PORT, show_errors=false, show_banner=false, queuesize=100)
r = HTTP.get("$localhost/get")
@test r.status == 200
# clean up the server on tests without additional threads
terminate()
end
# only run these tests if we have more than one thread to work with
if Threads.nthreads() > 1
serveparallel(host=HOST, port=PORT, show_errors=true, async=true, show_banner=true)
sleep(3)
r = HTTP.get("$localhost/get")
@test r.status == 200
r = HTTP.post("$localhost/post", body="some demo content")
@test text(r) == "some demo content"
try
@suppress_err r = HTTP.get("$localhost/customerror", connect_timeout=3)
catch e
@test e isa MethodError || e isa HTTP.ExceptionRequest.StatusError
end
terminate()
serveparallel(host=HOST, port=PORT, middleware=[handler1, handler2, handler3], show_errors=true, async=true, show_banner=false)
sleep(1)
r = HTTP.get("$localhost/get")
@test r.status == 200
terminate()
end
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 998 | module PrecompilationTests
using Test
using HTTP
using Kitten: text
using ..Constants
# Load in the custom pacakge & trigger any precompilation
push!(LOAD_PATH, "./TestPackage")
using TestPackage
# call the start function from the TestPackage
start(;async=true, host=HOST, port=PORT, show_banner=false, access_log=nothing)
@testset "TestPackage" begin
r = HTTP.get("$localhost")
@test r.status == 200
@test text(r) == "hello world"
r = HTTP.get("$localhost/add?a=5&b=10")
@test r.status == 200
@test text(r) == "15"
# test default value which should be 3
r = HTTP.get("$localhost/add?a=3")
@test r.status == 200
@test text(r) == "6"
r = HTTP.get("$localhost/add/extractor?a=5&b=10")
@test r.status == 200
@test text(r) == "15"
# test default value which should be 3
r = HTTP.get("$localhost/add/extractor?a=3")
@test r.status == 200
@test text(r) == "6"
end
# Call the stop() function from the TestPackage
stop()
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 8342 | module ReflectionTests
using Test
using Base: @kwdef
using Kitten: splitdef, Json
using Kitten.Core.Reflection: getsignames, parsetype, kwarg_struct_builder
global message = Dict("message" => "Hello, World!")
struct Person
name::String
age::Int
end
@kwdef struct Home
address::String
owner::Person
end
function getinfo(f::Function)
return splitdef(f)
end
@testset "getsignames tests" begin
function test_func(a::Int, b::Float64; c="default", d=true, request)
return a, b, c, d
end
args, arg_types, kwarg_names = getsignames(test_func)
@test args == [:a, :b]
@test arg_types == [Int, Float64]
@test kwarg_names == [:c, :d, :request]
end
@testset "parsetype tests" begin
parsetype(Int, 3) == 3
parsetype(Int, "3") == 3
parsetype(Float64, "3") == 3.0
parsetype(Float64, 3) == 3.0
end
@testset "JSON Nested extract" begin
converted = kwarg_struct_builder(Home, Dict(
:address => "123 main street",
:owner => Dict(
:name => "joe",
:age => 25
)
))
@test converted == Home("123 main street", Person("joe", 25))
end
@testset "splitdef tests" begin
# Define a function for testing
function test_func(a::Int, b::Float64; c="default", d=true, request)
return a, b, c, d
end
# Parse the function info
info = splitdef(test_func)
@testset "Function name" begin
@test info.name == :test_func
end
@testset "counts" begin
@test length(info.args) == 2
@test length(info.kwargs) == 3
@test length(info.sig) == 5
end
@testset "Args" begin
@test info.args[1].name == :a
@test info.args[1].type == Int
@test info.args[2].name == :b
@test info.args[2].type == Float64
end
@testset "Kwargs" begin
@test length(info.kwargs) == 3
@test info.kwargs[1].name == :c
@test info.kwargs[1].type == Any
@test info.kwargs[1].default == "default"
@test info.kwargs[1].hasdefault == true
@test info.kwargs[2].name == :d
@test info.kwargs[2].type == Any
@test info.kwargs[2].default == true
@test info.kwargs[2].hasdefault == true
@test info.kwargs[3].name == :request
@test info.kwargs[3].type == Any
@test info.kwargs[3].default isa Missing
@test info.kwargs[3].hasdefault == false
end
@testset "Sig_map" begin
@test length(info.sig_map) == 5
@test info.sig_map[:a].name == :a
@test info.sig_map[:a].type == Int
@test info.sig_map[:b].name == :b
@test info.sig_map[:b].type == Float64
@test info.sig_map[:c].name == :c
@test info.sig_map[:c].type == Any
@test info.sig_map[:c].default == "default"
@test info.sig_map[:c].hasdefault == true
@test info.sig_map[:d].name == :d
@test info.sig_map[:d].type == Any
@test info.sig_map[:d].default == true
@test info.sig_map[:d].hasdefault == true
@test info.sig_map[:request].name == :request
@test info.sig_map[:request].type == Any
@test info.sig_map[:request].default isa Missing
@test info.sig_map[:request].hasdefault == false
end
end
@testset "splitdef anonymous function tests" begin
# Define a function for testing
# Parse the function info
info = getinfo(function(a::Int, b::Float64; c="default", d=true, request)
return a, b, c, d
end
)
@testset "counts" begin
@test length(info.args) == 2
@test length(info.kwargs) == 3
@test length(info.sig) == 5
end
@testset "Args" begin
@test info.args[1].name == :a
@test info.args[1].type == Int
@test info.args[2].name == :b
@test info.args[2].type == Float64
end
@testset "Kwargs" begin
@test length(info.kwargs) == 3
@test info.kwargs[1].name == :c
@test info.kwargs[1].type == Any
@test info.kwargs[1].default == "default"
@test info.kwargs[1].hasdefault == true
@test info.kwargs[2].name == :d
@test info.kwargs[2].type == Any
@test info.kwargs[2].default == true
@test info.kwargs[2].hasdefault == true
@test info.kwargs[3].name == :request
@test info.kwargs[3].type == Any
@test info.kwargs[3].default isa Missing
@test info.kwargs[3].hasdefault == false
end
@testset "Sig_map" begin
@test length(info.sig_map) == 5
@test info.sig_map[:a].name == :a
@test info.sig_map[:a].type == Int
@test info.sig_map[:b].name == :b
@test info.sig_map[:b].type == Float64
@test info.sig_map[:c].name == :c
@test info.sig_map[:c].type == Any
@test info.sig_map[:c].default == "default"
@test info.sig_map[:c].hasdefault == true
@test info.sig_map[:d].name == :d
@test info.sig_map[:d].type == Any
@test info.sig_map[:d].default == true
@test info.sig_map[:d].hasdefault == true
@test info.sig_map[:request].name == :request
@test info.sig_map[:request].type == Any
@test info.sig_map[:request].default isa Missing
@test info.sig_map[:request].hasdefault == false
end
end
@testset "splitdef do..end syntax" begin
# Parse the function info
info = splitdef() do a::Int, b::Float64
return a, b
end
@testset "counts" begin
@test length(info.args) == 2
@test length(info.sig) == 2
end
@testset "Args" begin
@test info.args[1].name == :a
@test info.args[1].type == Int
@test info.args[2].name == :b
@test info.args[2].type == Float64
end
@testset "Sig_map" begin
@test length(info.sig_map) == 2
@test info.sig_map[:a].name == :a
@test info.sig_map[:a].type == Int
@test info.sig_map[:b].name == :b
@test info.sig_map[:b].type == Float64
end
end
@testset "splitdef extractor default value" begin
# Define a function for testing
f = function(a::Int, house = Json{Home}(house -> house.owner.age >= 25), msg = message; request, b = 3.0)
return a, house, msg
end
# Parse the function info
info = splitdef(f)
@testset "counts" begin
@test length(info.args) == 3
@test length(info.kwargs) == 2
@test length(info.sig) == 5
@test length(info.sig_map) == 5
end
@testset "Args" begin
@test info.args[1].name == :a
@test info.args[1].type == Int
@test info.args[2].name == :house
@test info.args[2].type == Json{Home}
@test info.args[2].default isa Json{Home}
@test info.args[3].name == :msg
@test info.args[3].type == Dict{String, String}
end
@testset "Kwargs" begin
@test info.kwargs[1].name == :request
@test info.kwargs[1].type == Any
@test info.kwargs[1].default isa Missing
@test info.kwargs[1].hasdefault == false
@test info.kwargs[2].name == :b
@test info.kwargs[2].type == Any
@test info.kwargs[2].default == 3.0
@test info.kwargs[2].hasdefault == true
end
@testset "Sig_map" begin
@test info.sig_map[:a].name == :a
@test info.sig_map[:a].type == Int
@test info.sig_map[:a].default isa Missing
@test info.sig_map[:a].hasdefault == false
@test info.sig_map[:house].name == :house
@test info.sig_map[:house].type == Json{Home}
@test info.sig_map[:house].default isa Json{Home}
@test info.sig_map[:house].hasdefault == true
@test info.sig_map[:msg].name == :msg
@test info.sig_map[:msg].type == Dict{String, String}
@test info.sig_map[:msg].default == Dict("message" => "Hello, World!")
@test info.sig_map[:msg].hasdefault == true
@test info.sig_map[:request].name == :request
@test info.sig_map[:request].type == Any
@test info.sig_map[:request].default isa Missing
@test info.sig_map[:request].hasdefault == false
@test info.sig_map[:b].name == :b
@test info.sig_map[:b].type == Any
@test info.sig_map[:b].default == 3.0
@test info.sig_map[:b].hasdefault == true
end
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 3712 | module BodyParserTests
using Test
using HTTP
using Kitten
@testset "Render Module Tests" begin
@testset "html function" begin
response = html("<h1>Hello, World!</h1>")
@test response.status == 200
@test text(response) == "<h1>Hello, World!</h1>"
@test Dict(response.headers)["Content-Type"] == "text/html; charset=utf-8"
end
@testset "text function" begin
response = text("Hello, World!")
@test response.status == 200
@test text(response) == "Hello, World!"
@test Dict(response.headers)["Content-Type"] == "text/plain; charset=utf-8"
end
@testset "json function" begin
response = json(Dict("message" => "Hello, World!"))
@test response.status == 200
@test text(response) == "{\"message\":\"Hello, World!\"}"
@test Dict(response.headers)["Content-Type"] == "application/json; charset=utf-8"
end
@testset "json binary function" begin
response = json(Vector{UInt8}("{\"message\":\"Hello, World!\"}"))
@test response.status == 200
@test text(response) == "{\"message\":\"Hello, World!\"}"
@test Dict(response.headers)["Content-Type"] == "application/json; charset=utf-8"
end
@testset "xml function" begin
response = xml("<message>Hello, World!</message>")
@test response.status == 200
@test text(response) == "<message>Hello, World!</message>"
@test Dict(response.headers)["Content-Type"] == "application/xml; charset=utf-8"
end
@testset "js function" begin
response = js("console.log('Hello, World!');")
@test response.status == 200
@test text(response) == "console.log('Hello, World!');"
@test Dict(response.headers)["Content-Type"] == "application/javascript; charset=utf-8"
end
@testset "css function" begin
response = css("body { background-color: #f0f0f0; }")
@test response.status == 200
@test text(response) == "body { background-color: #f0f0f0; }"
@test Dict(response.headers)["Content-Type"] == "text/css; charset=utf-8"
end
@testset "binary function" begin
response = binary(UInt8[72, 101, 108, 108, 111]) # "Hello" in ASCII
@test response.status == 200
@test response.body == UInt8[72, 101, 108, 108, 111]
@test Dict(response.headers)["Content-Type"] == "application/octet-stream"
end
end
@testset "Repeated calls do not duplicate headers" begin
response1 = css("body { background-color: #f0f0f0; }")
response2 = css("body { background-color: #f0f0f0; }")
@test Dict(response1.headers)["Content-Type"] == "text/css; charset=utf-8"
@test Dict(response2.headers)["Content-Type"] == "text/css; charset=utf-8"
@test length(response1.headers) == length(response2.headers)
response1 = binary(UInt8[72, 101, 108, 108, 111]) # "Hello" in ASCII
response2 = binary(UInt8[72, 101, 108, 108, 111]) # "Hello" in ASCII
@test Dict(response1.headers)["Content-Type"] == "application/octet-stream"
@test Dict(response2.headers)["Content-Type"] == "application/octet-stream"
@test length(response1.headers) == length(response2.headers) == 2
end
@testset "Repeated calls do not duplicate headers for file renderer" begin
response1 = file("content/index.html")
response2 = file("content/index.html")
@test findfirst(x -> x == ("Content-Type" => "text/html; charset=utf-8"), response1.headers) !== nothing
@test findfirst(x -> x == ("Content-Type" => "text/html; charset=utf-8"), response2.headers) !== nothing
count1 = length(response1.headers)
count2 = length(response2.headers)
@test count1 == count2 == 2
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 3146 | module RoutingFunctionsTests
using Test
using HTTP
using JSON3
using StructTypes
using Sockets
using Dates
using Kitten
##### Setup Routes #####
inline = router("/inline")
get(inline("/add/{x}/{y}")) do request::HTTP.Request, x::Int, y::Int
x + y
end
get("/add/{x}/{y}") do request::HTTP.Request, x::Int, y::Int
x + y
end
post(inline("/sub/{x}/{y}")) do request::HTTP.Request, x::Int, y::Int
x - y
end
post("/sub/{x}/{y}") do request::HTTP.Request, x::Int, y::Int
x - y
end
put(inline("/power/{x}/{y}")) do request::HTTP.Request, x::Int, y::Int
x ^ y
end
put("/power/{x}/{y}") do request::HTTP.Request, x::Int, y::Int
x ^ y
end
patch(inline("/mulitply/{x}/{y}")) do request::HTTP.Request, x::Int, y::Int
x * y
end
patch("/mulitply/{x}/{y}") do request::HTTP.Request, x::Int, y::Int
x * y
end
delete(inline("/divide/{x}/{y}")) do request::HTTP.Request, x::Int, y::Int
x / y
end
delete("/divide/{x}/{y}") do request::HTTP.Request, x::Int, y::Int
x / y
end
route(["GET"], inline("/route/add/{x}/{y}")) do request::HTTP.Request, x::Int, y::Int
x + y
end
route(["GET"], "/route/add/{x}/{y}") do request::HTTP.Request, x::Int, y::Int
x + y
end
##### Begin tests #####
@testset "Routing Function Tests" begin
@testset "GET routing functions" begin
r = internalrequest(HTTP.Request("GET", "/inline/add/5/4"))
@test r.status == 200
@test text(r) == "9"
r = internalrequest(HTTP.Request("GET", "/add/5/4"))
@test r.status == 200
@test text(r) == "9"
r = internalrequest(HTTP.Request("GET", "/inline/route/add/5/4"))
@test r.status == 200
@test text(r) == "9"
r = internalrequest(HTTP.Request("GET", "/route/add/5/4"))
@test r.status == 200
@test text(r) == "9"
end
@testset "POST routing functions" begin
r = internalrequest(HTTP.Request("POST", "/inline/sub/5/4"))
@test r.status == 200
@test text(r) == "1"
r = internalrequest(HTTP.Request("POST", "/sub/5/4"))
@test r.status == 200
@test text(r) == "1"
end
@testset "PUT routing functions" begin
r = internalrequest(HTTP.Request("PUT", "/inline/power/5/4"))
@test r.status == 200
@test text(r) == "625"
r = internalrequest(HTTP.Request("PUT", "/power/5/4"))
@test r.status == 200
@test text(r) == "625"
end
@testset "PATCH routing functions" begin
r = internalrequest(HTTP.Request("PATCH", "/inline/mulitply/5/4"))
@test r.status == 200
@test text(r) == "20"
r = internalrequest(HTTP.Request("PATCH", "/mulitply/5/4"))
@test r.status == 200
@test text(r) == "20"
end
@testset "DELETE routing functions" begin
r = internalrequest(HTTP.Request("DELETE", "/inline/divide/5/4"))
@test r.status == 200
@test text(r) == "1.25"
r = internalrequest(HTTP.Request("DELETE", "/divide/5/4"))
@test r.status == 200
@test text(r) == "1.25"
end
# clear any routes setup in this file
resetstate()
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 913 | module RunTests
include("constants.jl"); using .Constants
#### Extension Tests ####
include("extensions/templatingtests.jl")
include("extensions/protobuf/protobuftests.jl")
include("extensions/cairomakietests.jl")
include("extensions/wglmakietests.jl")
include("extensions/bonitotests.jl")
#### Sepcial Handler Tests ####
include("ssetests.jl") # Causing issues
include("websockettests.jl")
include("streamingtests.jl")
include("handlertests.jl")
# #### Core Tests ####
include("precompilationtest.jl")
include("extractortests.jl")
include("reflectiontests.jl")
include("metricstests.jl")
include("routingfunctionstests.jl")
include("rendertests.jl")
include("bodyparsertests.jl")
include("crontests.jl")
include("oxidise.jl")
include("instancetests.jl")
include("paralleltests.jl")
include("taskmanagement.jl")
include("cronmanagement.jl")
include("middlewaretests.jl")
include("originaltests.jl")
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2422 | module SSETests
using Test
using Dates
using HTTP
using ..Constants
using Kitten; @oxidise
@get "/health" function()
return text("I'm alive")
end
stream("/events/{name}") do stream::HTTP.Stream, name::String
HTTP.setheader(stream, "Access-Control-Allow-Origin" => "*")
HTTP.setheader(stream, "Access-Control-Allow-Methods" => "GET")
HTTP.setheader(stream, "Content-Type" => "text/event-stream")
HTTP.setheader(stream, "Cache-Control" => "no-cache")
startwrite(stream)
message = "Hello, $name"
for _ in 1:5
write(stream, format_sse_message(message))
sleep(0.1)
end
closewrite(stream)
return nothing
end
serve(port=PORT, host=HOST, async=true, show_errors=false, show_banner=false, access_log=nothing)
@testset "Stream Function tests" begin
HTTP.open("GET", "$localhost/events/john", headers=Dict("Connection" => "close")) do io
while !eof(io)
message = String(readavailable(io))
if !isempty(message) && message != "null"
@test message == "data: Hello, john\n\n"
end
end
end
HTTP.open("GET", "$localhost/events/matt", headers=Dict("Connection" => "close")) do io
while !eof(io)
message = String(readavailable(io))
if !isempty(message) && message != "null"
@test message == "data: Hello, matt\n\n"
end
end
end
end
terminate()
println()
@testset "format_sse_message tests" begin
@testset "basic functionality" begin
@test format_sse_message("Hello") == "data: Hello\n\n"
@test format_sse_message("Hello\nWorld") == "data: Hello\ndata: World\n\n"
end
@testset "optional parameters" begin
@test format_sse_message("Hello", event="greeting") == "data: Hello\nevent: greeting\n\n"
@test format_sse_message("Hello", id="1") == "data: Hello\nid: 1\n\n"
@test format_sse_message("Hello", retry=1000) == "data: Hello\nretry: 1000\n\n"
end
@testset "newline in event or id" begin
@test_throws ArgumentError format_sse_message("Hello", event="greeting\n")
@test_throws ArgumentError format_sse_message("Hello", id="1\n")
end
@testset "retry is not positive" begin
@test_throws ArgumentError format_sse_message("Hello", retry=0)
@test_throws ArgumentError format_sse_message("Hello", retry=-1)
end
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2005 | module StreamingTests
using Test
using HTTP
using ..Constants
using Kitten; @oxidise
function explicit_stream(stream::HTTP.Stream)
# Set headers
HTTP.setheader(stream, "Content-Type" => "text/plain")
HTTP.setheader(stream, "Transfer-Encoding" => "chunked")
# Start writing (if you need to send headers before the body)
startwrite(stream)
data = ["a", "b", "c"]
for chunk in data
write(stream, chunk)
end
# Close the stream to end the HTTP response properly
closewrite(stream)
end
function implicit_stream(stream)
explicit_stream(stream)
end
srouter = router("/stream")
@stream "/api/chunked/text" implicit_stream
stream(implicit_stream, srouter("/api/func/chunked/text"))
@post "/api/post/chunked/text" explicit_stream
@get "/api/error" implicit_stream
serve(port=PORT, host=HOST, async=true, show_errors=false, show_banner=false, access_log=nothing)
@testset "StreamingChunksDemo Tests" begin
@testset "macro stream handler" begin
response = HTTP.get("$localhost/api/chunked/text", headers=Dict("Connection" => "close"))
@test response.status == 200
@test text(response) == "abc"
end
@testset "function stream handler" begin
response = HTTP.get("$localhost/stream/api/func/chunked/text", headers=Dict("Connection" => "close"))
@test response.status == 200
@test text(response) == "abc"
end
@testset "/api/post/chunked/text" begin
response = HTTP.post("$localhost/api/post/chunked/text", headers=Dict("Connection" => "close"))
@test response.status == 200
@test text(response) == "abc"
end
@testset "Can't setup implicit stream handler on regular routing macros & functions " begin
try
response = HTTP.get("$localhost/api/error", headers=Dict("Connection" => "close"))
@test false
catch e
@test e isa HTTP.Exceptions.StatusError
end
end
end
terminate()
println()
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 607 | module TaskManagementTests
using Test
using Kitten; @oxidise
const iterations = Ref{Int}(0)
get(router("/one", interval=1)) do
iterations[] += 1
end
get(router("/three", interval=3)) do
iterations[] += 1
end
@repeat 3.4 function()
iterations[] += 1
end
@repeat 4 "every 4 seconds" function()
iterations[] += 1
end
starttasks()
starttasks() # all active tasks should be filtered out and not started again
# register a new task after the others have already began
@repeat 5 function()
iterations[] += 1
end
starttasks()
while iterations[] < 15
sleep(1)
end
terminate()
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2365 | module WebSocketTests
using Test
using HTTP
using HTTP.WebSockets
using ..Constants
using Kitten; @oxidise
websocket("/ws") do ws::HTTP.WebSocket
try
for msg in ws
send(ws, "Received message: $msg")
end
catch e
if !isa(e, HTTP.WebSockets.WebSocketError)
rethrow(e)
end
end
end
wsrouter = router("/router")
websocket(wsrouter("/ws")) do ws::HTTP.WebSocket
try
for msg in ws
send(ws, "Received message: $msg")
end
catch e
if !isa(e, HTTP.WebSockets.WebSocketError)
rethrow(e)
end
end
end
@websocket "/ws/{x}" function(ws, x::Int)
try
for msg in ws
send(ws, "Received message from $x: $msg")
end
catch e
if !isa(e, HTTP.WebSockets.WebSocketError)
rethrow(e)
end
end
end
# Test if @get works with WebSockets (based on the type of the first argument)
@get "/ws/get" function(ws::HTTP.WebSocket)
try
for msg in ws
send(ws, "Received message: $msg")
end
catch e
if !isa(e, HTTP.WebSockets.WebSocketError)
rethrow(e)
end
end
end
serve(port=PORT, host=HOST, async=true, show_errors=false, show_banner=false, access_log=nothing)
@testset "Websocket Tests" begin
@testset "/ws route" begin
WebSockets.open("ws://$HOST:$PORT/ws") do ws
send(ws, "Test message")
response = receive(ws)
@test response == "Received message: Test message"
end
end
@testset "/router/ws route" begin
WebSockets.open("ws://$HOST:$PORT/router/ws") do ws
send(ws, "Test message")
response = receive(ws)
@test response == "Received message: Test message"
end
end
@testset "/ws with arg route" begin
WebSockets.open("ws://$HOST:$PORT/ws/9") do ws
send(ws, "Test message")
response = receive(ws)
@test response == "Received message from 9: Test message"
end
end
@testset "/ws with @get" begin
WebSockets.open("ws://$HOST:$PORT/ws/get") do ws
send(ws, "Test message")
response = receive(ws)
@test response == "Received message: Test message"
end
end
end
terminate()
println()
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 451 | module TestPackage
using Base: @kwdef
push!(LOAD_PATH, "../../")
using Kitten
@oxidise
export start, stop
@kwdef struct Add
a::Int
b::Int = 3
end
get("/") do
text("hello world")
end
@get "/add" function (req::Request, a::Int, b::Int=3)
a + b
end
@get "/add/extractor" function (req::Request, qparams::Query{Add})
add = qparams.payload
add.a + add.b
end
start(; kwargs...) = serve(; kwargs...)
stop() = terminate()
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 1575 | module CairoMakieTests
using HTTP
using Test
using Bonito
using Kitten
@oxidise
import Kitten: text, html
using ..Constants
@testset "Bonito Utils tests" begin
app = App() do
return DOM.div(DOM.h1("hello world"), js"""console.log('hello world')""")
end
response = html(app)
@test response isa HTTP.Response
@test response.status == 200
@test HTTP.header(response, "Content-Type") == "text/html"
@test parse(Int, HTTP.header(response, "Content-Length")) >= 0
end
@testset "WGLMakie server tests" begin
get("/") do
text("hello world")
end
get("/html") do
html("hello world")
end
get("/plot/html") do
app = App() do
return DOM.div(DOM.h1("hello world"))
end
html(app)
end
serve(host=HOST, port=PORT, async=true, show_banner=false, access_log=nothing)
# Test overloaded text() function
r = HTTP.get("$localhost/")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "text/plain; charset=utf-8"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
# Test overloaded html function
r = HTTP.get("$localhost/html")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "text/html; charset=utf-8"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
# Test for /plot/html endpoint
r = HTTP.get("$localhost/plot/html")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "text/html"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
terminate()
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 3212 | module CairoMakieTests
using HTTP
using Test
using CairoMakie: heatmap
using Kitten
@oxidise
import Kitten: text
using ..Constants
@testset "CairoMakie Utils" begin
# create a random heatmap
fig, ax, pl = heatmap(rand(50, 50))
response = png(fig)
@test response isa HTTP.Response
@test response.status == 200
@test HTTP.header(response, "Content-Type") == "image/png"
@test parse(Int, HTTP.header(response, "Content-Length")) >= 0
response = svg(fig)
@test response isa HTTP.Response
@test response.status == 200
@test HTTP.header(response, "Content-Type") == "image/svg+xml"
@test parse(Int, HTTP.header(response, "Content-Length")) >= 0
response = pdf(fig)
@test response isa HTTP.Response
@test response.status == 200
@test HTTP.header(response, "Content-Type") == "application/pdf"
@test parse(Int, HTTP.header(response, "Content-Length")) >= 0
response = html(fig)
@test response isa HTTP.Response
@test response.status == 200
@test HTTP.header(response, "Content-Type") == "text/html"
@test parse(Int, HTTP.header(response, "Content-Length")) >= 0
end
@testset "CairoMakie server" begin
get("/") do
text("hello world")
end
get("/html") do
html("hello world")
end
# generate a random plot
get("/plot/png") do
fig, ax, pl = heatmap(rand(50, 50)) # or something
png(fig)
end
get("/plot/svg") do
fig, ax, pl = heatmap(rand(50, 50)) # or something
svg(fig)
end
get("/plot/pdf") do
fig, ax, pl = heatmap(rand(50, 50)) # or something
pdf(fig)
end
get("/plot/html") do
fig, ax, pl = heatmap(rand(50, 50)) # or something
html(fig)
end
serve(host=HOST, port=PORT, async=true, show_banner=false, access_log=nothing)
# Test overloaded text() function
r = HTTP.get("$localhost/")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "text/plain; charset=utf-8"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
# Test overloaded html function
r = HTTP.get("$localhost/html")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "text/html; charset=utf-8"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
# Test for /plot/png endpoint
r = HTTP.get("$localhost/plot/png")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "image/png"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
# Test for /plot/svg endpoint
r = HTTP.get("$localhost/plot/svg")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "image/svg+xml"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
# Test for /plot/pdf endpoint
r = HTTP.get("$localhost/plot/pdf")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "application/pdf"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
# Test for /plot/html endpoint
r = HTTP.get("$localhost/plot/html")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "text/html"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
terminate()
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 9808 | module TemplatingTests
using MIMEs
using Test
using HTTP
using Mustache
using OteraEngine
using Kitten
function clean_output(result::String)
# Replace carriage returns followed by line feeds (\r\n) with a single newline (\n)
tmp = replace(result, "\r\n" => "\n")
# Replace sequences of newline followed by spaces (\n\s*) with a single newline (\n)
tmp = replace(tmp, r"\n\s*\n" => "\n")
return tmp
end
function remove_trailing_newline(s::String)::String
if !isempty(s) && last(s) == '\n'
return s[1:end-1]
end
return s
end
data = Dict(
"name" => "Chris",
"value" => 10000,
"taxed_value" => 10000 - (10000 * 0.4),
"in_ca" => true
)
mustache_template = mt"""
Hello {{name}}
You have just won {{value}} dollars!
{{#in_ca}}
Well, {{taxed_value}} dollars, after taxes.
{{/in_ca}}
"""
mustache_template_str = """
Hello {{name}}
You have just won {{value}} dollars!
{{#in_ca}}
Well, {{taxed_value}} dollars, after taxes.
{{/in_ca}}
"""
expected_output = """
Hello Chris
You have just won 10000 dollars!
Well, 6000.0 dollars, after taxes.
"""
@testset "Templating Module Tests" begin
@testset "mustache() from string no args " begin
plain_temp = "Hello World!"
render = mustache(plain_temp, mime_type="text/plain")
response = render()
@test response.body |> String |> clean_output == plain_temp
end
@testset "mustache() from string tests " begin
render = mustache(mustache_template_str, mime_type="text/plain")
response = render(data)
@test response.body |> String |> clean_output == expected_output
end
@testset "mustache() from string tests w/ content type" begin
render = mustache(mustache_template_str)
response = render(data)
@test response.body |> String |> clean_output == expected_output
end
@testset "mustache() from file no content type" begin
render = mustache("./content/mustache_template.txt", from_file=true)
response = render(data)
@test response.body |> String |> clean_output == expected_output
end
@testset "mustache() from file w/ content type" begin
render = mustache("./content/mustache_template.txt", mime_type="text/plain", from_file=true)
response = render(data)
@test response.body |> String |> clean_output == expected_output
end
@testset "mustache() from file with no content type" begin
render = open(mustache, "./content/mustache_template.txt")
response = render(data)
@test response.body |> String |> clean_output == expected_output
end
@testset "mustache() from file with content type" begin
render = open(io -> mustache(io; mime_type="text/plain"), "./content/mustache_template.txt")
response = render(data)
@test response.body |> String |> clean_output == expected_output
end
@testset "mustache() from template" begin
render = mustache(mustache_template)
response = render(data)
@test response.body |> String |> clean_output == expected_output
end
@testset "mustache() from template with content type" begin
render = mustache(mustache_template, mime_type="text/plain")
response = render(data)
@test response.body |> String |> clean_output == expected_output
end
# @testset "mustache api tests" begin
mus_str = mustache(mustache_template_str)
mus_tpl = mustache(mustache_template)
mus_file = mustache("./content/mustache_template.txt", from_file=true)
@get "/mustache/string" function ()
return mus_str(data)
end
@get "/mustache/template" function ()
return mus_tpl(data)
end
@get "/mustache/file" function ()
return mus_file(data)
end
r = internalrequest(HTTP.Request("GET", "/mustache/string"))
@test r.status == 200
@test r.body |> String |> clean_output == expected_output
r = internalrequest(HTTP.Request("GET", "/mustache/template"))
@test r.status == 200
@test r.body |> String |> clean_output == expected_output
r = internalrequest(HTTP.Request("GET", "/mustache/file"))
@test r.status == 200
@test r.body |> String |> clean_output == expected_output
# end
@testset "otera() from string" begin
template = """
<html>
<head><title>MyPage</title></head>
<body>
{% if name=="watasu" %}
your name is {{ name }}, right?
{% end %}
{% for i in 1 : 10 %}
Hello {{i}}
{% end %}
{% if age == 15 %}
and your age is {{ age }}.
{% end %}
</body>
</html>
""" |> remove_trailing_newline
expected_output = """
<html>
<head><title>MyPage</title></head>
<body>
your name is watasu, right?
Hello 1
Hello 2
Hello 3
Hello 4
Hello 5
Hello 6
Hello 7
Hello 8
Hello 9
Hello 10
and your age is 15.
</body>
</html>
""" |> remove_trailing_newline
# detect content type
data = Dict("name" => "watasu", "age" => 15)
render = otera(template)
result = render(data)
@test result.body |> String |> clean_output == expected_output
# with explicit content type
data = Dict("name" => "watasu", "age" => 15)
render = otera(template; mime_type="text/html")
result = render(data)
@test result.body |> String |> clean_output == expected_output
end
@testset "otera() from template file" begin
expected_output = """
<html>
<head><title>MyPage</title></head>
<body>
your name is watasu, right?
Hello 1
Hello 2
Hello 3
Hello 4
Hello 5
Hello 6
Hello 7
Hello 8
Hello 9
Hello 10
and your age is 15.
</body>
</html>
""" |> remove_trailing_newline
data = Dict("name" => "watasu", "age" => 15)
render = otera("./content/otera_template.html", from_file=true)
result = render(data)
@test result.body |> String |> clean_output == expected_output
# with explicit content type
render = open(io -> otera(io; mime_type="text/html"), "./content/otera_template.html")
result = render(data)
@test result.body |> String |> clean_output == expected_output
end
@testset "otera() from template file with no args" begin
expected_output = """
<html>
<head><title>MyPage</title></head>
<body>
your name is watasu, right?
Hello 1
Hello 2
Hello 3
Hello 4
Hello 5
Hello 6
Hello 7
Hello 8
Hello 9
Hello 10
and your age is 15.
</body>
</html>
""" |> remove_trailing_newline
render = otera("./content/otera_template_no_vars.html", from_file=true)
result = render()
@test result.body |> String |> clean_output == expected_output
render = otera("./content/otera_template_no_vars.html", mime_type="text/html", from_file=true)
result = render()
@test result.body |> String |> clean_output == expected_output
end
@testset "otera() from template file with jl init data" begin
expected_output = """
<html>
<head><title>MyPage</title></head>
<body>
<h1>Hello World!</h1>
</body>
</html>
""" |> remove_trailing_newline
render = otera("./content/otera_template_jl.html", from_file=true)
result = render(Dict("name" => "World"))
@test result.body |> String |> clean_output == expected_output
end
@testset "otera() running julia code in template" begin
template = "{< 3 ^ 3 >}. Hello {{ name }}!"
expected_output = "27. Hello world!"
render = otera(template)
result = render(Dict("name" => "world"))
@test result.body |> String |> clean_output == expected_output
template = """
<html>
<head><title>Jinja Test Page</title></head>
<body>
Hello, {<name>}!
</body>
</html>
""" |> remove_trailing_newline
expected_output = """
<html>
<head><title>Jinja Test Page</title></head>
<body>
Hello, world!
</body>
</html>
""" |> remove_trailing_newline
render = otera(template)
result = render(Dict("name" => "world"))
@test result.body |> String |> clean_output == expected_output
end
@testset "otera() combined tmp_init & init test" begin
template = "{< parse(Int, value) ^ 3 >}. Hello {{name}}!"
expected_output = "27. Hello World!"
render = otera(template)
result = render(Dict("name" => "World", "value" => "3"))
end
@testset "otera() combined tmp_init & init test with content type" begin
template = "{< parse(Int, value) ^ 3 >}. Hello {{name}}!"
expected_output = "27. Hello World!"
render = otera(template, mime_type="text/plain")
result = render(Dict("name" => "World", "value" => "3"))
end
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 1533 | module CairoMakieTests
using HTTP
using Test
using Bonito
using WGLMakie: heatmap
using Kitten
@oxidise
import Kitten: text, html
using ..Constants
@testset "WGLMakie Utils tests" begin
# create a random heatmap
fig = heatmap(rand(50, 50))
response = html(fig)
@test response isa HTTP.Response
@test response.status == 200
@test HTTP.header(response, "Content-Type") == "text/html"
@test parse(Int, HTTP.header(response, "Content-Length")) >= 0
end
@testset "WGLMakie server tests" begin
get("/") do
text("hello world")
end
get("/html") do
html("hello world")
end
# generate a random plot
get("/plot/html") do
fig = heatmap(rand(50, 50))
html(fig)
end
serve(host=HOST, port=PORT, async=true, show_banner=false, access_log=nothing)
# Test overloaded text() function
r = HTTP.get("$localhost/")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "text/plain; charset=utf-8"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
# Test overloaded html function
r = HTTP.get("$localhost/html")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "text/html; charset=utf-8"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
# Test for /plot/html endpoint
r = HTTP.get("$localhost/plot/html")
@test r.status == 200
@test HTTP.header(r, "Content-Type") == "text/html"
@test parse(Int, HTTP.header(r, "Content-Length")) >= 0
terminate()
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 1880 | module ProtobufTests
using Test
using HTTP
using ProtoBuf
using Kitten: protobuf
include("messages/people_pb.jl")
using .people_pb: People, Person
include("messages/test_pb.jl")
using .test_pb: MyMessage
@testset "Protobuf decoder test" begin
message = MyMessage(-1, ["a", "b"])
req::HTTP.Request = protobuf(message, "/data")
decoded_msg = protobuf(req, MyMessage)
@test decoded_msg isa MyMessage
@test decoded_msg.a == -1
@test decoded_msg.b == ["a", "b"]
end
@testset "Protobuf People Decoder test" begin
message = People([
Person("John Doe", 20),
Person("Jane Doe", 25),
Person("Alice", 30),
Person("Bob", 35),
Person("Charlie", 40)
])
req::HTTP.Request = protobuf(message, "/data", method="POST")
decoded_msg = protobuf(req, People)
@test decoded_msg isa People
for person in decoded_msg.people
@test person isa Person
end
end
@testset "Protobuf encoder test" begin
message = MyMessage(-1, ["a", "b"])
response = protobuf(message)
@test response isa HTTP.Response
@test response.status == 200
@test response.body isa Vector{UInt8}
@test HTTP.header(response, "Content-Type") == "application/octet-stream"
@test HTTP.header(response, "Content-Length") == string(sizeof(response.body))
end
@testset "Protobuf People encoder test" begin
message = People([
Person("John Doe", 20),
Person("Jane Doe", 25),
Person("Alice", 30),
Person("Bob", 35),
Person("Charlie", 40)
])
response = protobuf(message)
@test response isa HTTP.Response
@test response.status == 200
@test response.body isa Vector{UInt8}
@test HTTP.header(response, "Content-Type") == "application/octet-stream"
@test HTTP.header(response, "Content-Length") == string(sizeof(response.body))
end
end
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 2234 | # Autogenerated using ProtoBuf.jl v1.0.15 on 2024-03-10T22:46:41.410
# original file: D:\Programming\JuliaProjects\kitten-demo\src\people.proto (proto3 syntax)
module people_pb
import ProtoBuf as PB
using ProtoBuf: OneOf
using ProtoBuf.EnumX: @enumx
export Person, People
struct Person
name::String
age::Int32
end
PB.default_values(::Type{Person}) = (;name = "", age = zero(Int32))
PB.field_numbers(::Type{Person}) = (;name = 1, age = 2)
function PB.decode(d::PB.AbstractProtoDecoder, ::Type{<:Person})
name = ""
age = zero(Int32)
while !PB.message_done(d)
field_number, wire_type = PB.decode_tag(d)
if field_number == 1
name = PB.decode(d, String)
elseif field_number == 2
age = PB.decode(d, Int32, Val{:zigzag})
else
PB.skip(d, wire_type)
end
end
return Person(name, age)
end
function PB.encode(e::PB.AbstractProtoEncoder, x::Person)
initpos = position(e.io)
!isempty(x.name) && PB.encode(e, 1, x.name)
x.age != zero(Int32) && PB.encode(e, 2, x.age, Val{:zigzag})
return position(e.io) - initpos
end
function PB._encoded_size(x::Person)
encoded_size = 0
!isempty(x.name) && (encoded_size += PB._encoded_size(x.name, 1))
x.age != zero(Int32) && (encoded_size += PB._encoded_size(x.age, 2, Val{:zigzag}))
return encoded_size
end
struct People
people::Vector{Person}
end
PB.default_values(::Type{People}) = (;people = Vector{Person}())
PB.field_numbers(::Type{People}) = (;people = 1)
function PB.decode(d::PB.AbstractProtoDecoder, ::Type{<:People})
people = PB.BufferedVector{Person}()
while !PB.message_done(d)
field_number, wire_type = PB.decode_tag(d)
if field_number == 1
PB.decode!(d, people)
else
PB.skip(d, wire_type)
end
end
return People(people[])
end
function PB.encode(e::PB.AbstractProtoEncoder, x::People)
initpos = position(e.io)
!isempty(x.people) && PB.encode(e, 1, x.people)
return position(e.io) - initpos
end
function PB._encoded_size(x::People)
encoded_size = 0
!isempty(x.people) && (encoded_size += PB._encoded_size(x.people, 1))
return encoded_size
end
end # module
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | code | 1387 | # Autogenerated using ProtoBuf.jl v1.0.15 on 2024-02-27T23:51:29.590
# original file: D:\Programming\JuliaProjects\kitten-demo\src\test.proto (proto3 syntax)
module test_pb
import ProtoBuf as PB
using ProtoBuf: OneOf
using ProtoBuf.EnumX: @enumx
export MyMessage
struct MyMessage
a::Int32
b::Vector{String}
end
PB.default_values(::Type{MyMessage}) = (;a = zero(Int32), b = Vector{String}())
PB.field_numbers(::Type{MyMessage}) = (;a = 1, b = 2)
function PB.decode(d::PB.AbstractProtoDecoder, ::Type{<:MyMessage})
a = zero(Int32)
b = PB.BufferedVector{String}()
while !PB.message_done(d)
field_number, wire_type = PB.decode_tag(d)
if field_number == 1
a = PB.decode(d, Int32, Val{:zigzag})
elseif field_number == 2
PB.decode!(d, b)
else
PB.skip(d, wire_type)
end
end
return MyMessage(a, b[])
end
function PB.encode(e::PB.AbstractProtoEncoder, x::MyMessage)
initpos = position(e.io)
x.a != zero(Int32) && PB.encode(e, 1, x.a, Val{:zigzag})
!isempty(x.b) && PB.encode(e, 2, x.b)
return position(e.io) - initpos
end
function PB._encoded_size(x::MyMessage)
encoded_size = 0
x.a != zero(Int32) && (encoded_size += PB._encoded_size(x.a, 1, Val{:zigzag}))
!isempty(x.b) && (encoded_size += PB._encoded_size(x.b, 2))
return encoded_size
end
end # module
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | docs | 40855 | # Kitten.jl
## About
Kitten is a micro-framework built on top of the HTTP.jl library.
## Features
- Straightforward routing
- Real-time Metrics Dashboard
- Auto-generated swagger documentation
- Out-of-the-box JSON serialization & deserialization (customizable)
- Type definition support for path parameters
- Request Extractors
- Multiple Instance Support
- Multithreading support
- Websockets, Streaming, and Server-Sent Events
- Cron Scheduling (on endpoints & functions)
- Middleware chaining (at the application, router, and route levels)
- Static & Dynamic file hosting
- Templating Support
- Plotting Support
- Protocol Buffer Support
- Route tagging
- Repeat tasks
## Installation
```julia
pkg> add Kitten
```
## Minimalistic Example
Create a web-server with very few lines of code
```julia
using Kitten
using HTTP
@get "/greet" function(req::HTTP.Request)
return "hello world!"
end
# start the web server
serve()
```
## Handlers
Handlers are used to connect your code to the server in a clean & straightforward way.
They assign a url to a function and invoke the function when an incoming request matches that url.
- Handlers can be imported from other modules and distributed across multiple files for better organization and modularity
- All handlers have equivalent macro & function implementations and support `do..end` block syntax
- The type of first argument is used to identify what kind of handler is being registered
- This package assumes it's a `Request` handler by default when no type information is provided
There are 3 types of supported handlers:
- `Request` Handlers
- `Stream` Handlers
- `Websocket` Handlers
```julia
using HTTP
using Kitten
# Request Handler
@get "/" function(req::HTTP.Request)
...
end
# Stream Handler
@stream "/stream" function(stream::HTTP.Stream)
...
end
# Websocket Handler
@websocket "/ws" function(ws::HTTP.WebSocket)
...
end
```
They are just functions which means there are many ways that they can be expressed and defined. Below is an example of several different ways you can express and assign a `Request` handler.
```julia
@get "/greet" function()
"hello world!"
end
@get("/gruessen") do
"Hallo Welt!"
end
@get "/saluer" () -> begin
"Bonjour le monde!"
end
@get "/saludar" () -> "Β‘Hola Mundo!"
@get "/salutare" f() = "ciao mondo!"
# This function can be declared in another module
function subtract(req, a::Float64, b::Float64)
return a - b
end
# register foreign request handlers like this
@get "/subtract/{a}/{b}" subtract
```
<details>
<summary><b>More Handler Docs</b></summary>
### Request Handlers
Request handlers are used to handle HTTP requests. They are defined using macros or their function equivalents, and accept a `HTTP.Request` object as the first argument. These handlers support both function and do-block syntax.
- The default Handler when no type information is provided
- Routing Macros: `@get`, `@post`, `@put`, `@patch`, `@delete`, `@route`
- Routing Functions: `get()`, `post()`, `put()`, `patch()`, `delete()`, `route()`
### Stream Handlers
Stream handlers are used to stream data. They are defined using the `@stream` macro or the `stream()` function and accept a `HTTP.Stream` object as the first argument. These handlers support both function and do-block syntax.
- `@stream` and `stream()` don't require a type definition on the first argument, they assume it's a stream.
- `Stream` handlers can be assigned with standard routing macros & functions: `@get`, `@post`, etc
- You need to explicitly include the type definition so Kitten can identify this as a `Stream` handler
### Websocket Handlers
Websocket handlers are used to handle websocket connections. They are defined using the `@websocket` macro or the `websocket()` function and accept a `HTTP.WebSocket` object as the first argument. These handlers support both function and do-block syntax.
- `@websocket` and `websocket()` don't require a type definition on the first argument, they assume it's a websocket.
- `Websocket` handlers can also be assigned with the `@get` macro or `get()` function, because the websocket protocol requires a `GET` request to initiate the handshake.
- You need to explicitly include the type definition so Kitten can identify this as a `Websocket` handler
</details>
## Routing Macro & Function Syntax
There are two primary ways to register your request handlers: the standard routing macros or the routing functions which utilize the do-block syntax.
For each routing macro, we now have a an equivalent routing function
```julia
@get -> get()
@post -> post()
@put -> put()
@patch -> patch()
@delete -> delete()
@route -> route()
```
The only practical difference between the two is that the routing macros are called during the precompilation
stage, whereas the routing functions are only called when invoked. (The routing macros call the routing functions under the hood)
```julia
# Routing Macro syntax
@get "/add/{x}/{y}" function(request::HTTP.Request, x::Int, y::Int)
x + y
end
# Routing Function syntax
get("/add/{x}/{y}") do request::HTTP.Request, x::Int, y::Int
x + y
end
```
## Render Functions
Kitten, by default, automatically identifies the Content-Type of the return value from a request handler when building a Response.
This default functionality is quite useful, but it does have an impact on performance. In situations where the return type is known,
It's recommended to use one of the pre-existing render functions to speed things up.
Here's a list of the currently supported render functions:
`html`, `text`, `json`, `file`, `xml`, `js`, `css`, `binary`
Below is an example of how to use these functions:
```julia
using Kitten
get("/html") do
html("<h1>Hello World</h1>")
end
get("/text") do
text("Hello World")
end
get("/json") do
json(Dict("message" => "Hello World"))
end
serve()
```
In most cases, these functions accept plain strings as inputs. The only exceptions are the `binary` function, which accepts a `Vector{UInt8}`, and the `json` function which accepts any serializable type.
- Each render function accepts a status and custom headers.
- The Content-Type and Content-Length headers are automatically set by these render functions
## Path parameters
Path parameters are declared with braces and are passed directly to your request handler.
```julia
using Kitten
# use path params without type definitions (defaults to Strings)
@get "/add/{a}/{b}" function(req, a, b)
return parse(Float64, a) + parse(Float64, b)
end
# use path params with type definitions (they are automatically converted)
@get "/multiply/{a}/{b}" function(req, a::Float64, b::Float64)
return a * b
end
# The order of the parameters doesn't matter (just the name matters)
@get "/subtract/{a}/{b}" function(req, b::Int64, a::Int64)
return a - b
end
# start the web server
serve()
```
## Query parameters
Query parameters can be declared directly inside of your handlers signature. Any parameter that isn't mentioned inside the route path is assumed to be a query parameter.
- If a default value is not provided, it's assumed to be a required parameter
```julia
@get "/query" function(req::HTTP.Request, a::Int, message::String="hello world")
return (a, message)
end
```
Alternatively, you can use the `queryparams()` function to extract the raw values from the url as a dictionary.
```julia
@get "/query" function(req::HTTP.Request)
return queryparams(req)
end
```
## HTML Forms
Use the `formdata()` function to extract and parse the form data from the body of a request. This function returns a dictionary of key-value pairs from the form
```julia
using Kitten
# Setup a basic form
@get "/" function()
html("""
<form action="/form" method="post">
<label for="firstname">First name:</label><br>
<input type="text" id="firstname" name="firstname"><br>
<label for="lastname">Last name:</label><br>
<input type="text" id="lastname" name="lastname"><br><br>
<input type="submit" value="Submit">
</form>
""")
end
# Parse the form data and return it
@post "/form" function(req)
data = formdata(req)
return data
end
serve()
```
## Return JSON
All objects are automatically deserialized into JSON using the JSON3 library
```julia
using Kitten
using HTTP
@get "/data" function(req::HTTP.Request)
return Dict("message" => "hello!", "value" => 99.3)
end
# start the web server
serve()
```
## Deserialize & Serialize custom structs
Kitten provides some out-of-the-box serialization & deserialization for most objects but requires the use of StructTypes when converting structs
```julia
using Kitten
using HTTP
using StructTypes
struct Animal
id::Int
type::String
name::String
end
# Add a supporting struct type definition so JSON3 can serialize & deserialize automatically
StructTypes.StructType(::Type{Animal}) = StructTypes.Struct()
@get "/get" function(req::HTTP.Request)
# serialize struct into JSON automatically (because we used StructTypes)
return Animal(1, "cat", "whiskers")
end
@post "/echo" function(req::HTTP.Request)
# deserialize JSON from the request body into an Animal struct
animal = json(req, Animal)
# serialize struct back into JSON automatically (because we used StructTypes)
return animal
end
# start the web server
serve()
```
## Extractors
Kitten comes with several built-in extractors designed to reduce the amount of boilerplate required to serialize inputs to your handler functions. By simply defining a struct and specifying the data source, these extractors streamline the process of data ingestion & validation through a uniform api.
- The serialized data is accessible through the `payload` property
- Can be used alongside other parameters and extractors
- Default values can be assigned when defined with the `@kwdef` macro
- Includes both global and local validators
- Struct definitions can be deeply nested
Supported Extractors:
- `Path` - extracts from path parameters
- `Query` - extracts from query parameters,
- `Header` - extracts from request headers
- `Form` - extracts form data from the request body
- `Body` - serializes the entire request body to a given type (String, Float64, etc..)
- `ProtoBuffer` - extracts the `ProtoBuf` message from the request body (available through a package extension)
- `Json` - extracts json from the request body
- `JsonFragment` - extracts a "fragment" of the json body using the parameter name to identify and extract the corresponding top-level key
#### Using Extractors & Parameters
In this example we show that the `Path` extractor can be used alongside regular path parameters. This Also works with regular query parameters and the `Query` extractor.
```julia
struct Add
b::Int
c::Int
end
@get "/add/{a}/{b}/{c}" function(req, a::Int, pathparams::Path{Add})
add = pathparams.payload # access the serialized payload
return a + add.b + add.c
end
```
#### Default Values
Default values can be setup with structs using the `@kwdef` macro.
```julia
@kwdef struct Pet
name::String
age::Int = 10
end
@post "/pet" function(req, params::Json{Pet})
return params.payload # access the serialized payload
end
```
#### Validation
On top of serializing incoming data, you can also define your own validation rules by using the `validate` function. In the example below we show how to use both `global` and `local` validators in your code.
- Validators are completely optional
- During the validation phase, Kitten will call the `global` validator before running a `local` validator.
```julia
import Kitten: validate
struct Person
name::String
age::Int
end
# Define a global validator
validate(p::Person) = p.age >= 0
# Only the global validator is ran here
@post "/person" function(req, newperson::Json{Person})
return newperson.payload
end
# In this case, both global and local validators are ran (this also makes sure the person is age 21+)
# You can also use this sytnax instead: Json(Person, p -> p.age >= 21)
@post "/adult" function(req, newperson = Json{Person}(p -> p.age >= 21))
return newperson.payload
end
```
## Interpolating variables into endpoints
You can interpolate variables directly into the paths, which makes dynamically registering routes a breeze
(Thanks to @anandijain for the idea)
```julia
using Kitten
operations = Dict("add" => +, "multiply" => *)
for (pathname, operator) in operations
@get "/$pathname/{a}/{b}" function (req, a::Float64, b::Float64)
return operator(a, b)
end
end
# start the web server
serve()
```
## Routers
The `router()` function is an HOF (higher order function) that allows you to reuse the same path prefix & properties across multiple endpoints. This is helpful when your api starts to grow and you want to keep your path operations organized.
Below are the arguments the `router()` function can take:
```julia
router(prefix::String; tags::Vector, middleware::Vector, interval::Real, cron::String)
```
- `tags` - are used to organize endpoints in the autogenerated docs
- `middleware` - is used to setup router & route-specific middleware
- `interval` - is used to support repeat actions (_calling a request handler on a set interval in seconds_)
- `cron` - is used to specify a cron expression that determines when to call the request handler.
```julia
using Kitten
# Any routes that use this router will be automatically grouped
# under the 'math' tag in the autogenerated documenation
math = router("/math", tags=["math"])
# You can also assign route specific tags
@get math("/multiply/{a}/{b}", tags=["multiplication"]) function(req, a::Float64, b::Float64)
return a * b
end
@get math("/divide/{a}/{b}") function(req, a::Float64, b::Float64)
return a / b
end
serve()
```
## Cron Scheduling
Kitten comes with a built-in cron scheduling system that allows you to call endpoints and functions automatically when the cron expression matches the current time.
When a job is scheduled, a new task is created and runs in the background. Each task uses its given cron expression and the current time to determine how long it needs to sleep before it can execute.
The cron parser in Kitten is based on the same specifications as the one used in Spring. You can find more information about this on the [Spring Cron Expressions](https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/support/CronExpression.html) page.
### Cron Expression Syntax
The following is a breakdown of what each parameter in our cron expression represents. While our specification closely resembles the one defined by Spring, it's not an exact 1-to-1 match.
```
The string has six single space-separated time and date fields:
ββββββββββββββ second (0-59)
β ββββββββββββββ minute (0 - 59)
β β ββββββββββββββ hour (0 - 23)
β β β ββββββββββββββ day of the month (1 - 31)
β β β β ββββββββββββββ month (1 - 12) (or JAN-DEC)
β β β β β ββββββββββββββ day of the week (1 - 7)
β β β β β β (Monday is 1, Tue is 2... and Sunday is 7)
β β β β β β
* * * * * *
```
Partial expressions are also supported, which means that subsequent expressions can be left out (they are defaulted to `'*'`).
```julia
# In this example we see only the `seconds` part of the expression is defined.
# This means that all following expressions are automatically defaulted to '*' expressions
@cron "*/2" function()
println("runs every 2 seconds")
end
```
### Scheduling Endpoints
The `router()` function has a keyword argument called `cron`, which accepts a cron expression that determines when an endpoint is called. Just like the other keyword arguments, it can be reused by endpoints that share routers or be overridden by inherited endpoints.
```julia
# execute at 8, 9 and 10 o'clock of every day.
@get router("/cron-example", cron="0 0 8-10 * * *") function(req)
println("here")
end
# execute this endpoint every 5 seconds (whenever current_seconds % 5 == 0)
every5 = router("/cron", cron="*/5")
# this endpoint inherits the cron expression
@get every5("/first") function(req)
println("first")
end
# Now this endpoint executes every 2 seconds ( whenever current_seconds % 2 == 0 ) instead of every 5
@get every5("/second", cron="*/2") function(req)
println("second")
end
```
### Scheduling Functions
In addition to scheduling endpoints, you can also use the new `@cron` macro to schedule functions. This is useful if you want to run code at specific times without making it visible or callable in the API.
```julia
@cron "*/2" function()
println("runs every 2 seconds")
end
@cron "0 0/30 8-10 * * *" function()
println("runs at 8:00, 8:30, 9:00, 9:30, 10:00 and 10:30 every day")
end
```
### Starting & Stopping Cron Jobs
When you run `serve()` or `serveparallel()`, all registered cron jobs are automatically started. If the server is stopped or killed, all running jobs will also be terminated. You can stop the server and all repeat tasks and cron jobs by calling the `terminate()` function or manually killing the server with `ctrl+C`.
In addition, Kitten provides utility functions to manually start and stop cron jobs: `startcronjobs()` and `stopcronjobs()`. These functions can be used outside of a web server as well.
## Repeat Tasks
Repeat tasks provide a simple api to run a function on a set interval.
There are two ways to register repeat tasks:
- Through the `interval` parameter in a `router()`
- Using the `@repeat` macro
**It's important to note that request handlers that use this property can't define additional function parameters outside of the default `HTTP.Request` parameter.**
In the example below, the `/repeat/hello` endpoint is called every 0.5 seconds and `"hello"` is printed to the console each time.
The `router()` function has an `interval` parameter which is used to call
a request handler on a set interval (in seconds).
```julia
using Kitten
taskrouter = router("/repeat", interval=0.5, tags=["repeat"])
@get taskrouter("/hello") function()
println("hello")
end
# you can override properties by setting route specific values
@get taskrouter("/bonjour", interval=1.5) function()
println("bonjour")
end
serve()
```
Below is an example of how to register a repeat task outside of the router
```julia
@repeat 1.5 function()
println("runs every 1.5 seconds")
end
# you can also "name" a repeat task
@repeat 5 "every-five" function()
println("runs every 5 seconds")
end
```
When the server is ran, all tasks are started automatically. But the module also provides utilities to have more fine-grained control over the running tasks using the following functions: `starttasks()`, `stoptasks()`, and `cleartasks()`
## Multiple Instances
In some advanced scenarios, you might need to spin up multiple web severs within the same module on different ports. Kitten provides both a static and dynamic way to create multiple instances of a web server.
As a general rule of thumb, if you know how many instances you need ahead of time it's best to go with the static approach.
### Static: multiple instance's with `@oxidise`
Kitten provides a new macro which makes it possible to setup and run multiple instances. It generates methods and binds them to a new internal state for the current module.
In the example below, two simple servers are defined within modules A and B and are started in the parent module. Both modules contain all of the functions exported from Kitten which can be called directly as shown below.
```julia
module A
using Kitten; @oxidise
get("/") do
text("server A")
end
end
module B
using Kitten; @oxidise
get("/") do
text("server B")
end
end
try
# start both instances
A.serve(port=8001, async=true)
B.serve(port=8002, async=false)
finally
# shut down if we `Ctrl+C`
A.terminate()
B.terminate()
end
```
### Dynamic: multiple instance's with `instance()`
The `instance` function helps you create a completely independent instance of an Kitten web server at runtime. It works by dynamically creating a julia module at runtime and loading the Kitten code within it.
All of the same methods from Kitten are available under the named instance. In the example below we can use the `get`, and `serve` by simply using dot syntax on the `app1` variable to access the underlying methods.
```julia
using Kitten
######### Setup the first app #########
app1 = instance()
app1.get("/") do
text("server A")
end
######### Setup the second app #########
app2 = instance()
app2.get("/") do
text("server B")
end
######### Start both instances #########
try
# start both servers together
app1.serve(port=8001, async=true)
app2.serve(port=8002)
finally
# clean it up
app1.terminate()
app2.terminate()
end
```
## Multithreading & Parallelism
For scenarios where you need to handle higher amounts of traffic, you can run Kitten in a
multithreaded mode. In order to utilize this mode, julia must have more than 1 thread to work with. You can start a julia session with 4 threads using the command below
```shell
julia --threads 4
```
`serveparallel()` Starts the webserver in streaming mode and handles requests in a cooperative multitasking approach. This function uses `Threads.@spawn` to schedule a new task on any available thread. Meanwhile, @async is used inside this task when calling each request handler. This allows the task to yield during I/O operations.
```julia
using Kitten
using StructTypes
using Base.Threads
# Make the Atomic struct serializable
StructTypes.StructType(::Type{Atomic{Int64}}) = StructTypes.Struct()
x = Atomic{Int64}(0);
@get "/show" function()
return x
end
@get "/increment" function()
atomic_add!(x, 1)
return x
end
# start the web server in parallel mode
serveparallel()
```
## Protocol Buffers
Kitten includes an extension for the [ProtoBuf.jl](https://github.com/JuliaIO/ProtoBuf.jl) package. This extension provides a `protobuf()` function, simplifying the process of working with Protocol Buffers in the context of web server. For a better understanding of this package, please refer to its official documentation.
This function has overloads for the following scenarios:
- Decoding a protobuf message from the body of an HTTP request.
- Encoding a protobuf message into the body of an HTTP request.
- Encoding a protobuf message into the body of an HTTP response.
```julia
using HTTP
using ProtoBuf
using Kitten
# The generated classes need to be created ahead of time (check the protobufs)
include("people_pb.jl");
using .people_pb: People, Person
# Decode a Protocol Buffer Message
@post "/count" function(req::HTTP.Request)
# decode the request body into a People object
message = protobuf(req, People)
# count the number of Person objects
return length(message.people)
end
# Encode & Return Protocol Buffer message
@get "/get" function()
message = People([
Person("John Doe", 20),
Person("Alice", 30),
Person("Bob", 35)
])
# seralize the object inside the body of a HTTP.Response
return protobuf(message)
end
```
The following is an example of a schema that was used to create the necessary Julia bindings. These bindings allow for the encoding and decoding of messages in the above example.
```protobuf
syntax = "proto3";
message Person {
string name = 1;
sint32 age = 2;
}
message People {
repeated Person people = 1;
}
```
## Plotting
Kitten is equipped with several package extensions that enhance its plotting capabilities. These extensions make it easy to return plots directly from request handlers. All operations are performed in-memory using an IOBuffer and return a `HTTP.Response`
Supported Packages and their helper utils:
- CairoMakie.jl: `png`, `svg`, `pdf`, `html`
- WGLMakie.jl: `html`
- Bonito.jl: `html`
#### CairoMakie.jl
```julia
using CairoMakie: heatmap
using Kitten
@get "/cairo" function()
fig, ax, pl = heatmap(rand(50, 50))
png(fig)
end
serve()
```
#### WGLMakie.jl
```julia
using Bonito
using WGLMakie: heatmap
using Kitten
using Kitten: html # Bonito also exports html
@get "/wgl" function()
fig = heatmap(rand(50, 50))
html(fig)
end
serve()
```
#### Bonito.jl
```julia
using Bonito
using WGLMakie: heatmap
using Kitten
using Kitten: html # Bonito also exports html
@get "/bonito" function()
app = App() do
return DOM.div(
DOM.h1("Random 50x50 Heatmap"),
DOM.div(heatmap(rand(50, 50)))
)
end
return html(app)
end
serve()
```
## Templating
Rather than building an internal engine for templating or adding additional dependencies, Kitten
provides two package extensions to support `Mustache.jl` and `OteraEngine.jl` templates.
Kitten provides a simple wrapper api around both packages that makes it easy to render templates from strings,
templates, and files. This wrapper api returns a `render` function which accepts a dictionary of inputs to fill out the
template.
In all scenarios, the rendered template is returned inside a HTTP.Response object ready to get served by the api.
By default, the mime types are auto-detected either by looking at the content of the template or the extension name on the file.
If you know the mime type you can pass it directly through the `mime_type` keyword argument to skip the detection process.
### Mustache Templating
Please take a look at the [Mustache.jl](https://jverzani.github.io/Mustache.jl/dev/) documentation to learn the full capabilities of the package
Example 1: Rendering a Mustache Template from a File
```julia
using Mustache
using Kitten
# Load the Mustache template from a file and create a render function
render = mustache("./templates/greeting.txt", from_file=false)
@get "/mustache/file" function()
data = Dict("name" => "Chris")
return render(data) # This will return an HTML.Response with the rendered template
end
```
Example 2: Specifying MIME Type for a plain string Mustache Template
```julia
using Mustache
using Kitten
# Define a Mustache template (both plain strings and mustache templates are supported)
template_str = "Hello, {{name}}!"
# Create a render function, specifying the MIME type as text/plain
render = mustache(template_str, mime_type="text/plain") # mime_type keyword arg is optional
@get "/plain/text" function()
data = Dict("name" => "Chris")
return render(data) # This will return a plain text response with the rendered template
end
```
### Otera Templating
Please take a look at the [OteraEngine.jl](https://mommawatasu.github.io/OteraEngine.jl/dev/tutorial/#API) documentation to learn the full capabilities of the package
Example 1: Rendering an Otera Template with Logic and Loops
```julia
using OteraEngine
using Kitten
# Define an Otera template
template_str = """
<html>
<head><title>{{ title }}</title></head>
<body>
{% for name in names %}
Hello {{ name }}<br>
{% end %}
</body>
</html>
"""
# Create a render function for the Otera template
render = otera(template_str)
@get "/otera/loop" function()
data = Dict("title" => "Greetings", "names" => ["Alice", "Bob", "Chris"])
return render(data) # This will return an HTML.Response with the rendered template
end
```
In this example, an Otera template is defined with a for-loop that iterates over a list of names, greeting each name.
Example 2: Running Julia Code in Otera Template
```julia
using OteraEngine
using Kitten
# Define an Otera template with embedded Julia code
template_str = """
The square of {{ number }} is {< number^2 >}.
"""
# Create a render function for the Otera template
render = otera(template_str)
@get "/otera/square" function()
data = Dict("number" => 5)
return render(data) # This will return an HTML.Response with the rendered template
end
```
In this example, an Otera template is defined with embedded Julia code that calculates the square of a given number.
## Mounting Static Files
You can mount static files using this handy function which recursively searches a folder for files and mounts everything. All files are
loaded into memory on startup.
```julia
using Kitten
# mount all files inside the "content" folder under the "/static" path
staticfiles("content", "static")
# start the web server
serve()
```
## Mounting Dynamic Files
Similar to staticfiles, this function mounts each path and re-reads the file for each request. This means that any changes to the files after the server has started will be displayed.
```julia
using Kitten
# mount all files inside the "content" folder under the "/dynamic" path
dynamicfiles("content", "dynamic")
# start the web server
serve()
```
## Performance Tips
Disabling the internal logger can provide some massive performance gains, which can be helpful in some scenarios.
Anecdotally, i've seen a 2-3x speedup in `serve()` and a 4-5x speedup in `serveparallel()` performance.
```julia
# This is how you disable internal logging in both modes
serve(access_log=nothing)
serveparallel(access_log=nothing)
```
## Logging
Kitten provides a default logging format but allows you to customize the format using the `access_log` parameter. This functionality is available in both the `serve()` and `serveparallel()` functions.
You can read more about the logging options [here](https://juliaweb.github.io/HTTP.jl/stable/reference/#HTTP.@logfmt_str)
```julia
# Uses the default logging format
serve()
# Customize the logging format
serve(access_log=logfmt"[$time_iso8601] \"$request\" $status")
# Disable internal request logging
serve(access_log=nothing)
```
## Middleware
Middleware functions make it easy to create custom workflows to intercept all incoming requests and outgoing responses.
They are executed in the same order they are passed in (from left to right).
They can be set at the application, router, and route layer with the `middleware` keyword argument. All middleware is additive and any middleware defined in these layers will be combined and executed.
Middleware will always be executed in the following order:
```
application -> router -> route
```
Now lets see some middleware in action:
```julia
using Kitten
using HTTP
const CORS_HEADERS = [
"Access-Control-Allow-Origin" => "*",
"Access-Control-Allow-Headers" => "*",
"Access-Control-Allow-Methods" => "POST, GET, OPTIONS"
]
# https://juliaweb.github.io/HTTP.jl/stable/examples/#Cors-Server
function CorsMiddleware(handler)
return function(req::HTTP.Request)
println("CORS middleware")
# determine if this is a pre-flight request from the browser
if HTTP.method(req)=="OPTIONS"
return HTTP.Response(200, CORS_HEADERS)
else
return handler(req) # passes the request to the AuthMiddleware
end
end
end
function AuthMiddleware(handler)
return function(req::HTTP.Request)
println("Auth middleware")
# ** NOT an actual security check ** #
if !HTTP.headercontains(req, "Authorization", "true")
return HTTP.Response(403)
else
return handler(req) # passes the request to your application
end
end
end
function middleware1(handle)
function(req)
println("middleware1")
handle(req)
end
end
function middleware2(handle)
function(req)
println("middleware2")
handle(req)
end
end
# set middleware at the router level
math = router("math", middleware=[middleware1])
# set middleware at the route level
@get math("/divide/{a}/{b}", middleware=[middleware2]) function(req, a::Float64, b::Float64)
return a / b
end
# set application level middleware
serve(middleware=[CorsMiddleware, AuthMiddleware])
```
## Custom Response Serializers
If you don't want to use Kitten's default response serializer, you can turn it off and add your own! Just create your own special middleware function to serialize the response and add it at the end of your own middleware chain.
Both `serve()` and `serveparallel()` have a `serialize` keyword argument which can toggle off the default serializer.
```julia
using Kitten
using HTTP
using JSON3
@get "/divide/{a}/{b}" function(req::HTTP.Request, a::Float64, b::Float64)
return a / b
end
# This is just a regular middleware function
function myserializer(handle)
function(req)
try
response = handle(req)
# convert all responses to JSON
return HTTP.Response(200, [], body=JSON3.write(response))
catch error
@error "ERROR: " exception=(error, catch_backtrace())
return HTTP.Response(500, "The Server encountered a problem")
end
end
end
# make sure 'myserializer' is the last middleware function in this list
serve(middleware=[myserializer], serialize=false)
```
## Autogenerated Docs with Swagger
Swagger documentation is automatically generated for each route you register in your application. Only the route name, parameter types, and 200 & 500 responses are automatically created for you by default.
You can view your generated documentation at `/docs`, and the schema
can be found under `/docs/schema`. Both of these values can be changed to whatever you want using the `configdocs()` function. You can also opt out of autogenerated docs entirely by calling the `disabledocs()` function
before starting your application.
To add additional details you can either use the built-in `mergeschema()` or `setschema()`
functions to directly modify the schema yourself or merge the generated schema from the `SwaggerMarkdown.jl` package (I'd recommend the latter)
Below is an example of how to merge the schema generated from the `SwaggerMarkdown.jl` package.
```julia
using Kitten
using SwaggerMarkdown
# Here's an example of how you can merge autogenerated docs from SwaggerMarkdown.jl into your api
@swagger """
/divide/{a}/{b}:
get:
description: Return the result of a / b
parameters:
- name: a
in: path
required: true
description: this is the value of the numerator
schema:
type : number
responses:
'200':
description: Successfully returned an number.
"""
@get "/divide/{a}/{b}" function (req, a::Float64, b::Float64)
return a / b
end
# title and version are required
info = Dict("title" => "My Demo Api", "version" => "1.0.0")
openApi = OpenAPI("3.0", info)
swagger_document = build(openApi)
# merge the SwaggerMarkdown schema with the internal schema
mergeschema(swagger_document)
# start the web server
serve()
```
Below is an example of how to manually modify the schema
```julia
using Kitten
using SwaggerMarkdown
# Only the basic information is parsed from this route when generating docs
@get "/multiply/{a}/{b}" function (req, a::Float64, b::Float64)
return a * b
end
# Here's an example of how to update a part of the schema yourself
mergeschema("/multiply/{a}/{b}",
Dict(
"get" => Dict(
"description" => "return the result of a * b"
)
)
)
# Here's another example of how to update a part of the schema yourself, but this way allows you to modify other properties defined at the root of the schema (title, summary, etc.)
mergeschema(
Dict(
"paths" => Dict(
"/multiply/{a}/{b}" => Dict(
"get" => Dict(
"description" => "return the result of a * b"
)
)
)
)
)
```
# API Reference (macros)
#### @get, @post, @put, @patch, @delete
```julia
@get(path, func)
```
| Parameter | Type | Description |
| :-------- | :--------------------- | :----------------------------------------------- |
| `path` | `string` or `router()` | **Required**. The route to register |
| `func` | `function` | **Required**. The request handler for this route |
Used to register a function to a specific endpoint to handle that corresponding type of request
#### @route
```julia
@route(methods, path, func)
```
| Parameter | Type | Description |
| :-------- | :--------------------- | :----------------------------------------------------------------- |
| `methods` | `array` | **Required**. The types of HTTP requests to register to this route |
| `path` | `string` or `router()` | **Required**. The route to register |
| `func` | `function` | **Required**. The request handler for this route |
Low-level macro that allows a route to be handle multiple request types
#### staticfiles
```julia
staticfiles(folder, mount)
```
| Parameter | Type | Description |
| :------------ | :--------- | :------------------------------------------------------------- |
| `folder` | `string` | **Required**. The folder to serve files from |
| `mountdir` | `string` | The root endpoint to mount files under (default is "static") |
| `set_headers` | `function` | Customize the http response headers when returning these files |
| `loadfile` | `function` | Customize behavior when loading files |
Serve all static files within a folder. This function recursively searches a directory
and mounts all files under the mount directory using their relative paths.
#### dynamicfiles
```julia
dynamicfiles(folder, mount)
```
| Parameter | Type | Description |
| :------------ | :--------- | :------------------------------------------------------------- |
| `folder` | `string` | **Required**. The folder to serve files from |
| `mountdir` | `string` | The root endpoint to mount files under (default is "static") |
| `set_headers` | `function` | Customize the http response headers when returning these files |
| `loadfile` | `function` | Customize behavior when loading files |
Serve all static files within a folder. This function recursively searches a directory
and mounts all files under the mount directory using their relative paths. The file is loaded
on each request, potentially picking up any file changes.
### Request helper functions
#### html()
```julia
html(content, status, headers)
```
| Parameter | Type | Description |
| :-------- | :-------- | :---------------------------------------------------------------------------------------------------- |
| `content` | `string` | **Required**. The string to be returned as HTML |
| `status` | `integer` | The HTTP response code (default is 200) |
| `headers` | `dict` | The headers for the HTTP response (default has content-type header set to "text/html; charset=utf-8") |
Helper function to designate when content should be returned as HTML
#### queryparams()
```julia
queryparams(request)
```
| Parameter | Type | Description |
| :-------- | :------------- | :------------------------------------ |
| `req` | `HTTP.Request` | **Required**. The HTTP request object |
Returns the query parameters from a request as a Dict()
### Body Functions
#### text()
```julia
text(request)
```
| Parameter | Type | Description |
| :-------- | :------------- | :------------------------------------ |
| `req` | `HTTP.Request` | **Required**. The HTTP request object |
Returns the body of a request as a string
#### binary()
```julia
binary(request)
```
| Parameter | Type | Description |
| :-------- | :------------- | :------------------------------------ |
| `req` | `HTTP.Request` | **Required**. The HTTP request object |
Returns the body of a request as a binary file (returns a vector of `UInt8`s)
#### json()
```julia
json(request, classtype)
```
| Parameter | Type | Description |
| :---------- | :------------- | :----------------------------------------- |
| `req` | `HTTP.Request` | **Required**. The HTTP request object |
| `classtype` | `struct` | A struct to deserialize a JSON object into |
Deserialize the body of a request into a julia struct
## License
MIT License, see [LICENSE.md](./LICENSE.md) for more information.
Migrated from [Oxygen.jl](https://oxygenframework.github.io/Oxygen.jl/stable/) and modified to work with JuliaKit project.
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | docs | 872 | # Api
Documentation for Kitten.jl
## Starting the webserver
```@docs
serve
serveparallel
```
## Routing
```@docs
@get(path, func)
@post(path, func)
@put(path, func)
@patch(path, func)
@delete(path, func)
@route(methods, path, func)
get(path, func)
post(path, func)
put(path, func)
patch(path, func)
delete(path, func)
route(methods, path, func)
```
## Mounting Files
```@docs
@staticfiles
@dynamicfiles
staticfiles
dynamicfiles
```
## Autogenerated Docs
```@docs
configdocs
enabledocs
disabledocs
isdocsenabled
mergeschema
setschema
getschema
```
## Helper functions
```@docs
queryparams
formdata
html
text
file
xml
js
json
css
binary
```
## Repeat Tasks & Cron Scheduling
```@docs
@cron
starttasks
stoptasks
cleartasks
startcronjobs
stopcronjobs
clearcronjobs
clearcronjobs
```
## Extra's
```@docs
router
internalrequest
redirect
terminate
resetstate
```
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | docs | 40835 | # Kitten.jl
## About
Kitten is a micro-framework built on top of the HTTP.jl library.
Breathe easy knowing you can quickly spin up a web server with abstractions you're already familiar with.
## Contact
Need Help? Feel free to reach out on our social media channels.
## Features
- Straightforward routing
- Real-time Metrics Dashboard
- Auto-generated swagger documentation
- Out-of-the-box JSON serialization & deserialization (customizable)
- Type definition support for path parameters
- Request Extractors
- Multiple Instance Support
- Multithreading support
- Websockets, Streaming, and Server-Sent Events
- Cron Scheduling (on endpoints & functions)
- Middleware chaining (at the application, router, and route levels)
- Static & Dynamic file hosting
- Templating Support
- Plotting Support
- Protocol Buffer Support
- Route tagging
- Repeat tasks
## Installation
```julia
pkg> add Kitten
```
## Minimalistic Example
Create a web-server with very few lines of code
```julia
using Kitten
using HTTP
@get "/greet" function(req::HTTP.Request)
return "hello world!"
end
# start the web server
serve()
```
## Handlers
Handlers are used to connect your code to the server in a clean & straightforward way.
They assign a url to a function and invoke the function when an incoming request matches that url.
- Handlers can be imported from other modules and distributed across multiple files for better organization and modularity
- All handlers have equivalent macro & function implementations and support `do..end` block syntax
- The type of first argument is used to identify what kind of handler is being registered
- This package assumes it's a `Request` handler by default when no type information is provided
There are 3 types of supported handlers:
- `Request` Handlers
- `Stream` Handlers
- `Websocket` Handlers
```julia
using HTTP
using Kitten
# Request Handler
@get "/" function(req::HTTP.Request)
...
end
# Stream Handler
@stream "/stream" function(stream::HTTP.Stream)
...
end
# Websocket Handler
@websocket "/ws" function(ws::HTTP.WebSocket)
...
end
```
They are just functions which means there are many ways that they can be expressed and defined. Below is an example of several different ways you can express and assign a `Request` handler.
```julia
@get "/greet" function()
"hello world!"
end
@get("/gruessen") do
"Hallo Welt!"
end
@get "/saluer" () -> begin
"Bonjour le monde!"
end
@get "/saludar" () -> "Β‘Hola Mundo!"
@get "/salutare" f() = "ciao mondo!"
# This function can be declared in another module
function subtract(req, a::Float64, b::Float64)
return a - b
end
# register foreign request handlers like this
@get "/subtract/{a}/{b}" subtract
```
<details>
<summary><b>More Handler Docs</b></summary>
### Request Handlers
Request handlers are used to handle HTTP requests. They are defined using macros or their function equivalents, and accept a `HTTP.Request` object as the first argument. These handlers support both function and do-block syntax.
- The default Handler when no type information is provided
- Routing Macros: `@get`, `@post`, `@put`, `@patch`, `@delete`, `@route`
- Routing Functions: `get()`, `post()`, `put()`, `patch()`, `delete()`, `route()`
### Stream Handlers
Stream handlers are used to stream data. They are defined using the `@stream` macro or the `stream()` function and accept a `HTTP.Stream` object as the first argument. These handlers support both function and do-block syntax.
- `@stream` and `stream()` don't require a type definition on the first argument, they assume it's a stream.
- `Stream` handlers can be assigned with standard routing macros & functions: `@get`, `@post`, etc
- You need to explicitly include the type definition so Kitten can identify this as a `Stream` handler
### Websocket Handlers
Websocket handlers are used to handle websocket connections. They are defined using the `@websocket` macro or the `websocket()` function and accept a `HTTP.WebSocket` object as the first argument. These handlers support both function and do-block syntax.
- `@websocket` and `websocket()` don't require a type definition on the first argument, they assume it's a websocket.
- `Websocket` handlers can also be assigned with the `@get` macro or `get()` function, because the websocket protocol requires a `GET` request to initiate the handshake.
- You need to explicitly include the type definition so Kitten can identify this as a `Websocket` handler
</details>
## Routing Macro & Function Syntax
There are two primary ways to register your request handlers: the standard routing macros or the routing functions which utilize the do-block syntax.
For each routing macro, we now have a an equivalent routing function
```julia
@get -> get()
@post -> post()
@put -> put()
@patch -> patch()
@delete -> delete()
@route -> route()
```
The only practical difference between the two is that the routing macros are called during the precompilation
stage, whereas the routing functions are only called when invoked. (The routing macros call the routing functions under the hood)
```julia
# Routing Macro syntax
@get "/add/{x}/{y}" function(request::HTTP.Request, x::Int, y::Int)
x + y
end
# Routing Function syntax
get("/add/{x}/{y}") do request::HTTP.Request, x::Int, y::Int
x + y
end
```
## Render Functions
Kitten, by default, automatically identifies the Content-Type of the return value from a request handler when building a Response.
This default functionality is quite useful, but it does have an impact on performance. In situations where the return type is known,
It's recommended to use one of the pre-existing render functions to speed things up.
Here's a list of the currently supported render functions:
`html`, `text`, `json`, `file`, `xml`, `js`, `css`, `binary`
Below is an example of how to use these functions:
```julia
using Kitten
get("/html") do
html("<h1>Hello World</h1>")
end
get("/text") do
text("Hello World")
end
get("/json") do
json(Dict("message" => "Hello World"))
end
serve()
```
In most cases, these functions accept plain strings as inputs. The only exceptions are the `binary` function, which accepts a `Vector{UInt8}`, and the `json` function which accepts any serializable type.
- Each render function accepts a status and custom headers.
- The Content-Type and Content-Length headers are automatically set by these render functions
## Path parameters
Path parameters are declared with braces and are passed directly to your request handler.
```julia
using Kitten
# use path params without type definitions (defaults to Strings)
@get "/add/{a}/{b}" function(req, a, b)
return parse(Float64, a) + parse(Float64, b)
end
# use path params with type definitions (they are automatically converted)
@get "/multiply/{a}/{b}" function(req, a::Float64, b::Float64)
return a * b
end
# The order of the parameters doesn't matter (just the name matters)
@get "/subtract/{a}/{b}" function(req, b::Int64, a::Int64)
return a - b
end
# start the web server
serve()
```
## Query parameters
Query parameters can be declared directly inside of your handlers signature. Any parameter that isn't mentioned inside the route path is assumed to be a query parameter.
- If a default value is not provided, it's assumed to be a required parameter
```julia
@get "/query" function(req::HTTP.Request, a::Int, message::String="hello world")
return (a, message)
end
```
Alternatively, you can use the `queryparams()` function to extract the raw values from the url as a dictionary.
```julia
@get "/query" function(req::HTTP.Request)
return queryparams(req)
end
```
## HTML Forms
Use the `formdata()` function to extract and parse the form data from the body of a request. This function returns a dictionary of key-value pairs from the form
```julia
using Kitten
# Setup a basic form
@get "/" function()
html("""
<form action="/form" method="post">
<label for="firstname">First name:</label><br>
<input type="text" id="firstname" name="firstname"><br>
<label for="lastname">Last name:</label><br>
<input type="text" id="lastname" name="lastname"><br><br>
<input type="submit" value="Submit">
</form>
""")
end
# Parse the form data and return it
@post "/form" function(req)
data = formdata(req)
return data
end
serve()
```
## Return JSON
All objects are automatically deserialized into JSON using the JSON3 library
```julia
using Kitten
using HTTP
@get "/data" function(req::HTTP.Request)
return Dict("message" => "hello!", "value" => 99.3)
end
# start the web server
serve()
```
## Deserialize & Serialize custom structs
Kitten provides some out-of-the-box serialization & deserialization for most objects but requires the use of StructTypes when converting structs
```julia
using Kitten
using HTTP
using StructTypes
struct Animal
id::Int
type::String
name::String
end
# Add a supporting struct type definition so JSON3 can serialize & deserialize automatically
StructTypes.StructType(::Type{Animal}) = StructTypes.Struct()
@get "/get" function(req::HTTP.Request)
# serialize struct into JSON automatically (because we used StructTypes)
return Animal(1, "cat", "whiskers")
end
@post "/echo" function(req::HTTP.Request)
# deserialize JSON from the request body into an Animal struct
animal = json(req, Animal)
# serialize struct back into JSON automatically (because we used StructTypes)
return animal
end
# start the web server
serve()
```
## Extractors
Kitten comes with several built-in extractors designed to reduce the amount of boilerplate required to serialize inputs to your handler functions. By simply defining a struct and specifying the data source, these extractors streamline the process of data ingestion & validation through a uniform api.
- The serialized data is accessible through the `payload` property
- Can be used alongside other parameters and extractors
- Default values can be assigned when defined with the `@kwdef` macro
- Includes both global and local validators
- Struct definitions can be deeply nested
Supported Extractors:
- `Path` - extracts from path parameters
- `Query` - extracts from query parameters,
- `Header` - extracts from request headers
- `Form` - extracts form data from the request body
- `Body` - serializes the entire request body to a given type (String, Float64, etc..)
- `ProtoBuffer` - extracts the `ProtoBuf` message from the request body (available through a package extension)
- `Json` - extracts json from the request body
- `JsonFragment` - extracts a "fragment" of the json body using the parameter name to identify and extract the corresponding top-level key
#### Using Extractors & Parameters
In this example we show that the `Path` extractor can be used alongside regular path parameters. This Also works with regular query parameters and the `Query` extractor.
```julia
struct Add
b::Int
c::Int
end
@get "/add/{a}/{b}/{c}" function(req, a::Int, pathparams::Path{Add})
add = pathparams.payload # access the serialized payload
return a + add.b + add.c
end
```
#### Default Values
Default values can be setup with structs using the `@kwdef` macro.
```julia
@kwdef struct Pet
name::String
age::Int = 10
end
@post "/pet" function(req, params::Json{Pet})
return params.payload # access the serialized payload
end
```
#### Validation
On top of serializing incoming data, you can also define your own validation rules by using the `validate` function. In the example below we show how to use both `global` and `local` validators in your code.
- Validators are completely optional
- During the validation phase, Kitten will call the `global` validator before running a `local` validator.
```julia
import Kitten: validate
struct Person
name::String
age::Int
end
# Define a global validator
validate(p::Person) = p.age >= 0
# Only the global validator is ran here
@post "/person" function(req, newperson::Json{Person})
return newperson.payload
end
# In this case, both global and local validators are ran (this also makes sure the person is age 21+)
# You can also use this sytnax instead: Json(Person, p -> p.age >= 21)
@post "/adult" function(req, newperson = Json{Person}(p -> p.age >= 21))
return newperson.payload
end
```
## Interpolating variables into endpoints
You can interpolate variables directly into the paths, which makes dynamically registering routes a breeze
(Thanks to @anandijain for the idea)
```julia
using Kitten
operations = Dict("add" => +, "multiply" => *)
for (pathname, operator) in operations
@get "/$pathname/{a}/{b}" function (req, a::Float64, b::Float64)
return operator(a, b)
end
end
# start the web server
serve()
```
## Routers
The `router()` function is an HOF (higher order function) that allows you to reuse the same path prefix & properties across multiple endpoints. This is helpful when your api starts to grow and you want to keep your path operations organized.
Below are the arguments the `router()` function can take:
```julia
router(prefix::String; tags::Vector, middleware::Vector, interval::Real, cron::String)
```
- `tags` - are used to organize endpoints in the autogenerated docs
- `middleware` - is used to setup router & route-specific middleware
- `interval` - is used to support repeat actions (_calling a request handler on a set interval in seconds_)
- `cron` - is used to specify a cron expression that determines when to call the request handler.
```julia
using Kitten
# Any routes that use this router will be automatically grouped
# under the 'math' tag in the autogenerated documenation
math = router("/math", tags=["math"])
# You can also assign route specific tags
@get math("/multiply/{a}/{b}", tags=["multiplication"]) function(req, a::Float64, b::Float64)
return a * b
end
@get math("/divide/{a}/{b}") function(req, a::Float64, b::Float64)
return a / b
end
serve()
```
## Cron Scheduling
Kitten comes with a built-in cron scheduling system that allows you to call endpoints and functions automatically when the cron expression matches the current time.
When a job is scheduled, a new task is created and runs in the background. Each task uses its given cron expression and the current time to determine how long it needs to sleep before it can execute.
The cron parser in Kitten is based on the same specifications as the one used in Spring. You can find more information about this on the [Spring Cron Expressions](https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/support/CronExpression.html) page.
### Cron Expression Syntax
The following is a breakdown of what each parameter in our cron expression represents. While our specification closely resembles the one defined by Spring, it's not an exact 1-to-1 match.
```
The string has six single space-separated time and date fields:
ββββββββββββββ second (0-59)
β ββββββββββββββ minute (0 - 59)
β β ββββββββββββββ hour (0 - 23)
β β β ββββββββββββββ day of the month (1 - 31)
β β β β ββββββββββββββ month (1 - 12) (or JAN-DEC)
β β β β β ββββββββββββββ day of the week (1 - 7)
β β β β β β (Monday is 1, Tue is 2... and Sunday is 7)
β β β β β β
* * * * * *
```
Partial expressions are also supported, which means that subsequent expressions can be left out (they are defaulted to `'*'`).
```julia
# In this example we see only the `seconds` part of the expression is defined.
# This means that all following expressions are automatically defaulted to '*' expressions
@cron "*/2" function()
println("runs every 2 seconds")
end
```
### Scheduling Endpoints
The `router()` function has a keyword argument called `cron`, which accepts a cron expression that determines when an endpoint is called. Just like the other keyword arguments, it can be reused by endpoints that share routers or be overridden by inherited endpoints.
```julia
# execute at 8, 9 and 10 o'clock of every day.
@get router("/cron-example", cron="0 0 8-10 * * *") function(req)
println("here")
end
# execute this endpoint every 5 seconds (whenever current_seconds % 5 == 0)
every5 = router("/cron", cron="*/5")
# this endpoint inherits the cron expression
@get every5("/first") function(req)
println("first")
end
# Now this endpoint executes every 2 seconds ( whenever current_seconds % 2 == 0 ) instead of every 5
@get every5("/second", cron="*/2") function(req)
println("second")
end
```
### Scheduling Functions
In addition to scheduling endpoints, you can also use the new `@cron` macro to schedule functions. This is useful if you want to run code at specific times without making it visible or callable in the API.
```julia
@cron "*/2" function()
println("runs every 2 seconds")
end
@cron "0 0/30 8-10 * * *" function()
println("runs at 8:00, 8:30, 9:00, 9:30, 10:00 and 10:30 every day")
end
```
### Starting & Stopping Cron Jobs
When you run `serve()` or `serveparallel()`, all registered cron jobs are automatically started. If the server is stopped or killed, all running jobs will also be terminated. You can stop the server and all repeat tasks and cron jobs by calling the `terminate()` function or manually killing the server with `ctrl+C`.
In addition, Kitten provides utility functions to manually start and stop cron jobs: `startcronjobs()` and `stopcronjobs()`. These functions can be used outside of a web server as well.
## Repeat Tasks
Repeat tasks provide a simple api to run a function on a set interval.
There are two ways to register repeat tasks:
- Through the `interval` parameter in a `router()`
- Using the `@repeat` macro
**It's important to note that request handlers that use this property can't define additional function parameters outside of the default `HTTP.Request` parameter.**
In the example below, the `/repeat/hello` endpoint is called every 0.5 seconds and `"hello"` is printed to the console each time.
The `router()` function has an `interval` parameter which is used to call
a request handler on a set interval (in seconds).
```julia
using Kitten
taskrouter = router("/repeat", interval=0.5, tags=["repeat"])
@get taskrouter("/hello") function()
println("hello")
end
# you can override properties by setting route specific values
@get taskrouter("/bonjour", interval=1.5) function()
println("bonjour")
end
serve()
```
Below is an example of how to register a repeat task outside of the router
```julia
@repeat 1.5 function()
println("runs every 1.5 seconds")
end
# you can also "name" a repeat task
@repeat 5 "every-five" function()
println("runs every 5 seconds")
end
```
When the server is ran, all tasks are started automatically. But the module also provides utilities to have more fine-grained control over the running tasks using the following functions: `starttasks()`, `stoptasks()`, and `cleartasks()`
## Multiple Instances
In some advanced scenarios, you might need to spin up multiple web severs within the same module on different ports. Kitten provides both a static and dynamic way to create multiple instances of a web server.
As a general rule of thumb, if you know how many instances you need ahead of time it's best to go with the static approach.
### Static: multiple instance's with `@oxidise`
Kitten provides a new macro which makes it possible to setup and run multiple instances. It generates methods and binds them to a new internal state for the current module.
In the example below, two simple servers are defined within modules A and B and are started in the parent module. Both modules contain all of the functions exported from Kitten which can be called directly as shown below.
```julia
module A
using Kitten; @oxidise
get("/") do
text("server A")
end
end
module B
using Kitten; @oxidise
get("/") do
text("server B")
end
end
try
# start both instances
A.serve(port=8001, async=true)
B.serve(port=8002, async=false)
finally
# shut down if we `Ctrl+C`
A.terminate()
B.terminate()
end
```
### Dynamic: multiple instance's with `instance()`
The `instance` function helps you create a completely independent instance of an Kitten web server at runtime. It works by dynamically creating a julia module at runtime and loading the Kitten code within it.
All of the same methods from Kitten are available under the named instance. In the example below we can use the `get`, and `serve` by simply using dot syntax on the `app1` variable to access the underlying methods.
```julia
using Kitten
######### Setup the first app #########
app1 = instance()
app1.get("/") do
text("server A")
end
######### Setup the second app #########
app2 = instance()
app2.get("/") do
text("server B")
end
######### Start both instances #########
try
# start both servers together
app1.serve(port=8001, async=true)
app2.serve(port=8002)
finally
# clean it up
app1.terminate()
app2.terminate()
end
```
## Multithreading & Parallelism
For scenarios where you need to handle higher amounts of traffic, you can run Kitten in a
multithreaded mode. In order to utilize this mode, julia must have more than 1 thread to work with. You can start a julia session with 4 threads using the command below
```shell
julia --threads 4
```
`serveparallel()` Starts the webserver in streaming mode and handles requests in a cooperative multitasking approach. This function uses `Threads.@spawn` to schedule a new task on any available thread. Meanwhile, @async is used inside this task when calling each request handler. This allows the task to yield during I/O operations.
```julia
using Kitten
using StructTypes
using Base.Threads
# Make the Atomic struct serializable
StructTypes.StructType(::Type{Atomic{Int64}}) = StructTypes.Struct()
x = Atomic{Int64}(0);
@get "/show" function()
return x
end
@get "/increment" function()
atomic_add!(x, 1)
return x
end
# start the web server in parallel mode
serveparallel()
```
## Protocol Buffers
Kitten includes an extension for the [ProtoBuf.jl](https://github.com/JuliaIO/ProtoBuf.jl) package. This extension provides a `protobuf()` function, simplifying the process of working with Protocol Buffers in the context of web server. For a better understanding of this package, please refer to its official documentation.
This function has overloads for the following scenarios:
- Decoding a protobuf message from the body of an HTTP request.
- Encoding a protobuf message into the body of an HTTP request.
- Encoding a protobuf message into the body of an HTTP response.
```julia
using HTTP
using ProtoBuf
using Kitten
# The generated classes need to be created ahead of time (check the protobufs)
include("people_pb.jl");
using .people_pb: People, Person
# Decode a Protocol Buffer Message
@post "/count" function(req::HTTP.Request)
# decode the request body into a People object
message = protobuf(req, People)
# count the number of Person objects
return length(message.people)
end
# Encode & Return Protocol Buffer message
@get "/get" function()
message = People([
Person("John Doe", 20),
Person("Alice", 30),
Person("Bob", 35)
])
# seralize the object inside the body of a HTTP.Response
return protobuf(message)
end
```
The following is an example of a schema that was used to create the necessary Julia bindings. These bindings allow for the encoding and decoding of messages in the above example.
```protobuf
syntax = "proto3";
message Person {
string name = 1;
sint32 age = 2;
}
message People {
repeated Person people = 1;
}
```
## Plotting
Kitten is equipped with several package extensions that enhance its plotting capabilities. These extensions make it easy to return plots directly from request handlers. All operations are performed in-memory using an IOBuffer and return a `HTTP.Response`
Supported Packages and their helper utils:
- CairoMakie.jl: `png`, `svg`, `pdf`, `html`
- WGLMakie.jl: `html`
- Bonito.jl: `html`
#### CairoMakie.jl
```julia
using CairoMakie: heatmap
using Kitten
@get "/cairo" function()
fig, ax, pl = heatmap(rand(50, 50))
png(fig)
end
serve()
```
#### WGLMakie.jl
```julia
using Bonito
using WGLMakie: heatmap
using Kitten
using Kitten: html # Bonito also exports html
@get "/wgl" function()
fig = heatmap(rand(50, 50))
html(fig)
end
serve()
```
#### Bonito.jl
```julia
using Bonito
using WGLMakie: heatmap
using Kitten
using Kitten: html # Bonito also exports html
@get "/bonito" function()
app = App() do
return DOM.div(
DOM.h1("Random 50x50 Heatmap"),
DOM.div(heatmap(rand(50, 50)))
)
end
return html(app)
end
serve()
```
## Templating
Rather than building an internal engine for templating or adding additional dependencies, Kitten
provides two package extensions to support `Mustache.jl` and `OteraEngine.jl` templates.
Kitten provides a simple wrapper api around both packages that makes it easy to render templates from strings,
templates, and files. This wrapper api returns a `render` function which accepts a dictionary of inputs to fill out the
template.
In all scenarios, the rendered template is returned inside a HTTP.Response object ready to get served by the api.
By default, the mime types are auto-detected either by looking at the content of the template or the extension name on the file.
If you know the mime type you can pass it directly through the `mime_type` keyword argument to skip the detection process.
### Mustache Templating
Please take a look at the [Mustache.jl](https://jverzani.github.io/Mustache.jl/dev/) documentation to learn the full capabilities of the package
Example 1: Rendering a Mustache Template from a File
```julia
using Mustache
using Kitten
# Load the Mustache template from a file and create a render function
render = mustache("./templates/greeting.txt", from_file=false)
@get "/mustache/file" function()
data = Dict("name" => "Chris")
return render(data) # This will return an HTML.Response with the rendered template
end
```
Example 2: Specifying MIME Type for a plain string Mustache Template
```julia
using Mustache
using Kitten
# Define a Mustache template (both plain strings and mustache templates are supported)
template_str = "Hello, {{name}}!"
# Create a render function, specifying the MIME type as text/plain
render = mustache(template_str, mime_type="text/plain") # mime_type keyword arg is optional
@get "/plain/text" function()
data = Dict("name" => "Chris")
return render(data) # This will return a plain text response with the rendered template
end
```
### Otera Templating
Please take a look at the [OteraEngine.jl](https://mommawatasu.github.io/OteraEngine.jl/dev/tutorial/#API) documentation to learn the full capabilities of the package
Example 1: Rendering an Otera Template with Logic and Loops
```julia
using OteraEngine
using Kitten
# Define an Otera template
template_str = """
<html>
<head><title>{{ title }}</title></head>
<body>
{% for name in names %}
Hello {{ name }}<br>
{% end %}
</body>
</html>
"""
# Create a render function for the Otera template
render = otera(template_str)
@get "/otera/loop" function()
data = Dict("title" => "Greetings", "names" => ["Alice", "Bob", "Chris"])
return render(data) # This will return an HTML.Response with the rendered template
end
```
In this example, an Otera template is defined with a for-loop that iterates over a list of names, greeting each name.
Example 2: Running Julia Code in Otera Template
```julia
using OteraEngine
using Kitten
# Define an Otera template with embedded Julia code
template_str = """
The square of {{ number }} is {< number^2 >}.
"""
# Create a render function for the Otera template
render = otera(template_str)
@get "/otera/square" function()
data = Dict("number" => 5)
return render(data) # This will return an HTML.Response with the rendered template
end
```
In this example, an Otera template is defined with embedded Julia code that calculates the square of a given number.
## Mounting Static Files
You can mount static files using this handy function which recursively searches a folder for files and mounts everything. All files are
loaded into memory on startup.
```julia
using Kitten
# mount all files inside the "content" folder under the "/static" path
staticfiles("content", "static")
# start the web server
serve()
```
## Mounting Dynamic Files
Similar to staticfiles, this function mounts each path and re-reads the file for each request. This means that any changes to the files after the server has started will be displayed.
```julia
using Kitten
# mount all files inside the "content" folder under the "/dynamic" path
dynamicfiles("content", "dynamic")
# start the web server
serve()
```
## Performance Tips
Disabling the internal logger can provide some massive performance gains, which can be helpful in some scenarios.
Anecdotally, i've seen a 2-3x speedup in `serve()` and a 4-5x speedup in `serveparallel()` performance.
```julia
# This is how you disable internal logging in both modes
serve(access_log=nothing)
serveparallel(access_log=nothing)
```
## Logging
Kitten provides a default logging format but allows you to customize the format using the `access_log` parameter. This functionality is available in both the `serve()` and `serveparallel()` functions.
You can read more about the logging options [here](https://juliaweb.github.io/HTTP.jl/stable/reference/#HTTP.@logfmt_str)
```julia
# Uses the default logging format
serve()
# Customize the logging format
serve(access_log=logfmt"[$time_iso8601] \"$request\" $status")
# Disable internal request logging
serve(access_log=nothing)
```
## Middleware
Middleware functions make it easy to create custom workflows to intercept all incoming requests and outgoing responses.
They are executed in the same order they are passed in (from left to right).
They can be set at the application, router, and route layer with the `middleware` keyword argument. All middleware is additive and any middleware defined in these layers will be combined and executed.
Middleware will always be executed in the following order:
```
application -> router -> route
```
Now lets see some middleware in action:
```julia
using Kitten
using HTTP
const CORS_HEADERS = [
"Access-Control-Allow-Origin" => "*",
"Access-Control-Allow-Headers" => "*",
"Access-Control-Allow-Methods" => "POST, GET, OPTIONS"
]
# https://juliaweb.github.io/HTTP.jl/stable/examples/#Cors-Server
function CorsMiddleware(handler)
return function(req::HTTP.Request)
println("CORS middleware")
# determine if this is a pre-flight request from the browser
if HTTP.method(req)=="OPTIONS"
return HTTP.Response(200, CORS_HEADERS)
else
return handler(req) # passes the request to the AuthMiddleware
end
end
end
function AuthMiddleware(handler)
return function(req::HTTP.Request)
println("Auth middleware")
# ** NOT an actual security check ** #
if !HTTP.headercontains(req, "Authorization", "true")
return HTTP.Response(403)
else
return handler(req) # passes the request to your application
end
end
end
function middleware1(handle)
function(req)
println("middleware1")
handle(req)
end
end
function middleware2(handle)
function(req)
println("middleware2")
handle(req)
end
end
# set middleware at the router level
math = router("math", middleware=[middleware1])
# set middleware at the route level
@get math("/divide/{a}/{b}", middleware=[middleware2]) function(req, a::Float64, b::Float64)
return a / b
end
# set application level middleware
serve(middleware=[CorsMiddleware, AuthMiddleware])
```
## Custom Response Serializers
If you don't want to use Kitten's default response serializer, you can turn it off and add your own! Just create your own special middleware function to serialize the response and add it at the end of your own middleware chain.
Both `serve()` and `serveparallel()` have a `serialize` keyword argument which can toggle off the default serializer.
```julia
using Kitten
using HTTP
using JSON3
@get "/divide/{a}/{b}" function(req::HTTP.Request, a::Float64, b::Float64)
return a / b
end
# This is just a regular middleware function
function myserializer(handle)
function(req)
try
response = handle(req)
# convert all responses to JSON
return HTTP.Response(200, [], body=JSON3.write(response))
catch error
@error "ERROR: " exception=(error, catch_backtrace())
return HTTP.Response(500, "The Server encountered a problem")
end
end
end
# make sure 'myserializer' is the last middleware function in this list
serve(middleware=[myserializer], serialize=false)
```
## Autogenerated Docs with Swagger
Swagger documentation is automatically generated for each route you register in your application. Only the route name, parameter types, and 200 & 500 responses are automatically created for you by default.
You can view your generated documentation at `/docs`, and the schema
can be found under `/docs/schema`. Both of these values can be changed to whatever you want using the `configdocs()` function. You can also opt out of autogenerated docs entirely by calling the `disabledocs()` function
before starting your application.
To add additional details you can either use the built-in `mergeschema()` or `setschema()`
functions to directly modify the schema yourself or merge the generated schema from the `SwaggerMarkdown.jl` package (I'd recommend the latter)
Below is an example of how to merge the schema generated from the `SwaggerMarkdown.jl` package.
```julia
using Kitten
using SwaggerMarkdown
# Here's an example of how you can merge autogenerated docs from SwaggerMarkdown.jl into your api
@swagger """
/divide/{a}/{b}:
get:
description: Return the result of a / b
parameters:
- name: a
in: path
required: true
description: this is the value of the numerator
schema:
type : number
responses:
'200':
description: Successfully returned an number.
"""
@get "/divide/{a}/{b}" function (req, a::Float64, b::Float64)
return a / b
end
# title and version are required
info = Dict("title" => "My Demo Api", "version" => "1.0.0")
openApi = OpenAPI("3.0", info)
swagger_document = build(openApi)
# merge the SwaggerMarkdown schema with the internal schema
mergeschema(swagger_document)
# start the web server
serve()
```
Below is an example of how to manually modify the schema
```julia
using Kitten
using SwaggerMarkdown
# Only the basic information is parsed from this route when generating docs
@get "/multiply/{a}/{b}" function (req, a::Float64, b::Float64)
return a * b
end
# Here's an example of how to update a part of the schema yourself
mergeschema("/multiply/{a}/{b}",
Dict(
"get" => Dict(
"description" => "return the result of a * b"
)
)
)
# Here's another example of how to update a part of the schema yourself, but this way allows you to modify other properties defined at the root of the schema (title, summary, etc.)
mergeschema(
Dict(
"paths" => Dict(
"/multiply/{a}/{b}" => Dict(
"get" => Dict(
"description" => "return the result of a * b"
)
)
)
)
)
```
# API Reference (macros)
#### @get, @post, @put, @patch, @delete
```julia
@get(path, func)
```
| Parameter | Type | Description |
| :-------- | :--------------------- | :----------------------------------------------- |
| `path` | `string` or `router()` | **Required**. The route to register |
| `func` | `function` | **Required**. The request handler for this route |
Used to register a function to a specific endpoint to handle that corresponding type of request
#### @route
```julia
@route(methods, path, func)
```
| Parameter | Type | Description |
| :-------- | :--------------------- | :----------------------------------------------------------------- |
| `methods` | `array` | **Required**. The types of HTTP requests to register to this route |
| `path` | `string` or `router()` | **Required**. The route to register |
| `func` | `function` | **Required**. The request handler for this route |
Low-level macro that allows a route to be handle multiple request types
#### staticfiles
```julia
staticfiles(folder, mount)
```
| Parameter | Type | Description |
| :------------ | :--------- | :------------------------------------------------------------- |
| `folder` | `string` | **Required**. The folder to serve files from |
| `mountdir` | `string` | The root endpoint to mount files under (default is "static") |
| `set_headers` | `function` | Customize the http response headers when returning these files |
| `loadfile` | `function` | Customize behavior when loading files |
Serve all static files within a folder. This function recursively searches a directory
and mounts all files under the mount directory using their relative paths.
#### dynamicfiles
```julia
dynamicfiles(folder, mount)
```
| Parameter | Type | Description |
| :------------ | :--------- | :------------------------------------------------------------- |
| `folder` | `string` | **Required**. The folder to serve files from |
| `mountdir` | `string` | The root endpoint to mount files under (default is "static") |
| `set_headers` | `function` | Customize the http response headers when returning these files |
| `loadfile` | `function` | Customize behavior when loading files |
Serve all static files within a folder. This function recursively searches a directory
and mounts all files under the mount directory using their relative paths. The file is loaded
on each request, potentially picking up any file changes.
### Request helper functions
#### html()
```julia
html(content, status, headers)
```
| Parameter | Type | Description |
| :-------- | :-------- | :---------------------------------------------------------------------------------------------------- |
| `content` | `string` | **Required**. The string to be returned as HTML |
| `status` | `integer` | The HTTP response code (default is 200) |
| `headers` | `dict` | The headers for the HTTP response (default has content-type header set to "text/html; charset=utf-8") |
Helper function to designate when content should be returned as HTML
#### queryparams()
```julia
queryparams(request)
```
| Parameter | Type | Description |
| :-------- | :------------- | :------------------------------------ |
| `req` | `HTTP.Request` | **Required**. The HTTP request object |
Returns the query parameters from a request as a Dict()
### Body Functions
#### text()
```julia
text(request)
```
| Parameter | Type | Description |
| :-------- | :------------- | :------------------------------------ |
| `req` | `HTTP.Request` | **Required**. The HTTP request object |
Returns the body of a request as a string
#### binary()
```julia
binary(request)
```
| Parameter | Type | Description |
| :-------- | :------------- | :------------------------------------ |
| `req` | `HTTP.Request` | **Required**. The HTTP request object |
Returns the body of a request as a binary file (returns a vector of `UInt8`s)
#### json()
```julia
json(request, classtype)
```
| Parameter | Type | Description |
| :---------- | :------------- | :----------------------------------------- |
| `req` | `HTTP.Request` | **Required**. The HTTP request object |
| `classtype` | `struct` | A struct to deserialize a JSON object into |
Deserialize the body of a request into a julia struct
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | docs | 7117 | # Bigger Applications - Multiple Files
If you are building an application or a web API, it's rarely the case that you can put everything on a single file.
As your application grows you'll need to spread your application's logic across multiple files. Kitten provides some tools to help you do this while staying organized.
Let's say you have an application that looks something like this:
```
app
βββ src
β βββ main.jl
β βββ MathOperations.jl
β
βββ Project.toml
βββ Manifest.toml
```
## How to use the `router()` function
Let's say you have a file dedicated to handling mathematical operations in the submodule at `/src/MathOperations.jl.`
You might want the first part of each path to have the same value and just switch out the subpath to keep things organized in your api. You can use the `router` function to do just that.
The `router()` function is an HOF (higher order function) that allows you to reuse the same properties across multiple endpoints.
Because the generated router is just a function, they can be exported and shared across multiple files & modules.
```julia
using Kitten
math = router("/math", tags=["math"])
@get math("/multiply/{a}/{b}", tags=["multiplication"]) function(req, a::Float64, b::Float64)
return a * b
end
@get math("/divide/{a}/{b}") function(req, a::Float64, b::Float64)
return a / b
end
serve()
```
## Tagging your routes
By using the hello router in both endpoints, it passes along all the properties as default values. For example If we look at the routes registered in the application they will look like:
```
/math/multiply/{a}/{b}
/math/divide/{a}/{b}
```
Both endpoints in this case will be tagged to the `math` tag and the `/multiply` endpoint will have an additional tag appended just to this endpoint called `multiplication`. These tags are used by Kitten when auto-generating the documentation to organize it by separating the endpoints into sections based off their tags.
## Middleware & `router()`
The `router()` function has a `middleware` parameter which takes a vector of middleware functions
which are used to intercept all incoming requests & outgoing responses.
All middleware is additive and any middleware defined in these layers will be combined and executed.
You can assign middleware at three levels:
- `application`
- `router`
- `route`
Middleware will always get executed in the following order:
```
application -> router -> route
```
the `application` layer can only be set from the `serve()` and `serveparallel()` functions. While the other two layers can be set using the `router()` function.
```julia
# Set middleware at the application level
serve(middleware=[])
# Set middleware at the Router level
myrouter = router("/router", middleware=[])
# Set middleware at the Route level
@get myrouter("/example", middleware=[]) function()
return "example"
end
```
### Router Level Middleware
At the router level, any middleware defined here will be reused across
all other routes that use this router(). In the example below, both `/greet/hello`
and `/greet/bonjour` routes will send requests through the same middleware functions before either endpoint is called
```julia
function middleware1(handle)
function(req)
println("this is the 1st middleware function")
handle(req)
end
end
# middleware1 is defined at the router level
greet = router("/greet", middleware=[middleware1])
@get greet("/hello") function()
println("hello")
end
@get greet("/bonjour") function()
println("bonjour")
end
```
### Route Specific Middleware
At the route level, you can customize what middleware functions should be
applied on a route by route basis. In the example below, the `/greet/hello` route
gets both `middleware1` & `middleware2` functions applied to it, while the `/greet/bonjour`
route only has `middleware1` function which it inherited from the `greet` router.
```julia
function middleware1(handle)
function(req)
println("this is the 1st middleware function")
handle(req)
end
end
function middleware2(handle)
function(req)
println("this is the 2nd middleware function")
handle(req)
end
end
# middleware1 is added at the router level
greet = router("/greet", middleware=[middleware1])
# middleware2 is added at the route level
@get greet("/hello", middleware=[middleware2]) function()
println("hello")
end
@get greet("/bonjour") function()
println("bonjour")
end
serve()
```
### Skipping Middleware layers
Well, what if we don't want previous layers of middleware to run?
By setting `middleware=[]`, it clears all middleware functions at that layer and skips all layers that come before it. These changes are localized and only affect the components where these values are set.
For example, setting `middleware=[]` at the:
- application layer -> clears the application layer
- router layer -> no application middleware is applied to this router
- route layer -> no router middleware is applied to this route
You can set the router's `middleware` parameter to an empty vector to bypass any application level middleware.
In the example below, all requests to endpoints registered to the `greet` router() will skip any application level
middleware and get executed directly.
```julia
function middleware1(handle)
function(req)
println("this is the 1st middleware function")
handle(req)
end
end
greet = router("/greet", middleware=[])
@get greet("/hello") function()
println("hello")
end
@get greet("/bonjour") function()
println("bonjour")
end
serve(middleware=[middleware1])
```
## Repeat Actions
The `router()` function has an `interval` parameter which is used to call
a request handler on a set interval (in seconds).
**It's important to note that request handlers that use this property can't define additional function parameters outside of the default `HTTP.Request` parameter.**
In the example below, the `/repeat/hello` endpoint is called every 0.5 seconds and `"hello"` is printed to the console each time.
```julia
using Kitten
repeat = router("/repeat", interval=0.5, tags=["repeat"])
@get repeat("/hello") function()
println("hello")
end
# you can override properties by setting route specific values
@get repeat("/bonjour", interval=1.5) function()
println("bonjour")
end
serve()
```
If you want to call an endpoint with parameters on a set interval, you're better off creating an endpoint to perform the action you want and a second endpoint to call the first on a set interval.
```julia
using HTTP
using Kitten
repeat = router("/repeat", interval=1.5, tags=["repeat"])
@get "/multiply/{a}/{b}" function(req, a::Float64, b::Float64)
return a * b
end
@get repeat("/multiply") function()
response = internalrequest(HTTP.Request("GET", "/multiply/3/5"))
println(response)
return response
end
serve()
```
The example above will print the response from the `/multiply` endpoint in the console below every 1.5 seconds and should look like this:
```
"""
HTTP/1.1 200 OK
Content-Type: application/json; charset=utf-8
15.0"""
```
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | docs | 3489 | # Cron Scheduling
Kitten comes with a built-in cron scheduling system that allows you to call endpoints and functions automatically when the cron expression matches the current time.
When a job is scheduled, a new task is created and runs in the background. Each task uses its given cron expression and the current time to determine how long it needs to sleep before it can execute.
The cron parser in Kitten is based on the same specifications as the one used in Spring. You can find more information about this on the [Spring Cron Expressions](https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/scheduling/support/CronExpression.html) page.
## Cron Expression Syntax
The following is a breakdown of what each parameter in our cron expression represents. While our specification closely resembles the one defined by Spring, it's not an exact 1-to-1 match.
```
The string has six single space-separated time and date fields:
ββββββββββββββ second (0-59)
β ββββββββββββββ minute (0 - 59)
β β ββββββββββββββ hour (0 - 23)
β β β ββββββββββββββ day of the month (1 - 31)
β β β β ββββββββββββββ month (1 - 12) (or JAN-DEC)
β β β β β ββββββββββββββ day of the week (1 - 7)
β β β β β β (Monday is 1, Tue is 2... and Sunday is 7)
β β β β β β
* * * * * *
```
Partial expressions are also supported, which means that subsequent expressions can be left out (they are defaulted to `'*'`).
```julia
# In this example we see only the `seconds` part of the expression is defined.
# This means that all following expressions are automatically defaulted to '*' expressions
@cron "*/2" function()
println("runs every 2 seconds")
end
```
## Scheduling Endpoints
The `router()` function has a keyword argument called `cron`, which accepts a cron expression that determines when an endpoint is called. Just like the other keyword arguments, it can be reused by endpoints that share routers or be overridden by inherited endpoints.
```julia
# execute at 8, 9 and 10 o'clock of every day.
@get router("/cron-example", cron="0 0 8-10 * * *") function(req)
println("here")
end
# execute this endpoint every 5 seconds (whenever current_seconds % 5 == 0)
every5 = router("/cron", cron="*/5")
# this endpoint inherits the cron expression
@get every5("/first") function(req)
println("first")
end
# Now this endpoint executes every 2 seconds ( whenever current_seconds % 2 == 0 ) instead of every 5
@get every5("/second", cron="*/2") function(req)
println("second")
end
```
## Scheduling Functions
In addition to scheduling endpoints, you can also use the new `@cron` macro to schedule functions. This is useful if you want to run code at specific times without making it visible or callable in the API.
```julia
@cron "*/2" function()
println("runs every 2 seconds")
end
@cron "0 0/30 8-10 * * *" function()
println("runs at 8:00, 8:30, 9:00, 9:30, 10:00 and 10:30 every day")
end
```
## Starting & Stopping Cron Jobs
When you run `serve()` or `serveparallel()`, all registered cron jobs are automatically started. If the server is stopped or killed, all running jobs will also be terminated. You can stop the server and all repeat tasks and cron jobs by calling the `terminate()` function or manually killing the server with `ctrl+C`.
In addition, Kitten provides utility functions to manually start and stop cron jobs: `startcronjobs()` and `stopcronjobs()`. These functions can be used outside of a web server as well.
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | docs | 3230 | # First Steps
In this tutorial, you'll learn about all the core features of Kitten ia a simple step-by-step approach.
This guide will be aimed at beginner/intermediate users and will gradually build upon each other.
## Setup your first project
Navigate to your projects folder (If you're using and editor like vscode, just open up your project folder
`cd /path/to/your/project`
Open open a terminal and start the julia repl with this command
```
julia
```
Before we go any further, lets create a new environment for this project.
Press the `]` key inside the repl to use Pkg (julia's jult in package manager)
you should see something similar to `(v1.7) pkg>` in the repl
Activate your current environment
```
pkg> activate .
```
Install the latest version of Kitten and HTTP
```
pkg> add Kitten HTTP
```
Press the backspace button to exit the package manager and return to the julia repl
If everything was done correctly, you should see a `Project.toml` and `Manifest.toml`
file created in your project folder
Next lets create our `src` folder and our `main.jl` file. Once that's complete, our project
should ook something like this.
```
project
βββ src
β βββ main.jl
βββ Project.toml
βββ Manifest.toml
```
For the duration of this guide, we will be working out of the `src/main.jl` file
## Creating your first web server
Here's an example of what a simple Kitten server could look like
```julia
module Main
using Kitten
using HTTP
@get "/greet" function(req::HTTP.Request)
return "hello world!"
end
serve()
end
```
Start the webserver with:
```julia
include("src/main.jl")
```
## Line by line
```julia
using Kitten
using HTTP
```
Here we pull in the both libraries our api depends on. The `@get` macro and `serve()` function come from Kitten
and the `HTTP.Request` type comes from the HTTP library.
Next we move into the core snippet where we define a route for our api. This route is made up of several components.
- http method => from `@get` macro (it's a GET request)
- path => the endpoint that will get added to our api which is `"/greet"`
- request handler => The function that accepts a request and returns a response
```julia
@get "/greet" function(req::HTTP.Request)
return "hello world!"
end
```
Finally at the bottom of our `Main` module we have this function to start up our brand new webserver.
This function can take a number of keyword arguments such as the `host` & `port`, which can be helpful if you don't want to use the default values.
```julia
serve()
```
For example, you can start your server on port `8000` instead of `8080` which is used by default
```julia
serve(port=8000)
```
## Try out your endpoints
You should see the server starting up inside the console.
You should be able to hit `http://127.0.0.1:8080/greet` inside your browser and see the following:
```
"hello world!"
```
## Interactive API documenation
Open your browser to http://127.0.0.1:8080/docs
Here you'll see the auto-generated documentation for your api.
This is done internally by generating a JSON object that conforms to the openapi format.
Once generated, you can feed this same schema to libraries like swagger which translate this
into an interactive api for you to explore.
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | docs | 5053 | # OAuth2 with Umbrella.jl
[Umbrella.jl](https://github.com/jiachengzhang1/Umbrella.jl) is a simple Julia authentication plugin, it supports Google and GitHub OAuth2 with more to come. Umbrella integrates with Julia web framework such as [Genie.jl](https://github.com/GenieFramework/Genie.jl), [Kitten.jl](https://github.com/JuliaKit/Kitten.jl) or [Mux.jl](https://github.com/JuliaWeb/Mux.jl) effortlessly.
## Prerequisite
Before using the plugin, you need to obtain OAuth 2 credentials, see [Google Identity Step 1](https://developers.google.com/identity/protocols/oauth2#1.-obtain-oauth-2.0-credentials-from-the-dynamic_data.setvar.console_name-.), [GitHub: Creating an OAuth App](https://docs.github.com/en/developers/apps/building-oauth-apps/creating-an-oauth-app) for details.
## Installation
```julia
pkg> add Umbrella
```
## Basic Usage
Many resources are available describing how OAuth 2 works, please advice [OAuth 2.0](https://oauth.net/2/), [Google Identity](https://developers.google.com/identity/protocols/oauth2/web-server#obtainingaccesstokens), or [GitHub OAuth 2](https://docs.github.com/en/developers/apps/building-oauth-apps/creating-an-oauth-app) for details
Follow the steps below to enable OAuth 2 in your application.
### 1. Configuration
OAuth 2 required parameters such as `client_id`, `client_secret` and `redirect_uri` need to be configured through `Configuration.Options`.
`scopes` is a list of resources the application will access on user's behalf, it is vary from one provider to another.
`providerOptions` configures the additional parameters at the redirection step, it is dependent on the provider.
```julia
const options = Configuration.Options(;
client_id = "", # client id from an OAuth 2 provider
client_secret = "", # secret from an OAuth 2 provider
redirect_uri = "http://localhost:3000/oauth2/google/callback",
success_redirect = "/protected",
failure_redirect = "/error",
scopes = ["profile", "openid", "email"],
providerOptions = GoogleOptions(access_type="online")
)
```
`init` function takes the provider and options, then returns an OAuth 2 instance. Available provider values are `:google`, `:github` and `facebook`. This list is growing as more providers are supported.
```julia
oauth2_instance = init(:google, options)
```
The examples will use [Kitten.jl](https://github.com/JuliaKit/Kitten.jl) as the web framework, but the concept is the same for other web frameworks.
### 2. Handle provider redirection
Create two endpoints,
- `/` serve the login page which, in this case, is a Google OAuth 2 link.
- `/oauth2/google` handles redirections to an OAuth 2 server.
```julia
@get "/" function ()
return "<a href='/oauth2/google'>Authenticate with Google</a>"
end
@get "/oauth2/google" function ()
oauth2_instance.redirect()
end
```
`redirect` function generates the URL using the parameters in step 1, and redirects users to provider's OAuth 2 server to initiate the authentication and authorization process.
Once the users consent to grant access to one or more scopes requested by the application, OAuth 2 server responds the `code` for retrieving access token to a callback endpoint.
### 3. Retrieves tokens
Finally, create the endpoint handling callback from the OAuth 2 server. The path must be identical to the path in `redirect_uri` from `Configuration.Options`.
`token_exchange` function performs two actions,
1. Use `code` responded by the OAuth 2 server to exchange an access token.
2. Get user profile using the access token.
A handler is required for access/refresh tokens and user profile handling.
```julia
@get "/oauth2/google/callback" function (req)
query_params = queryparams(req)
code = query_params["code"]
oauth2_instance.token_exchange(code, function (tokens, user)
# handle tokens and user profile here
end
)
end
```
## Full Example
```julia
using Kitten
using Umbrella
using HTTP
const oauth_path = "/oauth2/google"
const oauth_callback = "/oauth2/google/callback"
const options = Configuration.Options(;
client_id="", # client id from Google API Console
client_secret="", # secret from Google API Console
redirect_uri="http://127.0.0.1:8080$(oauth_callback)",
success_redirect="/protected",
failure_redirect="/no",
scopes=["profile", "openid", "email"]
)
const google_oauth2 = Umbrella.init(:google, options)
@get "/" function()
return "<a href='$(oauth_path)'>Authenticate with Google</a>"
end
@get oauth_path function()
# this handles the Google oauth2 redirect in the background
google_oauth2.redirect()
end
@get oauth_callback function(req)
query_params = queryparams(req)
code = query_params["code"]
# handle tokens and user details
google_oauth2.token_exchange(code,
function (tokens::Google.Tokens, user::Google.User)
println(tokens.access_token)
println(tokens.refresh_token)
println(user.email)
end
)
end
@get "/protected" function()
"Congrets, You signed in Successfully!"
end
# start the web server
serve()
```
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | docs | 3603 | # Path Parameters
You can declare path "parameters" or "variables" inside your route with braces and those values are passed directly to your request handler.
```julia
@get "/multiply/{a}/{b}" function(req, a::Float64, b::Float64)
return a * b
end
```
The values of `{a}` & `{b}` in the path will get passed to the request handler with the parameter with the same name.
## Path parameters with types
You can declare the type of a path parameter in the function, using standard Julia type annotations
Let's take a look back at our first example above we have code to add two numbers.
```julia
@get "/multiply/{a}/{b}" function(req, a::Float64, b::Float64)
```
In this line we have our request type, route, and function handler defined. Looking closer at our request handler,
we can see our variables have type annotations attached to them.
Kitten will use any type annotations you give it to try to convert the incoming data into that type.
Granted, these are completely optional, if you leave out the type annotation then Kitten will
assume it's a string by default. Below is another way to write the same function without type annotations.
```julia
@get "/multiply/{a}/{b}" function(req, a, b)
return parse(Float64, a) * parse(Float64, b)
end
```
## Autogenerated Docs & Path Types
And when you open your browser at http://127.0.0.1:8080/docs, you will see the autogenerated interactive documentation for your api.
If type annotations were provided in the request handler, they will be taken into account
when generating the openapi spec. This means that the generated documentation will know
what the input types will be and will not only show, but enforce those types through the interactive documentation.
Practically, this means that your users will know exactly how to call your endpoint and
your inputs will always remain up to date with the code.
## Additional Parameter Type Support
Kitten supports a lot of different path parameter types outside of
Julia's base primitives. More complex types & structs are automatically parsed
and passed to your request handlers.
In most cases, Kitten uses the built-in `parse()` function to parse incoming parameters.
But when the parameter types start getting more complex (eg. `Vector{Int64}` or a custom struct),
then Kitten assumes the parameter is a JSON string and uses the JSON3 library
to serialize the parameter into the corresponding type
```julia
using Dates
using Kitten
using StructTypes
@enum Fruit apple=1 orange=2 kiwi=3
struct Person
name :: String
age :: Int8
end
# Add a supporting struct types
StructTypes.StructType(::Type{Person}) = StructTypes.Struct()
StructTypes.StructType(::Type{Complex{Float64}}) = StructTypes.Struct()
@get "/fruit/{fruit}" function(req, fruit::Fruit)
return fruit
end
@get "/date/{date}" function(req, date::Date)
return date
end
@get "/datetime/{datetime}" function(req, datetime::DateTime)
return datetime
end
@get "/complex/{complex}" function(req, complex::Complex{Float64})
return complex
end
@get "/list/{list}" function(req, list::Vector{Float32})
return list
end
@get "/data/{dict}" function(req, dict::Dict{String, Any})
return dict
end
@get "/tuple/{tuple}" function(req, tuple::Tuple{String, String})
return tuple
end
@get "/union/{value}" function(req, value::Union{Bool, String, Float64})
return value
end
@get "/boolean/{bool}" function(req, bool::Bool)
return bool
end
@get "/struct/{person}" function(req, person::Person)
return person
end
@get "/float/{float}" function (req, float::Float32)
return float
end
serve()
```
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | docs | 949 | # Query Parameters
When you declare other function parameters that are not part of the path parameters, they are automatically interpreted as "query" parameters.
In the example below, we have two query parameters passed to our request handler
1. debug = true
2. limit = 10
```
http://127.0.0.1:8000/echo?debug=true&limit=10
```
To show how this works, lets take a look at this route below:
```julia
@get "/echo" function(req)
# the queryparams() function will extract all query paramaters from the url
return queryparams(req)
end
```
If we hit this route with a url like the one below we should see the query parameters returned as a JSON object
```
{
"debug": "true",
"limit": "10"
}
```
The important distinction between `query parameters` and `path parameters` is that they are not automatically converted for you. In this example `debug` & `limit` are set to a string even though those aren't the "correct" data types. | Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | docs | 1959 | # Request Body
Whenever you need to send data from a client to your API, you send it as a request body.
A request body is data sent by the client to your API (usually JSON). A response body is the data your API sends to the client.
Request bodies are useful when you need to send more complicated information
to an API. Imagine we wanted to request an uber/lyft to come pick us up. The app (a client) will have to send a lot of information to make this happen. It'd need to send information about the user (like location data, membership info) and data about the destination. The api in turn will have to figure out pricing, available drivers and potential routes to take.
The inputs of this api are pretty complicated which means it's a perfect case where we'd want to use the request body to send this information. You could send this kind of information through the URL, but I'd highly recommend you don't. Request bodies can store data in pretty much any format which is a lot more flexible than what a URL can support.
## Example
The request bodies can be read and converted to a Julia object by using the built-in `json()` helper function.
```julia
struct Person
name::String
age::String
end
@post "/create/struct" function(req)
# this will convert the request body directly into a Person struct
person = json(req, Person)
return "hello $(person.name)!"
end
@post "/create/dict" function(req)
# this will convert the request body into a Julia Dict
data = json(req)
return """hello $(data["name"])!"""
end
```
When converting JSON into struct's Kitten will throw an error if the request body doesn't match the struct, all properties need to be visible and match the right type.
If you don't pass a struct to convert the JSON into, then it will convert the JSON into a Julia Dictionary. This has the benefit of being able to take JSON of any shape which is helpful when your data can change shape or is unknown.
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 0.1.0 | 9be647522c1dc531739aae8b9320cf6ae221e616 | docs | 2313 | # Request Types
When designing an API you need to first think about what `type` of requests
and what `routes` or `paths` your api would need to function.
For example, if we were to design a weather app we'd probably want a way to lookup weather alerts for a particular state
```
http://localhost:8080/weather/alerts/{state}
```
This url can be broken down into several parts
- `host` β `http://localhost`
- `port` β `8080`
- `route` or `path` β `/weather/alerts/{state}`
- `path parameter` β `{state}`
Before we start writing code for we need to answer some questions:
1. What kind of data manipulation is this route going to perform?
- Are we adding/removing/updating data? (This determines our http method)
2. Will this endpoint need any inputs?
- If so, will we need to pass them through the path or inside the body of the http request?
This is when knowing the different type of http methods comes in handy.
Common HTTP methods:
- POST β when you want to **create** some data
- GET β when you want to **get** data
- PUT β **update** some data if it already exists or **create** it
- PATCH β when you want to **update** some data
- DELETE β when you want to **delete** some data
(there are more methods that aren't in this list)
In the HTTP protocol, you can communicate to each path using one (or more) of these "methods".
In reality you can use any of these http methods to do any of those operations. But it's heavily recommended to use the appropriate http method so that people & machines can easily understand your web api.
Now back to our web example. Lets answer those questions:
1. This endpoint will return alerts from the US National Weather service api
2. The only input we will need is the state abbreviation
Since we will only be fetching data and not creating/updating/deleting anything, that means we will want to setup a `GET` route for our api to handle this type of action.
```julia
using Kitten
using HTTP
@get "/weather/alerts/{state}" function(req::HTTP.Request, state::String)
return HTTP.get("https://api.weather.gov/alerts/active?area=$state")
end
serve()
```
With our code in place, we can run this code and visit the endpoint in our browser to view the alerts. Try it out yourself by clicking on the link below.
http://127.0.0.1:8080/weather/alerts/NY
| Kitten | https://github.com/JuliaKit/Kitten.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 90 | using Documenter
using StochasticGene
makedocs(
sitename = "StochasticGene.jl")
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 24456 | #
# Gillespie Algorithm functions to compute:
# Live Cell ON/OFF distributions
# smFISH steady state histograms
# G state and R step Occupancy probabilities
# Mean dwell time for being ON
#
# Compute ON OFF time histograms
function telegraphprefast(range::Array,n::Int,zeta::Int,rin::Vector,total::Int,nbursts::Int,nalleles::Int)
# Generalized n-zeta telegraph model
# Compute dwell time histograms
# n+1 total gene states
# gene states are labeled from 1 to n+1
# zeta pre-mRNA steps
# There are 2n gene reactions, zeta pre-mRNA reactions, and 1 mRNA decay reaction
# rin = reaction rates
# forward gene reactions are labeled by odd numbers <2n, backward reactions are even numbers <= 2n
# reactions [2n+1, 2n+zeta] are pre-mRNA recations,organized by starting spot, reaction 2n(zeta+1)+1 is mRNA decay reaction
# Use Gillespie direct method with speed up from Gibson and Bruck
# copy rates
# r = copy(rin)
# nbursts = 100000
# nbursts = 1000
# decay reaction index
reactiondecay = 2*n + zeta + 2
# dwell time arrays
ndt = length(range)
dt = range[2]-range[1]
histofftdd = zeros(Int,ndt)
histontdd = zeros(Int,ndt)
# time
t=0.
# tIA and TAI are times when gene state transitions between active and inactive states
# they are used to compute dwell times
tIA = zeros(Float64,nalleles)
tAI = zeros(Float64,nalleles)
#Initialize output arrays
# mRNA = Array{Int,1}(total)
# times = Array{Float64,1}(total)
# active start site
mu = n
#print(n," ",mu," ",zeta,'\n')
# Initialize rates
gammaf = zeros(n+1)
gammab = zeros(n+1)
nu = Array{Float64,1}(undef,zeta+1)
# assign gene rates
for i = 1:n
gammaf[i] = rin[2*(i-1)+1]
gammab[i+1] = rin[2*i]
end
# assign pre-mRNA rates
for i = 1:zeta+1
nu[i] = rin[2*n + i]
end
# assign decay rate
delta = rin[reactiondecay]
# assign correlation rate
if length(rin) > reactiondecay
rcorr = rin[reactiondecay+1]
else
rcorr = 0.
end
#initialize mRNA number to 0
m = 0
# Initialize gene states
state = ones(Int,nalleles)
#state[1] = mu + 1
# state[1] = 2
# nindex = n + 1
# pre-mRNA states
z = Array{Array{Int,1},1}(undef,nalleles)
# initialize propensities
af = Array{Float64,1}(undef,nalleles)
ab = Array{Float64,1}(undef,nalleles)
apre1 = Array{Float64,1}(undef,nalleles)
az = Array{Array{Float64,1},1}(undef,nalleles)
apremid = zeros(nalleles) # sum(az[2:zeta]) middle pre-mRNAstep
afree = zeros(nalleles) # az[zeta+1] create free mRNA
for i = 1:nalleles
z[i] = zeros(Int,zeta) # Intialize pre-mRNA state to all 0
af[i] = gammaf[state[i]]
ab[i] = gammab[state[i]]
az[i] = zeros(zeta+1)
# apre1[i] = float(1-z[i][1])*nu[1]*float(state[i]==n+1) #first pre-mRNA step
apre1[i] = 0. #first pre-mRNA step
end
astate = af + ab
adecay = 0. #m*delta
amrna = apre1 + apremid + afree
bursts = 0
steps = 0
# for steps = 1:total
while bursts < nbursts && steps < total
steps += 1
asum = sum(amrna) + sum(astate) + adecay
if asum > 0.
# choose which state to update and time of update
r = asum*rand()
tau = -log(rand())/asum
# update time
t += tau
#print(tau,' ',asum,' ',state,'\n')
# times[steps] = tau
# mRNA[steps] = m
if r > sum(amrna + astate)
# mRNA decay
m -= 1
adecay = m*delta
else
agenecs = amrna[1] + astate[1]
agene0 = 0.
l = 1
while r > agenecs
agene0 = agenecs
agenecs += amrna[1+l] + astate[l+1]
l += 1
end
if l > 1
r -= agene0
end
if r > amrna[l]
# state update
if r > ab[l] + amrna[l]
# update forward reaction
state[l] += 1
else
# update backward reaction
state[l] -= 1
end
# update propensities
af[l] = gammaf[state[l]]
ab[l] = gammab[state[l]]
astate[l] = af[l] + ab[l]
# Activate coupling if any alleles are in state mu + 1
if rcorr > 0.
ba = false
for k = 1:nalleles
ba |= state[k] > mu
end
if ba
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]] + rcorr
astate[k] = af[k] + ab[k]
end
end
else
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]]
astate[k] = af[k] + ab[k]
end
end
end
end
if state[l] > mu
apre1[l] = float(1-z[l][1])*nu[1]
# apre1 = az[l][1]
else
apre1[l] = 0.
end
amrna[l] = apremid[l] + apre1[l] + afree[l]
else
# premRNA update
if r > apremid[l] + apre1[l]
# increase free mRNA
m += 1
adecay = m*delta
z[l][zeta] = 0
#az[l][zeta+1] = 0
afree[l] = 0.
if sum(z[l]) == 0 #&& nhist == 0
tAI[l] = t
tactive = ceil(Int,(tAI[l] - tIA[l])/dt)
if tactive <= ndt && tactive > 0
histontdd[tactive] += 1
end
end
if zeta == 1
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
#az[l][1] = 0
apre1[l] = 0.
end
else
az[l][zeta] = float(z[l][zeta-1])*nu[zeta]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l]
elseif r > apremid[l]
# increase first pre-mRNA state
if sum(z[l]) == 0 #&& nhist == 0
tIA[l] = t
tinactive = ceil(Int,(tIA[l] - tAI[l])/dt)
if tinactive <= ndt && tinactive > 0
histofftdd[tinactive] += 1
bursts += 1
end
end
z[l][1] = 1
#az[l][1] = 0
apre1[l] = 0.
if zeta == 1
#az[l][2] = nu[2]
afree[l] = nu[2]
else
az[l][2] = float(1-z[l][2])*nu[2]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l]
else
# update mid pre-mRNA state
azsum = az[l][2]
k = 1
while r > azsum
azsum += az[l][2+k]
k += 1
end
i = k + 1
if i <= zeta
z[l][i] = 1
z[l][i-1] = 0
az[l][i] = 0.
if i == zeta
#az[l][i+1] = nu[i+1]
afree[l] = nu[i+1]
else
az[l][i+1] = float(1-z[l][i+1])*nu[i+1]
end
if i == 2
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
az[l][1] = 0.
apre1[l] = 0.
end
else
az[l][i-1] = float(z[l][i-2])*nu[i-1]
end
end
apremid[l] = sum(az[l][2:zeta])
amrna[l] = apre1[l] + apremid[l] + afree[l]
end # if r > apremid[l] + apre1[l]
end # if r > amrna[l]
end #if r > sum(amrna + adecay)
end #if asum > 0
end # for steps = 1:total
sumoff = sum(histofftdd)
sumon = sum(histontdd)
if sumon > 0 && sumoff > 0
#return [histofftdd[2]/sumoff; histontdd[2]/sumon], mhistn
return cumsum(histofftdd/sumoff), cumsum(histontdd/sumon)
else
return zeros(length(histofftdd)),zeros(length(histontdd))
end
end
# Compute smFISH histogram
function telegraphprefast(n::Int,zeta::Int,rin::Vector,total::Int,tmax::Float64,nhist::Int,nalleles::Int,count=false)
# Generalized n, zeta, telegraph model,
# Compute steady state mRNA histogram
# n+1 total gene states
# gene states are labeled from 1 to n+1
# zeta pre-mRNA steps
# There are 2n gene reactions, zeta pre-mRNA reactions, and 1 mRNA decay reaction
# rin = reaction rates
# forward gene reactions are labeled by odd numbers <2n, backward reactions are even numbers <= 2n
# reactions [2n+1, 2n+zeta] are pre-mRNA reactions,organized by starting spot, reaction 2n(zeta+1)+1 is mRNA decay reaction
# Use Gillespie direct method with speed up from Gibson and Bruck
# decay reaction index
reactiondecay = 2*n + zeta + 2
# time
t=0.
# tIA and TAI are times when gene state transitions between active and inactive states
# they are used to compute dwell times
# tIA = zeros(Float64,nalleles)
# tAI = zeros(Float64,nalleles)
#Initialize m histogram
mhist=zeros(nhist+1)
# mRNA = Array{Int,1}(total)
# times = Array{Float64,1}(total)
# active start site
mu = n
#print(n," ",mu," ",zeta,'\n')
# Initialize rates
gammaf = zeros(n+1)
gammab = zeros(n+1)
nu = Array{Float64,1}(undef,zeta+1)
# assign gene rates
for i = 1:n
gammaf[i] = rin[2*(i-1)+1]
gammab[i+1] = rin[2*i]
end
# assign pre-mRNA rates
for i = 1:zeta+1
nu[i] = rin[2*n + i]
end
# assign decay rate
delta = rin[reactiondecay]
# assign correlation rate
if length(rin) > reactiondecay
rcorr = rin[reactiondecay+1]
else
rcorr = 0.
end
rcorr = 0.
#initialize mRNA number to 0
m = 0
# Initialize gene states
state = ones(Int,nalleles)
#state[1] = mu + 1
# state[1] = 2
# nindex = n + 1
# pre-mRNA states
z = Array{Array{Int,1},1}(undef,nalleles)
# initialize propensities
af = Array{Float64,1}(undef,nalleles)
ab = Array{Float64,1}(undef,nalleles)
apre1 = Array{Float64,1}(undef,nalleles)
az = Array{Array{Float64,1},1}(undef,nalleles)
apremid = zeros(nalleles) # sum(az[2:zeta]) middle pre-mRNAstep
afree = zeros(nalleles) # az[zeta+1] create free mRNA
for i = 1:nalleles
z[i] = zeros(Int,zeta) # Intialize pre-mRNA state to all 0
af[i] = gammaf[state[i]]
ab[i] = gammab[state[i]]
az[i] = zeros(zeta+1)
apre1[i] = 0. #first pre-mRNA step
end
astate = af + ab
adecay = 0. #m*delta
amrna = apre1 + apremid + afree
bursts = 0
steps = 0
# Begin simulation
while t < tmax && steps < total
steps += 1
asum = sum(amrna) + sum(astate) + adecay
if asum > 0.
# choose which state to update and time of update
r = asum*rand()
tau = -log(rand())/asum
# update time
t += tau
#print(tau,' ',asum,' ',state,'\n')
# times[steps] = tau
# mRNA[steps] = m
if m + 1 <= nhist
mhist[m+1] += tau
else
mhist[nhist+1] += tau
end
if r > sum(amrna + astate)
# mRNA decay
m -= 1
adecay = m*delta
else
agenecs = amrna[1] + astate[1]
agene0 = 0.
l = 1
while r > agenecs
agene0 = agenecs
agenecs += amrna[1+l] + astate[l+1]
l += 1
end
if l > 1
r -= agene0
end
if r > amrna[l]
# state update
if r > ab[l] + amrna[l]
# update forward reaction
state[l] += 1
else
# update backward reaction
state[l] -= 1
end
# update propensities
af[l] = gammaf[state[l]]
ab[l] = gammab[state[l]]
astate[l] = af[l] + ab[l]
# Activate coupling if any alleles are in state mu + 1
if rcorr > 0.
ba = false
for k = 1:nalleles
ba |= state[k] > mu
end
if ba
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]] + rcorr
astate[k] = af[k] + ab[k]
end
end
else
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]]
astate[k] = af[k] + ab[k]
end
end
end
end
if state[l] > mu
apre1[l] = float(1-z[l][1])*nu[1]
# apre1 = az[l][1]
else
apre1[l] = 0.
end
amrna[l] = apremid[l] + apre1[l] + afree[l]
else
# premRNA update
if r > apremid[l] + apre1[l]
# increase free mRNA
m += 1
adecay = m*delta
z[l][zeta] = 0
#az[l][zeta+1] = 0
afree[l] = 0.
if zeta == 1
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
#az[l][1] = 0
apre1[l] = 0.
end
else
az[l][zeta] = float(z[l][zeta-1])*nu[zeta]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l]
elseif r > apremid[l]
# increase first pre-mRNA state
z[l][1] = 1
#az[l][1] = 0
apre1[l] = 0.
if zeta == 1
#az[l][2] = nu[2]
afree[l] = nu[2]
else
az[l][2] = float(1-z[l][2])*nu[2]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l]
else
# update mid pre-mRNA state
azsum = az[l][2]
k = 1
while r > azsum
azsum += az[l][2+k]
k += 1
end
i = k + 1
if i <= zeta
z[l][i] = 1
z[l][i-1] = 0
az[l][i] = 0.
if i == zeta
#az[l][i+1] = nu[i+1]
afree[l] = nu[i+1]
else
az[l][i+1] = float(1-z[l][i+1])*nu[i+1]
end
if i == 2
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
az[l][1] = 0.
apre1[l] = 0.
end
else
az[l][i-1] = float(z[l][i-2])*nu[i-1]
end
end
apremid[l] = sum(az[l][2:zeta])
amrna[l] = apre1[l] + apremid[l] + afree[l]
end # if r > apremid[l] + apre1[l]
end # if r > amrna[l]
end #if r > sum(amrna + adecay)
end #if asum > 0
end # for steps = 1:total
counts = max(sum(mhist),1)
mhist /= counts
if count
return mhist[1:nhist],counts
else
return mhist[1:nhist]
end
end
# Compute steady state occupancy probabilities for all G states and R steps
function telegraphprefastSS(n::Int,zeta::Int,rin::Vector,total::Int,nalleles::Int)
#Steady state arrays
Gss = zeros(n+1)
Rss = 0.
Rssc = 0.
# copy rates
r = copy(rin)
# decay reaction index
reactiondecay = 2*n + zeta + 2
# time
t=0.
# active start site
mu = n
# Initialize rates
gammaf = zeros(n+1)
gammab = zeros(n+1)
nu = Array{Float64}(undef,zeta+1)
# assign gene rates
for i = 1:n
gammaf[i] = r[2*(i-1)+1]
gammab[i+1] = r[2*i]
end
# assign pre-mRNA rates
for i = 1:zeta+1
nu[i] = r[2*n + i]
end
# assign decay rate
delta = r[reactiondecay]
# assign correlation rate
if length(r) > reactiondecay
rcorr = r[reactiondecay+1]
else
rcorr = 0.
end
#initialize mRNA number to 0
m=0
# Initialize to gene state 1, all other states are zero
state = ones(Int,nalleles)
#state[1] = mu + 1
#state[2] = mu
nindex = n + 1
# pre-mRNA states
z = Array{Array{Int,1}}(undef,nalleles)
# initialize propensities
af = Array{Float64}(undef,nalleles)
ab = similar(af)
apre1 = similar(af)
az = Array{Array{Float64,1}}(undef,nalleles)
apremid = zeros(nalleles) # sum(az[2:zeta]) middle pre-mRNAstep
afree = zeros(nalleles) # az[zeta+1] create free mRNA
for i = 1:nalleles
z[i] = zeros(Int8,zeta) # Intialize pre-mRNA state to all 0
af[i] = gammaf[state[i]]
ab[i] = gammab[state[i]]
az[i] = zeros(zeta+1)
apre1[i] = float(1-z[i][1])*nu[1]*float(state[i]==n+1) #first pre-mRNA step
end
astate = af + ab
adecay = 0. #m*delta
amrna = apre1 + apremid + afree
for steps = 1:total
asum = sum(amrna) + sum(astate) + adecay
if asum > 0.
# choose which state to update and time of update
r = asum*rand()
tau = -log(rand())/asum
# update time
t += tau
#print(tau,' ',asum,' ',state,'\n')
#times[steps]=tau
#mRNA[steps] = m
for j = 1:nalleles
Gss[state[j]] += tau
if state[j]> mu && z[j][1] == 1 #&& sum(z[j]) == 1
Rss += tau
end
end
if reduce(|,state) > 1 && reduce(|,z[:][1]) == 1
Rssc += tau
end
if r > sum(amrna + astate)
# mRNA decay
m -= 1
adecay = m*delta
else
agenecs = amrna[1] + astate[1]
agene0 = 0.
l = 1
while r > agenecs
agene0 = agenecs
agenecs += amrna[1+l] + astate[l+1]
l += 1
end
if l > 1
r -= agene0
end
if r > amrna[l]
# state update
if r > ab[l] + amrna[l]
# update forward reaction
state[l] += 1
else
# update backward reaction
state[l] -= 1
end
# update propensities
af[l] = gammaf[state[l]]
ab[l] = gammab[state[l]]
astate[l] = af[l] + ab[l]
# Activate coupling if any alleles are in state mu + 1
ba = false
for k = 1:nalleles
ba |= state[k] > mu
end
if ba
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]] + rcorr
astate[k] = af[k] + ab[k]
end
end
else
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]]
astate[k] = af[k] + ab[k]
end
end
end
# if ba
# for k = 1:nalleles
# af[k] = gammaf[state[k]] + rcorr*float(state[k]==mu)
# astate[k] = af[k] + ab[k]
# end
# else
# for k = 1:nalleles
# af[k] = gammaf[state[k]]
# astate[k] = af[k] + ab[k]
# end
# end
if state[l] > mu
apre1[l] = float(1-z[l][1])*nu[1]
# apre1 = az[l][1]
else
apre1[l] = 0.
end
amrna[l] = apremid[l] + apre1[l] + afree[l]
else
# premRNA update
if r > apremid[l] + apre1[l]
# increase free mRNA
m += 1
adecay = m*delta
z[l][zeta] = 0
#az[l][zeta+1] = 0
afree[l] = 0.
if zeta == 1
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
#az[l][1] = 0
apre1[l] = 0.
end
else
az[l][zeta] = float(z[l][zeta-1])*nu[zeta]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l]
elseif r > apremid[l]
# increase first pre-mRNA state
z[l][1] = 1
#az[l][1] = 0
apre1[l] = 0.
if zeta == 1
#az[l][2] = nu[2]
afree[l] = nu[2]
else
az[l][2] = float(1-z[l][2])*nu[2]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l]
else
# update mid pre-mRNA state
azsum = az[l][2]
k = 1
while r > azsum
azsum += az[l][2+k]
k += 1
end
i = k + 1
z[l][i] = 1
z[l][i-1] = 0
az[l][i] = 0.
if i == zeta
#az[l][i+1] = nu[i+1]
afree[l] = nu[i+1]
else
az[l][i+1] = float(1-z[l][i+1])*nu[i+1]
end
if i == 2
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
az[l][1] = 0.
apre1[l] = 0.
end
else
az[l][i-1] = float(z[l][i-2])*nu[i-1]
end
apremid[l] = sum(az[l][2:zeta])
amrna[l] = apre1[l] + apremid[l] + afree[l]
end # if r > apremid[l] + apre1[l]
end # if r > amrna[l]
end #if r > sum(amrna + adecay)
end #if asum > 0
end # for steps = 1:total
println(Gss)
println(Rss,",",t)
Gss /= t*nalleles
Rss /= t*nalleles
Rssc /= t*nalleles
eff = Rss/Gss[n+1]
effc = Rssc/Gss[n+1]
println(sum(Gss))
return Gss, eff, effc
end
# Compute mean dwell times
function telegraphmdt(range::Array,n::Int,zeta::Int,rin::Vector,total::Int,nbursts::Int,nalleles::Int)
# decay reaction index
reactiondecay = 2*n + zeta + 2
# dwell time arrays
ndt = length(range)
dt = range[2]-range[1]
histofftdd = zeros(Int,ndt)
histontdd = zeros(Int,ndt)
# time
t=0.
# tIA and TAI are times when gene state transitions between active and inactive states
# they are used to compute dwell times
tIA = zeros(Float64,nalleles)
tAI = zeros(Float64,nalleles)
ONtimes = Array{Float64}(undef,0)
#Initialize output arrays
# mRNA = Array{Int,1}(total)
# times = Array{Float64,1}(total)
# active start site
mu = n
#print(n," ",mu," ",zeta,'\n')
# Initialize rates
gammaf = zeros(n+1)
gammab = zeros(n+1)
nu = Array{Float64,1}(undef,zeta+1)
# assign gene rates
for i = 1:n
gammaf[i] = rin[2*(i-1)+1]
gammab[i+1] = rin[2*i]
end
# assign pre-mRNA rates
for i = 1:zeta+1
nu[i] = rin[2*n + i]
end
# assign decay rate
delta = rin[reactiondecay]
# assign correlation rate
if length(rin) > reactiondecay
rcorr = rin[reactiondecay+1]
else
rcorr = 0.
end
#initialize mRNA number to 0
m = 0
# Initialize gene states
state = ones(Int,nalleles)
#state[1] = mu + 1
state[1] = 2
# nindex = n + 1
# pre-mRNA states
z = Array{Array{Int,1},1}(undef,nalleles)
# initialize propensities
af = Array{Float64,1}(undef,nalleles)
ab = Array{Float64,1}(undef,nalleles)
apre1 = Array{Float64,1}(undef,nalleles)
az = Array{Array{Float64,1},1}(undef,nalleles)
apremid = zeros(nalleles) # sum(az[2:zeta]) middle pre-mRNAstep
afree = zeros(nalleles) # az[zeta+1] create free mRNA
for i = 1:nalleles
z[i] = zeros(Int,zeta) # Intialize pre-mRNA state to all 0
af[i] = gammaf[state[i]]
ab[i] = gammab[state[i]]
az[i] = zeros(zeta+1)
# apre1[i] = float(1-z[i][1])*nu[1]*float(state[i]==n+1) #first pre-mRNA step
apre1[i] = 0. #first pre-mRNA step
end
astate = af + ab
adecay = 0. #m*delta
amrna = apre1 + apremid + afree
bursts = 0
steps = 0
# for steps = 1:total
while bursts < nbursts && steps < total
steps += 1
asum = sum(amrna) + sum(astate) + adecay
if asum > 0.
# choose which state to update and time of update
r = asum*rand()
tau = -log(rand())/asum
# update time
t += tau
#print(tau,' ',asum,' ',state,'\n')
# times[steps] = tau
# mRNA[steps] = m
if r > sum(amrna + astate)
# mRNA decay
m -= 1
adecay = m*delta
else
agenecs = amrna[1] + astate[1]
agene0 = 0.
l = 1
while r > agenecs
agene0 = agenecs
agenecs += amrna[1+l] + astate[l+1]
l += 1
end
if l > 1
r -= agene0
end
if r > amrna[l]
# state update
if r > ab[l] + amrna[l]
# update forward reaction
state[l] += 1
else
# update backward reaction
state[l] -= 1
end
# update propensities
af[l] = gammaf[state[l]]
ab[l] = gammab[state[l]]
astate[l] = af[l] + ab[l]
# Activate coupling if any alleles are in state mu + 1
if rcorr > 0.
ba = false
for k = 1:nalleles
ba |= state[k] > mu
end
if ba
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]] + rcorr
astate[k] = af[k] + ab[k]
end
end
else
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]]
astate[k] = af[k] + ab[k]
end
end
end
end
if state[l] > mu
apre1[l] = float(1-z[l][1])*nu[1]
# apre1 = az[l][1]
else
apre1[l] = 0.
end
amrna[l] = apremid[l] + apre1[l] + afree[l]
else
# premRNA update
if r > apremid[l] + apre1[l]
# increase free mRNA
m += 1
adecay = m*delta
z[l][zeta] = 0
#az[l][zeta+1] = 0
afree[l] = 0.
if sum(z[l]) == 0 #&& nhist == 0
tAI[l] = t
tactive = ceil(Int,(tAI[l] - tIA[l])/dt)
push!(ONtimes,tAI[l] - tIA[l])
if tactive <= ndt && tactive > 0
histontdd[tactive] += 1
end
end
if zeta == 1
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
#az[l][1] = 0
apre1[l] = 0.
end
else
az[l][zeta] = float(z[l][zeta-1])*nu[zeta]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l]
elseif r > apremid[l]
# increase first pre-mRNA state
if sum(z[l]) == 0 #&& nhist == 0
tIA[l] = t
tinactive = ceil(Int,(tIA[l] - tAI[l])/dt)
if tinactive <= ndt && tinactive > 0
histofftdd[tinactive] += 1
bursts += 1
end
end
z[l][1] = 1
#az[l][1] = 0
apre1[l] = 0.
if zeta == 1
#az[l][2] = nu[2]
afree[l] = nu[2]
else
az[l][2] = float(1-z[l][2])*nu[2]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l]
else
# update mid pre-mRNA state
azsum = az[l][2]
k = 1
while r > azsum
azsum += az[l][2+k]
k += 1
end
i = k + 1
z[l][i] = 1
z[l][i-1] = 0
az[l][i] = 0.
if i == zeta
#az[l][i+1] = nu[i+1]
afree[l] = nu[i+1]
else
az[l][i+1] = float(1-z[l][i+1])*nu[i+1]
end
if i == 2
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
az[l][1] = 0.
apre1[l] = 0.
end
else
az[l][i-1] = float(z[l][i-2])*nu[i-1]
end
apremid[l] = sum(az[l][2:zeta])
amrna[l] = apre1[l] + apremid[l] + afree[l]
end # if r > apremid[l] + apre1[l]
end # if r > amrna[l]
end #if r > sum(amrna + adecay)
end #if asum > 0
end # for steps = 1:total
return mean(ONtimes), std(ONtimes)/sqrt(length(ONtimes)), ONtimes
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 2842 |
module StochasticGene
using Distributions
using StatsBase
using Statistics
using DelimitedFiles
using Dates
using Distributed
using LinearAlgebra
using Plots
using SparseArrays
using OrdinaryDiffEq
using DataFrames
using FFTW
using Downloads
using CSV
using MultivariateStats
using Optim
export
rna_setup,
folder_setup,
makeswarm,
RNAData,
RNAOnOffData,
RNADwellTimeData,
TraceData,
TraceNascentData,
TraceRNAData,
GMmodel,
GMfixedeffectsmodel,
GRSMmodel,
GRSMfixedeffectsmodel,
fit,
run_mh,
metropolis_hastings,
prob_Gaussian,
prob_GaussianMixture,
prob_GaussianMixture_6,
make_dataframes,
write_dataframes,
write_dataframes_only,
write_winners,
write_augmented,
fix_filenames,
fix,
large_deviance,
large_rhat,
assemble_all,
assemble_measures_model,
write_histograms,
make_ONOFFhistograms,
plot_histogram,
make_traces,
make_traces_dataframe,
write_traces,
plot,
plot!,
simulator,
simulate_trace,
simulate_trace_vector,
simulate_trace_data,
on_states,
num_rates,
load_data,
load_model,
make_components_MTD,
make_components_MTAI,
make_components_MT,
make_components_M,
make_components_T,
make_components_TAI,
likelihoodarray,
likelihoodfn,
datapdf,
normalize_histogram,
norm,
make_array,
folder_path,
get_rates,
new_FISHfolder,
ModelArgs
### Source files
# Type system and common functions
include("common.jl")
# Transition rate matrices of stochastic models defining master equations
include("transition_rate_matrices.jl")
# Metropolis Hastings MCMC for computing posterior distributions of model parameters
include("metropolis_hastings.jl")
# Input output functions
include("io.jl")
# Chemical master equation solutions of stochastic models for likelihood functions in fitting algorithms
include("chemical_master.jl")
# commonly used functions
include("utilities.jl")
# Probability distributions by direct simulation of stochastic models using Gillespie and Gibson-Bruck algorithms
include("simulator.jl")
include("telegraphsplice.jl")
# functions for fitting models to data
include("fit.jl")
# functions for post fit analysis and plots
include("analysis.jl")
# functions for use on NIH cluster Biowulf
include("biowulf.jl")
# functions for hidden markov models
include("hmm.jl")
# # functions for fitting time series traces
# include("trace.jl")
# # functions specific for Gene Trap experiments of Wan et al.
# include("genetrap.jl")
# # functions for scRNA and FISH experiments of Trzaskoma et al.
# include("rna.jl")
"""
A Julia module for simulation and Bayesian inference of parameters of stochastic models of gene transcription.
API Overview:
"""
end #Module
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 43661 | # This file is part of StochasticGene.jl
# analysis.jl
"""
make_dataframes(resultfolder::String,datapath::String)
"""
function make_dataframes(resultfolder::String, datapath::String, assemble=true, fittedparams=Int[])
if assemble
assemble_all(resultfolder, fittedparams=fittedparams)
end
files = get_ratesummaryfiles(resultfolder)
parts = fields.(files)
models = get_models(parts)
labels = get_labels(parts)
df = Vector{Vector}(undef, 0)
for label in labels
lfiles = files[label.==get_label.(files)]
dfl = Vector{Tuple}(undef, 0)
for model in models
if length(parse_model(model)) > 1
println("Not G model")
else
mfiles = lfiles[model.==get_model.(lfiles)]
dfm = Vector{DataFrame}(undef, 0)
for i in eachindex(mfiles)
push!(dfm, make_dataframe(joinpath(resultfolder, mfiles[i]), datapath))
end
push!(dfl, ("Summary_$(label)_$(model).csv", stack_dataframe(dfm)))
end
end
push!(df, dfl)
end
return df
end
"""
statfile_from_ratefile(ratefile)
TBW
"""
statfile_from_ratefile(ratefile) = replace(ratefile, "rates_" => "stats_")
"""
make_dataframe(ratefile::String, datapath::String)
TBW
"""
function make_dataframe(ratefile::String, datapath::String)
df = read_dataframe(ratefile)
df2 = read_dataframe(statfile_from_ratefile(ratefile))
df = leftjoin(df, df2, on=:Gene, makeunique=true)
filename = splitpath(ratefile)[end]
parts = fields(filename)
model = parse_model(parts.model)
if length(model) > 1
println("Not G model")
else
G = parse(Int, parts.model)
insertcols!(df, :Model => fill(G, size(df, 1)))
df = stack_dataframe(df, G, parts.cond)
add_moments!(df, datapath)
end
end
"""
parse_model(name::String)
TBW
"""
function parse_model(name::String)
d = parse(Int, name)
d > 9 && (d = digits(d))
d
end
"""
augment_dataframe(df, resultfolder)
TBW
"""
function augment_dataframe(df, resultfolder)
dfc = copy(df)
G = dfc[1, :Model]
if G > 1
dfc = add_burstsize(dfc, resultfolder)
end
if G == 2
add_modelmoments!(dfc)
end
dfc = add_measures(dfc, resultfolder, string(G))
add_residenceprob!(dfc)
dfc
end
"""
make_measure_df(resultfolder::String, G::String)
TBW
"""
function make_measure_df(resultfolder::String, G::String)
files = get_measuresummaryfiles(resultfolder)
df = Vector{DataFrame}(undef, 0)
for file in files
parts = fields(file)
if parts.model == G
df0 = read_dataframe(joinpath(resultfolder, file))
if ~isempty(parts.cond)
insertcols!(df0, :Condition => parts.cond)
end
push!(df, df0)
end
end
stack_dataframe(df)
end
"""
join_cols(d)
TBW
"""
function join_cols(d)
if ismissing(d.Condition[1])
return [:Gene]
else
return [:Gene, :Condition]
end
end
"""
add_measures(df, resultfolder::String, G)
TBW
"""
function add_measures(df, resultfolder::String, G)
dm = make_measure_df(resultfolder, G)
leftjoin(df, dm, on=join_cols(df))
end
"""
add_mean!(df::DataFrame, datapath)
TBW
"""
function add_mean!(df::DataFrame, datapath)
# root = string(split(abspath(datapath),"data")[1])
m = Vector{Float64}(undef, length(df.Gene))
i = 1
for gene in df.Gene
m[i] = mean_histogram(get_histogram_rna(string(gene), df[i, :Condition], datapath))
i += 1
end
insertcols!(df, :Expression => m)
end
"""
add_moments!(df::DataFrame, datapath)
TBW
"""
function add_moments!(df::DataFrame, datapath)
m = Vector{Float64}(undef, length(df.Gene))
v = similar(m)
t = similar(m)
i = 1
for gene in df.Gene
_, h = read_rna(gene, df[i, :Condition], datapath)
m[i] = mean_histogram(h)
v[i] = var_histogram(h)
t[i] = moment_histogram(h, 3)
i += 1
end
insertcols!(df, :Expression => m, :Variance => v, :ThirdMoment => t)
end
"""
add_modelmoments!(df::DataFrame)
TBW
"""
function add_modelmoments!(df::DataFrame)
m = Vector{Float64}(undef, length(df.Gene))
v = similar(m)
i = 1
for gene in df.Gene
m[i] = model2_mean(df.Rate01[i], df.Rate10[i], df.Eject[i], df.Decay[i], df.Nalleles[i])
v[i] = model2_variance(df.Rate01[i], df.Rate10[i], df.Eject[i], df.Decay[i], df.Nalleles[i])
i += 1
end
insertcols!(df, :Model_Expression => m, :Model_Variance => v)
end
"""
add_residenceprob!(df::DataFrame)
TBW
"""
function add_residenceprob!(df::DataFrame)
n = df.Model[1] - 1
N = length(df.Gene)
g = Matrix{Float64}(undef, N, n + 1)
r = Vector{Float64}(undef, 2 * n)
for i in 1:N
for j in 1:n
Symbol("Rate$j$(j-1)")
Symbol("Rate$(j-1)$j")
r[2*j-1] = df[i, Symbol("Rate$j$(j-1)")]
r[2*j] = df[i, Symbol("Rate$(j-1)$j")]
g[i, :] = residenceprob_G(r, n)
end
end
for j in 1:n+1
insertcols!(df, Symbol("ProbG$(j-1)") => g[:, j])
end
end
"""
add_burstsize(df, resultfolder::String, cols::Vector{Symbol}=join_cols(df))
TBW
"""
add_burstsize(df, resultfolder::String, cols::Vector{Symbol}=join_cols(df)) = add_burstsize(df, make_burst_df(resultfolder), cols)
"""
add_burstsize(df, db, cols)
TBW
"""
function add_burstsize(df, db, cols)
if ismissing(df[1, :Condition])
leftjoin(df, db[:, [:BurstMean, :BurstSD, :BurstMedian, :BurstMAD, :Gene]], on=cols)
else
leftjoin(df, db[:, [:BurstMean, :BurstSD, :BurstMedian, :BurstMAD, :Gene, :Condition]], on=cols)
end
end
"""
make_burst_df(resultfolder::String)
TBW
"""
function make_burst_df(resultfolder::String)
files = get_burstsummaryfiles(resultfolder)
df = Vector{DataFrame}(undef, 0)
for file in files
parts = fields(file)
df0 = read_dataframe(joinpath(resultfolder, file))
if ~isempty(parts.cond)
insertcols!(df0, :Condition => parts.cond)
end
push!(df, df0)
end
stack_dataframe(df)
end
# add_time(csvfile::String,timestamp) = CSV.write(csvfile,add_time!(read_dataframe(csvfile),timestamp))
"""
add_time!(df::DataFrame, timestamp)
TBW
"""
add_time!(df::DataFrame, timestamp) = insertcols!(df, :Time => timestamp)
"""
stack_dataframe(df,G,cond)
stack_dataframe(df2::Vector{DataFrame})
"""
stack_dataframe(df, G, cond) = stack_dataframe(separate_dataframe(df, G, cond))
function stack_dataframe(df2::Vector{DataFrame})
df = df2[1]
for i in 2:length(df2)
df = vcat(df, df2[i])
end
return df
end
"""
separate_dataframe(df, G, cond)
TBW
"""
function separate_dataframe(df, G, cond)
conds = split(cond, "-")
nsets = length(conds)
df2 = Vector{DataFrame}(undef, nsets)
for i in 1:nsets
df2[i] = df[:, [1; 2*G*(i-1)+2:2*G*i+1; 2*G*nsets+2:end]]
rename!(x -> split(x, "_")[1], df2[i])
insertcols!(df2[i], :Condition => fill(string(conds[i]), size(df, 1)))
end
return df2
end
# function residuals(df)
# R01 = lm(@formula(log(Rate01) ~ Time*log(Decay)+PC1+PC2+PC3+PC4+PC5),df[(df.Winner .> 1) .& (df.Expression .> 0.),:])
#
# end
"""
make_Zscore_dataframe(df, conditions::Vector)
TBW
"""
function make_Zscore_dataframe(df, conditions::Vector)
dfc = Array{DataFrame}(undef, length(conditions))
for i in eachindex(dfc)
dfc[i] = df[df.Condition.==conditions[i], :]
end
df = leftjoin(dfc[1], dfc[2], on=[:Gene, :Time], makeunique=true)
add_Zscore!(df)
add_MomentChange!(df)
df[:, [:Gene, :Time, :ZRate01, :ZRate10, :ZEject, :dExpression, :dVariance, :dThirdMoment, :Winner]]
end
"""
add_MomentChange!(df)
TBW
"""
function add_MomentChange!(df)
insertcols!(df, :dExpression => df.Expression_1 .- df.Expression)
insertcols!(df, :dVariance => df.Variance_1 .- df.Variance)
insertcols!(df, :dThirdMoment => df.ThirdMoment_1 .- df.ThirdMoment)
end
"""
add_Zscore!(df)
TBW
"""
function add_Zscore!(df)
insertcols!(df, :ZRate01 => Difference_Zscore.(df.Rate01_1, df.Rate01, df.Rate01SD_1, df.Rate01SD))
insertcols!(df, :ZRate10 => Difference_Zscore.(df.Rate10_1, df.Rate10, df.Rate10SD_1, df.Rate10SD))
insertcols!(df, :ZEject => Difference_Zscore.(df.Eject_1, df.Eject, df.EjectSD, df.EjectSD_1))
end
function add_Zscore_class!(df, threshold=2.0)
insertcols!(df, :On => classify_Zscore.(df.ZRate01, threshold))
insertcols!(df, :Off => classify_Zscore.(df.ZRate10, threshold))
insertcols!(df, :Eject => classify_Zscore.(df.ZEject, threshold))
insertcols!(df, :OnOffEject => df.On .* df.Off .* df.Eject)
end
function classify_Zscore(Z, threshold)
if Z .> threshold
return "Up"
elseif Z .< -threshold
return "Down"
else
return "Null"
end
end
"""
best_AIC(folder::String)
TBW
"""
best_AIC(folder::String) = best_measure(folder, :AIC)
"""
best_WAIC(folder::String)
TBW
"""
best_WAIC(folder::String) = best_measure(folder, :WAIC)
"""
best_measure(folder::String, measure::Symbol)
TBW
"""
function best_measure(folder::String, measure::Symbol)
files = get_measuresummaryfiles(folder)
parts = fields.(files)
labels = get_labels(parts)
conds = get_conds(parts)
df = Vector{Tuple{String,DataFrame}}(undef, 0)
for label in labels
for cond in conds
lfiles = files[(label.==get_label.(files)).&(cond.==get_cond.(files))]
dm = Vector{DataFrame}(undef, length(lfiles))
for i in eachindex(lfiles)
if isfile(joinpath(folder, lfiles[i]))
dm[i] = read_dataframe(joinpath(folder, lfiles[i]))
insertcols!(dm[i], :Model => fill(get_model(lfiles[i]), size(dm[i], 1)))
end
end
# println(best_measure(dm,measure))
bm = best_measure(dm, measure)
~isempty(bm) && push!(df, ("Winners_$(label)_$(cond)_$(string(measure)).csv", bm))
end
end
return df
end
function best_measure(dfs::Vector, measure::Symbol)
df = DataFrame(:Gene => [], :Winner => [], measure => [])
ngenes = Int[]
for d in dfs
ngenes = push!(ngenes, length(d[:, :Gene]))
end
if ~isempty(ngenes)
others = setdiff(eachindex(dfs), argmax(ngenes))
for d in eachrow(dfs[argmax(ngenes)])
l = d[measure]
model = d[:Model]
for k in others
dc = dfs[k][dfs[k].Gene.==d.Gene, :]
if ~isempty(dc)
if dc[1, measure] < l
l = dc[1, measure]
model = dc[1, :Model]
end
end
end
push!(df, Dict(:Gene => d.Gene, :Winner => model, measure => l))
end
end
return df
end
"""
add_pca(df::DataFrame,files::Vector,npcs::Int,conds::Vector)
make PCAs from files and add to dataframe df
"""
add_pca(df::DataFrame, files::Vector, npcs::Int, conds::Vector) = add_pca(df, make_pca(files, npcs, conds), makeunique=true)
add_pca(df::DataFrame, dpc::DataFrame) = leftjoin(df, dpc, on=[:Condition, :Gene, :Time], makeunique=true)
"""
make_pca(files::Vector,npcs::Int)
Compute PCA
"""
function make_pca(files::Vector, npcs::Int, conds::Vector, times::Vector)
pca = make_pca(files[1], npcs, conds[1], times[1])
for i in 2:length(files)
pca = [pca; make_pca(files[i], npcs, conds[i], times[i])]
end
return pca
end
function make_pca(files::Vector, npcs::Int, conds::Vector)
pca = make_pca(files[1], npcs, conds[1])
for i in 2:length(files)
pca = [pca; make_pca(files[i], npcs, conds[i])]
end
return pca
end
function make_pca(file::String, npcs::Int, cond)
r, h = readdlm(file, header=true)
df = make_pca(r, npcs)
insertcols!(df, :Condition => cond)
end
function make_pca(file::String, npcs::Int, cond, time)
r, h = readdlm(file, header=true)
df = make_pca(r, npcs)
insertcols!(df, :Condition => cond, :Time => time)
end
function make_pca(m::Matrix, npcs::Int)
M = fit(PCA, float.(m[:, 2:end]), maxoutdim=npcs)
make_pca(M, m[:, 1])
end
function make_pca(M::PCA, genes)
P = projection(M)
df = DataFrame(Gene=genes)
i = 1
for p in eachcol(P)
insertcols!(df, Symbol("PC$i") => p)
i += 1
end
return df
end
function make_combinedpca(files::Vector, npcs::Int)
m, h = readdlm(files[1], header=true)
for i in 2:length(files)
r, h = readdlm(files[i], header=true)
m = [m r[:, 2:end]]
end
make_pca(m, npcs)
end
function make_dataframe_transient(folder::String, winners::String="")
rs = Array{Any,2}(undef, 0, 8)
files = readdir(folder)
n = 0
for file in files
if occursin("rate", file)
t = parse(Float64, split(split(file, "T")[2], "_")[1])
r, head = readdlm(joinpath(folder, file), ',', header=true)
r = [vcat(r[:, [1, 2, 3, 4, 5, 10]], r[:, [1, 6, 7, 8, 9, 10]]) [zeros(size(r)[1]); ones(size(r)[1])] t * ones(2 * size(r)[1]) / 60.0]
rs = vcat(rs, r)
n += 1
end
end
if winners != ""
w = get_winners(winners, 2 * n)
return DataFrame(Gene=rs[:, 1], on=float.(rs[:, 2]), off=float.(rs[:, 3]), eject=float.(rs[:, 4]), decay=float.(rs[:, 5]), yield=float.(rs[:, 6]), cond=Int.(rs[:, 7]), time=float.(rs[:, 8]), winner=w)
else
return DataFrame(Gene=rs[:, 1], on=float.(rs[:, 2]), off=float.(rs[:, 3]), eject=float.(rs[:, 4]), decay=float.(rs[:, 5]), yield=float.(rs[:, 6]), cond=Int.(rs[:, 7]), time=float.(rs[:, 8]))
end
end
function filter_gene(measurefile, measure, threshold)
genes = Vector{String}(undef, 0)
measures, header = readdlm(measurefile, ',', header=true)
println(length(measures[:, 1]))
col = findfirst(header[1, :] .== measure)
for d in eachrow(measures)
if d[col] > threshold || isnan(d[col])
push!(genes, d[1])
end
end
println(length(genes))
return genes
end
function filter_gene_nan(measurefile, measure)
genes = Vector{String}(undef, 0)
measures, header = readdlm(measurefile, ',', header=true)
println(length(measures[:, 1]))
col = findfirst(header[1, :] .== measure)
for d in eachrow(measures)
if isnan(d[col])
push!(genes, d[1])
end
end
println(length(genes))
return genes
end
"""
large_rhat(measureile,threshold)
"""
large_rhat(measurefile, threshold) = filter_gene(measurefile, "Rhat", threshold)
"""
large_deviance(measurefile,threshold)
returns list of genes that have deviance greater than `threshold' in 'measurefile'
"""
large_deviance(measurefile, threshold) = filter_gene(measurefile, "Deviance", threshold)
function deviance(r, cond, n, datapath, root)
h, hd = histograms(r, cell, cond, n, datapath, root)
deviance(h, hd)
end
function compute_deviance(outfile, ratefile::String, cond, n, datapath, root)
f = open(outfile, "w")
rates, head = readdlm(ratefile, ',', header=true)
for r in eachrow(rates)
d = deviance(r, cond, n, datapath, root)
writedlm(f, [gene d], ',')
end
close(f)
end
"""
deviance(fits, data, model)
return deviance
"""
deviance(fits, data, model) = -1.0
function deviance(fits, data::AbstractHistogramData, model)
predictions = likelihoodfn(fits.parml, data, model)
deviance(log.(max.(predictions, eps())), datapdf(data))
end
"""
deviance(fits, data::AbstractTraceData, model)
return max ll normalized by number of trace frames
"""
function deviance(fits, data::AbstractTraceData, model)
fits.llml / sum(sum.(data.trace[1]))
end
"""
deviance(data::AbstractHistogramData, model::AbstractGmodel)
"""
function deviance(data::AbstractHistogramData, model::AbstractGmodel)
h = likelihoodfn(model.rates[model.fittedparam], data, model)
println(h)
deviance(h, datapdf(data))
end
"""
deviance(logpredictions::Array,data::AbstractHistogramData)
return deviance
use log of data histogram as loglikelihood of overfit model
"""
deviance(logpredictions::Array, data::AbstractHistogramData) = deviance(logpredictions, datapdf(data))
deviance(logpredictions::Array, hist::Array) = 2 * hist' * (log.(max.(hist, eps())) - logpredictions)
"""
frequency(ron, sd, rdecay)
return on rate / decay rate, sd
"""
frequency(ron, sd, rdecay) = (ron / rdecay, sd / rdecay)
"""
burstsize(reject::Float64, roff, covee, covoo, coveo::Float64)
return eject rate / off rate, sd
"""
function burstsize(reject::Float64, roff, covee, covoo, coveo::Float64)
v = var_ratio(reject, roff, covee, covoo, coveo)
return reject / roff, sqrt(v)
end
function ratestats(gene, G, folder, cond)
filestats = joinpath(folder, getfile("param-stats", gene, G, folder, cond)[1])
filerates = joinpath(folder, getratefile(gene, G, folder, cond)[1])
rates = readrates(filerates)
cov = read_covparam(filestats)
# mu = readmean(filestats)
# sd = readsd(filestats)
return rates, cov
end
meanofftime(gene::String, infile, n, method, root) = sum(1 .- offtime(gene, infile, n, method, root))
function meanofftime(r::Vector, n::Int, method::Int)
if n == 1
return 1 / r[1]
else
return sum(1 .- offtime(r, n, method))
end
end
function offtime(r::Vector, n::Int, method::Int)
_, _, TI = mat_G_DT(r, n)
vals, _ = eig_decompose(TI)
minval = min(minimum(abs.(vals[vals.!=0])), 0.2)
offtimeCDF(collect(1.0:5/minval), r, n, TI, method)
end
function offtime(gene::String, infile, n, method, root)
contents, head = readdlm(infile, ',', header=true)
r = float.(contents[gene.==contents[:, 1], 2:end-1])[1, :]
offtime(r, n, method)
end
function join_files(file1::String, file2::String, outfile::String, addlabel::Bool=true)
contents1, head1 = readdlm(file1, ',', header=true) # model G=2
contents2, head2 = readdlm(file2, ',', header=true) # model G=3
f = open(outfile, "w")
if addlabel
header = vcat(String.(head1[2:end]) .* "_G2", String.(head2[2:end]) .* "_G3")
else
header = vcat(String.(head1[2:end]), String.(head2[2:end]))
end
header = reshape(permutedims(header), (1, length(head1) + length(head2) - 2))
header = hcat(head1[1], header)
println(header)
writedlm(f, header, ',')
for row in 1:size(contents1, 1)
if contents1[row, 1] == contents2[row, 1]
contents = hcat(contents1[row:row, 2:end], contents2[row:row, 2:end])
contents = reshape(permutedims(contents), (1, size(contents1, 2) + size(contents2, 2) - 2))
contents = hcat(contents1[row, 1], contents)
writedlm(f, contents, ',')
end
end
close(f)
end
function join_files(models::Array, files::Array, outfile::String, addlabel::Bool=true)
m = length(files)
contents = Array{Array,1}(undef, m)
headers = Array{Array,1}(undef, m)
len = 0
for i in 1:m
contents[i], headers[i] = readdlm(files[i], ',', header=true)
len += length(headers[i][2:end])
end
f = open(outfile, "w")
header = Array{String,1}(undef, 0)
for i in 1:m
if addlabel
header = vcat(header, String.(headers[i][2:end]) .* "_G$(models[i])")
else
header = vcat(header, String.(headers[i][2:end]))
end
end
header = reshape(permutedims(header), (1, len))
header = hcat(headers[1][1], header)
println(header)
writedlm(f, header, ',')
for row in 1:size(contents[1], 1)
content = contents[1][row:row, 2:end]
for i in 1:m-1
if contents[i][row, 1] == contents[i+1][row, 1]
content = hcat(content, contents[i+1][row:row, 2:end])
# content = reshape(permutedims(content),(1,len))
end
end
content = hcat(contents[1][row:row, 1], content)
writedlm(f, [content], ',')
end
close(f)
end
function sample_non1_genes(infile, n)
contents, head = readdlm(infile, ',', header=true)
list = Array{String,1}(undef, 0)
for c in eachrow(contents)
if c[5] != 1
push!(list, c[1])
end
end
a = StatsBase.sample(list, n, replace=false)
end
function add_best_burst(filein, fileout, filemodel2, filemodel3)
contents, head = readdlm(filein, ',', header=true)
burst2, head2 = readdlm(filemodel2, ',', header=true)
burst3, head3 = readdlm(filemodel3, ',', header=true)
f = open(fileout, "w")
head = hcat(head, ["mean off period" "bust size"])
writedlm(f, head, ',')
for row in eachrow(contents)
if Int(row[end]) == 2
writedlm(f, hcat(permutedims(row), permutedims(burst2[findfirst(burst2[:, 1] .== row[1]), 2:3])), ',')
else
writedlm(f, hcat(permutedims(row), permutedims(burst3[findfirst(burst3[:, 1] .== row[1]), 2:3])), ',')
end
end
close(f)
end
function add_best_occupancy(filein, fileout, filemodel2, filemodel3)
contents, head = readdlm(filein, ',', header=true)
occupancy2, head2 = readdlm(filemodel2, ',', header=true)
occupancy3, head3 = readdlm(filemodel3, ',', header=true)
f = open(fileout, "w")
head = hcat(head, ["Off -2" "Off -1" "On State"])
writedlm(f, head, ',')
for row in eachrow(contents)
if Int(row[end-2]) == 2
writedlm(f, hcat(permutedims(row), hcat("NA", permutedims(occupancy2[findfirst(occupancy2[:, 1] .== row[1]), 2:end]))), ',')
else
writedlm(f, hcat(permutedims(row), permutedims(occupancy3[findfirst(occupancy3[:, 1] .== row[1]), 2:end])), ',')
end
end
close(f)
end
function prune_file(list, file, outfile, header=true)
contents, head = readdlm(file, ',', header=header)
f = open(outfile, "w")
for c in eachrow(contents)
if c[1] in list
writedlm(f, [c], ',')
end
end
close(f)
end
function replace_yield(G, folder1, folder2, cond1, cond2, outfolder)
if typeof(G) <: Number
G = string(G)
end
if ~isdir(outfolder)
mkpath(outfolder)
end
files1 = getratefile(folder1, G, cond1)
files2 = getratefile(folder2, G, cond2)
for file1 in files1
gene = get_gene(file1)
file2 = getratefile(files2, gene)
outfile = joinpath(outfolder, file2)
r1 = readrates(joinpath(folder1, file1))
r2 = readrates(joinpath(folder2, file2))
r2[end] = r1[end]
f = open(outfile, "w")
writedlm(f, [r2], ',')
close(f)
end
end
"""
assemble_r(G,folder1,folder2,cond1,cond2,outfolder)
Combine rates from two separate fits into a single rate vector
"""
function assemble_r(G, folder1, folder2, cond1, cond2, outfolder)
if typeof(G) <: Number
G = string(G)
end
if ~isdir(outfolder)
mkpath(outfolder)
end
files1 = getratefile(folder1, G, cond1)
files2 = getratefile(folder2, G, cond2)
for file1 in files1
gene = get_gene(file1)
file2 = getratefile(files2, gene)
if file2 != 0
file2 = joinpath(folder2, file2)
else
file2 = joinpath(folder1, file1)
end
name = replace(file1, cond1 => cond1 * "-" * cond2)
outfile = joinpath(outfolder, name)
assemble_r(joinpath(folder1, file1), file2, outfile)
end
end
function assemble_r(ratefile1, ratefile2, outfile)
r1 = readrates(ratefile1, 2)
r2 = readrates(ratefile2, 2)
r1[end] = clamp(r1[end], eps(Float64), 1 - eps(Float64))
r = vcat(r1[1:end-1], r2[1:end-1], r1[end])
f = open(outfile, "w")
writedlm(f, [r], ',')
writedlm(f, [r], ',')
writedlm(f, [r], ',')
writedlm(f, [r], ',')
close(f)
end
function assemble_r(gene, G, folder1, folder2, cond1, cond2, outfolder)
file1 = getratefile(gene, G, folder1, cond1)[1]
file2 = getratefile(gene, G, folder2, cond2)[1]
name = replace(file1, cond1 => cond1 * "-" * cond2)
println(name)
outfile = joinpath(outfolder, name)
println(outfile)
assemble_r(joinpath(folder1, file1), joinpath(folder2, file2), outfile)
end
function getratefile(files, gene)
files = files[occursin.("_" * gene * "_", files)]
if length(files) > 0
return files[1]
else
# println(gene)
return 0
end
end
function getratefile(folder, G, cond)
files = readdir(folder)
files = files[occursin.("rates_", files)]
files = files[occursin.("_" * cond * "_", files)]
files[occursin.("_" * G * "_", files)]
end
getratefile(gene, G, folder, cond) = getfile("rate", gene, G, folder, cond)
function getfile(type, gene::String, G::String, folder, cond)
files = readdir(folder)
files = files[occursin.(type, files)]
files = files[occursin.("_" * gene * "_", files)]
files = files[occursin.("_" * G * "_", files)]
files[occursin.("_" * cond * "_", files)]
end
function change_name(folder, oldname, newname)
files = readdir(folder)
files = files[occursin.(oldname, files)]
for file in files
newfile = replace(file, oldname => newname)
mv(joinpath(folder, file), joinpath(folder, newfile), force=true)
end
end
function make_halflife(infile, outfile, col=4)
f = open(outfile, "w")
writedlm(f, ["Gene" "Halflife"], ',')
contents, rows = readdlm(infile, ',', header=true)
for row = eachrow(contents)
gene = string(row[1])
gene = strip(gene, '*')
h1 = float(row[col])
h2 = float(row[col+1])
if h1 > 0 || h2 > 0
h = (h1 + h2) / (float(h1 > 0) + float(h2 > 0))
writedlm(f, [gene h], ',')
end
end
nothing
end
function make_datafiles(infolder, outfolder, label)
histograms = readdir(infolder)
if ~isdir(outfolder)
mkpath(outfolder)
end
for file in histograms
newfile = replace(file, label => "")
cp(joinpath(infolder, file), joinpath(outfolder, newfile))
end
end
"""
histograms(r,cell,cond,n::Int,datapath,root)
"""
function histograms(rin, cell, cond, G::Int, datapath, root)
fish = false
gene = string(rin[1])
r = float.(rin[2:end])
data = data_rna(gene, cond, datapath, fish, "label", root)
nalleles = alleles(gene, cell, root)
model = model_rna(r, [], G, nalleles, 0.01, [], (), fish)
likelihoodarray(r, data, model)
end
function get_histogram_rna(gene, datacond, datapath)
_, h = read_rna(gene, datacond, datapath)
normalize_histogram(h)
end
# function get_histogram_rna(gene, cond, datapath, root)
# fish = false
# if fish
# datapath = FISHpath(gene, cond, datapath, root)
# h = read_fish(datapath, cond, 0.98)
# else
# datapath = scRNApath(gene, cond, datapath, root)
# h = read_scrna(datapath, 0.99)
# end
# normalize_histogram(h)
# end
# function get_histogram_rna(gene, cond, datapath)
# if fish
# datapath = FISHpath(gene, cond, datapath)
# h = read_fish(datapath, cond, 0.98)
# else
# datapath = scRNApath(gene, cond, datapath)
# h = read_scrna(datapath, 0.99)
# end
# normalize_histogram(h)
# end
function make_ONOFFhistograms(folder::String, bins=collect(1.0:200.0))
files = get_resultfiles(folder)
for (root, dirs, files) in walkdir(folder)
for f in files
if occursin("rates", f)
parts = fields(f)
G, R, S, insertstep = decompose_model(parts.model)
r = readrates(joinpath(root, f))
out = joinpath(root, replace(f, "rates" => "ONOFF", ".txt" => ".csv"))
transitions = get_transitions(G, parts.label)
make_ONOFFhistograms(r, transitions, G, R, S, insertstep, bins, outfile=out)
end
end
end
end
"""
make_ONOFFhistograms(r, transitions, G, R, S, insertstep, bins; outfile::String="")
simulations and master equation solutions of dwell time histograms
"""
function make_ONOFFhistograms(r, transitions, G, R, S, insertstep, bins; outfile::String="", simulate=false)
onstates = on_states(G, R, S, insertstep)
components = make_components_TAI(transitions, G, R, S, insertstep, onstates, "")
T = make_mat_T(components, r)
TA = make_mat_TA(components, r)
TI = make_mat_TI(components, r)
OFF, ON = offonPDF(bins, r, T, TA, TI, components.nT, components.elementsT, onstates)
if simulate
hs = simulator(r, transitions, G, R, S, insertstep, bins=bins)
df = DataFrame(time=bins, ON=ON, OFF=OFF, SimON=hs[2] / sum(hs[2]), SimOFF=hs[3] / sum(hs[3]))
else
df = DataFrame(time=bins, ON=ON, OFF=OFF)
end
if ~isempty(outfile)
CSV.write(outfile, df)
end
return df
end
"""
tcomponent(model)
return tcomponent of model
"""
tcomponent(model) = typeof(model.components) == TComponents ? model.components : model.components.tcomponents
"""
write_traces_folder(folder, datafolder, datacond, interval, ratetype::String="median", start=1, stop=-1, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype="")
TBW
"""
function write_traces_folder(folder, datafolder, datacond, interval, ratetype::String="median", start=1, stop=-1, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype=""; state=false)
datafolders = readdir(datafolder)
for d in datafolders
if ~occursin(".DS_Store", d)
for (root, dirs, files) in walkdir(folder)
if occursin(d, root)
println(d)
for f in files
if occursin("rates", f) && occursin(datacond, f)
parts = fields(f)
G, R, S, insertstep = decompose_model(parts.model)
r = readrates(joinpath(root, f), get_row(ratetype))
out = joinpath(root, replace(f, "rates" => "predictedtraces", ".txt" => ".csv"))
transitions = get_transitions(G, parts.label)
datapath = joinpath(datafolder,)
# make_traces(r, datapath, datacond, transitions, G, R, S, insertstep, traceinfo, splicetype, probfn, noiseparams, weightind, outfile=out)
write_traces(out, datapath, datacond, interval, r, transitions, G, R, S, insertstep, start, stop, probfn, noiseparams, weightind, splicetype, state=state)
end
end
end
end
end
end
end
"""
write_traces(folder, datapath, datacond, interval, ratetype::String="median", start=1, stop=-1, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype=""; state=false)
"""
function write_traces(folder, datapath, datacond, interval, ratetype::String="median", start=1, stop=-1, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype=""; state=false, hierarchical=false)
for (root, dirs, files) in walkdir(folder)
for f in files
if occursin("rates", f) && occursin(datacond, f)
parts = fields(f)
G, R, S, insertstep = decompose_model(parts.model)
r = readrates(joinpath(root, f), get_row(ratetype))
out = joinpath(root, replace(f, "rates" => "predictedtraces", ".txt" => ".csv"))
transitions = get_transitions(G, parts.label)
# make_traces(r, datapath, datacond, transitions, G, R, S, insertstep, traceinfo, splicetype, probfn, noiseparams, weightind, outfile=out)
write_traces(out, datapath, datacond, interval, r, transitions, G, R, S, insertstep, start, stop, probfn, noiseparams, weightind, splicetype, state=state, hierarchical=hierarchical)
end
end
end
end
"""
write_traces(outfile,datapath, datacond, interval::Float64, r::Vector, transitions, G::Int, R::Int, S::Int, insertstep::Int, start::Int=1, stop=-1, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype="";state =false)
"""
function write_traces(outfile, datapath, datacond, interval::Float64, r::Vector, transitions, G::Int, R::Int, S::Int, insertstep::Int, start::Int=1, stop=-1, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype=""; state=false, hierarchical=false)
df = make_traces_dataframe(datapath, datacond, interval, r, transitions, G, R, S, insertstep, start, stop, probfn, noiseparams, weightind, splicetype, state, hierarchical)
CSV.write(outfile, df)
end
function make_traces_dataframe(datapath, datacond, interval, r, transitions, G, R, S, insertstep, start=1, stop=-1, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype="", state=false, hierarchical=false)
tp, ts, traces = make_traces(datapath, datacond, interval, r, transitions, G, R, S, insertstep, start, stop, probfn, noiseparams, weightind, splicetype, hierarchical)
l = maximum(length.(tp))
data = ["data$i" => [traces[i]; fill(missing, l - length(traces[i]))] for i in eachindex(traces)]
pred = ["model$i" => [tp[i]; fill(missing, l - length(tp[i]))] for i in eachindex(tp)]
if state
g, z, zdigits, r = inverse_state(ts,G,R,S,insertstep)
gs = ["Gstate$i" => [g[i]; fill(missing, l - length(g[i]))] for i in eachindex(g)]
# tss = ["State$i" => [ts[i]; fill(missing, l - length(g[i]))] for i in eachindex(g)]
s = ["Rstate$i" => [zdigits[i]; fill(missing, l - length(g[i]))] for i in eachindex(g)]
# ss = ["Z$i" => [z[i]; fill(missing, l - length(g[i]))] for i in eachindex(g)]
zs = ["Reporters$i" => [r[i]; fill(missing, l - length(g[i]))] for i in eachindex(g)]
v = [data pred gs s zs]
else
v = [data pred]
end
# v = state ? [data pred ["state$i" => [mod.(ts[i] .- 1, G) .+ 1; fill(missing, l - length(ts[i]))] for i in eachindex(ts)]] : [data pred]
# df = DataFrame(["trace$i" => [tp[i]; fill(missing, l - length(tp[i]))] for i in eachindex(tp)])
DataFrame(permutedims(v, (2, 1))[:])
end
"""
make_traces(datapath, datacond, interval, r, transitions, G, R, S, insertstep, start=1.0, stop=-1, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype="")
"""
function make_traces(datapath, datacond, interval, rin::Vector, transitions, G, R, S, insertstep, start=1, stop=-1, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype="", hierarchical=false)
traces = read_tracefiles(datapath, datacond, start, stop)
nrates = num_rates(transitions, R, S, insertstep) + noiseparams
hierarchical && (rin = reshape(rin[2*nrates+1:end], nrates, length(traces)))
tp = Vector{Float64}[]
ts = Vector{Int}[]
tcomponents = make_components_T(transitions, G, R, S, insertstep, splicetype)
reporter = HMMReporter(noiseparams, num_reporters_per_state(G, R, S, insertstep), probfn, weightind, off_states(G, R, S, insertstep))
for (i, t) in enumerate(traces)
r = hierarchical ? rin[:, i] : rin
a, b = make_trace(t, interval, r, tcomponents, reporter)
push!(tp, a)
push!(ts, b)
end
return tp, ts, traces
end
"""
make_trace(trace, interval, r, transitions, G, R, S, insertstep, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype="")
"""
function make_trace(trace, interval, r::Vector, transitions, G, R, S, insertstep, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype="")
tcomponents = make_components_T(transitions, G, R, S, insertstep, splicetype)
reporter = HMMReporter(noiseparams, num_reporters_per_state(G, R, S, insertstep), probfn, weightind)
make_trace(trace, interval, r::Vector, tcomponents, reporter)
end
"""
make_trace(trace, interval, r::Vector, tcomponents, probfn=prob_Gaussian, noiseparams=4, weightind=0)
TBW
"""
function make_trace(trace, interval, r::Vector, tcomponents, reporter)
d = reporter.probfn(r[end-reporter.n+1:end], reporter.per_state, tcomponents.nT)
predicted_trace_state(trace, interval, r, tcomponents, reporter, d)
end
function make_correlation(interval, r::Vector, transitions, G, R, S, insertstep, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype="")
reporter = HMMReporter(noiseparams, num_reporters_per_state(G, R, S, insertstep), probfn, weightind)
tcomponents = make_components_T(transitions, G, R, S, insertstep, splicetype)
Qtr = make_mat(tcomponents.elementsT, r, N) ## transpose of the Markov process transition rate matrix Q
kolmogorov_forward(sparse(Qtr'), interval, true)
end
function make_trace_histogram(datapath, datacond, start=1, stop=-1)
traces = read_tracefiles(datapath, datacond, start, stop)
ft = reduce(vcat, traces)
h = histogram(ft, normalize=true)
return ft, h
end
function plot_traces(datapath, datacond, interval, r, transitions, G, R, S, insertstep, start=1.0, stop=-1, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype="")
tp, ts, traces = make_traces(datapath, datacond, interval, r::Vector, transitions, G, R, S, insertstep, start, stop, probfn, noiseparams, weightind, splicetype)
end
"""
plot_traces(fits, stats, data, model, ratetype="median")
"""
function plot_trace(trace, interval, r, transitions, G, R, S, insertstep, probfn=prob_Gaussian, noiseparams=4, weightind=0, splicetype="")
tp, ts = make_trace(trace, interval, r, transitions, G, R, S, insertstep, probfn, noiseparams, weightind, splicetype)
plt = plot(trace)
plt = plot!(tp)
display(plt)
return tp, ts
end
function plot_traces(fits, stats, data, model, index=1, ratetype="median")
r = get_rates(fits, stats, model, ratetype)
plot_traces(r, data, model, index)
end
function plot_traces(data::AbstractTraceData, model::AbstractGRSMmodel, index=1)
tp, ts = predicted_traces(data, model)
# M = make_mat_M(model.components.mcomponents, r[1:num_rates(model)])
# hist = steady_state(M, model.components.mcomponents.nT, model.nalleles, data.nRNA)
# plt = Plots.Plot[]
# for t in data.trace[1]
# push!(plt, plot(collect(1:length(t)),t))
# end
# push!(plt, scatter(collect(1:length(data.nRNA),data.histRNA / data.nRNA))
# push!(plt, plot(hist))
plt1 = scatter(data.trace[1][index])
plt1 = plot!(tp[index])
# plt2 = scatter(data.trace[1][10])
# plt2 = plot!(tp[10])
# plt3 = scatter(data.trace[1][20])
# plt3 = plot!(tp[20])
# plt4 = scatter(data.histRNA/data.nRNA)
# plt4 = plot!(hist)
# x = collect(1:length(tp[2]))
# plt2 = plot(x, tp[1:2], layout=(2, 1), legend=false)
display(plt1)
return tp, ts
end
"""
plot_histogram(ratefile::String, datapath; root=".", row=2)
plot_histogram()
plot_histogram(ratefile::String,datapath;fish=false,root=".",row=2)
functions to plot data and model predicted histograms
"""
function plot_histogram(ratefile::String, datapath; root=".", row=2)
fish = false
r = readrow(ratefile, row)
println(r)
parts = fields(ratefile)
label = parts.label
cond = parts.cond
G = parts.model
data = data_rna(parts.gene, parts.cond, datapath, fish, parts.label, root)
model = model_rna(r, r, parse(Int, parts.model), parse(Int, parts.nalleles), 0.01, [], (), 0)
# model_rna(r,[rateprior[i]],G,nalleles,cv,[fittedparam[i]],fixedeffects,0)
plot_histogram(data, model)
return data, model
end
function test_sim(r, transitions, G, R, S, insertstep, nhist, nalleles, onstates, bins, total, tol)
simulator(r, transitions, G, R, S, insertstep, nhist=nhist, nalleles=nalleles, onstates=onstates, bins=bins, totalsteps=total, tol=tol)
end
function plot_histogram(gene::String, cell::String, G::Int, cond::String, ratefile::String, datapath::String, root::String=".")
fish = false
rates = readdlm(ratefile, ',', header=true)
r = rates[1][findfirst(rates[1][:, 1] .== gene)[1], 2:end]
data = data_rna(gene, cond, datapath, fish, "label", root)
nalleles = alleles(gene, cell, root)
model = model_rna(r, [], G, nalleles, 0.01, [], (), 0)
println(typeof(model))
println(typeof(data))
m = plot_histogram(data, model)
return m, data, model
end
function plot_histogram(gene::String, cell::String, G::String, cond::String, label::String, ratefolder::String, datapath::String, nsets::Int, root::String, fittedparam=[1], verbose=false)
fish = false
data = data_rna(gene, cond, datapath, fish, label, root)
model = model_rna(gene, cell, G, fish, 0.01, fittedparam, (), label, ratefolder, nsets, root, data, verbose)
m = plot_histogram(data, model)
return m, data, model
end
function plot_histogram(data::AbstractRNAData{Array{Array,1}}, model)
h = likelihoodarray(model.rates, data, model)
figure(data.gene)
for i in eachindex(h)
plot(h[i])
plot(normalize_histogram(data.histRNA[i]))
savefig(string(i))
end
return h
end
function plot_histogram(data::AbstractRNAData{Array{Float64,1}}, model)
h = likelihoodfn(get_param(model), data, model)
plt = plot(h)
plot!(plt, normalize_histogram(data.histRNA))
display(plt)
return h
end
function plot_histogram(data::RNAOnOffData, model::AbstractGmodel, filename="")
h = likelihoodarray(model.rates, data, model)
plt1 = plot(data.bins, h[1])
plot!(plt1, data.bins, normalize_histogram(data.OFF))
plt2 = plot(data.bins, h[2])
plot!(plt2, data.bins, normalize_histogram(data.ON))
plt3 = plot(h[3])
plot!(plt3, normalize_histogram(data.histRNA))
plt = plot(plt1, plt2, plt3, layout=(3, 1))
display(plt)
if ~isempty(filename)
savefig(filename)
end
return h
end
function plot_histogram(data::TraceRNAData, model::AbstractGmodel, filename="")
M = make_mat_M(model.components.mcomponents, model.rates)
h = steady_state(M, model.components.mcomponents.nT, model.nalleles, data.nRNA)
plt = plot(h)
plot!(plt, normalize_histogram(data.histRNA))
display(plt)
if ~isempty(filename)
savefig(filename)
end
return h
end
# function plot_histogram(data::TransientRNAData,model::AbstractGMmodel)
# h=likelihoodarray(model.rates,data,model)
# for i in eachindex(h)
# figure(data.gene *":T" * "$(data.time[i])")
# plot(h[i])
# plot(normalize_histogram(data.histRNA[i]))
# end
# return h
# end
function plot_histogram(data::RNAData{T1,T2}, model::AbstractGMmodel, save=false) where {T1<:Array,T2<:Array}
m = likelihoodarray(model.rates, data, model)
println("*")
for i in eachindex(m)
plt = plot(m[i])
plot!(normalize_histogram(data.histRNA[i]), show=true)
if save
savefig()
else
display(plt)
end
end
println(deviance(data, model))
println(loglikelihood(get_param(model), data, model)[1])
return m
end
function plot_histogram(data::RNAData, model::AbstractGMmodel)
h = likelihoodfn(get_param(model), data, model)
plt = plot(h)
plot!(normalize_histogram(data.histRNA))
display(plt)
return h
end
# function plot_model(r,n,nhist,nalleles,yield)
# h= steady_state(r[1:2*n+2],yield,n,nhist,nalleles)
# plt = plot(h)
# display(plt)
# return h
# end
# function plot_model(r,n,nhist,nalleles)
# h= steady_state(r[1:2*n+2],n,nhist,nalleles)
# plt = plot(h)
# display(plt)
# return h
# end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 29332 | # This file is part of StochasticGene.jl
# biowulf.jl
# functions for use on the NIH Biowulf super computer
"""
struct ModelArgs
For passing model information to fit function from swarmfile (limited to numbers and strings (i.e. no vectors or tuples))
#Fields
`inlabel::String`
`label::String`
`G::Int`
`R::Int`
`S::Int`
`insertstep::Int`
`Gfamily::String`: type of model, e.g. "nstate", "KP", "cyclic"
`fixedeffects::String`: two numbers separated by a hyphen, e.g. "3-4", indicating parameters 3 and 4 are fixed to each other
"""
struct ModelArgs
inlabel::String
label::String
G::Int
R::Int
S::Int
insertstep::Int
Gfamily::String
fixedeffects::String
end
"""
makeswarm(;<keyword arguments>)
write swarm and fit files used on biowulf
#Arguments
- 'nthreads::Int=1`: number of Julia threads per processesor, default = 1
- `swarmfile::String="fit"`: name of swarmfile to be executed by swarm
- `juliafile::String="fitscript`: name of file to be called by julia in swarmfile
- `src=""`: path to folder containing StochasticGene.jl/src (only necessary if StochasticGene not installed)
and all keyword arguments of function fit(; <keyword arguments> )
see fit
"""
function makeswarm(; gene::String="", nchains::Int=2, nthreads::Int=1, swarmfile::String="fit", juliafile::String="fitscript", datatype::String="", dttype=String[], datapath="", cell::String="", datacond="", traceinfo=(1.0, 1.0, -1, 0.65), nascent=(1, 2), infolder::String="", resultfolder::String="test", inlabel::String="", label::String="",
fittedparam::Vector=Int[], fixedeffects=tuple(), transitions::Tuple=([1, 2], [2, 1]), G::Int=2, R::Int=0, S::Int=0, insertstep::Int=1, Gfamily="", root=".", priormean=Float64[], nalleles=2, priorcv=10.0, onstates=Int[], decayrate=-1.0, splicetype="", probfn=prob_Gaussian, noisepriors=[], hierarchical=tuple(), ratetype="median",
propcv=0.01, maxtime::Float64=60.0, samplesteps::Int=1000000, warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, temprna=1.0, burst=false, optimize=false, writesamples=false, method=1, src="")
modelstring = create_modelstring(G, R, S, insertstep)
label, inlabel = create_label(label, inlabel, datatype, datacond, cell, Gfamily)
juliafile = juliafile * "_" * label * "_" * "$modelstring" * ".jl"
sfile = swarmfile * "_" * label * "_" * "$modelstring" * ".swarm"
write_swarmfile(joinpath(root, sfile), nchains, nthreads, juliafile)
write_fitfile(joinpath(root, juliafile), nchains, datatype, dttype, datapath, gene, cell, datacond, traceinfo, nascent, infolder, resultfolder, inlabel, label,
fittedparam, fixedeffects, transitions, G, R, S, insertstep, root, maxtime, priormean, nalleles, priorcv, onstates,
decayrate, splicetype, probfn, noisepriors, hierarchical, ratetype, propcv, samplesteps, warmupsteps, annealsteps, temp, tempanneal, temprna, burst, optimize, writesamples, method, src)
end
"""
makeswarm_genes(genes::Vector{String}; <keyword arguments> )
write a swarmfile and fit files to run all each gene in vector genes
# Arguments
- `genes`: vector of genes
- `batchsize=1000`: number of jobs per swarmfile, default = 1000
and all arguments in makeswarm(;<keyword arguments>)
Examples
julia> genes = ["MYC","SOX9"]
julia> makeswarm(genes,cell="HBEC")
"""
function makeswarm(genes::Vector{String}; nchains::Int=2, nthreads::Int=1, swarmfile::String="fit", batchsize=1000, juliafile::String="fitscript", datatype::String="", dttype=String[], datapath="", cell::String="", datacond="", traceinfo=(1.0, 1.0, -1, 0.65), nascent=(1, 2), infolder::String="", resultfolder::String="test", inlabel::String="", label::String="",
fittedparam::Vector=Int[], fixedeffects=tuple(), transitions::Tuple=([1, 2], [2, 1]), G::Int=2, R::Int=0, S::Int=0, insertstep::Int=1, Gfamily="", root=".", priormean=Float64[], nalleles=2, priorcv=10.0, onstates=Int[], decayrate=-1.0, splicetype="", probfn=prob_Gaussian, noisepriors=[], hierarchical=tuple(), ratetype="median",
propcv=0.01, maxtime::Float64=60.0, samplesteps::Int=1000000, warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, temprna=1.0, burst=false, optimize=false, writesamples=false, method=1, src="")
modelstring = create_modelstring(G, R, S, insertstep)
label, inlabel = create_label(label, inlabel, datatype, datacond, cell, Gfamily)
ngenes = length(genes)
println("number of genes: ", ngenes)
juliafile = juliafile * "_" * label * "_" * "$modelstring" * ".jl"
if ngenes > batchsize
batches = getbatches(genes, ngenes, batchsize)
for batch in eachindex(batches)
sfile = swarmfile * "_" * label * "_" * "$modelstring" * "_" * "$batch" * ".swarm"
write_swarmfile(sfile, nchains, nthreads, juliafile, batches[batch])
end
else
sfile = swarmfile * "_" * label * "_" * "$modelstring" * ".swarm"
write_swarmfile(joinpath(root, sfile), nchains, nthreads, juliafile, genes)
end
write_fitfile(joinpath(root, juliafile), nchains, datatype, dttype, datapath, cell, datacond, traceinfo, nascent, infolder, resultfolder, inlabel, label,
fittedparam, fixedeffects, transitions, G, R, S, insertstep, root, maxtime, priormean, nalleles, priorcv, onstates,
decayrate, splicetype, probfn, noisepriors, hierarchical, ratetype, propcv, samplesteps, warmupsteps, annealsteps, temp, tempanneal, temprna, burst, optimize, writesamples, method, src)
end
"""
makeswarm_genes(;<keyword arguments> )
@JuliaRegistrator register()
#Arguments
- `thresholdlow::Float=0`: lower threshold for halflife for genes to be fit
- `threhsoldhigh::=Inf`: upper threshold
and all keyword arguments in makeswarm(;<keyword arguments>)
"""
function makeswarm_genes(; nchains::Int=2, nthreads::Int=1, swarmfile::String="fit", batchsize::Int=1000, juliafile::String="fitscript", thresholdlow::Float64=0.0, thresholdhigh::Float64=Inf, datatype::String="", dttype::Vector=String[], datapath="", cell::String="HBEC", datacond="", traceinfo=(1.0, 1.0, 0.65), nascent=(1, 2), infolder::String="", resultfolder::String="test", inlabel::String="", label::String="",
fittedparam::Vector=Int[], fixedeffects::Tuple=tuple(), transitions::Tuple=([1, 2], [2, 1]), G::Int=2, R::Int=0, S::Int=0, insertstep::Int=1, Gfamily="", root=".", priormean=Float64[], priorcv::Float64=10.0, nalleles=2, onstates=Int[], decayrate=-1.0, splicetype="", probfn=prob_Gaussian, noisepriors=[], hierarchical=tuple(), ratetype="median",
propcv=0.01, maxtime::Float64=60.0, samplesteps::Int=1000000, warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, temprna=1.0, burst=false, optimize=false, writesamples=false, method=1, src="")
makeswarm(checkgenes(root, datacond, datapath, cell, thresholdlow, thresholdhigh), nchains=nchains, nthreads=nthreads, swarmfile=swarmfile, batchsize=batchsize, juliafile=juliafile, datatype=datatype, dttype=dttype, datapath=datapath, cell=cell, datacond=datacond, traceinfo=traceinfo, nascent=nascent, infolder=infolder, resultfolder=resultfolder, inlabel=inlabel, label=label,
fittedparam=fittedparam, fixedeffects=fixedeffects, transitions=transitions, G=G, R=R, S=S, insertstep=insertstep, Gfamily=Gfamily, root=root, priormean=priormean, nalleles=nalleles, priorcv=priorcv, onstates=onstates, decayrate=decayrate, splicetype=splicetype, probfn=probfn, noisepriors=noisepriors, hierarchical=hierarchical, ratetype=ratetype,
propcv=propcv, maxtime=maxtime, samplesteps=samplesteps, warmupsteps=warmupsteps, annealsteps=annealsteps, temp=temp, tempanneal=tempanneal, temprna=temprna, burst=burst, optimize=optimize, writesamples=writesamples, method=method, src=src)
end
"""
makeswarm(models::Vector{ModelArgs}; <keyword arguments> )
creates a run for each model
#Arguments
- `models::Vector{ModelArgs}`: Vector of ModelArgs structures
and all keyword arguments in makeswarm(;<keyword arguments>)
"""
function makeswarm(models::Vector{ModelArgs}; gene="", nchains::Int=2, nthreads::Int=1, swarmfile::String="fit", juliafile::String="fitscript", datatype::String="", dttype=String[], datapath="", cell::String="", datacond="", traceinfo=(1.0, 1.0, -1, 0.65), nascent=(1, 2), infolder::String="", resultfolder::String="test",
root=".", priormean=Float64[], nalleles=2, priorcv=10.0, onstates=Int[], decayrate=-1.0, splicetype="", probfn=prob_Gaussian, noisepriors=[], hierarchical=tuple(), ratetype="median",
propcv=0.01, maxtime::Float64=60.0, samplesteps::Int=1000000, warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, temprna=1.0, burst=false, optimize=false, writesamples=false, method=1, src="")
juliafile = juliafile * "_" * gene * "_" * datacond * ".jl"
sfile = swarmfile * "_" * gene * "_" * datacond * ".swarm"
write_swarmfile(joinpath(root, sfile), nchains, nthreads, juliafile, datatype, datacond, cell, models)
write_fitfile(joinpath(root, juliafile), nchains, datatype, dttype, datapath, gene, cell, datacond, traceinfo, nascent, infolder, resultfolder,
root, maxtime, priormean, nalleles, priorcv, onstates,
decayrate, splicetype, probfn, noisepriors, hierarchical, ratetype, propcv, samplesteps, warmupsteps, annealsteps, temp, tempanneal, temprna, burst, optimize, writesamples, method, src)
end
"""
write_swarmfile(sfile, nchains, nthreads, juliafile::String, project="")
"""
function write_swarmfile(sfile, nchains, nthreads, juliafile::String, project="")
f = open(sfile, "w")
if isempty(project)
writedlm(f, ["julia -t $nthreads -p" nchains juliafile])
else
writedlm(f, ["julia --project=$project -t $nthreads -p" nchains juliafile])
end
close(f)
end
"""
write_swarmfile(sfile, nchains, nthreads, juliafile, genes::Vector)
write swarmfile for vector of genes
"""
function write_swarmfile(sfile, nchains, nthreads, juliafile::String, genes::Vector{String}, project="")
f = open(sfile, "w")
for gene in genes
gene = check_genename(gene, "(")
if isempty(project)
writedlm(f, ["julia -t $nthreads -p" nchains juliafile gene])
else
writedlm(f, ["julia --project=$project -t $nthreads -p" nchains juliafile gene])
end
end
close(f)
end
"""
write_swarmfile(sfile, nchains, nthreads, juliafile, datatype, datacond, cell, models::Vector{ModelArgs})
write swarmfile for vector of models
"""
function write_swarmfile(sfile, nchains, nthreads, juliafile, datatype, datacond, cell, models::Vector{ModelArgs}, project="")
f = open(sfile, "w")
for model in models
label, inlabel = create_label(model.label, model.inlabel, datatype, datacond, cell, model.Gfamily)
if isempty(model.fixedeffects)
fixedeffects = "1"
else
fixedeffects = model.fixedeffects
end
if isempty(project)
writedlm(f, ["julia -t $nthreads -p" nchains juliafile inlabel label model.G model.R model.S model.insertstep model.Gfamily fixedeffects])
else
writedlm(f, ["julia --project=$project -t $nthreads -p" nchains juliafile inlabel label model.G model.R model.S model.insertstep model.Gfamily fixedeffects])
end
end
close(f)
end
"""
write_fitfile(fitfile, nchains, datatype, dttype, datapath, gene, cell, datacond, traceinfo, nascent, infolder, resultfolder, inlabel, label,
fittedparam, fixedeffects, transitions, G, R, S, insertstep, root, maxtime, priormean, nalleles, priorcv, onstates,
decayrate, splicetype, probfn, noisepriors, hierarchical, ratetype, propcv, samplesteps, warmupsteps, annealsteps, temp, tempanneal, temprna, burst, optimize, writesamples, method, src)
"""
function write_fitfile(fitfile, nchains, datatype, dttype, datapath, gene, cell, datacond, traceinfo, nascent, infolder, resultfolder, inlabel, label,
fittedparam, fixedeffects, transitions, G, R, S, insertstep, root, maxtime, priormean, nalleles, priorcv, onstates,
decayrate, splicetype, probfn, noisepriors, hierarchical, ratetype, propcv, samplesteps, warmupsteps, annealsteps, temp, tempanneal, temprna, burst, optimize, writesamples, method, src)
s = '"'
f = open(fitfile, "w")
write_prolog(f, src)
typeof(datapath) <: AbstractString && (datapath = "$s$datapath$s")
typeof(datacond) <: AbstractString && (datacond = "$s$datacond$s")
write(f, "@time fit($nchains, $s$datatype$s, $dttype, $datapath, $s$gene$s, $s$cell$s, $datacond, $traceinfo, $nascent, $s$infolder$s, $s$resultfolder$s, $s$inlabel$s, $s$label$s,$fittedparam, $fixedeffects, $transitions, $G, $R, $S, $insertstep, $s$root$s, $maxtime, $priormean, $priorcv, $nalleles, $onstates, $decayrate, $s$splicetype$s, $probfn, $noisepriors, $hierarchical, $s$ratetype$s,$propcv, $samplesteps, $warmupsteps, $annealsteps, $temp, $tempanneal, $temprna, $burst, $optimize, $writesamples, $method)")
close(f)
end
"""
write_fitfile(fitfile, nchains, datatype, dttype, datapath, cell, datacond, traceinfo, nascent, infolder, resultfolder, inlabel, label,
fittedparam, fixedeffects, transitions, G, R, S, insertstep, root, maxtime, priormean, nalleles, priorcv, onstates,
decayrate, splicetype, probfn, noisepriors, hierarchical, ratetype, propcv, samplesteps, warmupsteps, annealsteps, temp, tempanneal, temprna, burst, optimize, writesamples, src)
write fitfile for genes
"""
function write_fitfile(fitfile, nchains, datatype, dttype, datapath, cell, datacond, traceinfo, nascent, infolder, resultfolder, inlabel, label,
fittedparam, fixedeffects, transitions, G, R, S, insertstep, root, maxtime, priormean, nalleles, priorcv, onstates,
decayrate, splicetype, probfn, noisepriors, hierarchical, ratetype, propcv, samplesteps, warmupsteps, annealsteps, temp, tempanneal, temprna, burst, optimize, writesamples, method, src)
s = '"'
# s3 = s * s * s
f = open(fitfile, "w")
if isempty(src)
write(f, "@everywhere using StochasticGene\n")
else
write(f, "@everywhere include($s$src$s)\n")
write(f, "@everywhere using .StochasticGene\n")
end
typeof(datapath) <: AbstractString && (datapath = "$s$datapath$s")
typeof(datacond) <: AbstractString && (datacond = "$s$datacond$s")
write(f, "@time fit($nchains, $s$datatype$s, $dttype, $datapath, ARGS[1], $s$cell$s, $datacond, $traceinfo, $nascent, $s$infolder$s, $s$resultfolder$s, $s$inlabel$s, $s$label$s,$fittedparam, $fixedeffects, $transitions, $G, $R, $S, $insertstep, $s$root$s, $maxtime, $priormean, $priorcv, $nalleles, $onstates, $decayrate, $s$splicetype$s, $probfn, $noisepriors, $hierarchical, $s$ratetype$s,$propcv, $samplesteps, $warmupsteps, $annealsteps, $temp, $tempanneal, $temprna, $burst, $optimize, $writesamples, $method)")
close(f)
end
"""
write_fitfile(fitfile, nchains, datatype, dttype, datapath, gene, cell, datacond, traceinfo, nascent, infolder, resultfolder,
root, maxtime, priormean, nalleles, priorcv, onstates,
decayrate, splicetype, probfn, noisepriors, hierarchical, ratetype, propcv, samplesteps, warmupsteps, annealsteps, temp, tempanneal, temprna, burst, optimize, writesamples, method, src)
write fitfile for models
"""
function write_fitfile(fitfile, nchains, datatype, dttype, datapath, gene, cell, datacond, traceinfo, nascent, infolder, resultfolder,
root, maxtime, priormean, nalleles, priorcv, onstates,
decayrate, splicetype, probfn, noisepriors, hierarchical, ratetype, propcv, samplesteps, warmupsteps, annealsteps, temp, tempanneal, temprna, burst, optimize, writesamples, method, src)
s = '"'
f = open(fitfile, "w")
if isempty(src)
write(f, "@everywhere using StochasticGene\n")
else
write(f, "@everywhere include($s$src$s)\n")
write(f, "@everywhere using .StochasticGene\n")
end
typeof(datapath) <: AbstractString && (datapath = "$s$datapath$s")
typeof(datacond) <: AbstractString && (datacond = "$s$datacond$s")
write(f, "@time fit($nchains, $s$datatype$s, $dttype, $datapath, $s$gene$s, $s$cell$s, $datacond, $traceinfo, $nascent, $s$infolder$s, $s$resultfolder$s, ARGS[1], ARGS[2], ARGS[8], ARGS[3], ARGS[4], ARGS[5], ARGS[6], ARGS[7], $s$root$s, $maxtime, $priormean, $priorcv, $nalleles, $onstates, $decayrate, $s$splicetype$s, $probfn, $noisepriors, $hierarchical, $s$ratetype$s,$propcv, $samplesteps, $warmupsteps, $annealsteps, $temp, $tempanneal, $temprna, $burst, $optimize, $writesamples, $method)")
close(f)
end
"""
write_prolog(f,src)
if src is empty assume StochasticGene is installed as a Julia package
"""
function write_prolog(f, src)
s = '"'
if isempty(src)
write(f, "@everywhere using StochasticGene\n")
else
write(f, "@everywhere include($s$src$s)\n")
write(f, "@everywhere using .StochasticGene\n")
end
end
"""
create_label(label,inlabel,datacond,cell,Gfamily)
"""
function create_label(label, inlabel, datatype, datacond, cell, Gfamily)
if isempty(label)
label = datatype * "-" * cell
~isempty(Gfamily) && (label = label * "-" * Gfamily)
typeof(datacond) <: AbstractString && (label = label * "_" * datacond)
end
isempty(inlabel) && (inlabel = label)
return label, inlabel
end
"""
create_modelstring(G,R,S,insertstep)
"""
function create_modelstring(G, R, S, insertstep)
if R > 0
if S > 0
S = R - insertstep + 1
end
return "$G$R$S$insertstep"
else
return "$G"
end
end
"""
fix(folder)
Finds jobs that failed and writes a swarmfile for those genes
"""
fix(folder) = writeruns(fixruns(findjobs(folder)))
function fix_filenames(folder, old="scRNA-ss-", new="scRNA-ss_")
files = readdir(folder)
for file in files
if occursin(old, file)
nfile = replace(file, old => new)
mv(joinpath(folder, file), joinpath(folder, nfile), force=true)
end
end
end
"""
setup(rootfolder = "scRNA")
Sets up the folder system prior to use
Defaults to "scRNA"
"""
function rna_setup(root=".")
folder_setup(root)
alleles = joinpath(data, "alleles")
halflives = joinpath(data, "halflives")
testdata = joinpath(data, "HCT116_testdata")
if ~ispath(alleles)
mkpath(alleles)
end
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/alleles/CH12_alleles.csv", "$alleles/CH12_alleles.csv")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/alleles/HCT116_alleles.csv", "$alleles/HCT116_alleles.csv")
if ~ispath(halflives)
mkpath(halflives)
end
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/halflives/ESC_halflife.csv", "$halflives/ESC_halflife.csv")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/halflives/CH12_halflife.csv", "$halflives/CH12_halflife.csv")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/halflives/HCT116_halflife.csv", "$halflives/HCT116_halflife.csv")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/halflives/OcaB_halflife.csv", "$halflives/OcaB_halflife.csv")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/halflives/aB_halflife.csv", "$halflives/aB_halflife.csv")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/halflives/aB_halflife.csv", "$halflives/CAST_halflife.csv")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/halflives/aB_halflife.csv", "$halflives/FIBS_halflife.csv")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/halflives/aB_halflife.csv", "$halflives/MAST_halflife.csv")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/halflives/aB_halflife.csv", "$halflives/NK_halflife.csv")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/halflives/aB_halflife.csv", "$halflives/TEC_halflife.csv")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/halflives/aB_halflife.csv", "$halflives/SKIN_halflife.csv")
if ~ispath(testdata)
mkpath(testdata)
end
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/HCT116_testdata/CENPL_MOCK.txt", "$testdata/CENPL_MOCK.txt")
Downloads.download("https://raw.githubusercontent.com/nih-niddk-mbs/StochasticGene.jl/master/data/HCT116_testdata/MYC_MOCK.txt", "$testdata/MYC_MOCK.txt")
end
"""
folder_setup(root=".")
creates data and results folders (if they do not already exit)
"""
function folder_setup(root=".")
data = joinpath(root, "data")
results = joinpath(root, "results")
if ~ispath(data)
mkpath(data)
end
if ~ispath(results)
mkpath(results)
end
end
"""
getbatches(genes, ngenes, batchsize)
"""
function getbatches(genes, ngenes, batchsize)
nbatches = div(ngenes, batchsize)
batches = Vector{Vector{String}}(undef, nbatches + 1)
println(batchsize, " ", nbatches + 1)
for i in 1:nbatches
batches[i] = genes[batchsize*(i-1)+1:batchsize*(i)]
end
batches[end] = genes[batchsize*nbatches+1:end]
return batches
end
"""
checkgenes(root, conds, datapath, celltype::String, thresholdlow::Float64, thresholdhigh::Float64)
"""
function checkgenes(root, conds, datapath, celltype::String, thresholdlow::Float64, thresholdhigh::Float64)
genes = Vector{Vector{String}}(undef, 0)
typeof(conds) <: AbstractString && (conds = [conds])
typeof(datapath) <: AbstractString && (datapath = [datapath])
for d in datapath, c in conds
push!(genes, checkgenes(root, c, d, celltype, thresholdlow, thresholdhigh))
end
geneset = genes[1]
for g in genes
genesest = intersect(geneset, g)
end
return geneset
end
"""
checkgenes(root, cond::String, datapath::String, cell::String, thresholdlow::Float64, thresholdhigh::Float64)
"""
function checkgenes(root, cond::String, datapath::String, cell::String, thresholdlow::Float64, thresholdhigh::Float64)
if cell == "HBEC"
return genes_hbec()
else
datapath = folder_path(datapath, root, "data")
genes = intersect(get_halflives(root, cell, thresholdlow, thresholdhigh), get_genes(cond, datapath))
alleles = get_alleles(root, cell)
if ~isnothing(alleles)
return intersect(genes, alleles)
else
return genes
end
end
end
"""
folder_path(folder::String, root::String, folderatetype::String=""; make=false)
"""
function folder_path(folder::String, root::String, folderatetype::String=""; make=false)
f = folder
if ~ispath(folder) && ~isempty(folder)
f = joinpath(root, folder)
if ~ispath(f)
f = joinpath(root, folderatetype, folder)
if ~ispath(f) && ~make
println("$folder not found")
else
mkpath(f)
end
end
end
f
end
"""
folder_path(folder::Vector, root, foldertype)
TBW
"""
function folder_path(folder::Vector, root, foldertype)
fv = folder
for i in eachindex(fv)
fv[i] = folder_path(fv[i], root, foldertype)
end
fv
end
"""
get_halflives(root, cell, thresholdlow::Float64, thresholdhigh::Float64)
TBW
"""
function get_halflives(root, cell, thresholdlow::Float64, thresholdhigh::Float64)
path = get_file(root, "data/halflives", cell, "csv")
get_halflives(path, thresholdlow, thresholdhigh)
end
"""
get_halflives(hlpath, thresholdlow::Float64, thresholdhigh::Float64)
TBW
"""
function get_halflives(hlpath, thresholdlow::Float64, thresholdhigh::Float64)
genes = Vector{String}(undef, 0)
halflives = readdlm(hlpath, ',')
for row in eachrow(halflives)
if typeof(row[2]) <: Number
if thresholdlow <= row[2] < thresholdhigh
push!(genes, string(row[1]))
end
end
end
return genes
end
"""
get_alleles(allelepath)
get_alleles(root, cell) = get_alleles(get_file(root, "data/alleles", cell, "csv"))
TBW
"""
function get_alleles(allelepath)
if ~isnothing(allelepath)
return readdlm(allelepath, ',')[2:end, 1]
else
return nothing
end
end
get_alleles(root, cell) = get_alleles(get_file(root, "data/alleles", cell, "csv"))
get_file(root, folder, filetype, suffix) = get_file(joinpath(root, folder), filetype, suffix)
"""
get_file(folder, filetype, suffix)
get_file(root, folder, filetype, suffix) = get_file(joinpath(root, folder), filetype, suffix)
TBW
"""
function get_file(folder, filetype, suffix)
if ispath(folder)
files = readdir(folder)
for file in files
name = split(file, "_")[1]
if occursin(suffix, file) && name == filetype
path = joinpath(folder, file)
return path
end
end
else
println("folder $folder does not exist")
return nothing
end
end
"""
findjobs(folder)
TBW
"""
function findjobs(folder)
files = readdir(folder)
files = files[occursin.("swarm_", files)]
for (i, file) in enumerate(files)
files[i] = split(file, "_")[2]
end
unique(files)
end
"""
fixruns(jobs, message="FAILED")
TBW
"""
function fixruns(jobs, message="FAILED")
runlist = Vector{String}(undef, 0)
for job in jobs
if occursin(message, read(`jobhist $job`, String))
swarmfile = findswarm(job)
list = readdlm(swarmfile, ',')
runs = chomp(read(pipeline(`jobhist $job`, `grep $message`), String))
runs = split(runs, '\n')
println(job)
for run in runs
linenumber = parse(Int, split(split(run, " ")[1], "_")[2]) + 1
while linenumber < length(list)
a = String(list[linenumber])
linenumber += 1000
println(a)
push!(runlist, a)
end
end
end
end
return runlist
end
"""
writeruns(runs, outfile="fitfix.swarm")
TBW
"""
function writeruns(runs, outfile="fitfix.swarm")
f = open(outfile, "w")
for run in runs
writedlm(f, [run], quotes=false)
end
close(f)
end
"""
findswarm(job)
TBW
"""
function findswarm(job)
sc = "Swarm Command"
line = read(pipeline(`jobhist $job`, `grep $sc`), String)
list = split(line, " ")
list[occursin.(".swarm", list)][1]
end
"""
get_missing_genes(datapath::String,folder::String,cell,type,label,cond,model)
"""
"""
get_missing_genes(datapath::String, resultfolder::String, cell, filetype, label, cond, model, root=".")
TBW
"""
function get_missing_genes(datapath::String, resultfolder::String, cell, filetype, label, cond, model, root=".")
genes = checkgenes(root, cond, datapath, cell, 0.0, 1e8)
get_missing_genes(genes, folder_path(resultfolder, root, "results"), filetype, label, cond, model)
end
"""
get_missing_genes(genes::Vector, resultfolder, filetype, label, cond, model)
TBW
"""
function get_missing_genes(genes::Vector, resultfolder, filetype, label, cond, model)
genes1 = get_genes(resultfolder, filetype, label, cond, model)
get_missing_genes(genes, genes1)
end
get_missing_genes(genes, genes1) = union(setdiff(genes1, genes), setdiff(genes, genes1))
"""
scan_swarmfiles(jobid, folder=".")
TBW
"""
function scan_swarmfiles(jobid, folder=".")
if ~(typeof(jobid) <: String)
jobid = string(jobid)
end
genes = Array{String,1}(undef, 0)
files = readdir(folder)
files = files[occursin.(jobid, files)]
for file in files
genes = vcat(genes, scan_swarmfile(file))
end
return genes
end
"""
scan_swarmfile(file)
TBW
"""
function scan_swarmfile(file)
genes = Array{String,1}(undef, 0)
contents = readdlm(file, '\t')
lines = contents[occursin.("[\"", string.(contents))]
for line in lines
push!(genes, split.(string(line), " ")[1])
end
return genes
end
"""
scan_fitfile(file, folder=".")
TBW
"""
function scan_fitfile(file, folder=".")
genes = Array{String,1}(undef, 0)
joinpath(folder, file)
file = readdlm(file, '\t')
for line in eachrow(file)
push!(genes, line[4])
end
return genes
end
"""
new_FISHfolder(newroot::String, oldroot::String, rep::String)
TBW
"""
function new_FISHfolder(newroot::String, oldroot::String, rep::String)
for (root, dirs, files) in walkdir(oldroot)
for dir in dirs
if occursin(rep, dir)
oldtarget = joinpath(root, dir)
newtarget = replace(oldtarget, oldroot => newroot)
println(newtarget)
if !ispath(newtarget)
mkpath(newtarget)
end
cp(oldtarget, newtarget, force=true)
end
end
end
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 10293 | # This file is part of StochasticGene.jl
#
# chemical_master.jl
#
# Functions to solve the chemical master equation
# operates on the transpose of the Markov process transition rate matrix
# Functions to compute steady state mRNA histograms
"""
steady_state(M,nT,nalleles,nhist)
steady_state(M,nT,nalleles)
return steady state mRNA histogram for G and GR models
computes null space of the truncated full transition matrix.
-`M`: Truncated full transition rate matrix including transcription state transitions (GR) and mRNA birth and death
-`nT`: dimension of state transitions
"""
steady_state(M, nT, nalleles, nhist) = steady_state(M, nT, nalleles)[1:nhist]
function steady_state(M, nT, nalleles)
P = normalized_nullspace(M)
mhist = marginalize(P, nT)
allele_convolve(mhist, nalleles)
end
# Functions to compute dwell time distributions
"""
dwelltimeCDF(tin::Vector, Td::AbstractMatrix, barrier, Sinit::Vector, method::Int=1)
return dwell time CDF (cumulative distribution function) to reach barrier states starting from Sinit in live states
live U barrier = all states
First passage time calculation from live states to barrier states
- `tin`: vector of time bins for dwell time distribution
- `Td`: dwell time rate matrix (within non barrier states)
- `barrier`: set of barrier states
- `Sinit`: initial state
- `method`: 1 for directly solving ODE otherwise use eigendecomposition
"""
function dwelltimeCDF(tin::Vector, Td::AbstractMatrix, barrier, Sinit::Vector, method::Int=1)
t = [max(2*tin[1]-tin[2],0); tin]
S = time_evolve(t, Td, Sinit, method)
return vec(sum(S[:, barrier], dims=1))
end
"""
dwelltimePDF(tin::Vector, Td::AbstractMatrix, barrier, Sinit::Vector, method::Int=1)
return dwell time PDF (probability density function)
"""
dwelltimePDF(tin::Vector, Td::AbstractMatrix, barrier, Sinit::Vector, method::Int=1) = pdf_from_cdf(dwelltimeCDF(tin, Td, barrier, Sinit, method))
ontimePDF(tin::Vector, TA::AbstractMatrix, offstates, SAinit::Vector, method::Int=1) = dwelltimePDF(tin, TA, offstates, SAinit, method)
offtimePDF(tin::Vector, TI::AbstractMatrix, onstates, SIinit::Vector, method::Int=1) = dwelltimePDF(tin, TI, onstates, SIinit, method)
function offonPDF(t::Vector, r::Vector, T::AbstractMatrix, TA::AbstractMatrix, TI::AbstractMatrix, nT::Int, elementsT::Vector, onstates::Vector)
pss = normalized_nullspace(T)
nonzeros = nonzero_rows(TI)
offtimePDF(t, TI[nonzeros, nonzeros], nonzero_states(onstates, nonzeros), init_SI(r, onstates, elementsT, pss, nonzeros)), ontimePDF(t, TA, off_states(nT, onstates), init_SA(r, onstates, elementsT, pss))
end
"""
pdf_from_cdf(S)
return PDF (derivative (using finite difference) of CDF)
- `S`: dwell time CDF
"""
function pdf_from_cdf(S)
P = diff(S)
P / sum(P)
end
"""
init_S(r::Vector,livestates::Vector,elements::Vector,pss)
return initial distribution for dwell time distribution
given by transition probability of entering live states in steady state
(probability of barrier state multiplied by transition rate to live state)
- `r`: transition rates
- `sojourn`: set of sojourn states (e.g. onstates for ON Time distribution)
- `elements`: vector of Elements (transition rate matrix element structures)
- `pss`: steady state distribution
"""
function init_S(r::Vector, sojourn::Vector, elements::Vector, pss)
Sinit = zeros(length(pss))
for e in elements
if e.b != e.a && (e.a β sojourn && e.b β sojourn)
Sinit[e.a] += pss[e.b] * r[e.index]
end
end
Sinit / sum(Sinit)
end
"""
init_SA(r::Vector,onstates::Vector,elements::Vector,pss::Vector)
return initial distribution for ON time distribution
"""
init_SA(r::Vector, onstates::Vector, elements::Vector, pss::Vector) = init_S(r, onstates, elements, pss)
"""
init_SI(r::Vector,onstates::Vector,elements::Vector,pss,nonzeros)
return nonzero states of initial distribution for OFF time distribution
"""
function init_SI(r::Vector, onstates::Vector, elements::Vector, pss, nonzeros)
Sinit = zeros(length(pss))
for e in elements
if e.b != e.a && (e.b β onstates && e.a β onstates)
Sinit[e.a] += pss[e.b] * r[e.index]
end
end
Sinit = Sinit[nonzeros]
Sinit / sum(Sinit)
end
"""
marginalize(p::Vector,nT,nhist)
marginalize(p::Vector,nT)
marginalize(P::Matrix)
Marginalize over G states
"""
function marginalize(p::Vector, nT, nhist)
mhist = zeros(nhist)
for m in 1:nhist
i = (m - 1) * nT
mhist[m] = sum(p[i+1:i+nT])
end
return mhist
end
function marginalize(p::Vector, nT)
nhist = div(length(p), nT)
marginalize(p, nT, nhist)
end
marginalize(P::Matrix) = sum(P, dims=1)
"""
unfold(P::Matrix)
reshape matrix into a 1D array
"""
unfold(P::Matrix) = reshape(P, length(P))
"""
time_evolve(t,M::Matrix,Sinit::Vector)
Eigenvalue solution of Linear ODE with rate matrix T and initial vector Sinit
"""
function time_evolve(t, Q::AbstractMatrix, S0::Vector, method)
if method == 1
return time_evolve_diff(t, Q, S0)
else
return time_evolve_eig(t, Q, S0)
end
end
"""
time_evolve_diff(t,M::Matrix,P0)
Solve master equation problem using DifferentialEquations.jl
"""
function time_evolve_diff(t, Q::SparseMatrixCSC, P0, method=Tsit5())
tspan = (t[1], t[end])
prob = ODEProblem(fevolve!, P0, tspan, Q)
sol = solve(prob, method, saveat=t)
return sol'
end
"""
fevolve!(du,u::Vector, p, t)
in place update of du of ODE system for DifferentialEquations,jl
"""
function fevolve!(du, u::Vector, p, t)
du .= p * u
end
"""
time_evolve_eig(t, M::AbstractMatrix, Sinit::Vector)
Solve master equation problem using eigen decomposition
"""
function time_evolve_eig(t, M::AbstractMatrix, Sinit::Vector)
vals, vects = eig_decompose(M)
weights = solve_vector(vects, Sinit)
time_evolve_eig(t, vals, vects, weights)
end
"""
time_evolve_eig(t::Float64, vals::Vector, vects::Matrix, weights::Vector)
"""
function time_evolve_eig(t::Float64, vals::Vector, vects::Matrix, weights::Vector)
n = length(vals)
S = zeros(n)
for j = 1:n
for i = 1:n
S[j] += real(weights[i] * vects[j, i] * exp.(vals[i] * t))
end
end
return S
end
"""
time_evolve_eig(t::Vector, vals::Vector, vects::Matrix, weights::Vector)
"""
function time_evolve_eig(t::Vector, vals::Vector, vects::Matrix, weights::Vector)
ntime = length(t)
n = length(vals)
S = Array{Float64,2}(undef, ntime, n)
for j = 1:n
Sj = zeros(ntime)
for i = 1:n
Sj += real(weights[i] * vects[j, i] * exp.(vals[i] * t))
end
S[:, j] = Sj
end
return S
end
"""
normalized_nullspace(M::SparseMatrixCSC)
Compute the normalized null space of a nxn matrix
of rank n-1 using QR decomposition with pivoting
"""
function normalized_nullspace(M::SparseMatrixCSC)
m = size(M, 1)
p = zeros(m)
F = qr(M) #QR decomposition
R = F.R
# Back substitution to solve R*p = 0
p[end] = 1.0
for i in 1:m-1
p[m-i] = -R[m-i, m-i+1:end]' * p[m-i+1:end] / R[m-i, m-i]
end
# Permute elements according to sparse matrix result
pp = copy(p)
for i in eachindex(p)
pp[F.pcol[i]] = p[i]
end
pp / sum(pp)
end
"""
allele_convolve(mhist,nalleles)
Convolve to compute distribution for contributions from multiple alleles
"""
function allele_convolve(mhist, nalleles)
nhist = length(mhist)
mhists = Array{Array{Float64,1}}(undef, nalleles)
mhists[1] = float.(mhist)
for i = 2:nalleles
mhists[i] = zeros(nhist)
for m = 0:nhist-1
for m2 = 0:min(nhist - 1, m)
mhists[i][m+1] += mhists[i-1][m-m2+1] * mhist[m2+1]
end
end
end
return mhists[nalleles]
end
"""
allele_deconvolve(mhist,nalleles)
Deconvolve to compute distribution of one allele from contributions of multiple alleles
"""
allele_deconvolve(mhist, nalleles) = irfft((rfft(mhist)) .^ (1 / nalleles), length(mhist))
"""
nhist_loss(nhist,yieldfactor)
Compute length of pre-loss histogram
"""
nhist_loss(nhist, yieldfactor) = round(Int, nhist / yieldfactor)
"""
technical_loss(mhist,yieldfactor)
Reduce counts due to technical loss
"""
function technical_loss!(mhist::Vector, yieldfactor)
for i in eachindex(mhist)
mhist[i] = technical_loss(mhist[i], yieldfactor, length(mhist[i]))
end
end
"""
technical_loss(mhist,yieldfactor,nhist)
Reduce counts due to technical loss using Binomial sampling
"""
function technical_loss(mhist::Vector, yieldfactor, nhist)
p = zeros(nhist)
for m in eachindex(mhist)
d = Binomial(m - 1, clamp(yieldfactor, 0.0, 1.0))
for c in 1:nhist
p[c] += mhist[m] * pdf(d, c - 1)
end
end
normalize_histogram(p)
end
"""
technical_loss_poisson(mhist,yieldfactor,nhist)
Reduce counts due to technical loss using Poisson sampling
"""
function technical_loss_poisson(mhist, yieldfactor, nhist)
p = zeros(nhist)
for m in eachindex(mhist)
d = Poisson(yieldfactor * (m - 1))
for c in 1:nhist
p[c] += mhist[m] * pdf(d, c - 1)
end
end
normalize_histogram(p)
end
"""
additive_noise(mhist,noise,nhist)
Add Poisson noise to histogram
"""
function additive_noise(mhist, noise, nhist)
p = zeros(nhist)
d = Poisson(noise)
for m in 1:nhist
for n in 1:m
p[m] += mhist[n] * pdf(d, m - n)
end
end
normalize_histogram(p)
end
"""
threshold_noise(mhist,noise,yieldfactor,nhist)
Add Poisson noise to histogram then reduce counts due to technical loss
"""
function threshold_noise(mhist, noise, yieldfactor, nhist)
h = additive_noise(mhist, noise, nhist)
technical_loss(h, yieldfactor, nhist)
end
"""
solve_vector(A::Matrix,b::vector)
solve A x = b
If matrix divide has error higher than tol
use SVD and pseudoinverse with threshold
"""
function solve_vector(A::Matrix, b::Vector, th=1e-16, tol=1e-1)
x = A \ b
if norm(b - A * x, Inf) > tol
M = svd(A)
Sv = M.S
Sv[abs.(Sv).<th] .= 0.0
Sv[abs.(Sv).>=th] = 1 ./ Sv[abs.(Sv).>=th]
x = M.V * diagm(Sv) * M.U' * b
end
return x[:, 1] # return as vector
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 23095 | # This file is part of StochasticGene.jl
### common.jl
# Data types
"""
AbstractExperimentalData
abstract type for experimental data
"""
abstract type AbstractExperimentalData end
"""
AbstractSampleData
abstract type for data in the form of samples
"""
abstract type AbstractSampleData <: AbstractExperimentalData end
"""
AbstractHistogramData
abstract type for data in the form of a histogram (probability distribution)
"""
abstract type AbstractHistogramData <: AbstractExperimentalData end
"""
AbstractTraceData
abstract type for intensity time series data
"""
abstract type AbstractTraceData <: AbstractExperimentalData end
"""
AbstractRNAData{hType}
abstract type for steady state RNA histogram data
"""
abstract type AbstractRNAData{hType} <: AbstractHistogramData end
"""
AbstractTraceHistogramData
abstract type for intensity time series data with RNA histogram data
"""
abstract type AbstractTraceHistogramData <: AbstractExperimentalData end
# Data structures
#
# Do not use underscore "_" in label
"""
Data structures
arguments:
label: label for the data set
gene: gene name (case sensitive)
nRNA: length of histogram
histRNA: RNA histograms
bins: number of live cell recording time bins
OFF: OFF time probability density
ON:: ON time probability density
"""
struct RNAData{nType,hType} <: AbstractRNAData{hType}
label::String
gene::String
nRNA::nType
histRNA::hType
end
struct RNAOnOffData <: AbstractHistogramData
label::String
gene::String
nRNA::Int
histRNA::Vector
bins::Vector
ON::Vector
OFF::Vector
end
struct RNADwellTimeData <: AbstractHistogramData
label::String
gene::String
nRNA::Int
histRNA::Array
bins::Vector{Vector}
DwellTimes::Vector{Vector}
DTtypes::Vector
end
struct TraceData{traceType} <: AbstractTraceData
label::String
gene::String
interval::Float64
trace::traceType
end
struct TraceNascentData{traceType} <: AbstractTraceData
label::String
gene::String
interval::Float64
trace::traceType
nascent::Vector{Int}
end
struct TraceRNAData{traceType,hType} <: AbstractTraceHistogramData
label::String
gene::String
interval::Float64
trace::traceType
nRNA::Int
histRNA::hType
end
# Model structures
"""
Pool
structure for hierarchical model
- `nhyper::Int`: number of hyper parameter sets
- `nparams::Int`: number of fitted hyper params per set = length(fittedparam)
- `nrates`::Int`: number of rates (all params) for each individual
- `nindividualparams::Int`: number of fitted params per individual
- `nindividuals::Int`: number of individuals (traces)
"""
struct Pool
nhyper::Int
nrates::Int
nparams::Int
nindividuals::Int
ratestart::Int
paramstart::Int
hyperindices::Vector{Vector}
end
"""
HMMReporter
structure for reporters
- `n`: number of noise parameters
- `per_state`: number of reporters per state
- `probfn`: noise distribution e.g. prob_GaussianMixture
- `weightind`: index for mixture model bias parameter (restricted to range [0,1])
"""
struct HMMReporter
n::Int
per_state::Vector{Int}
probfn::Function
weightind::Int
offstates::Vector{Int}
end
"""
Abstract model types
"""
abstract type AbstractModel end
abstract type AbstractGmodel <: AbstractModel end
abstract type AbstractGMmodel <: AbstractGmodel end
abstract type AbstractGRSMmodel{RateType,ReporterType} <: AbstractGmodel end
"""
Model structures
fields:
- `rates`: transition rates
- `Gtransitions`: tuple of vectors of G state transitions
- `G`: number of G steps
- `R`: number of R steps
- `S`: indicator for splicing, 0 no splicing, > 1 splicing
- `insertstep`: R step where reporter is inserted (first step where reporter is visible)
- `nalleles`: number of alleles producing RNA
- `splicetype`: choices are "", "offeject", "offdecay"
- `rateprior`: prior distribution for rates
- `proposal`: MCMC proposal distribution
- `fittedparam`: indices of rates to be fitted
- `fixedeffects`: indices of rates that are fixed to each other, in the form of a 2 tuple of vectors
with index 1 the tied index vector and 2 the corresponding fitted index vector
- `fixedeffects`: tuple of vectors of rates that are locked together
- `method`: method option, for nonhierarchical models 1 indicates solving Master equation directly, otherwise by eigendecomposition,
for hierarchical models, 2-tuple, where 1st component is same as above and 2nd is Bool where true means rates are fixed for all individuals
-` reporter`: vector of reporters or sojorn states (onstates) or vectors of vectors depending on model and data
"""
struct GMmodel{RateType,PriorType,ProposalType,ParamType,MethodType,ComponentType,ReporterType} <: AbstractGMmodel
rates::RateType
Gtransitions::Tuple
G::Int
nalleles::Int
rateprior::PriorType
proposal::ProposalType
fittedparam::ParamType
fixedeffects::Tuple
method::MethodType
components::ComponentType
reporter::ReporterType
end
struct GRSMmodel{RateType,PriorType,ProposalType,ParamType,MethodType,ComponentType,ReporterType} <: AbstractGRSMmodel{RateType,ReporterType}
rates::RateType
Gtransitions::Tuple
G::Int
R::Int
S::Int
insertstep::Int
nalleles::Int
splicetype::String
rateprior::PriorType
proposal::ProposalType
fittedparam::ParamType
fixedeffects::Tuple
method::MethodType
components::ComponentType
reporter::ReporterType
end
struct GRSMhierarchicalmodel{RateType,PriorType,ProposalType,ParamType,MethodType,ComponentType,ReporterType} <: AbstractGRSMmodel{RateType,ReporterType}
rates::RateType
pool::Pool
Gtransitions::Tuple
G::Int
R::Int
S::Int
insertstep::Int
nalleles::Int
splicetype::String
rateprior::PriorType
proposal::ProposalType
fittedparam::ParamType
fixedeffects::Tuple
method::MethodType
components::ComponentType
reporter::ReporterType
end
"""
print_model(model::AbstractModel)
print all fields of model
"""
function print_model(model::AbstractModel)
for fname in fieldnames(model)
println("$fname =", getfield(model, fname))
end
end
"""
Abstract Option types for fitting methods
"""
abstract type Options end
abstract type Results end
# Model and Data dependent functions
"""
datahistogram(data)
Return the RNA histogram data as one vector
"""
# datahistogram(data::RNAData) = data.histRNA
function datahistogram(data::AbstractRNAData{Array{Array,1}})
v = data.histRNA[1]
for i in 2:length(data.histRNA)
v = vcat(v, data.histRNA[i])
end
return v
end
datahistogram(data::AbstractRNAData{Array{Float64,1}}) = data.histRNA
datahistogram(data::RNAOnOffData) = [data.OFF; data.ON; data.histRNA]
datahistogram(data::AbstractTraceHistogramData) = data.histRNA
function datahistogram(data::RNADwellTimeData)
v = data.histRNA
for d in data.DwellTimes
v = vcat(v, d)
end
return v
end
datapdf(data::AbstractRNAData{Array{Float64,1}}) = normalize_histogram(data.histRNA)
datapdf(data::RNAOnOffData) = [normalize_histogram(data.OFF); normalize_histogram(data.ON); normalize_histogram(data.histRNA)]
datapdf(data::AbstractTraceHistogramData) = normalize_histogram(data.histRNA)
function datapdf(data::AbstractRNAData{Array{Array,1}})
v = normalize_histogram(data.histRNA[1])
for i in 2:length(data.histRNA)
v = vcat(v, normalize_histogram(data.histRNA[i]))
end
return v
end
function datapdf(data::RNADwellTimeData)
v = normalize_histogram(data.histRNA)
for d in data.DwellTimes
v = vcat(v, normalize_histogram(d))
end
return v
end
# Model loglikelihoods
"""
loglikelihood(param,data::AbstractHistogramData,model)
returns negative loglikelihood of all data and vector of the prediction histogram negative loglikelihood
Calls likelihoodfn and datahistogram
provided for each data and model type
"""
function loglikelihood(param, data::AbstractHistogramData, model::AbstractGmodel)
predictions = likelihoodfn(param, data, model)
hist = datahistogram(data)
logpredictions = log.(max.(predictions, eps()))
return crossentropy(logpredictions, hist), -logpredictions
end
"""
loglikelihood(param,data::AbstractTraceData,model::GMmodel)
negative loglikelihood of combined time series traces and each trace
"""
function loglikelihood(param, data::AbstractTraceData, model::AbstractGmodel)
ll_hmm(get_rates(param, model), model.components.nT, model.components.elementsT, model.reporter.n, model.reporter.per_state, model.reporter.probfn, model.reporter.offstates, data.interval, data.trace)
end
"""
loglikelihood(param, data::TraceRNAData{Float64}, model::AbstractGmodel)
negative loglikelihood of trace data with nascent RNA FISH active fraction (stored in data.histRNA field)
"""
function loglikelihood(param, data::TraceNascentData, model::AbstractGmodel)
ll_hmm(get_rates(param, model), model.components.nT, model.components.elementsT, model.reporter.n, model.reporter.per_state, model.reporter.probfn, data.interval, data.trace, data.nascent)
end
"""
loglikelihood(param, data::TraceRNAData{Vector{Float64}}, model::AbstractGRSMmodel)
negative loglikelihood of time series traces and mRNA FISH steady state histogram
"""
function loglikelihood(param, data::TraceRNAData, model::AbstractGRSMmodel)
r = get_rates(param, model)
llg, llgp = ll_hmm(r, model.components.tcomponents.nT, model.components.tcomponents.elementsT, model.reporter.n, model.reporter.per_state, model.reporter.probfn, model.reporter.offstates, data.interval, data.trace)
M = make_mat_M(model.components.mcomponents, r[1:num_rates(model)])
logpredictions = log.(max.(steady_state(M, model.components.mcomponents.nT, model.nalleles, data.nRNA), eps()))
return crossentropy(logpredictions, datahistogram(data)) + llg, vcat(-logpredictions, llgp) # concatenate logpdf of histogram data with loglikelihood of traces
end
"""
loglikelihood(param, data::AbstractTraceData, model::GRSMhierarchicalmodel)
"""
function loglikelihood(param, data::AbstractTraceData, model::GRSMhierarchicalmodel)
r, p, hyper = prepare_params(param, model)
if model.method[2]
llg, llgp = ll_hmm_hierarchical_rateshared_background(r, model.components.nT, model.components.elementsT, model.reporter.n, model.reporter.per_state, model.reporter.probfn, model.reporter.offstates, data.interval, data.trace)
else
llg, llgp = ll_hmm_hierarchical(r, model.components.nT, model.components.elementsT, model.reporter.n, model.reporter.per_state, model.reporter.probfn, data.interval, data.trace)
end
# d = distribution_array(pm, psig)
d = hyper_distribution(hyper)
lhp = Float64[]
for pc in eachcol(p)
lhpc = 0
for i in eachindex(pc)
lhpc -= logpdf(d[i], pc[i])
end
push!(lhp, lhpc)
end
return llg + sum(lhp), vcat(llgp, lhp)
end
"""
hyper_distribution(p)
for hierarchical model
"""
function hyper_distribution(p)
distribution_array(p[1], sigmalognormal(p[2]))
end
"""
prepare_params(param, model)
extract and reassemble parameters for use in likelihood
"""
function prepare_params(param, model::GRSMhierarchicalmodel)
# rates reshaped from a vector into a matrix with columns pertaining to hyperparams and individuals
# (shared parameters are considered to be hyper parameters without other hyper parameters (e.g. mean without variance))
h = Vector{Int}[]
for i in model.pool.hyperindices
push!(h, i)
end
r = reshape(get_rates(param, model)[model.pool.ratestart:end], model.pool.nrates, model.pool.nindividuals)
p = reshape(param[model.pool.paramstart:end], model.pool.nparams, model.pool.nindividuals)
return r, p, h
end
# function prepare_params(param, model::GRSMhierarchicalmodel)
# # rates reshaped from a vector into a matrix with columns pertaining to hyperparams and individuals
# # (shared parameters are considered to be hyper parameters without other hyper parameters (e.g. mean without variance))
# r = reshape(get_rates(param, model), model.pool.nrates, model.pool.nhyper + model.pool.nindividuals)
# param = Vector{Int}[]
# for i in model.pool.hyperindices
# push!(param[i])
# end
# pm = param[1:model.pool.nparams]
# if model.pool.nhyper == 2
# psig = sigmalognormal(param[model.pool.nrates+1:model.pool.nrates+model.pool.nparams])
# end
# p = reshape(param[model.pool.nhyper*model.pool.nparams+1:end],model.pool.nindividualparams,model.pool.nindividuals)
# return r[:, model.pool.nhyper+1:end], p, pm, psig
# end
# Likelihood functions
"""
likelihoodfn(param,data::RNAData,model::AbstractGMmodel)
likelihood for single RNA histogram
"""
function likelihoodfn(param, data::RNAData, model::AbstractGMmodel)
r = get_rates(param, model)
M = make_mat_M(model.components, r)
steady_state(M, model.G, model.nalleles, data.nRNA)
end
function likelihoodfn(param, data::RNAData, model::AbstractGRSMmodel)
r = get_rates(param, model)
M = make_mat_M(components.mcomponents, r)
steady_state(M, components.mcomponents.nT, model.nalleles, data.nRNA)
end
"""
likelihoodfn(param,data::AbstractHistogramArrayData,model::AbstractGmodel)
likelihood for multiple histograms
"""
function likelihoodfn(param, data::AbstractHistogramData, model::AbstractGmodel)
h = likelihoodarray(get_rates(param, model), data, model)
make_array(h)
end
"""
likelihoodarray(r, data::RNAData{T1,T2}, model::AbstractGMmodel) where {T1<:Array,T2<:Array}
likelihood for multiple histograms, returns an array of pdfs
"""
function likelihoodarray(r, data::RNAData{T1,T2}, model::AbstractGMmodel) where {T1<:Array,T2<:Array}
h = Array{Array{Float64,1},1}(undef, length(data.nRNA))
for i in eachindex(data.nRNA)
M = make_mat_M(model.components[i], r[(i-1)*2*model.G+1:i*2*model.G])
h[i] = steady_state(M, model.G, model.nalleles, data.nRNA[i])
end
trim_hist(h, data.nRNA)
end
"""
likelihoodarray(r, data::RNAOnOffData, model::AbstractGmodel)
# if model.splicetype == "offdecay"
# # r[end-1] *= survival_fraction(nu, eta, model.R)
# end
"""
function likelihoodarray(r, data::RNAOnOffData, model::AbstractGmodel)
components = model.components
onstates = model.reporter
T = make_mat_T(components.tcomponents, r)
TA = make_mat_TA(components.tcomponents, r)
TI = make_mat_TI(components.tcomponents, r)
M = make_mat_M(components.mcomponents, r)
histF = steady_state(M, components.mcomponents.nT, model.nalleles, data.nRNA)
modelOFF, modelON = offonPDF(data.bins, r, T, TA, TI, components.tcomponents.nT, components.tcomponents.elementsT, onstates)
return [modelOFF, modelON, histF]
end
"""
likelihoodarray(rin,data::RNAOnOffData,model::AbstractGRSMmodel)
"""
# function likelihoodarray(rin, data::RNAOnOffData, model::AbstractGRSMmodel)
# r = copy(rin)
# if model.splicetype == "offdecay"
# r[end-1] *= survival_fraction(nu, eta, model.R)
# end
# likelihoodarray(r, data, model)
# end
"""
likelihoodarray(r, data::RNADwellTimeData, model::AbstractGmodel)
likelihood of an array of dwell time histograms
"""
function likelihoodarray(r, data::RNADwellTimeData, model::AbstractGmodel)
# likelihoodarray(r,model.G,model.components,data.bins,model.reporter,data.DTtypes,model.nalleles,data.nRNA)
G = model.G
tcomponents = model.components.tcomponents
onstates = model.reporter
elementsT = tcomponents.elementsT
elementsTG = tcomponents.elementsTG
T = make_mat(elementsT, r, tcomponents.nT)
pss = normalized_nullspace(T)
TG = make_mat(elementsTG, r, G)
pssG = normalized_nullspace(TG)
hists = Vector[]
M = make_mat_M(model.components.mcomponents, r)
histF = steady_state(M, model.components.mcomponents.nT, model.nalleles, data.nRNA)
push!(hists, histF)
for (i, Dtype) in enumerate(data.DTtypes)
if Dtype == "OFF"
TD = make_mat(tcomponents.elementsTD[i], r, tcomponents.nT)
nonzeros = nonzero_rows(TD)
h = offtimePDF(data.bins[i], TD[nonzeros, nonzeros], nonzero_states(onstates[i], nonzeros), init_SI(r, onstates[i], elementsT, pss, nonzeros))
elseif Dtype == "ON"
TD = make_mat(tcomponents.elementsTD[i], r, tcomponents.nT)
h = ontimePDF(data.bins[i], TD, off_states(tcomponents.nT, onstates[i]), init_SA(r, onstates[i], elementsT, pss))
elseif Dtype == "OFFG"
TD = make_mat(tcomponents.elementsTD[i], r, G)
h = offtimePDF(data.bins[i], TD, onstates[i], init_SI(r, onstates[i], elementsTG, pssG, collect(1:G)))
elseif Dtype == "ONG"
TD = make_mat(tcomponents.elementsTD[i], r, G)
h = ontimePDF(data.bins[i], TD, off_states(G, onstates[i]), init_SA(r, onstates[i], elementsTG, pssG))
end
push!(hists, h)
end
return hists
end
"""
likelihoodarray(r,G,components,bins,onstates,dttype,nalleles,nRNA)
"""
function likelihoodarray(r, G, components, bins, onstates, dttype, nalleles, nRNA)
tcomponents = components.tcomponents
mcomponents = components.mcomponents
elementsT = tcomponents.elementsT
T = make_mat(elementsT, r, tcomponents.nT)
pss = normalized_nullspace(T)
elementsTG = tcomponents.elementsTG
TG = make_mat(elementsTG, r, G)
pssG = normalized_nullspace(TG)
hists = Vector[]
M = make_mat_M(mcomponents, r)
histF = steady_state(M, mcomponents.nT, nalleles, nRNA)
push!(hists, histF)
for (i, Dtype) in enumerate(dttype)
if Dtype == "OFF"
TD = make_mat(tcomponents.elementsTD[i], r, tcomponents.nT)
nonzeros = nonzero_rows(TD)
h = offtimePDF(bins[i], TD[nonzeros, nonzeros], nonzero_states(onstates[i], nonzeros), init_SI(r, onstates[i], elementsT, pss, nonzeros))
elseif Dtype == "ON"
TD = make_mat(tcomponents.elementsTD[i], r, tcomponents.nT)
h = ontimePDF(bins[i], TD, off_states(tcomponents.nT, onstates[i]), init_SA(r, onstates[i], elementsT, pss))
elseif Dtype == "OFFG"
TD = make_mat(tcomponents.elementsTD[i], r, G)
h = offtimePDF(bins[i], TD, onstates[i], init_SI(r, onstates[i], elementsTG, pssG, collect(1:G)))
elseif Dtype == "ONG"
TD = make_mat(tcomponents.elementsTD[i], r, G)
h = ontimePDF(bins[i], TD, off_states(G, onstates[i]), init_SA(r, onstates[i], elementsTG, pssG))
end
push!(hists, h)
end
return hists
end
"""
transform_array(v::Array, index::Int, f1::Function, f2::Function)
apply function f1 to actionrray v at indices up to index and f2 after index
"""
function transform_array(v::Array, index::Int, f1::Function, f2::Function)
vcat(f1(v[1:index-1, :]), f2(v[index:end, :]))
end
"""
transform_array(v::Array, index, mask, f1, f2)
apply function f1 to array v at indices up to index and f2 after index accounting for application of mask (which changes indexing)
"""
function transform_array(v::Array, index::Int, mask::Vector, f1::Function, f2::Function)
if index > 0 && index β mask
n = findfirst(index .== mask)
if typeof(v) <: Vector
return vcat(f1(v[1:n-1]), f2(v[n]), f1(v[n+1:end]))
else
return vcat(f1(v[1:n-1, :]), f2(v[n:n, :]), f2(v[n+1:end, :]))
end
else
return f1(v)
end
end
"""
transform_rates(r,model::AbstractGmodel)
log transform rates to real domain
"""
transform_rates(r, model::AbstractGmodel) = log.(r)
transform_rates(r, model::AbstractGRSMmodel{Vector{Float64},HMMReporter}) = transform_array(r, model.reporter.weightind, model.fittedparam, logv, logit)
"""
inverse_transform_rates(x,model::AbstractGmodel)
inverse transform MH parameters on real domain back to rate domain
"""
inverse_transform_rates(p, model::AbstractGmodel) = exp.(p)
inverse_transform_rates(p, model::AbstractGRSMmodel{Vector{Float64},HMMReporter}) = transform_array(p, model.reporter.weightind, model.fittedparam, expv, invlogit)
"""
get_param(model)
get fitted parameters from model
"""
get_param(model::AbstractGmodel) = log.(model.rates[model.fittedparam])
get_param(model::AbstractGRSMmodel) = transform_rates(model.rates[model.fittedparam], model)
"""
get_rates(param,model)
replace fitted rates with new values and return
"""
function get_rates(param, model::AbstractGmodel, inverse=true)
r = copy_r(model)
if inverse
r[model.fittedparam] = inverse_transform_rates(param, model)
else
r[model.fittedparam] = param
end
fixed_rates(r, model.fixedeffects)
end
function get_rates(param::Vector{Vector}, model::AbstractGmodel, inverse=true)
rv = copy_r(model)
for r in rv
if inverse
r[model.fittedparam] = inverse_transform_rates(param, model)
else
r[model.fittedparam] = param
end
end
fixed_rates(r, model.fixedeffects)
end
function get_rates(fits, stats, model, ratetype)
if ratetype == "ml"
return get_rates(fits.parml, model)
elseif ratetype == "median"
return get_rates(stats.medparam, model, false)
elseif ratetype == "mean"
return get_rates(stats.meanparam, model, false)
else
println("ratetype unknown")
end
end
"""
fixed_rates(r, fixedeffects)
TBW
"""
function fixed_rates(r, fixedeffects)
if ~isempty(fixedeffects)
for effect in fixedeffects
r[effect[2:end]] .= r[effect[1]]
end
end
return r
end
"""
copy_r(model)
copy rates from model structure
"""
copy_r(model) = copy(model.rates)
"""
setr(r,model)
"""
function setr(r, model::AbstractGRSMmodel)
n = model.G - 1
nr = model.R
eta = get_eta(r, n, nr)
r[2*n+1+nr+1:2*n+1+nr+nr] = eta
r
end
"""
logprior(param,model::AbstractGMmodel)
compute log of the prior
"""
function logprior(param, model::AbstractGmodel)
d = model.rateprior
p = 0
for i in eachindex(d)
p -= logpdf(d[i], param[i])
end
return p
end
"""
num_rates(transitions, R, S, insertstep)
compute number of transition rates
"""
function num_rates(transitions, R, S, insertstep)
if R > 0
if insertstep > R
throw("insertstep>R")
end
if S == 0
insertstep = 1
else
S = R - insertstep + 1
end
return length(transitions) + 1 + R + S + 1
else
return length(transitions) + 2
end
end
num_rates(model::AbstractGRSMmodel) = num_rates(model.Gtransitions, model.R, model.S, model.insertstep)
"""
num_rates(model::String)
compute number of transition rates given model string
"""
function num_rates(model::String)
m = digits(parse(Int, model))
if length(m) == 1
return 2 * m[1]
else
return 2 * (m[4] - 1) + m[3] + m[2] - m[1] + 2
end
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 32762 | # This file is part of StochasticGene.jl
# fit.jl
#
# Fit GRS models (generalized telegraph models) to RNA abundance and live cell imaging data
#
"""
HBEC gene information
"""
genes_hbec() = ["CANX"; "DNAJC5"; "ERRFI1"; "KPNB1"; "MYH9"; "Rab7a"; "RHOA"; "RPAP3"; "Sec16A"; "SLC2A1"]
genelength_hbec() = Dict([("Sec16A", 42960); ("SLC2A1", 33802); ("ERRFI1", 14615); ("RHOA", 52948); ("KPNB1", 33730); ("MYH9", 106741); ("DNAJC5", 40930); ("CANX", 32710); ("Rab7a", 88663); ("RPAP3", 44130); ("RAB7A", 88663); ("SEC16A", 42960)])
MS2end_hbec() = Dict([("Sec16A", 5220); ("SLC2A1", 26001); ("ERRFI1", 5324); ("RHOA", 51109); ("KPNB1", 24000); ("MYH9", 71998); ("DNAJC5", 14857); ("CANX", 4861); ("Rab7a", 83257); ("RPAP3", 38610); ("SEC16A", 5220); ("RAB7A", 83257)])
halflife_hbec() = Dict([("CANX", 50.0), ("DNAJC5", 5.0), ("ERRFI1", 1.35), ("KPNB1", 9.0), ("MYH9", 10.0), ("Rab7a", 50.0), ("RHOA", 50.0), ("RPAP3", 7.5), ("Sec16A", 8.0), ("SLC2A1", 5.0), ("RAB7A", 50.0), ("SEC16A", 8.0)])
"""
get_transitions(G, Gfamily)
Create transitions tuple
"""
function get_transitions(G, Gfamily)
typeof(G) <: AbstractString && (G = parse(Int, G))
if G == 2
return ([1, 2], [2, 1])
elseif G == 3
if occursin("KP", Gfamily)
return ([1, 2], [2, 1], [2, 3], [3, 1])
elseif occursin("cyclic", Gfamily)
return ([1, 2], [2, 3], [3, 1])
else
return ([1, 2], [2, 1], [2, 3], [3, 2])
end
elseif G == 4
if occursin("KP", Gfamily)
return ([1, 2], [2, 1], [2, 3], [3, 2], [3, 4], [4, 2])
elseif occursin("cyclic", Gfamily)
return ([1, 2], [2, 3], [3, 4], [4, 1])
else
return ([1, 2], [2, 1], [2, 3], [3, 2], [3, 4], [4, 3])
end
else
throw("transition type unknown")
end
end
"""
fit(; <keyword arguments> )
Fit steady state or transient GM model to RNA data for a single gene, write the result (through function finalize), and return nothing.
#Arguments
- `nchains::Int=2`: number of MCMC chains = number of processors called by Julia, default = 2
- `datatype::String=""`: String that desecribes data type, choices are "rna", "rnaonoff", "rnadwelltime", "trace", "tracenascent", "tracerna"
- `dttype=String[]`: types are "OFF", "ON", for R states and "OFFG", "ONG" for G states
- `datapath=""`: path to data file or folder or array of files or folders
- `cell::String=""': cell type for halflives and allele numbers
- `datacond=""`: string or vector of strings describing data treatment condition, e.g. "WT", "DMSO" or ["DMSO","AUXIN"]
- `traceinfo=(1.0, 1., 240., .65)`: 4-tuple of frame interval of intensity traces, starting frame time in minutes, ending frame time (use -1 for last index), and fraction of active traces
- `nascent=(1, 2)`: 2-tuple (number of spots, number of locations) (e.g. number of cells times number of alleles/cell)
- `infolder::String=""`: result folder used for initial parameters
- `resultfolder::String=test`: folder for results of MCMC run
- `label::String=""`: label of output files produced
- `inlabel::String=""`: label of files used for initial conditions
- `fittedparam::Vector=Int[]`: vector of rate indices to be fit, e.g. [1,2,3,5,6,7] (applies to shared rates for hierarchical models)
- `fixedeffects::Tuple=tuple()`: tuple of vectors of rates that are fixed where first index is fit and others are fixed to first, e.g. ([3,8],) means index 8 is fixed to index 3
(only first parameter should be included in fittedparam) (applies to shared rates for hierarchical models)
- `transitions::Tuple=([1,2],[2,1])`: tuple of vectors that specify state transitions for G states, e.g. ([1,2],[2,1]) for classic 2 state telegraph model and ([1,2],[2,1],[2,3],[3,1]) for 3 state kinetic proof reading model
- `G::Int=2`: number of gene states
- `R::Int=0`: number of pre-RNA steps (set to 0 for classic telegraph models)
- `S::Int=0`: number of splice sites (set to 0 for classic telegraph models and R - insertstep + 1 for GRS models)
- `insertstep::Int=1`: R step where reporter is inserted
- `Gfamily=""`: String describing type of G transition model, e.g. "3state", "KP" (kinetic proofreading), "cyclicory"
- `root="."`: name of root directory for project, e.g. "scRNA"
- `priormean=Float64[]`: mean rates of prior distribution
- 'priorcv=10.`: (vector or number) coefficient of variation(s) for the rate prior distributions, default is 10.
- `nalleles=2`: number of alleles, value in alleles folder will be used if it exists
- `onstates::Vector{Int}=Int[]`: vector of on or sojourn states, e.g. [[2,3],Int[]], use empty vector for R states, do not use Int[] for R=0 models
- `decayrate=1.0`: decay rate of mRNA, if set to -1, value in halflives folder will be used if it exists
- `splicetype=""`: RNA pathway for GRS models, (e.g. "offeject" = spliced intron is not viable)
- `probfn=prob_Gaussian`: probability function for hmm observation probability (i.e. noise distribution)
- `noisepriors = []`: priors of observation noise (use empty set if not fitting traces), superceded if priormean is set
- `hierarchical=tuple()`: empty tuple for nonhierarchical; for hierarchical model use 3 tuple of hierchical model parameters (pool.nhyper::Int,individual fittedparams::Vector,individual fixedeffects::Tuple)
- `ratetype="median"`: which rate to use for initial condition, choices are "ml", "mean", "median", or "last"
- `propcv=0.01`: coefficient of variation (mean/std) of proposal distribution, if cv <= 0. then cv from previous run will be used
- `maxtime=Float64=60.`: maximum wall time for run, default = 60 min
- `samplesteps::Int=1000000`: number of MCMC sampling steps
- `warmupsteps=0`: number of MCMC warmup steps to find proposal distribution covariance
- `annealsteps=0`: number of annealing steps (during annealing temperature is dropped from tempanneal to temp)
- `temp=1.0`: MCMC temperature
- `tempanneal=100.`: annealing temperature
- `temprna=1.`: reduce rna counts by temprna compared to dwell times
- `burst=false`: if true then compute burst frequency
- `optimize=false`: use optimizer to compute maximum likelihood value
- `writesamples=false`: write out MH samples if true, default is false
- `method=1`: optional method variable, for hierarchical models method = tuple(Int,Bool) = (numerical method, true if transition rates are shared)
Example:
If you are in the folder where data/HCT116_testdata is installed, then you can fit the mock RNA histogram running 4 mcmc chains with
bash> julia -p 4
julia> fits, stats, measures, data, model, options = fit(nchains = 4)
"""
function fit(; nchains::Int=2, datatype::String="rna", dttype=String[], datapath="HCT116_testdata/", gene="MYC", cell::String="HCT116", datacond="MOCK", traceinfo=(1.0, 1, -1, 0.65), nascent=(1, 2), infolder::String="HCT116_test", resultfolder::String="HCT116_test", inlabel::String="", label::String="", fittedparam::Vector=Int[], fixedeffects=tuple(), transitions::Tuple=([1, 2], [2, 1]), G::Int=2, R::Int=0, S::Int=0, insertstep::Int=1, Gfamily="", root=".", priormean=Float64[], nalleles=2, priorcv=10.0, onstates=Int[], decayrate=-1.0, splicetype="", probfn=prob_Gaussian, noisepriors=[], hierarchical=tuple(), ratetype="median", propcv=0.01, maxtime::Float64=60.0, samplesteps::Int=1000000, warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, temprna=1.0, burst=false, optimize=false, writesamples=false, method=1)
label, inlabel = create_label(label, inlabel, datatype, datacond, cell, Gfamily)
if typeof(fixedeffects) <: AbstractString
fixedeffects, fittedparam = make_fixedfitted(datatype, fixedeffects, transitions, R, S, insertstep, length(noisepriors))
println(transitions)
println(fixedeffects)
println(fittedparam)
end
fit(nchains, datatype, dttype, datapath, gene, cell, datacond, traceinfo, nascent, infolder, resultfolder, inlabel, label, fittedparam, fixedeffects, transitions, G, R, S, insertstep, root, maxtime, priormean, priorcv, nalleles, onstates, decayrate, splicetype, probfn, noisepriors, hierarchical, ratetype,
propcv, samplesteps, warmupsteps, annealsteps, temp, tempanneal, temprna, burst, optimize, writesamples, method)
end
"""
fit(nchains::Int, datatype::String, dttype::Vector, datapath, gene::String, cell::String, datacond::String, traceinfo, nascent, infolder::String, resultfolder::String, inlabel::String, label::String, fittedparam::Vector, fixedeffects::String, G::String, R::String, S::String, insertstep::String, Gfamily, root=".", maxtime::Float64=60.0, priormean=Float64[], priorcv=10.0, nalleles=2, onstates=Int[], decayrate=-1.0, splicetype="", probfn=prob_Gaussian, noisepriors =[], hierarchical=tuple(), ratetype="median", propcv=0.01, samplesteps::Int=1000000, warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, temprna=1.0, burst=false, optimize=false, writesamples=false)
"""
function fit(nchains::Int, datatype::String, dttype::Vector, datapath, gene::String, cell::String, datacond::String, traceinfo, nascent, infolder::String, resultfolder::String, inlabel::String, label::String, fixedeffects::String, G::String, R::String, S::String, insertstep::String, Gfamily, root=".", maxtime::Float64=60.0, priormean=Float64[], priorcv=10.0, nalleles=2, onstates=Int[], decayrate=-1.0, splicetype="", probfn=prob_Gaussian, noisepriors=[], hierarchical=tuple(), ratetype="median", propcv=0.01, samplesteps::Int=1000000, warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, temprna=1.0, burst=false, optimize=false, writesamples=false, method=1)
transitions = get_transitions(G, Gfamily)
fixedeffects, fittedparam = make_fixedfitted(datatype, fixedeffects, transitions, parse(Int, R), parse(Int, S), parse(Int, insertstep), length(noisepriors))
println(transitions)
println(fixedeffects)
println(fittedparam)
fit(nchains, datatype, dttype, datapath, gene, cell, datacond, traceinfo, nascent, infolder, resultfolder, inlabel, label, fittedparam, fixedeffects, transitions, parse(Int, G), parse(Int, R), parse(Int, S), parse(Int, insertstep), root, maxtime, priormean, priorcv, nalleles, onstates, decayrate, splicetype, probfn, noisepriors, hierarchical, ratetype,
propcv, samplesteps, warmupsteps, annealsteps, temp, tempanneal, temprna, burst, optimize, writesamples, method)
end
"""
fit(nchains::Int, datatype::String, dttype::Vector, datapath, gene::String, cell::String, datacond::String, traceinfo, nascent, infolder::String, resultfolder::String, inlabel::String, label::String, fittedparam::Vector, fixedeffects, transitions::Tuple, G::Int, R::Int, S::Int, insertstep::Int, root=".", maxtime::Float64=60.0, priormean=Float64[], priorcv=10.0, nalleles=2, onstates=Int[], decayrate=-1.0, splicetype="", probfn=prob_Gaussian, noisepriors =[], hierarchical=tuple(), ratetype="median", propcv=0.01, samplesteps::Int=1000000, warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, temprna=1.0, burst=false, optimize=false, writesamples=false)
"""
function fit(nchains::Int, datatype::String, dttype::Vector, datapath, gene::String, cell::String, datacond::String, traceinfo, nascent, infolder::String, resultfolder::String, inlabel::String, label::String, fittedparam::Vector, fixedeffects::Tuple, transitions::Tuple, G::Int, R::Int, S::Int, insertstep::Int, root=".", maxtime::Float64=60.0, priormean=Float64[], priorcv=10.0, nalleles=2, onstates=Int[], decayrate=-1.0, splicetype="", probfn=prob_Gaussian, noisepriors=[], hierarchical=tuple(), ratetype="median", propcv=0.01, samplesteps::Int=1000000, warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, temprna=1.0, burst=false, optimize=false, writesamples=false, method=1)
println(now())
gene = check_genename(gene, "[")
if S > 0 && S != R - insertstep + 1
S = R - insertstep + 1
println("Setting S to ", S)
end
printinfo(gene, G, R, S, insertstep, datacond, datapath, infolder, resultfolder, maxtime)
resultfolder = folder_path(resultfolder, root, "results", make=true)
infolder = folder_path(infolder, root, "results")
datapath = folder_path(datapath, root, "data")
data = load_data(datatype, dttype, datapath, label, gene, datacond, traceinfo, temprna, nascent)
noiseparams = occursin("trace", lowercase(datatype)) ? length(noisepriors) : zero(Int)
decayrate < 0 && (decayrate = get_decay(gene, cell, root))
if isempty(priormean)
if isempty(hierarchical)
priormean = prior_ratemean(transitions, R, S, insertstep, decayrate, noisepriors)
else
priormean = prior_ratemean(transitions, R, S, insertstep, decayrate, noisepriors, hierarchical[1])
end
end
isempty(fittedparam) && (fittedparam = default_fitted(datatype, transitions, R, S, insertstep, noiseparams))
r = readrates(infolder, inlabel, gene, G, R, S, insertstep, nalleles, ratetype)
if isempty(r)
r = isempty(hierarchical) ? priormean : set_rates(priormean, transitions, R, S, insertstep, noisepriors, length(data.trace[1]))
println("No rate file")
end
println(r)
model = load_model(data, r, priormean, fittedparam, fixedeffects, transitions, G, R, S, insertstep, nalleles, priorcv, onstates, decayrate, propcv, splicetype, probfn, noisepriors, hierarchical, method)
options = MHOptions(samplesteps, warmupsteps, annealsteps, maxtime, temp, tempanneal)
fit(nchains, data, model, options, resultfolder, burst, optimize, writesamples)
end
"""
fit(nchains, data, model, options, resultfolder, burst, optimize, writesamples)
"""
function fit(nchains, data, model, options, resultfolder, burst, optimize, writesamples)
print_ll(data, model)
fits, stats, measures = run_mh(data, model, options, nchains)
optimized = 0
if optimize
try
optimized = Optim.optimize(x -> lossfn(x, data, model), fits.parml, LBFGS())
catch
@warn "Optimizer failed"
end
end
if burst
bs = burstsize(fits, model)
else
bs = 0
end
finalize(data, model, fits, stats, measures, options.temp, resultfolder, optimized, bs, writesamples)
println(now())
# get_rates(stats.medparam, model, false)
return fits, stats, measures, data, model, options
end
"""
load_data(datatype, dttype, datapath, label, gene, datacond, traceinfo, temprna, nascent)
return data structure
"""
function load_data(datatype, dttype, datapath, label, gene, datacond, traceinfo, temprna, nascent)
if datatype == "rna"
len, h = read_rna(gene, datacond, datapath)
return RNAData(label, gene, len, h)
elseif datatype == "rnaonoff"
len, h = read_rna(gene, datacond, datapath[1])
h = div.(h, temprna)
LC = readfile(gene, datacond, datapath[2])
return RNAOnOffData(label, gene, len, h, LC[:, 1], LC[:, 2], LC[:, 3])
elseif datatype == "rnadwelltime"
len, h = read_rna(gene, datacond, datapath[1])
h = div.(h, temprna)
bins, DT = read_dwelltimes(datapath[2:end])
return RNADwellTimeData(label, gene, len, h, bins, DT, dttype)
elseif occursin("trace", datatype)
if typeof(datapath) <: String
trace = read_tracefiles(datapath, datacond, traceinfo)
background = Vector[]
else
trace = read_tracefiles(datapath[1], datacond, traceinfo)
background = read_tracefiles(datapath[2], datacond, traceinfo)
end
(length(trace) == 0) && throw("No traces")
println(length(trace))
println(datapath)
println(datacond)
println(traceinfo)
weight = (1 - traceinfo[4]) / traceinfo[4] * length(trace)
nf = traceinfo[3] < 0 ? floor(Int, (720 - traceinfo[2] + traceinfo[1]) / traceinfo[1]) : floor(Int, (traceinfo[3] - traceinfo[2] + traceinfo[1]) / traceinfo[1])
if datatype == "trace"
return TraceData(label, gene, traceinfo[1], (trace, background, weight, nf))
elseif datatype == "tracenascent"
return TraceNascentData(label, gene, traceinfo[1], (trace, background, weight, nf), nascent)
elseif datatype == "tracerna"
len, h = read_rna(gene, datacond, datapath[3])
return TraceRNAData(label, gene, traceinfo[1], (trace, background, weight, nf), len, h)
end
else
throw("$datatype not included")
end
end
"""
load_model(data, r, rm, fittedparam::Vector, fixedeffects::Tuple, transitions::Tuple, G::Int, R::Int, S::Int, insertstep::Int, nalleles, priorcv, onstates, decayrate, propcv, splicetype, probfn, noisepriors, hierarchical)
return model structure
"""
function load_model(data, r, rm, fittedparam::Vector, fixedeffects::Tuple, transitions::Tuple, G::Int, R::Int, S::Int, insertstep::Int, nalleles, priorcv, onstates, decayrate, propcv, splicetype, probfn, noisepriors, hierarchical, method=1)
if S > 0 && S != R - insertstep + 1
S = R - insertstep + 1
println("Setting S to ", S)
end
noiseparams = length(noisepriors)
weightind = occursin("Mixture", "$(probfn)") ? num_rates(transitions, R, S, insertstep) + noiseparams : 0
if typeof(data) <: AbstractRNAData
reporter = onstates
components = make_components_M(transitions, G, 0, data.nRNA, decayrate, splicetype)
elseif typeof(data) <: AbstractTraceData
reporter = HMMReporter(noiseparams, num_reporters_per_state(G, R, S, insertstep), probfn, weightind, off_states(G, R, S, insertstep))
components = make_components_T(transitions, G, R, S, insertstep, splicetype)
elseif typeof(data) <: AbstractTraceHistogramData
reporter = HMMReporter(noiseparams, num_reporters_per_state(G, R, S, insertstep), probfn, weightind, off_states(G, R, S, insertstep))
components = make_components_MT(transitions, G, R, S, insertstep, data.nRNA, decayrate, splicetype)
elseif typeof(data) <: AbstractHistogramData
if isempty(onstates)
onstates = on_states(G, R, S, insertstep)
else
for i in eachindex(onstates)
if isempty(onstates[i])
onstates[i] = on_states(G, R, S, insertstep)
end
onstates[i] = Int64.(onstates[i])
end
end
reporter = onstates
if typeof(data) == RNADwellTimeData
if length(onstates) == length(data.DTtypes)
components = make_components_MTD(transitions, G, R, S, insertstep, onstates, data.DTtypes, data.nRNA, decayrate, splicetype)
else
throw("length of onstates and data.DTtypes not the same")
end
else
components = make_components_MTAI(transitions, G, R, S, insertstep, onstates, data.nRNA, decayrate, splicetype)
end
end
if isempty(hierarchical)
checklength(r, transitions, R, S, insertstep, reporter)
priord = prior_distribution(rm, transitions, R, S, insertstep, fittedparam, decayrate, priorcv, noisepriors)
if propcv < 0
propcv = getcv(gene, G, nalleles, fittedparam, inlabel, infolder, root)
end
if R == 0
return GMmodel{typeof(r),typeof(priord),typeof(propcv),typeof(fittedparam),typeof(method),typeof(components),typeof(reporter)}(r, transitions, G, nalleles, priord, propcv, fittedparam, fixedeffects, method, components, reporter)
else
return GRSMmodel{typeof(r),typeof(priord),typeof(propcv),typeof(fittedparam),typeof(method),typeof(components),typeof(reporter)}(r, transitions, G, R, S, insertstep, nalleles, splicetype, priord, propcv, fittedparam, fixedeffects, method, components, reporter)
end
else
~isa(method, Tuple) && throw("method not a Tuple")
load_model(data, r, rm, transitions, G, R, S, insertstep, nalleles, priorcv, decayrate, splicetype, propcv, fittedparam, fixedeffects, method, components, reporter, noisepriors, hierarchical)
end
end
"""
load_model(data, r, rm, transitions, G::Int, R, S, insertstep, nalleles, priorcv, decayrate, splicetype, propcv, fittedparam, fixedeffects, method, components, reporter, noisepriors, hierarchical)
"""
function load_model(data, r, rm, transitions, G::Int, R, S, insertstep, nalleles, priorcv, decayrate, splicetype, propcv, fittedparam, fixedeffects, method, components, reporter, noisepriors, hierarchical)
nhyper = hierarchical[1]
nrates = num_rates(transitions, R, S, insertstep) + reporter.n
nindividuals = length(data.trace[1])
nparams = length(hierarchical[2])
ratestart = nhyper * nrates + 1
paramstart = length(fittedparam) + nhyper * nparams + 1
fittedparam, fittedhyper, fittedpriors = make_fitted(fittedparam, hierarchical[1], hierarchical[2], nrates, nindividuals)
fixedeffects = make_fixed(fixedeffects, hierarchical[3], nrates, nindividuals)
rprior = rm[1:nhyper*nrates]
priord = prior_distribution(rprior, transitions, R, S, insertstep, fittedpriors, decayrate, priorcv, noisepriors)
pool = Pool(nhyper, nrates, nparams, nindividuals, ratestart, paramstart, fittedhyper)
GRSMhierarchicalmodel{typeof(r),typeof(priord),typeof(propcv),typeof(fittedparam),typeof(method),typeof(components),typeof(reporter)}(r, pool, transitions, G, R, S, insertstep, nalleles, splicetype, priord, propcv, fittedparam, fixedeffects, method, components, reporter)
end
function checklength(r, transitions, R, S, insertstep, reporter)
n = num_rates(transitions, R, S, insertstep)
if typeof(reporter) <: HMMReporter
(length(r) != n + reporter.n) && throw("r has wrong length")
else
(length(r) != n) && throw("r has wrong length")
end
nothing
end
"""
default_fitted(datatype, transitions, R, S, insertstep, noiseparams)
create vector of fittedparams that includes all rates except the decay time
"""
function default_fitted(datatype::String, transitions, R, S, insertstep, noiseparams)
n = num_rates(transitions, R, S, insertstep)
fittedparam = collect(1:n-1)
if occursin("trace", datatype)
fittedparam = vcat(fittedparam, collect(n+1:n+noiseparams))
end
fittedparam
end
"""
make_fixedfitted(fixedeffects::String,transitions,R,S,insertstep)
make default fixedeffects tuple and fittedparams vector from fixedeffects String
"""
function make_fixedfitted(datatype::String, fixedeffects::String, transitions, R, S, insertstep, noiseparams)
fittedparam = default_fitted(datatype, transitions, R, S, insertstep, noiseparams)
fixed = split(fixedeffects, "-")
if length(fixed) > 1
fixed = parse.(Int, fixed)
deleteat!(fittedparam, fixed[2:end])
fixed = tuple(fixed)
else
fixed = tuple()
end
return fixed, fittedparam
end
"""
make_fitted(fittedparams,N)
make fittedparams vector for hierarchical model
"""
function make_fitted(fittedshared, nhyper, fittedindividual, nrates, nindividuals)
f = [fittedshared; fittedindividual] # shared parameters come first followed by hyper parameters and individual parameters
fhyper = [fittedindividual]
for i in 1:nhyper-1
append!(f, fittedindividual .+ i * nrates)
push!(fhyper, fittedindividual .+ i * nrates)
end
fpriors = copy(f)
for i in 1:nindividuals
append!(f, fittedindividual .+ (i + nhyper - 1) * nrates)
end
f, fhyper, fpriors
end
"""
make_fixed(fixedpool, fixedindividual, nrates, nindividuals)
make fixed effects tuple for hierarchical model
"""
function make_fixed(fixedshared, fixedindividual, nrates, nindividuals)
fixed = Vector{Int}[]
for f in fixedshared
push!(fixed, f)
end
for h in fixedindividual
push!(fixed, [h + i * nrates for i in 0:nindividuals-1])
end
tuple(fixed...)
end
"""
prior_ratemean(transitions::Tuple, R::Int, S::Int, insertstep, decayrate, noisepriors)
default priors for rates (includes all parameters, fitted or not)
"""
function prior_ratemean(transitions::Tuple, R::Int, S::Int, insertstep, decayrate, noisepriors)
if S > 0
S = R - insertstep + 1
end
ntransitions = length(transitions)
nrates = num_rates(transitions, R, S, insertstep)
rm = fill(.1*max(R,1), nrates)
rm[collect(1:ntransitions)] .= 0.01
rm[nrates] = decayrate
[rm; noisepriors]
end
"""
prior_ratemean(transitions::Tuple, R::Int, S::Int, insertstep, decayrate, noisepriors, nindividuals, nhyper, cv=1.0)
default priors for hierarchical models, arranged into a single vector, shared and hyper parameters come first followed by individual parameters
"""
function prior_ratemean(transitions::Tuple, R::Int, S::Int, insertstep, decayrate, noisepriors, nhyper, cv=1.0)
rm = prior_ratemean(transitions::Tuple, R::Int, S::Int, insertstep, decayrate, noisepriors)
r = copy(rm)
for i in 2:nhyper
append!(r, cv .* rm)
end
# for i in 1:nindividuals
# append!(r, rm)
# end
r
end
function set_rates(rm, transitions::Tuple, R::Int, S::Int, insertstep, noisepriors, nindividuals)
r = copy(rm)
nrates = num_rates(transitions, R, S, insertstep) + length(noisepriors)
for i in 1:nindividuals
append!(r, rm[1:nrates])
end
r
end
"""
prior_distribution(rm, transitions, R::Int, S::Int, insertstep, fittedparam::Vector, decayrate, priorcv, noiseparams, weightind)
"""
function prior_distribution(rm, transitions, R::Int, S::Int, insertstep, fittedparam::Vector, decayrate, priorcv, noisepriors, factor=10)
if isempty(rm)
throw("No prior mean")
# rm = prior_ratemean(transitions, R, S, insertstep, decayrate, noisepriors)
end
if priorcv isa Number
n = num_rates(transitions, R, S, insertstep)
rcv = fill(priorcv, length(rm))
rcv[n] = 0.1
rcv[n+1:n+length(noisepriors)] /= factor
else
rcv = priorcv
end
if length(rcv) == length(rm)
return distribution_array(log.(rm[fittedparam]), sigmalognormal(rcv[fittedparam]), Normal)
else
throw("priorcv not the same length as prior mean")
end
end
"""
lossfn(x,data,model)
Compute loss function
"""
lossfn(x, data, model) = loglikelihood(x, data, model)[1]
"""
burstsize(fits,model::AbstractGMmodel)
Compute burstsize and stats using MCMC chain
"""
function burstsize(fits, model::AbstractGMmodel)
if model.G > 1
b = Float64[]
for p in eachcol(fits.param)
r = get_rates(p, model)
push!(b, r[2*model.G-1] / r[2*model.G-2])
end
return BurstMeasures(mean(b), std(b), median(b), mad(b), quantile(b, [0.025; 0.5; 0.975]))
else
return 0
end
end
function burstsize(fits::Fit, model::GRSMmodel)
if model.G > 1
b = Float64[]
L = size(fits.param, 2)
rho = 100 / L
println(rho)
for p in eachcol(fits.param)
r = get_rates(p, model)
if rand() < rho
push!(b, burstsize(r, model))
end
end
return BurstMeasures(mean(b), std(b), median(b), mad(b), quantile(b, [0.025; 0.5; 0.975]))
else
return 0
end
end
burstsize(r, model::AbstractGRSMmodel) = burstsize(r, model.R, length(model.Gtransitions))
function burstsize(r, R, ntransitions)
total = min(Int(div(r[ntransitions+1], r[ntransitions])) * 2, 400)
M = make_mat_M(make_components_M([(2, 1)], 2, R, total, r[end], ""), r)
# M = make_components_M(transitions, G, R, nhist, decay, splicetype)
nT = 2 * 2^R
L = nT * total
S0 = zeros(L)
S0[2] = 1.0
s = time_evolve_diff([1, 10 / minimum(r[ntransitions:ntransitions+R+1])], M, S0)
mean_histogram(s[2, collect(1:nT:L)])
end
"""
check_genename(gene,p1)
Check genename for p1
if p1 = "[" change to "("
(since swarm cannot parse "(")
"""
function check_genename(gene, p1)
if occursin(p1, gene)
if p1 == "["
gene = replace(gene, "[" => "(")
gene = replace(gene, "]" => ")")
elseif p1 == "("
gene = replace(gene, "(" => "]")
gene = replace(gene, ")" => "]")
end
end
return gene
end
"""
print_ll(param, data, model, message)
compute and print initial loglikelihood
"""
function print_ll(param, data, model, message)
ll, _ = loglikelihood(param, data, model)
println(message, ll)
end
function print_ll(data, model, message="initial ll: ")
ll, _ = loglikelihood(get_param(model), data, model)
println(message, ll)
end
"""
printinfo(gene,G,datacond,datapath,infolder,resultfolder,maxtime)
print out run information
"""
function printinfo(gene, G, datacond, datapath, infolder, resultfolder, maxtime)
println("Gene: ", gene, " G: ", G, " Treatment: ", datacond)
println("data: ", datapath)
println("in: ", infolder, " out: ", resultfolder)
println("maxtime: ", maxtime)
end
function printinfo(gene, G, R, S, insertstep, datacond, datapath, infolder, resultfolder, maxtime)
if R == 0
printinfo(gene, G, datacond, datapath, infolder, resultfolder, maxtime)
else
println("Gene: ", gene, " G R S insertstep: ", G, R, S, insertstep)
println("in: ", infolder, " out: ", resultfolder)
println("maxtime: ", maxtime)
end
end
"""
finalize(data,model,fits,stats,measures,temp,resultfolder,optimized,burst,writesamples,root)
write out run results and print out final loglikelihood and deviance
"""
function finalize(data, model, fits, stats, measures, temp, writefolder, optimized, burst, writesamples)
println("final max ll: ", fits.llml)
print_ll(transform_rates(vec(stats.medparam), model), data, model, "median ll: ")
println("Median fitted rates: ", stats.medparam[:, 1])
println("ML rates: ", inverse_transform_rates(fits.parml, model))
println("Acceptance: ", fits.accept, "/", fits.total)
if typeof(data) <: AbstractHistogramData
println("Deviance: ", deviance(fits, data, model))
end
println("rhat: ", maximum(measures.rhat))
if optimized != 0
println("Optimized ML: ", Optim.minimum(optimized))
println("Optimized rates: ", exp.(Optim.minimizer(optimized)))
end
writeall(writefolder, fits, stats, measures, data, temp, model, optimized=optimized, burst=burst, writesamples=writesamples)
end
function getcv(gene, G, nalleles, fittedparam, inlabel, infolder, root, verbose=true)
paramfile = path_Gmodel("param-stats", gene, G, nalleles, inlabel, infolder, root)
if isfile(paramfile)
cv = read_covlogparam(paramfile)
cv = float.(cv)
if ~isposdef(cv) || size(cv)[1] != length(fittedparam)
cv = 0.02
end
else
cv = 0.02
end
if verbose
println("cv: ", cv)
end
return cv
end
"""
get_decay(gene::String,cell::String,root::String,col::Int=2)
get_decay(gene::String,path::String,col::Int)
Get decay rate for gene and cell
"""
function get_decay(gene::String, cell::String, root::String, col::Int=2)
if uppercase(cell) == "HBEC"
if uppercase(gene) β uppercase.(genes_hbec())
# return log(2.0) / (60 .* halflife_hbec()[gene])
return get_decay(halflife_hbec()[gene])
else
println(gene, " has no decay time")
return 1.0
end
else
path = get_file(root, "data/halflives", cell, "csv")
if isnothing(path)
println(gene, " has no decay time")
return -1.0
else
return get_decay(gene, path, col)
end
end
end
function get_decay(gene::String, path::String, col::Int)
a = nothing
in = readdlm(path, ',')
ind = findfirst(in[:, 1] .== gene)
if ~isnothing(ind)
a = in[ind, col]
end
get_decay(a, gene)
end
function get_decay(a, gene::String)
if typeof(a) <: Number
return get_decay(float(a))
else
println(gene, " has no decay time")
return 1.0
end
end
get_decay(a::Float64) = log(2) / a / 60.0
"""
alleles(gene::String,cell::String,root::String,col::Int=3)
alleles(gene::String,path::String,col::Int=3)
Get allele number for gene and cell
"""
function alleles(gene::String, cell::String, root::String; nalleles::Int=2, col::Int=3)
path = get_file(root, "data/alleles", cell, "csv")
if isnothing(path)
return 2
else
alleles(gene, path, nalleles=nalleles, col=col)
end
end
function alleles(gene::String, path::String; nalleles::Int=2, col::Int=3)
a = nothing
in, h = readdlm(path, ',', header=true)
ind = findfirst(in[:, 1] .== gene)
if isnothing(ind)
return nalleles
else
a = in[ind, col]
return isnothing(a) ? nalleles : Int(a)
end
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 13745 | # This file is part of StochasticGene.jl
#
#genetrap.jl
#Fit GRSM models to live cell and smFISH data
"""
HBEC gene information
"""
genes_gt() = ["CANX"; "DNAJC5"; "ERRFI1"; "KPNB1"; "MYH9"; "Rab7a"; "RHOA"; "RPAP3"; "Sec16A"; "SLC2A1"]
genelength_gt() = Dict([("Sec16A", 42960); ("SLC2A1", 33802); ("ERRFI1", 14615); ("RHOA", 52948); ("KPNB1", 33730); ("MYH9", 106741); ("DNAJC5", 40930); ("CANX", 32710); ("Rab7a", 88663); ("RPAP3", 44130); ("RAB7A", 88663); ("SEC16A", 42960)])
MS2end_gt() = Dict([("Sec16A", 5220); ("SLC2A1", 26001); ("ERRFI1", 5324); ("RHOA", 51109); ("KPNB1", 24000); ("MYH9", 71998); ("DNAJC5", 14857); ("CANX", 4861); ("Rab7a", 83257); ("RPAP3", 38610);("SEC16A", 5220); ("RAB7A", 83257)])
halflife_gt() = Dict([("CANX", 50.0), ("DNAJC5", 5.0), ("ERRFI1", 1.35), ("KPNB1", 9.0), ("MYH9", 10.0), ("Rab7a", 50.0), ("RHOA", 50.0), ("RPAP3", 7.5), ("Sec16A", 8.0), ("SLC2A1", 5.0), ("RAB7A", 50.0), ("SEC16A", 8.0)])
function insert_site_gt(R)
for g in genes_gt()
println(g, ": ", ceil(MS2end_gt()[g] / genelength_gt()[g] * R))
end
end
"""
fit_genetrap()
"""
function fit_genetrap(nchains, maxtime, gene::String, transitions, G::Int, R::Int, S::Int, insertstep::Int; onstates=[], priorcv=10.0, propcv=0.01, fittedparam=collect(1:num_rates(transitions, R, R, insertstep)-1), infolder::String="test", folder::String="test", samplesteps::Int=1000, nalleles::Int=2, label="gt", splicetype="", warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, temprna=1.0, root::String=".", burst=false)
println(now())
folder = folder_path(folder, root, "results", make=true)
infolder = folder_path(infolder, root, "results")
data, model = genetrap(root, gene, transitions, G, R, S, insertstep, 2, splicetype, fittedparam, infolder, folder, label, "ml", temprna, priorcv, propcv, onstates)
println("size of histogram: ", data.nRNA)
options = MHOptions(samplesteps, warmupsteps, annealsteps, maxtime, temp, tempanneal)
println(model.rates)
print_ll(data, model)
fits, stats, measures = run_mh(data, model, options, nchains)
if burst
bs = burstsize(fit, model)
else
bs = 0
end
# finalize(data,model,fits,stats,measures,1.,folder,0,bs,root)
finalize(data, model, fits, stats, measures, temp, folder, 0, burst, false, root)
println(now())
return data, model_genetrap(gene, get_rates(fits.parml, model), transitions, G, R, S, insertstep, fittedparam, nalleles, data.nRNA + 2, priorcv, propcv, onstates, splicetype), fits, stats, measures
end
"""
genetrap()
Load data, model and option structures for metropolis-hastings fit
root is the folder containing data and results
FISH counts is divided by temprna to adjust relative weights of data
set temprna = 0 to equalize FISH and live cell counts,
"""
function genetrap(root, gene::String, transitions::Tuple, G::Int, R::Int, S::Int, insertstep::Int, nalleles, splicetype::String, fittedparam::Vector, infolder::String, label::String, ratetype::String, temprna, priorcv, propcv, onstates, tracedata)
r = readrates_genetrap(infolder, ratetype, gene, label, G, R, S, insertstep, nalleles, splicetype)
genetrap(root, r, label, gene, transitions, G, R, S, insertstep, nalleles, splicetype, fittedparam, temprna, priorcv, propcv, onstates, tracedata)
end
function genetrap(root, r, label::String, gene::String, transitions::Tuple, G::Int, R::Int, S::Int, insertstep::Int, nalleles::Int=2, splicetype::String="", fittedparam=collect(1:num_rates(transitions, R, S, insertstep)-1), temprna=1.0, priorcv=10.0, propcv=0.01, onstates=[], tracedata="")
data = R == 0 ? data_genetrap_FISH(root, label, gene) : data_genetrap(root, label, gene, temprna, tracedata)
model = model_genetrap(gene, r, transitions, G, R, S, insertstep, fittedparam, nalleles, data.nRNA + 2, priorcv, propcv, onstates, splicetype)
return data, model
end
function data_genetrap(root, label, gene, temprna, tracefolder)
if ~isempty(tracefolder)
traces = read_tracefiles(tracefolder,"",',')
histFISH = readFISH_genetrap(root, gene, temprna)
return TraceRNAData("traceRNA", "test", interval, traces, length(histFISH),histFISH)
else
LC = readLCPDF_genetrap(root, gene)
if temprna == 0
counts = Int(div(sum(LC[:, 2] + LC[:, 3]), 2))
println(counts)
# set FISH counts to mean of live cell counts
histFISH = readFISH_genetrap(root, gene, counts)
else
histFISH = readFISH_genetrap(root, gene, temprna)
end
return RNAOnOffData(label, gene, length(histFISH), histFISH, LC[:, 1], LC[:, 3], LC[:, 2])
end
end
function data_genetrap_FISH(root, label, gene)
histFISH = readFISH_genetrap(root, gene, 1.0)
RNAData(label, gene, length(histFISH), histFISH)
end
"""
model_genetrap
load model structure
"""
function model_genetrap(gene::String, r, transitions, G::Int, R::Int, S::Int, insertstep::Int, fittedparam::Vector, nalleles::Int, nhist::Int, priorcv=10.0, propcv=0.01, onstates=Int[], splicetype="", method=1)
if S > 0
S = R
end
if isempty(onstates)
onstates = on_states(G, R, S, insertstep)
end
nrates = num_rates(transitions, R, S, insertstep)
rm = fill(0.1, nrates)
rcv = [fill(priorcv, length(rm) - 1); 0.1]
if gene β genes_gt()
rm[nrates] = log(2.0) / (60 .* halflife_gt()[gene])
end
if r == 0.0
r = rm
end
println(r)
d = distribution_array(log.(rm[fittedparam]), sigmalognormal(rcv[fittedparam]), Normal)
components = make_components_MTAI(transitions, G, R, S, insertstep, on_states(G, R, S, insertstep), nhist, r[num_rates(transitions, R, S, insertstep)])
return GRSMmodel{typeof(r),typeof(d),typeof(propcv),typeof(fittedparam),typeof(method),typeof(components),typeof(onstates)}(G, R, S, insertstep, nalleles, splicetype, r, d, propcv, fittedparam, method, transitions, components, onstates)
end
# """
# setpriorrate(G,R,gene,Gprior::Tuple,Sprior::Tuple,Rcv::Float64)
# Set prior distribution for mean and cv of rates
# """
# function prior_rates_genetrap(G, R, gene, Gprior::Tuple, Sprior::Tuple, Rcv::Float64)
# n = G - 1
# rm = [fill(Gprior[1], 2 * n); .1; fill(.1, R); fill(Sprior[1], R); log(2.0) / (60 .* halflife_gt()[gene])]
# rcv = [fill(Gprior[2], 2 * n); Rcv; Rcv; fill(Sprior[2], 2 * R); 0.01]
# return rm, rcv
# end
function flip_dwelltimes(folder)
for (root, dirs, files) in walkdir(folder)
for file in files
target = joinpath(root, file)
c = readdlm(target,',')
writedlm(target,[c[:,1] c[:,3] c[:,2]],',')
end
end
end
"""
readrates_genetrap(infolder::String,ratetype::String,gene::String,label,G,R,nalleles,splicetype::String)
Read in initial rates from previous runs
"""
function readrates_genetrap(infolder::String, ratetype::String, gene::String, label, G, R, S, insertstep, nalleles, splicetype::String)
row = get_row()[ratetype]
readrates_genetrap(getratefile_genetrap(infolder, ratetype, gene, label, G, R, S, insertstep, nalleles, splicetype), row)
end
function readrates_genetrap(infile::String, row::Int)
if isfile(infile) && ~isempty(read(infile))
println(infile, ", row: ", get_ratetype()[row])
return readrates(infile, row, true)
else
println("using default rates")
return 0
end
end
"""
getratefile_genetrap(infolder::String, ratetype::String, gene::String, label, G, R, S, insertstep, nalleles, splicetype::String)
TBW
"""
function getratefile_genetrap(infolder::String, ratetype::String, gene::String, label, G, R, S, insertstep, nalleles, splicetype::String)
model = R == 0 ? "$G" : "$G$R$S$insertstep"
file = "rates" * "_" * label * "_" * gene * "_" * model * "_" * "$(nalleles)" * "$splicetype" * ".txt"
joinpath(infolder, file)
end
"""
readLCPDF_genetrap(root,gene)
Read in dwell time PDF
"""
function readLCPDF_genetrap(root, gene)
infile = joinpath(root, "DwellTimePDF/$(gene)_PDF.csv")
if isfile(infile)
LC = readdlm(infile, ',')
x = truncate_histogram(LC[:, 2], 0.999, 1000)
LC[1:length(x), :]
else
println("No data for gene: ", gene)
end
end
"""
readFISH_genetrap(root,gene,temp=1.,clone=true)
Read and assemble smFISH data
"""
function readFISH_genetrap(root::String, gene::String, temp::Float64=1.0, clone=true)
counts = countsFISH_genetrap(root, gene, clone)
readFISH_genetrap(root, gene, Int(div(counts, temp)), clone)
end
function readFISH_genetrap(root::String, gene::String, counts::Int, clone=true)
fishfile = joinpath(root, "Fish_4_Genes/$(gene)_steady_state_mRNA.csv")
col = clone ? 3 : 2
# Get smFISH RNA histograms
if isfile(fishfile)
x = readdlm(fishfile, ',')[3:end, col]
x = x[x.!=""]
x = truncate_histogram(x, 0.99, 1000)
x /= sum(x)
x *= counts
return x
else
println("No smFISH data for gene: ", gene)
end
nothing
end
function make_FISH_histograms(root::String, temp::Float64=1.0, clone=true)
path = joinpath(root,"data/FISH")
if ~ispath(path)
mkpath(path)
end
for gene in genes_gt()
h = readFISH_genetrap(root, gene, temp, clone)
file = joinpath(path,"$(gene)_gt.txt")
writedlm(file,h)
end
end
"""
countsFISH_genetrap(root,gene,x,counts,clone=true)
read in smFISH counts
"""
function countsFISH_genetrap(root, gene, clone=true)
countfile = joinpath(root, "counts/total_counts.csv")
wttext = "WT_"
clonetext = "_clone"
if isfile(countfile)
countsdata = readdlm(countfile, ',')[:, :]
if clone
counts = (countsdata[findall(uppercase("$(gene)$clonetext") .== uppercase.(countsdata[:, 1])), 2])[1]
else
counts = (countsdata[findall("$wttext$(gene)" .== countsdata[:, 1]), 2])[1]
end
else
counts = 1000
end
return counts
end
"""
survival_fraction(nu,eta,nr)
Fraction of introns that are not spliced prior to ejection
"""
function survival_fraction(nu, eta, nr)
pd = 1.0
for i = 1:nr
pd *= nu[i+1] / (nu[i+1] + eta[i])
end
return pd
end
# """
# get_gamma(r,n,nr)
# G state forward and backward transition rates
# for use in transition rate matrices of Master equation
# (different from gamma used in Gillespie algorithms)
# """
# function get_gamma(r, n)
# gammaf = zeros(n + 2)
# gammab = zeros(n + 2)
# for i = 1:n
# gammaf[i+1] = r[2*(i-1)+1]
# gammab[i+1] = r[2*i]
# end
# return gammaf, gammab
# end
# """
# get_nu(r,n,nr)
# R step forward transition rates
# """
# function get_nu(r, n, nr)
# r[2*n+1:2*n+nr+1]
# end
# """
# get_eta(r,n,nr)
# Intron ejection rates at each R step
# """
# function get_eta(r, n, nr)
# eta = zeros(nr)
# if length(r) > 2 * n + 2 * nr
# eta[1] = r[2*n+1+nr+1]
# for i = 2:nr
# # eta[i] = eta[i-1] + r[2*n + 1 + nr + i]
# eta[i] = r[2*n+1+nr+i]
# end
# end
# return eta
# end
# """
# Parameter information for GR models
# """
# function num_rates(transitions::Tuple, R)
# length(transitions) + 2 * R + 2
# end
# function num_rates(G::Int, R)
# 2 * G + 2 * R
# end
# function Grange(G::Int)
# n = G - 1
# 1:2*n
# end
# function initiation(G::Int)
# n = G - 1
# 2 * n + 1
# end
# function Rrange(G::Int, R)
# n = G - 1
# 2*n+2:2*n+R+1
# end
# function Srange(G::Int, R)
# n = G - 1
# 2*n+R+2:2*n+2*R+1
# end
# """
# priordistributionLogNormal_genetrap(r,cv,G,R)
# LogNormal Prior distribution
# """
# function priordistributionLogNormal_genetrap(r, cv, G, R)
# sigma = sigmalognormal(cv)
# d = []
# j = 1
# # G rates
# for i in Grange(G)
# push!(d, Distributions.LogNormal(log(r[i]), sigma[j]))
# j += 1
# end
# # initiation rate
# i = initiation(G)
# push!(d, Distributions.LogNormal(log(r[i]), sigma[j]))
# j += 1
# # Step rates are bounded by length of insertion site to end of gene, i.e sum of reciprocal rates is bounded
# t = sum(1 ./ r[Rrange(G, R)])
# push!(d, Distributions.LogNormal(-log(t), sigma[j]))
# j += 1
# # priors for splice rates
# rs = 0.0
# for i in Srange(G, R)
# rs = r[i]
# push!(d, Distributions.LogNormal(log(rs), sigma[j]))
# j += 1
# end
# return d
# end
# """
# priordistributionGamma_genetrap(r,cv,G,R)
# Gamma Prior distribution
# """
# function priordistributionGamma_genetrap(rm, cv, G, R)
# n = G - 1
# zet = R
# d = []
# rsig = cv .^ 2
# j = 1
# # priors for G rates
# for i in Grange(G)
# theta = rsig[j] * rm[i]
# alpha = 1 / rsig[j]
# push!(d, Distributions.Gamma(alpha, theta))
# j += 1
# end
# # prior for nu1 is upper bounded by rm, i.e. distance is bounded by distance to insertion site
# theta = rsig[j] * rm[initiation(G)]
# alpha = 1 / rsig[j]
# push!(d, Distributions.Gamma(alpha, theta))
# j += 1
# # priors for nu rates are bounded by length of insertion site to end of gene, i.e sum of reciprocal rates is bounded
# tm = sum(1 ./ rm[Rrange(G, R)])
# # for i in 2*n + 2 : 2*n + zet + 1
# # tm += 1/rm[i]
# # end
# theta = rsig[j] / tm
# alpha = 1 / rsig[j]
# push!(d, Distributions.Gamma(alpha, theta))
# j += 1
# # priors for ejection rates
# rs = 0
# for i in Srange(G, R)
# rs = rm[i]
# theta = rsig[j] * rs
# alpha = 1 / rsig[j]
# push!(d, Distributions.Gamma(alpha, theta))
# j += 1
# end
# return d
# end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 17750 | # This file is part of StochasticGene.jl
### hmm.jl
### Fit discrete HMMs and continuous hidden Markov process models directly to intensity traces
###
### Notation in discrete HMM algorithms follows Rabier, 1989
###
### Functions for forward, backward, and Viterbi HMM algorihms
### For continuous processes, numerically solve forward Kolmogorov equation to obtain transition probability matrix
###
"""
ll_hmm(r, nT, reporters, elementsT, interval, trace)
return total loglikelihood of traces with reporter noise and loglikelihood of each trace
"""
function ll_hmm(r, nT, elementsT::Vector, noiseparams, reporters_per_state, probfn, offstates, interval, trace)
a, p0 = make_ap(r, interval, elementsT, nT)
lb = trace[3] > 0. ? ll_background(a, p0, offstates, trace[3], trace[4]) : 0.
ll, lp = ll_hmm(r, nT, noiseparams::Int, reporters_per_state, probfn, trace[1], log.(max.(a, 0)), log.(max.(p0, 0)))
return ll + lb, lp
end
function ll_hmm(r, nT, noiseparams::Int, reporters_per_state, probfn, traces, loga, logp0)
logpredictions = Array{Float64}(undef, 0)
for t in traces
T = length(t)
logb = set_logb(t, nT, r[end-noiseparams+1:end], reporters_per_state, probfn)
l = forward_log(loga, logb, logp0, nT, T)
push!(logpredictions, logsumexp(l[:, T]))
end
# for t in trace[2]
# T = length(t)
# logb = set_logb(t, nT, r[end-noiseparams+1:end], reporters_per_state, probfn)
# l = forward_log(loga, logb, logp0, nT, T)
# push!(logpredictions, trace[3] / length(trace[2]) * logsumexp(l[:, T]))
# end
-sum(logpredictions), -logpredictions
end
function ll_hmm_nascent(r, nT, elementsT::Vector, noiseparams, reporters_per_state, probfn, interval, trace, nascent)
a, p0 = make_ap(r, interval, elementsT, nT)
lln = ll_nascent(p0, reporters_per_state, nascent)
ll, logpredictions = ll_hmm(r, nT, noiseparams, reporters_per_state, probfn, trace, log.(max.(a, 0)), log.(max.(p0, 0)))
push!(logpredictions, lln)
ll += lln
ll, logpredictions
end
function ll_nascent(p0, reporters_per_state, nascent)
pn = sum(p0[reporters_per_state.>0])
d = Binomial(nascent[2], pn)
-logpdf(d, nascent[1])
end
function ll_background(a, p0, offstates, weight, n)
l = -log(sum(p0[offstates]' * a[offstates, offstates]^n))
weight * l
end
"""
ll_hmm_hierarchical(r::Matrix, nT, elementsT::Vector, noiseparams, reporters_per_state, probfn, interval, trace)
TBW
"""
function ll_hmm_hierarchical(r::Matrix, nT, elementsT::Vector, noiseparams, reporters_per_state, probfn, interval, trace)
logpredictions = Array{Float64}(undef, 0)
for (i, t) in enumerate(trace[1])
T = length(t)
loga, logp0 = make_logap(r[:, i], interval, elementsT, nT)
logb = set_logb(t, nT, r[end-noiseparams+1:end, i], reporters_per_state, probfn)
l = forward_log(loga, logb, logp0, nT, T)
push!(logpredictions, logsumexp(l[:, T]))
end
-sum(logpredictions), -logpredictions
end
function ll_hmm_hierarchical_rateshared(r::Matrix, nT, elementsT::Vector, noiseparams, reporters_per_state, probfn, interval, trace)
logpredictions = Array{Float64}(undef, 0)
loga, logp0 = make_logap(r[:, 1], interval, elementsT, nT)
for (i, t) in enumerate(trace[1])
T = length(t)
logb = set_logb(t, nT, r[end-noiseparams+1:end, i], reporters_per_state, probfn)
l = forward_log(loga, logb, logp0, nT, T)
push!(logpredictions, logsumexp(l[:, T]))
end
-sum(logpredictions), -logpredictions
end
function ll_hmm_hierarchical_rateshared_background(r::Matrix, nT, elementsT::Vector, noiseparams, reporters_per_state, probfn, offstates, interval, trace)
logpredictions = Array{Float64}(undef, 0)
# loga, logp0 = make_logap(r[:, 1], interval, elementsT, nT)
a, p0 = make_ap(r[:,1], interval, elementsT, nT)
lb = trace[3] > 0 ? ll_background(a, p0, offstates, trace[3], trace[4]) : 0.
# lb = ll_background(r[end-noiseparams+1:end, i], a, p0, offstates, trace[3], trace[4])
loga = log.(max.(a, 0))
logp0 = log.(max.(p0, 0))
for (i, t) in enumerate(trace[1])
T = length(t)
logb = set_logb(t, nT, r[end-noiseparams+1:end, i], reporters_per_state, probfn)
l = forward_log(loga, logb, logp0, nT, T)
push!(logpredictions, logsumexp(l[:, T]))
end
-sum(logpredictions) + lb, -logpredictions
end
"""
make_ap(r, interval, elementsT, nT )
Return computed discrete HMM transition probability matrix a and equilibrium state probability p0
a is computed by numerically integrating Kolmogorov Forward equation for the underlying stochastic continuous time Markov process behind the GRSM model
p0 is left nullspace of transition rate matrix Q (right nullspace of Q')
Arguments:
- `r`: transition rates
- `interval`: time interval between intensity observations
- `elementsT`: structure of T matrix elements
- `N`: number of HMM states
Qtr is the transpose of the Markov process transition rate matrix Q
"""
function make_ap(r, interval, elementsT, N)
Qtr = make_mat(elementsT, r, N) ## transpose of the Markov process transition rate matrix Q
kolmogorov_forward(sparse(Qtr'), interval), normalized_nullspace(Qtr)
end
make_p0(r, elementsT, N) = normalized_nullspace(make_mat(elementsT, r, N))
"""
make_logap(r, transitions, interval, G)
return log of a and p0
"""
function make_logap(r, interval, elementsT, N)
a, p0 = make_ap(r, interval, elementsT, N)
log.(max.(a, 0)), log.(max.(p0, 0))
end
"""
set_logb(trace, N, params, reporters)
returns matrix logb = P(Observation_i | State_j) for Gaussian distribution
-`trace`: Tx2 matrix of intensities. Col 1 = time, Col 2 = intensity
-`N`: number of hidden states
-`T`: number of observations
"""
function set_logb(trace, N, params, reporters, probfn=prob_Gaussian)
d = probfn(params, reporters, N)
logb = Matrix{Float64}(undef, N, length(trace))
t = 1
for obs in trace
for j in 1:N
logb[j, t] = logpdf(d[j], obs)
end
t += 1
end
return logb
end
# function set_logb_discrete(trace, N, onstates)
# logb = Matrix{Float64}(undef, N, length(trace))
# t = 1
# for obs in trace
# if (obs > 0.5 && state β onstates) || (obs < 0.5 && state β onstates)
# logb[j, t] = 0.0
# else
# logb[j, t] = -Inf
# end
# end
# end
"""
prob_Gaussian(par, reporters, N)
return Gaussian Distribution
mean = background + number of reporters * reporter mean
variance = sum of variances of background and reporters
- `par`: 4 dimemsional vector of mean and std parameters
- `reporters`: number of reporters per HMM state
-`N`: number of HMM states
"""
function prob_Gaussian(par, reporters, N)
d = Array{Distribution{Univariate,Continuous}}(undef, N)
for i in 1:N
d[i] = Normal(par[1] + reporters[i] * par[3], sqrt(par[2]^2 + reporters[i] * par[4]^2))
end
d
end
"""
prob_GaussianMixture(par,reporters,N)
return Gaussian Mixture distribution with 4 Gaussian parameters and 1 weight parameter
"""
function prob_GaussianMixture(par, reporters, N)
d = Array{Distribution{Univariate,Continuous}}(undef, N)
for i in 1:N
d[i] = MixtureModel(Normal, [(par[1] + reporters[i] * par[3], sqrt(par[2]^2 + reporters[i] * par[4]^2)), (par[1], par[2])], [par[5], 1 - par[5]])
end
d
end
"""
prob_GaussianMixture_6(par, reporters, N)
Gaussian Mixture distribution with 6 Gaussian parameters and 1 weight parameter
"""
function prob_GaussianMixture_6(par, reporters, N)
d = Array{Distribution{Univariate,Continuous}}(undef, N)
for i in 1:N
d[i] = MixtureModel(Normal, [(par[1] + reporters[i] * par[3], sqrt(par[2]^2 + reporters[i] * par[4]^2)), (par[5], par[6])], [par[7], 1 - par[7]])
end
d
end
"""
kolmogorov_forward(Q::Matrix,interval)
return the solution of the Kolmogorov forward equation
returns initial condition and solution at time = interval
- `Q`: transition rate matrix
- `interval`: interval between frames (total integration time)
"""
function kolmogorov_forward(Q, interval, save=false, method=Tsit5())
tspan = (0.0, interval)
prob = ODEProblem(fkf!, Matrix(I, size(Q)), tspan, Q)
solve(prob, method, save_everystep=save)[:, 2]
end
"""
fkf!(du,u::Matrix, p, t)
in place update of du of ODE system for DifferentialEquations,jl
"""
function fkf!(du, u::Matrix, p, t)
du .= u * p
end
"""
expected_transitions(Ξ±, a, b, Ξ², N, T)
returns ΞΎ and Ξ³
ΞΎ[i,j,t] = P(q[t] = S[i], q[t+1] = S[j] | O, Ξ»)
Ξ³[i,t] = β_j ΞΎ[i,j,t]
"""
function expected_transitions(Ξ±, a, b, Ξ², N, T)
ΞΎ = Array{Float64}(undef, N, N, T - 1)
Ξ³ = Array{Float64}(undef, N, T - 1)
for t in 1:T-1
for j = 1:N
for i = 1:N
ΞΎ[i, j, t] = Ξ±[i, t] * a[i, j] * b[j, t+1] * Ξ²[j, t+1]
end
end
S = sum(ΞΎ[:, :, t])
ΞΎ[:, :, t] = S == 0.0 ? zeros(N, N) : ΞΎ[:, :, t] / S
Ξ³[:, t] = sum(ΞΎ[:, :, t], dims=2)
end
return ΞΎ, Ξ³
end
"""
expected_transitions_log(logΞ±, a, b, logΞ², N, T)
TBW
"""
function expected_transitions_log(logΞ±, a, b, logΞ², N, T)
ΞΎ = Array{Float64}(undef, N, N, T - 1)
Ξ³ = Array{Float64}(undef, N, T - 1)
for t in 1:T-1
for j = 1:N
for i = 1:N
ΞΎ[i, j, t] = logΞ±[i, t] + log(a[i, j]) + log(b[j, t+1]) + logΞ²[j, t+1]
end
end
S = logsumexp(ΞΎ[:, :, t])
ΞΎ[:, :, t] .-= S
for i in 1:N
Ξ³[i, t] = logsumexp(ΞΎ[i, :, t])
end
end
return ΞΎ, Ξ³
end
"""
expected_a(a, b, p0, N, T)
expected_a(ΞΎ, Ξ³, N)
returns the expected probability matrix a
"""
function expected_a(a, b, p0, N, T)
Ξ±, C = forward(a, b, p0, N, T)
Ξ² = backward(a, b, C, N, T)
ΞΎ, Ξ³ = expected_transitions(Ξ±, a, b, Ξ², N, T)
expected_a(ΞΎ, Ξ³, N)
end
function expected_a(ΞΎ, Ξ³, N::Int)
a = zeros(N, N)
ΞΎS = sum(ΞΎ, dims=3)
Ξ³S = sum(Ξ³, dims=2)
for i in 1:N, j in 1:N
a[i, j] = ΞΎS[i, j] / Ξ³S[i]
end
return a
end
function expected_a_log(a, b, p0, N, T)
Ξ± = forward_log(a, b, p0, N, T)
Ξ² = backward_log(a, b, N, T)
ΞΎ, Ξ³ = expected_transitions_log(Ξ±, a, b, Ξ², N, T)
expected_a_log(ΞΎ, Ξ³, N)
end
function expected_a_log(ΞΎ, Ξ³, N::Int)
a = zeros(N, N)
ΞΎS = zeros(N, N)
Ξ³S = zeros(N)
for i in 1:N
for j in 1:N
ΞΎS[i, j] = logsumexp(ΞΎ[i, j, :])
end
Ξ³S[i] = logsumexp(Ξ³[i, :])
end
for i in 1:N, j in 1:N
a[i, j] = ΞΎS[i, j] - Ξ³S[i]
end
return a
end
function expected_a_loop(a, b, p0, N, T)
Ξ± = forward_loop(a, b, p0, N, T)
Ξ² = backward_loop(a, b, N, T)
ΞΎ, Ξ³ = expected_transitions(Ξ±, a, b, Ξ², N, T)
expected_rate(ΞΎ, Ξ³, N)
end
"""
forward(a, b, p0, N, T)
returns forward variable Ξ±, and scaling parameter array C using scaled forward algorithm
Ξ±[i,t] = P(O1,...,OT,qT=Si,Ξ»)
Ct = Prod_t 1/β_i Ξ±[i,t]
"""
function forward(a, b, p0, N, T)
Ξ± = zeros(N, T)
C = Vector{Float64}(undef, T)
Ξ±[:, 1] = p0 .* b[:, 1]
C[1] = 1 / sum(Ξ±[:, 1])
Ξ±[:, 1] *= C[1]
for t in 2:T
for j in 1:N
for i in 1:N
Ξ±[j, t] += Ξ±[i, t-1] * a[i, j] * b[j, t]
end
end
C[t] = 1 / sum(Ξ±[:, t])
Ξ±[:, t] *= C[t]
end
return Ξ±, C
end
"""
forward_log(a, b, p0, N, T)
forward_log!(Ο, Ο, loga, logb, logp0, N, T)
returns log Ξ±
(computations are numerically stable)
"""
function forward_log(loga, logb, logp0, N, T)
Ο = zeros(N)
Ο = Matrix{Float64}(undef, N, T)
forward_log!(Ο, Ο, loga, logb, logp0, N, T)
return Ο
end
function forward_log!(Ο, Ο, loga, logb, logp0, N, T)
Ο[:, 1] = logp0 + logb[:, 1]
for t in 2:T
for k in 1:N
for j in 1:N
Ο[j] = Ο[j, t-1] + loga[j, k] + logb[k, t]
end
Ο[k, t] = logsumexp(Ο)
end
end
end
"""
forward_loop(a, b, p0, N, T)
return Ξ± using unscaled forward algorithm
(numerically unstable for large T)
"""
function forward_loop(a, b, p0, N, T)
Ξ± = zeros(N, T)
Ξ±[:, 1] = p0 .* b[:, 1]
for t in 2:T
for j in 1:N
for i in 1:N
Ξ±[j, t] += Ξ±[i, t-1] * a[i, j] * b[j, t]
end
end
end
return Ξ±
end
"""
backward_scaled(a,b)
return backward variable Ξ² using scaled backward algorithm
Ξ²[i,T] = P(O[t+1]...O[t] | qT = Si,Ξ»)
"""
function backward(a, b, C, N, T)
Ξ² = ones(N, T)
Ξ²[:, T] /= C[T]
for t in T-1:-1:1
for i in 1:N
for j in 1:N
Ξ²[i, t] += a[i, j] * b[j, t+1] * Ξ²[j, t+1]
end
end
Ξ²[:, t] /= C[t]
end
return Ξ²
end
"""
backward_log(a, b, N, T)
return log Ξ²
"""
function backward_log(a, b, N, T)
loga = log.(a)
Ο = zeros(N)
Ο = Matrix{Float64}(undef, N, T)
Ο[:, T] = [0.0, 0.0]
for t in T-1:-1:1
for i in 1:N
for j in 1:N
Ο[j] = Ο[j, t+1] + loga[i, j] + log.(b[j, t+1])
end
Ο[i, t] = logsumexp(Ο)
end
end
return Ο
end
"""
backward_loop(a, b, N, T)
returns Ξ² using unscaled backward algorithm
(numerically unstable for large T)
"""
function backward_loop(a, b, N, T)
Ξ² = zeros(N, T)
Ξ²[:, T] = [1.0, 1.0]
for t in T-1:-1:1
for i in 1:N
for j in 1:N
Ξ²[i, t] += a[i, j] * b[j, t+1] * Ξ²[j, t+1]
end
end
end
return Ξ²
end
"""
viterbi(loga, logb, logp0, N, T)
returns maximum likelihood state path using Viterbi algorithm
"""
function viterbi(loga, logb, logp0, N, T)
Ο = similar(logb)
Ο = similar(Ο)
q = Vector{Int}(undef, T)
Ο[:, 1] = logp0 + logb[:, 1]
Ο[:, 1] .= 0
for t in 2:T
for j in 1:N
m, Ο[j, t] = findmax(Ο[:, t-1] + loga[:, j])
Ο[j, t] = m + logb[j, t]
end
end
q[T] = argmax(Ο[:, T])
for t in T-1:-1:1
q[t] = Ο[q[t+1], t+1]
end
return q
end
"""
viterbi_exp(a, b, p0, N, T)
returns maximum likelihood state path using Viterbi algorithm
"""
function viterbi_exp(a, b, p0, N, T)
loga = log.(a)
logb = log.(b)
logp0 = log.(p0)
viterbi(loga, logb, logp0, N, T)
end
"""
predicted_statepath(r::Vector, N::Int, elementsT, noiseparams, reporters_per_state, probfn, T::Int, interval)
predicted_statepath(r, tcomponents, reporter, T, interval)
return predicted state path using Viterbi algorithm
"""
function predicted_statepath(trace, interval, r::Vector, N::Int, elementsT, noiseparams, reporters_per_state, probfn)
loga, logp0 = make_logap(r, interval, elementsT, N)
logb = set_logb(trace, N, r[end-noiseparams+1:end], reporters_per_state, probfn)
viterbi(loga, logb, logp0, N, length(trace))
end
function predicted_statepath(trace, interval, r, tcomponents, reporter)
predicted_statepath(trace, interval, r, tcomponents.nT, tcomponents.elementsT, reporter.n, reporter.per_state, reporter.probfn)
end
"""
predicted_trace(statepath, noise_dist)
predicted_trace(statepath, r, reporter, nstates)
return predicted trace from state path
"""
function predicted_trace(statepath, noise_dist)
[mean(noise_dist[state]) for state in statepath]
end
function predicted_trace(statepath, r, reporter, nstates)
d = model.reporter.probfn(r[end-model.reporter.n+1:end], reporter.per_state, nstates)
predicted_trace(statepath, d)
end
"""
predicted_trace_state(trace, interval, r::Vector, tcomponents, reporter, noise_dist)
return predicted trace and state path
"""
function predicted_trace_state(trace, interval, r::Vector, tcomponents, reporter, noise_dist)
t = predicted_statepath(trace, interval, r, tcomponents, reporter)
tp = predicted_trace(t, noise_dist)
return tp, t
end
function predicted_trace_state(trace, interval, model)
d = model.reporter.probfn(model.rates[end-model.reporter.n+1:end], model.reporter.per_state, tcomponent(model).nT)
predicted_trace_state(trace, interval, model.rates, model.tcomponents, model.reporter, d)
end
# function predicted_trace_state(trace, interval, model)
# t = predicted_statepath(trace, interval, model)
# d = model.reporter.probfn(model.rates[end-model.reporter.n+1:end], model.reporter.per_state, tcomponent(model).nT)
# tp = [mean(d[state]) for state in t]
# return tp, t
# end
function predicted_statepath(trace, interval, model::AbstractGmodel)
tcomponents = tcomponent(model)
predicted_statepath(trace, interval, model.rates, tcomponents.nT, tcomponents.elementsT, model.reporter.n, model.reporter.per_state, model.reporter.probfn)
end
"""
predicted_states(data::Union{AbstractTraceData,AbstractTraceHistogramData}, model::AbstractGmodel)
return vector of predicted state vectors
"""
function predicted_states(data::Union{AbstractTraceData,AbstractTraceHistogramData}, model::AbstractGmodel)
ts = Vector{Int}[]
for t in data.trace[1]
push!(ts, predicted_statepath(t, data.interval, model))
end
ts
end
"""
predicted_traces(ts::Vector{Vector}, model)
predicted_traces(data::Union{AbstractTraceData,AbstractTraceHistogramData}, model)
return vector of predicted traces and vector of state paths
"""
function predicted_traces(ts::Vector, model)
tp = Vector{Float64}[]
d = model.reporter.probfn(model.rates[end-model.reporter.n+1:end], model.reporter.per_state, tcomponent(model).nT)
for t in ts
push!(tp, [mean(d[state]) for state in t])
end
tp, ts
end
function predicted_traces(data::Union{AbstractTraceData,AbstractTraceHistogramData}, model)
predicted_traces(predicted_states(data, model), model)
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 33142 | # This file is part of StochasticGene.jl
# io.jl
### Files for saving and reading mh results
abstract type Fields end
struct Result_Fields <: Fields
name::String
label::String
cond::String
gene::String
model::String
nalleles::String
end
struct Summary_Fields <: Fields
name::String
label::String
cond::String
model::String
end
"""
struct BurstMeasures <: Results
Structure for Burst measures
"""
struct BurstMeasures <: Results
mean::Float64
std::Float64
median::Float64
mad::Float64
quantiles::Array
end
"""
decompose_model(model::String)
return G, R, S, insertstep given model string
"""
function decompose_model(model::String)
m = parse(Int, model)
d = digits(m)
return d[4], d[3], d[2], d[1]
end
# raterow_dict() = Dict([("ml", 1), ("mean", 2), ("median", 3), ("last", 4)])
# statrow_dict() = Dict([("mean", 1), ("SD", 2), ("median", 3), ("MAD", 4)])
"""
write_dataframes(resultfolder::String, datapath::String; measure::Symbol=:AIC, assemble::Bool=true, fittedparams=Int[])
write_dataframes(resultfolder::String,datapath::String;measure::Symbol=:AIC,assemble::Bool=true)
collates run results into a csv file
Arguments
- `resultfolder`: name of folder with result files
- `datapath`: name of folder where data is stored
- `measure`: measure used to assess winner
- `assemble`: if true then assemble results into summary files
"""
function write_dataframes(resultfolder::String, datapath::String; measure::Symbol=:AIC, assemble::Bool=true, fittedparams=Int[])
write_dataframes_only(resultfolder, datapath, assemble=assemble, fittedparams=fittedparams)
write_winners(resultfolder, measure)
end
function write_dataframes_only(resultfolder::String, datapath::String; assemble::Bool=true, fittedparams=Int[])
dfs = make_dataframes(resultfolder, datapath, assemble, fittedparams)
for df in dfs
for dff in dfs
for dfff in dff
csvfile = joinpath(resultfolder, dfff[1])
CSV.write(csvfile, dfff[2])
end
end
end
nothing
end
"""
write_winners(resultfolder,measure)
Write best performing model for measure
"""
function write_winners(resultfolder, measure)
df = best_measure(resultfolder, measure)
if ~isempty(df)
for i in eachindex(df)
csvfile = joinpath(resultfolder, df[i][1])
CSV.write(csvfile, df[i][2])
end
end
nothing
end
"""
write_augmented(summaryfile::String, resultfolder::String)
write_augmented(summaryfile::String,resultfolder,datapath)
Augment summary file with G=2 burst size, model predicted moments, and fit measures
"""
function write_augmented(summaryfile::String, resultfolder::String)
if ~ispath(summaryfile)
summaryfile = joinpath(resultfolder, summaryfile)
end
CSV.write(summaryfile, augment_dataframe(read_dataframe(summaryfile), resultfolder))
end
"""
read_dataframe(csvfile::String)
"""
read_dataframe(csvfile::String) = DataFrame(CSV.File(csvfile))
"""
get_suffix(file::String)
"""
get_suffix(file::String) = chop(file, tail=4), last(file, 3)
# does not account for csv files with less than 4 fields
function fields(file::String)
file, suffix = get_suffix(file)
v = split(file, "_")
if suffix == "csv"
if length(v) == 4
s = Summary_Fields(v[1], v[2], v[3], v[4])
else
println(file)
throw("Incorrect file name format")
end
else
if length(v) == 6
s = Result_Fields(v[1], v[2], v[3], v[4], v[5], v[6])
elseif length(v) == 5
s = Result_Fields(v[1], v[2], "", v[3], v[4], v[5])
else
println(file)
throw("Incorrect file name format")
end
end
return s
end
function isratefile(folder::String)
files = readdir(folder)
any(occursin.(".csv", files) .& occursin.("rates", files))
end
isfish(string::String) = occursin("FISH", string)
function get_genes(file::String)
r, header = readdlm(file, ',', header=true)
return r[:, 1]
end
get_genes(root, cond, datapath) = get_genes(cond, joinpath(root, datapath))
function get_genes(cond, datapath)
genes = Vector{String}(undef, 0)
files = readdir(datapath)
for file in files
if occursin(cond, file)
push!(genes, split(file, "_")[1])
end
end
return genes
end
"""
get_genes(folder,type,label,cond,model)
"""
function get_genes(folder, type, label, cond, model)
genes = Array{String,1}(undef, 0)
files = get_files(folder, type, label, cond, model)
for file in files
push!(genes, get_gene(file))
end
return genes
end
get_files(folder, resultname) =
get_files(folder::String, resultname, label, cond, model) = get_files(get_resultfiles(folder), resultname, label, cond, model)
file_indices(parts, resultname, label, cond, model) = (getfield.(parts, :name) .== resultname) .& (getfield.(parts, :label) .== label) .& (getfield.(parts, :cond) .== cond) .& occursin.(model, getfield.(parts, :model))
function get_files(files::Vector, resultname, label, cond, model)
parts = fields.(files)
files[file_indices(parts, resultname, label, cond, model)]
# files[(getfield.(parts, :name).==resultname).&(getfield.(parts, :label).==label).&(getfield.(parts, :cond).==cond).&(getfield.(parts, :model).==model)]
end
get_gene(file::String) = fields(file).gene
get_model(file::String) = fields(file).model
get_label(file::String) = fields(file).label
get_cond(file::String) = fields(file).cond
get_nalleles(file::String) = fields(file).nalleles
get_fields(parts::Vector{T}, field::Symbol) where {T<:Fields} = unique(getfield.(parts, field))
get_models(parts::Vector{T}) where {T<:Fields} = get_fields(parts, :model)
get_genes(parts::Vector{T}) where {T<:Fields} = get_fields(parts, :gene)
get_conds(parts::Vector{T}) where {T<:Fields} = get_fields(parts, :cond)
get_labels(parts::Vector{T}) where {T<:Fields} = get_fields(parts, :label)
get_names(parts::Vector{T}) where {T<:Fields} = get_fields(parts, :name)
get_nalleles(parts::Vector{T}) where {T<:Fields} = get_fields(parts, :nalleles)
get_resultfiles(folder::String) = get_resultfiles(readdir(folder))
get_resultfiles(files::Vector) = files[occursin.(".txt", files).&occursin.("_", files)]
get_summaryfiles(folder::String) = get_summaryfiles(readdir(folder))
get_summaryfiles(files::Vector) = files[occursin.(".csv", files).&occursin.("_", files)]
get_summaryfiles(files::Vector, name) = files[occursin.(".csv", files).&occursin.(name, files)]
get_ratesummaryfiles(files::Vector) = get_summaryfiles(files, "rates")
get_ratesummaryfiles(folder::String) = get_ratesummaryfiles(get_summaryfiles(folder))
get_measuresummaryfiles(files::Vector) = get_summaryfiles(files, "measures")
get_measuresummaryfiles(folder::String) = get_measuresummaryfiles(get_summaryfiles(folder))
get_burstsummaryfiles(files::Vector) = get_summaryfiles(files, "burst")
get_burstsummaryfiles(folder::String) = get_burstsummaryfiles(get_summaryfiles(folder))
"""
write_moments(outfile,genelist,cond,datapath,root)
"""
function write_moments(outfile, genelist, cond, datapath, root)
f = open(outfile, "w")
writedlm(f, ["Gene" "Expression Mean" "Expression Variance"], ',')
for gene in genelist
h = get_histogram_rna(gene, cond, datapath, root)
writedlm(f, [gene mean_histogram(h) var_histogram(h)], ',')
end
close(f)
end
"""
write_histograms(resultfolder,ratefile,cell,datacond,G::Int,datapath::String,root,outfolder = "histograms")
"""
function write_histograms(resultfolder, ratefile, cell, datacond, G::Int, datapath::String, root, outfolder="histograms")
ratefile = joinpath(resultfolder, ratefile)
rates, head = readdlm(ratefile, ',', header=true)
outfolder = joinpath(resultfolder, outfolder)
if ~isdir(outfolder)
mkpath(outfolder)
end
cond = string.(split(datacond, "-"))
for r in eachrow(rates)
h = histograms(r, cell, cond, G, datapath, root)
for i in eachindex(cond)
f = open(joinpath(outfolder, string(r[1]) * cond[i] * ".txt"), "w")
writedlm(f, h[i])
close(f)
end
end
end
"""
assemble_all(folder;fittedparams)
"""
function assemble_all(folder::String; fittedparams=Int[])
files = get_resultfiles(folder)
parts = fields.(files)
labels = get_labels(parts)
conds = get_conds(parts)
models = get_models(parts)
names = get_names(parts)
if isempty(fittedparams)
fittedparams = collect(1:num_rates(models[1])-1)
end
assemble_all(folder, files, labels, conds, models, names)
end
function assemble_all(folder::String, files::Vector, labels::Vector, conds::Vector, models::Vector, names)
parts = fields.(files)
for l in labels, c in conds, g in models
any(file_indices(parts, "rates", l, c, g) .== 1) && assemble_all(folder, files, l, c, g, names)
end
end
function assemble_all(folder::String, files::Vector, label::String, cond::String, model::String, names)
labels = assemble_rates(folder, files, label, cond, model)
assemble_measures(folder, files, label, cond, model)
assemble_stats(folder, files, label, cond, model)
if model != "1" && "burst" β names
assemble_burst_sizes(folder, files, label, cond, model)
end
if "optimized" β names
assemble_optimized(folder, files, label, cond, model, labels)
end
end
function assemble_files(folder::String, files::Vector, outfile::String, header, readfunction)
if ~isempty(files)
f = open(outfile, "w")
writedlm(f, header, ',')
for file in files
gene = get_gene(file)
r = readfunction(joinpath(folder, file))
writedlm(f, [gene r], ',')
end
close(f)
end
end
"""
assemble_rates(folder::String, files::Vector, label::String, cond::String, model::String)
TBW
"""
function assemble_rates(folder::String, files::Vector, label::String, cond::String, model::String)
outfile = joinpath(folder, "rates_" * label * "_" * cond * "_" * model * ".csv")
ratefiles = get_files(files, "rates", label, cond, model)
labels = readdlm(joinpath(folder, ratefiles[1]), ',', header=true)[2]
# header = ratelabels(model, split(cond, "-"))
assemble_files(folder, ratefiles, outfile, ratelabels(labels, split(cond, "-")), readmedian)
return labels
end
"""
assemble_measures(folder::String, files, label::String, cond::String, model::String)
write all measures into a single file
"""
function assemble_measures(folder::String, files, label::String, cond::String, model::String)
outfile = joinpath(folder, "measures_" * label * "_" * cond * "_" * model * ".csv")
header = ["Gene" "Nalleles" "Deviance" "LogMaxLikelihood" "WAIC" "WAIC SE" "AIC" "Acceptance" "Temperature" "Rhat"]
# assemble_files(folder,get_files(files,"measures",label,cond,model),outfile,header,readmeasures)
files = get_files(files, "measures", label, cond, model)
f = open(outfile, "w")
writedlm(f, header, ',')
for file in files
gene = get_gene(file)
nalleles = get_nalleles(file)
r = readmeasures(joinpath(folder, file))
writedlm(f, [gene nalleles r], ',')
end
close(f)
end
function assemble_measures_model(folder::String, label::String, cond::String, gene::String)
outfile = joinpath(folder, "measures_" * label * "_" * cond * "_" * gene * ".csv")
header = ["Model" "Nalleles" "normalized LL" "LogMaxLikelihood" "WAIC" "WAIC SE" "AIC" "Acceptance" "Temperature" "Rhat"]
files = get_files(get_resultfiles(folder), "measures", label, cond, "")
println(files)
f = open(outfile, "w")
writedlm(f, header, ',')
for file in files
nalleles = get_nalleles(file)
r = readmeasures(joinpath(folder, file))
writedlm(f, [get_model(file) nalleles r], ',')
end
close(f)
end
"""
assemble_optimized(folder::String, files, label::String, cond::String, model::String, labels)
TBW
"""
function assemble_optimized(folder::String, files, label::String, cond::String, model::String, labels)
outfile = joinpath(folder, "optimized_" * label * "_" * cond * "_" * model * ".csv")
assemble_files(folder, get_files(files, "optimized", label, cond, model), outfile, labels, read_optimized)
end
"""
assemble_stats(folder::String, files, label::String, cond::String, model::String)
TBW
"""
function assemble_stats(folder::String, files, label::String, cond::String, model::String)
outfile = joinpath(folder, "stats_" * label * "_" * cond * "_" * model * ".csv")
statfiles = get_files(files, "param-stats", label, cond, model)
labels = readdlm(joinpath(folder, statfiles[1]), ',', header=true)[2]
assemble_files(folder, statfiles, outfile, statlabels(labels), readstats)
end
"""
assemble_burst_sizes(folder, files, label, cond, model)
TBW
"""
function assemble_burst_sizes(folder, files, label, cond, model)
outfile = joinpath(folder, "burst_" * label * "_" * cond * "_" * model * ".csv")
assemble_files(folder, get_files(files, "burst", label, cond, model), outfile, ["Gene" "BurstMean" "BurstSD" "BurstMedian" "BurstMAD"], read_burst)
end
"""
rlabels(model::AbstractGRSMmodel)
TBW
"""
function rlabels(model::AbstractGRSMmodel)
rlabels_GRSM(model)
end
function rlabels_GRSM(model)
labels = String[]
for t in model.Gtransitions
push!(labels, "Rate$(t[1])$(t[2])")
end
push!(labels, "Initiate")
for i in 1:model.R-1
push!(labels, "Rshift$i")
end
push!(labels, "Eject")
for i in 1:model.S
push!(labels, "Splice$i")
end
push!(labels, "Decay")
if typeof(model.reporter) == HMMReporter
for i in 1:model.reporter.n
push!(labels, "noiseparam$i")
end
# for i in 1:div(model.reporter.weightind - num_rates(model) - 1, 2)
# push!(labels, "noise_mean$i")
# push!(labels, "noise_std$i")
# end
# for i in 1:num_rates(model)+model.reporter.n-model.reporter.weightind+1
# push!(labels, "bias$i")
# end
end
reshape(labels, 1, :)
end
function rlabels(model::GRSMhierarchicalmodel)
labels = String[]
l = rlabels_GRSM(model)
for i in 1:model.pool.nhyper+model.pool.nindividuals
append!(labels, l)
end
reshape(labels, 1, :)
end
"""
rlabels(model::AbstractGMmodel)
"""
function rlabels(model::AbstractGMmodel)
labels = String[]
for t in model.Gtransitions
push!(labels, "Rate$(t[1])$(t[2])")
end
push!(labels, "Eject")
push!(labels, "Decay")
if typeof(model.reporter) == HMMReporter
for i in 1:model.reporter.n
push!(labels, "noiseparam$i")
end
# for i in 1:div(model.reporter.weightind - num_rates(model) - 1, 2)
# push!(labels, "noise_mean$i")
# push!(labels, "noise_std$i")
# end
# for i in 1:num_rates(model)+model.reporter.n-model.reporter.weightind+1
# push!(labels, "bias$i")
# end
end
reshape(labels, 1, :)
end
function rlabels(model::String)
G = parse(Int, model)
n = G - 1
Grates = Array{String,2}(undef, 1, 2 * n)
for i = 0:n-1
Grates[1, 2*i+1] = "Rate$i$(i+1)"
Grates[1, 2*i+2] = "Rate$(i+1)$i"
end
return [Grates "Eject" "Decay"]
end
function rlabels(model::String, conds::Vector)
nsets = length(conds)
r = rlabels(model)
if nsets == 1
return r
else
rates = r .* conds[1]
for i = 2:nsets
rates = [rates r .* conds[i]]
end
return rates
end
end
function rlabels(labels::Matrix, conds::Vector)
nsets = length(conds)
r = labels
if nsets == 1
return r
else
rates = r .* conds[1]
for i = 2:nsets
rates = [rates r .* reshape(conds[i], 1, length(conds))]
end
return rates
end
end
rlabels(model::String, conds, fittedparams) = rlabels(model, conds)[1:1, fittedparams]
rlabels(labels::Matrix, conds, fittedparams) = rlabels(labels, conds)[1:1, fittedparams]
ratelabels(labels::Matrix, conds) = ["Gene" rlabels(labels, conds)]
"""
statlabels(model::String, conds, fittedparams)
TBW
"""
function statlabels(model::String, conds, fittedparams)
label = ["_Mean", "_SD", "_Median", "_MAD", "_CI2.5", "_CI97.5"]
Grates = rlabels(model, conds, fittedparams)
rates = Matrix{String}(undef, 1, 0)
for l in label
rates = [rates Grates .* l]
end
return ["Gene" rates]
end
function statlabels(labels::Matrix)
label = ["_Mean", "_SD", "_Median", "_MAD", "_CI2.5", "_CI97.5"]
rates = Matrix{String}(undef, 1, 0)
for l in label
rates = [rates labels .* l]
end
return ["Gene" rates]
end
"""
optlabels(model::String, conds, fittedparams)
TBW
"""
optlabels(model::String, conds, fittedparams) = ["Gene" rlabels(model, conds, fittedparams) "LL" "Convergence"]
optlabels(labels::Matrix, conds, fittedparams) = ["Gene" rlabels(labels, conds) "LL" "Convergence"]
function get_all_rates(file::String, header::Bool)
r = readdlm(file, ',', header=header)
if header
r = r[1]
end
return r
end
"""
filename(data, model::AbstractGRSMmodel)
filename(data, model::AbstractGMmodel)
return output file names
"""
filename(data, model::AbstractGRSMmodel) = filename(data.label, data.gene, model.G, model.R, model.S, model.insertstep, model.nalleles)
filename(data, model::AbstractGMmodel) = filename(data.label, data.gene, model.G, model.nalleles)
filename(label::String, gene::String, G::Int, R::Int, S::Int, insertstep::Int, nalleles::Int) = filename(label, gene, "$G" * "$R" * "$S" * "$insertstep", "$(nalleles)")
filename(label::String, gene, G::Int, nalleles::Int) = filename(label, gene, "$G", "$(nalleles)")
filename(label::String, gene::String, model::String, nalleles::String) = "_" * label * "_" * gene * "_" * model * "_" * nalleles * ".txt"
"""
writeall(path::String,fit,stats,measures,data,temp,model::AbstractGmodel;optimized=0,burst=0)
"""
function writeall(path::String, fits, stats, measures, data, temp, model::AbstractGmodel; optimized=0, burst=0, writesamples=false)
if ~isdir(path)
mkpath(path)
end
name = filename(data, model)
write_rates(joinpath(path, "rates" * name), fits, stats, model)
write_measures(joinpath(path, "measures" * name), fits, measures, deviance(fits, data, model), temp)
write_param_stats(joinpath(path, "param-stats" * name), stats, model)
if optimized != 0
write_optimized(joinpath(path, "optimized" * name), optimized)
end
if burst != 0
write_burstsize(joinpath(path, "burst" * name), burst)
end
if writesamples
write_array(joinpath(path, "ll_sampled_rates" * name), fits.ll)
write_array(joinpath(path, "sampled_rates" * name), permutedims(inverse_transform_rates(fits.param, model)))
end
end
function writeall(path::String, fits, stats, measures, data, temp, model::GRSMhierarchicalmodel; optimized=0, burst=0, writesamples=false)
name = filename(data, model)
write_pool(joinpath(path, "pool" * name), fits, stats, model)
if ~isdir(path)
mkpath(path)
end
name = filename(data, model)
write_rates(joinpath(path, "rates" * name), fits, stats, model)
write_measures(joinpath(path, "measures" * name), fits, measures, deviance(fits, data, model), temp)
write_param_stats(joinpath(path, "param-stats" * name), stats, model)
write_pool(joinpath(path, "pool" * name), fits, stats, model)
if optimized != 0
write_optimized(joinpath(path, "optimized" * name), optimized)
end
if burst != 0
write_burstsize(joinpath(path, "burst" * name), burst)
end
if writesamples
write_array(joinpath(path, "ll_sampled_rates" * name), fits.ll)
write_array(joinpath(path, "sampled_rates" * name), permutedims(inverse_transform_rates(fits.param, model)))
end
end
"""
write_rates(file::String,fits)
Write rate parameters, rows in order are
maximum likelihood
mean
median
last accepted
"""
function write_rates(file::String, fits::Fit, stats, model)
f = open(file, "w")
writedlm(f, rlabels(model), ',') # labels
writedlm(f, [get_rates(fits.parml, model)], ',') # max posterior
writedlm(f, [get_rates(stats.meanparam, model, false)], ',') # mean posterior
writedlm(f, [get_rates(stats.medparam, model, false)], ',') # median posterior
writedlm(f, [get_rates(fits.param[:, end], model)], ',') # last sample
close(f)
end
"""
write_pool(file::String, fits::Fit, stats, model)
write pool parameters into a file for hierarchichal models
"""
function write_pool(file::String, fits::Fit, stats, model)
f = open(file, "w")
writedlm(f, rlabels(model)[1:1, 1:model.pool.nrates], ',') # labels
writedlm(f, [get_rates(fits.parml, model)[1:model.pool.nrates]], ',') # max posterior
writedlm(f, [get_rates(stats.meanparam, model, false)[1:model.pool.nrates]], ',') # mean posterior
writedlm(f, [get_rates(stats.medparam, model, false)[1:model.pool.nrates]], ',') # median posterior
writedlm(f, [get_rates(fits.param[:, end], model)[1:model.pool.nrates]], ',') # last sample
close(f)
end
"""
write_measures(file::String, fits::Fit, measures::Measures, dev, temp)
write_measures into a file
"""
function write_measures(file::String, fits::Fit, measures::Measures, dev, temp)
f = open(file, "w")
writedlm(f, [fits.llml mean(fits.ll) std(fits.ll) quantile(fits.ll, [0.025; 0.5; 0.975])' measures.waic[1] measures.waic[2] aic(fits)], ',')
writedlm(f, dev, ',')
writedlm(f, [fits.accept fits.total], ',')
writedlm(f, temp, ',')
writedlm(f, measures.rhat', ',')
writedlm(f, maximum(measures.rhat), ',')
close(f)
end
"""
write_param_stats(file, stats::Stats, model)
write parameter statistics into a file
"""
function write_param_stats(file, stats::Stats, model)
f = open(file, "w")
writedlm(f, rlabels(model)[1:1, model.fittedparam], ',')
writedlm(f, stats.meanparam', ',')
writedlm(f, stats.stdparam', ',')
writedlm(f, stats.medparam', ',')
writedlm(f, stats.madparam', ',')
writedlm(f, stats.qparam, ',')
writedlm(f, stats.corparam, ',')
writedlm(f, stats.covparam, ',')
writedlm(f, stats.covlogparam, ',')
close(f)
end
"""
write_optimized(file,optimized)
"""
function write_optimized(file::String, optimized)
f = open(file, "w")
writedlm(f, exp.(Optim.minimizer(optimized))', ',')
writedlm(f, Optim.minimum(optimized), ',')
writedlm(f, Optim.converged(optimized), ',')
close(f)
end
"""
write_burstsize(file,burstsize)
"""
function write_burstsize(file::String, b::BurstMeasures)
f = open(file, "w")
writedlm(f, b.mean, ',')
writedlm(f, b.std, ',')
writedlm(f, b.median, ',')
writedlm(f, b.mad, ',')
writedlm(f, b.quantiles, ',')
close(f)
end
"""
write_MHsamples(file::String,samples::Matrix)
"""
write_array(file::String, d::Array) = writedlm(file, d, header=false)
"""
get_row()
"""
get_row() = Dict([("ml", 1); ("mean", 2); ("median", 3); ("last", 4)])
"""
get_ratetype()
"""
get_ratetype() = invert_dict(get_row())
"""
occursin_file(a, b, file)
determine if string a or string b occurs in file (case insensitive)
"""
function occursin_file(a, b, file::String)
occursin(Regex("DS_Store", "i"), file) && return false
if isempty(a)
return occursin(Regex(b, "i"), file)
elseif isempty(b)
return occursin(Regex(a, "i"), file)
else
return occursin(Regex(a, "i"), file) && occursin(Regex(b, "i"), file)
end
end
"""
read_rna(gene, cond, datapath)
read in rna histograms
"""
function read_rna(gene, cond, datapath)
h = readfile(gene, cond, datapath)[:, 1]
return length(h), h
end
"""
readfiles(gene::String, cond::String, datapath::Vector)
read in a set of files
"""
function readfiles(gene::String, cond::String, datapath::Vector)
c = Vector{Vector}(undef, 0)
for i in eachindex(datapath)
push!(c, readfile(gene, cond, datapath[i]))
end
c
end
"""
readfile(gene::String, cond::String, path::String)
read file if name includes gene and cond
"""
function readfile(gene::AbstractString, cond::AbstractString, path::AbstractString)
if isfile(path)
return readfile(path)
else
for (root, dirs, files) in walkdir(path)
for file in files
target = joinpath(root, file)
if occursin_file(gene, cond, target)
return readfile(target)
end
end
end
end
end
"""
readfile(file::String)
read file accounting for delimiter and headers
"""
function readfile(file::String)
if occursin("csv", file)
c = readfile_csv(file)
else
c = readdlm(file)
if typeof(c[1]) <: AbstractString && occursin(",", c[1])
c = readdlm(file, ',')
end
end
if typeof(c[1, 1]) <: AbstractString
c = float.(c[2:end, :])
end
return c
end
function readfile_csv(file::String)
c = readdlm(file, ',')
if typeof(c[1, :]) <: AbstractString
c = float.(c[2:end, :])
end
return c
end
"""
readfile(file::String, col::Int)
read file and return given column
"""
readfile(file::String, col::Int) = readfile(file)[:, col]
"""
read_dwelltimes(datapath)
read in a set of dwelltime files and return vector of time bins and values
"""
function read_dwelltimes(datapath)
bins = Vector{Vector}(undef, 0)
DT = Vector{Vector}(undef, 0)
for i in eachindex(datapath)
c = readfile(datapath[i])
push!(bins, c[:, 1])
push!(DT, c[:, 2])
end
bins, DT
end
function read_tracefiles(path, cond1, traceinfo::Tuple, col=3)
start = max(round(Int, traceinfo[2] / traceinfo[1]), 1)
stop = traceinfo[3] < 0 ? -1 : max(round(Int, traceinfo[3] / traceinfo[1]), 1)
read_tracefiles(path, cond1, start, stop, col)
end
"""
read_tracefiles(path::String, cond1::String, start::Int, cond2::String="", col=3)
read in trace files
"""
function read_tracefiles(path::String, cond1::String, start::Int, stop::Int, col=3)
traces = Vector[]
if isempty(path)
return traces
else
for (root, dirs, files) in walkdir(path)
for file in files
if occursin(cond1, file)
t = readfile(joinpath(root, file), col)
if stop < 0
(start <= length(t)) && push!(traces, t[start:end])
else
(stop <= length(t)) && push!(traces, t[start:stop])
end
end
end
end
traces = traces[.!isempty.(traces)]
set = sum.(traces)
return traces[unique(i -> set[i], eachindex(set))] # only return unique traces
end
end
"""
fix_tracefiles(path::String)
TBW
"""
function fix_tracefiles(path::String)
for (root, dirs, files) in walkdir(path)
for file in files
target = joinpath(root, file)
t = readdlm(target, header=true)
writedlm(target, [t[1] t[1][:, 2]])
end
end
end
"""
readrates(infolder, label, gene, G, R, S, insertstep, nalleles, ratetype="median")
"""
function readrates(infolder, label, gene, G, R, S, insertstep, nalleles, ratetype="median")
if R == 0
name = filename(label, gene, G, nalleles)
else
name = filename(label, gene, G, R, S, insertstep, nalleles)
end
readrates(joinpath(infolder, "rates" * name), get_row(ratetype))
end
"""
readrates(file::String,row::Int)
readrates(file::String)
row
1 maximum likelihood
2 mean
3 median
4 last value of previous run
"""
readrates(file::String, row::Int) = readrow(file, row)
readrates(file::String) = readrates(file, 3)
"""
get_row(ratetype)
"""
function get_row(ratetype)
if ratetype == "ml"
row = 1
elseif ratetype == "mean"
row = 2
elseif ratetype == "median"
row = 3
elseif ratetype == "last"
row = 4
else
row = 3
end
row
end
function readrow(file::String, row, delim=',')
if isfile(file) && ~isempty(read(file))
contents = readdlm(file, delim, header=false)
if ~(typeof(contents[1]) <: Number)
contents = readdlm(file, delim, header=true)[1]
end
if row <= size(contents, 1)
m = contents[row, :]
return m[.~isempty.(m)]
else
println("row too large, returning median")
return contents[3, :]
end
else
println(file, " does not exist")
return Float64[]
end
end
function readrow_flip(file, row)
m = readrow(file, row)
reshape(m, 1, length(m))
end
function readmeasures(file::String)
d = readdeviance(file)
w = readwaic(file)
a = readaccept(file)
t = readtemp(file)
r = readrhat(file)
[d[1] w[1] w[7] w[8] w[9] a t[1] r[1]]
end
readdeviance(file::String) = readrow(file, 2)
readwaic(file::String) = readrow(file, 1)
function readaccept(file::String)
a = readrow(file, 3)
a[1] / a[2]
end
readtemp(file::String) = readrow(file, 4)
readrhat(file::String) = readrow(file, 6)
function readml(ratefile::String)
m = readrow(ratefile, 1, true)
reshape(m, 1, length(m))
end
function readmean(ratefile::String)
m = readrow(ratefile, 2, true)
reshape(m, 1, length(m))
end
function readsd(ratefile::String)
m = readrow(ratefile, 2)
reshape(m, 1, length(m))
end
function readstats(statfile::String)
mean = readrow_flip(statfile, 1)
sd = readrow_flip(statfile, 2)
median = readrow_flip(statfile, 3)
mad = readrow_flip(statfile, 4)
credl = readrow_flip(statfile, 5)
credh = readrow_flip(statfile, 7)
[mean sd median mad credl credh]
end
function readmedian(statfile::String)
m = readrow(statfile, 3)
reshape(m, 1, length(m))
end
function readmad(statfile::String)
m = readrow(file, 4)
reshape(m, 1, length(m))
end
function read_corparam(file::String)
c = readdlm(file, ',')
n = length(c[1, :])
# c[5+n:4+2*n,1:n]
c[8:7+n, 1:n]
end
function read_covparam(file::String)
c = readdlm(file, ',')
read_covparam(c)
end
function read_covparam(c::Matrix)
n = length(c[1, :])
# c[5+2*n:4+3*n,1:n]
c[8+n:7+2*n, 1:n]
end
function read_covlogparam(file::String)
c = readdlm(file, ',')
n = length(c[1, :])
c[8+2*n:7+3*n, 1:n]
end
read_crosscov(statfile::String) = read_crosscov(read_covparam(statfile))
function read_crosscov(C::Matrix)
c = Float64[]
N = size(C, 1)
for i in 1:N
for j in i+1:N
push!(c, C[i, j])
end
end
c
end
function read_burst(file::String)
b = readdlm(file, ',')
reshape(b[1:4], 1, 4)
end
function read_optimized(file::String)
rates = readrow_flip(file, 1)
ll = readrow(file, 2)
conv = readrow(file, 3)
[rates ll conv]
end
function write_residency_G(fileout::String, filein::String, G, header)
rates = get_all_rates(filein, header)
n = G - 1
f = open(fileout, "w")
writedlm(f, ["gene" collect(0:n)'], ',')
for r in eachrow(rates)
writedlm(f, [r[1] residenceprob_G(r[2:2*n+1], n)], ',')
end
close(f)
end
"""
change_suffix(old, new, folder)
TBW
"""
function change_suffix(old, new, folder)
for (root, dirs, files) in walkdir(folder)
for file in files
target = joinpath(root, file)
if endswith(target, old)
mv(target, replace(target, old => new))
end
end
end
end
"""
change_pattern(old, new, folder)
TBW
"""
function change_pattern(old, new, folder)
for (root, dirs, files) in walkdir(folder)
for file in files
target = joinpath(root, file)
if occursin(old, target)
mv(target, replace(target, old => new))
println(target)
end
end
end
end
# Functions for saving and loading data and models
# """
# write_log(file,datafile,data,model)
# write all information necessary for rerunning
# """
# function save_data(file::String,data::TransientRNAData)
# f = open(file,"w")
# writedlm(f, [typeof(data)])
# writedlm(f,[data.label])
# writedlm(f,[data.gene])
# writedlm(f,[data.nRNA])
# writedlm(f,[data.time])
# writedlm(f,[data.histRNA])
# close(f)
# end
# function load_data(file::String, model::AbstractGMmodel)
# end
function save_model(file::String, model::AbstractGMmodel)
f = open(file, "w")
write(f, model.G)
writedlm(f, model.nalleles)
writedlm(f, model.ratepriors)
writedlm(f, model.proposal)
writedlm(f, model.fittedparam)
writedlm(f, model.method)
close(f)
end
# function load_model(file::String, model::AbstractGRSMmodel)
# end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 18047 | # This file is part of StochasticGene.jl
# metropolis_hastings.jl
"""
struct MHOptions <: Options
Structure for MH options
"""
struct MHOptions <: Options
samplesteps::Int64
warmupsteps::Int64
annealsteps::Int64
maxtime::Float64
temp::Float64
tempanneal::Float64
end
"""
struct Fit <: Results
Structure for MH results
"""
struct Fit <: Results
param::Array
ll::Array
parml::Array
llml::Float64
lppd::Array
pwaic::Array
prior::Float64
accept::Int
total::Int
end
"""
struct Stats
Structure for parameter statistics results
"""
struct Stats
meanparam::Array
stdparam::Array
medparam::Array
madparam::Array
qparam::Array
corparam::Array
covparam::Array
covlogparam::Array
end
"""
Structure for computed measures
-`waic`: Watanabe-Akaike information criterion
-`rhat`: r-hat convergence diagnostic
"""
struct Measures
waic::Tuple
rhat::Vector
end
"""
run_mh(data,model,options)
returns fits, stats, measures
Run Metropolis-Hastings MCMC algorithm and compute statistics of results
-`data`: AbstractExperimentalData structure
-`model`: AbstractGmodel structure with a logprior function
-`options`: MHOptions structure
model and data must have a likelihoodfn function
"""
function run_mh(data::AbstractExperimentalData, model::AbstractGmodel, options::MHOptions)
fits, waic = metropolis_hastings(data, model, options)
if options.samplesteps > 0
stats = compute_stats(fits.param, model)
rhat = compute_rhat([fits])
measures = Measures(waic, vec(rhat))
else
stats = 0
measures = 0
end
return fits, stats, measures
end
"""
run_mh(data,model,options,nchains)
"""
function run_mh(data::AbstractExperimentalData, model::AbstractGmodel, options::MHOptions, nchains)
if nchains == 1
return run_mh(data, model, options)
else
sd = run_chains(data, model, options, nchains)
chain = extract_chain(sd)
waic = pooled_waic(chain)
fits = merge_fit(chain)
stats = compute_stats(fits.param, model)
rhat = compute_rhat(chain)
return fits, stats, Measures(waic, vec(rhat))
end
end
"""
run_chains(data,model,options,nchains)
returns an array of Futures
Runs multiple chains of MCMC alorithm
"""
function run_chains(data, model, options, nchains)
sd = Array{Future,1}(undef, nchains)
for chain in 1:nchains
sd[chain] = @spawn metropolis_hastings(data, model, options)
end
return sd
end
"""
metropolis_hastings(param,data,model,options)
returns fit structure and waic tuple
Metropolis-Hastings MCMC algorithm
param = array of parameters to be fit
model, data, and options are structures
stochastic kinetic transcription models
Data can include ON and OFF MS2/PP7 reporter time distributions from live cell recordings,
scRNA or FISH mRNA data, and burst correlations between alleles
"""
function metropolis_hastings(data, model, options)
param, d = initial_proposal(model)
ll, logpredictions = loglikelihood(param, data, model)
maxtime = options.maxtime
totalsteps = options.warmupsteps + options.samplesteps + options.annealsteps
parml = param
llml = ll
proposalcv = model.proposal
if options.annealsteps > 0
param, parml, ll, llml, logpredictions, temp = anneal(logpredictions, param, parml, ll, llml, d, model.proposal, data, model, options.annealsteps, options.temp, options.tempanneal, time(), maxtime * options.annealsteps / totalsteps)
end
if options.warmupsteps > 0
param, parml, ll, llml, d, proposalcv, logpredictions = warmup(logpredictions, param, param, ll, ll, d, model.proposal, data, model, options.warmupsteps, options.temp, time(), maxtime * options.warmupsteps / totalsteps)
end
fits = sample(logpredictions, param, parml, ll, llml, d, proposalcv, data, model, options.samplesteps, options.temp, time(), maxtime * options.samplesteps / totalsteps)
waic = compute_waic(fits.lppd, fits.pwaic, data)
return fits, waic
end
"""
function anneal(logpredictions,param,parml,ll,llml,d,proposalcv,data,model,samplesteps,temp,t1,maxtime)
returns variables necessary to continue MCMC (param,parml,ll,llml,logpredictions,temp)
runs MCMC with temperature dropping from tempanneal towards temp
"""
function anneal(logpredictions, param, parml, ll, llml, d, proposalcv, data, model, samplesteps, temp, tempanneal, t1, maxtime)
parout = Array{Float64,2}(undef, length(param), samplesteps)
prior = logprior(param, model)
step = 0
annealrate = 3 / samplesteps
anneal = 1 - annealrate # annealing rate with time constant of samplesteps/3
proposalcv = 0.02
while step < samplesteps && time() - t1 < maxtime
step += 1
_, logpredictions, param, ll, prior, d = mhstep(logpredictions, param, ll, prior, d, proposalcv, model, data, tempanneal)
if ll < llml
llml, parml = ll, param
end
parout[:, step] = param
tempanneal = anneal * tempanneal + annealrate * temp
end
return param, parml, ll, llml, logpredictions, temp
end
"""
warmup(logpredictions,param,rml,ll,llml,d,sigma,data,model,samplesteps,temp,t1,maxtime)
returns param,parml,ll,llml,d,proposalcv,logpredictions
runs MCMC for options.warmupstep number of samples and does not collect results
"""
function warmup(logpredictions, param, parml, ll, llml, d, proposalcv, data, model, samplesteps, temp, t1, maxtime)
parout = Array{Float64,2}(undef, length(param), samplesteps)
prior = logprior(param, model)
step = 0
accepttotal = 0
while step < samplesteps && time() - t1 < maxtime
step += 1
accept, logpredictions, param, ll, prior, d = mhstep(logpredictions, param, ll, prior, d, proposalcv, model, data, temp)
if ll < llml
llml, parml = ll, param
end
parout[:, step] = param
accepttotal += accept
end
# covparam = cov(parout[:,1:step]')*(2.4)^2 / length(param)
# if isposdef(covparam) && step > 1000 && accepttotal/step > .25
# d=proposal_dist(param,covparam,model)
# proposalcv = covparam
# println(proposalcv)
# end
return param, parml, ll, llml, d, proposalcv, logpredictions
end
"""
sample(logpredictions,param,parml,ll,llml,d,proposalcv,data,model,samplesteps,temp,t1,maxtime)
returns Fit structure
ll is negative loglikelihood
"""
function sample(logpredictions, param, parml, ll, llml, d, proposalcv, data, model, samplesteps, temp, t1, maxtime)
llout = Array{Float64,1}(undef, samplesteps)
pwaic = (0, log.(max.(logpredictions, eps(Float64))), zeros(length(logpredictions)))
lppd = fill(-Inf, length(logpredictions))
accepttotal = 0
parout = Array{Float64,2}(undef, length(param), samplesteps)
prior = logprior(param, model)
step = 0
while step < samplesteps && time() - t1 < maxtime
step += 1
accept, logpredictions, param, ll, prior, d = mhstep(logpredictions, param, ll, prior, d, proposalcv, model, data, temp)
if ll < llml
llml, parml = ll, param
end
parout[:, step] = param
llout[step] = ll
accepttotal += accept
lppd, pwaic = update_waic(lppd, pwaic, logpredictions)
end
pwaic = step > 1 ? pwaic[3] / (step - 1) : pwaic[3]
lppd .-= log(step)
Fit(parout[:, 1:step], llout[1:step], parml, llml, lppd, pwaic, prior, accepttotal, step)
end
"""
mhstep(logpredictions,param,ll,prior,d,sigma,model,data,temp)
returns 1,logpredictionst,paramt,llt,priort,dt if accept
1,logpredictionst,paramt,llt,priort,dt if not
ll is negative log likelihood
"""
function mhstep(logpredictions, param, ll, prior, d, proposalcv, model, data, temp)
paramt, dt = proposal(d, proposalcv, model)
priort = logprior(paramt, model)
llt, logpredictionst = loglikelihood(paramt, data, model)
mhstep(logpredictions, logpredictionst, ll, llt, param, paramt, prior, priort, d, dt, temp)
end
function mhstep(logpredictions, logpredictionst, ll, llt, param, paramt, prior, priort, d, dt, temp)
# if rand() < exp((ll + prior - llt - priort + mhfactor(param,d,paramt,dt))/temp)
if rand() < exp((ll + prior - llt - priort) / temp)
return 1, logpredictionst, paramt, llt, priort, dt
else
return 0, logpredictions, param, ll, prior, d
end
end
"""
update_waic(lppd,pwaic,logpredictions)
returns lppd and pwaic, which are the running sum and variance of -logpredictions
(- sign needed because logpredictions is negative loglikelihood)
"""
function update_waic(lppd, pwaic, logpredictions)
lppd = logsumexp(lppd, -logpredictions)
lppd, var_update(pwaic, -logpredictions)
end
"""
computewaic(lppd::Array{T},pwaic::Array{T},data) where {T}
returns WAIC and SE of WAIC
using lppd and pwaic computed in metropolis_hastings()
"""
function compute_waic(lppd::Array{T}, pwaic::Array{T}, data) where {T}
se = sqrt(length(lppd) * var(lppd - pwaic))
return -2 * sum(lppd - pwaic), 2 * se
end
"""
compute_waic(lppd::Array{T},pwaic::Array{T},data::AbstractHistogramData) where {T}
TBW
"""
function compute_waic(lppd::Array{T}, pwaic::Array{T}, data::AbstractHistogramData) where {T}
hist = datahistogram(data)
se = sqrt(sum(hist) * var(lppd - pwaic, weights(hist), corrected=false))
return -2 * hist' * (lppd - pwaic), 2 * se
end
"""
compute_waic(lppd::Array{T},pwaic::Array{T},data::AbstractTraceHistogramData) where {T}
histogram data precedes trace data in vectors
"""
function compute_waic(lppd::Array{T}, pwaic::Array{T}, data::AbstractTraceHistogramData) where {T}
hist = datahistogram(data)
N = length(hist)
elppd = lppd - pwaic
vh = sum(hist) * var(elppd[1:N], weights(hist), corrected=false)
vt = length(elppd[N+1:end]) * var(elppd[N+1:end])
se = sqrt(vh + vt)
return -2 * hist' * (elppd[1:N]) - 2 * sum(elppd[N+1:end]), 2 * se
end
"""
aic(fits::Fit)
aic(nparams::Int,llml)
-`llml`: negative of maximum loglikelihood
returns AIC
"""
aic(fits::Fit) = 2 * length(fits.parml) + 2 * fits.llml
aic(nparams::Int, llml) = 2 * nparams + 2 * llml
"""
initial_proposal(model)
return parameters to be fitted and an initial proposal distribution
"""
function initial_proposal(model)
param = get_param(model)
d = proposal_dist(param, model.proposal, model)
return param, d
end
"""
proposal(d,cv)
return rand(d) and proposal distribution for cv (vector or covariance)
"""
function proposal(d::Distribution, cv, model)
param = rand(d)
return param, proposal_dist(param, cv, model)
end
"""
proposal_dist(param,cv)
return proposal distribution specified by location and scale
"""
proposal_dist(param::Float64, cv::Float64, model) = Normal(param, proposal_scale(cv, model))
function proposal_dist(param::Vector, cv::Float64, model)
d = Vector{Normal{Float64}}(undef, 0)
for i in eachindex(param)
push!(d, Normal(param[i], proposal_scale(cv, model)))
end
product_distribution(d)
end
function proposal_dist(param::Vector, cv::Vector, model)
d = Vector{Normal{Float64}}(undef, 0)
for i in eachindex(param)
push!(d, Normal(param[i], proposal_scale(cv[i], model)))
end
product_distribution(d)
end
function proposal_dist(param::Vector, cov::Matrix, model)
# c = (2.4)^2 / length(param)
if isposdef(cov)
return MvNormal(param, cov)
else
return MvNormal(param, sqrt.(abs.(diag(cov))))
end
end
"""
proposal_scale(cv::Float64,model::AbstractGmodel)
return variance of normal distribution of log(parameter)
"""
proposal_scale(cv::Float64, model::AbstractGmodel) = sqrt(log(1 + cv^2))
"""
mhfactor(param,d,paramt,dt)
Metropolis-Hastings correction factor for asymmetric proposal distribution
"""
mhfactor(param, d, paramt, dt) = logpdf(dt, param) - logpdf(d, paramt) #pdf(dt,param)/pdf(d,paramt)
# Functions for parallel computing on multiple chains
"""
extract_chain(sdspawn)
returns array of tuples of fetched futures from multiple chains
"""
function extract_chain(sdspawn)
chain = Array{Tuple,1}(undef, length(sdspawn))
for i in eachindex(sdspawn)
chain[i] = fetch(sdspawn[i])
end
return chain
end
"""
collate_fit(chain)
returns array of Fit structures from multiple chains
collate fits from multiple metropolis_hastings chains
into and array of Fit structures
"""
function collate_fit(chain)
fits = Array{Fit,1}(undef, length(chain))
for i in eachindex(chain)
fits[i] = chain[i][1]
end
return fits
end
"""
collate_waic(chain)
return 2D array of collated waic from multiple chains
"""
function collate_waic(chain)
waic = Array{Float64,2}(undef, length(chain), 3)
for i in eachindex(chain)
waic[i, 1] = chain[i][2][1]
waic[i, 2] = chain[i][2][2]
waic[i, 3] = chain[i][1].total
end
return waic
# mean(waic,dims=1),median(waic,dims=1), mad(waic[:,1],normalize=false),waic
end
"""
pooled_waic(chain)
returns pooled waic and se from multiple chains
"""
function pooled_waic(chain)
waic = collate_waic(chain)
return pooled_mean(waic[:, 1], waic[:, 3]), pooled_std(waic[:, 2], waic[:, 3])
end
"""
merge_param(fits::Vector)
returns pooled params from multiple chains
"""
function merge_param(fits::Vector)
param = fits[1].param
for i in 2:length(fits)
param = [param fits[i].param]
end
return param
end
"""
merge_ll(fits::Vector)
returns pooled negative loglikelihood from multiple chains
"""
function merge_ll(fits::Vector)
ll = fits[1].ll
for i in 2:length(fits)
ll = [ll; fits[i].ll]
end
return ll
end
"""
merge_fit(chain::Array{Tuple,1})
merge_fit(fits::Array{Fit,1})
returns Fit structure merged from multiple runs
"""
merge_fit(chain::Array{Tuple,1}) = merge_fit(collate_fit(chain))
function merge_fit(fits::Array{Fit,1})
param = merge_param(fits)
ll = merge_ll(fits)
parml, llml = find_ml(fits)
lppd = fits[1].lppd
pwaic = fits[1].pwaic
prior = fits[1].prior
accept = fits[1].accept
total = fits[1].total
for i in 2:length(fits)
accept += fits[i].accept
total += fits[i].total
prior += fits[i].prior
lppd = logsumexp(lppd, fits[i].lppd)
pwaic += fits[i].pwaic
end
Fit(param, ll, parml, llml, lppd .- log(length(fits)), pwaic / length(fits), prior / length(fits), accept, total)
end
"""
compute_stats(fits::Fit)
returns Stats structure
Compute mean, std, median, mad, quantiles and correlations, covariances of parameters
"""
function compute_stats(paramin::Array{Float64,2}, model)
param = inverse_transform_rates(paramin, model)
meanparam = mean(param, dims=2)
stdparam = std(param, dims=2)
corparam = cor(param')
covparam = cov(param')
# covlogparam = cov(log.(param'))
covlogparam = cov(paramin')
medparam = median(param, dims=2)
np = size(param, 1)
madparam = Array{Float64,1}(undef, np)
qparam = Matrix{Float64}(undef, 3, 0)
for i in 1:np
madparam[i] = mad(param[i, :], normalize=false)
qparam = hcat(qparam, quantile(param[i, :], [0.025; 0.5; 0.975]))
end
Stats(meanparam, stdparam, medparam, madparam, qparam, corparam, covparam, covlogparam)
end
function compute_stats(paramin::Array{Float64,2}, model::GRSMhierarchicalmodel)
param = inverse_transform_rates(paramin, model)
meanparam = mean(param, dims=2)
stdparam = std(param, dims=2)
corparam = cor(param')
covparam = cov(param')
# covlogparam = cov(log.(param'))
covlogparam = cov(paramin')
medparam = median(param, dims=2)
np = size(param, 1)
madparam = Array{Float64,1}(undef, np)
qparam = Matrix{Float64}(undef, 3, 0)
for i in 1:np
madparam[i] = mad(param[i, :], normalize=false)
qparam = hcat(qparam, quantile(param[i, :], [0.025; 0.5; 0.975]))
end
Stats(meanparam, stdparam, medparam, madparam, qparam, corparam, covparam, covlogparam)
end
"""
compute_rhat(chain::Array{Tuple,1})
compute_rhat(fits::Array{Fit,1})
compute_rhat(params::Vector{Array})
returns r-hat measure
"""
compute_rhat(chain::Array{Tuple,1}) = compute_rhat(collate_fit(chain))
function compute_rhat(fits::Vector{Fit})
M = length(fits)
params = Vector{Array}(undef, M)
for i in 1:M
params[i] = fits[i].param
end
compute_rhat(params)
end
"""
compute_rhat(params::Vector{Array})
"""
function compute_rhat(params::Vector{Array})
N = chainlength(params)
M = length(params)
m = Matrix{Float64}(undef, size(params[1], 1), 2 * M)
s = similar(m)
for i in 1:M
m[:, 2*i-1] = mean(params[i][:, 1:N], dims=2)
m[:, 2*i] = mean(params[i][:, N+1:2*N], dims=2)
s[:, 2*i-1] = var(params[i][:, 1:N], dims=2)
s[:, 2*i] = var(params[i][:, N+1:2*N], dims=2)
end
B = N * var(m, dims=2)
W = mean(s, dims=2)
sqrt.((N - 1) / N .+ B ./ W / N)
end
"""
chainlength(params)
returns integer half of the minimum number of MCMC runs
"""
function chainlength(params)
N = minimum(size.(params, 2))
div(N, 2)
end
"""
find_ml(fits)
returns the negative maximum likelihood out of all the chains
"""
function find_ml(fits::Array)
llml = Array{Float64,1}(undef, length(fits))
for i in eachindex(fits)
llml[i] = fits[i].llml
end
return fits[argmin(llml)].parml, llml[argmin(llml)]
end
"""
crossentropy(logpredictions::Array{T},data::Array{T}) where {T}
compute crosscentropy between data histogram and likelilhood
"""
function crossentropy(logpredictions::Array{T1}, hist::Array{T2}) where {T1,T2}
lltot = hist' * logpredictions
isfinite(lltot) ? -lltot : Inf
end
"""
hist_entropy(hist)
returns entropy of a normalized histogram
"""
function hist_entropy(hist::Array{Float64,1})
-hist' * log.(normalize_histogram(max.(hist, 0)))
end
function hist_entropy(hist::Array{Array,1})
l = 0
for h in hist
l += hist_entropy(h)
end
return l
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 22012 | # rna.jl
#
# Fit G state models (generalized telegraph models) to RNA abundance data
# For single cell RNA (scRNA) technical noise is included as a yieldfactor
# single molecule FISH (smFISH) is treated as loss less
#
"""
fit_rna(nchains::Int,gene::String,cell::String,fittedparam::Vector,fixedeffects::Tuple,datacond,G::Int,maxtime::Float64,infolder::String,resultfolder::String,datafolder,fish::Bool,runcycle::Bool,inlabel,label,nsets::Int,cv=0.,transient::Bool=false,samplesteps::Int=100000,warmupsteps=20000,annealsteps=100000,temp=1.,tempanneal=100.,root = "/home/carsonc/scrna/",yieldprior = 0.05,ejectprior = 1.0)
fit_rna(nchains::Int,data::AbstractRNAData,gene::String,cell::String,fittedparam::Vector,fixedeffects::Tuple,datacond,G::Int,maxtime::Float64,infolder::String,resultfolder::String,datafolder,fish::Bool,runcycle,inlabel,label,nsets,cv=0.,transient::Bool=false,samplesteps::Int=100000,warmupsteps=20000,annealsteps=100000,temp=1.,tempanneal=100.,root = "/home/carsonc/scrna/",yieldprior = 0.05,ejectprior = 1.0)
Fit steady state or transient GM model to RNA data for a single gene, write the result (through function finalize), and return nothing.
# Arguments
- `nchains`: number of MCMC chains
- `gene`: gene name
- `cell`: cell type
- `datacond`: condition, if more than one condition use vector of strings e.g. ["DMSO","AUXIN"]
- `maxtime`: float maximum time for entire run
- `infolder`: folder pointing to results used as initial conditions
- `resultfolder`: folder where results go
- `datafolder`: folder for data, string or array of strings
- `inlabel`: name of input files (not including gene name but including condition)
- `label`: = name of output files
- `nsets`: int number of rate sets
- `runcycle`: if true, cycle through all parameters sequentially in MCMC
- `samplesteps`: int number of samples
- `warmupsteps`: int number of warmup steps
- `annealsteps`: in number of annealing steps
- `temp`: MCMC temperature
- `tempanneal`: starting temperature for annealing
- `root`: root folder of data and Results folders
- `fittedparam`: vector of rate indices, indices of parameters to be fit (input as string of ints separated by "-")
- `fixedeffects`: (tuple of vectors of rate indices) string indicating which rate is fixed, e.g. "eject"
- `data`: data structure
"""
function fit_rna(nchains::Int, gene::String, cell::String, fittedparam::Vector, fixedeffects::Tuple, transitions::Tuple, datacond, G::Int, maxtime::Float64, infolder::String, resultfolder::String, datafolder, fish::Bool, inlabel, label, nsets::Int, cv=0.0, transient::Bool=false, samplesteps::Int=100000, warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, root=".", yieldprior::Float64=0.05, priorcv::Float64=10.0, decayrate=-1.0)
gene = check_genename(gene, "[")
datafolder = folder_path(datafolder, root, "data")
if occursin("-", datafolder)
datafolder = string.(split(datafolder, "-"))
end
if occursin("-", datacond)
datacond = string.(split(datacond, "-"))
end
if transient
data = data_rna(gene, datacond, datafolder, fish, label, ["T0", "T30", "T120"], [0.0, 30.0, 120.0])
else
data = data_rna(gene, datacond, datafolder, fish, label)
end
fit_rna(nchains, data, gene, cell, fittedparam, fixedeffects, transitions, datacond, G, maxtime, infolder, resultfolder, datafolder, fish, inlabel, label, nsets, cv, transient, samplesteps, warmupsteps, annealsteps, temp, tempanneal, root, yieldprior, priorcv, decayrate)
end
function fit_rna(nchains::Int, data::AbstractRNAData, gene::String, cell::String, fittedparam::Vector, fixedeffects::Tuple, transitions::Tuple, datacond, G::Int, maxtime::Float64, infolder::String, resultfolder::String, datafolder, fish::Bool, inlabel, label, nsets, cv=0.0, transient::Bool=false, samplesteps::Int=100000, warmupsteps=0, annealsteps=0, temp=1.0, tempanneal=100.0, root=".", yieldprior::Float64=0.05, priorcv::Float64=10.0, decayrate=-1.0)
println(now())
printinfo(gene, G, datacond, datafolder, infolder, resultfolder, maxtime)
println("size of histogram: ", data.nRNA)
resultfolder = joinpath("results", resultfolder)
infolder = joinpath("results", infolder)
if fish
yieldprior = 1.0
end
model = model_rna(data, gene, cell, G, cv, fittedparam, fixedeffects, transitions, inlabel, infolder, nsets, root, yieldprior, decayrate, Normal, priorcv, true)
options = MHOptions(samplesteps, warmupsteps, annealsteps, maxtime, temp, tempanneal)
print_ll(data, model)
fits, stats, measures = run_mh(data, model, options, nchains)
optimized = 0
try
optimized = Optim.optimize(x -> lossfn(x, data, model), fits.parml, LBFGS())
catch
@warn "Optimizer failed"
end
finalize(data, model, fits, stats, measures, temp, resultfolder, optimized, burstsize(fits, model), root)
println(now())
get_rates(stats.medparam, model, false)
end
#Prepare data structures
"""
data_rna(gene::String,cond::String,datafolder,fish,label)
data_rna(gene::String,cond::String,datafolder::String,fish::Bool,label,sets::Vector,time::Vector)
data_rna(path,time,gene,time)
data_rna(path,time,gene)
Load data structure
"""
function data_rna(gene::String, cond::String, datafolder::String, fish::Bool, label)
if cond == "null"
cond = ""
end
datafile = fish ? FISHpath(gene, cond, datafolder) : scRNApath(gene, cond, datafolder)
data_rna(datafile, label, gene, fish)
end
function data_rna(gene::String, cond::Array, datafolder::String, fish::Bool, label)
datafile = Array{String,1}(undef, length(cond))
for i in eachindex(cond)
datafile[i] = fish ? FISHpath(gene, cond[i], datafolder) : scRNApath(gene, cond[i], datafolder)
end
data_rna(datafile, label, gene, fish)
end
function data_rna(gene::String, cond::Array, datafolder::Array, fish::Bool, label)
datafile = Array{String,1}(undef, length(cond))
for i in eachindex(cond)
datafile[i] = fish ? FISHpath(gene, cond[i], datafolder) : scRNApath(gene, cond[i], datafolder)
end
println(datafile)
data_rna(datafile, label, gene, fish)
end
function data_rna(gene::String, cond::String, datafolder::String, fish::Bool, label, sets::Vector, time::Vector)
if cond == "null"
cond = ""
end
datafile = []
for set in sets
folder = joinpath(datafolder, set)
path = fish ? FISHpath(gene, cond, datafolder) : scRNApath(gene, cond, datafolder)
datafile = vcat(datafile, path)
end
data_rna(datafile, label, times, gene, false)
end
function data_rna(path, label, gene::String, fish::Bool)
len, h = histograms_rna(path, gene, fish)
RNAData(label, gene, len, h)
end
"""
histograms_rna(path,gene)
prepare mRNA histograms for gene given data folder path
"""
function histograms_rna(path::Array, gene::String, fish::Bool)
n = length(path)
h = Array{Array,1}(undef, n)
lengths = Array{Int,1}(undef, n)
for i in eachindex(path)
lengths[i], h[i] = histograms_rna(path[i], gene, fish)
end
return lengths, h
end
function histograms_rna(path::String, gene::String, fish::Bool)
if fish
h = read_fish(path, gene, 0.98)
else
h = read_scrna(path, 0.99)
if length(h) == 0
throw("data not found")
end
end
return length(h), h
end
function histograms_rna(path::Array, gene::String, fish::Array{Bool,1})
n = length(path)
h = Array{Array,1}(undef, n)
lengths = Array{Int,1}(undef, n)
for i in eachindex(path)
lengths[i], h[i] = histograms_rna(path[i], gene, fish[i])
end
return lengths, h
end
# # Prepare model structures
# """
# model_rna(gene,cell,G,fish,fittedparam,fixedeffects,inlabel,infolder,nsets,root,data,verbose=true)
# model_rna(r::Vector,d::Vector,G::Int,nalleles::Int,propcv,fittedparam,fixedeffects,fish::Bool,method=0)
# model_rna(r,G,nalleles,nsets,propcv,fittedparam,decayprior,yieldprior,method)
# model_rna(r,G,nalleles,nsets,propcv,fittedparam,decayprior,method)
# model_rna(r,G,nalleles,nsets,propcv,fittedparam,decayprior,noisepriors,method)
# make model structure
# """
# function model_rna(data, gene::String, cell::String, G::Int, cv, fittedparam, fixedeffects, transitions, inlabel, infolder, nsets, root, yieldprior, decayrate::Float64, fprior=Normal, priorcv=10.0, onstates=[G], verbose=true)
# if decayrate < 0
# decayrate = get_decay(gene, cell, root)
# end
# nalleles = alleles(gene, cell, root)
# if verbose
# println("alleles: ", nalleles)
# if decayrate < 0
# throw("decayrate < 0")
# else
# println("decay rate: ", decayrate)
# end
# end
# if cv <= 0
# cv = getcv(gene, G, nalleles, fittedparam, inlabel, infolder, root, verbose)
# end
# if G == 1
# ejectrate = mean_histogram(data.histRNA) * decayrate / nalleles * yieldprior
# else
# ejectrate = yieldprior
# end
# r = getr(gene, G, nalleles, decayrate, ejectrate, inlabel, infolder, nsets, root, verbose)
# model = model_rna(data.nRNA, r, G, nalleles, nsets, cv, fittedparam, fixedeffects, transitions, decayrate, ejectrate, fprior, priorcv, onstates)
# return model
# end
# function model_rna(nRNA::Int, r::Vector, G::Int, nalleles::Int, nsets::Int, propcv, fittedparam, fixedeffects, transitions, decayprior, ejectprior, f=Normal, cv=10.0, onstates=[G])
# d = prior_rna(r, G, nsets, fittedparam, decayprior, ejectprior, f, cv)
# model_rna(nRNA, r::Vector, d, G::Int, nalleles, propcv, fittedparam, fixedeffects, transitions, onstates)
# end
# function model_rna(nRNA::Int, r::Vector, d, G::Int, nalleles, propcv, fittedparam, fixedeffects, transitions, method=0, onstates=[G])
# # components = make_components_M(transitions,G,data.nRNA+2,r[end])
# components = make_components_M(transitions, G, 0, nRNA + 2, r[end], "")
# if length(fixedeffects) > 0
# model = GMfixedeffectsmodel{typeof(r),typeof(d),typeof(propcv),typeof(fittedparam),typeof(method),typeof(components)}(G, nalleles, r, d, propcv, fittedparam, fixedeffects, method, transitions, components, onstates)
# else
# model = GMmodel{typeof(r),typeof(d),typeof(propcv),typeof(fittedparam),typeof(method),typeof(components)}(G, nalleles, r, d, propcv, fittedparam, method, transitions, components, onstates)
# end
# return model
# end
# function model_delay_rna(r::Vector, G::Int, nalleles::Int, nsets::Int, propcv, fittedparam::Array, decayprior, ejectprior, delayprior)
# # propcv = proposal_cv_rna(propcv,fittedparam)
# d = prior_rna(r, G, nsets, fittedparam, decayprior, ejectprior, delayprior)
# GMdelaymodel{typeof(r),typeof(d),typeof(propcv),typeof(fittedparam),Int64}(G, nalleles, r, d, propcv, fittedparam, 1)
# end
# """
# transient_rna(nchains,gene::String,fittedparam,cond::Vector,G::Int,maxtime::Float64,infolder::String,resultfolder,datafolder,inlabel,label,nsets,runcycle::Bool=false,samplesteps::Int=40000,warmupsteps=20000,annealsteps=100000,temp=1.,tempanneal=100.,root = "/home/carsonc/scrna/")
# make structures for transient model fit
# """
# function transient_rna(nchains, gene::String, cell, fittedparam, cond::Vector, G::Int, maxtime::Float64, infolder::String, resultfolder, datafolder, inlabel, label, nsets, runcycle::Bool=false, samplesteps::Int=40000, warmupsteps=20000, annealsteps=100000, temp=1.0, tempanneal=100.0, root="/home/carsonc/scrna/")
# data = make_data(gene, cond, G, datafolder, label, nsets, root)
# model = make_model(gene, cell, G, fittedparam, inlabel, infolder, nsets, root, data)
# param, _ = initial_proposal(model)
# return param, data, model
# end
"""
prior_rna(r::Vector,G::Int,nsets::Int,propcv,fittedparam::Array,decayprior,yieldprior)
prior_rna(r::Vector,G::Int,nsets::Int,fittedparam::Array,decayprior::Float64,noisepriors::Array)
prepare prior distribution
r[mod(1:2*G,nsets)] = rates for each model set (i.e. rates for each set are stacked)
r[2*G*nsets + 1] == yield factor (i.e remaining after loss due to technical noise)
prior for multithresholded smFISH data
r[1:2G] = model rates
r[2G+1] = additive noise mean
r[2G + 1 + 1:length(noisepriors)] = remaining fraction after thresholding (i.e. yield)
"""
function prior_rna(r::Vector, G::Int, nsets::Int, fittedparam::Array, decayprior::Float64, ejectprior::Float64, f=Normal, cv::Float64=10.0)
if length(r) == 2 * G * nsets
rm, rcv = setrate(G, nsets, decayprior, ejectprior, cv)
return distribution_array(log.(rm[fittedparam]), sigmalognormal(rcv[fittedparam]), f)
else
throw("rates have wrong length")
end
end
function prior_rna(r::Vector, G::Int, nsets::Int, fittedparam::Array, decayprior::Float64, ejectprior::Float64, noisepriors::Array, f=Normal, cv::Float64=10.0)
if length(r) == 2 * G * nsets + length(noisepriors)
rm, rcv = setrate(G, nsets, decayprior, ejectprior, noisepriors, cv)
return distribution_array(log.(rm[fittedparam]), rcv[fittedparam], f)
else
throw("rates have wrong length")
end
end
"""
setrate(G::Int,nsets::Int,decayrate::Float64,ejectrate::Float64,cv::Float64 = 10.)
setrate(G::Int,nsets::Int,decayrate::Float64,ejectrate::Float64,noisepriors::Array,cv::Float64 = 10.)
Set mean and cv of rates
"""
function setr(G, nsets, decayrate, ejectrate)
r = setrate(G, nsets, decayrate, ejectrate)[1]
println("init rates: ", r)
return r
end
function setrate(G::Int, nsets::Int, decayrate::Float64, ejectrate::Float64, cv::Float64=10.0)
rm = Vector{Float64}(undef, 0)
rc = similar(rm)
for i in 1:nsets
rm = vcat(rm, [repeat([0.01; 0.1], (G - 1)); ejectrate; decayrate])
rc = vcat(rc, [cv * ones(2 * (G - 1)); cv; 0.01])
end
return rm, rc
end
function setrate(G::Int, nsets::Int, decayrate::Float64, ejectrate::Float64, noisepriors::Array, cv::Float64=10.0)
rm, rc = setrate(G, nsets, decayrate, ejectrate, cv)
for nm in noisepriors
rm = vcat(rm, nm)
rc = vcat(rc, 0.25)
end
return rm, rc
end
"""
proposal_cv_rna(cv)
proposal_cv_rna(propcv,fittedparam)
set proposal cv to a vector or matrix
"""
proposal_cv_rna(cv) = typeof(cv) == Float64 ? propcv * ones(length(fittedparam)) : propcv
proposal_cv_rna(propcv, fittedparam) = typeof(propcv) == Float64 ? propcv * ones(length(fittedparam)) : propcv
"""
fittedparam_rna(G,nsets,loss)
fittedparam_rna(G,nsets)
select all parameters to be fitted except decay rates
yieldfactor is last parameter in loss models
"""
function fittedparam_rna(G, nsets, loss)
fp = fittedparam_rna(G, nsets)
if loss == 1
return vcat(fp, nsets * 2 * G + 1)
else
return fp
end
end
function fittedparam_rna(G, nsets)
nrates = 2 * G # total number of rates in GM model
k = nrates - 1 # adjust all rate parameters except decay time
fp = Array{Int,1}(undef, nsets * k)
for j in 0:nsets-1
for i in 1:k
fp[k*j+i] = nrates * j + i
end
end
return fp
end
"""
rescale_rate_rna(r,G,decayrate::Float64)
set new decay rate and rescale
transition rates such that steady state distribution is the same
"""
function rescale_rate_rna(r, G, decayrate::Float64)
rnew = copy(r)
if mod(length(r), 2 * G) == 0
rnew *= decayrate / r[2*G]
else
stride = fld(length(r), fld(length(r), 2 * G))
for i in 0:stride:length(r)-1
rnew[i+1:i+2*G] *= decayrate / r[2*G]
end
end
return rnew
end
# # Read in data and construct histograms
# """
# read_scrna(filename::String,yield::Float64=.99,nhistmax::Int=1000)
# Construct mRNA count per cell histogram array of a gene
# """
# function read_scrna(filename::String, threshold::Float64=0.99, nhistmax::Int=500)
# if isfile(filename) && filesize(filename) > 0
# x = readdlm(filename)[:, 1]
# x = truncate_histogram(x, threshold, nhistmax)
# if x == 0
# dataFISH = Array{Int,1}(undef, 0)
# else
# dataFISH = x
# end
# return dataFISH
# else
# # println("data file not found")
# return Array{Int,1}(undef, 0)
# end
# end
# """
# read_fish(path,gene,threshold)
# Read in FISH data from 7timepoint type folders
# """
# function read_fish(path::String, cond::String, threshold::Float64=0.98, maxlength=1800)
# xr = zeros(maxlength)
# lx = 0
# for (root, dirs, files) in walkdir(path)
# for file in files
# target = joinpath(root, file)
# if occursin(cond, target) && occursin("cellular", target)
# # println(target)
# x1 = readdlm(target)[:, 1]
# x1 = truncate_histogram(x1, threshold, maxlength)
# lx = length(x1)
# # println(lx)
# xr[1:min(lx, maxlength)] += x1[1:min(lx, maxlength)]
# end
# end
# end
# return truncate_histogram(xr, 1.0, maxlength)
# end
function read_fish(path1::String, cond1::String, path2::String, cond2::String, threshold::Float64=0.98)
x1 = read_fish(path1, cond1, threshold)
x2 = read_fish(path2, cond2, threshold)
combine_histogram(x1, x2)
end
# function to create a FISH directory
"""
new_FISH(newroot::String, oldroot::String, rep::String)
TBW
"""
function new_FISH(newroot::String, oldroot::String, rep::String)
for (root, dirs, files) in walkdir(oldroot)
for dir in dirs
if occursin(rep, dir)
oldtarget = joinpath(root, dir)
newtarget = replace(oldtarget, oldroot => newroot)
println(newtarget)
if !ispath(newtarget)
mkpath(newtarget)
end
cp(oldtarget, newtarget, force=true)
end
end
end
end
# functions to build paths to RNA/FISH data and results
# """
# scRNApath(gene::String,cond::String,datapath::String,root::String)
# generate path to scRNA data for given gene and condition cond
# data files must have format genename_cond.txt
# """
# function scRNApath(gene::String, cond::String, datapath::String, root::String)
# datapath = joinpath(root, datapath)
# if cond == ""
# joinpath(datapath, gene * ".txt")
# else
# joinpath(datapath, gene * "_" * cond * ".txt")
# end
# end
# scRNApath(gene, cond, datapath) = joinpath(datapath, gene * "_" * cond * ".txt")
# """
# FISHpath(gene,cond,datapath,root)
# generate path to FISH data
# """
# # FISHpath(gene,cond,datapath,root) = joinpath(joinpath(joinpath(root,datapath),gene),cond)
# FISHpath(gene, cond, datapath, root) = joinpath(root, datapath, gene, cond)
# FISHpath(gene, cond, datapath) = joinpath(datapath, gene, cond)
# """
# ratepath_Gmodel(gene::String,cond::String,G::Int,nalleles::Int,label,folder,root)
# """
# function ratepath_Gmodel(gene::String, cond::String, G::Int, nalleles::Int, label, folder, root)
# path_Gmodel("rates", gene, G, nalleles, label * "-" * cond, folder, root)
# end
# """
# path_Gmodel(type,gene::String,G::Int,nalleles::Int,label::String,folder,root)
# """
# function path_Gmodel(type, gene::String, G::Int, nalleles::Int, label::String, folder, root)
# filelabel = label * "_" * gene * "_" * "$G" * "_" * "$nalleles" * ".txt"
# ratefile = type * "_" * filelabel
# joinpath(root, folder, ratefile)
# end
"""
stats_rna(genes::Vector,conds,datapath,threshold=.99)
"""
function stats_rna(genes::Vector, conds, datapath, threshold=0.99)
g = Vector{String}(undef, 0)
z = Vector{Float64}(undef, 0)
h1 = Vector{Float64}(undef, 0)
h2 = Vector{Float64}(undef, 0)
for gene in genes
t, m1, m2 = expression_rna(gene, conds, datapath, threshold)
push!(g, gene)
push!(z, t)
push!(h1, m2)
push!(h2, m1)
end
return g, z, h1, h2
end
"""
expression_rna(gene,conds::Vector,folder::String,threshold=.99)
"""
function expression_rna(gene, conds::Vector, folder::String, threshold=0.99)
h = Vector{Vector}(undef, 2)
for i in eachindex(conds)
datapath = scRNApath(gene, conds[i], folder)
h[i] = read_scrna(datapath, threshold)
end
if length(h[1]) > 0 && length(h[2]) > 0
return log_2sample(h[1], h[2]), mean_histogram(h[1]), mean_histogram(h[2])
else
return 0, 0, 0
end
end
"""
expression_rna(gene,conds::Vector,folder::Vector,threshold=.99)
"""
function expression_rna(gene, conds::Vector, folder::Vector, threshold=0.99)
h = Vector{Vector}(undef, 2)
for i in eachindex(conds)
datapath = scRNApath(gene, conds[i], folder[i])
h[i] = read_scrna(datapath, threshold)
end
if length(h[1]) > 0 && length(h[2]) > 0
return log_2sample(h[1], h[2]), mean_histogram(h[1]), mean_histogram(h[2])
else
return 0, 0, 0
end
end
"""
expression_rna(genes::Vector,cond::String,folder,threshold=.99)
"""
function expression_rna(genes::Vector, cond::String, folder, threshold=0.99)
h1 = Array{Any,2}(undef, 0, 2)
for gene in genes
datapath = scRNApath(gene, cond, folder)
h = read_scrna(datapath, threshold)
if length(h) > 0
h1 = vcat(h1, [gene mean_histogram(h)])
end
end
return h1
end
"""
rna_fish(gene,cond,fishfolder,rnafolder,yield,root)
output RNA histogram and downsampled FISH histogram with loss
"""
function rna_fish(gene, cond, fishfolder, rnafolder, yield)
datarna = histograms_rna(scRNApath(gene, cond, rnafolder), gene, false)
f = reduce_fish(gene, cond, datarna[1], fishfolder, yield)
return datarna[2], f
end
"""
reduce_fish(gene,cond,nhist,fishfolder,yield,root)
sample fish histogram with loss (1-yield)
"""
function reduce_fish(gene, cond, nhist, fishfolder, yield)
fish = histograms_rna(FISHpath(gene, cond, fishfolder), gene, true)
technical_loss(fish[2], yield, nhist)
fish[2]
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 23783 | # This file is part of StochasticGene.jl
# simulator.jl
# Functions to simulate Markov gene transcription models
# Uses hybrid first and next reaction method
"""
Reaction
structure for reaction type
action: type of reaction
index: rate index for reaction
disabled: reactions that are disabled by current reaction
enabled: reactions that are enabled by current reaction
initial: initial GR state
final: final GR state
"""
struct Reaction
action::Int
index::Int
disabled::Vector{Int64}
enabled::Vector{Int64}
initial::Int
final::Int
end
"""
ReactionIndices
structure for rate indices of reaction types
"""
struct ReactionIndices
grange::UnitRange{Int64}
irange::UnitRange{Int64}
rrange::UnitRange{Int64}
erange::UnitRange{Int64}
srange::UnitRange{Int64}
decay::Int
end
"""
set_actions()
create dictionary for all the possible transitions
"""
set_actions() = Dict("activateG!" => 1, "deactivateG!" => 2, "transitionG!" => 3, "initiate!" => 4, "transitionR!" => 5, "eject!" => 6, "splice!" => 7, "decay!" => 8)
# invert_dict(D) = Dict(D[k] => k for k in keys(D)) put into utilities
"""
simulator(r::Vector{Float64}, transitions::Tuple, G::Int, R::Int, S::Int, insertstep::Int; nalleles::Int=1, nhist::Int=20, onstates::Vector=Int[], bins::Vector=Float64[], traceinterval::Float64=0.0, probfn=prob_GaussianMixture, noiseparams::Int=5, totalsteps::Int=1000000000, totaltime::Float64=0.0, tol::Float64=1e-6, reporterfn=sum, splicetype="", verbose::Bool=false)
Simulate any GRSM model. Returns steady state mRNA histogram. If bins not a null vector will return a vector of the mRNA histogram and ON and OFF time histograms. If traceinterval > 0, it will return a vector containing the mRNA histogram and the traces
#Arguments
- `r`: vector of rates
- `transitions`: tuple of vectors that specify state transitions for G states, e.g. ([1,2],[2,1]) for classic 2 state telegraph model and ([1,2],[2,1],[2,3],[3,1]) for 3 state kinetic proof reading model
- `G`: number of gene states
- `R`: number of pre-RNA steps (set to 0 for classic telegraph models)
- `S`: number of splice sites (set to 0 for G (classic telegraph) and GR models and R for GRS models)
- `insertstep`: reporter insertion step
#Named arguments
- `nalleles`: Number of alleles
- `nhist::Int`: Size of mRNA histogram
- `onstates::Vector`: a vector of ON states (use empty set for any R step is ON) or vector of vector of ON states
- `bins::Vector=Float64[]`: vector of time bins for ON and OFF histograms or vector of vectors of time bins
- `probfn`=prob_GaussianMixture: reporter distribution
- `traceinterval`: Interval in minutes between frames for intensity traces. If 0, traces are not made.
- `totalsteps`::Int=10000000: maximum number of simulation steps (not usred when simulating traces)
- `tol`::Float64=1e-6: convergence error tolerance for mRNA histogram (not used when simulating traces are made)
- `totaltime`::Float64=0.0: total time of simulation
- `splicetype`::String: splice action
- `reporterfn`=sum: how individual reporters are combined
- `verbose::Bool=false`: flag for printing state information
#Example:
julia> h=simulator(r,transitions,3,2,2,1,nhist=150,bins=[collect(5/3:5/3:200),collect(.1:.1:20)],onstates=[Int[],[2,3]],nalleles=2)
"""
function simulator(r::Vector{Float64}, transitions::Tuple, G::Int, R::Int, S::Int, insertstep::Int; nalleles::Int=1, nhist::Int=20, onstates::Vector=Int[], bins::Vector=Float64[], traceinterval::Float64=0.0, probfn=prob_Gaussian, noiseparams::Int=4, totalsteps::Int=1000000000, totaltime::Float64=0.0, tol::Float64=1e-6, reporterfn=sum, splicetype="", verbose::Bool=false)
if length(r) < num_rates(transitions, R, S, insertstep) + noiseparams * (traceinterval > 0)
throw("r has too few elements")
end
if insertstep > R > 0
throw("insertstep>R")
end
if S > 0
S = R - insertstep + 1
end
mhist, mhist0, m, steps, t, ts, t0, tsample, err = initialize_sim(r, nhist, tol)
reactions = set_reactions(transitions, G, R, S, insertstep)
tau, state = initialize(r, G, R, length(reactions), nalleles)
if length(bins) < 1
onoff = false
else
onoff = true
if ~(eltype(onstates) <: Vector)
bins = [bins]
onstates = [onstates]
end
nn = length(onstates)
tIA = Vector{Float64}[]
tAI = Vector{Float64}[]
before = Vector{Int}(undef, nn)
after = Vector{Int}(undef, nn)
ndt = Int[]
dt = Float64[]
histofftdd = Vector{Int}[]
histontdd = Vector{Int}[]
for i in eachindex(onstates)
push!(ndt, length(bins[i]))
push!(dt, bins[i][2] - bins[i][1])
push!(histofftdd, zeros(Int, ndt[i]))
push!(histontdd, zeros(Int, ndt[i]))
push!(tIA, zeros(nalleles))
push!(tAI, zeros(nalleles))
end
end
if traceinterval > 0
par = r[end-noiseparams+1:end]
tracelog = [(t, state[:, 1])]
end
if verbose
invactions = invert_dict(set_actions())
end
if totaltime > 0.0
err = 0.0
totalsteps = 0
end
while (err > tol && steps < totalsteps) || t < totaltime
steps += 1
t, rindex = findmin(tau) # reaction index and allele for least time transition
index = rindex[1]
allele = rindex[2]
initial, final, disabled, enabled, action = set_arguments(reactions[index])
dth = t - t0
t0 = t
update_mhist!(mhist, m, dth, nhist)
if t - ts > tsample && traceinterval == 0
err, mhist0 = update_error(mhist, mhist0)
ts = t
end
if onoff
# find before and after states for the same allele to define dwell time histograms
for i in eachindex(onstates)
before[i] = isempty(onstates[i]) ? num_reporters(state, allele, G, R, insertstep) : Int(gstate(G, state, allele) β onstates[i])
end
end
if verbose
println("---")
println("m:", m)
println(state)
onoff && println("before", before)
println(tau)
println("t:", t)
println(rindex)
println(invactions[action], " ", allele)
println(initial, "->", final)
end
m = update!(tau, state, index, t, m, r, allele, G, R, S, disabled, enabled, initial, final, action, insertstep)
if onoff
for i in eachindex(onstates)
after[i] = isempty(onstates[i]) ? num_reporters(state, allele, G, R, insertstep) : Int(gstate(G, state, allele) β onstates[i])
firstpassagetime!(histofftdd[i], histontdd[i], tAI[i], tIA[i], t, dt[i], ndt[i], allele, before[i], after[i], verbose)
end
verbose && println(tAI)
verbose && println(tIA)
end
if traceinterval > 0
push!(tracelog, (t, state[:, 1]))
end
end # while
verbose && println(steps)
# counts = max(sum(mhist), 1)
# mhist /= counts
if onoff
dwelltimes = Vector[]
push!(dwelltimes, mhist[1:nhist])
for i in eachindex(histontdd)
push!(dwelltimes, histontdd[i])
push!(dwelltimes, histofftdd[i])
end
return dwelltimes
elseif traceinterval > 0.0
return [mhist[1:nhist], make_trace(tracelog, G, R, S, onstates, traceinterval, par, insertstep, probfn, reporterfn), tracelog]
elseif onoff && traceinterval > 0
return [mhist[1:nhist], histontdd, histofftdd, make_trace(tracelog, G, R, S, onstates, traceinterval, par, insertstep, probfn, reporterfn)]
else
return mhist[1:nhist]
end
end
"""
simulate_trace_data(datafolder::String;ntrials::Int=10,r=[0.038, 1.0, 0.23, 0.02, 0.25, 0.17, 0.02, 0.06, 0.02, 0.000231,30,20,200,100,.8], transitions=([1, 2], [2, 1], [2, 3], [3, 1]), G=3, R=2, S=2, insertstep=1,onstates=Int[], interval=1.0, totaltime=1000.)
create simulated trace files in datafolder
"""
function simulate_trace_data(datafolder::String; ntrials::Int=10, r=[0.038, 1.0, 0.23, 0.02, 0.25, 0.17, 0.02, 0.06, 0.02, 0.000231, 30, 20, 200, 100, 0.8], transitions=([1, 2], [2, 1], [2, 3], [3, 1]), G=3, R=2, S=2, insertstep=1, onstates=Int[], interval=1.0, totaltime=1000.0)
~ispath(datafolder) && mkpath(datafolder)
for i in 1:ntrials
trace = simulator(r, transitions, G, R, S, insertstep, onstates=onstates, traceinterval=interval, totaltime=totaltime)[2][1:end-1, 2]
l = length(trace)
datapath = joinpath(datafolder, "testtrace$i.trk")
writedlm(datapath, [zeros(l) zeros(l) trace collect(1:l)])
end
end
function simulate_trace_vector(r, transitions, G, R, S, interval, totaltime, ntrials; insertstep=1, onstates=Int[], reporterfn=sum)
trace = Array{Array{Float64}}(undef, ntrials)
for i in eachindex(trace)
trace[i] = simulator(r, transitions, G, R, S, insertstep, onstates=onstates, traceinterval=interval, totaltime=totaltime)[2][1:end-1, 2]
end
trace
end
"""
simulate_trace(r,transitions,G,R,interval,totaltime,onstates=[G])
simulate a trace
"""
simulate_trace(r, transitions, G, R, S, insertstep, interval, onstates; totaltime=1000.0, reporterfn=sum) = simulator(r, transitions, G, R, S, insertstep, nalleles=1, nhist=2, onstates=onstates, traceinterval=interval, reporterfn=reporterfn, totaltime=totaltime)[2][1:end-1, :]
"""
initialize(r, G, R, nreactions, nalleles, initstate=1, initreaction=1)
return initial proposed next reaction times and states
"""
function initialize(r, G, R, nreactions, nalleles, initstate=1, initreaction=1)
tau = fill(Inf, nreactions, nalleles)
states = zeros(Int, G + R, nalleles)
for n in 1:nalleles
tau[initreaction, n] = -log(rand()) / r[1]
states[initstate, n] = 1
end
return tau, states
end
"""
initialize_sim(r, nhist, tol, samplefactor=20.0, errfactor=10.0)
"""
initialize_sim(r, nhist, tol, samplefactor=20.0, errfactor=10.0) = zeros(nhist + 1), ones(nhist + 1), 0, 0, 0.0, 0.0, 0.0, samplefactor / minimum(r), errfactor * tol
"""
update_error(mhist, mhist0)
TBW
"""
update_error(mhist, mhist0) = (norm(mhist / sum(mhist) - mhist0 / sum(mhist0), Inf), copy(mhist))
"""
update_mhist!(mhist,m,dt,nhist)
"""
function update_mhist!(mhist, m, dt, nhist)
if m + 1 <= nhist
mhist[m+1] += dt
else
mhist[nhist+1] += dt
end
end
"""
make_trace(tracelog, G, R, S, onstates, interval, par, insertstep,reporterfn=sum)
Return array of frame times and intensities
- `tracelog`: Vector if Tuples of (time,state of allele 1)
- `interval`: Number of minutes between frames
- `onstates`: Vector of G on states, empty for GRS models
- `G` and `R` as defined in simulator
"""
function make_trace(tracelog, G, R, S, onstates::Vector{Int}, interval, par, insertstep, probfn, reporterfn=sum)
n = length(tracelog)
trace = Matrix(undef, 0, 4)
state = tracelog[1][2]
frame = interval
if isempty(onstates)
reporters = num_reporters_per_state(G, R, S, insertstep, reporterfn)
else
reporters = num_reporters_per_state(G, onstates)
end
i = 2
base = S > 0 ? 3 : 2
d = probfn(par, reporters, G * base^R)
while i < n
while tracelog[i][1] <= frame && i < n
state = tracelog[i][2]
i += 1
end
trace = vcat(trace, [frame intensity(state, G, R, S, d) reporters[state_index(state, G, R, S)] state_index(state, G, R, S)])
frame += interval
end
return trace
end
"""
make_trace(tracelog, G, R, S, onstates::Vector{Vector}, interval, par, insertstep, probfn, reporterfn=sum)
"""
function make_trace(tracelog, G, R, S, onstates::Vector{Vector}, interval, par, insertstep, probfn, reporterfn=sum)
traces = Vector[]
for o in onstates
push!(traces, make_trace(tracelog, G, R, S, o, interval, par, insertstep, probfn, reporterfn))
end
traces
end
"""
intensity(state,onstates,G,R)
Returns the trace intensity given the state of a system
For R = 0, the intensity is occupancy of any onstates
For R > 0, intensity is the number of reporters in the nascent mRNA
"""
function intensity(state, G, R, S, d)
stateindex = state_index(state, G, R, S)
max(rand(d[stateindex]), 0)
end
gstate(G, state, allele) = argmax(state[1:G, allele])
"""
state_index(state::Array,G,allele)
state_index(state::Array, G, R, S,allele=1)
returns state index given state vector
"""
state_index(state::Array, G, allele) = argmax(state[1:G, allele])
function state_index(state::Array, G, R, S, allele=1)
Gstate = gstate(G, state, allele)
if R == 0
return Gstate
else
if S > 0
base = 3
Rstate = state[G+1:end, allele]
else
base = 2
Rstate = Int.(state[G+1:end, allele] .> 0)
end
return Gstate + G * decimal(Rstate, base)
end
end
"""
num_reporters(state::Matrix, allele, G, R, insertstep=1)
return number of states with R steps > 1
"""
function num_reporters(state::Matrix, allele, G, R, insertstep)
reporters = 0
for i in G+insertstep:G+R
reporters = reporters + Int(state[i, allele] > 1)
end
reporters
end
"""
firstpassagetime!(histofftdd,histontdd, tAI, tIA, t, dt, ndt, allele,insertstep,before,after)
decide if transition exits or enters sojourn states then in place update appropriate histogram
"""
function firstpassagetime!(histofftdd, histontdd, tAI, tIA, t, dt, ndt, allele, before, after, verbose)
if before == 1 && after == 0 # turn off
firstpassagetime!(histontdd, tAI, tIA, t, dt, ndt, allele)
if verbose
println("off:", allele)
end
elseif before == 0 && after == 1 # turn on
firstpassagetime!(histofftdd, tIA, tAI, t, dt, ndt, allele)
if verbose
println("on:", allele)
end
end
end
"""
firstpassagetime!(hist, t1, t2, t, dt, ndt, allele)
in place update of first passage time histograms
"""
function firstpassagetime!(hist, t1, t2, t, dt, ndt, allele)
t1[allele] = t
t12 = (t - t2[allele]) / dt
if t12 <= ndt && t12 > 0 && t2[allele] > 0
hist[ceil(Int, t12)] += 1
end
end
"""
set_arguments(reaction)
return values of fields of Reaction structure
"""
set_arguments(reaction) = (reaction.initial, reaction.final, reaction.disabled, reaction.enabled, reaction.action)
"""
set_reactionindices(Gtransitions, R, S, insertstep)
return structure of ranges for each type of transition
"""
function set_reactionindices(Gtransitions, R, S, insertstep)
if S > 0
S = R - insertstep + 1
end
nG = length(Gtransitions)
g = 1:nG
i = nG + 1 : nG + Int(R > 0)
r = nG + 2 : nG + R
e = nG + R + 1 : nG + R + 1
s = nG + 1 + R + 1 : nG + 1 + R + S
d = nG + 1 + R + S + 1
ReactionIndices(g, i, r, e, s, d)
end
"""
set_reactions(Gtransitions, G, R, S, insertstep)
return vector of Reaction structures for each transition in GRS model
reporter first appears at insertstep
"""
function set_reactions(Gtransitions, G, R, S, insertstep)
actions = set_actions()
indices = set_reactionindices(Gtransitions, R, S, insertstep)
reactions = Reaction[]
nG = length(Gtransitions)
Sstride = R - insertstep + 1
for g in eachindex(Gtransitions)
u = Int[]
d = Int[]
ginitial = Gtransitions[g][1]
gfinal = Gtransitions[g][2]
for s in eachindex(Gtransitions)
# if ginitial == Gtransitions[s][1] && gfinal != Gtransitions[s][2]
if ginitial == Gtransitions[s][1]
push!(u, s)
end
if gfinal == Gtransitions[s][1]
push!(d, s)
end
end
if gfinal == G
push!(d, nG + 1)
push!(reactions, Reaction(actions["activateG!"], g, u, d, ginitial, gfinal))
elseif ginitial == G
push!(u, nG + 1)
push!(reactions, Reaction(actions["deactivateG!"], g, u, d, ginitial, gfinal))
else
push!(reactions, Reaction(actions["transitionG!"], g, u, d, ginitial, gfinal))
end
end
for i in indices.irange
if S > 0 && insertstep == 1
push!(reactions, Reaction(actions["initiate!"], i, [], [nG + 2; nG + 2 + S], G, G + 1))
else
push!(reactions, Reaction(actions["initiate!"], i, [], [nG + 2], G, G + 1))
end
end
i = G
for r in indices.rrange
i += 1
if S == 0
push!(reactions, Reaction(actions["transitionR!"], r, Int[r], [r - 1; r + 1], i, i + 1))
end
if S > 0 && insertstep == 1
push!(reactions, Reaction(actions["transitionR!"], r, Int[r; r + Sstride], [r - 1; r + 1; r + 1 + Sstride], i, i + 1))
end
if S > 0 && insertstep > 1 && i > G + insertstep - 1
push!(reactions, Reaction(actions["transitionR!"], r, Int[r; r + Sstride], [r - 1; r + 1; r + 1 + Sstride], i, i + 1))
end
if S > 0 && insertstep > 1 && i == G + insertstep - 1
push!(reactions, Reaction(actions["transitionR!"], r, Int[r], [r - 1; r + 1; r + 1 + Sstride], i, i + 1))
end
if S > 0 && insertstep > 1 && i < G + insertstep - 1
push!(reactions, Reaction(actions["transitionR!"], r, Int[r], [r - 1; r + 1], i, i + 1))
end
end
for e in indices.erange
if S > 0
push!(reactions, Reaction(actions["eject!"], e, Int[e, e+Sstride], Int[e-1, indices.decay], G + R, 0))
elseif R > 0
push!(reactions, Reaction(actions["eject!"], e, Int[e], Int[e-1, indices.decay], G + R, 0))
else
push!(reactions, Reaction(actions["eject!"], e, Int[], Int[e, indices.decay], G + 1, 0))
end
end
j = G + insertstep - 1
for s in indices.srange
j += 1
push!(reactions, Reaction(actions["splice!"], s, Int[], Int[], j, 0))
end
push!(reactions, Reaction(actions["decay!"], indices.decay, Int[], Int[indices.decay], 0, 0))
return reactions
end
"""
update!(tau, state, index, t, m, r, allele, G, R, S, disabled, enabled, initial, final, action)
updates proposed next reaction time and state given the selected action and returns updated number of mRNA
(uses if-then statements because that executes faster than an element of an array of functions)
Arguments are same as defined in simulator
"""
function update!(tau, state, index, t, m, r, allele, G, R, S, disabled, enabled, initial, final, action, insertstep)
if action < 5
if action < 3
if action == 1
activateG!(tau, state, index, t, m, r, allele, G, R, disabled, enabled, initial, final)
else
deactivateG!(tau, state, index, t, m, r, allele, G, R, disabled, enabled, initial, final)
end
else
if action == 3
transitionG!(tau, state, index, t, m, r, allele, G, R, disabled, enabled, initial, final)
else
initiate!(tau, state, index, t, m, r, allele, G, R, S, disabled, enabled, initial, final, insertstep)
end
end
else
if action < 7
if action == 5
transitionR!(tau, state, index, t, m, r, allele, G, R, S, disabled, enabled, initial, final, insertstep)
else
m = eject!(tau, state, index, t, m, r, allele, G, R, S, disabled, enabled, initial)
end
else
if action == 7
splice!(tau, state, index, t, m, r, allele, G, R, initial)
else
m = decay!(tau, index, t, m, r)
end
end
end
return m
end
"""
transitionG!(tau, state, index, t, m, r, allele, G, R, disabled, enabled, initial, final)
update tau and state for G transition
"""
function transitionG!(tau, state, index, t, m, r, allele, G, R, disabled, enabled, initial, final)
for e in enabled
tau[e, allele] = -log(rand()) / r[e] + t
end
for d in disabled
tau[d, allele] = Inf
end
state[final, allele] = 1
state[initial, allele] = 0
end
"""
activateG!(tau,state,index,t,m,r,allele,G,R,disabled,enabled,initial,final)
"""
function activateG!(tau, state, index, t, m, r, allele, G, R, disabled, enabled, initial, final)
transitionG!(tau, state, index, t, m, r, allele, G, R, disabled, enabled, initial, final)
if R > 0 && state[G+1, allele] > 0
tau[enabled[end], allele] = Inf
end
end
"""
deactivateG!(tau, state, index, t, m, r, allele, G, R, disabled, enabled, initial, final)
"""
function deactivateG!(tau, state, index, t, m, r, allele, G, R, disabled, enabled, initial, final)
transitionG!(tau, state, index, t, m, r, allele, G, R, disabled, enabled, initial, final)
end
"""
initiate!(tau, state, index, t, m, r, allele, G, R, S, enabled)
"""
function initiate!(tau, state, index, t, m, r, allele, G, R, S, disabled, enabled, initial, final, insertstep)
if final + 1 > G + R || state[final+1, allele] == 0
tau[enabled[1], allele] = -log(rand()) / (r[enabled[1]]) + t
end
if insertstep == 1
state[final, allele] = 2
if S > 0
tau[enabled[2], allele] = -log(rand()) / (r[enabled[2]]) + t
end
else
state[final, allele] = 1
end
tau[index, allele] = Inf
end
"""
transitionR!(tau, state, index, t, m, r, allele, G, R, S, u, d, initial, final)
"""
function transitionR!(tau, state, index, t, m, r, allele, G, R, S, disabled, enabled, initial, final, insertstep)
if state[initial-1, allele] > 0
tau[enabled[1], allele] = -log(rand()) / r[enabled[1]] + t
end
if final + 1 > G + R || state[final+1, allele] == 0
tau[enabled[2], allele] = -log(rand()) / r[enabled[2]] + t
end
if S > 0 && final >= G + insertstep
# tau[enabled[3], allele] = -log(rand()) / r[enabled[3]] + t
if final == insertstep + G
tau[enabled[3], allele] = -log(rand()) / r[enabled[3]] + t
elseif state[initial, allele] > 1
tau[enabled[3], allele] = r[enabled[3]-1] / r[enabled[3]] * (tau[enabled[3]-1, allele] - t) + t
end
end
for d in disabled
tau[d, allele] = Inf
end
if final == insertstep + G
state[final, allele] = 2
else
state[final, allele] = state[initial, allele]
end
state[initial, allele] = 0
end
"""
eject!(tau, state, index, t, m, r, allele, G, R, S, disabled, enabled)
"""
function eject!(tau, state, index, t, m, r, allele, G, R, S, disabled, enabled, initial)
if state[initial-1, allele] > 0
tau[enabled[1], allele] = -log(rand()) / (r[enabled[1]]) + t
end
for d in disabled
tau[d, allele] = Inf
end
if R > 0
state[initial, allele] = 0
end
set_decay!(tau, enabled[end], t, m, r)
end
"""
splice!(tau, state, index, t, m, r, allele, G, R, initial)
"""
function splice!(tau, state, index, t, m, r, allele, G, R, initial)
state[initial, allele] = 1
tau[index, allele] = Inf
end
"""
decay!(tau, index, t, m, r)
"""
function decay!(tau, index, t, m, r)
m -= 1
if m == 0
tau[index, 1] = Inf
else
tau[index, 1] = -log(rand()) / (m * r[index]) + t
end
m
end
"""
set_decay!(tau, index, t, m, r)
update tau matrix for decay rate
"""
function set_decay!(tau, index, t, m, r)
m += 1
if m == 1
tau[index, 1] = -log(rand()) / r[index] + t
else
tau[index, 1] = (m - 1) / m * (tau[index, 1] - t) + t
end
m
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 34367 | # Julia 1.5
# Stochastic Simulator to compute:
# Live Cell ON/OFF distributions
# smFISH steady state histograms
# G state and R step Occupancy probabilities
# Mean dwell time for being ON
#
"""
get_gamma(r,n,nr)
G state forward and backward transition rates
for use in transition rate matrices of Master equation
(different from gamma used in Gillespie algorithms)
"""
function get_gamma(r,n)
gammaf = zeros(n+2)
gammab = zeros(n+2)
for i = 1:n
gammaf[i+1] = r[2*(i-1)+1]
gammab[i+1] = r[2*i]
end
return gammaf, gammab
end
"""
get_nu(r,n,nr)
R step forward transition rates
"""
get_nu(r,n,nr) =r[2*n+1 : 2*n+nr+1]
"""
get_eta(r,n,nr)
Intron ejection rates at each R step
"""
get_eta(r,n,nr) = r[2*n+1+nr+1:2*n+1+nr+nr]
function prep_param_telegraph(r,n,nr)
# Transition rates
# gammap = zeros(n+1)
# gamman = zeros(n+1)
# nu = zeros(nr+1)
# eps = zeros(nr)
# for i = 1:n
# gammap[i] = r[2*(i-1)+1]
# gamman[i+1] = r[2*i]
# end
# for i = 1:zeta+1
# nu[i] = r[2*n+i]
# end
# # Splice rate is non decreasing, rates in r represent increase in splice rate from previous step
# eps[1] = r[2*n + 1 + zeta + 1]
# for i = 2:zeta
# eps[i] = eps[i-1] + r[2*n + 1 + zeta + i]
# end
gammap,gamman = get_gamma(r,n)
return gammap[2:n+2],gamman[1:n+1],get_nu(r,n,nr),get_eta(r,n,nr)
end
#Compute dwelltime and steady state mRNA distributions
function telegraphsplice0(range::Array,nhist::Int,n::Int,zeta::Int,rin::Vector,total::Int,tol::Float64,nalleles::Int)
# decay reaction index
reactiondecay = 2*n + 2*zeta + 2
# dwell time arrays
ndt = length(range)
dt = range[2]-range[1]
histofftdd = zeros(Int,ndt)
histontdd = zeros(Int,ndt)
# ss mRNA array
mhist = zeros(nhist+1)
# tIA and TAI are times when gene state transitions between active and inactive states
# they are used to compute dwell times
tIA = zeros(Float64,nalleles)
tAI = zeros(Float64,nalleles)
# active start site
mu = n
# Get rates
gammaf,gammab,nu,eta = prep_param_telegraph(rin,n,zeta)
# assign decay rate
delta = rin[reactiondecay]
# assign correlation rate
if length(rin) > reactiondecay
rcorr = rin[reactiondecay+1]
else
rcorr = 0.
end
#initialize mRNA number to 0
m = 0
mproduced = 0
# Initialize gene states
state = ones(Int,nalleles)
# pre-mRNA states
z = Array{Array{Int,1},1}(undef,nalleles)
# Intron states
intron = Array{Array{Int,1},1}(undef,nalleles)
# initialize propensities
af = Array{Float64,1}(undef,nalleles)
ab = Array{Float64,1}(undef,nalleles)
apre1 = Array{Float64,1}(undef,nalleles)
az = Array{Array{Float64,1},1}(undef,nalleles)
aintron = Array{Array{Float64,1},1}(undef,nalleles)
apremid = zeros(nalleles) # sum(az[2:zeta]) middle pre-mRNAstep
afree = zeros(nalleles) # az[zeta+1] create free mRNA
for i = 1:nalleles
z[i] = zeros(Int,zeta) # Intialize pre-mRNA state to all 0
af[i] = gammaf[state[i]]
ab[i] = gammab[state[i]]
az[i] = zeros(zeta+1)
# apre1[i] = float(1-z[i][1])*nu[1]*float(state[i]==n+1) #first pre-mRNA step
apre1[i] = float(state[i] > mu)*float(1-z[i][1])*nu[1] #first pre-mRNA step
intron[i] = zeros(Int,zeta)
aintron[i] = zeros(zeta)
end
astate = af + ab
adecay = 0. #m*delta
amrna = apre1 + apremid + afree
t=0. # time
ts=0. # time from last sample
tsample = 20/minimum(rin) # sample every 100 decay times
steps = 0
err = 10*tol
hoff0 = ones(ndt)/ndt
hon0 = ones(ndt)/ndt
mhist0 = ones(nhist+1)
# Begin simulation
while err > tol && steps < total
steps += 1
asum = sum(amrna) + sum(astate) + adecay
if asum > 0.
# choose which state to update and time of update
r = asum*rand()
tau = -log(rand())/asum
# update time
t += tau
#print(tau,' ',asum,' ',state,'\n')
if m + 1 <= nhist
mhist[m+1] += tau
else
mhist[nhist+1] += tau
end
if r > sum(amrna + astate)
# mRNA decay
m -= 1
adecay = m*delta
else
agenecs = amrna[1] + astate[1]
agene0 = 0.
l = 1
while r > agenecs
agene0 = agenecs
agenecs += amrna[1+l] + astate[l+1]
l += 1
end
if l > 1
r -= agene0
end
if r > amrna[l]
# state update
if r > ab[l] + amrna[l]
# update forward reaction
state[l] += 1
else
# update backward reaction
state[l] -= 1
end
# update propensities
af[l] = gammaf[state[l]]
ab[l] = gammab[state[l]]
astate[l] = af[l] + ab[l]
# Activate coupling if any alleles are in state mu + 1
if rcorr > 0.
ba = false
for k = 1:nalleles
ba |= state[k] > mu
end
if ba
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]] + rcorr
astate[k] = af[k] + ab[k]
end
end
else
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]]
astate[k] = af[k] + ab[k]
end
end
end
end
if state[l] > mu
apre1[l] = float(1-z[l][1])*nu[1]
# apre1 = az[l][1]
else
apre1[l] = 0.
end
amrna[l] = apremid[l] + apre1[l] + afree[l] + sum(aintron[l])
else
# premRNA update
if r > apremid[l] + apre1[l] + sum(aintron[l])
# increase free mRNA
m += 1
adecay = m*delta
mproduced += 1
z[l][zeta] = 0
#az[l][zeta+1] = 0
afree[l] = 0.
# ON state ends, OFF state begins
if sum(intron[l]) == 1 && intron[l][zeta] == 1
tAI[l] = t
tactive = (tAI[l] - tIA[l])/dt
if tactive <= ndt && tactive > 0
tactive = ceil(Int,tactive)
histontdd[tactive] += 1
end
end
intron[l][zeta] = 0
aintron[l][zeta] = 0.
if zeta == 1
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
#az[l][1] = 0
apre1[l] = 0.
end
else
az[l][zeta] = float(z[l][zeta-1])*nu[zeta]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
elseif r > apremid[l] + apre1[l]
# eject intron
aintronsum = apremid[l] + apre1[l]
i = 0
while r > aintronsum
i += 1
aintronsum += aintron[l][i]
end
intron[l][i] = 0
aintron[l][i] = 0
# ON state ends, OFF state begins
if sum(intron[l]) == 0 #&& nhist == 0
tAI[l] = t
tactive = (tAI[l] - tIA[l])/dt
if tactive <= ndt && tactive > 0
tactive = ceil(Int,tactive)
histontdd[tactive] += 1
end
end
amrna[l] = apremid[l] + apre1[l] + afree[l] + sum(aintron[l])
# println("*",apre1)
elseif r > apremid[l]
# increase first pre-mRNA state
# OFF state ends, ON state begins
if sum(intron[l]) == 0 #&& nhist == 0
tIA[l] = t
tinactive = (tIA[l] - tAI[l])/dt
if tinactive <= ndt && tinactive > 0
tinactive = ceil(Int,tinactive)
histofftdd[tinactive] += 1
end
end
z[l][1] = 1
#az[l][1] = 0
apre1[l] = 0.
intron[l][1] = 1
aintron[l][1] = eta[1]
if zeta == 1
#az[l][2] = nu[2]
afree[l] = nu[2]
else
az[l][2] = float(1-z[l][2])*nu[2]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
else
# update mid pre-mRNA state
azsum = az[l][2]
k = 1
while r > azsum
azsum += az[l][2+k]
k += 1
end
i = k + 1
z[l][i] = 1
z[l][i-1] = 0
az[l][i] = 0.
if intron[l][i-1] == 1
intron[l][i] = 1
intron[l][i-1] = 0
aintron[l][i] = eta[i]
aintron[l][i-1] = 0.
else
intron[l][i] = 0
aintron[l][i] = 0.
end
if i == zeta
#az[l][i+1] = nu[i+1]
afree[l] = nu[i+1]
else
az[l][i+1] = float(1-z[l][i+1])*nu[i+1]
end
if i == 2
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
az[l][1] = 0.
apre1[l] = 0.
end
else
az[l][i-1] = float(z[l][i-2])*nu[i-1]
end
apremid[l] = sum(az[l][2:zeta])
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
end # if r > apremid[l] + apre1[l]
end # if r > amrna[l]
end #if r > sum(amrna + adecay)
end #if asum > 0
# Compute change in histograms from last sample
ts += tau
if ts > tsample
hoff = histofftdd/sum(histofftdd)
hon = histontdd/sum(histontdd)
err = max(norm(hoff-hoff0,Inf),norm(hon-hon0,Inf))
hoff0 = copy(hoff)
hon0 = copy(hon)
errss = norm(mhist/sum(mhist) - mhist0/sum(mhist0),Inf)
err = max(err,errss)
mhist0 = copy(mhist)
ts = 0.
end
end # while bursts < nbursts && steps < total
sumoff = sum(histofftdd)
sumon = sum(histontdd)
counts = max(sum(mhist),1)
mhist /= counts
# print(mproduced/t)
return histofftdd/max(sumoff,1), histontdd/max(sumon,1), mhist[1:nhist]
end
function telegraphPDF(t::Vector,n::Int,zeta::Int,rin::Vector)
telegraphsplice(t,n,zeta,rin,10000000,1e-6,1)
end
# Compute ON OFF time histograms
function telegraphsplice(range::Array,n::Int,zeta::Int,rin::Vector,total::Int,tol::Float64,nalleles::Int=1,CDF::Bool=false)
# Generalized n-zeta telegraph model
# Compute dwell time histograms
# n+1 total gene states
# gene states are labeled from 1 to n+1
# zeta pre-mRNA steps
# There are 2n gene reactions, zeta pre-mRNA reactions, and 1 mRNA decay reaction
# rin = reaction rates
# forward gene reactions are labeled by odd numbers <2n, backward reactions are even numbers <= 2n
# reactions [2n+1, 2n+zeta] are pre-mRNA recations,organized by starting spot, reaction 2n(zeta+1)+1 is mRNA decay reaction
# Use Gillespie direct method with speed up from Gibson and Bruck
# decay reaction index
reactiondecay = 2*n + 2*zeta + 2
# dwell time arrays
ndt = length(range)
dt = range[2]-range[1]
histofftdd = zeros(Int,ndt)
histontdd = zeros(Int,ndt)
# tIA and TAI are times when gene state transitions between active and inactive states
# they are used to compute dwell times
tIA = zeros(Float64,nalleles)
tAI = zeros(Float64,nalleles)
# active start site
mu = n
# get rates
gammaf,gammab,nu,eta = prep_param_telegraph(rin,n,zeta)
# assign decay rate
delta = rin[reactiondecay]
# assign correlation rate
if length(rin) > reactiondecay
rcorr = rin[reactiondecay+1]
else
rcorr = 0.
end
#initialize mRNA number to 0
m = 0
# Initialize gene states
state = ones(Int,nalleles)
# pre-mRNA states
z = Array{Array{Int,1},1}(undef,nalleles)
# Intron states
intron = Array{Array{Int,1},1}(undef,nalleles)
# initialize propensities
af = Array{Float64,1}(undef,nalleles)
ab = Array{Float64,1}(undef,nalleles)
apre1 = Array{Float64,1}(undef,nalleles)
az = Array{Array{Float64,1},1}(undef,nalleles)
aintron = Array{Array{Float64,1},1}(undef,nalleles)
apremid = zeros(nalleles) # sum(az[2:zeta]) middle pre-mRNAstep
afree = zeros(nalleles) # az[zeta+1] create free mRNA
for i = 1:nalleles
z[i] = zeros(Int,zeta) # Intialize pre-mRNA state to all 0
af[i] = gammaf[state[i]]
ab[i] = gammab[state[i]]
az[i] = zeros(zeta+1)
# apre1[i] = float(1-z[i][1])*nu[1]*float(state[i]==n+1) #first pre-mRNA step
apre1[i] = float(state[i] > mu)*float(1-z[i][1])*nu[1] #first pre-mRNA step
intron[i] = zeros(Int,zeta)
aintron[i] = zeros(zeta)
end
astate = af + ab
adecay = 0. #m*delta
amrna = apre1 + apremid + afree
t=0. # time
ts=0. # time from last sample
tsample = 20/minimum(rin) # sample every 100 decay times
steps = 0
err = 10*tol
bursts = 0
hoff0 = ones(ndt)/ndt
hon0 = ones(ndt)/ndt
# Begin simulation
while err > tol && steps < total
steps += 1
asum = sum(amrna) + sum(astate) + adecay
if asum > 0.
# choose which state to update and time of update
r = asum*rand()
tau = -log(rand())/asum
# update time
t += tau
#print(tau,' ',asum,' ',state,'\n')
if r > sum(amrna + astate)
# mRNA decay
m -= 1
adecay = m*delta
else
agenecs = amrna[1] + astate[1]
agene0 = 0.
l = 1
while r > agenecs
agene0 = agenecs
agenecs += amrna[1+l] + astate[l+1]
l += 1
end
if l > 1
r -= agene0
end
if r > amrna[l]
# state update
if r > ab[l] + amrna[l]
# update forward reaction
state[l] += 1
else
# update backward reaction
state[l] -= 1
end
# update propensities
af[l] = gammaf[state[l]]
ab[l] = gammab[state[l]]
astate[l] = af[l] + ab[l]
# Activate coupling if any alleles are in state mu + 1
if rcorr > 0.
ba = false
for k = 1:nalleles
ba |= state[k] > mu
end
if ba
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]] + rcorr
astate[k] = af[k] + ab[k]
end
end
else
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]]
astate[k] = af[k] + ab[k]
end
end
end
end
if state[l] > mu
apre1[l] = float(1-z[l][1])*nu[1]
# apre1 = az[l][1]
else
apre1[l] = 0.
end
amrna[l] = apremid[l] + apre1[l] + afree[l] + sum(aintron[l])
else
# premRNA update
if r > apremid[l] + apre1[l] + sum(aintron[l])
# increase free mRNA
m += 1
adecay = m*delta
z[l][zeta] = 0
#az[l][zeta+1] = 0
afree[l] = 0.
# ON state ends, OFF state begins
if sum(intron[l]) == 1 && intron[l][zeta] == 1
tAI[l] = t
tactive = (tAI[l] - tIA[l])/dt
if tactive <= ndt && tactive > 0
tactive = ceil(Int,tactive)
histontdd[tactive] += 1
end
end
intron[l][zeta] = 0
aintron[l][zeta] = 0.
if zeta == 1
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
#az[l][1] = 0
apre1[l] = 0.
end
else
az[l][zeta] = float(z[l][zeta-1])*nu[zeta]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
elseif r > apremid[l] + apre1[l]
# eject intron
aintronsum = apremid[l] + apre1[l]
i = 0
while r > aintronsum
i += 1
aintronsum += aintron[l][i]
end
intron[l][i] = 0
aintron[l][i] = 0
# ON state ends, OFF state begins
if sum(intron[l]) == 0 #&& nhist == 0
tAI[l] = t
tactive = (tAI[l] - tIA[l])/dt
if tactive <= ndt && tactive > 0
tactive = ceil(Int,tactive)
histontdd[tactive] += 1
end
end
amrna[l] = apremid[l] + apre1[l] + afree[l] + sum(aintron[l])
elseif r > apremid[l]
# increase first pre-mRNA state
# OFF state ends, ON state begins
if sum(intron[l]) == 0 #&& nhist == 0
tIA[l] = t
tinactive = (tIA[l] - tAI[l])/dt
if tinactive <= ndt && tinactive > 0
tinactive = ceil(Int,(tIA[l] - tAI[l])/dt)
histofftdd[tinactive] += 1
bursts += 1
end
end
z[l][1] = 1
#az[l][1] = 0
apre1[l] = 0.
intron[l][1] = 1
aintron[l][1] = eta[1]
if zeta == 1
#az[l][2] = nu[2]
afree[l] = nu[2]
else
az[l][2] = float(1-z[l][2])*nu[2]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
else
# update mid pre-mRNA state
azsum = az[l][2]
k = 1
while r > azsum
azsum += az[l][2+k]
k += 1
end
i = k + 1
z[l][i] = 1
z[l][i-1] = 0
az[l][i] = 0.
if intron[l][i-1] == 1
intron[l][i] = 1
intron[l][i-1] = 0
aintron[l][i] = eta[i]
aintron[l][i-1] = 0.
else
intron[l][i] = 0
aintron[l][i] = 0.
end
if i == zeta
#az[l][i+1] = nu[i+1]
afree[l] = nu[i+1]
else
az[l][i+1] = float(1-z[l][i+1])*nu[i+1]
end
if i == 2
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
az[l][1] = 0.
apre1[l] = 0.
end
else
az[l][i-1] = float(z[l][i-2])*nu[i-1]
end
apremid[l] = sum(az[l][2:zeta])
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
end # if r > apremid[l] + apre1[l]
end # if r > amrna[l]
end #if r > sum(amrna + adecay)
end #if asum > 0
# Compute change in histograms from last sample
ts += tau
if ts > tsample
hoff = histofftdd/sum(histofftdd)
hon = histontdd/sum(histontdd)
err = max(norm(hoff-hoff0,Inf),norm(hon-hon0,Inf))
hoff0 = copy(hoff)
hon0 = copy(hon)
ts = 0.
end
end # while bursts < nbursts && steps < total
sumoff = sum(histofftdd)
sumon = sum(histontdd)
if CDF
if sumon > 0 && sumoff > 0
#return [histofftdd[2]/sumoff; histontdd[2]/sumon], mhistn
return cumsum(histofftdd/sumoff), cumsum(histontdd/sumon)
else
return zeros(length(histofftdd)),zeros(length(histontdd))
end
else
return histofftdd/sumoff/dt, histontdd/sumon/dt
end
end
# Splicing leads to termination model
#Compute dwelltime and steady state mRNA distributions
# function telegraphsplicedeath(range::Array,nhist::Int,n::Int,zeta::Int,rin::Vector,total::Int,tol::Float64,nalleles::Int)
#
# # Generalized n-zeta telegraph model
# # n+1 total gene states
# # gene states are labeled from 1 to n+1
# # zeta pre-mRNA steps
# # There are 2n gene reactions, zeta pre-mRNA reactions, and 1 mRNA decay reaction
# # rin = reaction rates
# # forward gene reactions are labeled by odd numbers <2n, backward reactions are even numbers <= 2n
# # reactions [2n+1, 2n+zeta] are pre-mRNA recations,organized by starting spot, reaction 2n(zeta+1)+1 is mRNA decay reaction
# # spliced introns before the last zeta state lead to exon ejection
#
# # Use Gillespie direct method with speed up from Gibson and Bruck
#
# # decay reaction index
# reactiondecay = 2*n + 2*zeta + 2
#
# # dwell time arrays
# ndt = length(range)
# dt = range[2]-range[1]
# histofftdd = zeros(Int,ndt)
# histontdd = zeros(Int,ndt)
#
# # ss mRNA array
# mhist = zeros(nhist+1)
#
# # tIA and TAI are times when gene state transitions between active and inactive states
# # they are used to compute dwell times
# tIA = zeros(Float64,nalleles)
# tAI = zeros(Float64,nalleles)
#
# # active start site
# mu = n
# # print(n," ",mu," ",zeta,'\n')
#
# # Initialize rates
# gammaf = zeros(n+1)
# gammab = zeros(n+1)
# nu = Array{Float64,1}(undef,zeta+1)
# eta = Array{Float64,1}(undef,zeta)
#
# # gene rates
# for i = 1:n
# gammaf[i] = rin[2*(i-1)+1]
# gammab[i+1] = rin[2*i]
# end
#
# # pre-mRNA stepping rates
# for i = 1:zeta+1
# nu[i] = rin[2*n + i]
# end
#
# # pre-mRNA ejection rates
# for i = 1:zeta
# eta[i] = rin[2*n + zeta + 1 + i]
# end
#
# # assign decay rate
# delta = rin[reactiondecay]
#
# # assign correlation rate
# if length(rin) > reactiondecay
# rcorr = rin[reactiondecay+1]
# else
# rcorr = 0.
# end
#
# #initialize mRNA number to 0
# m = 0
#
# # Initialize gene states
# state = ones(Int,nalleles)
#
# # pre-mRNA states
# z = Array{Array{Int,1},1}(undef,nalleles)
#
# # Intron states
# intron = Array{Array{Int,1},1}(undef,nalleles)
#
# # initialize propensities
# af = Array{Float64,1}(undef,nalleles)
# ab = Array{Float64,1}(undef,nalleles)
# apre1 = Array{Float64,1}(undef,nalleles)
# az = Array{Array{Float64,1},1}(undef,nalleles)
# aintron = Array{Array{Float64,1},1}(undef,nalleles)
#
# apremid = zeros(nalleles) # sum(az[2:zeta]) middle pre-mRNAstep
# afree = zeros(nalleles) # az[zeta+1] create free mRNA
#
# for i = 1:nalleles
# z[i] = zeros(Int,zeta) # Intialize pre-mRNA state to all 0
# af[i] = gammaf[state[i]]
# ab[i] = gammab[state[i]]
# az[i] = zeros(zeta+1)
# # apre1[i] = float(1-z[i][1])*nu[1]*float(state[i]==n+1) #first pre-mRNA step
# apre1[i] = float(state[i] > mu)*float(1-z[i][1])*nu[1] #first pre-mRNA step
# intron[i] = zeros(Int,zeta)
# aintron[i] = zeros(zeta)
# end
#
# astate = af + ab
#
# adecay = 0. #m*delta
#
# amrna = apre1 + apremid + afree
#
# t=0. # time
# ts=0. # time from last sample
# tsample = 100/minimum(rin) # sample every 100 min rate times
# steps = 0
# err = 10*tol
#
# hoff0 = ones(ndt)/ndt
# hon0 = ones(ndt)/ndt
#
# mhist0 = ones(nhist+1)
#
# # Begin simulation
# while err > tol && steps < total
#
# steps += 1
#
# asum = sum(amrna) + sum(astate) + adecay
#
# if asum > 0.
# # choose which state to update and time of update
# r = asum*rand()
# tau = -log(rand())/asum
# # update time
# t += tau
# if m + 1 <= nhist
# mhist[m+1] += tau
# else
# mhist[nhist+1] += tau
# end
# if r > sum(amrna + astate)
# # mRNA decay
# m -= 1
# adecay = m*delta
# else
# agenecs = amrna[1] + astate[1]
# agene0 = 0.
# l = 1
# while r > agenecs
# agene0 = agenecs
# agenecs += amrna[1+l] + astate[l+1]
# l += 1
# end
# if l > 1
# r -= agene0
# end
# if r > amrna[l]
# # state update
# if r > ab[l] + amrna[l]
# # update forward reaction
# state[l] += 1
# else
# # update backward reaction
# state[l] -= 1
# end
# # update propensities
# af[l] = gammaf[state[l]]
# ab[l] = gammab[state[l]]
# astate[l] = af[l] + ab[l]
# # Activate coupling if any alleles are in state mu + 1
# if rcorr > 0.
# ba = false
# for k = 1:nalleles
# ba |= state[k] > mu
# end
# if ba
# for k = 1:nalleles
# if state[k] == mu
# af[k] = gammaf[state[k]] + rcorr
# astate[k] = af[k] + ab[k]
# end
# end
# else
# for k = 1:nalleles
# if state[k] == mu
# af[k] = gammaf[state[k]]
# astate[k] = af[k] + ab[k]
# end
# end
# end
# end
# if state[l] > mu
# apre1[l] = float(1-z[l][1])*nu[1]
# # apre1 = az[l][1]
# else
# apre1[l] = 0.
# end
# amrna[l] = apremid[l] + apre1[l] + afree[l] + sum(aintron[l])
# else
# # premRNA update
# if r > apremid[l] + apre1[l] + sum(aintron[l])
# # increase free mRNA
# m += 1
# adecay = m*delta
# z[l][zeta] = 0
# #az[l][zeta+1] = 0
# afree[l] = 0.
# # ON state ends, OFF state begins
# if sum(intron[l]) == 1 && intron[l][zeta] == 1
# tAI[l] = t
# tactive = (tAI[l] - tIA[l])/dt
# if tactive <= ndt && tactive > 0
# tactive = ceil(Int,tactive)
# histontdd[tactive] += 1
# end
# end
# intron[l][zeta] = 0
# aintron[l][zeta] = 0.
# if zeta == 1
# if state[l] > mu
# #az[l][1] = nu[1]
# apre1[l] = nu[1]
# else
# #az[l][1] = 0
# apre1[l] = 0.
# end
# else
# az[l][zeta] = float(z[l][zeta-1])*nu[zeta]
# apremid[l] = sum(az[l][2:zeta])
# end
# amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
# elseif r > apremid[l] + apre1[l]
# # eject intron
# aintronsum = apremid[l] + apre1[l]
# i = 0
# while r > aintronsum
# i += 1
# aintronsum += aintron[l][i]
# end
# intron[l][i] = 0
# aintron[l][i] = 0
# if i < zeta
# z[l][i] = 0
# az[l][i+1] = 0
# if i == 1
# if state[l] > mu
# apre1[l] = nu[1]
# else
# apre1[l] = 0.
# end
# else
# az[l][i] = float(z[l][i-1])*nu[i]
# end
# end
# apremid[l] = sum(az[l][2:zeta])
# # ON state ends, OFF state begins
# if sum(intron[l]) == 0 #&& nhist == 0
# tAI[l] = t
# tactive = (tAI[l] - tIA[l])/dt
# if tactive <= ndt && tactive > 0
# tactive = ceil(Int,tactive)
# histontdd[tactive] += 1
# end
# end
# amrna[l] = apremid[l] + apre1[l] + afree[l] + sum(aintron[l])
# elseif r > apremid[l]
# # increase first pre-mRNA state
# # OFF state ends, ON state begins
# if sum(intron[l]) == 0 #&& nhist == 0
# tIA[l] = t
# tinactive = (tIA[l] - tAI[l])/dt
# if tinactive <= ndt && tinactive > 0
# tinactive = ceil(Int,(tIA[l] - tAI[l])/dt)
# histofftdd[tinactive] += 1
# end
# end
# z[l][1] = 1
# apre1[l] = 0.
# intron[l][1] = 1
# aintron[l][1] = eta[1]
# if zeta == 1
# afree[l] = nu[2]
# else
# az[l][2] = float(1-z[l][2])*nu[2]
# apremid[l] = sum(az[l][2:zeta])
# end
# amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
# else
# # update mid pre-mRNA state
# azsum = az[l][2]
# k = 1
# while r > azsum
# azsum += az[l][2+k]
# k += 1
# end
# i = k + 1
# z[l][i] = 1
# z[l][i-1] = 0
# az[l][i] = 0.
# if intron[l][i-1] == 1
# intron[l][i] = 1
# intron[l][i-1] = 0
# aintron[l][i] = eta[i]
# aintron[l][i-1] = 0.
# else
# intron[l][i] = 0
# aintron[l][i] = 0.
# end
# if i == zeta
# #az[l][i+1] = nu[i+1]
# afree[l] = nu[i+1]
# else
# az[l][i+1] = float(1-z[l][i+1])*nu[i+1]
# end
# if i == 2
# if state[l] > mu
# #az[l][1] = nu[1]
# apre1[l] = nu[1]
# else
# az[l][1] = 0.
# apre1[l] = 0.
# end
# else
# az[l][i-1] = float(z[l][i-2])*nu[i-1]
# end
# apremid[l] = sum(az[l][2:zeta])
# amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
# end # if r > apremid[l] + apre1[l]
# end # if r > amrna[l]
# end #if r > sum(amrna + adecay)
# end #if asum > 0
# # Compute change in histograms from last sample
# ts += tau
# if ts > tsample
# hoff = histofftdd/sum(histofftdd)
# hon = histontdd/sum(histontdd)
# err = max(norm(hoff-hoff0,Inf),norm(hon-hon0,Inf))
# hoff0 = copy(hoff)
# hon0 = copy(hon)
# errss = norm(mhist/sum(mhist) - mhist0/sum(mhist0),Inf)
# err = max(err,errss)
# mhist0 = copy(mhist)
# ts = 0.
# end
# end # while bursts < nbursts && steps < total
#
# sumoff = sum(histofftdd)
# sumon = sum(histontdd)
#
# counts = max(sum(mhist),1)
# mhist /= counts
#
# return histofftdd/max(sumoff,1), histontdd/max(sumon,1), mhist[1:nhist]
# end
function telegraphssoff(n::Int,zeta::Int,rin::Vector,nhist::Int,nalleles::Int)
r = copy(rin)
r[end] /= survivalfraction(rin,n,zeta)
off,on,hist = telegraphsplice0(collect(1:10),nhist,n,zeta,r,100000000,1e-7,nalleles)
return hist
end
function telegraphss(n::Int,zeta::Int,r::Vector{Float64},nhist::Int,nalleles::Int)
off,on,hist = telegraphsplice0(collect(1:10),nhist,n,zeta,r,100000000,1e-7,nalleles)
return hist
end
# Compute smFISH histogram
function telegraphsplice(n::Int,zeta::Int,rin::Vector,total::Int,tmax::Float64,nhist::Int,nalleles::Int,count=false)
# Generalized n, zeta, telegraph model,
# Compute steady state mRNA histogram
# n+1 total gene states
# gene states are labeled from 1 to n+1
# zeta pre-mRNA steps
# There are 2n gene reactions, zeta pre-mRNA reactions, and 1 mRNA decay reaction
# rin = reaction rates
# forward gene reactions are labeled by odd numbers <2n, backward reactions are even numbers <= 2n
# reactions [2n+1, 2n+zeta] are pre-mRNA reactions,organized by starting spot, reaction 2n(zeta+1)+1 is mRNA decay reaction
# Use Gillespie direct method with speed up from Gibson and Bruck
# decay reaction index
reactiondecay = 2*n + 2*zeta + 2
# time
t=0.
#Initialize m histogram
mhist=zeros(nhist+1)
mu = n
# Initialize rates
# gammaf = zeros(n+1)
# gammab = zeros(n+1)
# nu = Array{Float64,1}(undef,zeta+1)
# eta = Array{Float64,1}(undef,zeta)
# # assign gene rates
# for i = 1:n
# gammaf[i] = rin[2*(i-1)+1]
# gammab[i+1] = rin[2*i]
# end
# # assign pre-mRNA rates
# for i = 1:zeta+1
# nu[i] = rin[2*n + i]
# end
# # pre-mRNA ejection rates
# for i = 1:zeta
# eta[i] = rin[2*n + zeta + 1 + i]
# end
gammaf,gammab,nu,eta = prep_param_telegraph(rin,n,zeta)
# assign decay rate
delta = rin[reactiondecay]
# assign correlation rate
if length(rin) > reactiondecay
rcorr = rin[reactiondecay+1]
else
rcorr = 0.
end
#initialize mRNA number to 0
m = 0
# Initialize gene states
state = ones(Int,nalleles)
state[1] = mu + 1
# pre-mRNA states
z = Array{Array{Int,1},1}(undef,nalleles)
# Intron states
intron = Array{Array{Int,1},1}(undef,nalleles)
# initialize propensities
af = Array{Float64,1}(undef,nalleles)
ab = Array{Float64,1}(undef,nalleles)
apre1 = Array{Float64,1}(undef,nalleles)
az = Array{Array{Float64,1},1}(undef,nalleles)
aintron = Array{Array{Float64,1},1}(undef,nalleles)
apremid = zeros(nalleles) # sum(az[2:zeta]) middle pre-mRNAstep
afree = zeros(nalleles) # az[zeta+1] create free mRNA
for i = 1:nalleles
z[i] = zeros(Int,zeta) # Intialize pre-mRNA state to all 0
af[i] = gammaf[state[i]]
ab[i] = gammab[state[i]]
az[i] = zeros(zeta+1)
# apre1[i] = float(1-z[i][1])*nu[1]*float(state[i]==n+1) #first pre-mRNA step
apre1[i] = float(state[i]>mu)*float(1-z[i][1])*nu[1] #first pre-mRNA step
intron[i] = zeros(Int,zeta)
aintron[i] = zeros(zeta)
end
astate = af + ab
adecay = 0. #m*delta
amrna = apre1 + apremid + afree
bursts = 0
steps = 0
while t < tmax && steps < total
steps += 1
asum = sum(amrna) + sum(astate) + adecay
if asum > 0.
# choose which state to update and time of update
r = asum*rand()
tau = -log(rand())/asum
# update time
t += tau
#print(tau,' ',asum,' ',state,'\n')
if m + 1 <= nhist
mhist[m+1] += tau
else
mhist[nhist+1] += tau
end
if r > sum(amrna + astate)
# mRNA decay
m -= 1
adecay = m*delta
else
agenecs = amrna[1] + astate[1]
agene0 = 0.
l = 1
while r > agenecs
agene0 = agenecs
agenecs += amrna[1+l] + astate[l+1]
l += 1
end
if l > 1
r -= agene0
end
if r > amrna[l]
# state update
if r > ab[l] + amrna[l]
# update forward reaction
state[l] += 1
else
# update backward reaction
state[l] -= 1
end
# update propensities
af[l] = gammaf[state[l]]
ab[l] = gammab[state[l]]
astate[l] = af[l] + ab[l]
# Activate coupling if any alleles are in state mu + 1
if rcorr > 0.
ba = false
for k = 1:nalleles
ba |= state[k] > mu
end
if ba
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]] + rcorr
astate[k] = af[k] + ab[k]
end
end
else
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]]
astate[k] = af[k] + ab[k]
end
end
end
end
if state[l] > mu
apre1[l] = float(1-z[l][1])*nu[1]
# apre1 = az[l][1]
else
apre1[l] = 0.
end
amrna[l] = apremid[l] + apre1[l] + afree[l] + sum(aintron[l])
else
# premRNA update
if r > apremid[l] + apre1[l] + sum(aintron[l])
# increase free mRNA
m += 1
adecay = m*delta
z[l][zeta] = 0
#az[l][zeta+1] = 0
afree[l] = 0.
intron[l][zeta] = 0
aintron[l][zeta] = 0.
if zeta == 1
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
#az[l][1] = 0
apre1[l] = 0.
end
else
az[l][zeta] = float(z[l][zeta-1])*nu[zeta]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
elseif r > apremid[l] + apre1[l]
aintronsum = apremid[l] + apre1[l]
i = 0
while r > aintronsum
i += 1
aintronsum += aintron[l][i]
end
intron[l][i] = 0
aintron[l][i] = 0
amrna[l] = apremid[l] + apre1[l] + afree[l] + sum(aintron[l])
# println("*",apre1)
elseif r > apremid[l]
# increase first pre-mRNA state
z[l][1] = 1
#az[l][1] = 0
apre1[l] = 0.
intron[l][1] = 1
aintron[l][1] = eta[1]
if zeta == 1
#az[l][2] = nu[2]
afree[l] = nu[2]
else
az[l][2] = float(1-z[l][2])*nu[2]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
else
# update mid pre-mRNA state
azsum = az[l][2]
k = 1
while r > azsum
azsum += az[l][2+k]
k += 1
end
i = k + 1
z[l][i] = 1
z[l][i-1] = 0
az[l][i] = 0.
if intron[l][i-1] == 1
intron[l][i] = 1
intron[l][i-1] = 0
aintron[l][i] = eta[i]
aintron[l][i-1] = 0.
else
intron[l][i] = 0
aintron[l][i] = 0.
end
if i == zeta
#az[l][i+1] = nu[i+1]
afree[l] = nu[i+1]
else
az[l][i+1] = float(1-z[l][i+1])*nu[i+1]
end
if i == 2
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
az[l][1] = 0.
apre1[l] = 0.
end
else
az[l][i-1] = float(z[l][i-2])*nu[i-1]
end
apremid[l] = sum(az[l][2:zeta])
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
end # if r > apremid[l] + apre1[l]
end # if r > amrna[l]
end #if r > sum(amrna + adecay)
end #if asum > 0
end # while t
counts = max(sum(mhist),1)
mhist /= counts
if count
return mhist[1:nhist],counts
else
return mhist[1:nhist]
end
end
function telegraphspliceoff(n::Int,zeta::Int,rin::Vector,total::Int,tmax::Float64,nhist::Int,nalleles::Int,count=false)
r = copy(rin)
r[end] /= survivalfraction(rin,n,zeta)
telegraphsplice(n,zeta,r,total,tmax,nhist,nalleles)
end
function telegraph(range::Array,nhist::Int,n::Int,zeta::Int,rin::Vector,nalleles::Int)
r = copy(rin)
telegraphsplice0(range,nhist,n,zeta,r,100000000,1e-7,nalleles)
end
function telegraphoff(range::Array,nhist::Int,n::Int,zeta::Int,rin::Vector,nalleles::Int)
r = copy(rin)
r[end] /= survivalfraction(rin,n,zeta)
telegraphsplice0(range,nhist,n,zeta,r,100000000,1e-7,nalleles)
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 8222 |
function prep_param_telegraph(r,n,zeta)
# Transition rates
gammap = zeros(n+1)
gamman = zeros(n+1)
nu = zeros(zeta+1)
eps = zeros(zeta)
for i = 1:n
gammap[i] = r[2*(i-1)+1]
gamman[i+1] = r[2*i]
end
for i = 1:zeta+1
nu[i] = r[2*n+i]
end
# Splice rate is non decreasing, rates in r represent increase in splice rate from previous step
eps[1] = r[2*n + 1 + zeta + 1]
for i = 2:zeta
eps[i] = eps[i-1] + r[2*n + 1 + zeta + i]
end
return gammap,gamman,nu,eps
end
#Compute dwelltime and steady state mRNA distributions
function telegraphsplice0(range::Array,nhist::Int,n::Int,zeta::Int,rin::Vector,total::Int,tol::Float64,nalleles::Int)
# decay reaction index
reactiondecay = 2*n + 2*zeta + 2
# dwell time arrays
ndt = length(range)
dt = range[2]-range[1]
histofftdd = zeros(Int,ndt)
histontdd = zeros(Int,ndt)
# ss mRNA array
mhist = zeros(nhist+1)
# tIA and TAI are times when gene state transitions between active and inactive states
# they are used to compute dwell times
tIA = zeros(Float64,nalleles)
tAI = zeros(Float64,nalleles)
# active start site
mu = n
# Get rates
gammaf,gammab,nu,eta = prep_param_telegraph(rin,n,zeta)
# assign decay rate
delta = rin[reactiondecay]
# assign correlation rate
if length(rin) > reactiondecay
rcorr = rin[reactiondecay+1]
else
rcorr = 0.
end
#initialize mRNA number to 0
m = 0
mproduced = 0
# Initialize gene states
state = ones(Int,nalleles)
# pre-mRNA states
z = Array{Array{Int,1},1}(undef,nalleles)
# Intron states
intron = Array{Array{Int,1},1}(undef,nalleles)
# initialize propensities
af = Array{Float64,1}(undef,nalleles)
ab = Array{Float64,1}(undef,nalleles)
apre1 = Array{Float64,1}(undef,nalleles)
az = Array{Array{Float64,1},1}(undef,nalleles)
aintron = Array{Array{Float64,1},1}(undef,nalleles)
apremid = zeros(nalleles) # sum(az[2:zeta]) middle pre-mRNAstep
afree = zeros(nalleles) # az[zeta+1] create free mRNA
for i = 1:nalleles
z[i] = zeros(Int,zeta) # Intialize pre-mRNA state to all 0
af[i] = gammaf[state[i]]
ab[i] = gammab[state[i]]
az[i] = zeros(zeta+1)
# apre1[i] = float(1-z[i][1])*nu[1]*float(state[i]==n+1) #first pre-mRNA step
apre1[i] = float(state[i] > mu)*float(1-z[i][1])*nu[1] #first pre-mRNA step
intron[i] = zeros(Int,zeta)
aintron[i] = zeros(zeta)
end
astate = af + ab
adecay = 0. #m*delta
amrna = apre1 + apremid + afree
t=0. # time
ts=0. # time from last sample
tsample = 20/minimum(rin) # sample every 100 decay times
steps = 0
err = 10*tol
hoff0 = ones(ndt)/ndt
hon0 = ones(ndt)/ndt
mhist0 = ones(nhist+1)
intensity = Matrix{Float64}(undef,0,2)
# Begin simulation
while err > tol && steps < total
steps += 1
intensity = vcat(intensity,[t sum(intron[1])])
asum = sum(amrna) + sum(astate) + adecay
if asum > 0.
# choose which state to update and time of update
r = asum*rand()
tau = -log(rand())/asum
# update time
t += tau
#print(tau,' ',asum,' ',state,'\n')
if m + 1 <= nhist
mhist[m+1] += tau
else
mhist[nhist+1] += tau
end
if r > sum(amrna + astate)
# mRNA decay
m -= 1
adecay = m*delta
else
agenecs = amrna[1] + astate[1]
agene0 = 0.
l = 1
while r > agenecs
agene0 = agenecs
agenecs += amrna[1+l] + astate[l+1]
l += 1
end
if l > 1
r -= agene0
end
if r > amrna[l]
# state update
if r > ab[l] + amrna[l]
# update forward reaction
state[l] += 1
else
# update backward reaction
state[l] -= 1
end
# update propensities
af[l] = gammaf[state[l]]
ab[l] = gammab[state[l]]
astate[l] = af[l] + ab[l]
# Activate coupling if any alleles are in state mu + 1
if rcorr > 0.
ba = false
for k = 1:nalleles
ba |= state[k] > mu
end
if ba
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]] + rcorr
astate[k] = af[k] + ab[k]
end
end
else
for k = 1:nalleles
if state[k] == mu
af[k] = gammaf[state[k]]
astate[k] = af[k] + ab[k]
end
end
end
end
if state[l] > mu
apre1[l] = float(1-z[l][1])*nu[1]
# apre1 = az[l][1]
else
apre1[l] = 0.
end
amrna[l] = apremid[l] + apre1[l] + afree[l] + sum(aintron[l])
else
# premRNA update
if r > apremid[l] + apre1[l] + sum(aintron[l])
# increase free mRNA
m += 1
adecay = m*delta
mproduced += 1
z[l][zeta] = 0
#az[l][zeta+1] = 0
afree[l] = 0.
# ON state ends, OFF state begins
if sum(intron[l]) == 1 && intron[l][zeta] == 1
tAI[l] = t
tactive = (tAI[l] - tIA[l])/dt
if tactive <= ndt && tactive > 0
tactive = ceil(Int,tactive)
histontdd[tactive] += 1
end
end
intron[l][zeta] = 0
aintron[l][zeta] = 0.
if zeta == 1
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
#az[l][1] = 0
apre1[l] = 0.
end
else
az[l][zeta] = float(z[l][zeta-1])*nu[zeta]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
elseif r > apremid[l] + apre1[l]
# eject intron
aintronsum = apremid[l] + apre1[l]
i = 0
while r > aintronsum
i += 1
aintronsum += aintron[l][i]
end
intron[l][i] = 0
aintron[l][i] = 0
# ON state ends, OFF state begins
if sum(intron[l]) == 0 #&& nhist == 0
tAI[l] = t
tactive = (tAI[l] - tIA[l])/dt
if tactive <= ndt && tactive > 0
tactive = ceil(Int,tactive)
histontdd[tactive] += 1
end
end
amrna[l] = apremid[l] + apre1[l] + afree[l] + sum(aintron[l])
# println("*",apre1)
elseif r > apremid[l]
# increase first pre-mRNA state
# OFF state ends, ON state begins
if sum(intron[l]) == 0 #&& nhist == 0
tIA[l] = t
tinactive = (tIA[l] - tAI[l])/dt
if tinactive <= ndt && tinactive > 0
tinactive = ceil(Int,tinactive)
histofftdd[tinactive] += 1
end
end
z[l][1] = 1
#az[l][1] = 0
apre1[l] = 0.
intron[l][1] = 1
aintron[l][1] = eta[1]
if zeta == 1
#az[l][2] = nu[2]
afree[l] = nu[2]
else
az[l][2] = float(1-z[l][2])*nu[2]
apremid[l] = sum(az[l][2:zeta])
end
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
else
# update mid pre-mRNA state
azsum = az[l][2]
k = 1
while r > azsum
azsum += az[l][2+k]
k += 1
end
i = k + 1
z[l][i] = 1
z[l][i-1] = 0
az[l][i] = 0.
if intron[l][i-1] == 1
intron[l][i] = 1
intron[l][i-1] = 0
aintron[l][i] = eta[i]
aintron[l][i-1] = 0.
else
intron[l][i] = 0
aintron[l][i] = 0.
end
if i == zeta
#az[l][i+1] = nu[i+1]
afree[l] = nu[i+1]
else
az[l][i+1] = float(1-z[l][i+1])*nu[i+1]
end
if i == 2
if state[l] > mu
#az[l][1] = nu[1]
apre1[l] = nu[1]
else
az[l][1] = 0.
apre1[l] = 0.
end
else
az[l][i-1] = float(z[l][i-2])*nu[i-1]
end
apremid[l] = sum(az[l][2:zeta])
amrna[l] = apre1[l] + apremid[l] + afree[l] + sum(aintron[l])
end # if r > apremid[l] + apre1[l]
end # if r > amrna[l]
end #if r > sum(amrna + adecay)
end #if asum > 0
# Compute change in histograms from last sample
ts += tau
if ts > tsample
hoff = histofftdd/sum(histofftdd)
hon = histontdd/sum(histontdd)
err = max(norm(hoff-hoff0,Inf),norm(hon-hon0,Inf))
hoff0 = copy(hoff)
hon0 = copy(hon)
errss = norm(mhist/sum(mhist) - mhist0/sum(mhist0),Inf)
err = max(err,errss)
mhist0 = copy(mhist)
ts = 0.
end
end # while bursts < nbursts && steps < total
sumoff = sum(histofftdd)
sumon = sum(histontdd)
counts = max(sum(mhist),1)
mhist /= counts
# print(mproduced/t)
return histofftdd/max(sumoff,1), histontdd/max(sumon,1), mhist[1:nhist], intensity
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 13233 |
# using Distributions
# using StatsBase
# using Statistics
# using DelimitedFiles
# using Dates
# using Distributed
# using LinearAlgebra
# using Plots
# using SparseArrays
# using DifferentialEquations
# using LSODA
# using DataFrames
# using FFTW
# using Downloads
# using CSV
# using MultivariateStats
# using Optim
# using Test
# include("common.jl")
# include("transition_rate_matrices.jl")
# include("chemical_master.jl")
# include("simulator.jl")
# include("utilities.jl")
# include("metropolis_hastings.jl")
# # include("trace.jl")
# include("hmm.jl")
# include("io.jl")
# include("biowulf.jl")
# include("fit.jl")
# include("analysis.jl")
# include("biowulf.jl")
"""
test(r,transitions,G,nhist,nalleles,onstates,bins)
returns dwell time and mRNA histograms for simulations and chemical master equation solutions
G = 2
r = [.01,.02,.03,.04,.001,.001]
transitions = ([1,2],[2,1],[2,3],[3,1])
OFF,ON,mhist,modelOFF,modelON,histF = test(r,transitions,G,20,1,[2],collect(1.:200))
e.g.
julia> incluce("test.jl")
julia> G = 3;
julia> r = [.01,.02,.03,.04,.001,.001];
julia> transitions = ([1,2],[2,1],[2,3],[3,1]);
julia> onstates = [2,3]
julia> OFFsim,ONsim,mRNAsim,OFFchem,ONchem,mRNAchem = test(r,transitions,G,20,1,onstates,collect(1.:200));
"""
"""
eg fit model to trace
r = [0.05,.1,.001,.001];
transitions = ([1,2],[2,1]);
G = 2;
R = 0;
onstates = [2];
interval = 5/3;
par=[30, 14, 200, 75];
data = test_data(trace,interval);
model = test_model(r,par,transitions,G,onstates);
options = test_options(1000);
@time fit,stats,measures = run_mh(data,model,options);
"""
function make_test(; G=2, R=1, S=1, insertstep=1, transitions=([1, 2], [2, 1]), rtarget=[0.02, 0.1, 0.5, 0.2, 0.1, 0.01, 50, 15, 200, 70, 0.9], rinit=[fill(0.1, num_rates(transitions, R, S, insertstep) - 1); 0.01; [20, 5, 100, 10, 0.9]], nsamples=5000, onstates=Int[], totaltime=1000.0, ntrials=10, fittedparam=[collect(1:num_rates(transitions, R, S, insertstep)-1); collect(num_rates(transitions, R, S, insertstep)+1:num_rates(transitions, R, S, insertstep)+5)], propcv=0.01, cv=100.0, interval=1.0)
trace = simulate_trace_vector(rtarget, transitions, G, R, S, interval, totaltime, ntrials)
data = StochasticGene.TraceData("trace", "test", interval, (trace, [], 0.))
model = load_model(data, rinit, Float64[], fittedparam, tuple(), transitions, G, R, S, insertstep, 1, 10.0, Int[], rtarget[num_rates(transitions, R, S, insertstep)], propcv, "", prob_GaussianMixture, 5, 5, tuple())
options = StochasticGene.MHOptions(nsamples, 0, 0, 100.0, 1.0, 1.0)
return data, model, options
end
function test(; r=[0.038, 1.0, 0.23, 0.02, 0.25, 0.17, 0.02, 0.06, 0.02, 0.000231], transitions=([1, 2], [2, 1], [2, 3], [3, 1]), G=3, R=2, S=2, insertstep=1, nRNA=150, nalleles=2, bins=[collect(5/3:5/3:200), collect(5/3:5/3:200), collect(0.1:0.1:20), collect(0.1:0.1:20)], total=1000000, tol=1e-6, onstates=[Int[], Int[], [2, 3], [2, 3]], dttype=["ON", "OFF", "ONG", "OFFG"])
hs = test_sim(r, transitions, G, R, S, insertstep, nRNA, nalleles, onstates[[1, 3]], bins[[1, 3]], total, tol)
h = test_chem(r, transitions, G, R, S, insertstep, nRNA, nalleles, onstates, bins, dttype)
hs = StochasticGene.normalize_histogram.(hs)
l = 0
for i in eachindex(h)
l += StochasticGene.norm(h[i] - hs[i])
end
return StochasticGene.make_array(h), StochasticGene.make_array(hs), l, isapprox(StochasticGene.make_array(h), StochasticGene.make_array(hs), rtol=0.01)
end
function test_chem(r, transitions, G, R, S, insertstep, nRNA, nalleles, onstates, bins, dttype)
for i in eachindex(onstates)
if isempty(onstates[i])
# onstates[i] = on_states(onstates[i], G, R, S, insertstep)
onstates[i] = StochasticGene.on_states(G, R, S, insertstep)
end
onstates[i] = Int64.(onstates[i])
end
components = StochasticGene.make_components_MTD(transitions, G, R, S, insertstep, onstates, dttype, nRNA, r[StochasticGene.num_rates(transitions, R, S, insertstep)], "")
StochasticGene.likelihoodarray(r, G, components, bins, onstates, dttype, nalleles, nRNA)
end
function test_sim(r, transitions, G, R, S, insertstep, nhist, nalleles, onstates, bins, total, tol)
StochasticGene.simulator(r, transitions, G, R, S, insertstep, nhist=nhist,nalleles=nalleles, onstates=onstates, bins=bins, totalsteps=total, tol=tol)
end
function fit_rna_test(root=".")
G = 2
gene = "CENPL"
cell = "HCT116"
fish = false
nalleles = 2
nsets = 1
propcv = 0.05
fittedparam = [1,2,3]
fixedeffects = ()
transitions = ([1,2],[2,1])
ejectprior = 0.05
r = [0.01, 0.1, 1.0, 0.01006327034802035]
decayrate = 0.01006327034802035
datacond = "MOCK"
datafolder = "data/HCT116_testdata"
label = "scRNA_test"
data = StochasticGene.data_rna(gene,datacond,datafolder,fish,label)
model = StochasticGene.model_rna(data,r,G,nalleles,nsets,propcv,fittedparam,fixedeffects,transitions,decayrate,ejectprior)
options = StochasticGene.MHOptions(100000,0,0,30.,1.,100.)
fit,stats,measures = StochasticGene.run_mh(data,model,options,1);
return stats.meanparam, fit.llml, model
end
function test_fit_rna(; gene="CENPL", cell="HCT116", fish=false, G=2, nalleles=2, nunits=100000, propcv=0.05, fittedparam=[1, 2, 3], fixedeffects=tuple(), transitions=([1, 2], [2, 1]), ejectprior=0.05, r=[0.01, 0.1, 1.0, 0.01006327034802035], decayrate=0.01006327034802035, datacond="MOCK", datapath="data/HCT116_testdata", label="scRNA_test", root=".")
data = load_data("rna", [], folder_path(datapath, root, "data"), label, gene, datacond, 1.0, 1.0, 1.0)
model = load_model(data, r, Float64[], fittedparam, fixedeffects, transitions, G, 0, 0, 1, nalleles, 10.0, Int[], r[end], propcv, "", prob_GaussianMixture, 5, 5)
options = StochasticGene.MHOptions(100000,0,0,60.,1.,1.)
fits, stats, measures = run_mh(data, model, options)
h = likelihoodfn(fits.parml, data, model)
h,normalize_histogram(data.histRNA)
end
function test_fit_rnaonoff(; G=2, R=1, S=1, transitions=([1, 2], [2, 1]), insertstep=1, rtarget=[0.02, 0.1, 0.5, 0.2, 0.1, 0.01], rinit=fill(0.01, num_rates(transitions, R, S, insertstep)), nunits=100000, nhist=20, nalleles=2, onstates=Int[], bins=collect(0:1.0:200.0), fittedparam=collect(1:length(rtarget)-1), propcv=0.05, priorcv=10.0, splicetype="")
# OFF, ON, mhist = test_sim(rtarget, transitions, G, R, S, nhist, nalleles, onstates, bins)
h = simulator(rtarget, transitions, G, R, S, nhist, nalleles, onstates=onstates, bins=bins, totalsteps=3000)
hRNA = div.(h[1], 30)
data = StochasticGene.RNAOnOffData("test", "test", nhist, hRNA, bins, h[2], h[3])
model = load_model(data, rinit, Float64[], fittedparam, tuple(), transitions, G, R, S, insertstep, nalleles, priorcv, onstates, rtarget[end], propcv, splicetype, prob_GaussianMixture, 5, 5)
options = StochasticGene.MHOptions(nunits, 0, 0, 100.0, 1.0, 1.0)
fits, stats, measures = run_mh(data, model, options)
h = likelihoodfn(fits.parml, data, model)
h,StochasticGene.datapdf(data),fits, stats, measures, data, model, options
end
function test_fit_rnadwelltime(; rtarget=[0.038, 1.0, 0.23, 0.02, 0.25, 0.17, 0.02, 0.06, 0.02, 0.000231], transitions=([1, 2], [2, 1], [2, 3], [3, 1]), G=3, R=2, S=2, insertstep=1, nRNA=150, nunits=100000, nalleles=2, onstates=[Int[], Int[], [2, 3], [2, 3]], bins=[collect(5/3:5/3:200), collect(5/3:5/3:200), collect(0.01:0.1:10), collect(0.01:0.1:10)], dttype=["ON", "OFF", "ONG", "OFFG"], fittedparam=collect(1:length(rtarget)-1), propcv=0.01, priorcv=10.0, splicetype="")
h = test_sim(rtarget, transitions, G, R, S, insertstep, nRNA, nalleles, onstates[[1, 3]], bins[[1, 3]], 30000, 1e-6)
data = RNADwellTimeData("test", "test", nRNA, h[1], bins, h[2:end], dttype)
println(typeof(data))
rinit = StochasticGene.prior_ratemean(transitions, R, S, insertstep, rtarget[end], 0, 0)
model = load_model(data, rinit, Float64[], fittedparam, tuple(), transitions, G, R, S, insertstep, nalleles, priorcv, onstates, rtarget[end], propcv, splicetype, prob_GaussianMixture, 5, 5)
options = StochasticGene.MHOptions(nunits, 1000, 0, 120.0, 1.0, 1.0)
fits, stats, measures = run_mh(data, model, options, nworkers())
h = likelihoodfn(fits.parml, data, model)
h,StochasticGene.datapdf(data),fits, stats, measures, data, model, options
end
function test_fit_trace(; G=2, R=1, S=1, insertstep=1, transitions=([1, 2], [2, 1]), rtarget=[0.02, 0.1, 0.5, 0.2, 0.1, 0.01, 50, 15, 200, 70], rinit=[fill(0.1, num_rates(transitions, R, S, insertstep) - 1); 0.01; [20, 5, 100, 10]], nsamples=5000, onstates=Int[], totaltime=1000.0, ntrials=10, fittedparam=[collect(1:num_rates(transitions, R, S, insertstep)-1); collect(num_rates(transitions, R, S, insertstep)+1:num_rates(transitions, R, S, insertstep)+4)], propcv=0.01, cv=100.0, interval=1.0, weight=0, nframes=1, noisepriors=[50, 15, 200, 70])
trace = simulate_trace_vector(rtarget, transitions, G, R, S, interval, totaltime, ntrials)
data = StochasticGene.TraceData("trace", "test", interval, (trace, [], weight, nframes))
model = load_model(data, rinit, Float64[], fittedparam, tuple(), transitions, G, R, S, insertstep, 1, 10.0, Int[], rtarget[num_rates(transitions, R, S, insertstep)], propcv, "", prob_Gaussian, noisepriors, tuple())
options = StochasticGene.MHOptions(nsamples, 0, 0, 100.0, 1.0, 1.0)
fits, stats, measures = run_mh(data, model, options)
StochasticGene.get_rates(fits.parml, model), rtarget, fits, stats, measures,model,data
end
function test_init(r, transitions, G, R, S, insertstep)
onstates = on_states(G, R, S, insertstep)
indices = set_indices(length(transitions), R, S, insertstep)
base = S > 0 ? 3 : 2
nT = G * base^R
components = make_components_MTAI(transitions, G, R, S, insertstep, onstates, 2, r[num_rates(transitions, R, S, insertstep)], "")
T = make_mat_T(components.tcomponents, r)
TA = make_mat_TA(components.tcomponents, r)
TI = make_mat_TI(components.tcomponents, r)
pss = normalized_nullspace(T)
nonzeros = nonzero_rows(TI)
SAinit = init_SA(r, onstates, components.tcomponents.elementsT, pss)
SIinit = init_SI(r, onstates, components.tcomponents.elementsT, pss, nonzeros)
return SIinit, SAinit, onstates, components.tcomponents, pss, nonzeros, T, TA, TI[nonzeros, nonzeros]
end
function histogram_model(r, transitions, G::Int, R::Int, S::Int, insertstep::Int, nalleles::Int, nhist::Int, fittedparam, onstates, propcv, cv)
ntransitions = length(transitions)
if length(r) != num_rates(transitions, R, S, insertstep)
throw("r does not have", num_rates(transitions, R, S, insertstep), "elements")
end
method = 1
if typeof(cv) <: Real
rcv = fill(cv, length(r))
else
rcv = cv
end
d = distribution_array(log.(r[fittedparam]), sigmalognormal(rcv[fittedparam]), Normal)
if R > 0
components = make_components_MTAI(transitions, G, R, S, insertstep, on_states(G, R, S, insertstep), nhist, r[num_rates(transitions, R, S, insertstep)])
return GRSMmodel{typeof(r),typeof(d),typeof(propcv),typeof(fittedparam),typeof(method),typeof(components),Int}(G, R, S, nalleles, "", r, d, propcv, fittedparam, method, transitions, components, 0)
else
components = make_components(transitions, G, r, nhist, set_indices(ntransitions), onstates)
return GMmodel{typeof(r),typeof(d),Float64,typeof(fittedparam),typeof(method),typeof(components)}(G, nalleles, r, d, proposal, fittedparam, method, transitions, components, onstates)
end
end
function test_fit_trace_hierarchical(; G=2, R=1, S=0, insertstep=1, transitions=([1, 2], [2, 1]), rtarget=[0.02, 0.1, 0.5, 0.2, 1.0, 50, 15, 200, 70], rinit=[], nsamples=50000, onstates=Int[], totaltime=100.0, ntrials=1, fittedparam=collect(1:num_rates(transitions, R, S, insertstep)-1), propcv=0.01, cv=100.0, interval=1.0, noisepriors=[50, 15, 200, 70], hierarchical=(2, collect(num_rates(transitions, R, S, insertstep)+1:num_rates(transitions, R, S, insertstep)+ length(noisepriors)), tuple()), method=(1, true))
trace = simulate_trace_vector(rtarget, transitions, G, R, S, interval, totaltime, ntrials)
data = StochasticGene.TraceData("trace", "test", interval, (trace, [], 0.0))
rm = StochasticGene.prior_ratemean(transitions, R, S, insertstep, 1.0, noisepriors, length(data.trace[1]), hierarchical[1])
isempty(rinit) && (rinit = rm)
model = load_model(data, rinit, rm, fittedparam, tuple(), transitions, G, R, S, insertstep, 1, 10.0, Int[], rtarget[num_rates(transitions, R, S, insertstep)], propcv, "", prob_Gaussian, noisepriors, hierarchical, method)
options = StochasticGene.MHOptions(nsamples, 0, 0, 100.0, 1.0, 1.0)
fits, stats, measures = run_mh(data, model, options)
nrates = num_rates(transitions, R, S, insertstep)
StochasticGene.get_rates(fits.parml, model)[1:nrates], rtarget[1:nrates]
end
# """
# 0.006249532442813658
# 0.01590032848543878
# 3.3790567344108426
# 0.7267835250522062
# 0.0147184704573748
# 0.008557372599505498
# 61.15683730665482
# 20.930539320417463
# 254.92857617350322
# 213.0382725610589
# 0.6643622910563245
# """ | StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 5329 | ### trace.jl
"""
simulate_trace_vector(r, par, transitions, G, R, onstates, interval, steps, ntrials)
return vector of traces
"""
function simulate_trace_vector(r, transitions, G, R, S, interval, totaltime, ntrials; insertstep=1, onstates=Int[], reporterfn=sum)
trace = Array{Array{Float64}}(undef, ntrials)
for i in eachindex(trace)
trace[i] = simulator(r[1:end-4], transitions, G, R, S, 1, 1, insertstep=insertstep, onstates=onstates, traceinterval=interval, totaltime=totaltime, par=r[end-3:end])[1:end-1, 2]
end
trace
end
"""
simulate_trace(r,transitions,G,R,interval,totaltime,onstates=[G])
simulate a trace
"""
simulate_trace(r, transitions, G, R, S, interval, totaltime; insertstep=1, onstates=Int[], reporterfn=sum) = simulator(r, transitions, G, R, S, 2, 1, insertstep=insertstep, onstates=onstates, traceinterval=interval, reporterfn=reporterfn, totaltime=totaltime, par=r[end-4:end])[1:end-1, :]
"""
trace_data(trace, interval)
set trace data
"""
function trace_data(trace, interval,nascent = 0.)
if nascent > 0
return TraceNascentData("trace", "test", interval, trace, nascent)
else
return TraceData("trace", "test", interval, trace)
end
end
"""
trace_model(r::Vector, transitions::Tuple, G, R, fittedparam; onstates=[G], propcv=0.05, f=Normal, cv=1.)
set models
"""
function trace_model(r::Vector, transitions::Tuple, G, R, S, insertstep, fittedparam; noiseparams=5, probfn=prob_GaussianMixture, weightind=5, propcv=0.05, priorprob=Normal, priormean=[fill(.1, num_rates(transitions, R, S, insertstep)); fill(100,noiseparams-1);.9], priorcv=[fill(10, num_rates(transitions, R, S, insertstep)); fill(.5, noiseparams)], fixedeffects=tuple(), onstates::Vector=[G],genetrap=false,nhist=20,nalleles=2)
if length(r) != num_rates(transitions,R,S,insertstep) + noiseparams
throw("rate wrong length")
end
d = trace_prior(priormean, priorcv, fittedparam, num_rates(transitions, R, S, insertstep)+weightind, priorprob)
method = 1
if S > 0
S = R - insertstep + 1
end
if genetrap
#components = make_components_MTAI(transitions, G, R, S, insertstep, on_states(G, R, S, insertstep), nhist, r[num_rates(transitions, R, S, insertstep)])
components = make_components_MT(transitions, G, R, S, insertstep, nhist, rr[num_rates(transitions, R, S, insertstep)])
else
components = make_components_T(transitions, G, R, S, insertstep, "")
end
# println(reporters)
if R > 0
reporter = HMMReporter(noiseparams, num_reporters_per_state(G, R, S, insertstep), probfn, num_rates(transitions,R,S,insertstep) + weightind)
if isempty(fixedeffects)
return GRSMmodel{typeof(r),typeof(d),typeof(propcv),typeof(fittedparam),typeof(method),typeof(components),typeof(reporter)}(G, R, S, insertstep, nalleles, "", r, d, propcv, fittedparam, method, transitions, components, reporter)
else
return GRSMfixedeffectsmodel{typeof(r),typeof(d),typeof(propcv),typeof(fittedparam),typeof(method),typeof(components),typeof(reporter)}(G, R, S, nalleles, "", r, d, propcv, fittedparam, fixedeffects, method, transitions, components, reporter)
end
else
return GMmodel{typeof(r),typeof(d),typeof(propcv),typeof(fittedparam),typeof(method),typeof(components)}(G, nalleles, r, d, propcv, fittedparam, method, transitions, components, onstates)
end
end
"""
trace_options(samplesteps::Int=100000, warmupsteps=0, annealsteps=0, maxtime=1000.0, temp=1.0, tempanneal=100.0)
set options
"""
function trace_options(; samplesteps::Int=1000, warmupsteps=0, annealsteps=0, maxtime=1000.0, temp=1.0, tempanneal=1.0)
MHOptions(samplesteps, warmupsteps, annealsteps, maxtime, temp, tempanneal)
end
"""
trace_prior(r,fittedparam,f=Normal)
return prior distribution
"""
function trace_prior(r, rcv, fittedparam, ind, f=Normal)
if typeof(rcv) <: Real
rcv = rcv * ones(length(r))
end
distribution_array([logv(r[1:ind-1]);logit(r[ind:end])][fittedparam] , sigmalognormal(rcv[fittedparam]), f)
# distribution_array(transform_array(r,ind,fittedparam,logv,logit) , sigmalognormal(rcv[fittedparam]), f)
# distribution_array(mulognormal(r[fittedparam],rcv[fittedparam]), sigmalognormal(rcv[fittedparam]), f)
end
# """
# read_tracefiles(path::String,cond::String,col=3)
# read tracefiles
# """
# function read_tracefiles(path::String, cond::String, delim::AbstractChar, col=3)
# readfn = delim == ',' ? read_tracefile_csv : read_tracefile
# read_tracefiles(path, cond, readfn, col)
# end
# function read_tracefiles(path::String, cond::String="", readfn::Function=read_tracefile, col=3)
# traces = Vector[]
# for (root, dirs, files) in walkdir(path)
# for file in files
# target = joinpath(root, file)
# if occursin(cond, target)
# push!(traces, readfn(target, col))
# end
# end
# end
# set = sum.(traces)
# traces[unique(i -> set[i], eachindex(set))] # only return unique traces
# end
# """
# read_tracefile(target::String,col=3)
# read single trace file
# """
# read_tracefile(target::String, col=3) = readdlm(target)[:, col]
# read_tracefile_csv(target::String, col=3) = readdlm(target, ',')[:, col] | StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 28675 | # This file is part of StochasticGene.jl
#
# transition_rate_matrices_transpose.jl
#
# Functions to compute the transpose of the transition rate matrix for Stochastic transitions
# Matrices are the transpose to the convention for Kolmogorov forward equations
# i.e. reaction directions go from column to row,
# Notation: M = transpose of transition rate matrix of full (countably infinite) stochastic process including mRNA kinetics
# Q = finite transition rate matrix for GRS continuous Markov process
# T = Q'
# transpose of Q is more convenient for solving chemical master equation
#
"""
struct Element
structure for transition matrix elements
fields:
- `a`: row,
- `b`: column
- `index`: rate vector index
- `pm`: sign of elements
"""
struct Element
a::Int
b::Int
index::Int
pm::Int
end
"""
struct MComponents
structure for matrix components for matrix M
"""
struct MComponents
elementsT::Vector{Element}
elementsB::Vector{Element}
nT::Int
U::SparseMatrixCSC
Uminus::SparseMatrixCSC
Uplus::SparseMatrixCSC
end
"""
AbstractTComponents
abstract type for components of transition matrices
"""
abstract type AbstractTComponents end
"""
struct TComponents
fields:
nT, elementsT
"""
struct TComponents <: AbstractTComponents
nT::Int
elementsT::Vector
end
"""
struct TAIComponents{elementType} <: AbstractTComponents
fields:
nT, elementsT, elementsTA, elementsTI
"""
struct TAIComponents{elementType} <: AbstractTComponents
nT::Int
elementsT::Vector{Element}
elementsTA::Vector{elementType}
elementsTI::Vector{elementType}
end
"""
struct TDComponents <: AbstractTComponents
fields:
nT, elementsT, elementsTD:: Vector{Vector{Element}}
"""
struct TDComponents <: AbstractTComponents
nT::Int
elementsT::Vector{Element}
elementsTG::Vector{Element}
elementsTD::Vector{Vector{Element}}
end
"""
MTComponents
structure for M and T components
fields:
mcomponents::MComponents
tcomponents::TComponents
"""
struct MTComponents
mcomponents::MComponents
tcomponents::TComponents
end
"""
MTComponents
structure for M and TAI components
fields:
mcomponents::MComponents
tcomponents::TAIComponents
"""
struct MTAIComponents{elementType}
mcomponents::MComponents
tcomponents::TAIComponents{elementType}
end
"""
MTDComponents
structure for M and TD components
fields:
mcomponents::MComponents
tcomponents::TDComponents
"""
struct MTDComponents
mcomponents::MComponents
tcomponents::TDComponents
end
"""
struct Indices
index ranges for rates
gamma: G transitions
nu: R transitions
eta: splice transitions
decay: mRNA decay rate
"""
struct Indices
gamma::Vector{Int}
nu::Vector{Int}
eta::Vector{Int}
decay::Int
end
"""
make_components_MTAI(transitions,G,R,S,insertstep,onstates,splicetype="")
make MTAI structure for GRS models (fitting mRNA, on time, and off time histograms)
"""
function make_components_MTAI(transitions, G, R, S, insertstep, onstates, nhist, decay, splicetype="")
indices = set_indices(length(transitions), R, S, insertstep)
elementsT, nT = set_elements_T(transitions, G, R, S, insertstep, indices, splicetype)
MTAIComponents(make_components_M(transitions, G, R, nhist, decay, splicetype), make_components_TAI(elementsT, nT, onstates))
end
function make_components_MTD(transitions, G, R, S, insertstep, onstates, dttype, nhist, decay, splicetype::String="")
indices = set_indices(length(transitions), R, S, insertstep)
elementsT, nT = set_elements_T(transitions, G, R, S, insertstep, indices, splicetype)
elementsTG = set_elements_T(transitions, indices.gamma)
c = Vector{Element}[]
for i in eachindex(onstates)
if dttype[i] == "ON"
push!(c, set_elements_TA(elementsT, onstates[i]))
elseif dttype[i] == "OFF"
push!(c, set_elements_TI(elementsT, onstates[i]))
elseif dttype[i] == "ONG"
push!(c, set_elements_TA(elementsTG, onstates[i]))
elseif dttype[i] == "OFFG"
push!(c, set_elements_TI(elementsTG, onstates[i]))
end
# dttype[i] == "ON" ? push!(c, set_elements_TA(elementsT, onstates[i])) : push!(c, set_elements_TI(elementsT, onstates[i]))
end
MTDComponents(make_components_M(transitions, G, R, nhist, decay, splicetype), TDComponents(nT, elementsT, elementsTG, c))
end
"""
make_components_MT(transitions,G,R,S,insertstep,decay,splicetype="")
return MTcomponents structure for GRS models
for fitting traces and mRNA histograms
"""
make_components_MT(transitions, G, R, S, insertstep, nhist, decay, splicetype="") = MTComponents(make_components_M(transitions, G, R, nhist, decay, splicetype), make_components_T(transitions, G, R, S, insertstep, splicetype))
"""
make_components_M(transitions, G, R, insertstep, decay, splicetype)
return Mcomponents structure
matrix components for fitting mRNA histograms
"""
function make_components_M(transitions, G, R, nhist, decay, splicetype)
indices = set_indices(length(transitions), R)
elementsT, nT = set_elements_T(transitions, G, R, 0, 0, indices, splicetype)
elementsB = set_elements_B(G, R, indices.nu[R+1])
U, Um, Up = make_mat_U(nhist, decay)
return MComponents(elementsT, elementsB, nT, U, Um, Up)
end
"""
make_components_T(transitions, G, R, S, insertstep, splicetype)
return Tcomponent structure
for fitting traces and also for creating TA and TI matrix components
"""
function make_components_T(transitions, G, R, S, insertstep, splicetype)
indices = set_indices(length(transitions), R, S, insertstep)
elementsT, nT = set_elements_T(transitions, G, R, S, insertstep, indices, splicetype)
TComponents(nT, elementsT)
end
"""
make_components_TAI(elementsT, nT::Int, onstates::Vector)
return TAIComponent structure
"""
function make_components_TAI(elementsT, nT::Int, onstates::Vector)
TAIComponents{Element}(nT, elementsT, set_elements_TA(elementsT, onstates), set_elements_TI(elementsT, onstates))
end
# function make_components_TAI(elementsT, G::Int, R::Int, base::Int)
# TAIComponents{typeof(elementsT)}(nT, elementsT, set_elements_TA(elementsT, G, R, base), set_elements_TI(elementsT, G, R, base))
# end
function make_components_TAI(transitions, G, R, S, insertstep, onstates, splicetype::String="")
indices = set_indices(length(transitions), R, S, insertstep)
elementsT, nT = set_elements_T(transitions, G, R, S, insertstep, indices, splicetype)
make_components_TAI(elementsT, nT, onstates)
end
"""
state_index(G::Int,i,z)
return state index for state (i,z)
"""
state_index(G::Int, g, z) = g + G * (z - 1)
function inverse_state(i::Int, G, R, S, insertstep::Int, f=sum)
base = S > 0 ? 3 : 2
g = mod(i - 1, G) + 1
z = div(i - g, G) + 1
zdigits = digit_vector(z, base, R)
r = num_reporters_per_index(z, R, insertstep, base, f)
return g, z, zdigits, r
end
function inverse_state(i::Vector{Int}, G, R, S, insertstep::Int)
base = S > 0 ? 3 : 2
z = Int[]
g = Int[]
zdigits = Vector[]
r = Int[]
for i in i
gi, zi, zdi, ri = inverse_state(i, G, R, S, insertstep)
push!(z, zi)
push!(g, gi)
push!(zdigits, zdi)
push!(r, ri)
end
return g, z, zdigits, r
end
function inverse_state(i::Vector{Vector{Int}}, G, R, S, insertstep)
z = Vector{Int}[]
g = Vector{Int}[]
zdigits = Vector{Vector}[]
r = Vector{Int}[]
for i in i
gi, zi, zdi, ri = inverse_state(i, G, R, S, insertstep)
push!(z, zi)
push!(g, gi)
push!(zdigits, zdi)
push!(r, ri)
end
return g, z, zdigits, r
end
"""
on_states(onstates, G, R, S, insertstep)
return vector of new onstates given onstates argument of fit function
"""
function on_states(onstates, G, R, S, insertstep)
if isempty(onstates)
return on_states(G, R, S, insertstep)
else
return on_states(onstates, G, R, S)
end
end
"""
on_states(G, R, S, insertstep)
return vector of onstates for GRS model given reporter appears at insertstep
"""
function on_states(G::Int, R, S, insertstep)
base = S > 0 ? 3 : 2
onstates = Int[]
on_states!(onstates, G, R, insertstep, base)
onstates
end
"""
on_states!(onstates::Vector, G::Int, R::Int, insertstep, base)
return vector of on state indices for GR and GRS models
"""
function on_states!(onstates::Vector, G::Int, R::Int, insertstep, base)
(R == 0) && throw("Cannot use empty ON state [] for R = 0")
for i in 1:G, z in 1:base^R
if any(digits(z - 1, base=base, pad=R)[insertstep:end] .== base - 1)
push!(onstates, state_index(G, i, z))
end
end
end
function on_states(onstates::Vector, G, R, S)
base = S > 0 ? 3 : 2
o = Int[]
for i in 1:G, z in 1:base^R
if i β onstates
push!(o, state_index(G, i, z))
end
end
o
end
function off_states(G::Int, R, S, insertstep)
base = S > 0 ? 3 : 2
nT = G * base^R
off_states(nT, on_states(G, R, S, insertstep))
end
"""
off_states(nT,onstates)
return barrier (off) states, complement of sojourn (on) states
"""
off_states(nT, onstates) = setdiff(collect(1:nT), onstates)
"""
num_reporters_per_state(G::Int, R::Int, S::Int=0,insertstep=1,f=sum)
return number of a vector of the number reporters for each state index
if f = sum, returns total number of reporters
if f = any, returns 1 for presence of any reporter
"""
function num_reporters_per_state(G::Int, R::Int, S::Int=0, insertstep=1, f=sum)
base = S > 0 ? 3 : 2
reporters = Vector{Int}(undef, G * base^R)
for i in 1:G, z in 1:base^R
# reporters[state_index(G, i, z)] = f(digits(z - 1, base=base, pad=R)[insertstep:end] .== base - 1)
reporters[state_index(G, i, z)] = num_reporters_per_index(z, R, insertstep, base, f)
# push!(reporters, f(digits(z - 1, base=base, pad=R)[insertstep:end] .== base - 1))
end
reporters
end
function num_reporters_per_state(G::Int, onstates::Vector)
reporters = Int[]
for i in 1:G
push!(reporters, i β onstates ? 1 : 0)
end
reporters
end
num_reporters_per_index(z, R, insertstep, base, f=sum) = f(digits(z - 1, base=base, pad=R)[insertstep:end] .== base - 1)
"""
set_indices(ntransitions, R, S, insertstep)
set_indices(ntransitions,R)
set_indices(ntransitions)
return Indices structure
"""
function set_indices(ntransitions, R, S, insertstep)
if insertstep > R > 0
throw("insertstep>R")
end
if S > 0
Indices(collect(1:ntransitions), collect(ntransitions+1:ntransitions+R+1), collect(ntransitions+R+2:ntransitions+R+R-insertstep+2), ntransitions + R + R - insertstep + 3)
elseif R > 0
set_indices(ntransitions, R)
else
set_indices(ntransitions)
end
end
set_indices(ntransitions, R) = Indices(collect(1:ntransitions), collect(ntransitions+1:ntransitions+R+1), Int[], ntransitions + R + 2)
set_indices(ntransitions) = Indices(collect(1:ntransitions), [ntransitions + 1], Int[], ntransitions + 2)
"""
set_elements_G!(elements,transitions,G,R,base,gamma)
return G transition matrix elements
-`elements`: Vector of Element structures
-`transitions`: tupe of G state transitions
"""
function set_elements_G!(elements, transitions, G::Int, gamma, nT)
for j = 0:G:nT-1
set_elements_G!(elements, transitions, gamma, j)
end
end
function set_elements_G!(elements, transitions, gamma::Vector=collect(1:length(transitions)), j=0)
i = 1
for t in transitions
push!(elements, Element(t[1] + j, t[1] + j, gamma[i], -1))
push!(elements, Element(t[2] + j, t[1] + j, gamma[i], 1))
i += 1
end
end
"""
set_elements_RS!(elementsT, G, R, S, insertstep, nu::Vector{Int}, eta::Vector{Int}, splicetype="")
inplace update matrix elements in elementsT for GRS state transition matrix, do nothing if R == 0
"offeject" = pre-RNA is completely ejected when spliced
"""
function set_elements_RS!(elementsT, G, R, S, insertstep, nu::Vector{Int}, eta::Vector{Int}, splicetype="")
if R > 0
if splicetype == "offeject"
S = 0
base = 2
end
if S == 0
base = 2
else
base = 3
end
for w = 1:base^R, z = 1:base^R
zdigits = digit_vector(z, base, R)
wdigits = digit_vector(w, base, R)
z1 = zdigits[1]
w1 = wdigits[1]
zr = zdigits[R]
wr = wdigits[R]
zbar1 = zdigits[2:R]
wbar1 = wdigits[2:R]
zbarr = zdigits[1:R-1]
wbarr = wdigits[1:R-1]
sB = 0
for l in 1:base-1
sB += (zbarr == wbarr) * ((zr == 0) - (zr == l)) * (wr == l)
end
if S > 0
sC = (zbarr == wbarr) * ((zr == 1) - (zr == 2)) * (wr == 2)
end
for i = 1:G
# a = i + G * (z - 1)
# b = i + G * (w - 1)
a = state_index(G, i, z)
b = state_index(G, i, w)
if abs(sB) == 1
push!(elementsT, Element(a, b, nu[R+1], sB))
end
if S > 0 && abs(sC) == 1
push!(elementsT, Element(a, b, eta[R-insertstep+1], sC))
end
if splicetype == "offeject"
s = (zbarr == wbarr) * ((zr == 0) - (zr == 1)) * (wr == 1)
if abs(s) == 1
push!(elementsT, Element(a, b, eta[R-insertstep+1], s))
end
end
for j = 1:R-1
zbarj = zdigits[[1:j-1; j+2:R]]
wbarj = wdigits[[1:j-1; j+2:R]]
zbark = zdigits[[1:j-1; j+1:R]]
wbark = wdigits[[1:j-1; j+1:R]]
zj = zdigits[j]
zj1 = zdigits[j+1]
wj = wdigits[j]
wj1 = wdigits[j+1]
s = 0
for l in 1:base-1
s += (zbarj == wbarj) * ((zj == 0) * (zj1 == l) - (zj == l) * (zj1 == 0)) * (wj == l) * (wj1 == 0)
end
if abs(s) == 1
push!(elementsT, Element(a, b, nu[j+1], s))
end
if S > 0 && j > insertstep - 1
s = (zbark == wbark) * ((zj == 1) - (zj == 2)) * (wj == 2)
if abs(s) == 1
push!(elementsT, Element(a, b, eta[j-insertstep+1], s))
end
end
if splicetype == "offeject" && j > insertstep - 1
s = (zbark == wbark) * ((zj == 0) - (zj == 1)) * (wj == 1)
if abs(s) == 1
push!(elementsT, Element(a, b, eta[j-insertstep+1], s))
end
end
end
end
s = (zbar1 == wbar1) * ((z1 == base - 1) - (z1 == 0)) * (w1 == 0)
if abs(s) == 1
push!(elementsT, Element(G * z, G * w, nu[1], s))
end
end
end
end
"""
set_elements_TA(elementsT,onstates)
set onstate elements
"""
set_elements_TA(elementsT, onstates) = set_elements_TX(elementsT, onstates, set_elements_TA!)
"""
set_elements_TA!(elementsTA, elementsT, onstates::Vector)
in place set onstate elements
"""
set_elements_TA!(elementsTA, elementsT, onstates) = set_elements_TX!(elementsTA, elementsT, onstates, β)
"""
set_elements_TI!(elementsTI, elementsT, onstates::Vector)
set off state elements
"""
set_elements_TI(elementsT, onstates) = set_elements_TX(elementsT, onstates, set_elements_TI!)
"""
set_elements_TI!(elementsTI, elementsT, onstates::Vector)
in place set off state elements
"""
set_elements_TI!(elementsTI, elementsT, onstates) = set_elements_TX!(elementsTI, elementsT, onstates, β)
"""
set_elements_TX(elementsT, onstates::Vector{Int},f!)
set on or off state elements for onstates
"""
function set_elements_TX(elementsT, onstates::Vector{Int}, f!)
elementsTX = Vector{Element}(undef, 0)
f!(elementsTX, elementsT, onstates::Vector)
elementsTX
end
"""
set_elements_TX(elementsT, onstates::Vector{Vector{Int}},f!)
set on or off state elements for vector if onstates by calling f! (set_elements_TA! or set_elements_TI!)
"""
function set_elements_TX(elementsT, onstates::Vector{Vector{Int}}, f!)
elementsTX = Vector{Vector{Element}}(undef, length(onstates))
for i in eachindex(onstates)
eTX = Vector{Element}(undef, 0)
f!(eTX, elementsT, onstates::Vector)
elementsTX[i] = eTX
end
elementsTX
end
"""
set_elements_TX!(elementsTX, elementsT, onstates::Vector,f)
add elements to elementsTX if column element satisfies f (β or β)
"""
function set_elements_TX!(elementsTX, elementsT, onstates::Vector, f)
for e in elementsT
if f(e.b, onstates)
push!(elementsTX, e)
end
end
end
"""
set_elements_T(transitions, G, R, S, indices::Indices, splicetype::String)
return T matrix elements (Element structure) and size of matrix
"""
function set_elements_T(transitions, G, R, S, insertstep, indices::Indices, splicetype::String)
if R > 0
elementsT = Vector{Element}(undef, 0)
base = S > 0 ? 3 : 2
nT = G * base^R
set_elements_G!(elementsT, transitions, G, indices.gamma, nT)
set_elements_RS!(elementsT, G, R, S, insertstep, indices.nu, indices.eta, splicetype)
return elementsT, nT
else
return set_elements_T(transitions, indices.gamma), G
end
end
function set_elements_T(transitions, gamma::Vector)
elementsT = Vector{Element}(undef, 0)
set_elements_G!(elementsT, transitions, gamma)
elementsT
end
"""
set_elements_B(G, ejectindex)
return B matrix elements
"""
set_elements_B(G, ejectindex) = [Element(G, G, ejectindex, 1)]
function set_elements_B(G, R, ejectindex, base=2)
if R > 0
elementsB = Vector{Element}(undef, 0)
for w = 1:base^R, z = 1:base^R, i = 1:G
a = i + G * (z - 1)
b = i + G * (w - 1)
zdigits = digits(z - 1, base=base, pad=R)
wdigits = digits(w - 1, base=base, pad=R)
zr = zdigits[R]
wr = wdigits[R]
zbarr = zdigits[1:R-1]
wbarr = wdigits[1:R-1]
s = (zbarr == wbarr) * (zr == 0) * (wr == 1)
if abs(s) == 1
push!(elementsB, Element(a, b, ejectindex, s))
end
end
return elementsB
else
set_elements_B(G, ejectindex)
end
end
"""
make_mat!(T::AbstractMatrix,elements::Vector,rates::Vector)
set matrix elements of T to those in vector argument elements
"""
function make_mat!(T::AbstractMatrix, elements::Vector, rates::Vector)
for e in elements
T[e.a, e.b] += e.pm * rates[e.index]
end
end
"""
make_mat(elements,rates,nT)
return an nTxnT sparse matrix T
"""
function make_mat(elements::Vector, rates::Vector, nT::Int)
T = spzeros(nT, nT)
make_mat!(T, elements, rates)
return T
end
"""
make_S_mat
"""
function make_mat_U(total::Int, decay::Float64)
U = spzeros(total, total)
Uminus = spzeros(total, total)
Uplus = spzeros(total, total)
# Generate matrices for m transitions
Uplus[1, 2] = decay
for m = 2:total-1
U[m, m] = -decay * (m - 1)
Uminus[m, m-1] = 1
Uplus[m, m+1] = decay * m
end
U[total, total] = -decay * (total - 1)
Uminus[total, total-1] = 1
return U, Uminus, Uplus
end
"""
make_M_mat
return M matrix used to compute steady state RNA distribution
"""
function make_mat_M(T::SparseMatrixCSC, B::SparseMatrixCSC, decay::Float64, total::Int)
U, Uminus, Uplus = make_mat_U(total, decay)
make_mat_M(T, B, U, Uminus, Uplus)
end
function make_mat_M(T::SparseMatrixCSC, B::SparseMatrixCSC, U::SparseMatrixCSC, Uminus::SparseMatrixCSC, Uplus::SparseMatrixCSC)
nT = size(T, 1)
total = size(U, 1)
M = kron(U, sparse(I, nT, nT)) + kron(sparse(I, total, total), T - B) + kron(Uminus, B) + kron(Uplus, sparse(I, nT, nT))
M[end-size(B, 1)+1:end, end-size(B, 1)+1:end] .+= B # boundary condition to ensure probability is conserved
return M
end
function make_mat_M(components::MComponents, rates::Vector)
T = make_mat(components.elementsT, rates, components.nT)
B = make_mat(components.elementsB, rates, components.nT)
make_mat_M(T, B, components.U, components.Uminus, components.Uplus)
end
"""
make_T_mat
construct matrices from elements
"""
make_mat_T(components::AbstractTComponents, rates) = make_mat(components.elementsT, rates, components.nT)
make_mat_TA(components::TAIComponents, rates) = make_mat(components.elementsTA, rates, components.nT)
make_mat_TI(components::TAIComponents, rates) = make_mat(components.elementsTI, rates, components.nT)
make_mat_TA(elementsTA, rates, nT) = make_mat(elementsTA, rates, nT)
make_mat_TI(elementsTI, rates, nT) = make_mat(elementsTI, rates, nT)
function make_mat_GR(components, rates)
nG = components.nG
nR = components.nR
G = make_mat(components.elementsG, rates, nG)
R = make_mat(components.elementsR, rates, nR)
RB = make_mat(components.elementsRB, rates, nR)
G, R, RB
end
##### Coupling Under development
struct T2Components <: AbstractTComponents
nG::Int
nR::Int
elementsG::Vector
elementsR::Vector
elementsRG::Vector
end
struct M2Components
nG::Int
nR::Int
elementsG::Vector
elementsRG::Vector
elementsR::Vector
elementsB::Vector{Element}
U::SparseMatrixCSC
Uminus::SparseMatrixCSC
Uplus::SparseMatrixCSC
end
struct MT2Components
mcomponents::M2Components
tcomponents::T2Components
end
function set_elements_RS2!(elementsRG, elementsR, R, S, insertstep, nu::Vector{Int}, eta::Vector{Int}, splicetype="")
if R > 0
if splicetype == "offeject"
S = 0
base = 2
end
if S == 0
base = 2
else
base = 3
end
for b = 1:base^R, a = 1:base^R
zdigits = digit_vector(a, base, R)
wdigits = digit_vector(b, base, R)
z1 = zdigits[1]
w1 = wdigits[1]
zr = zdigits[R]
wr = wdigits[R]
zbar1 = zdigits[2:R]
wbar1 = wdigits[2:R]
zbarr = zdigits[1:R-1]
wbarr = wdigits[1:R-1]
sB = 0
for l in 1:base-1
sB += (zbarr == wbarr) * ((zr == 0) - (zr == l)) * (wr == l)
end
if S > 0
sC = (zbarr == wbarr) * ((zr == 1) - (zr == 2)) * (wr == 2)
end
if abs(sB) == 1
push!(elementsR, Element(a, b, nu[R+1], sB))
end
if S > 0 && abs(sC) == 1
push!(elementsR, Element(a, b, eta[R-insertstep+1], sC))
end
if splicetype == "offeject"
s = (zbarr == wbarr) * ((zr == 0) - (zr == 1)) * (wr == 1)
if abs(s) == 1
push!(elementsR, Element(a, b, eta[R-insertstep+1], s))
end
end
for j = 1:R-1
zbarj = zdigits[[1:j-1; j+2:R]]
wbarj = wdigits[[1:j-1; j+2:R]]
zbark = zdigits[[1:j-1; j+1:R]]
wbark = wdigits[[1:j-1; j+1:R]]
zj = zdigits[j]
zj1 = zdigits[j+1]
wj = wdigits[j]
wj1 = wdigits[j+1]
s = 0
for l in 1:base-1
s += (zbarj == wbarj) * ((zj == 0) * (zj1 == l) - (zj == l) * (zj1 == 0)) * (wj == l) * (wj1 == 0)
end
if abs(s) == 1
push!(elementsR, Element(a, b, nu[j+1], s))
end
if S > 0 && j > insertstep - 1
s = (zbark == wbark) * ((zj == 1) - (zj == 2)) * (wj == 2)
if abs(s) == 1
push!(elementsR, Element(a, b, eta[j-insertstep+1], s))
end
end
if splicetype == "offeject" && j > insertstep - 1
s = (zbark == wbark) * ((zj == 0) - (zj == 1)) * (wj == 1)
if abs(s) == 1
push!(elementsR, Element(a, b, eta[j-insertstep+1], s))
end
end
end
s = (zbar1 == wbar1) * ((z1 == base - 1) - (z1 == 0)) * (w1 == 0)
if abs(s) == 1
push!(elementsRG, Element(a, b, nu[1], s))
end
end
end
end
function set_elements_G2!(elements, transitions, gamma::Vector=collect(1:length(transitions)), j=0)
i = 1
for t in transitions
if x
push!(elements, Element(t[1] + j, t[1] + j, gamma[i], -1))
push!(elements, Element(t[2] + j, t[1] + j, gamma[i], 1))
i += 1
end
end
end
function set_elements_B2(G, R, ejectindex, base=2)
if R > 0
nR = base^R
elementsB = Vector{Element}(undef, 0)
for b = 1:nR, a = 1:nR
zdigits = digits(a - 1, base=base, pad=R)
wdigits = digits(b - 1, base=base, pad=R)
zr = zdigits[R]
wr = wdigits[R]
zbarr = zdigits[1:R-1]
wbarr = wdigits[1:R-1]
s = (zbarr == wbarr) * (zr == 0) * (wr == 1)
if abs(s) == 1
push!(elementsB, Element(a, b, ejectindex, s))
end
end
return elementsB
else
set_elements_B(G, ejectindex)
end
end
function set_elements_T2(transitions, G, R, S, insertstep, indices::Indices, splicetype::String)
if R > 0
elementsG = Vector{Element}(undef, 0)
elementsR = Vector{Element}(undef, 0)
elementsRG = Vector{Element}(undef, 0)
base = S > 0 ? 3 : 2
nR = base^R
set_elements_G!(elementsG, transitions)
set_elements_RS2!(elementsRG, elementsR, R, S, insertstep, indices.nu, indices.eta, splicetype)
return elementsG, elementsRG, elementsR, nR
else
return set_elements_G(transitions, indices.gamma), G
end
end
function make_components_T2(transitions, G, R, S, insertstep, splicetype)
indices = set_indices(length(transitions), R, S, insertstep)
elementsG, elementsRG, elementsR, nR = set_elements_T2(transitions, G, R, S, insertstep, indices, splicetype)
T2Components(G, nR, elementsG, elementsR, elementsRG)
end
function make_components_M2(transitions, G, R, nhist, decay)
indices = set_indices(length(transitions), R)
elementsG, elementsRG, elementsR, nR = set_elements_T2(transitions, G, R, 0, 1, indices, "")
elementsB = set_elements_B2(G, R, indices.nu[R+1])
U, Um, Up = make_mat_U(nhist, decay)
M2Components(G, nR, elementsG, elementsRG, elementsR, elementsB, U, Um, Up)
end
make_components_MT2(transitions, G, R, S, insertstep, nhist, decay, splicetype="") = MT2Components(make_components_M2(transitions, G, R, nhist, decay), make_components_T2(transitions, G, R, S, insertstep, splicetype))
function make_mat_T2(components, rates)
nG = components.nG
nR = components.nR
GR = spzeros(nG, nG)
GR[nG, nG] = 1.0
G = make_mat(components.elementsG, rates, nG)
R = make_mat(components.elementsR, rates, nR)
RG = make_mat(components.elementsRG, rates, nR)
make_mat_T2(G, GR, R, RG, nG, nR)
end
function make_mat_T2(G, GR, R, RG, nG, nR)
kron(RG, GR) + kron(sparse(I, nR, nR), G) + kron(R, sparse(I, nG, nG))
end
function make_mat_B2(components, rates)
RB = make_mat(components.elementsB, rates, components.nR)
nG = components.nG
kron(RB, sparse(I, nG, nG))
end
function make_mat_M2(components::M2Components, rates::Vector)
T = make_mat_T2(components, rates)
B = make_mat_B2(components, rates)
make_mat_M(T, B, components.U, components.Uminus, components.Uplus)
end
function test_mat2(r, transitions, G, R, S, insertstep, nhist=20)
components = make_components_MT2(transitions, G, R, S, insertstep, nhist, 1.01, "")
T = make_mat_T2(components.tcomponents, r)
M = make_mat_M2(components.mcomponents, r)
return T, M, components
end
function test_mat(r, transitions, G, R, S, insertstep, nhist=20)
components = make_components_MT(transitions, G, R, S, insertstep, nhist, 1.01, "")
T = make_mat_T(components.tcomponents, r)
M = make_mat_M(components.mcomponents, r)
T, M, components
end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 25418 | # This file is part of StochasticGene.jl
#
# transition_rate_matrices_transpose.jl
#
# Functions to compute the transpose of the transition rate matrix for Stochastic transitions
# Matrices are the transpose to the convention for Kolmogorov forward equations
# i.e. reaction directions go from column to row,
# Notation: M = transpose of transition rate matrix of full (countably infinite) stochastic process including mRNA kinetics
# Q = finite transition rate matrix for GRS continuous Markov process
# T = Q'
# transpose of Q is more convenient for solving chemical master equation
#
"""
struct Element
structure for transition matrix elements
fields:
- `a`: row,
- `b`: column
- `index`: rate vector index
- `pm`: sign of elements
"""
struct Element
a::Int
b::Int
index::Int
pm::Int
end
"""
struct MComponents
structure for matrix components for matrix M
"""
struct MComponents
elementsT::Vector{Element}
elementsB::Vector{Element}
nT::Int
U::SparseMatrixCSC
Uminus::SparseMatrixCSC
Uplus::SparseMatrixCSC
end
"""
AbstractTComponents
abstract type for components of transition matrices
"""
abstract type AbstractTComponents end
"""
struct TComponents
fields:
nT, elementsT
"""
struct TComponents <: AbstractTComponents
nT::Int
elementsT::Vector
end
struct T2Components <: AbstractTComponents
nG::Int
nR::Int
elementsG::Vector
elementsR::Vector
elementsRG::Vector
elementsRB::Vector
end
"""
struct TAIComponents{elementType} <: AbstractTComponents
fields:
nT, elementsT, elementsTA, elementsTI
"""
struct TAIComponents{elementType} <: AbstractTComponents
nT::Int
elementsT::Vector{Element}
elementsTA::Vector{elementType}
elementsTI::Vector{elementType}
end
"""
struct TDComponents <: AbstractTComponents
fields:
nT, elementsT, elementsTD:: Vector{Vector{Element}}
"""
struct TDComponents <: AbstractTComponents
nT::Int
elementsT::Vector{Element}
elementsTG::Vector{Element}
elementsTD::Vector{Vector{Element}}
end
"""
MTComponents
structure for M and T components
fields:
mcomponents::MComponents
tcomponents::TComponents
"""
struct MTComponents
mcomponents::MComponents
tcomponents::TComponents
end
"""
MTComponents
structure for M and TAI components
fields:
mcomponents::MComponents
tcomponents::TAIComponents
"""
struct MTAIComponents{elementType}
mcomponents::MComponents
tcomponents::TAIComponents{elementType}
end
"""
MTDComponents
structure for M and TD components
fields:
mcomponents::MComponents
tcomponents::TDComponents
"""
struct MTDComponents
mcomponents::MComponents
tcomponents::TDComponents
end
"""
struct Indices
index ranges for rates
gamma: G transitions
nu: R transitions
eta: splice transitions
decay: mRNA decay rate
"""
struct Indices
gamma::Vector{Int}
nu::Vector{Int}
eta::Vector{Int}
decay::Int
end
"""
make_components_MTAI(transitions,G,R,S,insertstep,onstates,splicetype="")
make MTAI structure for GRS models (fitting mRNA, on time, and off time histograms)
"""
function make_components_MTAI(transitions, G, R, S, insertstep, onstates, nhist, decay, splicetype="")
indices = set_indices(length(transitions), R, S, insertstep)
elementsT, nT = set_elements_T(transitions, G, R, S, insertstep, indices, splicetype)
MTAIComponents(make_components_M(transitions, G, R, nhist, decay, splicetype), make_components_TAI(elementsT, nT, onstates))
end
function make_components_MTD(transitions, G, R, S, insertstep, onstates, dttype, nhist, decay, splicetype::String="")
indices = set_indices(length(transitions), R, S, insertstep)
elementsT, nT = set_elements_T(transitions, G, R, S, insertstep, indices, splicetype)
elementsTG = set_elements_T(transitions, indices.gamma)
c = Vector{Element}[]
for i in eachindex(onstates)
if dttype[i] == "ON"
push!(c, set_elements_TA(elementsT, onstates[i]))
elseif dttype[i] == "OFF"
push!(c, set_elements_TI(elementsT, onstates[i]))
elseif dttype[i] == "ONG"
push!(c, set_elements_TA(elementsTG, onstates[i]))
elseif dttype[i] == "OFFG"
push!(c, set_elements_TI(elementsTG, onstates[i]))
end
# dttype[i] == "ON" ? push!(c, set_elements_TA(elementsT, onstates[i])) : push!(c, set_elements_TI(elementsT, onstates[i]))
end
MTDComponents(make_components_M(transitions, G, R, nhist, decay, splicetype), TDComponents(nT, elementsT, elementsTG, c))
end
"""
make_components_MT(transitions,G,R,S,insertstep,decay,splicetype="")
return MTcomponents structure for GRS models
for fitting traces and mRNA histograms
"""
make_components_MT(transitions, G, R, S, insertstep, nhist, decay, splicetype="") = MTComponents(make_components_M(transitions, G, R, nhist, decay, splicetype), make_components_T(transitions, G, R, S, insertstep, splicetype))
"""
make_components_M(transitions, G, R, insertstep, decay, splicetype)
return Mcomponents structure
matrix components for fitting mRNA histograms
"""
function make_components_M(transitions, G, R, nhist, decay, splicetype)
indices = set_indices(length(transitions), R)
elementsT, nT = set_elements_T(transitions, G, R, 0, 0, indices, splicetype)
elementsB = set_elements_B(G, R, indices.nu[R+1])
U, Um, Up = make_mat_U(nhist, decay)
return MComponents(elementsT, elementsB, nT, U, Um, Up)
end
"""
make_components_T(transitions, G, R, S, insertstep, splicetype)
return Tcomponent structure
for fitting traces and also for creating TA and TI matrix components
"""
function make_components_T(transitions, G, R, S, insertstep, splicetype)
indices = set_indices(length(transitions), R, S, insertstep)
elementsT, nT = set_elements_T(transitions, G, R, S, insertstep, indices, splicetype)
TComponents(nT, elementsT)
end
"""
make_components_TAI(elementsT, nT::Int, onstates::Vector)
return TAIComponent structure
"""
function make_components_TAI(elementsT, nT::Int, onstates::Vector)
TAIComponents{Element}(nT, elementsT, set_elements_TA(elementsT, onstates), set_elements_TI(elementsT, onstates))
end
# function make_components_TAI(elementsT, G::Int, R::Int, base::Int)
# TAIComponents{typeof(elementsT)}(nT, elementsT, set_elements_TA(elementsT, G, R, base), set_elements_TI(elementsT, G, R, base))
# end
function make_components_TAI(transitions, G, R, S, insertstep, onstates, splicetype::String="")
indices = set_indices(length(transitions), R, S, insertstep)
elementsT, nT = set_elements_T(transitions, G, R, S, insertstep, indices, splicetype)
make_components_TAI(elementsT, nT, onstates)
end
"""
state_index(G::Int,i,z)
return state index for state (i,z)
"""
state_index(G::Int, i, z) = i + G * (z - 1)
function on_states(onstates, G, R, S, insertstep)
if isempty(onstates)
return on_states(G, R, S, insertstep)
else
return on_states(onstates, G, R, S)
end
end
"""
on_states(G, R, S, insertstep)
return vector of onstates for GRS model given reporter appears at insertstep
"""
function on_states(G::Int, R, S, insertstep)
base = S > 0 ? 3 : 2
onstates = Int[]
on_states!(onstates, G, R, insertstep, base)
onstates
end
"""
on_states!(onstates::Vector, G::Int, R::Int, insertstep, base)
return vector of on state indices for GR and GRS models
"""
function on_states!(onstates::Vector, G::Int, R::Int, insertstep, base)
for i in 1:G, z in 1:base^R
if any(digits(z - 1, base=base, pad=R)[insertstep:end] .== base - 1)
push!(onstates, state_index(G, i, z))
end
end
end
function on_states(onstates::Vector, G, R, S)
base = S > 0 ? 3 : 2
o = Int[]
for i in 1:G, z in 1:base^R
if i β onstates
push!(o, state_index(G, i, z))
end
end
o
end
"""
off_states(nT,onstates)
return barrier (off) states, complement of sojourn (on) states
"""
off_states(nT, onstates) = setdiff(collect(1:nT), onstates)
"""
num_reporters_per_state(G::Int, R::Int, S::Int=0,insertstep=1,f=sum)
return number of a vector of the number reporters for each state index
if f = sum, returns total number of reporters
if f = any, returns 1 for presence of any reporter
"""
function num_reporters_per_state(G::Int, R::Int, S::Int=0, insertstep=1, f=sum)
base = S > 0 ? 3 : 2
reporters = Vector{Int}(undef, G * base^R)
for i in 1:G, z in 1:base^R
reporters[state_index(G, i, z)] = f(digits(z - 1, base=base, pad=R)[insertstep:end] .== base - 1)
# push!(reporters, f(digits(z - 1, base=base, pad=R)[insertstep:end] .== base - 1))
end
reporters
end
function num_reporters_per_state(G::Int, onstates::Vector)
reporters = Int[]
for i in 1:G
push!(reporters, i β onstates ? 1 : 0)
end
reporters
end
"""
set_indices(ntransitions, R, S, insertstep)
set_indices(ntransitions,R)
set_indices(ntransitions)
return Indices structure
"""
function set_indices(ntransitions, R, S, insertstep)
if insertstep > R > 0
throw("insertstep>R")
end
if S > 0
Indices(collect(1:ntransitions), collect(ntransitions+1:ntransitions+R+1), collect(ntransitions+R+2:ntransitions+R+R-insertstep+2), ntransitions + R + R - insertstep + 3)
elseif R > 0
set_indices(ntransitions, R)
else
set_indices(ntransitions)
end
end
set_indices(ntransitions, R) = Indices(collect(1:ntransitions), collect(ntransitions+1:ntransitions+R+1), Int[], ntransitions + R + 2)
set_indices(ntransitions) = Indices(collect(1:ntransitions), [ntransitions + 1], Int[], ntransitions + 2)
"""
set_elements_G!(elements,transitions,G,R,base,gamma)
return G transition matrix elements
-`elements`: Vector of Element structures
-`transitions`: tupe of G state transitions
"""
function set_elements_G!(elements, transitions, G::Int, gamma, nT)
for j = 0:G:nT-1
set_elements_G!(elements, transitions, gamma, j)
end
end
function set_elements_G!(elements, transitions, gamma::Vector=collect(1:length(transitions)), j=0)
i = 1
for t in transitions
push!(elements, Element(t[1] + j, t[1] + j, gamma[i], -1))
push!(elements, Element(t[2] + j, t[1] + j, gamma[i], 1))
i += 1
end
end
function set_elements_RS!(elementsRG, elementsR, elementsRM, R, S, insertstep, nu::Vector{Int}, eta::Vector{Int}, splicetype="")
if R > 0
if splicetype == "offeject"
S = 0
base = 2
end
if S == 0
base = 2
else
base = 3
end
for w = 1:base^R, z = 1:base^R
zdigits = digit_vector(z, base, R)
wdigits = digit_vector(w, base, R)
z1 = zdigits[1]
w1 = wdigits[1]
zr = zdigits[R]
wr = wdigits[R]
zbar1 = zdigits[2:R]
wbar1 = wdigits[2:R]
zbarr = zdigits[1:R-1]
wbarr = wdigits[1:R-1]
sB = 0
for l in 1:base-1
sB += (zbarr == wbarr) * ((zr == 0) - (zr == l)) * (wr == l)
end
if S > 0
sC = (zbarr == wbarr) * ((zr == 1) - (zr == 2)) * (wr == 2)
end
for i = 1:1
# a = i + G * (z - 1)
# b = i + G * (w - 1)
a = state_index(1, i, z)
b = state_index(1, i, w)
if abs(sB) == 1
push!(elementsRM, Element(a, b, nu[R+1], sB))
end
if S > 0 && abs(sC) == 1
push!(elementsR, Element(a, b, eta[R-insertstep+1], sC))
end
if splicetype == "offeject"
s = (zbarr == wbarr) * ((zr == 0) - (zr == 1)) * (wr == 1)
if abs(s) == 1
push!(elementsR, Element(a, b, eta[R-insertstep+1], s))
end
end
for j = 1:R-1
zbarj = zdigits[[1:j-1; j+2:R]]
wbarj = wdigits[[1:j-1; j+2:R]]
zbark = zdigits[[1:j-1; j+1:R]]
wbark = wdigits[[1:j-1; j+1:R]]
zj = zdigits[j]
zj1 = zdigits[j+1]
wj = wdigits[j]
wj1 = wdigits[j+1]
s = 0
for l in 1:base-1
s += (zbarj == wbarj) * ((zj == 0) * (zj1 == l) - (zj == l) * (zj1 == 0)) * (wj == l) * (wj1 == 0)
end
if abs(s) == 1
push!(elementsR, Element(a, b, nu[j+1], s))
end
if S > 0 && j > insertstep - 1
s = (zbark == wbark) * ((zj == 1) - (zj == 2)) * (wj == 2)
if abs(s) == 1
push!(elementsR, Element(a, b, eta[j-insertstep+1], s))
end
end
if splicetype == "offeject" && j > insertstep - 1
s = (zbark == wbark) * ((zj == 0) - (zj == 1)) * (wj == 1)
if abs(s) == 1
push!(elementsR, Element(a, b, eta[j-insertstep+1], s))
end
end
end
end
s = (zbar1 == wbar1) * ((z1 == base - 1) - (z1 == 0)) * (w1 == 0)
if abs(s) == 1
push!(elementsRG, Element(z, w, nu[1], s))
end
end
end
end
"""
set_elements_RS!(elementsT, G, R, S, insertstep, nu::Vector{Int}, eta::Vector{Int}, splicetype="")
inplace update matrix elements in elementsT for GRS state transition matrix, do nothing if R == 0
"offeject" = pre-RNA is completely ejected when spliced
"""
function set_elements_RS!(elementsT, G, R, S, insertstep, nu::Vector{Int}, eta::Vector{Int}, splicetype="")
if R > 0
if splicetype == "offeject"
S = 0
base = 2
end
if S == 0
base = 2
else
base = 3
end
for w = 1:base^R, z = 1:base^R
zdigits = digit_vector(z, base, R)
wdigits = digit_vector(w, base, R)
z1 = zdigits[1]
w1 = wdigits[1]
zr = zdigits[R]
wr = wdigits[R]
zbar1 = zdigits[2:R]
wbar1 = wdigits[2:R]
zbarr = zdigits[1:R-1]
wbarr = wdigits[1:R-1]
sB = 0
for l in 1:base-1
sB += (zbarr == wbarr) * ((zr == 0) - (zr == l)) * (wr == l)
end
if S > 0
sC = (zbarr == wbarr) * ((zr == 1) - (zr == 2)) * (wr == 2)
end
for i = 1:G
# a = i + G * (z - 1)
# b = i + G * (w - 1)
a = state_index(G, i, z)
b = state_index(G, i, w)
if abs(sB) == 1
push!(elementsT, Element(a, b, nu[R+1], sB))
end
if S > 0 && abs(sC) == 1
push!(elementsT, Element(a, b, eta[R-insertstep+1], sC))
end
if splicetype == "offeject"
s = (zbarr == wbarr) * ((zr == 0) - (zr == 1)) * (wr == 1)
if abs(s) == 1
push!(elementsT, Element(a, b, eta[R-insertstep+1], s))
end
end
for j = 1:R-1
zbarj = zdigits[[1:j-1; j+2:R]]
wbarj = wdigits[[1:j-1; j+2:R]]
zbark = zdigits[[1:j-1; j+1:R]]
wbark = wdigits[[1:j-1; j+1:R]]
zj = zdigits[j]
zj1 = zdigits[j+1]
wj = wdigits[j]
wj1 = wdigits[j+1]
s = 0
for l in 1:base-1
s += (zbarj == wbarj) * ((zj == 0) * (zj1 == l) - (zj == l) * (zj1 == 0)) * (wj == l) * (wj1 == 0)
end
if abs(s) == 1
push!(elementsT, Element(a, b, nu[j+1], s))
end
if S > 0 && j > insertstep - 1
s = (zbark == wbark) * ((zj == 1) - (zj == 2)) * (wj == 2)
if abs(s) == 1
push!(elementsT, Element(a, b, eta[j-insertstep+1], s))
end
end
if splicetype == "offeject" && j > insertstep - 1
s = (zbark == wbark) * ((zj == 0) - (zj == 1)) * (wj == 1)
if abs(s) == 1
push!(elementsT, Element(a, b, eta[j-insertstep+1], s))
end
end
end
end
s = (zbar1 == wbar1) * ((z1 == base - 1) - (z1 == 0)) * (w1 == 0)
if abs(s) == 1
push!(elementsT, Element(G * z, G * w, nu[1], s))
end
end
end
end
"""
set_elements_TA(elementsT,onstates)
set onstate elements
"""
set_elements_TA(elementsT, onstates) = set_elements_TX(elementsT, onstates, set_elements_TA!)
"""
set_elements_TA!(elementsTA, elementsT, onstates::Vector)
in place set onstate elements
"""
set_elements_TA!(elementsTA, elementsT, onstates) = set_elements_TX!(elementsTA, elementsT, onstates, β)
"""
set_elements_TI!(elementsTI, elementsT, onstates::Vector)
set off state elements
"""
set_elements_TI(elementsT, onstates) = set_elements_TX(elementsT, onstates, set_elements_TI!)
"""
set_elements_TI!(elementsTI, elementsT, onstates::Vector)
in place set off state elements
"""
set_elements_TI!(elementsTI, elementsT, onstates) = set_elements_TX!(elementsTI, elementsT, onstates, β)
"""
set_elements_TX(elementsT, onstates::Vector{Int},f!)
set on or off state elements for onstates
"""
function set_elements_TX(elementsT, onstates::Vector{Int}, f!)
elementsTX = Vector{Element}(undef, 0)
f!(elementsTX, elementsT, onstates::Vector)
elementsTX
end
"""
set_elements_TX(elementsT, onstates::Vector{Vector{Int}},f!)
set on or off state elements for vector if onstates by calling f! (set_elements_TA! or set_elements_TI!)
"""
function set_elements_TX(elementsT, onstates::Vector{Vector{Int}}, f!)
elementsTX = Vector{Vector{Element}}(undef, length(onstates))
for i in eachindex(onstates)
eTX = Vector{Element}(undef, 0)
f!(eTX, elementsT, onstates::Vector)
elementsTX[i] = eTX
end
elementsTX
end
"""
set_elements_TX!(elementsTX, elementsT, onstates::Vector,f)
add elements to elementsTX if column element satisfies f (β or β)
"""
function set_elements_TX!(elementsTX, elementsT, onstates::Vector, f)
for e in elementsT
if f(e.b, onstates)
push!(elementsTX, e)
end
end
end
"""
set_elements_T(transitions, G, R, S, indices::Indices, splicetype::String)
return T matrix elements (Element structure) and size of matrix
"""
function set_elements_T(transitions, G, R, S, insertstep, indices::Indices, splicetype::String)
if R > 0
elementsT = Vector{Element}(undef, 0)
base = S > 0 ? 3 : 2
nT = G * base^R
set_elements_G!(elementsT, transitions, G, indices.gamma, nT)
set_elements_RS!(elementsT, G, R, S, insertstep, indices.nu, indices.eta, splicetype)
return elementsT, nT
else
return set_elements_T(transitions, indices.gamma), G
end
end
function set_elements_T(transitions, gamma::Vector)
elementsT = Vector{Element}(undef, 0)
set_elements_G!(elementsT, transitions, gamma)
elementsT
end
"""
set_elements_B(G, ejectindex)
return B matrix elements
"""
set_elements_B(G, ejectindex) = [Element(G, G, ejectindex, 1)]
function set_elements_B(G, R, ejectindex, base=2)
if R > 0
elementsB = Vector{Element}(undef, 0)
for w = 1:base^R, z = 1:base^R, i = 1:G
a = i + G * (z - 1)
b = i + G * (w - 1)
zdigits = digits(z - 1, base=base, pad=R)
wdigits = digits(w - 1, base=base, pad=R)
zr = zdigits[R]
wr = wdigits[R]
zbarr = zdigits[1:R-1]
wbarr = wdigits[1:R-1]
s = (zbarr == wbarr) * (zr == 0) * (wr == 1)
if abs(s) == 1
push!(elementsB, Element(a, b, ejectindex, s))
end
end
return elementsB
else
set_elements_B(G, ejectindex)
end
end
"""
make_mat!(T::AbstractMatrix,elements::Vector,rates::Vector)
set matrix elements of T to those in vector argument elements
"""
function make_mat!(T::AbstractMatrix, elements::Vector, rates::Vector)
for e in elements
T[e.a, e.b] += e.pm * rates[e.index]
end
end
"""
make_mat(elements,rates,nT)
return an nTxnT sparse matrix T
"""
function make_mat(elements::Vector, rates::Vector, nT::Int)
T = spzeros(nT, nT)
make_mat!(T, elements, rates)
return T
end
"""
make_S_mat
"""
function make_mat_U(total::Int, decay::Float64)
U = spzeros(total, total)
Uminus = spzeros(total, total)
Uplus = spzeros(total, total)
# Generate matrices for m transitions
Uplus[1, 2] = decay
for m = 2:total-1
U[m, m] = -decay * (m - 1)
Uminus[m, m-1] = 1
Uplus[m, m+1] = decay * m
end
U[total, total] = -decay * (total - 1)
Uminus[total, total-1] = 1
return U, Uminus, Uplus
end
"""
make_M_mat
return M matrix used to compute steady state RNA distribution
"""
function make_mat_M(T::SparseMatrixCSC, B::SparseMatrixCSC, decay::Float64, total::Int)
U, Uminus, Uplus = make_mat_U(total, decay)
make_mat_M(T, B, U, Uminus, Uplus)
end
function make_mat_M(T::SparseMatrixCSC, B::SparseMatrixCSC, U::SparseMatrixCSC, Uminus::SparseMatrixCSC, Uplus::SparseMatrixCSC)
nT = size(T, 1)
total = size(U, 1)
M = kron(U, sparse(I, nT, nT)) + kron(sparse(I, total, total), T - B) + kron(Uminus, B) + kron(Uplus, sparse(I, nT, nT))
M[end-size(B, 1)+1:end, end-size(B, 1)+1:end] .+= B # boundary condition to ensure probability is conserved
return M
end
function make_mat_M(components::MComponents, rates::Vector)
T = make_mat(components.elementsT, rates, components.nT)
B = make_mat(components.elementsB, rates, components.nT)
make_mat_M(T, B, components.U, components.Uminus, components.Uplus)
end
function make_mat_M2(components::MComponents, rates::Vector)
mcomponents = make_components_M(transitions, G, R, nhist, decay, splicetype)
T = make_mat_T2(components.elementsT, rates, components.nT)
B = make_mat_B(components.elementsB, rates, components.nT)
make_mat_M(T, B, components.U, components.Uminus, components.Uplus)
end
"""
make_T_mat
construct matrices from elements
"""
make_mat_T(components::AbstractTComponents, rates) = make_mat(components.elementsT, rates, components.nT)
make_mat_TA(components::TAIComponents, rates) = make_mat(components.elementsTA, rates, components.nT)
make_mat_TI(components::TAIComponents, rates) = make_mat(components.elementsTI, rates, components.nT)
make_mat_TA(elementsTA, rates, nT) = make_mat(elementsTA, rates, nT)
make_mat_TI(elementsTI, rates, nT) = make_mat(elementsTI, rates, nT)
function make_mat_GR(components, rates)
nG = components.nG
nR = components.nR
G = make_mat(components.elementsG, rates, nG)
R = make_mat(components.elementsR, rates, nR)
RB = make_mat(components.elementsRB, rates, nR)
G,R,RB
end
function make_mat_T2(components, rates)
nG = components.nG
G = make_mat(components.elementsG, rates, nG)
nR = components.nR
GR = spzeros(nG, nG)
GR[nG, nG] = 1.0
R = make_mat(components.elementsR, rates, nR)
RG = make_mat(components.elementsRG, rates, nR)
RB = make_mat(components.elementsRB, rates, nR)
T = kron(RG, GR) + kron(sparse(I, nR, nR), G) + kron((R + RB), sparse(I, nG, nG))
return T
end
function make_mat_B()
kron(RB,G)
end
function set_elements_T2(transitions, G, R, S, insertstep, indices::Indices, splicetype::String)
if R > 0
elementsG = Vector{Element}(undef, 0)
elementsR = Vector{Element}(undef, 0)
elementsRG = Vector{Element}(undef, 0)
elementsRB = Vector{Element}(undef, 0)
base = S > 0 ? 3 : 2
nR = base^R
set_elements_G!(elementsG, transitions)
set_elements_RS!(elementsRG, elementsR, elementsRB, R, S, insertstep, indices.nu, indices.eta, splicetype)
return elementsG, elementsRG, elementsR, elementsRB, nR
else
return set_elements_G(transitions, indices.gamma), G
end
end
function make_components_T2(transitions, G, R, S, insertstep, splicetype)
indices = set_indices(length(transitions), R, S, insertstep)
elementsG, elementsRG, elementsR, elementsRB, nR = set_elements_T2(transitions, G, R, S, insertstep, indices, "")
T2Components(G, nR, elementsG, elementsR, elementsRG, elementsRB)
end
function test_mat(r, transitions, G, R, S, insertstep)
components = make_components_T(transitions, G, R, S, insertstep, "")
make_mat_T(components, r)
end
function test_mat_2(r, transitions, G, R, S, insertstep)
components = make_components_T2(transitions, G, R, S, insertstep, "")
make_mat_T2(components, r)
end | StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 15378 | # This file is part of StochasticGene.jl
# utilities.jl
"""
invert_dict(D)
invert a dictionary
"""
invert_dict(D) = Dict(D[k] => k for k in keys(D))
"""
eig_decompose(M)
Take matrix M and return values and vectors
"""
function eig_decompose(M)
Meiv = eigen(M)
return Meiv.values, Meiv.vectors
end
"""
nonzero_rows(T)
Returns an array of row indices that have at least one nonzero element for matrix T
"""
function nonzero_rows(T)
n = size(T)[2]
nonzeros = Array{Int}(undef, 0)
for a in 1:size(T)[1]
if T[a, :] != zeros(n)
push!(nonzeros, a)
end
end
return nonzeros
end
"""
nonzero_states(states,nonzeros)
return reindexed state vector with zeros removed
"""
nonzero_states(states, nonzeros) = [findfirst(o .== nonzeros) for o in intersect(states, nonzeros)]
"""
normalize_histogram(hist)
Returns normalized histogram hist
"""
normalize_histogram(hist) = hist / sum(hist)
"""
var_update(vartuple, newValue)
vartuple = count, mean, M2
iteration step for online algorithm to compute
mean and variance
returns count, mean, M2
"""
function var_update(vartuple, newValue)
count, mean, M2 = vartuple
count += 1
delta = newValue - mean
mean .+= delta / count
delta2 = newValue - mean
M2 .+= delta .* delta2
return count, mean, M2
end
"""
cov_update(covtuple,newValue1,newValue2)
update covtuple for online algorithm to compute
covariance
"""
function cov_update(covtuple, newValue1, newValue2)
count, meanx, meany, C = covtuple
count += 1
dx = newx - meanx
meanx .+= dx / count
meany .+= (newy - meany) / count
C .+= dx * (newy - meany)
return count, meanx, meany, C
end
"""
finalize(vartuple)
Retrieve the mean, variance and sample variance from an aggregate
"""
function finalize(vartuple)
count, mean, M2 = vartuple
if count < 2
return mean, M2
else
return mean, M2 ./ (count - 1)
end
end
"""
truncate_histogram(x::Array, yield::Float64, nhistmax::Int)
return histogram x that accounts for fraction yield of total sum
"""
function truncate_histogram(x::Array, yield::Float64, nhistmax::Int)
if yield < 1.0
counts = sum(x)
if counts > 0
nhist = 1
ratio = 0.0
# Only keep yield of all data to limit support of histogram
while ratio <= yield && nhist <= nhistmax
ratio = sum(x[1:nhist]) / counts
nhist += 1
end
return x[1:min(nhist, length(x))]
else
return 0
end
else
return x[1:min(nhistmax, length(x))]
end
end
"""
combine_histogram(x1::Array,x2::Array)
add histograms x1 and x2
"""
function combine_histogram(x1::Array, x2::Array)
n = min(length(x1), length(x2))
x1[1:n] + x2[1:n]
end
"""
pooled_mean(means,counts)
compute weighted average of means given count totals
"""
pooled_mean(means, counts) = counts' * means / sum(counts)
"""
pooled_variance(vars,counts)
computed weighted average of variances given counts
"""
pooled_variance(vars, counts) = (counts .- 1)' * vars / sum(counts .- 1)
"""
pooled_std(std,counts)
compute weighted average of standard deviations given counts
"""
pooled_std(std, counts) = sqrt(pooled_variance(std .^ 2, counts))
"""
var_ratio(mua,mub,vara,varb,cov)
Compute ratio of variances of two variables given means, variances, and covariance of variables
"""
var_ratio(mua, mub, vara, varb, cov) = mua^2 / mub^2 * (vara / mua^2 - 2 * cov / (mua * mub) + varb / mub^2)
"""
decimal(x::Vector)
convert number to base 10 from any base
"""
function decimal(x::Vector, base::Int=3)
nr = length(x)
x' * base .^ collect(0:nr-1)
end
"""
digit_vector(z,base,R)
convert z to vector of length R in base=base
"""
digit_vector(z, base, R) = digits(z - 1, base=base, pad=R)
"""
findbase(l,n,nr)
Find the number of G states for transition rate matrix of size l
"""
function findbase(l, n, nr)
if l == (n + 1) * 3^nr
return 3
elseif l == (n + 1) * 2^nr
return 2
else
throw("wrong length")
end
end
"""
KL(x,y)
Kullback-Leibler distance
"""
KL(x, y) = sum(x .* (log.(max.(x, eps(Float64))) - log.(max.(y, eps(Float64)))))
"""
trim_hist(h::Array,nh::Array)
"""
function trim_hist(h::Array, nh::Array)
for i in eachindex(h)
h[i] = h[i][1:nh[i]]
end
return h
end
"""
distribution_array(param::Vector, cv, dist=Normal)
"""
function distribution_array(param::Vector, cv, dist=Normal)
d = []
for i in eachindex(param)
if dist == LogNormal
push!(d, LogNormal_meancv(param[i], cv[i]))
elseif dist == Gamma
push!(d, Gamma_meancv(param[i], cv[i]))
else
push!(d, dist(param[i], cv[i]))
end
end
return d
end
"""
LogNormal_array(param,cv)
Prior distribution arrays
"""
LogNormal_array(param, cv) = distribution_array(param, cv, LogNormal)
"""
Gamma_array(param,cv)
"""
Gamma_array(param, cv) = distribution_array(param, cv, Gamma)
"""
function LogNormalBeta_array(param,cv,ind)
"""
function LogNormalBeta_array(param, cv, ind)
if ind == 1
d = [setBeta(param[ind], cv[ind])]
else
barind = 1:ind-1
d = LogNormalarray(param[barind], cv[barind])
push!(d, setBeta(param[ind], cv[ind]))
end
return d
end
"""
distributionBeta_array(param::Vector, cv::Vector, ind::Int, dist=LogNormal)
fill an array with dist(param,cv)
"""
function distributionBeta_array(param::Vector, cv::Vector, ind::Int, dist=LogNormal)
if ind == 1
d = [Beta_meancv(param[ind], cv[ind])]
else
barind = 1:ind-1
d = distribution_array(param[barind], cv[barind], dist)
push!(d, Beta_meancv(param[ind], cv[ind]))
end
return d
end
"""
Gamma_meancv(mean,cv)
LogNormal_meancv(mean,cv)
Beta_meancv(mean,cv)
Reparameterized distributions to mean and coefficient of variation arguments
"""
Gamma_meancv(mean, cv) = Gamma(1 / cv^2, mean * cv^2)
LogNormal_meancv(mean, cv) = LogNormal(mulognormal(mean, cv), sigmalognormal(cv))
function Beta_meancv(m, cv)
cv2 = cv^2
fac = (1 - m) / cv2 / m - 1
if fac <= 0.0
fac = 2 / m
end
alpha = m * fac
beta = (1 - m) * fac
Beta(alpha, beta)
end
"""
sigmalognormal(cv)
mulognormal(mean,cv)
compute LogNormal mu and sigma parameters,
i.e. mean and sigma of exp(N(mu,sigma))
given desired mean and coefficient of variation (cv)
"""
sigmalognormal(cv) = sqrt.(log.(1 .+ cv .^ 2))
mulognormal(mean, cv) = log.(mean) - 0.5 * log.(1 .+ cv .^ 2)
mean_dwelltime(x,t) = t' * x
"""
mean_histogram(x)
"""
mean_histogram(x::Vector{Float64}) = collect(0:length(x)-1)' * x / sum(x)
function mean_histogram(x::Vector{Array})
y = Vector{Float64}(undef, length(x))
for i in eachindex(x)
y[i] = mean_histogram(x[i])
end
return y
end
"""
Difference_Zscore(x1,x2,sig1,sig2) = (x1 .- x2)./ sqrt(sig1.^2 + sig2.^2)
"""
Difference_Zscore(x1, x2, sig1, sig2) = (x1 - x2) / sqrt(sig1^2 + sig2^2)
"""
m2_histogram(x)
"""
m2_histogram(x) = (collect(0:length(x)-1) .^ 2)' * x / sum(x)
"""
var_histogram(x)
"""
function var_histogram(x)
m2_histogram(x) - mean_histogram(x)^2
end
function moment_histogram(x, n)
y = collect(0:length(x)-1)
v = (y .- mean_histogram(x)) .^ n
v' * x / sum(x)
end
function factorial_moment(h::Vector, n)
m = 0
for i in n:length(h)
a = i - 1
for j in 1:n-1
a *= i - j - 1
end
m += h[i] * a
end
return m / sum(h)
end
function moment_param_estimates(h)
e1 = factorial_moment(h, 1)
e2 = factorial_moment(h, 2)
e3 = factorial_moment(h, 3)
r1 = e1
r2 = e2 / e1
r3 = e3 / e2
println(r1, ", ", r2, ", ", r3)
lambda = 2 * r1 * (r3 - r2) / (r1 * r2 - 2 * r1 * r3 + r2 * r3)
mu = 2 * (r2 - r1) * (r1 - r3) * (r3 - r2) / (r1 * r2 - 2 * r1 * r3 + r2 * r3) / (r1 - 2 * r2 + r3)
nu = (-r1 * r2 + 2 * r1 * r3 - r2 * r3) / (r1 - 2 * r2 + r3)
return lambda, mu, nu
end
"""
tstat_2sample(x1,x2)
Compute t statistics of histograms x1 and x2
"""
tstat_2sample(x1, x2) = (mean_histogram(x1) - mean_histogram(x2)) / (sqrt(var_histogram(x1) / length(x1) + var_histogram(x2) / length(x2)))
"""
log_2sample(x1,x2)
compute the log of the ratio of means of histograms x1 and x2
"""
log_2sample(x1, x2) = log(mean_histogram(x1)) - log(mean_histogram(x2))
"""
delta_2sample(x1,x2)
compute the difference of means of x1 and x2
"""
delta_2sample(x1, x2) = mean_histogram(x1) - mean_histogram(x2)
"""
delta_2frac(x1,x2)
compute E(x1) - E(x2) of means normalize dot mean of x1
"""
delta_2frac(x1, x2) = delta_2sample(x1, x2) / mean_histogram(x1)
"""
mediansmooth(xin,window)
median smooth histogram xin over a window
"""
function mediansmooth(xin, window)
x = copy(xin)
halfwin = div(window - 1, 2)
for i in 1:length(x)-window+1
x[i+halfwin] = median(x[i:i+window-1])
end
x
end
"""
residenceprob_G(file,G,header)
residenceprob_G(r,n)
Residence probability of G states
given by exact steady state solution
of master equation
"""
function residenceprob_G(file::String, G, header=false)
r = get_all_rates(file, header)
m = size(r)[1]
p = Array{Any,2}(undef, m, G + 1)
n = G - 1
for i in 1:m
p[i, 1] = r[i, 1]
p[i, 2:end] = residenceprob_G(r[i, 2:2*n+1], n)
end
return p
end
function residenceprob_G(r::Vector, n::Int)
Gss = Array{Float64,2}(undef, 1, n + 1)
Gss[1, 1] = 1.0
for k in 1:n
Gss[1, k+1] = Gss[1, k] * r[2*k-1] / r[2*k]
end
Gss ./= sum(Gss)
end
"""
splicesiteusage()
splice site usage probability is the probabilty of ejection times
the probability of not ejection prior to that point
"""
splicesiteusage(model::GRSMmodel) = splicesiteusage(model.rates, model.G - 1, model.R)
function splicesiteusage(r::Vector, n::Int, nr::Int)
nu = get_nu(r, n, nr)
eta = get_eta(r, n, nr)
ssf = zeros(nr)
survival = 1
for j in 1:nr
ssf[j] = eta[j] / (nu[j+1] + eta[j]) * survival
survival *= nu[j+1] / (nu[j+1] + eta[j])
end
return ssf
end
"""
onstate_prob(r,components::TComponents)
"""
function onstate_prob(r,components::TComponents,reporter_per_state)
Qtr = make_mat(components.elementsT, r, components.nT)
p0=normalized_nullspace(Qtr)
return sum(p0[reporter_per_state.>0]), p0
end
onstate_prob(param,model::AbstractGmodel) = onstate_prob(get_rates(param, model),model.components,model.reporter.per_state)
onstate_prob(model::AbstractGmodel) = onstate_prob(model.rates,model.components,model.reporter.per_state)
"""
burstoccupancy(n,nr,r)
Burst size distribution of GRS model
for total pre-mRNA occupancy and
unspliced (visible) occupancy
obtained by marginalizing over conditional steady state distribution
"""
burstoccupancy(model::GRSMmodel) = burstoccupancy(model.G - 1, model.R, model.rates)
function burstoccupancy(n::Int, nr::Int, r::Vector)
T = mat_GSR_T(r, n, nr)
pss = normalized_nullspace(T)
Rss = zeros(nr)
Rssvisible = zeros(nr)
ssf = zeros(nr)
asum = 0
for w = 1:nr
for i = 1:n+1, z = 1:3^nr
zdigits = digit_vector(z, 3, nr)
a = i + (n + 1) * (z - 1)
if sum(zdigits .== 2) == w
Rssvisible[w] += pss[a]
end
if sum(zdigits .> 0) == w
Rss[w] += pss[a]
end
end
end
Rss ./= sum(Rss), Rssvisible ./= sum(Rssvisible)
end
model2_mean(ron, roff, eject, decay, nalleles) = 2 * model2_mean(ron, roff, eject, decay)
model2_mean(ron, roff, eject, decay) = ron / (ron + roff) * eject / decay
model2_variance(ron, roff, eject, decay, nalleles) = 2 * model2_variance(ron, roff, eject, decay)
model2_variance(ron, roff, eject, decay) = ron / (ron + roff) * eject / decay + ron * roff / (ron + roff)^2 * eject^2 / decay / (ron + roff + decay)
"""
test_steadystatemodel(model,nhist)
Compare chemical master solution to Gillespie simulation for steadystate mRNA distribution
"""
function test_steadystatemodel(model::AbstractGMmodel, nhist)
G = model.G
r = model.rates
g1 = steady_state(r[1:2*G], G - 1, nhist, model.nalleles)
g2 = simulatorGM(r[1:2*G], G - 1, nhist, model.nalleles)
return g1, g2
end
function test_model(data::RNAOnOffData, model::GRSMmodel)
telegraphsplice0(data.bins, data.nRNA, model.G - 1, model.R, model.rates, 1000000000, 1e-5, model.nalleles)
end
"""
make_histograms(folder,file,label)
make_histogram(r)
"""
function make_histograms(folder, file, label)
if ~ispath(folder)
mkpath(folder)
end
a, h = readdlm(file, ',', header=true)
for r in eachrow(a)
f = open("$folder/$(r[1])_$label.txt", "w")
a = r[2:end]
a = a[(a.!="").&(a.!="NA")]
h = make_histogram(Int.(a) .+ 1)
writedlm(f, h)
close(f)
end
end
function make_histogram(r)
nhist = maximum(r)
h = zeros(Int, nhist + 1)
for c in r
h[c] += 1
end
h
end
"""
expv(v::Array)
exponential of array
"""
expv(v::Array) = exp.(v)
logv(v::Array) = log.(v)
"""
logit(x::Float64)
logit transform
"""
logit(x::Float64) = log(x) - log(1 - x)
logit(x::Array) = log.(x) .- log.(1 .- x)
"""
invlogit(x::Float64)
inverse logit transform
"""
invlogit(x::Float64) = 1 / (1 + exp(-x))
invlogit(x::Array) = 1 ./ (1 .+ exp.(-x))
"""
logsumexp(u,v)
returns log of the sum of exponentials of u and v
"""
function logsumexp(u::Array, v::Array)
w = max(u, v)
if w == -Inf
return -Inf
else
return w .+ log.(exp.(u - w) + exp.(v - w))
end
end
function logsumexp(u::Float64, v::Float64)
w = max(u, v)
if w == -Inf
return -Inf
else
return w + log(exp(u - w) + exp(v - w))
end
end
"""
logsumexp(v)
returns log of the sum of exponentials of elements of v
"""
function logsumexp(v::Array)
w = maximum(v)
if w == -Inf
return -Inf
else
return w .+ log(sum(exp.(v .- w)))
end
end
function meantime(r::Vector)
sum(1 ./ r)
end
"""
make_array(v)
convert containuer of arrays into a single array
"""
function make_array(v)
vconcat = Float64[]
for v in v
vconcat = [vconcat; v]
end
return vconcat
end
"""
makestring(v::Vector)
convert a vector of strings into a single string
"""
function makestring(v)
s = ""
for i in v
s *= i
end
return s
end
#
# function fit_rna_test(root)
# gene = "CENPL"
# cell = "HCT116"
# fish = false
# data = data_rna(gene,"MOCK","data/HCT116_testdata",fish,"scRNA_test",root)
# model = model_rna(gene,cell,2,fish,.01,[1,2,3],(),"scRNA_test","scRNA_test",1,".",data,.05,1.0)
# options = MHOptions(10000,2000,0,120.,1.,100.)
# fit,stats,waic = run_mh(data,model,options,1);
# return stats.meanparam, fit.llml
# end
#
# function online_covariance(data1, data2)
# meanx = meany = C = n = 0
# for x in data1, y in data2
# n += 1
# dx = x - meanx
# meanx += dx / n
# meany += (y - meany) / n
# C += dx * (y - meany)
# population_covar = C / n
# # Bessel's correction for sample variance
# sample_covar = C / (n - 1)
# end
# end
| StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | code | 8690 |
using StochasticGene
using Test
function test_sim(r, transitions, G, R, S, insertstep, nhist, nalleles, onstates, bins, total, tol)
simulator(r, transitions, G, R, S, insertstep, nhist=nhist, nalleles=nalleles, onstates=onstates, bins=bins, totalsteps=total, tol=tol)
end
function test_compare(; r=[0.038, 1.0, 0.23, 0.02, 0.25, 0.17, 0.02, 0.06, 0.02, 0.000231], transitions=([1, 2], [2, 1], [2, 3], [3, 1]), G=3, R=2, S=2, insertstep=1, nRNA=150, nalleles=2, bins=[collect(5/3:5/3:200), collect(5/3:5/3:200), collect(0.1:0.1:20), collect(0.1:0.1:20)], total=1000000000, tol=1e-6, onstates=[Int[], Int[], [2, 3], [2, 3]], dttype=["ON", "OFF", "ONG", "OFFG"])
hs = test_sim(r, transitions, G, R, S, insertstep, nRNA, nalleles, onstates[[1, 3]], bins[[1, 3]], total, tol)
h = test_chem(r, transitions, G, R, S, insertstep, nRNA, nalleles, onstates, bins, dttype)
hs = StochasticGene.normalize_histogram.(hs)
return make_array(h), make_array(hs)
end
function test_chem(r, transitions, G, R, S, insertstep, nRNA, nalleles, onstates, bins, dttype)
for i in eachindex(onstates)
if isempty(onstates[i])
onstates[i] = on_states(G, R, S, insertstep)
end
onstates[i] = Int64.(onstates[i])
end
components = make_components_MTD(transitions, G, R, S, insertstep, onstates, dttype, nRNA, r[num_rates(transitions, R, S, insertstep)], "")
likelihoodarray(r, G, components, bins, onstates, dttype, nalleles, nRNA)
end
function test_fit_simrna(; rtarget=[0.33, 0.19, 20.5, 1.0], transitions=([1, 2], [2, 1]), G=2, nRNA=100, nalleles=2, fittedparam=[1, 2, 3], fixedeffects=tuple(), rinit=[0.1, 0.1, 0.1, 1.0], totalsteps=100000)
h = simulator(rtarget, transitions, G, 0, 0, 0, nhist=nRNA, totalsteps=totalsteps, nalleles=nalleles)
data = RNAData("", "", nRNA, h)
model = load_model(data, rinit, StochasticGene.prior_ratemean(transitions, 0, 0, 1, rtarget[end], []), fittedparam, fixedeffects, transitions, G, 0, 0, 0, nalleles, 10.0, Int[], rtarget[end], 0.02, "", prob_Gaussian, [], tuple())
options = StochasticGene.MHOptions(1000000, 0, 0, 20.0, 1.0, 1.0)
fits, stats, measures = run_mh(data, model, options)
StochasticGene.get_rates(fits.parml, model), rtarget
end
function test_fit_rna(; gene="CENPL", G=2, nalleles=2, propcv=0.05, fittedparam=[1, 2, 3], fixedeffects=tuple(), transitions=([1, 2], [2, 1]), rinit=[0.01, 0.1, 1.0, 0.01006327034802035], datacond="MOCK", datapath="data/HCT116_testdata", label="scRNA_test", root=".")
data = load_data("rna", [], folder_path(datapath, root, "data"), label, gene, datacond, 1.0, 1.0, [1, 2])
model = load_model(data, rinit, StochasticGene.prior_ratemean(transitions, 0, 0, 1, 1., []), fittedparam, fixedeffects, transitions, 2, 0, 0, 1, nalleles, 10.0, Int[], rinit[end], propcv, "", prob_Gaussian, [], tuple())
options = StochasticGene.MHOptions(100000, 0, 0, 60.0, 1.0, 1.0)
fits, stats, measures = run_mh(data, model, options)
h = likelihoodfn(fits.parml, data, model)
h, normalize_histogram(data.histRNA)
end
function test_fit_rnaonoff(; G=2, R=1, S=1, transitions=([1, 2], [2, 1]), insertstep=1, rtarget=[0.02, 0.1, 0.5, 0.2, 0.1, 0.01], rinit=fill(0.01, num_rates(transitions, R, S, insertstep)), nsamples=100000, nhist=20, nalleles=2, onstates=Int[], bins=collect(1:1.0:200.0), fittedparam=collect(1:length(rtarget)-1), propcv=0.05, priorcv=10.0, splicetype="")
# OFF, ON, mhist = test_sim(rtarget, transitions, G, R, S, nhist, nalleles, onstates, bins)
h = simulator(rtarget, transitions, G, R, S, insertstep, nalleles=nalleles, nhist=nhist, onstates=onstates, bins=bins, totalsteps=3000)
hRNA = div.(h[1], 30)
data = StochasticGene.RNAOnOffData("test", "test", nhist, hRNA, bins, h[2], h[3])
model = load_model(data, rinit, StochasticGene.prior_ratemean(transitions, R, S, insertstep, rtarget[end], []), fittedparam, tuple(), transitions, G, R, S, insertstep, nalleles, priorcv, onstates, rtarget[end], propcv, splicetype, prob_Gaussian, [], tuple())
options = StochasticGene.MHOptions(nsamples, 0, 0, 120.0, 1.0, 1.0)
fits, stats, measures = run_mh(data, model, options)
h = likelihoodfn(fits.parml, data, model)
h, StochasticGene.datapdf(data)
end
function test_fit_rnadwelltime(; rtarget=[0.038, 2.0, 0.23, 0.02, 0.25, 0.17, 0.02, 0.06, 0.02, 0.000231], transitions=([1, 2], [2, 1], [2, 3], [3, 1]), G=3, R=2, S=2, insertstep=1, nRNA=150, nsamples=100000, nalleles=2, onstates=[Int[], Int[], [2, 3], [2, 3]], bins=[collect(5/3:5/3:200), collect(5/3:5/3:200), collect(0.1:0.1:10), collect(0.1:0.1:10)], dttype=["ON", "OFF", "ONG", "OFFG"], fittedparam=collect(1:length(rtarget)-1), propcv=0.01, priorcv=10.0, splicetype="")
h = test_sim(rtarget, transitions, G, R, S, insertstep, nRNA, nalleles, onstates[[1, 3]], bins[[1, 3]], 300000, 1e-6)
data = RNADwellTimeData("test", "test", nRNA, h[1], bins, h[2:end], dttype)
rinit = StochasticGene.prior_ratemean(transitions, R, S, insertstep, rtarget[end], [])
model = load_model(data, rinit, StochasticGene.prior_ratemean(transitions, R, S, insertstep, rtarget[end], []), fittedparam, tuple(), transitions, G, R, S, insertstep, nalleles, priorcv, onstates, rtarget[end], propcv, splicetype, prob_Gaussian, [], tuple())
options = StochasticGene.MHOptions(nsamples, 1000, 0, 200.0, 1.0, 1.0)
fits, stats, measures = run_mh(data, model, options)
h = likelihoodfn(fits.parml, data, model)
h, StochasticGene.datapdf(data)
end
function test_fit_trace(; G=2, R=1, S=1, insertstep=1, transitions=([1, 2], [2, 1]), rtarget=[0.02, 0.1, 0.5, 0.2, 0.1, 0.01, 50, 15, 200, 70], rinit=[fill(0.1, num_rates(transitions, R, S, insertstep) - 1); 0.01; [20, 5, 100, 10]], nsamples=5000, onstates=Int[], totaltime=1000.0, ntrials=10, fittedparam=[collect(1:num_rates(transitions, R, S, insertstep)-1); collect(num_rates(transitions, R, S, insertstep)+1:num_rates(transitions, R, S, insertstep)+4)], propcv=0.01, cv=100.0, interval=1.0, noisepriors=[50, 15, 200, 70])
trace = simulate_trace_vector(rtarget, transitions, G, R, S, interval, totaltime, ntrials)
data = StochasticGene.TraceData("trace", "test", interval, (trace, [], 0.0, 1))
model = load_model(data, rinit, StochasticGene.prior_ratemean(transitions, R, S, insertstep, rtarget[end], noisepriors), fittedparam, tuple(), transitions, G, R, S, insertstep, 1, 10.0, Int[], rtarget[num_rates(transitions, R, S, insertstep)], propcv, "", prob_Gaussian, noisepriors, tuple())
options = StochasticGene.MHOptions(nsamples, 0, 0, 100.0, 1.0, 1.0)
fits, stats, measures = run_mh(data, model, options)
StochasticGene.get_rates(fits.parml, model), rtarget
end
function test_fit_trace_hierarchical(; G=2, R=1, S=0, insertstep=1, transitions=([1, 2], [2, 1]), rtarget=[0.02, 0.1, 0.5, 0.2, 1.0, 50, 15, 200, 70], rinit=[], nsamples=100000, onstates=Int[], totaltime=1000.0, ntrials=10, fittedparam=collect(1:num_rates(transitions, R, S, insertstep)-1), propcv=0.01, cv=100.0, interval=1.0, noisepriors=[50, 15, 200, 70], hierarchical=(2, collect(num_rates(transitions, R, S, insertstep)+1:num_rates(transitions, R, S, insertstep)+ length(noisepriors)), tuple()), method=(1, true))
trace = simulate_trace_vector(rtarget, transitions, G, R, S, interval, totaltime, ntrials)
data = StochasticGene.TraceData("trace", "test", interval, (trace, [], 0.0, 1))
rm = StochasticGene.prior_ratemean(transitions, R, S, insertstep, 1.0, noisepriors, hierarchical[1])
isempty(rinit) && (rinit = StochasticGene.set_rates(rm, transitions, R, S, insertstep, noisepriors, length(data.trace[1])))
model = load_model(data, rinit, rm, fittedparam, tuple(), transitions, G, R, S, insertstep, 1, 10.0, Int[], rtarget[num_rates(transitions, R, S, insertstep)], propcv, "", prob_Gaussian, noisepriors, hierarchical, method)
options = StochasticGene.MHOptions(nsamples, 0, 0, 100.0, 1.0, 1.0)
fits, stats, measures = run_mh(data, model, options)
nrates = num_rates(transitions, R, S, insertstep)
h1 = StochasticGene.get_rates(fits.parml, model)[1:nrates]
h2 = rtarget[1:nrates]
return h1, h2
end
@testset "StochasticGene" begin
h1, h2 = test_fit_trace_hierarchical()
@test isapprox(h1, h2, rtol=0.5)
h1, h2 = test_compare()
@test isapprox(h1, h2, rtol=0.2)
h1, h2 = test_fit_simrna()
@test isapprox(h1, h2, rtol=0.05)
h1, h2 = test_fit_rna()
@test isapprox(h1, h2, rtol=0.1)
h1, h2 = test_fit_rnaonoff()
@test isapprox(h1, h2, rtol=0.3)
h1, h2 = test_fit_rnadwelltime()
@test isapprox(h1, h2, rtol=0.3)
h1, h2 = test_fit_trace()
@test isapprox(h1, h2, rtol=0.05)
end | StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 1.2.5 | fc1bcee6037ea393ce28426929eff65c76a86779 | docs | 31285 | # StochasticGene.jl
Julia package to simulate and fit stochastic models of gene transcription to experimental data. The data acceptable include distributions of mRNA counts per cell (e.g. single molecule FISH (smFISH) or single cell RNA sequence (scRNA) data)), image intensity traces from live cell imaging, and dwell time distributions of reporters (e.g. MS2 or PP7) imaged in live cells. The transcription models considered are stochastic (continuous Markov systems) with an arbitrary number of G (gene) states, R (pre-RNA) steps, S splice sites (up to R), and reporter insertion step (insertstep). The gene always occupies one of the G states and there are random (user specified) transitions between G states. One of the G states is an active state where transcription can be initiated and the first R step becomes occupied. An irreversible forward transition can then occur to the next R step if that step is unoccupied mimicking elongation. An mRNA molecule is ejected from the final (termination) R step where it then decays stochastically. The model can account for multiple alleles of the gene in the same cell. The user can specify which R step is considered visible when occupied (i.e. contains a reporter). For example, if the pre-RNA MS2 construct is inserted into an intron that is transcribed early then you could make the reporter insertstep to be 1 and all R steps will be visible. But if the reporter is transcribed late then you could choose a later R step, like step 3, and only R steps at and after step 3 are considered visible. In the original model in Rodriguez et al. Cell (2018), the reporter was in an exon and was visible at all steps and then ejected. The alleles were also coupled; coupling between alleles and between genes is under construction. In Wan et al. Cell (2021), the reporter is inserted into an intron and thus can be spliced out before the polymerase reaches the final R step. Models are allowed to have no R steps (i.e. classic telegraph models but with arbitrary numbers of G states (rather thabn usual two)) where an mRNA molecule can be stochastically produced when the gene occupies the active G state. You can also specify reporters for G states (e.g. transcription factors) and more than one simultaneous reporter (e.g. reporters for introns and transcription factors).
The package has functions to specify the models, prepare the data, compute the predicted data, apply a Metropolis-Hastings markov chain monte carlo (MCMC) algorithm to fit the parameters of the models to the data (i.e. compute Bayesian posterior distributions), explicitly simulate models, and analyze the results. Unfortunately, not all capabilities are documented so just send me a message if you have any questions.
StochasticGene can run on small data sets on a laptop or large data sets on a multiprocessor cluster such as NIH Biowulf. There are functions that generate swarm files to be submitted and process and analyze the results.
### Installing StochasticGene
The following assumes that Julia has already been installed. If not go to https://julialang.org/downloads/. Julia has already been installed on the NIH Biowulf system but StochasticGene must be installed by each individual user.
To install StochasticGene on a local computer, open a terminal and type
```
$ julia
```
After Julia opens you will be in the interactive Julia REPL.
Run the following:
```
julia> ] add StochasticGene
```
The command "]" brings you into the Julia Package environment, "Ctrl C" gets you out
After the package has installed, you can check if it works by running
```
julia> ] test StochasticGene
```
(this could take 10 or more minutes)
StochasticGene will be updated on Github periodically. To update to a new version type
```
julia> ] update StochasticGene
```
To install StochasticGene on Biowulf, log on and at the prompt type:
```
[username@biowulf ~]$ sinteractive --mem=64G
```
This generates an interactive session
```
[username@biowulf ~]$ module load julialang
```
This loads Julia for use.
```
[username@biowulf ~]$ julia - t 1
```
Starts Julia (with a single thread). Then continue as before
Note: Sometimes Julia has problems crashing on Biowulf if an update is made to StochasticGene. The best way to deal with this is to go to your
home directory and delete the julia directory via:
```
[username@biowulf ~]$ rm -r --force .julia
```
Then start julia and add StochasticGene again.
Also, Julia is periodically updated on Biowulf and StochasticGene will not carry forward to the latest version. You can still call previous versions when you allocated CPUs or reinstall StochasticGene in the new version.
### Creating folder structure to run StochasticGene
StochasticGene requires a specific directory or folder structure where data are stored and results are saved. At the top is the `root` folder (e.g. "scRNA" or "RNAfits") with subfolders `data` and `results`. Inside `data` are two more folders `alleles` and `halflives`, containing allele numbers and half lives, respectively. The command
```
julia> using StochasticGene
julia> rna_setup("scRNA")
```
will create the folder structure in the folder `scRNA` with the `data` and `results` subfolders, with some mock data in the `data` folder. Typing `rna_setup()` will assume the current folder is the root. Files for allele numbers and halflives for desired cell types can be added directly to the `data` folder. These files should be csv format and have the form `[cell name]_alleles.csv` or `[cell name]_halflife.csv`. Halflives for the then genes in Wan et al. for HBEC cells are built into the system.
### Fitting data with StochasticGene
To fit a model, you need to load data and choose a model. Data currently accepted are stationary histograms (e.g. smFISH or scRNA), intensity time traces (e.g. trk files), nascent RNA data (e.g. from intronic FISH probes), and dwell time distributions. Different data types from the same experiment can also be fit simultaneously. For example, RNA histograms from smFISH can be fit together with multiple intensity traces or dwell time histograms from live cell recordings.
Models are distringuished by the number of G states, the transition graph between G states (i.e. which G states can transitions to which other G states), number of R steps, the step where the reporter is inserted, and whether splicing occurs. For intensity traces and dwell time distributions, the sojourn or "on" states (i.e. R steps or G states where the reporter is visible) must also be specified. Multiple sets of on states are allowed.
Data are fit using the `fit` function, which has named arguments (see API below) to determine the type of data to be fit, where it can be found, what model to be used, and what options to be set for the fitting algorithm. The default, run by typing `fit()`, will fit the mock rna histogram data installed by `rna_setup(root)` with a simple two state telegraph model (2 G stsates, no R steps). Data is in the folder "root/data/HCT116_testdata", where root is specified by the user. The default root is the folder in which julia was launched but can be specified using the named argument `root`. The `fit` function returns six variables.
To fit on a single processor, type
```
julia> using StochasticGene
julia> fits, stats, measures, data, model, options = fit();
2023-10-24T10:22:10.782
Gene: MYC G: 2 Treatment: MOCK
data: HCT116_testdata/
in: HCT116_test out: HCT116_test
maxtime: 60.0
./results/HCT116_test/rates_rna-HCT116_MOCK_MYC_2_2.txt does not exist
[0.01, 0.01, 0.1, 0.032430525886402085]
initial ll: 38980.680174070265
final max ll: 21755.280380669064
median ll: 21755.280645984076
Median fitted rates: [0.020960969159742875, 0.142016620787, 1.1015638965800167]
ML rates: [0.020979229436880756, 0.1423818501792811, 1.10350961139495]
Acceptance: 325538/613219
Deviance: 0.007326880506251085
rhat: 1.0105375337987144
2023-10-24T10:24:11.295
```
The semicolon is not necessary but suppresses printing the returned variables. You only need to type `using StochasticGene` once per session.
The data is fit using the function `run_mh(data,model,options,nchains)` (which runs a Metropolis-Hastings MCMC algorithm), where `data`, `model`, and `options` are structures (Julia types) constructed by `fit` and returned. `nchains` is the number of MCMC chains, each running on a separate processor. The three structures `fits`, `stats`, and `measures` (returned by `run_mh` and `fit`, give the fit results (Bayesian posteriors) and measures of the quality of the fit and are also saved to the folder "./results/HCT116_test", which is specified by the `resultfolder` argument.
During the run, the `fit` function prints out some of the information in fits, stats, and measures structures. `fit` will look for previous results in the folder specified by the argument `infolder` as an initial condition to start the MCMC run. In this case, there were no previous runs and thus the default was used, which is the priors of the parameters. In this run three rates were fit (set by argument `fittedparams`); the median of the posterior and the maximum likelihood parameters of the resulting fits are printed. The run was capped to a maximum of 60 seconds of real time (set by the argument `maxtime`) and `Acceptance` shows that out of 613219 MCMC samples, 325538 were accepted by the MCMC algorithm. The positive number `Deviance` is the difference in likelihood between a perfect fit and the resulting fit (for histograms only). `rhat` is a measure of MCMC convergence with 1 being ideal.
The two state telegraph model has 4 transition rates, which are stored in a single vector. The order is 1) G state transitions (in the order as specified by the transition vector), 2) eject rate, 3) decay rate. For general GRSM models, the order is 1) G state transitions 2) R transitions, 3) S transitions, 4) decay. If there is no splicing then the S transitions are left out. Not all the rates need to be fitted. In the above example, the decay rate is not fitted. This is specified by the fittedparams argument (see API). The posterior median, mean, standard deviations, and MADs will only be for the fitted params.
In this particular run, only one chain was used so the measures are not very informative. To use more chains, specify more processors with
```
bash> julia -p 4
julia> @everywhere using StochasticGene
julia> fits, stats, measures, data, model, options = fit(nchains=4);
2023-10-24T10:55:16.232
Gene: MYC G: 2 Treatment: MOCK
data: HCT116_testdata/
in: HCT116_test out: HCT116_test
maxtime: 60.0
[0.020960969159742875, 0.142016620787, 1.1015638965800167, 0.032430525886402085]
initial ll: 21755.280645984076
final max ll: 21755.280378544387
median ll: 21755.282721546962
Median fitted rates: [0.020936177089260818, 0.14140674439592604, 1.0983188350949695]
ML rates: [0.020970183926180535, 0.14229910450327884, 1.10310357519155]
Acceptance: 713078/1342174
Deviance: 0.0073268798846403485
rhat: 1.0018023969479748
2023-10-24T10:56:31.337
```
The `datatype` argument is a String that specifies the types of data to be fit. Currently, there are six choices: 1) "rna", which expects a single rna histogram file where the first column is the histogram; 2) "rnaonoff", which expects a rna histogram file and a three column dwelltime file with columns: bins, ON time distribution, and OFF time distribution; 3) "rnadwelltime", which fits an rna histogram together with multiple dwell time histograms specified by a vector of dwell time types, the choices being "ON","OFF" for R step reporters and "ONG", "OFFG" for G state reporters. Each dwelltime histogram is a two column file of the bins and dwell times and datapath is a vector of the paths to each; 4) "trace", which expects a folder of trace intensity (e.g. trk) files; 5) "tracenascent", the same with the nascent RNA input through the argument `nascent`; 6) "tracerna": trace files with RNA histogram. The data files are specified by the argument `datapath`. This can be a string pointing to a file or a folder containing the file. If it points to a folder then `fit` will use the arguments `gene` and `datacond` to identify the correct file. For datatypes that require more than one data file, `datapath` is a vector of paths. The path can include or not include the root folder.
### Example fitting traces
Start Julia with multiple processors.
```
$ julia -p 4
```
Using `sinteractive` on Biowulf, you may need to also declare a single thread with
```
$ julia -p 4 -t 1
```
You can see how many processors have been called with
```
julia> nworkers()
4
julia @everywere using StochasticGene
```
You can create some simulated mock trace data with
```
julia> simulate_trace_data("data/testtraces/")
```
which generates 10 mock trk files in folder "data/testraces". See API below for the parameters used in the simulated data.
```
julia> fits, stats, measures, data, model, options = fit(datatype="trace",nchains=4,transitions=([1, 2], [2, 1], [2, 3], [3, 1]), G=3, R=2, S=2, insertstep=1, datapath="data/testtraces", gene="test", datacond="", decayrate=1.);
2023-10-28T15:39:16.955
Gene: test G R S insertstep: 3221
in: HCT116_test out: HCT116_test
maxtime: 60.0
./results/HCT116_test/rates_trace-HCT116__test_3221_2.txt does not exist
[0.01, 0.01, 0.01, 0.01, 0.1, 0.1, 0.1, 0.1, 0.1, 1.0, 100.0, 100.0, 100.0, 100.0, 0.9]
initial ll: 59437.54504442659
final max ll: 52085.58823772918
median ll: 55631.823149864926
Median fitted rates: [0.010164892707601266, 0.010415494521142342, 0.009888467865883247, 0.010565680996634689, 0.1051981476344431, 0.09544095249917071, 0.09473989790249088, 0.10045726361481444, 0.10418638776390472, 63.19680508738758, 56.794573780192, 119.72050615415071, 97.22874914820788, 0.9031904231186259]
ML rates: [0.008648315183072212, 0.01105818085890487, 0.01104728099474845, 0.011437834075767405, 0.09527550344438158, 0.11007539741898248, 0.08145019422061348, 0.09898368400856507, 0.1051451404740429, 37.71078406511133, 29.49680612047366, 171.40544543928038, 100.94919964017241, 0.9036456980377264]
Acceptance: 770/1525
rhat: 2.9216933196063533
2023-10-28T15:40:18.448
```
In this run, `rhat` is close to 3 indicating that the number of samples was insufficient to obtain a good sampling of the posterior distributions. either `maxtime` or `samplesteps` needs to be increased.
### Batch fitting on Biowulf using `swarm`.
(You made need to run a few times on Biowulf after installing or updating StochasticGene before it works as it sometimes takes too long to precompile on the first use)
The data can also be fit in batch mode using swarm files. To do so, you create swarm files.
For example, you can fit all the scRNA histogram of all the genes in folder called "data/HCT_testdata" (which should exist if you ran `setup`) on NIH Biowulf by running a swarmfile.
First move into the root directory you created and launch julia:
```
[username@biowulf ~]$ cd scRNA
[username@biowulf ~]$ julia - t 1
```
Create swarm files using the command in the JULIA repl:
```
julia> using StochasticGene
julia> makeswarm(["CENPL","MYC"],cell="HCT116",maxtime = 600.,nchains = 8,datatype = "rna",G=2,transitions = ([1,2],[2,1]),datacond = "MOCK",resultfolder ="HCT_scRNA",datapath = "HCT116_testdata/",root = ".")
```
The genes are listed as a vector of strings. You only need to type `using StochasticGene` once per session.
This will create two files. The first will end in `.swarm` and the second will end in `.jl`
To fit all the genes in the data folder use:
```
julia> using StochasticGene
julia> makeswarm(cell="HCT116",maxtime = 600.,nchains = 8,datatype = "rna",G=2,transitions = ([1,2],[2,1]), datacond = "MOCK",resultfolder ="HCT_scRNA",datapath = "HCT116_testdata/",nsets=1,root = ".")
```
(for G = 3, use transitions = ([1,2],[2,1],[2,3],[3,2]), for 3 state Kinetic Proofreading model use transitions = ([1,2],[2,1],[2,3],[3,1]))
To exit julia type:
```
julia> exit()
```
To run the swarm file, type at the command line:
```
[username@biowulf ~]$ swarm -f fit_HCT116-scRNA-ss_MOCK_2.swarm --time 12:00:00 -t 8 -g 24 --merge-output --module julialang
```
`-t` flag is for time
`-g` flag is for memory
(choose a time longer than maxtime (remember to convert seconds to hours), and make sure to allocate enough memory)
This will submit a job into the Biowulf queue. To check the status of your job type:
```
[username@biowulf ~]$ sjobs
```
When the job finishes, Biowulf will create new swarm files in your folder. The fit results will be saved in the folder `results/HCT_scRNA`. There will be three result files for each gene and model. The file names will have the form
`[filetype]_[label]_[condition]_[gene name]_[modeltype written as consecutive numbers GRS]_[number of alleles].txt`
`_` (underscore) is a reserved character and should not be used in any of the file field such as `[label]`.
filetypes are:
`rates`, 4 lines: maximum likelihood rates, mean rates, median rates
`measures`, information about the quality of the fits
`param-stats`, detailed statistics of the parameter posteriors (the MCMC samples are not saved)
`burst`, statistics on burst frequency, 7 lines: mean, sd, median, mad, quantiles at: .025,.5,.97.5
`optimized`, 3 lines: LBFGS optimized rates, negative log likelihood, convergence
In our example the files `rates_HCT116-scRNA-ss_MOCK_CENPL_2_2.txt`,`measures_HCT116-scRNA-ss_MOCK_CENPL_2_2.txt`,`param-stats_HCT116-scRNA-ss_MOCK_CENPL_2_2.txt`, `burst_HCT116-scRNA-ss_MOCK_CENPL_2_2.txt`, `optimized_HCT116-scRNA-ss_MOCK_CENPL_2_2.txt` will be produced
The output convention is that underscore `_` is used to separate the 4 fields of a result file and thus should not be used in any of the fields.
A data frame of the results can be constructed in Julia using the write_dataframes(resultfolder,datafolder) function, e.g.
```
julia> using StochasticGene
julia> write_dataframes_only("results/HCT_scRNAtest","data/HCT116_testdata")
```
The result will be a set of csv files collating the result files of all the genes along with a "Winners" file that lists which model performed best for a given measure (default is AIC but can be changed with a named argument, see API below) and a Summary file condensing the information of the other files.
The Summary file can be supplemented with more information via the write_augmented(summaryfile,resultfolder) function, e.g.
```
julia> write_augmented("results/HCT_scRNAtest/Summary_HCT116-scRNA-ss_MOCK_2.csv","results/HCT_scRNAtest")
```
### Example Use on Unix
If not running on Biowulf, the same swarm files can be used, although they will not be run in parallel.
e.g. in UNIX Bash, type:
```
Bash> chmod 744 fit_scRNA-ss-MOCK_2.swarm
Bash> bash fit_scRNA-ss-MOCK_2.swarm &
```
This will execute each gene in the swarm file sequentially. To run several genes in parallel, you can break the run up into multiple swarm files and execute each swarm file separately. You can also trade off time with the number of chains, so if you have a large processor machine run each gene on many processors, e.g. 64, for a short amount of time, e.g. 15 min.
### Simulations
Simulate any GRSM model using function simulator, which can produce steady state mRNA histograms, simulated intensity traces, and ON and OFF live cell histograms as selected.
The following will simulate the steady state mRNA histogram, and ON and OFF dwelltime distributions, for an intron reporter inserted at the first R step, and for a transcription factor reporter visible in the G states 2 and 3.
```
julia> r=[0.038, 1.0, 0.23, 0.02, 0.25, 0.17, 0.02, 0.06, 0.02, 0.000231]
10-element Vector{Float64}:
0.038
1.0
0.23
0.02
0.25
0.17
0.02
0.06
0.02
0.000231
julia> transitions=([1, 2], [2, 1], [2, 3], [3, 1])
([1, 2], [2, 1], [2, 3], [3, 1])
julia> h=simulator(r,transitions,3,2,2,1,nhist=150,bins=[collect(5/3:5/3:200),collect(.1:.1:20)],onstates=[Int[],[2,3]],nalleles=2)
5-element Vector{Vector}:
[102.03717039741856, 142.59069980711823, 88.32384512491423, 5.3810781196239645, 11.34932791013432, 20.045265169892332, 98.28644192386656, 58.86668672945706, 84.28930404506343, 38.33804408987862 β¦ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
[729817, 620509, 530022, 456147, 397358, 349669, 315092, 284930, 261379, 241602 β¦ 361, 369, 296, 300, 285, 266, 241, 216, 189, 190]
[242326, 290704, 293370, 275618, 249325, 221256, 195222, 171730, 151167, 134806 β¦ 18965, 18726, 18406, 18488, 18409, 18305, 17786, 17447, 17398, 17380]
[2895640, 2557764, 2264680, 2001941, 1771559, 1567632, 1391091, 1228585, 1086723, 964156 β¦ 7995, 7824, 7987, 7858, 8022, 7839, 7848, 7858, 7974, 7920]
[116520, 116748, 115010, 115952, 114249, 114426, 114428, 113435, 113013, 112732 β¦ 56077, 56462, 55967, 55863, 55710, 55549, 55092, 54988, 54984, 54528]
```
h is a vector containing 5 histograms. Although, not all data will include both ON and OFF time histograms, `simulator` automatically computes both.
### Units
StochasticGene assumes all rates have units of inverse minutes and the half lives in the `halflives` file are in hours. When computing or fitting stationary mRNA distributions, the rate units are relative. Scaling all the rates by a constant will not affect the results. In these cases, it is sometimes convenient to scale all the rates by the mRNA decay time, which is the last entry of the rate array. The rate units matter when considering or evaluating traces and histograms of ON and OFF times. The code assumes that these dwell time histogram have units of minutes (i.e. the reciprocal of the rate units).
### API:
```
fit(; <keyword arguments> )
Fit steady state or transient GM model to RNA data for a single gene, write the result (through function finalize), and return nothing.
#Arguments
- `nchains::Int=2`: number of MCMC chains = number of processors called by Julia, default = 2
- `datatype::String=""`: String that desecribes data type, choices are "rna", "rnaonoff", "rnadwelltime", "trace", "tracenascent", "tracerna"
- `dttype=String[]`: types are "OFF", "ON", for R states and "OFFG", "ONG" for G states
- `datapath=""`: path to data file or folder or array of files or folders
- `cell::String=""': cell type for halflives and allele numbers
- `datacond=""`: string or vector of strings describing data treatment condition, e.g. "WT", "DMSO" or ["DMSO","AUXIN"]
- `traceinfo=(1.0, 1., 240., .65)`: 4-tuple of frame interval of intensity traces, starting frame time in minutes, ending frame time (use -1 for last index), and fraction of active traces
- `nascent=(1, 2)`: 2-tuple (number of spots, number of locations) (e.g. number of cells times number of alleles/cell)
- `infolder::String=""`: result folder used for initial parameters
- `resultfolder::String=test`: folder for results of MCMC run
- `label::String=""`: label of output files produced
- `inlabel::String=""`: label of files used for initial conditions
- `fittedparam::Vector=Int[]`: vector of rate indices to be fit, e.g. [1,2,3,5,6,7] (applies to shared rates for hierarchical models)
- `fixedeffects::Tuple=tuple()`: tuple of vectors of rates that are fixed where first index is fit and others are fixed to first, e.g. ([3,8],) means index 8 is fixed to index 3
(only first parameter should be included in fittedparam) (applies to shared rates for hierarchical models)
- `transitions::Tuple=([1,2],[2,1])`: tuple of vectors that specify state transitions for G states, e.g. ([1,2],[2,1]) for classic 2 state telegraph model and ([1,2],[2,1],[2,3],[3,1]) for 3 state kinetic proof reading model
- `G::Int=2`: number of gene states
- `R::Int=0`: number of pre-RNA steps (set to 0 for classic telegraph models)
- `S::Int=0`: number of splice sites (set to 0 for classic telegraph models and R - insertstep + 1 for GRS models)
- `insertstep::Int=1`: R step where reporter is inserted
- `Gfamily=""`: String describing type of G transition model, e.g. "3state", "KP" (kinetic proofreading), "cyclicory"
- `root="."`: name of root directory for project, e.g. "scRNA"
- `priormean=Float64[]`: mean rates of prior distribution
- 'priorcv=10.`: (vector or number) coefficient of variation(s) for the rate prior distributions, default is 10.
- `nalleles=2`: number of alleles, value in alleles folder will be used if it exists
- `onstates::Vector{Int}=Int[]`: vector of on or sojourn states, e.g. [[2,3],Int[]], use empty vector for R states, do not use Int[] for R=0 models
- `decayrate=1.0`: decay rate of mRNA, if set to -1, value in halflives folder will be used if it exists
- `splicetype=""`: RNA pathway for GRS models, (e.g. "offeject" = spliced intron is not viable)
- `probfn=prob_Gaussian`: probability function for hmm observation probability (i.e. noise distribution)
- `noisepriors = []`: priors of observation noise (use empty set if not fitting traces), superceded if priormean is set
- `hierarchical=tuple()`: empty tuple for nonhierarchical; for hierarchical model use 3 tuple of hierchical model parameters (pool.nhyper::Int,individual fittedparams::Vector,individual fixedeffects::Tuple)
- `ratetype="median"`: which rate to use for initial condition, choices are "ml", "mean", "median", or "last"
- `propcv=0.01`: coefficient of variation (mean/std) of proposal distribution, if cv <= 0. then cv from previous run will be used
- `maxtime=Float64=60.`: maximum wall time for run, default = 60 min
- `samplesteps::Int=1000000`: number of MCMC sampling steps
- `warmupsteps=0`: number of MCMC warmup steps to find proposal distribution covariance
- `annealsteps=0`: number of annealing steps (during annealing temperature is dropped from tempanneal to temp)
- `temp=1.0`: MCMC temperature
- `tempanneal=100.`: annealing temperature
- `temprna=1.`: reduce rna counts by temprna compared to dwell times
- `burst=false`: if true then compute burst frequency
- `optimize=false`: use optimizer to compute maximum likelihood value
- `writesamples=false`: write out MH samples if true, default is false
- `method=1`: optional method variable, for hierarchical models method = tuple(Int,Bool) = (numerical method, true if transition rates are shared)
Example:
If you are in the folder where data/HCT116_testdata is installed, then you can fit the mock RNA histogram running 4 mcmc chains with
$julia -p 4
julia> fits, stats, measures, data, model, options = fit(nchains = 4)
```
```
makeswarm(;<keyword arguments>)
write swarm and fit files used on biowulf
#Arguments
- 'nthreads::Int=1`: number of Julia threads per processesor, default = 1
- `swarmfile::String="fit"`: name of swarmfile to be executed by swarm
- `juliafile::String="fitscript`: name of file to be called by julia in swarmfile
- `src=""`: path to folder containing StochasticGene.jl/src (only necessary if StochasticGene not installed)
and all keyword arguments of function fit(; <keyword arguments> )
see fit
```
```
makeswarm_genes(genes::Vector{String}; <keyword arguments> )
write a swarmfile and fit files to run all each gene in vector genes
# Arguments
- `genes`: vector of genes
- `batchsize=1000`: number of jobs per swarmfile, default = 1000
and all arguments in makeswarm(;<keyword arguments>)
Examples
julia> genes = ["MYC","SOX9"]
julia> makeswarm(genes,cell="HBEC")
```
```
makeswarm_genes(;<keyword arguments> )
@JuliaRegistrator register()
#Arguments
- `thresholdlow::Float=0`: lower threshold for halflife for genes to be fit
- `threhsoldhigh::=Inf`: upper threshold
and all keyword arguments in makeswarm(;<keyword arguments>)
```
```
makeswarm(models::Vector{ModelArgs}; <keyword arguments> )
creates a run for each model
#Arguments
- `models::Vector{ModelArgs}`: Vector of ModelArgs structures
and all keyword arguments in makeswarm(;<keyword arguments>)
```
```
run_mh(data,model,options)
returns fits, stats, measures
Run Metropolis-Hastings MCMC algorithm and compute statistics of results
-`data`: AbstractExperimentalData structure
-`model`: AbstractGmodel structure with a logprior function
-`options`: MHOptions structure
model and data must have a likelihoodfn function
```
```
write_dataframes(resultfolder::String, datapath::String; measure::Symbol=:AIC, assemble::Bool=true, fittedparams=Int[])
write_dataframes(resultfolder::String,datapath::String;measure::Symbol=:AIC,assemble::Bool=true)
collates run results into a csv file
Arguments
- `resultfolder`: name of folder with result files
- `datapath`: name of folder where data is stored
- `measure`: measure used to assess winner
- `assemble`: if true then assemble results into summary files
```
```
simulator(r::Vector{Float64}, transitions::Tuple, G::Int, R::Int, S::Int, insertstep::Int; nalleles::Int=1, nhist::Int=20, onstates::Vector=Int[], bins::Vector=Float64[], traceinterval::Float64=0.0, probfn=prob_GaussianMixture, noiseparams::Int=5, totalsteps::Int=1000000000, totaltime::Float64=0.0, tol::Float64=1e-6, reporterfn=sum, splicetype="", verbose::Bool=false)
Simulate any GRSM model. Returns steady state mRNA histogram. If bins not a null vector will return a vector of the mRNA histogram and ON and OFF time histograms. If traceinterval > 0, it will return a vector containing the mRNA histogram and the traces
#Arguments
- `r`: vector of rates
- `transitions`: tuple of vectors that specify state transitions for G states, e.g. ([1,2],[2,1]) for classic 2 state telegraph model and ([1,2],[2,1],[2,3],[3,1]) for 3 state kinetic proof reading model
- `G`: number of gene states
- `R`: number of pre-RNA steps (set to 0 for classic telegraph models)
- `S`: number of splice sites (set to 0 for G (classic telegraph) and GR models and R for GRS models)
- `insertstep`: reporter insertion step
#Named arguments
- `nalleles`: Number of alleles
- `nhist::Int`: Size of mRNA histogram
- `onstates::Vector`: a vector of ON states (use empty set for any R step is ON) or vector of vector of ON states
- `bins::Vector=Float64[]`: vector of time bins for ON and OFF histograms or vector of vectors of time bins
- `probfn`=prob_GaussianMixture: reporter distribution
- `traceinterval`: Interval in minutes between frames for intensity traces. If 0, traces are not made.
- `totalsteps`::Int=10000000: maximum number of simulation steps (not usred when simulating traces)
- `tol`::Float64=1e-6: convergence error tolerance for mRNA histogram (not used when simulating traces are made)
- `totaltime`::Float64=0.0: total time of simulation
- `splicetype`::String: splice action
- `reporterfn`=sum: how individual reporters are combined
- `verbose::Bool=false`: flag for printing state information
#Example:
julia> h=simulator(r,transitions,3,2,2,1,nhist=150,bins=[collect(5/3:5/3:200),collect(.1:.1:20)],onstates=[Int[],[2,3]],nalleles=2)
```
```
simulate_trace_data(datafolder::String;ntrials::Int=10,r=[0.038, 1.0, 0.23, 0.02, 0.25, 0.17, 0.02, 0.06, 0.02, 0.000231,30,20,200,100,.8], transitions=([1, 2], [2, 1], [2, 3], [3, 1]), G=3, R=2, S=2, insertstep=1,onstates=Int[], interval=1.0, totaltime=1000.)
create simulated trace files in datafolder
```
```
predicted_trace(data::Union{AbstractTraceData,AbstractTraceHistogramData}, model)
return predicted traces of fits using Viterbi algorithm
``` | StochasticGene | https://github.com/nih-niddk-mbs/StochasticGene.jl.git |
|
[
"MIT"
] | 0.1.0 | 7cc6c28ac203660a43c44e7f4331148ff9542cb5 | code | 40 | module ManyBody
include("term.jl")
end | ManyBody | https://github.com/tuwien-cms/ManyBody.jl.git |
|
[
"MIT"
] | 0.1.0 | 7cc6c28ac203660a43c44e7f4331148ff9542cb5 | code | 9135 | export
Term,
creator,
annihilator,
occupation,
vacancy
"""
Represent product of fermionic creation/annihilation operators.
For a Fock space of flavours, this is an abstract representation of the product
of an arbitrary number of creation and annihilation operators, not necessarily
normal ordered. One can write each such product in a canonical form:
t(v,i,j,k) = v * prod(x -> c[x]', i) * prod(x -> c[x], reverse(j)) *
prod(x -> c[x]*c[x]', k)
where `i`, `j` are tuples of flavours, each one ordered ascendingly, and `k`
is a tuple of flavours disjoint from both `i` and `j`. Note that above
expression is not a normal-ordered product either, but a "classification" of
each flavour with respect to the term's effect.
Instead of the `O(2^(2n))` dense or `O(2^n)` sparse storage required for the
elements of such a product, this class stores only an `O(1)` set of bitfields
allowing for fast on-the-fly computation.
"""
struct Term{T}
mask::UInt64
left::UInt64
right::UInt64
change::UInt64
sign_mask::UInt64
value::T
end
"""Conversion between terms types"""
Term{T}(term::Term{U}) where {T, U} = Term(term, U(term.value))
"""Convert term to itself"""
Term{T}(term::Term{T}) where {T} = term
"""Create a term from template, but assign new value to it"""
Term(term::Term, new_value) =
Term(term.mask, term.left, term.right, term.change, term.sign_mask, new_value)
"""Constant term (energy shift)"""
Term(value::Number) =
Term(UInt64(0), UInt64(0), UInt64(0), UInt64(0), UInt64(0), value)
"""Make creation operator"""
function creator(i::Integer; value=Int8(1), statmask::UInt64=~UInt64(0))
@boundscheck (i >= 1 && i <= 64) || throw(BoundsError(1:64, i))
mask = UInt64(1) << (i - 1)
signmask = (mask - one(mask)) & statmask
return Term(mask, mask, zero(mask), mask, signmask, value)
end
"""Make annihilation operator"""
function annihilator(i::Integer; value=Int8(1), statmask::UInt64=~UInt64(0))
@boundscheck (i >= 1 && i <= 64) || throw(BoundsError(1:64, i))
mask = UInt64(1) << (i - 1)
signmask = (mask - one(mask)) & statmask
return Term(mask, zero(mask), mask, mask, signmask, value)
end
"""Make occupation (number) operator"""
function occupation(i::Integer; value=Int8(1))
@boundscheck (i >= 1 && i <= 64) || throw(BoundsError(1:64, i))
mask = UInt64(1) << (i - 1)
return Term(mask, mask, mask, zero(mask), zero(mask), value)
end
"""Make vacancy (1 - number) operator"""
function vacancy(i::Integer; value=Int8(1))
@boundscheck (i >= 1 && i <= 64) || throw(BoundsError(1:64, i))
mask = UInt64(1) << (i - 1)
return Term(mask, zero(mask), zero(mask), zero(mask), zero(mask), value)
end
"""Multiplies two terms"""
function Base.:*(a::Term, b::Term)
# Get value first, mainly to determine the type of result and ensure
# type stability. We have to make sure to get a signed type here, as
# the sign may flip later (this is handled in a specialization).
value = a.value * b.value
# First, take care of the Pauli principle. This is relatively easy, as
# a.right and b.left are the "demands" of the two terms on their in-between
# state, each confined to their mask. This means we simply have to fulfill
# both demands whenever the masks intersect.
intersect = a.mask & b.mask
if xor(a.right, b.left) & intersect != 0
return Term(zero(value))
end
# Now that we know that the term is valid, let us determine the left and
# right outer states: a.left and b.right are again demands on those states,
# each confined to their mask. Outside the mask, the other term may make
# demands "through" the adjacent term.
mask = a.mask | b.mask
right = b.right | (a.right & ~b.mask)
left = a.left | (b.left & ~a.mask)
change = xor(left, right)
# Each fundamental operator comes with a sign mask extending to the less
# significant side of it. Ignoring the flavours affected by the term for
# the moment, multiplying terms simply means xor'ing the masks.
sign_mask = xor(a.sign_mask, b.sign_mask)
# Note that here, the order matters: for a normal-ordered term, we assume
# that:
#
# Ο_L = c[i[1]]' * ... * c[i[n]]' * c[j[n]] * ... * c[j[1]] Ο_R
#
# where both i and j are ordered ascendingly. This is because we can then
# split this equation into two parts:
#
# Ο_L = c[i[1]]' * ... * c[i[n]]' Ο_0
# Ο_R = c[j[1]]' * ... * c[j[n]]' Ο_0
#
# This means that for determining the sign, the intermediate state Ο_0 is
# relevant, and so for a sign computation we must exclude any flavour in
# Ο_L and Ο_R affected by the creators/annihilators.
sign_mask &= ~mask
# Finally we have to restore normal ordering by permuting operators. We
# know this may only yield a global sign. So, we simply observe the
# difference in effect of the product and normal-ordered product on a
# single contributing "trial" state. We choose the trial to be `right`,
# as we know the normal-ordered product contributes and does not produce
# a sign.
trial = right
permute = trial & b.sign_mask
trial = xor(trial, b.change)
permute = xor(permute, trial & a.sign_mask)
value = copy_parity(permute, value)
return Term(mask, left, right, change, sign_mask, value)
end
# This ensures type-stability is observed.
Base.:*(a::Term{A}, b::Term{B}) where {A <: Unsigned, B <: Unsigned} =
Term(a, signed(a.value)) * Term(b, signed(b.value))
"""Check if state is mapped when multiplied by term from the left"""
is_mapped_right(t::Term, state) = state & t.mask == t.right
"""Check if state is mapped when multiplied by term from the right"""
is_mapped_left(t::Term, state) = state & t.mask == t.left
"""Change sign of number if parity of a bit pattern is odd"""
copy_parity(pattern::Integer, number) =
(count_ones(pattern) & 1 != 0) ? -number : number
# We use this to ensure type stability: otherwise, passing an unsigned
# number would have to return a union, as -x converts it to a signed one.
# We could silently use signed() here, but it is better to handle this
# explicitly in application code.
copy_parity(::Integer, ::Unsigned) =
throw(DomainError("Cannot copy parity sign to unsigned number"))
"""Map a state through term, assuming that it is indeed mapped"""
map_state_right(t::Term, state) =
xor(state, t.change), copy_parity(state & t.sign_mask, t.value)
"""Map a state through term, assuming that it is indeed mapped"""
map_state_left(t::Term, state) = map_state_right(t, state)
"""
Return the state shift through the term.
Index of the side diagonal where the values of term are nonzero, or,
equivalently, a state with index `i` is mapped by `term` to either nothing
or a state with index `i + state_shift(term)`.
"""
state_shift(t::Term) = (t.left - t.right) % Int64
"""Check if terms can be added and give one term"""
addable(a::Term, b::Term) =
a.mask == b.mask && a.right == b.right && a.left == b.left
"""Convert terms with values of one type to another"""
Base.convert(::Type{Term{T}}, term::Term) where T =
Term(term, convert(T, term.value))
"""Promotion rules"""
Base.promote_rule(::Type{Term{T}}, ::Type{Term{U}}) where {T, U} =
Term{promote_type(T, U)}
"""Promotion rules"""
Base.promote_rule(::Type{Term{T}}, ::Type{Term{U}}) where {T <: Unsigned, U <: Unsigned} =
Term{promote_type(signed(T), signed(U))}
"""Explicit plus of term"""
Base.:+(term::Term) = Term(term, +term.value)
"""Negate term"""
Base.:-(term::Term) = Term(term, -term.value)
"""Scale term by a scalar factor"""
Base.:*(factor::Number, term::Term) = Term(term, factor * term.value)
"""Scale term by a scalar factor"""
Base.:*(term::Term, factor::Number) = Term(term, term.value * factor)
"""Add terms with the same operators"""
Base.:+(a::Term, b::Term) = Term(_check_addable(a, b), a.value + b.value)
"""Subtract terms with the same operators"""
Base.:-(a::Term, b::Term) = Term(_check_addable(a, b), a.value - b.value)
"""Check if terms are equal"""
Base.:(==)(lhs::Term, rhs::Term) = addable(lhs, rhs) && lhs.value == rhs.value
"""Check if terms are approximately equal"""
function Base.isapprox(lhs::Term, rhs::Term; atol::Real=0,
rtol::Real=Base.rtoldefault(lhs.value, rhs.value, atol),
nans::Bool=false)
return addable(lhs, rhs) && isapprox(lhs.value, rhs.value; atol, rtol, nans)
end
"""Get the transpose of a term"""
Base.transpose(t::Term) =
Term(t.mask, t.right, t.left, t.change, t.sign_mask, t.value)
"""Get the adjoint (conjugate transpose) of a term"""
Base.adjoint(t::Term) =
Term(t.mask, t.right, t.left, t.change, t.sign_mask, conj(t.value))
"""Get term like template, but with zero value"""
Base.zero(t::Term) = Term(t, zero(t.value))
"""Check if the value of term is zero"""
Base.iszero(t::Term) = iszero(t.value)
function _check_addable(a::Term, b::Term)
if !addable(a, b)
throw(ArgumentError("can only add terms which have same operators"))
end
return a
end
| ManyBody | https://github.com/tuwien-cms/ManyBody.jl.git |
|
[
"MIT"
] | 0.1.0 | 7cc6c28ac203660a43c44e7f4331148ff9542cb5 | code | 63 | using Test
@testset "ManyBody" begin
include("term.jl")
end
| ManyBody | https://github.com/tuwien-cms/ManyBody.jl.git |
|
[
"MIT"
] | 0.1.0 | 7cc6c28ac203660a43c44e7f4331148ff9542cb5 | code | 1207 | using Test
using ManyBody
using LinearAlgebra
@testset "Term" begin
@testset "pauli" begin
@test iszero(zero(Term(1.0)))
@test iszero(creator(3) * creator(3))
@test iszero(creator(1) * annihilator(4) * annihilator(4))
end
@testset "convert" begin
@test Term(2.0) == Term(2)
@test creator(3) == Term{Int64}(creator(3))
end
@testset "normal ordering" begin
c = annihilator
cdag = creator
t = cdag(7) * cdag(4) * c(2) * c(6)
@test -t == cdag(4) * cdag(7) * c(2) * c(6)
@test t == cdag(4) * cdag(7) * c(6) * c(2)
t2 = c(9) * c(5) * c(3)
@test t * t2 == +cdag(4) * cdag(7) * c(9) * c(6) * c(5) * c(3) * c(2)
# Sign not sure
@test t2 * t == +cdag(4) * cdag(7) * c(9) * c(6) * c(5) * c(3) * c(2)
end
@testset "vacancy" begin
c = annihilator
cdag = creator
n = occupation
v = vacancy
t1 = 10 * n(2)
@test t1 * t1 == 10 * t1
t1 = 4 * v(4)
@test t1 * t1 == 4 * t1
t1 = 3 * c(3) * v(2) * cdag(1)
@test t1 * v(2) == t1
end
@testset "quadraticterm" begin
t = 2.0 * creator(1) * annihilator(3)
tprime = 2.0 * creator(3) * annihilator(1)
@test t' == tprime
@test transpose(t) == tprime
end
end
| ManyBody | https://github.com/tuwien-cms/ManyBody.jl.git |
|
[
"MIT"
] | 0.1.0 | 7cc6c28ac203660a43c44e7f4331148ff9542cb5 | docs | 82 | Tools for quantum many-body computations
========================================
| ManyBody | https://github.com/tuwien-cms/ManyBody.jl.git |
|
[
"MIT"
] | 0.1.0 | f69915b68a2fb7b5d0d41ff0584e6fa05a9853e5 | code | 5226 | module ComplexOperations
export complex_multiply
export complex_divide
export complex_vector_dot_product
export complex_vector_cross_product
export complex_matrix_inversion
export complex_matrix_multiplication
"""
Multiplication of two vectors Z1 and Z2.
We assume the first and second columns of each vector are the real and imaginary parts, respectively
Each of Z1 and Z2 has two columns, and arbitrary number of rows.
Multiplication algorithm for complex numbers can be found here: https://en.wikipedia.org/wiki/Multiplication_algorithm
"""
function complex_multiply(Z1, Z2)
return vcat(complex_multiply.(Z1[:,1], Z1[:,2], Z2[:,1], Z2[:,2])...)
end
"""
Multiplication of two vectors Z1=a+im*b and Z2=c+im*d.
a, b, c, and d are all real numbers or arrays of real numbers. All shoud have the same size.
Multiplication algorithm for complex numbers can be found here: https://en.wikipedia.org/wiki/Multiplication_algorithm
"""
function complex_multiply(a, b, c, d)
# return hcat(a * c - b * d, b * c + a * d)
return @fastmath @inbounds hcat(a .* c - b .* d, b .* c + a .* d)
end
"""
Division of two vectors Z1 and Z2.
We assume the first and second columns of each vector are the real and imaginary parts, respectively
Each of Z1 and Z2 has two columns, and arbitrary number of rows.
Division algorithm for complex numbers can be found here: https://en.wikipedia.org/wiki/Multiplication_algorithm
"""
function complex_divide(Z1, Z2)
return vcat(complex_divide.(Z1[:,1], Z1[:,2], Z2[:,1], Z2[:,2])...)
end
"""
Division of two vectors Z1=a+im*b and Z2=c+im*d.
a, b, c, and d are all real numbers or arrays of real numbers. All shoud have the same size.
Division algorithm for complex numbers can be found here: https://en.wikipedia.org/wiki/Multiplication_algorithm
"""
function complex_divide(a, b, c, d)
return @fastmath @inbounds hcat((a .* c + b .* d) / (c.^2 + d.^2), (b .* c - a .* d) / (c.^2 + d.^2))
end
"""
Claculate dot product of two vectors
Each is represented as 3x2 or 3x1 Array. The first and second columns represent the real and imag parts, respectively
For real vectors, we can input them as 3x1 Array or 3-element Vector
"""
function complex_vector_dot_product(A, B)
# TODO: how can I create two methods, rather than the if-statements?
if size(A, 2) == 1; A = hcat(A, [0,0,0]); end # TODO: is there a better way to handle 3x2 and 3x1 vectors?
if size(B, 2) == 1; B = hcat(B, [0,0,0]); end # TODO: is there a better way to handle 3x2 and 3x1 vectors?
return complex_vector_dot_product(A[:,1], A[:,2], B[:,1], B[:,2])
end
"""
Claculate dot product of two vectors, inputs are real and imaginary parts of the two vectors
Each is represented as 3-element array.
"""
function complex_vector_dot_product(A_r, A_i, B_r, B_i)
return (
complex_multiply(A_r[1], A_i[1], B_r[1], B_i[1]) +
complex_multiply(A_r[2], A_i[2], B_r[2], B_i[2]) +
complex_multiply(A_r[3], A_i[3], B_r[3], B_i[3])
)
end
"""
Claculate cross product of two vectors
Each is represented as 3x2 or 3x1 Array. The first and second columns represent the real and imag parts, respectively
For real vectors, we can input them as 3x1 Array or 3-element Vector
"""
function complex_vector_cross_product(A, B)
if size(A, 2) == 1; A = hcat(A, [0,0,0]); end # TODO: is there a better way to handle 3x2 and 3x1 vectors?
if size(B, 2) == 1; B = hcat(B, [0,0,0]); end # TODO: is there a better way to handle 3x2 and 3x1 vectors?
return complex_vector_cross_product(A[:,1], A[:,2], B[:,1], B[:,2])
end
"""
Claculate cross product of two vectors, inputs are real and imaginary parts of the two vectors
Each is represented as 3-element array.
"""
function complex_vector_cross_product(A_r, A_i, B_r, B_i)
vcat(
complex_multiply(A_r[2], A_i[2], B_r[3], B_i[3]) - complex_multiply(A_r[3], A_i[3], B_r[2], B_i[2]),
complex_multiply(A_r[3], A_i[3], B_r[1], B_i[1]) - complex_multiply(A_r[1], A_i[1], B_r[3], B_i[3]),
complex_multiply(A_r[1], A_i[1], B_r[2], B_i[2]) - complex_multiply(A_r[2], A_i[2], B_r[1], B_i[1]),
)
end
"""
Calculate the inverse of a complex matrix A+iB, where A and B are real matrices
There are two possible versions:
Version #1: This one preallocate. Faster and use more memory
for 1M evaluations: 1.771474 seconds (14.18 M allocations: 4.510 GiB, 4.52% gc time, 6.40% compilation time)
`
function complex_matrix_inversion(A, B)
inv_A_B = inv(A) * B
C = inv(A + B * inv_A_B)
D = -inv_A_B * C
return C, D
end
`
Version #2: No preallocation. Slower and use less memory
for 1M evaluations: 2.330454 seconds (19.00 M allocations: 6.512 GiB, 2.71% gc time)
`
function complex_matrix_inversion(A, B)
C = inv(A + B * inv(A) * B)
D = -1 .* inv(A) * B * C
return C, D
end
`
"""
function complex_matrix_inversion(A, B)
@fastmath @inbounds inv_A_B = inv(A) * B
@fastmath @inbounds C = inv(A + B * inv_A_B)
@fastmath @inbounds D = -inv_A_B * C
return C, D
end
"""
Multiply two matrices A+iB and C+iD, where A,B,C,D are real matrices
"""
function complex_matrix_multiplication(A, B, C, D)
return @fastmath @inbounds (A * C - B * D, A * D + B * C)
end
end # module
| ComplexOperations | https://github.com/mhmodzoka/ComplexOperations.jl.git |
|
[
"MIT"
] | 0.1.0 | f69915b68a2fb7b5d0d41ff0584e6fa05a9853e5 | code | 934 | using ComplexOperations
using LinearAlgebra
# testing complex_matrix_inversion
A = rand(3, 3); B = rand(3, 3)
@time for i = 1:1e6; C, D = complex_matrix_inversion(A, B); end
@time for i = 1:1e6; Z = inv(A + im * B); end
C, D = complex_matrix_inversion(A, B)
Z = inv(A + im * B)
Z == complex.(C, D) # TODO: why there is a small difference?
# testing complex_vector_cross_product
A_r = [1,2,3]; A_i = [1, 20, 30]
B_r = [10,2,30]; B_i = [1, 2, 3]
@time AB = complex_vector_cross_product(A_r, A_i, B_r, B_i)
@time AB_ = complex_vector_cross_product(hcat(A_r, A_i), hcat(B_r, B_i))
@time AB__ = cross(A_r + im * A_i, B_r + im * B_i)
# testing complex_vector_dot_product
A_r = [1,2,3]; A_i = [1, 20, 30]
B_r = [10,2,30]; B_i = [1, 2, 3]
@time AB = complex_vector_dot_product(A_r, A_i, B_r, B_i)
@time AB_ = complex_vector_dot_product(hcat(A_r, A_i), hcat(B_r, B_i))
@time AB__ = Tmatrix.vector_dot_product(A_r + im * A_i, B_r + im * B_i) | ComplexOperations | https://github.com/mhmodzoka/ComplexOperations.jl.git |
|
[
"MIT"
] | 0.1.0 | f69915b68a2fb7b5d0d41ff0584e6fa05a9853e5 | docs | 925 | # ComplexOperations.jl
Perform basic operations on complex numbers. Complex numbers are represented as 2-element vectors.
Operations include:
- complex scalar operations
- scalar multiplications (`complex_multiply`)
- scalar division (`complex_divide`)
- complex vector operations
- vector dot product (`complex_vector_dot_product`)
- vector cross product (`complex_vector_cross_product`)
- complex matrix operations
- matrix multiplication (`complex_matrix_multiplication`)
- matrix inversion (`complex_matrix_inversion`)
# Installation
The package should be registered, and can be installed by executing the following command:
`using Pkg; Pkg.add(ComplexOperations)`
If this fails (e.g., if registering the package didn't work), then you can install it by opening an interactive julia session, and type the following command:
`using Pkg; Pkg.add(url="https://github.com/mhmodzoka/ComplexOperations.jl")`
| ComplexOperations | https://github.com/mhmodzoka/ComplexOperations.jl.git |
|
[
"MIT"
] | 0.5.5 | bb21a5a9b9f6234f367ba3d47d3b3098b3911788 | code | 2566 | using Documenter, DemoCards, JSON
using PlutoStaticHTML # add the docstring for Pluto notebooks
# 1. generate demo files
quickstart, postprocess_cb, quickstart_assets = makedemos("quickstart")
themeless_demopage, themeless_cb, themeless_assets = makedemos(joinpath("theme_gallery", "themeless"))
grid_demopage, grid_cb, grid_assets = makedemos(joinpath("theme_gallery", "grid"))
list_demopage, list_cb, list_assets = makedemos(joinpath("theme_gallery", "list"))
nocoverlist_demopage, nocoverlist_cb, nocoverlist_assets = makedemos(joinpath("theme_gallery", "nocoverlist"))
bulmagrid_demopage, bulmagrid_cb, bulmagrid_assets = makedemos(joinpath("theme_gallery", "bulmagrid"))
bokehlist_demopage, bokehlist_cb, bokehlist_assets = makedemos(joinpath("theme_gallery", "bokehlist"))
assets = collect(filter(x->!isnothing(x), Set([quickstart_assets, themeless_assets, grid_assets, list_assets, nocoverlist_assets, bulmagrid_assets, bokehlist_assets])))
# 2. normal Documenter usage
format = Documenter.HTML(edit_link = "master",
prettyurls = get(ENV, "CI", nothing) == "true",
assets = assets,
size_threshold=1024 * 1024)
makedocs(format = format,
pages = [
"Home" => "index.md",
quickstart,
"Concepts" => "concepts.md",
"Partial build" => "preview.md",
"Structure manipulation" => "structure.md",
"Pluto.jl support" => "pluto.md",
"Theme Gallery" => [
themeless_demopage,
grid_demopage,
bulmagrid_demopage,
list_demopage,
nocoverlist_demopage,
bokehlist_demopage,
],
"Package References" => "references.md"
],
sitename = "DemoCards.jl")
# 3. postprocess after makedocs
postprocess_cb()
themeless_cb()
bulmagrid_cb()
bokehlist_cb()
grid_cb()
list_cb()
nocoverlist_cb()
# a workdaround to github action that only push preview when PR has "push_preview" labels
# issue: https://github.com/JuliaDocs/Documenter.jl/issues/1225
function should_push_preview(event_path = get(ENV, "GITHUB_EVENT_PATH", nothing))
event_path === nothing && return false
event = JSON.parsefile(event_path)
haskey(event, "pull_request") || return false
labels = [x["name"] for x in event["pull_request"]["labels"]]
return "push_preview" in labels
end
# 4. deployment
deploydocs(repo = "github.com/JuliaDocs/DemoCards.jl.git",
push_preview = should_push_preview())
| DemoCards | https://github.com/JuliaDocs/DemoCards.jl.git |
|
[
"MIT"
] | 0.5.5 | bb21a5a9b9f6234f367ba3d47d3b3098b3911788 | code | 406 | #---
#hidden: true
#id: hidden_card
#---
# # This is a hidden card
# This card doesn't get displayed in [quickstart index page](@ref quickstart) page and can only be
# viewed with relink `[hidden card](@ref hidden_card)`.
# Note that hidden cards are still processed by DemoCards to get you necessary assets.
using ImageCore, ImageTransformations, TestImages
imresize(testimage("camera"); ratio=0.25)
| DemoCards | https://github.com/JuliaDocs/DemoCards.jl.git |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.