licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
docs
2057
# Nevanlinna [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://github.com/SpM-lab/Nevanlinna.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://github.com/SpM-lab/Nevanlinna.jl/dev) [![Build Status](https://github.com/SpM-lab/Nevanlinna.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/SpM-lab/Nevanlinna.jl/actions/workflows/CI.yml?query=branch%3Amain) ## Installation The package can be installed with the Julia package manager. From the Julia REPL, type `]` to enter the Pkg REPL mode and run: ``` pkg> add Nevanlinna ``` This will install a Command Line Interface (CLI) script, `nevanlinna`, into `~/.julia/bin`. You can add this directory to your PATH in a bash shell by adding the following line into `~/.bashrc`: ```bash export PATH="$HOME/.julia/bin:$PATH" ``` This command needs input parameter TOML file. These files can be downloaded from [here](https://github.com/SpM-lab/Nevanlinna.jl/blob/comonicon/comonicon/bare/config.toml). TO DO:the link must be modified after marged to main branch! ### How to run examples You can reproduce the examples demonstrated in our paper by running notebooks in the `notebook` directory! The examples include: - $\delta$-function - Gaussian - Lorentzian - Two peak - Kondo resonance - tractable Hubbard gap - challenging Hubbard gap - compare 64-bit and 128-bit - Hamburger moment problem To run our code, please ensure that the following packages are installed: - Nevanlinna - Plots - LaTeXStrings - SparseIR One can install these libraries as follows: ```bash julia -e 'import Pkg; Pkg.add(["Nevanlinna", "Plots", "LaTeXStrings", "SparseIR"])' ``` ### Manual installation from source (advanced) You should almost never have to do this, but it is possible to install Nevanlinna.jl from source as follows: ```bash git clone https://github.com/SpM-lab/Nevanlinna.jl.git julia -e "import Pkg; Pkg.add(path=\"Nevanlinna.jl\")" ``` This is *not* recommended, as you will get the unstable development version and no future updates.
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
1.0.0
8d3e26855ba913052401e1da8597aab375e85bed
docs
186
```@meta CurrentModule = Nevanlinna ``` # Nevanlinna Documentation for [Nevanlinna](https://github.com/shinaoka/Nevanlinna.jl). ```@index ``` ```@autodocs Modules = [Nevanlinna] ```
Nevanlinna
https://github.com/SpM-lab/Nevanlinna.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
3368
using MPI using PencilArrays using BenchmarkTools using Random using PencilArrays.LocalGrids: LocalRectilinearGrid, components MPI.Init() comm = MPI.COMM_WORLD MPI.Comm_rank(comm) == 0 || redirect_stdout(devnull) @inline ftest(u, x, y, z) = u * (x + 2y + z^2) function bench_eachindex!(v, u, grid) for I ∈ eachindex(grid) @inbounds v[I] = ftest(u[I], grid[I]...) end v end function bench_iterators!(v, u, grid) for (n, xyz) ∈ zip(eachindex(u), grid) @inbounds v[n] = ftest(u[n], xyz...) end v end function bench_rawcoords!(v, u, coords) for (n, I) ∈ zip(eachindex(u), CartesianIndices(u)) @inbounds xyz = map(getindex, coords, Tuple(I)) @inbounds v[n] = ftest(u[n], xyz...) end v end function benchmark_pencil(pen) println(pen, "\n") dims = size(pen) # Note: things are roughly twice as fast if one "collects" ranges into # regular arrays. coords_global = map( xs -> collect(Float64, xs), ( range(0, 1; length = dims[1]), range(0, 1; length = dims[2]), [n^2 for n = 1:dims[3]], ) ) grid = localgrid(pen, coords_global) coords_local = map(view, coords_global, range_local(pen, LogicalOrder())) @assert components(grid) == coords_local u = PencilArray{Float64}(undef, pen) randn!(u) v = similar(u) print("- Broadcast: ") @btime $v .= ftest.($u, $(grid.x), $(grid.y), $(grid.z)) vcopy = copy(v) fill!(v, 0) print("- Eachindex: ") @btime bench_eachindex!($v, $u, $grid) @assert v == vcopy fill!(v, 0) print("- Iterators: ") @btime bench_iterators!($v, $u, $grid) @assert v == vcopy fill!(v, 0) print("- Raw coords:") # i.e. without localgrid @btime bench_rawcoords!($v, $u, $coords_local) @assert v == vcopy nothing end dims = (60, 110, 21) perms = [NoPermutation(), Permutation(2, 3, 1)] for (n, perm) ∈ enumerate(perms) s = perm == NoPermutation() ? "Without permutations" : "With permutations" println("\n($n) ", s, "\n") pen = Pencil(dims, comm; permute = perm) benchmark_pencil(pen) end #============================================================= Benchmark results ================= On Julia 1.7.2 + PencilArrays v0.15.0 and 1 MPI process. This is with --check-bounds=no. Without that flag, things are a bit slower for the "Iterators" and "Raw coords" cases, which probably means that there are some @inbounds missing somewhere in the code. (1) Without permutations Decomposition of 3D data Data dimensions: (60, 110, 21) Decomposed dimensions: (2, 3) Data permutation: NoPermutation() Array type: Array - Broadcast: 212.889 μs (0 allocations: 0 bytes) - Eachindex: 171.430 μs (0 allocations: 0 bytes) - Iterators: 182.775 μs (0 allocations: 0 bytes) - Raw coords: 205.575 μs (0 allocations: 0 bytes) (2) With permutations Decomposition of 3D data Data dimensions: (60, 110, 21) Decomposed dimensions: (2, 3) Data permutation: Permutation(2, 3, 1) Array type: Array - Broadcast: 216.302 μs (0 allocations: 0 bytes) - Eachindex: 175.397 μs (0 allocations: 0 bytes) - Iterators: 158.978 μs (0 allocations: 0 bytes) - Raw coords: 312.931 μs (0 allocations: 0 bytes) =============================================================#
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1525
using PencilArrays using Documenter using Documenter.Remotes: GitHub DocMeta.setdocmeta!( PencilArrays, :DocTestSetup, quote using PencilArrays using MPI MPI.Initialized() || MPI.Init() end; recursive=true, ) doctest(PencilArrays; fix = false) function main() makedocs(; modules = [PencilArrays], authors = "Juan Ignacio Polanco <[email protected]>", repo = GitHub("jipolanco", "PencilArrays.jl"), sitename = "PencilArrays.jl", format = Documenter.HTML(; prettyurls = true, canonical = "https://jipolanco.github.io/PencilArrays.jl", assets = [ "assets/custom.css", "assets/tomate.js", ], ), pages = [ "Home" => "index.md", "Library" => [ "Pencils.md", "PencilArrays.md", "LocalGrids.md", "Transpositions.md", "PencilIO.md", "MPITopology.md", "PencilArrays_timers.md", ], "Additional notes" => [ "notes/reductions.md", ], ], warnonly = [:missing_docs], # TODO can we remove this? ) deploydocs(; repo = "github.com/jipolanco/PencilArrays.jl", forcepush = true, # PRs deploy at https://jipolanco.github.io/PencilArrays.jl/previews/PR** push_preview = true, ) nothing end main()
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
899
module PencilArraysAMDGPUExt using PencilArrays: typeof_array, typeof_ptr using PencilArrays.Transpositions: Transpositions using AMDGPU: ROCVector # Workaround `unsafe_wrap` not allowing the `own` keyword argument in the AMDGPU # implementation. # Moreover, one needs to set the `lock = false` argument to indicate that we want to wrap an # array which is already in the GPU. function Transpositions.unsafe_as_array(::Type{T}, x::ROCVector{UInt8}, dims::Tuple) where {T} p = typeof_ptr(x){T}(pointer(x)) unsafe_wrap(typeof_array(x), p, dims; lock = false) end # Workaround `unsafe_wrap` for ROCArrays not providing a definition for dims::Integer. # We convert that argument to a tuple, which is accepted by the implementation in AMDGPU. function Transpositions.unsafe_as_array(::Type{T}, x::ROCVector{UInt8}, N::Integer) where {T} Transpositions.unsafe_as_array(T, x, (N,)) end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
333
module PencilArraysDiffEqExt using PencilArrays: PencilArray, length_global using DiffEqBase # This is used for adaptive timestepping in DifferentialEquations.jl. # Without this, each MPI process may choose a different dt, leading to # catastrophic consequences! DiffEqBase.recursive_length(u::PencilArray) = length_global(u) end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
8003
module PencilArraysHDF5Ext using MPI using HDF5 using PencilArrays using PencilArrays.PencilIO using PencilArrays: MaybePencilArrayCollection, collection_size using StaticArrays: SVector using TimerOutputs function PencilIO.PHDF5Driver(; fcpl = HDF5.FileCreateProperties(), fapl = HDF5.FileAccessProperties(), ) # We set fapl.fclose_degree if it hasn't been explicitly set. if !_is_set(fapl, Val(:fclose_degree)) # This is the default in HDF5.jl -- makes sense due to GC. fapl.fclose_degree = :strong end PencilIO._PHDF5Driver(fcpl, fapl) end # TODO Is there a better way to check if fapl.fclose_degree has already # been set?? function _is_set(fapl::HDF5.FileAccessProperties, ::Val{:fclose_degree}) id = fapl.id degree = Ref{Cint}() status = ccall( (:H5Pget_fclose_degree, HDF5.API.libhdf5), HDF5.API.herr_t, (HDF5.API.hid_t, Ref{Cint}), id, degree) # A negative value means failure, which we interpret here as meaning that # "fclose_degree" has not been set. status ≥ 0 end PencilIO.hdf5_has_parallel() = HDF5.has_parallel() function keywords_to_h5open(; kws...) flags, other_kws = PencilIO.keywords_to_open(; kws...) ( flags.read, flags.write, flags.create, flags.truncate, flags.append, ), other_kws end function Base.open(D::PHDF5Driver, filename::AbstractString, comm::MPI.Comm; kw...) mode_args, other_kws = keywords_to_h5open(; kw...) info = MPI.Info(other_kws...) fcpl = D.fcpl fapl = D.fapl mpio = HDF5.Drivers.MPIO(comm, info) HDF5.Drivers.set_driver!(fapl, mpio) # fails if no parallel support swmr = false # The code below is adapted from h5open in HDF5.jl v0.15 # TODO propose alternative h5open for HDF5.jl, taking keyword arguments `read`, `write`, ... # Then we wouldn't need to copy code from HDF5.jl... rd, wr, cr, tr, ff = mode_args if ff && !wr error("HDF5 does not support appending without writing") end fid = if cr && (tr || !isfile(filename)) flag = swmr ? HDF5.API.H5F_ACC_TRUNC | HDF5.API.H5F_ACC_SWMR_WRITE : HDF5.API.H5F_ACC_TRUNC HDF5.API.h5f_create(filename, flag, fcpl, fapl) else HDF5.ishdf5(filename) || error("unable to determine if $filename is accessible in the HDF5 format (file may not exist)") flag = if wr swmr ? HDF5.API.H5F_ACC_RDWR | HDF5.API.H5F_ACC_SWMR_WRITE : HDF5.API.H5F_ACC_RDWR else swmr ? HDF5.API.H5F_ACC_RDONLY | HDF5.API.H5F_ACC_SWMR_READ : HDF5.API.H5F_ACC_RDONLY end HDF5.API.h5f_open(filename, flag, fapl) end close(fapl) close(fcpl) HDF5.File(fid, filename) end function Base.setindex!( g::Union{HDF5.File, HDF5.Group}, x::MaybePencilArrayCollection, name::AbstractString; chunks=false, collective=true, prop_pairs..., ) to = timer(pencil(x)) @timeit_debug to "Write HDF5" begin check_phdf5_file(g, x) # Add extra property lists if required by keyword args. # TODO avoid using Dict? props = Dict{Symbol,Any}(pairs(prop_pairs)) if chunks && !haskey(prop_pairs, :chunk) chunk = h5_chunk_size(x, MemoryOrder()) props[:chunk] = chunk end if collective && !haskey(prop_pairs, :dxpl_mpio) props[:dxpl_mpio] = :collective end dims_global = h5_dataspace_dims(x) @timeit_debug to "create dataset" dset = create_dataset(g, name, h5_datatype(x), dataspace(dims_global); props...) inds = range_local(x, MemoryOrder()) @timeit_debug to "write data" to_hdf5(dset, x, inds) @timeit_debug to "write metadata" write_metadata(dset, x) end x end # Write metadata as HDF5 attributes attached to a dataset. # Note that this is a collective operation (all processes must call this). function write_metadata(dset::HDF5.Dataset, x) meta = PencilIO.metadata(x) for (name, val) in pairs(meta) dset[string(name)] = to_hdf5(val) end dset end to_hdf5(val) = val to_hdf5(val::Tuple{}) = false # empty tuple to_hdf5(val::Tuple) = SVector(val) to_hdf5(::Nothing) = false function Base.read!(g::Union{HDF5.File, HDF5.Group}, x::MaybePencilArrayCollection, name::AbstractString; collective=true, prop_pairs...) to = timer(pencil(x)) @timeit_debug to "Read HDF5" begin dapl = HDF5.DatasetAccessProperties(; prop_pairs...) dxpl = HDF5.DatasetTransferProperties(; prop_pairs...) # Add extra property lists if required by keyword args. if collective && !haskey(prop_pairs, :dxpl_mpio) dxpl.dxpl_mpio = :collective end dims_global = h5_dataspace_dims(x) @timeit_debug to "open dataset" dset = open_dataset(g, string(name), dapl, dxpl) check_phdf5_file(parent(dset), x) if dims_global != size(dset) throw(DimensionMismatch( "incompatible dimensions of HDF5 dataset and PencilArray")) end inds = range_local(x, MemoryOrder()) @timeit_debug to "read data" from_hdf5!(dset, x, inds) end x end function check_phdf5_file(g, x) fapl = HDF5.get_access_properties(HDF5.file(g)) driver = HDF5.Drivers.get_driver(fapl) if hasfield(typeof(driver), :comm) comm = driver.comm :: MPI.Comm if MPI.Comm_compare(comm, get_comm(x)) ∉ (MPI.IDENT, MPI.CONGRUENT) throw(ArgumentError( "incompatible MPI communicators of HDF5 file and PencilArray" )) end else error("HDF5 file was not opened with the MPIO driver") end close(fapl) nothing end to_hdf5(dset, x::PencilArray, inds) = dset[inds...] = parent(x) function from_hdf5!(dset, x::PencilArray, inds) u = parent(x) if stride(u, 1) != 1 u .= dset[inds...] # short and easy version (but allocates!) return x end # The following is adapted from one of the _getindex() in HDF5.jl. HDF5Scalar = HDF5.ScalarType T = eltype(x) if !(T <: Union{HDF5Scalar, Complex{<:HDF5Scalar}}) error("Dataset indexing (hyperslab) is available only for bits types") end dsel_id = HDF5.hyperslab(dset, inds...) memtype = HDF5.datatype(u) memspace = HDF5.dataspace(u) try # This only works for stride-1 arrays. HDF5.API.h5d_read(dset.id, memtype.id, memspace.id, dsel_id, dset.xfer, u) finally close(memtype) close(memspace) HDF5.API.h5s_close(dsel_id) end x end # Define variants for collections. for func in (:from_hdf5!, :to_hdf5) @eval function $func(dset, col::PencilArrayCollection, inds_in) for I in CartesianIndices(collection_size(col)) inds = (inds_in..., Tuple(I)...) $func(dset, col[I], inds) end end end h5_datatype(x::PencilArray) = datatype(eltype(x)) h5_datatype(x::PencilArrayCollection) = h5_datatype(first(x)) h5_dataspace_dims(x::PencilArray) = size_global(x, MemoryOrder()) h5_dataspace_dims(x::PencilArrayCollection) = (h5_dataspace_dims(first(x))..., collection_size(x)...) function h5_chunk_size(x::PencilArray, order = MemoryOrder()) # Determine chunk size for writing to HDF5 dataset. # The idea is that each process writes to a single separate chunk of the # dataset, of size `dims_local`. # This only works if the data is ideally balanced among processes, i.e. if # the local dimensions of the dataset are the same for all processes. dims_local = size_local(x, order) # In the general case that the data is not well balanced, we take the # minimum size along each dimension. chunk = MPI.Allreduce(collect(dims_local), min, get_comm(x)) N = ndims(x) @assert length(chunk) == N ntuple(d -> chunk[d], Val(N)) end h5_chunk_size(x::PencilArrayCollection, args...) = (h5_chunk_size(first(x), args...)..., collection_size(x)...) end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1266
module PencilArrays using MPI using OffsetArrays using Reexport using StaticPermutations using TimerOutputs using Base: @propagate_inbounds import Adapt include("Permutations.jl") import .Permutations: permutation include("PermutedIndices/PermutedIndices.jl") using .PermutedIndices include("LocalGrids/LocalGrids.jl") @reexport using .LocalGrids include("Pencils/Pencils.jl") @reexport using .Pencils import .Pencils: get_comm, range_local, range_remote, size_local, size_global, length_local, length_global, topology, typeof_array export PencilArray, GlobalPencilArray, PencilArrayCollection, ManyPencilArray export pencil, permutation export gather export global_view export ndims_extra, ndims_space, extra_dims, sizeof_global # Type definitions include("arrays.jl") # PencilArray include("multiarrays.jl") # ManyPencilArray include("global_view.jl") # GlobalPencilArray include("cartesian_indices.jl") # PermutedLinearIndices, PermutedCartesianIndices include("size.jl") include("array_interface.jl") include("broadcast.jl") include("random.jl") include("reductions.jl") include("gather.jl") include("Transpositions/Transpositions.jl") @reexport using .Transpositions include("PencilIO/PencilIO.jl") end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
71
module Permutations export permutation function permutation end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1491
import StaticArrayInterface: StaticArrayInterface, StaticInt, contiguous_axis, contiguous_batch_size, parent_type, stride_rank, dense_dims parent_type(::Type{<:PencilArray{T,N,A}}) where {T,N,A} = A contiguous_axis(::Type{A}) where {A <: PencilArray} = _contiguous_axis( contiguous_axis(parent_type(A)), permutation(A), ) _contiguous_axis(x::Nothing, ::AbstractPermutation) = x _contiguous_axis(x::StaticInt, ::NoPermutation) = x @inline function _contiguous_axis(x::StaticInt{i}, p::Permutation) where {i} i == -1 && return x StaticInt(p[Val(i)]) end contiguous_batch_size(::Type{A}) where {A <: PencilArray} = contiguous_batch_size(parent_type(A)) function stride_rank(::Type{A}) where {A <: PencilArray} rank = stride_rank(parent_type(A)) rank === nothing && return nothing iperm = Tuple(inv(permutation(A))) iperm === nothing && return rank StaticArrayInterface.permute(rank, Val(iperm)) end function dense_dims(::Type{A}) where {A <: PencilArray} dense = dense_dims(parent_type(A)) dense === nothing && return nothing perm = Tuple(inv(permutation(A))) perm === nothing && return dense StaticArrayInterface.permute(dense, Val(perm)) end StaticArrayInterface.static_size(A::PencilArray) = permutation(A) * StaticArrayInterface.static_size(parent(A)) StaticArrayInterface.static_strides(A::PencilArray) = permutation(A) * StaticArrayInterface.static_strides(parent(A))
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
17299
""" PencilArray(pencil::Pencil, data::AbstractArray{T,N}) Create array wrapper with pencil decomposition information. The array dimensions and element type must be consistent with those of the given pencil. !!! note "Index permutations" If the `Pencil` has an associated index permutation, then `data` must have its dimensions permuted accordingly (in *memory* order). Unlike `data`, the resulting `PencilArray` should be accessed with unpermuted indices (in *logical* order). ##### Example Suppose `pencil` has local dimensions `(10, 20, 30)` before permutation, and has an asociated permutation `(2, 3, 1)`. Then: ```julia data = zeros(20, 30, 10) # parent array (with dimensions in memory order) u = PencilArray(pencil, data) # wrapper with dimensions (10, 20, 30) @assert size_local(u) === (10, 20, 30) u[15, 25, 5] # BoundsError (15 > 10 and 25 > 20) u[5, 15, 25] # correct parent(u)[15, 25, 5] # correct ``` !!! note "Extra dimensions" The data array can have one or more extra dimensions to the right (slow indices), which are not affected by index permutations. ##### Example ```julia dims = (20, 30, 10) PencilArray(pencil, zeros(dims...)) # works (scalar) PencilArray(pencil, zeros(dims..., 3)) # works (3-component vector) PencilArray(pencil, zeros(dims..., 4, 3)) # works (4×3 tensor) PencilArray(pencil, zeros(3, dims...)) # fails ``` --- PencilArray{T}(undef, pencil::Pencil, [extra_dims...]) Allocate an uninitialised `PencilArray` that can hold data in the local pencil. Extra dimensions, for instance representing vector components, can be specified. These dimensions are added to the rightmost (slowest) indices of the resulting array. # Example Suppose `pencil` has local dimensions `(20, 10, 30)`. Then: ```julia PencilArray{Float64}(undef, pencil) # array dimensions are (20, 10, 30) PencilArray{Float64}(undef, pencil, 4, 3) # array dimensions are (20, 10, 30, 4, 3) ``` More examples: ```jldoctest julia> pen = Pencil((20, 10, 12), MPI.COMM_WORLD); julia> u = PencilArray{Float64}(undef, pen); julia> summary(u) "20×10×12 PencilArray{Float64, 3}(::Pencil{3, 2, NoPermutation, Array})" julia> PencilArray{Float64}(undef, pen, 4, 3) |> summary "20×10×12×4×3 PencilArray{Float64, 5}(::Pencil{3, 2, NoPermutation, Array})" ``` """ struct PencilArray{ T, N, A <: AbstractArray{T,N}, Np, # number of "spatial" dimensions (i.e. dimensions of the Pencil) E, # number of "extra" dimensions (= N - Np) P <: Pencil, } <: AbstractArray{T,N} pencil :: P data :: A space_dims :: Dims{Np} # spatial dimensions in *logical* order extra_dims :: Dims{E} # This constructor is not to be used directly! # It exists just to enforce that the type of data array is consistent with # typeof_array(pencil). function PencilArray(pencil::Pencil, data::AbstractArray) _check_compatible(pencil, data) N = ndims(data) Np = ndims(pencil) E = N - Np size_data = size(data) geom_dims = ntuple(n -> size_data[n], Np) # = size_data[1:Np] extra_dims = ntuple(n -> size_data[Np + n], E) # = size_data[Np+1:N] dims_local = size_local(pencil, MemoryOrder()) if geom_dims !== dims_local throw(DimensionMismatch( "array has incorrect dimensions: $(size_data). " * "Local dimensions of pencil: $(dims_local).")) end space_dims = permutation(pencil) \ geom_dims # undo permutation T = eltype(data) P = typeof(pencil) new{T, N, typeof(data), Np, E, P}(pencil, data, space_dims, extra_dims) end end @inline _check_compatible(p::Pencil, u) = _check_compatible(typeof_array(p), u) @inline function _check_compatible(::Type{A}, u, ubase = u) where {A} typeof(u) <: A && return nothing up = parent(u) typeof(up) === typeof(u) && throw(ArgumentError( "type of data array ($(typeof(ubase))) is not compatible with expected array type ($A)" )) _check_compatible(A, up, ubase) end function PencilArray{T}(init, pencil::Pencil, extra_dims::Vararg{Integer}) where {T} dims = (size_local(pencil, MemoryOrder())..., extra_dims...) A = typeof_array(pencil) PencilArray(pencil, A{T}(init, dims)) end # Treat PencilArray similarly to other wrapper types. # https://github.com/JuliaGPU/Adapt.jl/blob/master/src/wrappers.jl function Adapt.adapt_structure(to, u::PencilArray) A = typeof_array(to) p = similar(pencil(u), A) # create Pencil with possibly different array type PencilArray(p, Adapt.adapt(to, parent(u))) end pencil_type(::Type{PencilArray{T,N,A,M,E,P}}) where {T,N,A,M,E,P} = P # This is called by `summary`. function Base.showarg(io::IO, u::PencilArray, toplevel) toplevel || print(io, "::") print(io, nameof(typeof(u)), '{', eltype(u), ", ", ndims(u), '}') if toplevel print(io, '(') Base.showarg(io, pencil(u), false) print(io, ')') end nothing end """ PencilArrayCollection `UnionAll` type describing a collection of [`PencilArray`](@ref)s. Such a collection can be a tuple or an array of `PencilArray`s. Collections are **by assumption** homogeneous: each array has the same properties, and in particular, is associated to the same [`Pencil`](@ref) configuration. For convenience, certain operations defined for `PencilArray` are also defined for `PencilArrayCollection`, and return the same value as for a single `PencilArray`. Some examples are [`pencil`](@ref), [`range_local`](@ref) and [`get_comm`](@ref). Also note that functions from `Base`, such as `size`, `ndims` and `eltype`, are **not** overloaded for `PencilArrayCollection`, since they already have a definition for tuples and arrays (and redefining them would be type piracy...). """ const PencilArrayCollection = Union{Tuple{Vararg{A}}, AbstractArray{A}} where {A <: PencilArray} collection_size(x::Tuple{Vararg{PencilArray}}) = (length(x), ) collection_size(x::AbstractArray{<:PencilArray}) = size(x) collection_size(::PencilArray) = () # This is convenient for iterating over one or more PencilArrays. # A single PencilArray is treated as a "collection" of one array. collection(x::PencilArrayCollection) = x collection(x::PencilArray) = (x, ) const MaybePencilArrayCollection = Union{PencilArray, PencilArrayCollection} function _apply(f::Function, x::PencilArrayCollection, args...; kwargs...) a = first(x) if !all(b -> pencil(a) === pencil(b), x) throw(ArgumentError("PencilArrayCollection is not homogeneous")) end f(a, args...; kwargs...) end Base.axes(x::PencilArray) = permutation(x) \ axes(parent(x)) """ similar(x::PencilArray, [element_type=eltype(x)], [dims]) -> PencilArray Returns a `PencilArray` similar to `x`. In particular, the new array shares the same parallel decomposition (the same `Pencil`) than `x`. This means that the dimensions of the new array must be the same as those of `x`. Note that the optional `dims` argument is allowed for the sole reason of making things work nicely with other packages (such as StructArrays.jl), but things will fail if `dims ≠ size(x)`. # Examples ```jldoctest julia> pen = Pencil((20, 10, 12), MPI.COMM_WORLD); julia> u = PencilArray{Float64}(undef, pen); julia> similar(u) |> summary "20×10×12 PencilArray{Float64, 3}(::Pencil{3, 2, NoPermutation, Array})" julia> similar(u, size(u)) |> summary "20×10×12 PencilArray{Float64, 3}(::Pencil{3, 2, NoPermutation, Array})" julia> similar(u, ComplexF32) |> summary "20×10×12 PencilArray{ComplexF32, 3}(::Pencil{3, 2, NoPermutation, Array})" julia> similar(u, (4, 3, 8)) ERROR: DimensionMismatch: cannot construct a similar PencilArray with different size julia> similar(u, (4, 3)) |> summary ERROR: DimensionMismatch: cannot construct a similar PencilArray with different size julia> similar(u, ComplexF32) |> summary "20×10×12 PencilArray{ComplexF32, 3}(::Pencil{3, 2, NoPermutation, Array})" julia> similar(u, ComplexF32, (4, 3)) ERROR: DimensionMismatch: cannot construct a similar PencilArray with different size ``` --- similar(x::PencilArray, [element_type = eltype(x)], p::Pencil) Create a `PencilArray` with the decomposition described by the given `Pencil`. This variant may be used to create a `PencilArray` that has a different decomposition than the input `PencilArray`. # Examples ```jldoctest julia> pen_u = Pencil((20, 10, 12), (2, 3), MPI.COMM_WORLD); julia> u = PencilArray{Float64}(undef, pen_u); julia> pen_v = Pencil(pen_u; decomp_dims = (1, 3), permute = Permutation(2, 3, 1)) Decomposition of 3D data Data dimensions: (20, 10, 12) Decomposed dimensions: (1, 3) Data permutation: Permutation(2, 3, 1) Array type: Array julia> v = similar(u, pen_v); julia> summary(v) "20×10×12 PencilArray{Float64, 3}(::Pencil{3, 2, Permutation{(2, 3, 1), 3}, Array})" julia> pencil(v) === pen_v true julia> vint = similar(u, Int, pen_v); julia> summary(vint) "20×10×12 PencilArray{Int64, 3}(::Pencil{3, 2, Permutation{(2, 3, 1), 3}, Array})" julia> pencil(vint) === pen_v true ``` """ function Base.similar(x::PencilArray, ::Type{S}) where {S} dims_perm = permutation(x) * size_local(x) PencilArray(x.pencil, similar(parent(x), S, dims_perm)) end function Base.similar(x::PencilArray, ::Type{S}, dims::Dims) where {S} dims == size(x) || throw(DimensionMismatch("cannot construct a similar PencilArray with different size")) similar(x, S) end function Base.similar(x::PencilArray, ::Type{S}, p::Pencil) where {S} dims_mem = (size_local(p, MemoryOrder())..., extra_dims(x)...) PencilArray(p, similar(parent(x), S, dims_mem)) end Base.similar(x::PencilArray, p::Pencil) = similar(x, eltype(x), p) # Use same index style as the parent array. Base.IndexStyle(::Type{<:PencilArray{T,N,A}} where {T,N}) where {A} = IndexStyle(A) # Overload Base._sub2ind for converting from Cartesian to linear index. @inline function Base._sub2ind(x::PencilArray, I...) # _sub2ind(axes(x), I...) <- default implementation for AbstractArray J = permutation(x) * I Base._sub2ind(parent(x), J...) end # Linear indexing @propagate_inbounds function Base.getindex(x::PencilArray, i::Integer) parent(x)[i] end @propagate_inbounds function Base.setindex!(x::PencilArray, v, i::Integer) parent(x)[i] = v end # Cartesian indexing: assume input indices are unpermuted, and permute them. # (This is similar to the implementation of PermutedDimsArray.) @propagate_inbounds Base.getindex( x::PencilArray{T,N}, I::Vararg{Int,N}) where {T,N} = parent(x)[_genperm(x, I)...] @propagate_inbounds @inline Base.setindex!( x::PencilArray{T,N}, v, I::Vararg{Int,N}) where {T,N} = parent(x)[_genperm(x, I)...] = v @inline function _genperm(x::PencilArray{T,N}, I::NTuple{N,Int}) where {T,N} permutation(x) * I end @inline _genperm(x::PencilArray, I::CartesianIndex) = CartesianIndex(_genperm(x, Tuple(I))) """ pencil(x::PencilArray) Return decomposition configuration associated to a `PencilArray`. """ pencil(x::PencilArray) = x.pencil pencil(x::PencilArrayCollection) = _apply(pencil, x) """ parent(x::PencilArray) Return array wrapped by a `PencilArray`. """ Base.parent(x::PencilArray) = x.data # This enables aliasing detection (e.g. using Base.mightalias) on PencilArrays. Base.dataids(x::PencilArray) = Base.dataids(parent(x)) # This is based on strides(::PermutedDimsArray) function Base.strides(x::PencilArray) s = strides(parent(x)) permutation(x) * s end """ pointer(x::PencilArray) Return pointer to the start of the underlying data. Use with caution: this may not make a lot of sense if the underlying data is not contiguous or strided (e.g. if the `PencilArray` is wrapping a non-strided `SubArray`). """ Base.pointer(x::PencilArray) = pointer(parent(x)) """ ndims_extra(::Type{<:PencilArray}) ndims_extra(x::PencilArray) ndims_extra(x::PencilArrayCollection) Number of "extra" dimensions associated to `PencilArray`. These are the dimensions that are not associated to the domain geometry. For instance, they may correspond to vector or tensor components. These dimensions correspond to the rightmost indices of the array. The total number of dimensions of a `PencilArray` is given by: ndims(x) == ndims_space(x) + ndims_extra(x) """ ndims_extra(x::MaybePencilArrayCollection) = length(extra_dims(x)) ndims_extra(::Type{<:PencilArray{T,N,A,M,E}}) where {T,N,A,M,E} = E """ ndims_space(x::PencilArray) ndims_space(x::PencilArrayCollection) Number of dimensions associated to the domain geometry. These dimensions correspond to the leftmost indices of the array. The total number of dimensions of a `PencilArray` is given by: ndims(x) == ndims_space(x) + ndims_extra(x) """ ndims_space(x::PencilArray) = ndims(x) - ndims_extra(x) ndims_space(x::PencilArrayCollection) = _apply(ndims_space, x) """ extra_dims(x::PencilArray) extra_dims(x::PencilArrayCollection) Return tuple with size of "extra" dimensions of `PencilArray`. """ extra_dims(x::PencilArray) = x.extra_dims extra_dims(x::PencilArrayCollection) = _apply(extra_dims, x) """ sizeof_global(x::PencilArray) sizeof_global(x::PencilArrayCollection) Global size of array in bytes. """ sizeof_global(x::PencilArray) = prod(size_global(x)) * sizeof(eltype(x)) sizeof_global(x::PencilArrayCollection) = sum(sizeof_global, x) """ range_local(x::PencilArray, [order = LogicalOrder()]) range_local(x::PencilArrayCollection, [order = LogicalOrder()]) Local data range held by the `PencilArray`. By default the dimensions are returned in logical order. """ range_local(x::MaybePencilArrayCollection, args...; kw...) = (range_local(pencil(x), args...; kw...)..., map(Base.OneTo, extra_dims(x))...) """ range_remote(x::PencilArray, coords, [order = LogicalOrder()]) range_remote(x::PencilArrayCollection, coords, [order = LogicalOrder()]) Get data range held by the `PencilArray` in a given MPI process. The location of the MPI process in the topology is determined by the `coords` argument, which can be given as a linear or Cartesian index. See [`range_remote(::Pencil, ...)`](@ref range_remote(::Pencil, ::Integer, ::LogicalOrder)) variant for details. """ range_remote(x::MaybePencilArrayCollection, args...) = (range_remote(pencil(x), args...)..., map(Base.OneTo, extra_dims(x))...) """ get_comm(x::PencilArray) get_comm(x::PencilArrayCollection) Get MPI communicator associated to a pencil-distributed array. """ get_comm(x::MaybePencilArrayCollection) = get_comm(pencil(x)) """ permutation(::Type{<:PencilArray}) permutation(x::PencilArray) permutation(x::PencilArrayCollection) Get index permutation associated to the given `PencilArray`. Returns `NoPermutation()` if there is no associated permutation. """ function permutation end function permutation(::Type{A}) where {A <: PencilArray} P = pencil_type(A) perm = permutation(P) E = ndims_extra(A) append(perm, Val(E)) end permutation(x::PencilArray) = permutation(typeof(x)) permutation(x::PencilArrayCollection) = _apply(permutation, x) """ topology(x::PencilArray) topology(x::PencilArrayCollection) Get [`MPITopology`](@ref) associated to a `PencilArray`. """ topology(x::MaybePencilArrayCollection) = topology(pencil(x)) ## Common array operations # We try to avoid falling onto the generic AbstractArray interface, because it # generally uses scalar indexing which is not liked by GPU arrays. Base.zero(x::PencilArray) = fill!(similar(x), zero(eltype(x))) function _check_compatible_arrays(x::PencilArray, y::PencilArray) # The condition is stronger than needed, but it's pretty common for arrays # to share the same Pencil, and it's more efficient to compare this way. pencil(x) === pencil(y) || throw(ArgumentError("arrays are not compatible")) end function Base.copyto!(x::PencilArray, y::PencilArray) _check_compatible_arrays(x, y) copyto!(parent(x), parent(y)) x end # Should this be an equality across all MPI processes? function Base.:(==)(x::PencilArray, y::PencilArray) _check_compatible_arrays(x, y) parent(x) == parent(y) end function Base.isapprox(x::PencilArray, y::PencilArray; kws...) _check_compatible_arrays(x, y) isapprox(parent(x), parent(y); kws...) end function Base.fill!(A::PencilArray, x) fill!(parent(A), x) A end """ typeof_ptr(x::AbstractArray) typeof_ptr(x::PencilArray) Get the type of pointer to the underlying array of a `PencilArray` or `AbstractArray`. """ typeof_ptr(A::AbstractArray) = typeof(pointer(A)).name.wrapper """ typeof_array(x::Pencil) typeof_array(x::PencilArray) typeof_array(x::AbstractArray) Get the type of array (without the element type) so it can be used as a constructor. """ typeof_array(A::PencilArray) = typeof_array(parent(A)) """ localgrid(x::PencilArray, args...) Equivalent of `localgrid(pencil(x), args...)`. """ LocalGrids.localgrid(A::PencilArray, args...) = localgrid(pencil(A), args...)
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
3097
# The broadcasting logic is quite tricky due to possible dimension permutations. # The basic idea is that, when permutations are enabled, PencilArrays broadcast # using their dimensions in memory order. # This allows things like `u .+ parent(u)` even when `u` is a PencilArray with # permuted dimensions. # In this case, `u` and `parent(u)` may have different sizes [e.g. `(4, 6, 7)` # vs `(6, 7, 4)`] but they're still allowed to broadcast, which may not be very # natural or intuitive. using Base.Broadcast: Broadcast, BroadcastStyle, Broadcasted, AbstractArrayStyle, DefaultArrayStyle struct PencilArrayStyle{N} <: AbstractArrayStyle{N} end struct PencilArrayBroadcastable{T, N, A <: PencilArray{T, N}} data :: A PencilArrayBroadcastable(u::PencilArray{T, N}) where {T, N} = new{T, N, typeof(u)}(u) end _actual_parent(u::PencilArray) = parent(u) _actual_parent(bc::PencilArrayBroadcastable) = _actual_parent(bc.data) Broadcast.broadcastable(x::PencilArray) = PencilArrayBroadcastable(x) Base.eltype(::Type{<:PencilArrayBroadcastable{T}}) where {T} = T Base.size(bc::PencilArrayBroadcastable) = size(_actual_parent(bc)) function Broadcast.materialize!(u::PencilArray, bc_in::Broadcasted) dest = _actual_parent(u) bc = _unwrap_pa(bc_in) Broadcast.materialize!(dest, bc) u end # When materialising the broadcast, we unwrap all arrays wrapped by PencilArrays. # This is to make sure that the right `copyto!` is called. # For GPU arrays, this enables the use of the `copyto!` implementation in # GPUArrays.jl, avoiding scalar indexing. function Base.copyto!(dest_in::PencilArray, bc_in::Broadcasted{Nothing}) dest = _actual_parent(dest_in) bc = _unwrap_pa(bc_in) copyto!(dest, bc) dest_in end function _unwrap_pa(bc::Broadcasted{Style}) where {Style} args = map(_unwrap_pa, bc.args) axs = axes(bc) if Style === Nothing Broadcasted{Nothing}(bc.f, args, axs) # used by copyto! else Broadcasted(bc.f, args, axs) # used by materialize! end end _unwrap_pa(u::PencilArrayBroadcastable) = _actual_parent(u) _unwrap_pa(u) = u BroadcastStyle(::Type{<:PencilArrayBroadcastable{T, N, <:PencilArray}}) where {T, N} = PencilArrayStyle{N}() # PencilArrayStyle wins against other array styles BroadcastStyle(style::PencilArrayStyle, ::AbstractArrayStyle) = style # This is needed to avoid ambiguities BroadcastStyle(style::PencilArrayStyle, ::DefaultArrayStyle) = style function Base.similar( bc::Broadcasted{<:PencilArrayStyle}, ::Type{T}, ) where {T} br = find_pa(bc) :: PencilArrayBroadcastable A = br.data axs_a = permutation(A) * axes(A) # in memory order axs_b = axes(bc) axs_a == axs_b || throw(DimensionMismatch("arrays cannot be broadcast; got axes $axs_a and $axs_b")) similar(A, T) end # Find PencilArray among broadcast arguments. find_pa(bc::Broadcasted) = find_pa(bc.args) find_pa(args::Tuple) = find_pa(find_pa(args[1]), Base.tail(args)) find_pa(x) = x find_pa(::Any, rest) = find_pa(rest) find_pa(A::PencilArrayBroadcastable, rest) = A
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1037
# We make LinearIndices(::PencilArray) return a PermutedLinearIndices, which # takes index permutation into account. Base.LinearIndices(A::PencilArray) = PermutedLinearIndices(LinearIndices(parent(A)), permutation(A)) function Base.LinearIndices(g::GlobalPencilArray) p = permutation(g) axs_log = axes(g) # offset axes in logical (unpermuted) order axs_mem = p * axs_log # offset axes in memory (permuted) order PermutedLinearIndices(LinearIndices(axs_mem), p) end # We make CartesianIndices(::PencilArray) return a PermutedCartesianIndices, # which loops faster (in memory order) when there are index permutations. Base.CartesianIndices(A::PencilArray) = PermutedCartesianIndices(CartesianIndices(parent(A)), permutation(A)) function Base.CartesianIndices(g::GlobalPencilArray) p = permutation(g) axs_log = axes(g) # offset axes in logical (unpermuted) order axs_mem = p * axs_log # offset axes in memory (permuted) order PermutedCartesianIndices(CartesianIndices(axs_mem), p) end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
3102
""" gather(x::PencilArray{T, N}, [root::Integer=0]) -> Array{T, N} Gather data from all MPI processes into one (big) array. Data is received by the `root` process. Returns the full array on the `root` process, and `nothing` on the other processes. Note that `gather` always returns a base `Array`, even when the `PencilArray` wraps a different kind of array (e.g. a `CuArray`). This function can be useful for testing, but it shouldn't be used with very large datasets! """ function gather(x::PencilArray{T,N}, root::Integer=0) where {T, N} timer = Pencils.timer(pencil(x)) @timeit_debug timer "gather" begin # TODO reduce allocations! see `transpose_impl!` comm = get_comm(x) rank = MPI.Comm_rank(comm) mpi_tag = 42 pen = pencil(x) extra_dims = PencilArrays.extra_dims(x) # Each process sends its data to the root process. # If the local indices are permuted, the permutation is reverted before # sending the data. data = let perm = permutation(pen) if isidentity(perm) parent(x) else # Apply inverse permutation. p = append(inv(perm), Val(length(extra_dims))) permutedims(parent(x), Tuple(p)) # creates copy! end end # The output is a regular CPU array. DestArray = Array{T} # For GPU arrays, this transfers data to the CPU (allocating a new Array). # If `data` is already an Array{T}, this is non-allocating. data_cpu = convert(DestArray, data) if rank != root # Wait for data to be sent, then return. buf = MPI.Buffer(data_cpu) GC.@preserve buf begin send_req = MPI.Isend(buf, comm, MPI.UnsafeRequest(); dest = root, tag = mpi_tag) MPI.Wait(send_req) end return nothing end # Receive data (root only). topo = pen.topology Nproc = length(topo) recv = Vector{Array{T,N}}(undef, Nproc) recv_req = MPI.UnsafeMultiRequest(Nproc) dest = DestArray(undef, size_global(x)) # output array root_index = -1 GC.@preserve recv begin for n = 1:Nproc # Global data range that I will receive from process n. rrange = pen.axes_all[n] rdims = length.(rrange) src_rank = topo.ranks[n] # actual rank of sending process if src_rank == root root_index = n else # TODO avoid allocation? recv[n] = Array{T,N}(undef, rdims..., extra_dims...) MPI.Irecv!(recv[n], comm, recv_req[n]; source = src_rank, tag = mpi_tag) end end # Unpack data. # 1. Copy local data. colons_extra_dims = ntuple(n -> Colon(), Val(length(extra_dims))) dest[pen.axes_local..., colons_extra_dims...] .= data_cpu # 2. Copy remote data. for m = 2:Nproc n = MPI.Waitany(recv_req) rrange = pen.axes_all[n] dest[rrange..., colons_extra_dims...] .= recv[n] end end # GC.@preserve recv end # @timeit_debug dest end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1156
""" GlobalPencilArray{T,N} <: AbstractArray{T,N} Alias for an `OffsetArray` wrapping a [`PencilArray`](@ref). Unlike `PencilArray`s, `GlobalPencilArray`s take *global* indices, which in general don't start at 1 for a given MPI process. The [`global_view`](@ref) function should be used to create a `GlobalPencilArray` from a `PencilArray`. """ const GlobalPencilArray{T,N} = OffsetArray{T,N,A} where {A <: PencilArray} """ global_view(x::PencilArray) Create an [`OffsetArray`](https://github.com/JuliaArrays/OffsetArrays.jl) of a `PencilArray` that takes global indices in logical order. """ function global_view(x::PencilArray) r = range_local(x, LogicalOrder()) offsets = first.(r) .- 1 xo = OffsetArray(x, offsets) @assert parent(xo) === x # OffsetArray shouldn't create a copy... xo :: GlobalPencilArray end permutation(x::GlobalPencilArray) = permutation(parent(x)) Base.similar(x::GlobalPencilArray, ::Type{S}) where {S} = global_view(similar(parent(x), S)) # Account for index permutation in global views. @inline Base._sub2ind(x::GlobalPencilArray, I...) = Base._sub2ind(parent(x), (I .- x.offsets)...)
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
4500
## Definition of AbstractManyPencilArray """ AbstractManyPencilArray{N,M} Abstract type specifying a container holding `M` different [`PencilArray`](@ref) views to the same underlying. All views share the same dimensionality `N`. In principle, their element types can be different. A concrete implementation, [`ManyPencilArray`](@ref), is proposed in which all arrays have the same element type `T`. """ abstract type AbstractManyPencilArray{N,M} end Base.ndims(::AbstractManyPencilArray{N}) where {N} = N """ length(A::AbstractManyPencilArray) Returns the number of [`PencilArray`](@ref)s wrapped by `A`. """ Base.length(::AbstractManyPencilArray{N,M}) where {N,M} = M """ Tuple(A::AbstractManyPencilArray) -> (u1, u2, …) Returns the [`PencilArray`](@ref)s wrapped by `A`. This can be useful for iterating over all the wrapped arrays. """ @inline Base.Tuple(A::AbstractManyPencilArray) = A.arrays """ first(A::AbstractManyPencilArray) Returns the first [`PencilArray`](@ref) wrapped by `A`. """ Base.first(A::AbstractManyPencilArray) = first(A.arrays) """ last(A::AbstractManyPencilArray) Returns the last [`PencilArray`](@ref) wrapped by `A`. """ Base.last(A::AbstractManyPencilArray) = last(A.arrays) """ getindex(A::AbstractManyPencilArray, ::Val{i}) getindex(A::AbstractManyPencilArray, i::Integer) Returns the i-th [`PencilArray`](@ref) wrapped by `A`. If possible, the `Val{i}` form should be preferred, as it ensures that the full type of the returned `PencilArray` is known by the compiler. See also [`first(::AbstractManyPencilArray)`](@ref), [`last(::AbstractManyPencilArray)`](@ref). # Example ```julia A = ManyPencilArray(pencil1, pencil2, pencil3) # Get the PencilArray associated to `pencil2`. u2 = A[2] u2 = A[Val(2)] ``` """ Base.getindex(A::AbstractManyPencilArray, ::Val{i}) where {i} = _getindex(Val(i), A.arrays...) @inline Base.getindex(A::AbstractManyPencilArray, i) = A[Val(i)] @inline function _getindex(::Val{i}, a, t::Vararg) where {i} i :: Integer i <= 0 && throw(BoundsError("index must be >= 1")) i == 1 && return a _getindex(Val(i - 1), t...) end # This will happen if the index `i` intially passed is too large. @inline _getindex(::Val) = throw(BoundsError("invalid index")) # ====================================================================== # ## Concrete implementation: ManyPencilArray """ ManyPencilArray{T,N,M} <: AbstractManyPencilArray{N,M} Container holding `M` different [`PencilArray`](@ref) views to the same underlying data buffer. All views share the same element type `T` and dimensionality `N`. This can be used to perform in-place data transpositions with [`transpose!`](@ref Transpositions.transpose!). --- ManyPencilArray{T}(undef, pencils...; extra_dims=()) Create a `ManyPencilArray` container that can hold data of type `T` associated to all the given [`Pencil`](@ref)s. The optional `extra_dims` argument is the same as for [`PencilArray`](@ref). """ struct ManyPencilArray{ T, # element type of each array N, # number of dimensions of each array (including extra_dims) M, # number of arrays Arrays <: Tuple{Vararg{PencilArray,M}}, DataVector <: AbstractVector{T}, } <: AbstractManyPencilArray{N, M} data :: DataVector arrays :: Arrays function ManyPencilArray{T}( init, pfirst::Pencil{Np}, pens::Vararg{Pencil{Np}}; extra_dims::Dims=(), ) where {Np,T} pencils = (pfirst, pens...) BufType = typeof_array(pfirst) @assert all(p -> typeof_array(p) === BufType, pens) data_length = max(length.(pencils)...) * prod(extra_dims) data = BufType{T}(init, data_length) arrays = _make_arrays(data, extra_dims, pencils...) N = Np + length(extra_dims) M = length(pencils) new{T, N, M, typeof(arrays), typeof(data)}(data, arrays) end end function _make_arrays(data::DenseVector{T}, extra_dims::Dims, p::Pencil, pens::Vararg{Pencil}) where {T} dims = (size_local(p, MemoryOrder())..., extra_dims...) n = prod(dims) @assert n == length_local(p) * prod(extra_dims) arr = unsafe_wrap(typeof_array(data), pointer(data), dims) # fixes efficiency issues with vec = view(data, Base.OneTo(n)) A = PencilArray(p, arr) (A, _make_arrays(data, extra_dims, pens...)...) end _make_arrays(::DenseVector, ::Dims) = () Base.eltype(::ManyPencilArray{T}) where {T} = T
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
531
using Random function Random.rand!(rng::AbstractRNG, u::PencilArray) rand!(rng, parent(u)) u end # This is to workaround scalar indexing issue with GPUArrays (or at least with JLArrays). # GPUArrays.jl defines rand!(::AbstractRNG, ::AnyGPUArray) but not rand!(::AnyGPUArray), # which ends up calling a generic rand! implementation in Julia base. Random.rand!(u::PencilArray) = rand!(Random.default_rng(), u) function Random.randn!(rng::AbstractRNG, u::PencilArray, args...) randn!(rng, parent(u), args...) u end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1509
# We force specialisation on each function to avoid (tiny) allocations. # # Note that, for mapreduce, we can assume that the operation is commutative, # which allows MPI to freely reorder operations. # # We also define mapfoldl (and mapfoldr) for completeness, even though the global # operations are not strictly performed from left to right (or from right to # left), since each process locally reduces first. for (func, commutative) in [:mapreduce => true, :mapfoldl => false, :mapfoldr => false] @eval function Base.$func( f::F, op::OP, u::PencilArray, etc::Vararg{PencilArray}; kws..., ) where {F, OP} foreach(v -> _check_compatible_arrays(u, v), etc) comm = get_comm(u) ups = map(parent, (u, etc...)) rlocal = $func(f, op, ups...; kws...) op_mpi = MPI.Op(op, typeof(rlocal); iscommutative = $commutative) MPI.Allreduce(rlocal, op_mpi, comm) end # Make things work with zip(u::PencilArray, v::PencilArray, ...) @eval function Base.$func( f::F, op::OP, z::Iterators.Zip{<:Tuple{Vararg{PencilArray}}}; kws..., ) where {F, OP} g(args...) = f(args) $func(g, op, z.is...; kws...) end end function Base.any(f::F, u::PencilArray) where {F <: Function} xlocal = any(f, parent(u)) :: Bool MPI.Allreduce(xlocal, |, get_comm(u)) end function Base.all(f::F, u::PencilArray) where {F <: Function} xlocal = all(f, parent(u)) :: Bool MPI.Allreduce(xlocal, &, get_comm(u)) end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1875
""" length_local(x::PencilArray) Get linear length of the local data held by a `PencilArray`. """ length_local(x::Union{<:PencilArray, <:GlobalPencilArray}) = length(parent(x)) """ length_global(x::PencilArray) Get linear length of the global data held by a `PencilArray`. """ length_global(x::Union{<:PencilArray, <:GlobalPencilArray}) = prod(size_global(x)) """ size(x::PencilArray) Return the *local* dimensions of a `PencilArray` in logical order. Defined as `size_local(x, LogicalOrder())`. """ Base.size(x::Union{<:PencilArray, <:GlobalPencilArray}) = size_local(x, LogicalOrder()) """ length(x::PencilArray) Get the *local* number of elements stored in the `PencilArray`. Equivalent to `length_local(x)`. """ Base.length(x::Union{<:PencilArray, <:GlobalPencilArray}) = length(parent(x)) """ size_local(x::PencilArray, [order = LogicalOrder()]) size_local(x::PencilArrayCollection, [order = LogicalOrder()]) Local dimensions of the data held by the `PencilArray`. See also [`size_local(::Pencil)`](@ref). """ size_local(x::MaybePencilArrayCollection, args...; kwargs...) = (size_local(pencil(x), args...; kwargs...)..., extra_dims(x)...) size_local(x::GlobalPencilArray, args...; kwargs...) = size_local(parent(x), args...; kwargs...) """ size_global(x::PencilArray, [order = LogicalOrder()]) size_global(x::PencilArrayCollection, [order = LogicalOrder()]) Global dimensions associated to the given array. By default, the logical dimensions of the dataset are returned. If `order = LogicalOrder()`, this is the same as `size(x)`. See also [`size_global(::Pencil)`](@ref). """ size_global(x::MaybePencilArrayCollection, args...; kw...) = (size_global(pencil(x), args...; kw...)..., extra_dims(x)...) size_global(x::GlobalPencilArray, args...; kwargs...) = size_global(parent(x), args...; kwargs...)
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
768
module LocalGrids import ..Permutations: permutation using ..PermutedIndices using Base.Broadcast using Base: @propagate_inbounds using StaticPermutations export localgrid """ AbstractLocalGrid{N, Perm <: AbstractPermutation} Abstract type specifying the local portion of an `N`-dimensional grid. """ abstract type AbstractLocalGrid{N, Perm <: AbstractPermutation} end Base.ndims(::Type{<:AbstractLocalGrid{N}}) where {N} = N Base.ndims(g::AbstractLocalGrid) = ndims(typeof(g)) permutation(g::AbstractLocalGrid) = getfield(g, :perm) """ LocalGrids.components(g::LocalRectilinearGrid) -> (xs, ys, zs, ...) Get coordinates associated to the current MPI process. """ components(g::AbstractLocalGrid) = getfield(g, :coords) include("rectilinear.jl") end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
5595
""" LocalRectilinearGrid{N, Perm} <: AbstractLocalGrid{N, Perm} Defines the local portion of a rectilinear grid in `N` dimensions. A rectilinear grid is represented by a set of orthogonal coordinates `(x, y, z, ...)`. """ struct LocalRectilinearGrid{ N, Perm <: AbstractPermutation, LocalCoords <: Tuple{Vararg{AbstractVector, N}}, } <: AbstractLocalGrid{N, Perm} coords :: LocalCoords # in logical order perm :: Perm end """ localgrid((xs, ys, ...), perm = NoPermutation()) -> LocalRectilinearGrid Create a [`LocalRectilinearGrid`](@ref) from a set of orthogonal coordinates `(xs, ys, ...)`, where each element is an `AbstractVector`. Optionally, one can pass a static permutation (as in `Permutation(2, 1, 3)`) to change the order in which the coordinates are iterated. """ function localgrid( coords::Tuple{Vararg{AbstractVector}}, perm::AbstractPermutation = NoPermutation(), ) LocalRectilinearGrid(coords, perm) end # Axes in logical order Base.axes(g::LocalRectilinearGrid) = map(xs -> axes(xs, 1), components(g)) # These are needed for `collect` Base.length(g::LocalRectilinearGrid) = prod(xs -> length(xs), components(g)) @generated function Base.eltype( ::Type{<:LocalRectilinearGrid{N, P, VecTuple}} ) where {N, P, VecTuple} types = Tuple{map(eltype, VecTuple.parameters)...} :( $types ) end # We define this wrapper type to be able to control broadcasting on separate # grid components (x, y, ...). struct RectilinearGridComponent{ i, # dimension of this coordinate T, FullGrid <: LocalRectilinearGrid, # dataset dimension Coords <: AbstractVector{T}, } <: AbstractVector{T} grid :: FullGrid data :: Coords @inline function RectilinearGridComponent( g::LocalRectilinearGrid, ::Val{i}, ) where {i} data = components(g)[i] new{i, eltype(data), typeof(g), typeof(data)}(g, data) end end function Base.show(io::IO, xs::RectilinearGridComponent{i}) where {i} print(io, "Component i = $i of ") summary(io, xs.grid) print(io, ": ", xs.data) nothing end Base.IndexStyle(::Type{<:RectilinearGridComponent}) = IndexLinear() Base.parent(xs::RectilinearGridComponent) = xs.data Base.size(xs::RectilinearGridComponent) = size(parent(xs)) @propagate_inbounds Base.getindex(xs::RectilinearGridComponent, i) = parent(xs)[i] @inline Base.getindex(g::LocalRectilinearGrid, i::Val) = RectilinearGridComponent(g, i) @inline Base.getindex(g::LocalRectilinearGrid, i::Int) = g[Val(i)] @propagate_inbounds function Base.getindex( g::LocalRectilinearGrid{N}, inds::Vararg{Integer, N}, ) where {N} @boundscheck checkbounds(CartesianIndices(axes(g)), inds...) map((xs, i) -> @inbounds(xs[i]), components(g), inds) end @propagate_inbounds Base.getindex(g::LocalRectilinearGrid, I::CartesianIndex) = g[Tuple(I)...] @inline function Base.CartesianIndices(g::LocalRectilinearGrid) perm = permutation(g) axs = perm * axes(g) # axes in memory order inds = CartesianIndices(axs) # each index inds[i] is in memory order PermutedCartesianIndices(inds, perm) end # This is similar to definition of pairs(::IndexCartesian, ::AbstractArray) # TODO do the same for IndexLinear? # (not that obvious, because getindex(g, ::Int) already has a different meaning...) Base.pairs(::IndexCartesian, g::LocalRectilinearGrid) = Base.Pairs(g, CartesianIndices(g)) # This is to avoid default definition in base/abstractdict.jl, which uses # generators and can be much slower. Base.pairs(g::LocalRectilinearGrid) = pairs(IndexCartesian(), g) # This is used by eachindex(::LocalRectilinearGrid) @inline Base.keys(g::LocalRectilinearGrid) = CartesianIndices(g) @inline function Base.iterate(g::LocalRectilinearGrid) perm = permutation(g) coords_mem = perm * components(g) # iterate in memory order # Create and advance actual iterator iter = Iterators.product(coords_mem...) stuff = iterate(iter) stuff === nothing && return nothing x⃗_mem, next = stuff x⃗_log = perm \ x⃗_mem # current coordinate in logical order (x, y, z, ...) x⃗_log, (iter, next) end @inline function Base.iterate(g::LocalRectilinearGrid, state) perm = permutation(g) iter = first(state) stuff = iterate(state...) stuff === nothing && return nothing x⃗_mem, next = stuff x⃗_log = perm \ x⃗_mem # current coordinate in logical order (x, y, z, ...) x⃗_log, (iter, next) end function Broadcast.broadcastable(xs::RectilinearGridComponent{i}) where {i} g = xs.grid N = ndims(g) perm = permutation(g) data = xs.data dims = ntuple(j -> j == i ? length(data) : 1, Val(N)) reshape(xs.data, perm * dims) end function Base.show(io::IO, g::LocalRectilinearGrid{N}) where {N} print(io, nameof(typeof(g)), "{$N} with ") perm = permutation(g) isidentity(perm) || print(io, perm, " and ") print(io, "coordinates:") foreach(enumerate(components(g))) do (n, xs) print(io, "\n ($n) $xs") end nothing end function Base.summary(io::IO, g::LocalRectilinearGrid) N = ndims(g) print(io, nameof(typeof(g)), "{$N}") nothing end # For convenience when working with up to three dimensions. @inline function Base.getproperty(g::LocalRectilinearGrid, name::Symbol) if ndims(g) ≥ 1 && name === :x g[Val(1)] elseif ndims(g) ≥ 2 && name === :y g[Val(2)] elseif ndims(g) ≥ 3 && name === :z g[Val(3)] else getfield(g, name) end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
2205
module PencilIO using ..PencilArrays import ..PencilArrays: MaybePencilArrayCollection, collection_size, collection using MPI using StaticArrays: SVector using TimerOutputs """ ParallelIODriver Abstract type specifying a parallel I/O driver. """ abstract type ParallelIODriver end """ open([f::Function], driver::ParallelIODriver, filename, comm::MPI.Comm; keywords...) Open parallel file using the chosen driver. ## Keyword arguments Supported keyword arguments include: - open mode arguments: `read`, `write`, `create`, `append` and `truncate`. These have the same behaviour and defaults as `Base.open`. Some of them may be ignored by the chosen driver (see driver-specific docs). - as in [`MPI.File.open`](https://juliaparallel.github.io/MPI.jl/latest/io/#MPI.File.open), other arguments are passed via an `MPI.Info` object. Note that driver-specific options (such as HDF5 property lists) must be passed to each driver's constructor. ## See also - [`open(::MPIIODriver)`](@ref) for MPI-IO specific options - [`open(::PHDF5Driver)`](@ref) for HDF5 specific options """ function Base.open(::ParallelIODriver) end function Base.open(f::Function, driver::ParallelIODriver, args...; kw...) fid = open(driver, args...; kw...) try f(fid) finally close(fid) end end # Metadata to be attached to each dataset (as HDF5 attributes or in an external # metadata file). function metadata(x::MaybePencilArrayCollection) pen = pencil(x) topo = topology(x) edims = extra_dims(x) # this may be an empty tuple, with no type information ( permutation = Tuple(permutation(x)), extra_dims = SVector{length(edims),Int}(edims), decomposed_dims = decomposition(pen), process_dims = size(topo), ) end function keywords_to_open(; read=nothing, write=nothing, create=nothing, truncate=nothing, append=nothing, other_kws...) flags = Base.open_flags(read=read, write=write, create=create, truncate=truncate, append=append) flags, other_kws end include("mpi_io.jl") include("hdf5.jl") # actual implementation is in ../../ext/PencilArraysHDF5Ext.jl end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
5049
# Note: the actual implementation is in the PencilArraysHDF5Ext.jl package extension. export PHDF5Driver """ PHDF5Driver(; fcpl = HDF5.FileCreateProperties(), fapl = HDF5.FileAccessProperties()) Parallel HDF5 driver using the HDF5.jl package. HDF5 file creation and file access property lists may be specified via the `fcpl` and `fapl` keyword arguments respectively. Note that the MPIO file access property list does not need to be set, as this is done automatically by this driver when the file is opened. """ struct PHDF5Driver{ FileCreateProperties, # type not known, since HDF5 hasn't been loaded at this point... FileAccessProperties, } <: ParallelIODriver fcpl :: FileCreateProperties fapl :: FileAccessProperties # "Private" constructor, called in package extension (PencilArraysHDF5Ext.jl). global _PHDF5Driver(a, b) = new{typeof(a), typeof(b)}(a, b) end """ hdf5_has_parallel() -> Bool Returns `true` if the loaded HDF5 libraries support MPI-IO. This is exactly the same as `HDF5.has_parallel()`, and is left here for compatibility with previous versions. """ function hdf5_has_parallel end """ open([f::Function], driver::PHDF5Driver, filename, comm::MPI.Comm; keywords...) Open parallel file using the Parallel HDF5 driver. See [`open(::ParallelIODriver)`](@ref) for common options for all drivers. Driver-specific options may be passed via the `driver` argument. See [`PHDF5Driver`](@ref) for details. """ function Base.open(::PHDF5Driver) end """ setindex!( g::Union{HDF5.File, HDF5.Group}, x::MaybePencilArrayCollection, name::AbstractString; chunks = false, collective = true, prop_lists..., ) Write [`PencilArray`](@ref) or [`PencilArrayCollection`](@ref) to parallel HDF5 file. For performance reasons, the memory layout of the data is conserved. In other words, if the dimensions of a `PencilArray` are permuted in memory, then the data is written in permuted form. In the case of a `PencilArrayCollection`, each array of the collection is written as a single component of a higher-dimension dataset. # Optional arguments - if `chunks = true`, data is written in chunks, with roughly one chunk per MPI process. This may (or may not) improve performance in parallel filesystems. - if `collective = true`, the dataset is written collectivelly. This is usually recommended for performance. - additional property lists may be specified by key-value pairs in `prop_lists`, following the [HDF5.jl syntax](https://juliaio.github.io/HDF5.jl/stable/#Passing-parameters). These property lists take precedence over keyword arguments. For instance, if the `dxpl_mpio = :collective` option is passed, then the value of the `collective` argument is ignored. # Property lists Property lists are passed to [`h5d_create`](https://portal.hdfgroup.org/display/HDF5/H5D_CREATE2) and [`h5d_write`](https://portal.hdfgroup.org/display/HDF5/H5D_WRITE). The following property types are recognised: - [link creation properties](https://portal.hdfgroup.org/display/HDF5/Attribute+and+Link+Creation+Properties), - [dataset creation properties](https://portal.hdfgroup.org/display/HDF5/Dataset+Creation+Properties), - [dataset access properties](https://portal.hdfgroup.org/display/HDF5/Dataset+Access+Properties), - [dataset transfer properties](https://portal.hdfgroup.org/display/HDF5/Dataset+Transfer+Properties). # Example Open a parallel HDF5 file and write some `PencilArray`s to the file: ```julia pencil = Pencil(#= ... =#) u = PencilArray{Float64}(undef, pencil) v = similar(u) # [fill the arrays with interesting values...] comm = get_comm(u) open(PHDF5Driver(), "filename.h5", comm, write=true) do ff ff["u", chunks=true] = u ff["uv"] = (u, v) # this is a two-component PencilArrayCollection (assuming equal dimensions of `u` and `v`) end ``` """ function Base.setindex!(::PHDF5Driver) end # this is just for generating the documentation """ read!(g::Union{HDF5.File, HDF5.Group}, x::MaybePencilArrayCollection, name::AbstractString; collective=true, prop_lists...) Read [`PencilArray`](@ref) or [`PencilArrayCollection`](@ref) from parallel HDF5 file. See [`setindex!`](@ref) for details on optional arguments. # Property lists Property lists are passed to [`h5d_open`](https://portal.hdfgroup.org/display/HDF5/H5D_OPEN2) and [`h5d_read`](https://portal.hdfgroup.org/display/HDF5/H5D_READ). The following property types are recognised: - [dataset access properties](https://portal.hdfgroup.org/display/HDF5/Dataset+Access+Properties), - [dataset transfer properties](https://portal.hdfgroup.org/display/HDF5/Dataset+Transfer+Properties). # Example Open a parallel HDF5 file and read some `PencilArray`s: ```julia pencil = Pencil(#= ... =#) u = PencilArray{Float64}(undef, pencil) v = similar(u) comm = get_comm(u) info = MPI.Info() open(PHDF5Driver(), "filename.h5", comm, read=true) do ff read!(ff, u, "u") read!(ff, (u, v), "uv") end ``` """ function Base.read!(::PHDF5Driver) end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
13653
export MPIIODriver import JSON3, VersionParsing # Version of internal MPIIO format. # If the version is updated, it should match the upcoming PencilArrays version. const MPIIO_VERSION = v"0.9.4" const IS_LITTLE_ENDIAN = ENDIAN_BOM == 0x04030201 """ MPIIODriver(; sequential = false, uniqueopen = false, deleteonclose = false) MPI-IO driver using the MPI.jl package. Keyword arguments are passed to [`MPI.File.open`](https://juliaparallel.github.io/MPI.jl/latest/io/#MPI.File.open). This driver writes binary data along with a JSON file containing metadata. When reading data, this JSON file is expected to be present along with the raw data file. """ Base.@kwdef struct MPIIODriver <: ParallelIODriver sequential :: Bool = false uniqueopen :: Bool = false deleteonclose :: Bool = false end const MetadataDict = Dict{Symbol,Any} const DatasetKey = Symbol const DatasetDict = Dict{DatasetKey,Any} """ MPIFile Wraps a `MPI.FileHandle`, also including file position information and metadata. File position is updated when reading and writing data, and is independent of the individual and shared file pointers defined by MPI. """ mutable struct MPIFile file :: MPI.FileHandle comm :: MPI.Comm filename :: String meta :: MetadataDict position :: Int # file position in bytes write_mode :: Bool MPIFile(file, comm, filename, meta; write) = new(file, comm, filename, meta, 0, write) end function MPIFile(comm::MPI.Comm, filename; kws...) flags, other_kws = keywords_to_open(; kws...) meta = if flags.write && !flags.append mpiio_init_metadata() else metafile = filename_meta(filename) if isfile(metafile) mpiio_load_metadata(metafile) else # Metadata file not found. # Assuming file contains a single dataset. MetadataDict() # empty dict end end file = MPIFile( MPI.File.open(comm, filename; kws...), comm, filename, meta, write=flags.write, ) if flags.append # Synchronise position in file. pos = MPI.File.get_position_shared(parent(file)) seek(file, pos) end file end mpiio_init_metadata() = MetadataDict( :driver => (type = "MPIIODriver", version = string(MPIIO_VERSION)), :datasets => DatasetDict(), ) function mpiio_load_metadata(filename) isfile(filename) || error("metadata file not found: $filename") meta = open(JSON3.read, filename, "r") # Convert from specific JSON3 type to Dict, so that datasets can be appended. MetadataDict( :driver => meta.driver, :datasets => DatasetDict(meta.datasets), ) end function Base.close(ff::MPIFile) if should_write_metadata(ff) write_metadata(ff, metadata(ff)) end close(parent(ff)) end function write_metadata(ff, meta) MPI.Comm_rank(ff.comm) == 0 || return open(filename_meta(ff), "w") do io JSON3.pretty(io, JSON3.write(meta)) write(io, '\n') end nothing end filename_meta(fname) = string(fname, ".json") filename_meta(ff::MPIFile) = filename_meta(get_filename(ff)) metadata(ff::MPIFile) = ff.meta should_write_metadata(ff::MPIFile) = ff.write_mode get_filename(ff::MPIFile) = ff.filename Base.parent(ff::MPIFile) = ff.file Base.position(ff::MPIFile) = ff.position Base.skip(ff::MPIFile, offset) = ff.position += offset Base.seek(ff::MPIFile, pos) = ff.position = pos mpiio_version(ff::MPIFile) = mpiio_version(metadata(ff)) mpiio_version(meta::MetadataDict) = VersionParsing.vparse(string(meta[:driver][:version])) """ open([f::Function], driver::MPIIODriver, filename, comm::MPI.Comm; keywords...) Open parallel file using the MPI-IO driver. See [`open(::ParallelIODriver)`](@ref) for common options for all drivers. Driver-specific options may be passed via the `driver` argument. See [`MPIIODriver`](@ref) for details. ## Driver notes - the `truncate` keyword is ignored. """ function Base.open(::MPIIODriver) end Base.open(D::MPIIODriver, filename::AbstractString, comm::MPI.Comm; keywords...) = MPIFile( comm, filename; sequential=D.sequential, uniqueopen=D.uniqueopen, deleteonclose=D.deleteonclose, keywords..., ) """ setindex!(file::MPIFile, x, name; chunks = false, collective = true, infokws...) Write [`PencilArray`](@ref) to binary file using MPI-IO. The input `x` can be a `PencilArray` or a tuple of `PencilArray`s. # Optional arguments - if `chunks = true`, data is written in contiguous blocks, with one block per process. Otherwise, each process writes to discontiguous sections of disk, using `MPI.File.set_view!` and custom datatypes. Note that discontiguous I/O (the default) is more convenient, as it allows to read back the data using a different number or distribution of MPI processes. - if `collective = true`, the dataset is written collectivelly. This is usually recommended for performance. - when writing discontiguous blocks, additional keyword arguments are passed via an `MPI.Info` object to `MPI.File.set_view!`. This is ignored if `chunks = true`. """ function Base.setindex!( ff::MPIFile, x::MaybePencilArrayCollection, name; collective=true, chunks=false, kw..., ) file = parent(ff) offset = position(ff) for u in collection(x) # TODO write all collection components at once (should be easier in the # discontiguous case) if chunks write_contiguous(file, u; offset=offset, collective=collective, kw...) else write_discontiguous(file, u; offset=offset, collective=collective, kw...) end offset += sizeof_global(u) end add_metadata(ff, x, name, chunks) skip(ff, sizeof_global(x)) x end eltype_collection(x::PencilArray) = eltype(x) eltype_collection(x::PencilArrayCollection) = eltype(first(x)) function add_metadata(file::MPIFile, x, name, chunks::Bool) meta = metadata(file) size_col = collection_size(x) size_log = size_global(x, LogicalOrder()) size_mem = size_global(x, MemoryOrder()) meta[:datasets][DatasetKey(name)] = ( metadata(x)..., julia_endian_bom = repr(ENDIAN_BOM), # write it as a string such as 0x04030201 little_endian = IS_LITTLE_ENDIAN, element_type = eltype_collection(x), dims_logical = (size_log..., size_col...), dims_memory = (size_mem..., size_col...), chunks = chunks, offset_bytes = position(file), size_bytes = sizeof_global(x), ) nothing end """ read!(file::MPIFile, x, name; collective = true, infokws...) Read binary data from an MPI-IO stream, filling in [`PencilArray`](@ref). The output `x` can be a `PencilArray` or a tuple of `PencilArray`s. See [`setindex!`](@ref setindex!(::MPIFile)) for details on keyword arguments. ## Reading files without JSON metadata It is also possible to read datasets from binary files in the absence of JSON metadata. This will be typically the case of binary files created by a separate application. In that case, the `name` argument must *not* be passed. If the file contains more than one dataset, one can optionally pass an `offset` keyword argument to manually select the offset of the dataset (in bytes) from the beginning of the file. The signature of this metadata-less variant looks like: read!(file::MPIFile, x; offset = 0, collective = true, infokws...) Note that, since there is no metadata, this variant blindly assumes that the dimensions and element type of `x` correspond to those existent in the file. """ function Base.read!( ff::MPIFile, x::MaybePencilArrayCollection, name; kws..., ) if isempty(metadata(ff)) # metadata file wasn't found metafile = filename_meta(ff) throw(ArgumentError( """ metadata file not found: $metafile. Try calling the `read!(ff, x)` variant (without the third argument) to attempt reading the first dataset of the file. """ )) else # Get metadata associated to dataset. meta = get(metadata(ff)[:datasets], DatasetKey(name), nothing) meta === nothing && error("dataset '$name' not found") version = mpiio_version(ff) check_metadata(x, meta, version) offset = meta.offset_bytes :: Int chunks = meta.chunks :: Bool chunks && check_read_chunks(x, meta.process_dims, name) end _read_mpiio!(ff, x, offset, chunks; kws...) end function Base.read!(ff::MPIFile, x::MaybePencilArrayCollection; offset = 0) # This variant should be called when metadata file is absent. # This assumes that the file has a single contiguous dataset with the same # dimensions and type of `x`. # It is also assumed that the endianness is the same that of the system. filename = get_filename(ff) ndata = sizeof_global(x) nfile = filesize(filename) if ndata > nfile error("attempt to read file without JSON metadata failed: the file size ($nfile) is inferior to the expected dataset size ($ndata). Filename: $filename") end chunks = false _read_mpiio!(ff, x, offset, chunks) end function _read_mpiio!(ff, x, offset, chunks; collective = true, kw...) file = parent(ff) for u in collection(x) if chunks read_contiguous!(file, u; offset=offset, collective=collective, kw...) else read_discontiguous!(file, u; offset=offset, collective=collective, kw...) end offset += sizeof_global(u) end x end function check_metadata(x, meta, version) T = eltype_collection(x) file_eltype = meta.element_type if string(T) != file_eltype error("incompatible type of file and array: $file_eltype ≠ $T") end sz = (size_global(x, MemoryOrder())..., collection_size(x)...) file_dims = Tuple(meta.dims_memory) :: typeof(sz) if sz !== file_dims error("incompatible dimensions of dataset in file and array: $file_dims ≠ $sz") end file_sizeof = meta.size_bytes @assert sizeof_global(x) == file_sizeof file_bom = if version < v"0.9.4" # julia_endian_bom key didn't exist; assume ENDIAN_BOM ENDIAN_BOM else parse(typeof(ENDIAN_BOM), meta.julia_endian_bom) end if file_bom != ENDIAN_BOM error( "file was not written with the same native endianness of the current system." * " Reading a non-native endianness is not yet supported." ) end nothing end function check_read_chunks(x, pdims_file, name) pdims = size(topology(x)) if length(pdims) != length(pdims_file) || any(pdims .!= pdims_file) error("dataset '$name' was written in chunks with a different MPI topology" * " ($pdims ≠ $pdims_file)") end nothing end function write_discontiguous(ff::MPI.FileHandle, x::PencilArray; offset, collective, infokws...) to = timer(pencil(x)) @timeit_debug to "Write MPI-IO discontiguous" begin set_view!(ff, x, offset; infokws...) A = parent(x) if collective MPI.File.write_all(ff, A) else MPI.File.write(ff, A) end end nothing end function read_discontiguous!(ff::MPI.FileHandle, x::PencilArray; offset, collective, infokws...) to = timer(pencil(x)) @timeit_debug to "Read MPI-IO discontiguous" begin set_view!(ff, x, offset; infokws...) A = parent(x) if collective MPI.File.read_all!(ff, A) else MPI.File.read!(ff, A) end end end function set_view!(ff, x::PencilArray, offset; infokws...) etype = MPI.Datatype(eltype(x)) filetype = create_discontiguous_datatype(x, MemoryOrder()) # TODO cache datatype? datarep = "native" MPI.File.set_view!(ff, offset, etype, filetype, datarep; infokws...) nothing end function create_discontiguous_datatype(x::PencilArray, order) sizes = size_global(x, order) subsizes = size_local(x, order) offsets = map(r -> first(r) - 1, range_local(x, order)) oldtype = MPI.Datatype(eltype(x)) dtype = MPI.Types.create_subarray(sizes, subsizes, offsets, oldtype) MPI.Types.commit!(dtype) dtype end function write_contiguous(ff::MPI.FileHandle, x::PencilArray; offset, collective, infokws...) to = timer(pencil(x)) @timeit_debug to "Write MPI-IO contiguous" begin offset += mpi_io_offset(x) A = parent(x) if collective MPI.File.write_at_all(ff, offset, A) else MPI.File.write_at(ff, offset, A) end end nothing end function read_contiguous!(ff::MPI.FileHandle, x::PencilArray; offset, collective, infokws...) to = timer(pencil(x)) @timeit_debug to "Read MPI-IO contiguous" begin offset += mpi_io_offset(x) A = parent(x) if collective MPI.File.read_at_all!(ff, offset, A) else MPI.File.read_at!(ff, offset, A) end end nothing end function mpi_io_offset(x::PencilArray) topo = topology(pencil(x)) # Linear index of this process in the topology. # (TODO This should be stored in MPITopology...) n = LinearIndices(topo)[coords_local(topo)...] off = 0 for m = 1:(n - 1) r = range_remote(x, m) off += length(CartesianIndices(r)) # length of data held by remote process end T = eltype(x) off * sizeof(T) end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
6935
module MPITopologies export MPITopology export get_comm, coords_local import MPI """ MPITopology{N} Describes an N-dimensional Cartesian MPI decomposition topology. --- MPITopology(comm::MPI.Comm, pdims::Dims{N}) Create N-dimensional MPI topology information. The `pdims` tuple specifies the number of MPI processes to put in every dimension of the topology. The product of its values must be equal to the number of processes in communicator `comm`. # Example Divide 2D topology into 4×2 blocks: ```julia comm = MPI.COMM_WORLD @assert MPI.Comm_size(comm) == 8 topology = MPITopology(comm, (4, 2)) ``` --- MPITopology(comm::MPI.Comm, Val(N)) Convenient `MPITopology` constructor defining an `N`-dimensional decomposition of data among all MPI processes in communicator. The number of divisions along each of the `N` dimensions is automatically determined by a call to [`MPI.Dims_create`](https://juliaparallel.org/MPI.jl/stable/reference/topology/#MPI.Dims_create). # Example Create 2D decomposition grid: ```julia comm = MPI.COMM_WORLD topology = MPITopology(comm, Val(2)) ``` --- MPITopology{N}(comm_cart::MPI.Comm) Create topology information from MPI communicator with Cartesian topology (typically constructed using [`MPI.Cart_create`](https://juliaparallel.org/MPI.jl/stable/reference/topology/#MPI.Cart_create)). The topology must have dimension `N`. # Example Divide 2D topology into 4×2 blocks: ```julia comm = MPI.COMM_WORLD @assert MPI.Comm_size(comm) == 8 pdims = (4, 2) comm_cart = MPI.Cart_create(comm, pdims) topology = MPITopology{2}(comm_cart) ``` """ struct MPITopology{N} # MPI communicator with Cartesian topology. comm :: MPI.Comm # Subcommunicators associated to the decomposed directions. subcomms :: NTuple{N,MPI.Comm} # Number of MPI processes along the decomposed directions. dims :: Dims{N} # Coordinates of the local process in the Cartesian topology. # Indices are >= 1. coords_local :: Dims{N} # Maps Cartesian coordinates to MPI ranks in the `comm` communicator. ranks :: Array{Int,N} # Maps Cartesian coordinates to MPI ranks in each of the `subcomms` # subcommunicators. subcomm_ranks :: NTuple{N,Vector{Int}} function MPITopology{N}(comm_cart::MPI.Comm) where {N} # Get dimensions of MPI topology. # This will fail if comm_cart doesn't have Cartesian topology! Ndims = MPI.Cartdim_get(comm_cart) if Ndims != N throw(ArgumentError( "Cartesian communicator must have $N dimensions.")) end dims, coords_local = let dims_vec, _, coords_vec = MPI.Cart_get(comm_cart) coords_vec .+= 1 # switch to one-based indexing map(X -> ntuple(n -> Int(X[n]), Val(N)), (dims_vec, coords_vec)) end subcomms = create_subcomms(Val(N), comm_cart) @assert MPI.Comm_size.(subcomms) === dims ranks = get_cart_ranks(Val(N), comm_cart) @assert ranks[coords_local...] == MPI.Comm_rank(comm_cart) subcomm_ranks = get_cart_ranks_subcomm.(subcomms) new{N}(comm_cart, subcomms, dims, coords_local, ranks, subcomm_ranks) end end function Base.:(==)(A::MPITopology, B::MPITopology) MPI.Comm_compare(get_comm(A), get_comm(B)) ∈ (MPI.IDENT, MPI.CONGRUENT) end function MPITopology(comm::MPI.Comm, dims::Dims{N}) where {N} check_topology(comm, dims) # Create Cartesian communicator. periodic = map(_ -> false, dims) # this is the default comm_cart = MPI.Cart_create(comm, dims; periodic, reorder = false) MPITopology{N}(comm_cart) end function MPITopology(comm::MPI.Comm, ::Val{N}) where {N} pdims = dims_create(comm, Val(N)) MPITopology(comm, pdims) end dims_create(comm::MPI.Comm, n) = dims_create(MPI.Comm_size(comm), n) function dims_create(Nproc::Integer, ::Val{N}) where {N} pdims_in = ntuple(_ -> zero(Cint), Val(N)) pdims = MPI.Dims_create(Nproc, pdims_in) # call lower-level MPI wrapper ntuple(d -> Int(pdims[d]), Val(N)) :: Dims{N} end # Check that `pdims` argument is compatible with the number of processes in # communicator. This is done to avoid fatal MPI error in MPI.Cart_create. Error # message is adapted from MPICH. function check_topology(comm, pdims) Nproc = MPI.Comm_size(comm) Ntopo = prod(pdims) # Note that MPI_Cart_create allows Nproc > Ntopo, setting some processes as # MPI_COMM_NULL. We disallow that here. if Nproc != Ntopo throw(ArgumentError( "size of communicator ($Nproc) is different from size of Cartesian topology ($Ntopo)")) end nothing end function Base.show(io::IO, t::MPITopology) M = ndims(t) s = join(size(t), '×') print(io, "MPI topology: $(M)D decomposition ($s processes)") nothing end """ ndims(t::MPITopology) Get dimensionality of Cartesian topology. """ Base.ndims(t::MPITopology{N}) where N = N """ size(t::MPITopology) Get dimensions of Cartesian topology. """ Base.size(t::MPITopology) = t.dims """ length(t::MPITopology) Get total size of Cartesian topology (i.e. total number of MPI processes). """ Base.length(t::MPITopology) = prod(size(t)) """ coords_local(t::MPITopology) Get coordinates of local process in MPI topology. """ coords_local(t::MPITopology) = t.coords_local """ get_comm(t::MPITopology) Get MPI communicator associated to an MPI Cartesian topology. """ get_comm(t::MPITopology) = t.comm Base.CartesianIndices(t::MPITopology) = CartesianIndices(axes(t)) Base.LinearIndices(t::MPITopology) = LinearIndices(axes(t)) Base.eachindex(t::MPITopology) = LinearIndices(t) # Get ranks of N-dimensional Cartesian communicator. function get_cart_ranks(::Val{N}, comm::MPI.Comm) where N @assert MPI.Cartdim_get(comm) == N # communicator should be N-dimensional Nproc = MPI.Comm_size(comm) dims = let dims_vec, _, _ = MPI.Cart_get(comm) ntuple(n -> Int(dims_vec[n]), N) end ranks = Array{Int,N}(undef, dims) coords = Vector{Cint}(undef, N) for I in CartesianIndices(dims) coords .= Tuple(I) .- 1 # MPI uses zero-based indexing ranks[I] = MPI.Cart_rank(comm, coords) end ranks end # Get ranks of one-dimensional Cartesian sub-communicator. function get_cart_ranks_subcomm(subcomm::MPI.Comm) @assert MPI.Cartdim_get(subcomm) == 1 # sub-communicator should be 1D Nproc = MPI.Comm_size(subcomm) ranks = Vector{Int}(undef, Nproc) coords = Ref{Cint}() for n = 1:Nproc coords[] = n - 1 # MPI uses zero-based indexing ranks[n] = MPI.Cart_rank(subcomm, coords) end ranks end function create_subcomms(::Val{N}, comm::MPI.Comm) where N remain_dims = Vector{Cint}(undef, N) ntuple(Val(N)) do n fill!(remain_dims, zero(Cint)) remain_dims[n] = one(Cint) MPI.Cart_sub(comm, remain_dims) end end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
19383
module Pencils import ..Permutations: permutation import ..LocalGrids using StaticPermutations using MPI using Reexport using StaticArrays: SVector using TimerOutputs export Pencil, MPITopology export Permutation, NoPermutation # from StaticPermutations export MemoryOrder, LogicalOrder export decomposition, permutation export get_comm, timer export topology export range_local, range_remote, size_local, size_global, to_local, length_local, length_global # Describes the portion of an array held by a given MPI process. const ArrayRegion{N} = NTuple{N,UnitRange{Int}} where N include("MPITopologies.jl") @reexport using .MPITopologies import .MPITopologies: get_comm include("data_ranges.jl") include("index_orders.jl") """ Pencil{N,M} Describes the decomposition of an `N`-dimensional array among MPI processes along `M` directions (with `M < N`). --- Pencil( [A = Array], topology::MPITopology{M}, size_global::Dims{N}, decomp_dims::Dims{M} = default_decomposition(N, Val(M)); permute::AbstractPermutation = NoPermutation(), timer = TimerOutput(), ) Define the decomposition of an `N`-dimensional geometry along `M` dimensions. The dimensions of the geometry are given by `size_global = (N1, N2, ...)`. The `Pencil` describes the decomposition of an array of dimensions `size_global` across a group of MPI processes. Data is distributed over the given `M`-dimensional MPI topology (with `M ≤ N`). The decomposed dimensions may optionally be provided via the `decomp_dims` argument. By default, the `M` rightmost dimensions are decomposed. For instance, for a 2D decomposition of 5D data (`M = 2` and `N = 5`), the dimensions `(4, 5)` are decomposed by default. It is also possible to distribute over all dimensions (`M = N`). Note that, in this specific case, [transpositions](@ref Global-MPI-operations) are currently not possible. The optional argument `A` allows to work with arrays other than the base `Array` type. In particular, this should be useful for working with GPU array types such as `CuArray`. The optional `permute` parameter may be used to indicate a permutation of the data indices from **logical order** (the order in which the arrays are accessed in code) to **memory order** (the actual order of indices in memory). Permutations must be specified using the exported `Permutation` type, as in `permute = Permutation(3, 1, 2)`. It is also possible to pass a `TimerOutput` to the constructor. See [Measuring performance](@ref PencilArrays.measuring_performance) for details. # Examples Decompose a 3D geometry of global dimensions ``N_x × N_y × N_z = 4×8×12`` along the second (``y``) and third (``z``) dimensions: ```jldoctest julia> topo = MPITopology(MPI.COMM_WORLD, Val(2)); julia> Pencil(topo, (4, 8, 12), (2, 3)) Decomposition of 3D data Data dimensions: (4, 8, 12) Decomposed dimensions: (2, 3) Data permutation: NoPermutation() Array type: Array julia> Pencil(topo, (4, 8, 12), (2, 3); permute = Permutation(3, 2, 1)) Decomposition of 3D data Data dimensions: (4, 8, 12) Decomposed dimensions: (2, 3) Data permutation: Permutation(3, 2, 1) Array type: Array ``` In the second case, the actual data is stored in `(z, y, x)` order within each MPI process. --- Pencil([A = Array], size_global::Dims{N}, [decomp_dims = (2, …, N)], comm::MPI.Comm; kws...) Convenience constructor that implicitly creates a [`MPITopology`](@ref). The number of decomposed dimensions specified by `decomp_dims` must be `M < N`. If `decomp_dims` is not passed, dimensions `2:N` are decomposed. Keyword arguments are passed to alternative constructor taking an `MPITopology`. That constructor should be used if more control is desired. # Examples ```jldoctest julia> Pencil((4, 8, 12), MPI.COMM_WORLD) Decomposition of 3D data Data dimensions: (4, 8, 12) Decomposed dimensions: (2, 3) Data permutation: NoPermutation() Array type: Array julia> Pencil((4, 8, 12), (1, ), MPI.COMM_WORLD) Decomposition of 3D data Data dimensions: (4, 8, 12) Decomposed dimensions: (1,) Data permutation: NoPermutation() Array type: Array ``` --- Pencil( [A = Array], p::Pencil{N,M}; decomp_dims::Dims{M} = decomposition(p), size_global::Dims{N} = size_global(p), permute::P = permutation(p), timer::TimerOutput = timer(p), ) Create new pencil configuration from an existent one. This constructor enables sharing temporary data buffers between the two pencil configurations, leading to reduced global memory usage. """ struct Pencil{ N, # spatial dimensions M, # MPI topology dimensions (< N) P, # optional index permutation (see Permutation) BufVector <: AbstractVector{UInt8}, } # M-dimensional MPI decomposition info (with M < N). topology :: MPITopology{M} # Global array dimensions (N1, N2, ...) in logical order. # These dimensions are *before* permutation by perm. size_global :: Dims{N} # Decomposition directions. # Example: for x-pencils, this is typically (2, 3, ..., N). # Note that the directions don't need to be sorted. # The order matters when determining over how many processes a given dimension is # distributed. # This is in particular important for determining whether two Pencil's are compatible # for transposing between them. decomp_dims :: Dims{M} # Part of the array held by every process. # These dimensions are *before* permutation by `perm`. axes_all :: Array{ArrayRegion{N}, M} # Part of the array held by the local process (before permutation). axes_local :: ArrayRegion{N} # Part of the array held by the local process (after permutation). axes_local_perm :: ArrayRegion{N} # Optional axes permutation. perm :: P # Data buffers for transpositions. send_buf :: BufVector recv_buf :: BufVector # Timing information. timer :: TimerOutput function check_empty_dimension(topology, size_global, decomp_dims) proc_dims = size(topology) for (i, nproc) ∈ zip(decomp_dims, proc_dims) # Check that dimension `i` (which has size `N = size_global[i]`) is # being decomposed over a number of processes ≤ N. N = size_global[i] nproc ≤ N && continue @warn( """ Dimension `i = $i` has global size `Nᵢ = $N` but is being decomposed across `Pᵢ = $nproc` processes. Since `Pᵢ > Nᵢ`, some processes will have no data, and therefore will do no work. This can result in broadcasting errors and other unsupported behaviour! To fix this, consider choosing a different configuration of processes (e.g. via the `proc_dims` argument), or use a lower number of processes. See below for the current values of some of these parameters. """, i, size_global, decomp_dims, proc_dims, ) return end nothing end # This constructor is left undocumented and should never be called directly. global function _Pencil( topology::MPITopology{M}, size_global::Dims{N}, decomp_dims::Dims{M}, axes_all, perm::P, send_buf::BufVector, recv_buf::BufVector, timer::TimerOutput, ) where {M, N, P, BufVector} check_permutation(perm) check_empty_dimension(topology, size_global, decomp_dims) axes_local = axes_all[coords_local(topology)...] axes_local_perm = perm * axes_local check_local_data_dims(axes_local) new{N, M, P, BufVector}( topology, size_global, decomp_dims, axes_all, axes_local, axes_local_perm, perm, send_buf, recv_buf, timer, ) end function Pencil( topology::MPITopology{M}, size_global::Dims{N}, decomp_dims::Dims{M} = default_decomposition(N, Val(M)); permute::AbstractPermutation = NoPermutation(), send_buf = UInt8[], recv_buf = UInt8[], timer = TimerOutput(), ) where {N, M} _check_selected_dimensions(N, decomp_dims) axes_all = generate_axes_matrix(decomp_dims, topology.dims, size_global) _Pencil( topology, size_global, decomp_dims, axes_all, permute, send_buf, recv_buf, timer, ) end # TODO # - automatically reorder decomp_dims to make sure that both pencils are compatible for # transpositions # - throw error if it's not possible to make both pencils compatible for transpositions? function Pencil( p::Pencil{N,M}; decomp_dims::Dims{M} = decomposition(p), size_global::Dims{N} = size_global(p), permute = permutation(p), timer::TimerOutput = timer(p), etc..., ) where {N, M} Pencil( p.topology, size_global, decomp_dims; permute=permute, timer=timer, send_buf=p.send_buf, recv_buf=p.recv_buf, etc..., ) end end function Pencil(dims::Dims, decomp::Dims{M}, comm::MPI.Comm; kws...) where {M} topo = MPITopology(comm, Val(M)) Pencil(topo, dims, decomp; kws...) end Pencil(dims::Dims{N}, comm::MPI.Comm; kws...) where {N} = Pencil(dims, default_decomposition(N, Val(N - 1)), comm; kws...) function Pencil(::Type{A}, args...; kws...) where {A <: AbstractArray} # We initialise the array with a single element to work around problem # with CuArrays: if its length is zero, then the CuArray doesn't have a # valid pointer. send_buf = A{UInt8}(undef, 1) Pencil(args...; kws..., send_buf, recv_buf = similar(send_buf)) end # Strips array type: # Array{Int, 3} -> Array # Array{Int} -> Array # Array -> Array @generated function typeof_array(::Type{A′}) where {A′ <: AbstractArray} A = A′ while A isa UnionAll A = A.body end T = A.name.wrapper :($T) end typeof_array(A::AbstractArray) = typeof_array(typeof(A)) typeof_array(p::Pencil) = typeof_array(p.send_buf) """ similar(p::Pencil, [A = typeof_array(p)], [dims = size_global(p)]) Returns a [`Pencil`](@ref) decomposition with global dimensions `dims` and with underlying array type `A`. Typically, `A` should be something like `Array` or `CuArray` (see [`Pencil`](@ref) for details). """ function Base.similar( p::Pencil{N}, ::Type{A}, dims::Dims{N} = size_global(p), ) where {A <: AbstractArray, N} _similar(A, typeof_array(p), p, dims) end Base.similar(p::Pencil{N}, dims::Dims{N} = size_global(p)) where {N} = similar(p, typeof_array(p), dims) # Case A === A′ function _similar( ::Type{A}, ::Type{A}, p::Pencil{N}, dims::Dims{N}, ) where {N, A <: AbstractArray} @assert typeof_array(p) === A if dims == size_global(p) p # avoid all copies else Pencil(p; size_global = dims) end end # Case A !== A′ (→ change of array type) function _similar( ::Type{A′}, ::Type{A}, p::Pencil{N}, dims::Dims{N}, ) where {N, A <: AbstractArray, A′ <: AbstractArray} @assert typeof_array(p) === A # We initialise the array with a single element to work around problem # with CuArrays: if its length is zero, then the CuArray doesn't have a # valid pointer. send_buf = A′{UInt8}(undef, 1) recv_buf = similar(send_buf) if dims == size_global(p) # Avoid recomputing (and allocating a new) `axes_all`, since it doesn't # change in the new decomposition. _Pencil( p.topology, dims, p.decomp_dims, p.axes_all, p.perm, send_buf, recv_buf, p.timer, ) else Pencil( p.topology, dims, p.decomp_dims; permute = p.perm, send_buf, recv_buf, timer = p.timer, ) end end function check_local_data_dims(axes_local) # Show warning if the amount of local data is larger than typemax(Cint). # This may cause problems with MPI, where lengths and offsets are given as Cint. ndata = prod(length, axes_local) if ndata > typemax(Cint) @warn( """ size of local data is too large compared to typemax(Cint). This may cause problems when calling MPI functions. If that's the case, try increasing the number of MPI processes. """, ndata, typemax(Cint), ndata / (typemax(Cint) + 1), ) end nothing end function check_permutation(perm) isperm(perm) && return throw(ArgumentError("invalid permutation of dimensions: $perm")) end function default_decomposition(N, ::Val{M}) where {M} @assert 0 < M ≤ N ntuple(d -> N - M + d, Val(M)) end # Verify that `dims` is a subselection of dimensions in 1:N. function _check_selected_dimensions(N, dims::Dims{M}) where M if M > N throw(ArgumentError( "number of decomposed dimensions `M` cannot be larger than the " * "total number of dimensions N = $N (got M = $M)")) end if !allunique(dims) throw(ArgumentError("dimensions may not be repeated. Got $dims.")) end if !all(1 .<= dims .<= N) throw(ArgumentError("dimensions must be in 1:$N. Got $dims.")) end nothing end Base.summary(io::IO, p::Pencil) = Base.showarg(io, p, true) function Base.showarg(io::IO, p::Pencil{N,M,P}, toplevel) where {N,M,P} toplevel || print(io, "::") A = typeof_array(p) print(io, nameof(typeof(p)), "{$N, $M, $P, $A}") end function Base.show(io::IO, p::Pencil) perm = permutation(p) print(io, """ Decomposition of $(ndims(p))D data Data dimensions: $(size_global(p)) Decomposed dimensions: $(decomposition(p)) Data permutation: $(perm) Array type: $(typeof_array(p))""") end """ timer(p::Pencil) Get `TimerOutput` attached to a `Pencil`. See [Measuring performance](@ref PencilArrays.measuring_performance) for details. """ timer(p::Pencil) = p.timer """ ndims(p::Pencil) Number of spatial dimensions associated to pencil data. This corresponds to the total number of dimensions of the space, which includes the decomposed and non-decomposed dimensions. """ Base.ndims(::Pencil{N}) where N = N """ get_comm(p::Pencil) Get MPI communicator associated to an MPI decomposition scheme. """ get_comm(p::Pencil) = get_comm(p.topology) """ permutation(::Type{<:Pencil}) -> AbstractPermutation permutation(p::Pencil) -> AbstractPermutation Get index permutation associated to the given pencil configuration. Returns `NoPermutation()` if there is no associated permutation. """ permutation(p::Pencil) = permutation(typeof(p)) permutation(::Type{<:Pencil{N,M,P}}) where {N,M,P} = _instanceof(P) @inline _instanceof(::Type{T}) where {T <: AbstractPermutation} = T() @inline _instanceof(::Type{<:Permutation{p}}) where {p} = Permutation(p) """ decomposition(p::Pencil) Get tuple with decomposed dimensions of the given pencil configuration. """ decomposition(p::Pencil) = p.decomp_dims """ topology(p::Pencil) Get [`MPITopology`](@ref) attached to `Pencil`. """ topology(p::Pencil) = p.topology """ length(p::Pencil) Get linear length of the *local* data associated to the decomposition. Equivalent to `length_local(p)`. """ Base.length(p::Pencil) = prod(size(p)) """ length_local(p::Pencil) Get linear length of the local data associated to the decomposition. """ length_local(p::Pencil) = prod(size_local(p)) """ length_global(p::Pencil) Get linear length of the global data associated to the decomposition. """ length_global(p::Pencil) = prod(size_global(p)) """ range_local(p::Pencil, [order = LogicalOrder()]) Local data range held by the pencil. By default the dimensions are not permuted, i.e. they follow the logical order of dimensions. """ range_local(p::Pencil, ::LogicalOrder) = p.axes_local range_local(p::Pencil, ::MemoryOrder) = p.axes_local_perm range_local(p) = range_local(p, DefaultOrder()) """ range_remote(p::Pencil, coords, [order = LogicalOrder()]) range_remote(p::Pencil, n::Integer, [order = LogicalOrder()]) Get data range held by a given MPI process. In the first variant, `coords` are the coordinates of the MPI process in the Cartesian topology. They can be specified as a tuple `(i, j, ...)` or as a `CartesianIndex`. In the second variant, `n` is the linear index of a given process in the topology. """ range_remote(p::Pencil, n::Integer, ::LogicalOrder) = p.axes_all[n] range_remote(p::Pencil{N,M}, I::CartesianIndex{M}, ::LogicalOrder) where {N,M} = p.axes_all[I] range_remote(p::Pencil{N,M}, I::Dims{M}, ::LogicalOrder) where {N,M} = range_remote(p, CartesianIndex(I), LogicalOrder()) range_remote(p, I) = range_remote(p, I, LogicalOrder()) range_remote(p, I, ::MemoryOrder) = permutation(p) * range_remote(p, I, LogicalOrder()) """ size_local(p::Pencil, [order = LogicalOrder()]) Local dimensions of the data held by the pencil. By default the dimensions are not permuted, i.e. they follow the logical order of dimensions. """ size_local(p::Pencil, etc...) = map(length, range_local(p, etc...)) """ size_global(p::Pencil, [order = LogicalOrder()]) Global dimensions of the Cartesian grid associated to the given domain decomposition. Like [`size_local`](@ref), by default the returned dimensions are in logical order. """ size_global(p::Pencil, ::LogicalOrder) = p.size_global size_global(p::Pencil, ::MemoryOrder) = permutation(p) * p.size_global size_global(p) = size_global(p, DefaultOrder()) """ size(p::Pencil) Returns the *local* data dimensions associated to the decomposition, in *logical* order. This is defined as `size_local(p, LogicalOrder())`. """ Base.size(p::Pencil) = size_local(p, LogicalOrder()) """ to_local(p::Pencil, global_inds, [order = LogicalOrder()]) Convert non-permuted (logical) global indices to local indices. If `order = MemoryOrder()`, returned indices will be permuted using the permutation associated to the pencil configuration `p`. """ function to_local(p::Pencil{N}, global_inds::ArrayRegion{N}, order::AbstractIndexOrder = DefaultOrder()) where {N} ind = map(global_inds, p.axes_local) do rg, rl @assert step(rg) == 1 δ = 1 - first(rl) (first(rg) + δ):(last(rg) + δ) end :: ArrayRegion{N} order === MemoryOrder() ? (permutation(p) * ind) : ind end """ localgrid(p::Pencil, (x_global, y_global, ...)) -> LocalRectilinearGrid localgrid(u::PencilArray, (x_global, y_global, ...)) -> LocalRectilinearGrid Create a [`LocalRectilinearGrid`](@ref LocalGrids.LocalRectilinearGrid) from a decomposition configuration and from a set of orthogonal global coordinates `(x_global, y_global, ...)`. In this case, each `*_global` is an `AbstractVector` describing the coordinates along one dimension of the global grid. """ function LocalGrids.localgrid(p::Pencil, coords_global::Tuple{Vararg{AbstractVector}}) perm = permutation(p) ranges = range_local(p, LogicalOrder()) coords_local = map(view, coords_global, ranges) LocalGrids.localgrid(coords_local, perm) end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1399
# Functions determining local data ranges in the different pencil # configurations. function local_data_range(p, P, N) @assert 1 <= p <= P a = (N * (p - 1)) ÷ P + 1 b = (N * p) ÷ P a:b end # "Complete" dimensions not specified in `dims` with ones. # Examples: # - if N = 5, dims = (2, 3) and vals = (42, 12), this returns (1, 42, 12, 1, 1). # - if N = 5, dims = (3, 2) and vals = (42, 12), this returns (1, 12, 42, 1, 1). function complete_dims(::Val{N}, dims::Dims{M}, vals::Dims{M}) where {N, M} @assert N >= M vals_all = ntuple(Val(N)) do n i = findfirst(==(n), dims) if i === nothing 1 # this dimension is not included in `dims`, so we put a 1 else vals[i] end end vals_all :: Dims{N} end # Get axes (array regions) owned by all processes in a given pencil # configuration. function generate_axes_matrix( decomp_dims::Dims{M}, proc_dims::Dims{M}, size_global::Dims{N}, ) where {N, M} axes = Array{ArrayRegion{N}, M}(undef, proc_dims) # Number of processes in every direction, including those where # decomposition is not applied. procs = complete_dims(Val(N), decomp_dims, proc_dims) for I in CartesianIndices(proc_dims) coords = complete_dims(Val(N), decomp_dims, Tuple(I)) axes[I] = local_data_range.(coords, procs, size_global) end axes end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
652
""" AbstractIndexOrder Abstract type determining the ordering of dimensions of an array with possibly permuted indices. Subtypes are [`MemoryOrder`](@ref) and [`LogicalOrder`](@ref). """ abstract type AbstractIndexOrder end """ MemoryOrder <: AbstractIndexOrder Singleton type specifying that array dimensions should be given in memory (or *permuted*) order. """ struct MemoryOrder <: AbstractIndexOrder end """ LogicalOrder <: AbstractIndexOrder Singleton type specifying that array dimensions should be given in logical (or *non-permuted*) order. """ struct LogicalOrder <: AbstractIndexOrder end const DefaultOrder = LogicalOrder
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
3313
module PermutedIndices import ..Permutations: permutation using StaticPermutations export PermutedLinearIndices, PermutedCartesianIndices # Custom definitions of LinearIndices and CartesianIndices to take into account # index permutations. # # In particular, when array dimensions are permuted, the default # CartesianIndices do not iterate in memory order, making them suboptimal. # We try to workaround that by adding a custom definition of CartesianIndices. # # (TODO Better / cleaner way to do this??) struct PermutedLinearIndices{ N, L <: LinearIndices, Perm, } <: AbstractArray{Int,N} data :: L # indices in permuted order perm :: Perm function PermutedLinearIndices( ind::LinearIndices{N}, perm::Perm) where {N, Perm} L = typeof(ind) new{N, L, Perm}(ind, perm) end end permutation(L::PermutedLinearIndices) = L.perm Base.length(L::PermutedLinearIndices) = length(L.data) Base.size(L::PermutedLinearIndices) = permutation(L) \ size(L.data) Base.axes(L::PermutedLinearIndices) = permutation(L) \ axes(L.data) Base.iterate(L::PermutedLinearIndices, args...) = iterate(L.data, args...) Base.lastindex(L::PermutedLinearIndices) = lastindex(L.data) @inline function Base.getindex(L::PermutedLinearIndices, i::Integer) @boundscheck checkbounds(L.data, i) @inbounds L.data[i] end # Input: indices in logical (unpermuted) order @inline function Base.getindex( L::PermutedLinearIndices{N}, I::Vararg{Integer,N}, ) where {N} J = permutation(L) * I @boundscheck checkbounds(L.data, J...) @inbounds L.data[J...] end struct PermutedCartesianIndices{ N, C <: CartesianIndices{N}, Perm, } <: AbstractArray{CartesianIndex{N}, N} data :: C # indices in memory (permuted) order perm :: Perm # permutation (logical -> memory) function PermutedCartesianIndices(ind::CartesianIndices{N}, perm::Perm) where {N, Perm} C = typeof(ind) new{N, C, Perm}(ind, perm) end end permutation(C::PermutedCartesianIndices) = C.perm Base.size(C::PermutedCartesianIndices) = permutation(C) \ size(C.data) Base.axes(C::PermutedCartesianIndices) = permutation(C) \ axes(C.data) @inline function Base.iterate(C::PermutedCartesianIndices, args...) next = iterate(C.data, args...) next === nothing && return nothing I, state = next # `I` has permuted indices J = permutation(C) \ I # unpermute indices J, state end # Get i-th Cartesian index in memory (permuted) order. # Returns the Cartesian index in logical (unpermuted) order. @inline function Base.getindex(C::PermutedCartesianIndices, i::Integer) @boundscheck checkbounds(C.data, i) @inbounds I = C.data[i] # convert linear to Cartesian index (relatively slow...) permutation(C) \ I # unpermute indices end # Not sure if this is what makes the most sense, but it's consistent with the # behaviour of CartesianIndices(::OffsetArray). In any case, this function is # mostly used for printing (it's used by show(::PermutedCartesianIndices)), and # almost never for actual computations. @inline function Base.getindex( C::PermutedCartesianIndices{N}, I::Vararg{Integer,N}, ) where {N} @boundscheck checkbounds(C, I...) CartesianIndex(I) end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
22020
module Transpositions import LinearAlgebra: transpose! export transpose! # to avoid needing to import LinearAlgebra in user code using TimerOutputs import MPI using ..PencilArrays using ..PencilArrays: typeof_ptr, typeof_array using ..Pencils: ArrayRegion using StaticPermutations using Strided: @strided, Strided, StridedView # Declare transposition approaches. abstract type AbstractTransposeMethod end struct PointToPoint <: AbstractTransposeMethod end struct Alltoallv <: AbstractTransposeMethod end function Base.show(io::IO, ::T) where {T<:AbstractTransposeMethod} print(io, nameof(T)) end """ Transposition Holds data for transposition between two pencil configurations. --- Transposition(dest::PencilArray{T,N}, src::PencilArray{T,N}; method = Transpositions.PointToPoint()) Prepare transposition of arrays from one pencil configuration to the other. The two pencil configurations must be compatible for transposition: - they must share the same MPI Cartesian topology, - they must have the same global data size, - the decomposed dimensions must be almost the same, with at most one difference. For instance, if the input of a 3D dataset is decomposed in `(2, 3)`, then the output may be decomposed in `(1, 3)` or in `(2, 1)`, but not in `(1, 2)`. **Note that the order of the decomposed dimensions (as passed to the `Pencil` constructor) matters.** If the decomposed dimensions are the same, then no transposition is performed, and data is just copied if needed. The `src` and `dest` arrays may be aliased (they can share memory space). # Performance tuning The `method` argument allows to choose between transposition implementations. This can be useful to tune performance of MPI data transfers. Two values are currently accepted: - `Transpositions.PointToPoint()` uses non-blocking point-to-point data transfers (`MPI_Isend` and `MPI_Irecv`). This may be more performant since data transfers are interleaved with local data transpositions (index permutation of received data). This is the default. - `Transpositions.Alltoallv()` uses collective `MPI_Alltoallv` for global data transpositions. """ struct Transposition{T, N, PencilIn <: Pencil, PencilOut <: Pencil, ArrayIn <: PencilArray{T,N}, ArrayOut <: PencilArray{T,N}, M <: AbstractTransposeMethod, } Pi :: PencilIn Po :: PencilOut Ai :: ArrayIn Ao :: ArrayOut method :: M dim :: Union{Nothing,Int} # dimension along which transposition is performed # Note: we can use UnsafeMultiRequest as long as the send and receive buffers stay alive # during the whole communication time, i.e. after all calls to Waitany / Waitall. # This is the case because the buffers live in the `Pencil`s (`Pi` and `Pi`), which are # themselves included in the `Transposition` object. # So we're fine as long as the `Transposition` stays alive. # If the `Transposition` is no longer alive, we can't do wait operations anyways, so # everything is fine! send_requests :: MPI.UnsafeMultiRequest recv_requests :: MPI.UnsafeMultiRequest function Transposition(Ao::PencilArray{T,N}, Ai::PencilArray{T,N}; method = PointToPoint()) where {T,N} Pi = pencil(Ai) Po = pencil(Ao) # Verifications if extra_dims(Ai) !== extra_dims(Ao) throw(ArgumentError( "incompatible number of extra dimensions of PencilArrays: " * "$(extra_dims(Ai)) != $(extra_dims(Ao))")) end assert_compatible(Pi, Po) # The `decomp_dims` tuples of both pencils must differ by at most one # value (as just checked by `assert_compatible`). The transposition # is performed along the dimension R where that difference happens. dim = findfirst(decomposition(Pi) .!= decomposition(Po)) send_requests = MPI.UnsafeMultiRequest() recv_requests = MPI.UnsafeMultiRequest() new{T, N, typeof(Pi), typeof(Po), typeof(Ai), typeof(Ao), typeof(method)}( Pi, Po, Ai, Ao, method, dim, send_requests, recv_requests, ) end end """ MPI.Waitall(t::Transposition) Wait for completion of all unfinished MPI communications related to the transposition. """ function MPI.Waitall(t::Transposition) isempty(t.send_requests) || MPI.Waitall(t.send_requests) nothing end function MPI.Waitall!(t::Transposition) @warn """ MPI.Waitall!(t::Transposition) is deprecated and will be soon removed. Use MPI.Waitall(t) instead (without the `!`). """ MPI.Waitall(t) end """ transpose!(t::Transposition; waitall=true) transpose!(dest::PencilArray{T,N}, src::PencilArray{T,N}; method = Transpositions.PointToPoint()) Transpose data from one pencil configuration to the other. The first variant allows to optionally delay the wait for MPI send operations to complete. This is useful if the caller wants to perform other operations with the already received data. To do this, the caller should pass `waitall = false`, and manually invoke [`MPI.Waitall`](@ref) on the `Transposition` object once the operations are done. Note that this option only has an effect when the transposition method is `PointToPoint`. See [`Transposition`](@ref) for details. """ function transpose! end function transpose!( dest::PencilArray, src::PencilArray; method::AbstractTransposeMethod = PointToPoint(), ) dest === src && return dest # same pencil & same data t = Transposition(dest, src, method=method) transpose!(t, waitall=true) dest end function transpose!(t::Transposition; waitall=true) timer = Pencils.timer(t.Pi) @timeit_debug timer "transpose!" begin transpose_impl!(t.dim, t) if waitall @timeit_debug timer "wait send" MPI.Waitall(t) end end t end function assert_compatible(p::Pencil, q::Pencil) if p.topology !== q.topology throw(ArgumentError("pencil topologies must be the same.")) end if p.size_global !== q.size_global throw(ArgumentError( "global data sizes must be the same between different pencil " * " configurations. Got $(p.size_global) ≠ $(q.size_global).")) end # Check that decomp_dims differ on at most one value. dp, dq = map(decomposition, (p, q)) if sum(dp .!= dq) > 1 throw(ArgumentError( "pencil decompositions must differ in at most one dimension. " * "Got decomposed dimensions $dp and $dq.")) end nothing end # Reinterpret UInt8 vector as a different type of array. # The input array should have enough space for the reinterpreted array with the # given dimensions. # This is a workaround to the performance issues when using `reinterpret`. # See for instance: # - https://discourse.julialang.org/t/big-overhead-with-the-new-lazy-reshape-reinterpret/7635 # - https://github.com/JuliaLang/julia/issues/28980 function unsafe_as_array(::Type{T}, x::AbstractVector{UInt8}, dims) where {T} p = typeof_ptr(x){T}(pointer(x)) unsafe_wrap(typeof_array(x), p, dims, own=false) end # Only local transposition. function transpose_impl!(::Nothing, t::Transposition) Pi = t.Pi Po = t.Po Ai = t.Ai Ao = t.Ao timer = Pencils.timer(Pi) # Both pencil configurations are identical, so we just copy the data, # permuting dimensions if needed. @assert size_local(Ai) === size_local(Ao) ui = parent(Ai) uo = parent(Ao) if permutation(Pi) == permutation(Po) @timeit_debug timer "copy!" copy!(uo, ui) else @timeit_debug timer "permute_local!" permute_local!(Ao, Ai) end t end function permute_local!(Ao::PencilArray{T,N}, Ai::PencilArray{T,N}) where {T, N} Pi = pencil(Ai) Po = pencil(Ao) perm = let perm_base = permutation(Po) / permutation(Pi) # relative permutation p = append(perm_base, Val(ndims_extra(Ai))) Tuple(p) end ui = parent(Ai) uo = parent(Ao) inplace = Base.mightalias(ui, uo) if inplace # TODO optimise in-place version? # For now we permute into a temporary buffer, and then we copy to `Ao`. # We reuse `recv_buf` used for MPI transposes. buf = let x = Pi.recv_buf n = length(uo) dims = size(uo) resize!(x, sizeof(T) * n) vec = unsafe_as_array(T, x, n) reshape(vec, dims) end @strided permutedims!(buf, ui, perm) copy!(uo, buf) else # Permute directly onto the output. @strided permutedims!(uo, ui, perm) end Ao end function mpi_buffer(buf::AbstractArray, off, length) inds = (off + 1):(off + length) v = view(buf, inds) MPI.Buffer(v) end # Transposition among MPI processes in a subcommunicator. # R: index of MPI subgroup (dimension of MPI Cartesian topology) along which the # transposition is performed. function transpose_impl!(R::Int, t::Transposition{T}) where {T} @assert t.dim === R Pi = t.Pi Po = t.Po Ai = t.Ai Ao = t.Ao method = t.method timer = Pencils.timer(Pi) @assert Pi.topology === Po.topology @assert extra_dims(Ai) === extra_dims(Ao) topology = Pi.topology comm = topology.subcomms[R] # exchange among the subgroup R Nproc = topology.dims[R] subcomm_ranks = topology.subcomm_ranks[R] myrank = subcomm_ranks[topology.coords_local[R]] # rank in subgroup remote_inds = get_remote_indices(R, topology.coords_local, Nproc) # Length of data that I will "send" to myself. length_self = let range_intersect = map(intersect, Pi.axes_local, Po.axes_local) prod(map(length, range_intersect)) * prod(extra_dims(Ai)) end # Total data to be sent / received. length_send = length(Ai) - length_self length_recv_total = length(Ao) # includes local exchange with myself # Minimum resize is one in order to have a valid pointer # in the case of a CuArray for instance resize!(Po.send_buf, sizeof(T) * max(1, length_send)) send_buf = unsafe_as_array(T, Po.send_buf, length_send) resize!(Po.recv_buf, sizeof(T) * max(1, length_recv_total)) recv_buf = unsafe_as_array(T, Po.recv_buf, length_recv_total) recv_offsets = Vector{Int}(undef, Nproc) # all offsets in recv_buf req_length = method === Alltoallv() ? 0 : Nproc (; send_requests, recv_requests,) = t resize!(send_requests, req_length) resize!(recv_requests, req_length) # 1. Pack and send data. @timeit_debug timer "pack data" index_local_req = transpose_send!( (send_buf, recv_buf), recv_offsets, (send_requests, recv_requests), length_self, remote_inds, (comm, subcomm_ranks, myrank), Ao, Ai, method, timer, ) # 2. Unpack data and perform local transposition. @timeit_debug timer "unpack data" transpose_recv!( recv_buf, recv_offsets, recv_requests, remote_inds, index_local_req, Ao, Ai, method, timer, ) t end function transpose_send!( (send_buf, recv_buf), recv_offsets, requests, length_self, remote_inds, (comm, subcomm_ranks, myrank), Ao::PencilArray{T}, Ai::PencilArray{T}, method::AbstractTransposeMethod, timer::TimerOutput, ) where {T} Pi = pencil(Ai) # input (sent data) Po = pencil(Ao) # output (received data) idims_local = Pi.axes_local odims_local = Po.axes_local idims = Pi.axes_all odims = Po.axes_all exdims = extra_dims(Ai) prod_extra_dims = prod(exdims) isend = 0 # current index in send_buf irecv = 0 # current index in recv_buf index_local_req = -1 # request index associated to local exchange # Data received from other processes. length_recv = length(Ao) - length_self Nproc = length(subcomm_ranks) @assert Nproc == MPI.Comm_size(comm) @assert myrank == MPI.Comm_rank(comm) buf_info = make_buffer_info(method, (send_buf, recv_buf), Nproc) for (n, ind) in enumerate(remote_inds) # Global data range that I need to send to process n. srange = map(intersect, idims_local, odims[ind]) length_send_n = prod(map(length, srange)) * prod_extra_dims local_send_range = to_local(Pi, srange, MemoryOrder()) # Determine amount of data to be received. rrange = map(intersect, odims_local, idims[ind]) length_recv_n = prod(map(length, rrange)) * prod_extra_dims recv_offsets[n] = irecv rank = subcomm_ranks[n] # actual rank of the other process if rank == myrank # Copy directly from `Ai` to `recv_buf`. # For convenience, data is put at the end of `recv_buf`. # This makes it easier to implement an alternative based on MPI_Alltoallv. @assert length_recv_n == length_self recv_offsets[n] = length_recv @timeit_debug timer "copy_range!" copy_range!( recv_buf, length_recv, Ai, local_send_range, ) transpose_send_self!(method, n, requests, buf_info) index_local_req = n else # Copy data into contiguous buffer, then send the buffer. @timeit_debug timer "copy_range!" copy_range!( send_buf, isend, Ai, local_send_range, ) transpose_send_other!( method, buf_info, (length_send_n, length_recv_n), n, requests, (rank, comm), eltype(Ai), ) irecv += length_recv_n isend += length_send_n end end if method === Alltoallv() # This @view is needed because the Alltoallv wrapper checks that the # length of the buffer is consistent with recv_counts. recv_buf_view = @view recv_buf[1:length_recv] @timeit_debug timer "MPI.Alltoallv!" MPI.Alltoallv!( MPI.VBuffer(send_buf, buf_info.send_counts), MPI.VBuffer(recv_buf_view, buf_info.recv_counts), comm, ) end index_local_req end function make_buffer_info(::PointToPoint, (send_buf, recv_buf), Nproc) ( send_buf = send_buf, recv_buf = recv_buf, send_offset = Ref(0), recv_offset = Ref(0), ) end function make_buffer_info(::Alltoallv, bufs, Nproc) counts = Vector{Cint}(undef, Nproc) ( send_counts = counts, recv_counts = similar(counts), ) end function transpose_send_self!(::PointToPoint, n, (send_requests, recv_requests), etc...) # Do nothing. The request send_requests[n] and recv_requests[n] should already be null. @assert send_requests.vals[n] == MPI.REQUEST_NULL.val @assert recv_requests.vals[n] == MPI.REQUEST_NULL.val nothing end function transpose_send_self!(::Alltoallv, n, reqs, buf_info) # Don't send data to myself via Alltoallv. buf_info.send_counts[n] = buf_info.recv_counts[n] = zero(Cint) nothing end function transpose_send_other!( ::PointToPoint, info, (length_send_n, length_recv_n), n, (send_requests, recv_requests), (rank, comm), ::Type{T}, ) where {T} # Exchange data with the other process (non-blocking operations). # Note: data is sent and received with the permutation associated to Pi. tag = 42 data_send = mpi_buffer(info.send_buf, info.send_offset[], length_send_n) data_recv = mpi_buffer(info.recv_buf, info.recv_offset[], length_recv_n) MPI.Isend(data_send, comm, send_requests[n]; dest = rank, tag) MPI.Irecv!(data_recv, comm, recv_requests[n]; source = rank, tag) info.send_offset[] += length_send_n info.recv_offset[] += length_recv_n nothing end function transpose_send_other!( ::Alltoallv, buf_info, (length_send_n, length_recv_n), n, args... ) buf_info.send_counts[n] = length_send_n buf_info.recv_counts[n] = length_recv_n nothing end function transpose_recv!( recv_buf, recv_offsets, recv_requests, remote_inds, index_local_req, Ao::PencilArray, Ai::PencilArray, method::AbstractTransposeMethod, timer::TimerOutput, ) Pi = pencil(Ai) # input (sent data) Po = pencil(Ao) # output (received data) odims_local = Po.axes_local idims = Pi.axes_all exdims = extra_dims(Ao) prod_extra_dims = prod(exdims) # Relative index permutation to go from Pi ordering to Po ordering. perm = permutation(Po) / permutation(Pi) Nproc = length(remote_inds) for m = 1:Nproc if method === Alltoallv() n = m elseif m == 1 n = index_local_req # copy local data first else @timeit_debug timer "wait receive" n = MPI.Waitany(recv_requests) end # Non-permuted global indices of received data. ind = remote_inds[n] g_range = map(intersect, odims_local, idims[ind]) # length_recv_n = prod(map(length, g_range)) * prod_extra_dims off = recv_offsets[n] # Local output data range in the **input** permutation. o_range_iperm = permutation(Pi) * to_local(Po, g_range, LogicalOrder()) # Copy data to `Ao`, permuting dimensions if required. @timeit_debug timer "copy_permuted!" copy_permuted!( Ao, o_range_iperm, recv_buf, off, perm, ) end Ao end # Cartesian indices of the remote MPI processes included in the subgroup of # index `R`. # Example: if coords_local = (2, 3, 5) and R = 1, then this function returns the # indices corresponding to (:, 3, 5). function get_remote_indices(R::Int, coords_local::Dims{M}, Nproc::Int) where M t = ntuple(Val(M)) do i if i == R 1:Nproc else c = coords_local[i] c:c end end CartesianIndices(t) end # Specialisation for CPU arrays. function copy_range!( dest::Vector, dest_offset::Integer, src::PencilArray, src_range_memorder::NTuple, ) exdims = extra_dims(src) n = dest_offset src_p = parent(src) # array with non-permuted indices (memory order) for K in CartesianIndices(exdims) for I in CartesianIndices(src_range_memorder) @inbounds dest[n += 1] = src_p[I, K] end end dest end # Generic case avoiding scalar indexing, should work for GPU arrays. function copy_range!( dest::AbstractVector, dest_offset::Integer, src::PencilArray, src_range_memorder::NTuple, ) exdims = extra_dims(src) n = dest_offset src_p = parent(src) # array with non-permuted indices (memory order) Ks = CartesianIndices(exdims) Is = CartesianIndices(src_range_memorder) len = length(Is) * length(Ks) src_view = @view src_p[Is, Ks] dst_view = @view dest[(n + 1):(n + len)] # TODO this allocates on GPUArrays... can it be improved? copyto!(dst_view, src_view) dest end function copy_permuted!( dst::PencilArray, o_range_iperm::NTuple, src::AbstractVector, src_offset::Integer, perm::AbstractPermutation, ) N = ndims(dst) P = length(o_range_iperm) exdims = extra_dims(dst) E = length(exdims) @assert P + E == N src_dims = (map(length, o_range_iperm)..., exdims...) src_view = _viewreshape(src, src_dims, src_offset) dst_inds = perm * o_range_iperm # destination indices in memory order _permutedims!(dst, src_view, dst_inds, perm) dst end # Case of CPU arrays. # Note that Strided uses scalar indexing at some point, and for that reason it # doesn't work with GPU arrays. function _viewreshape(src::Vector, src_dims, n) N = prod(src_dims) v = Strided.sview(src, (n + 1):(n + N)) Strided.sreshape(v, src_dims) end # Generic case, used in particular for GPU arrays. function _viewreshape(src::AbstractVector, src_dims, n) @boundscheck begin N = prod(src_dims) checkbounds(src, (n + 1):(n + N)) end # On GPUs, we use unsafe_wrap to make sure that the returned array is an # AbstractGPUArray, for which `permutedims!` is implemented in GPUArrays.jl. unsafe_wrap(typeof_array(src), pointer(src, n + 1), src_dims) end function _permutedims!(dst::PencilArray, src, dst_inds, perm) exdims = extra_dims(dst) v = view(parent(dst), dst_inds..., map(Base.OneTo, exdims)...) _permutedims!(typeof_array(pencil(dst)), v, src, perm) end # Specialisation for CPU arrays. # Note that v_in is the raw array (in memory order) wrapped by a PencilArray. function _permutedims!(::Type{Array}, v_in::SubArray, src, perm) v = StridedView(v_in) vperm = if isidentity(perm) v else E = ndims(v) - length(perm) # number of "extra dims" pperm = append(perm, Val(E)) # This is the equivalent of a PermutedDimsArray in Strided.jl. # Note that this is a lazy object (a StridedView)! permutedims(v, Tuple(inv(pperm))) :: StridedView end copyto!(vperm, src) end # General case, used in particular for GPU arrays. function _permutedims!(::Type{<:AbstractArray}, v::SubArray, src, perm) if isidentity(perm) copyto!(v, src) else E = ndims(v) - length(perm) # number of "extra dims" pperm = append(perm, Val(E)) # On GPUs, if `src` is an AbstractGPUArray, then there is a `permutedims!` # implementation for GPUs (in GPUArrays.jl) if the destination is also # an AbstractGPUArray. # Note that AbstractGPUArray <: DenseArray, and `v` is generally not # dense, so we need an intermediate array for the destination. tmp = similar(src, pperm * size(src)) # TODO avoid allocation! permutedims!(tmp, src, Tuple(pperm)) copyto!(v, tmp) end v end end # module Transpositions
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1264
using Adapt using MPI using PencilArrays using JLArrays using Test MPI.Init() comm = MPI.COMM_WORLD rank = MPI.Comm_rank(comm) rank == 0 || redirect_stdout(devnull) pen = Pencil((12, 43), comm) u = PencilArray(pen, rand(Float64, size_local(pen)...)) @testset "Adapt" begin @testset "Float64 -> Float32" begin @assert u isa PencilArray{Float64, 2} @assert parent(u) isa Array{Float64, 2} v = @inferred adapt(Array{Float32}, u) @test v isa PencilArray{Float32, 2} # wrapper type is preserved @test parent(v) isa Array{Float32, 2} @test u ≈ v end # Try changing array type (Array -> JLArray) @testset "Array -> JLArray" begin @assert Pencils.typeof_array(u) === Array v = @inferred adapt(JLArray, u) @test v isa PencilArray{Float64, 2} @test Pencils.typeof_array(v) === JLArray @test parent(v) isa JLArray{Float64, 2} @test JLArray(parent(u)) == parent(v) # Similar but changing element type v = @inferred adapt(JLArray{Float32}, u) @test v isa PencilArray{Float32, 2} @test Pencils.typeof_array(v) === JLArray @test parent(v) isa JLArray{Float32, 2} @test JLArray(parent(u)) ≈ parent(v) end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
3711
#!/usr/bin/env julia using MPI using PencilArrays using Random using Test import StaticArrayInterface: StaticArrayInterface, StaticInt, StaticBool, contiguous_axis, contiguous_axis_indicator, contiguous_batch_size, dense_dims, stride_rank struct DummyArray{T,N} <: AbstractArray{T,N} dims :: Dims{N} DummyArray{T}(::UndefInitializer, dims::Dims) where {T} = new{T,length(dims)}(dims) end DummyArray{T}(init, dims...) where {T} = DummyArray{T}(init, dims) Base.size(x::DummyArray) = x.dims Base.similar(x::DummyArray{T}) where {T} = DummyArray{T}(undef, size(x)) Base.getindex(::DummyArray{T}, ind...) where {T} = zero(T) Base.strides(x::DummyArray) = Base.size_to_strides(1, size(x)...) function non_dense_array(::Type{T}, dims) where {T} # Only the first dimension is dense: (True, False, False, ...). N = length(dims) dims_parent = ntuple(d -> (d - 1) + dims[d], Val(N)) up = view(Array{T}(undef, dims_parent), Base.OneTo.(dims)...) @assert dense_dims(up) === ntuple(d -> StaticBool(d == 1), Val(ndims(up))) up end function non_contiguous_array(::Type{T}, dims) where {T} N = length(dims) dims_parent = (2, dims...) # we take the slice [1, :, :, ...] up = view(Array{T}(undef, dims_parent), 1, ntuple(d -> Colon(), Val(N))...) @assert contiguous_axis(up) === StaticInt(-1) @assert size(up) == dims @assert StaticArrayInterface.static_size(up) == dims up end function test_array_interface(pen_in::Pencil) pa = Pencil(Array, pen_in) pd = Pencil(DummyArray, pen_in) # Test different kinds of parent arrays dims_mem = size_local(pen_in, MemoryOrder()) up_regular = Array{Float64}(undef, dims_mem) up_noncontig = non_contiguous_array(Float64, dims_mem) up_nondense = non_dense_array(Float64, dims_mem) up_dummy = DummyArray{Float64}(undef, dims_mem) parents = ( up_regular => pa, up_noncontig => pa, up_nondense => pa, up_dummy => pd, ) @testset "Parent $(typeof(up))" for (up, p) in parents u = PencilArray(p, up) @test StaticArrayInterface.parent_type(u) === typeof(up) @test StaticArrayInterface.known_length(u) === nothing @test !StaticArrayInterface.can_change_size(u) @test StaticArrayInterface.ismutable(u) @test StaticArrayInterface.can_setindex(u) @test StaticArrayInterface.aos_to_soa(u) === u @test StaticArrayInterface.fast_scalar_indexing(u) @test !StaticArrayInterface.isstructured(u) # Compare outputs with equivalent PermutedDimsArray iperm = inv(permutation(u)) vp = PermutedDimsArray(up, iperm) functions = ( contiguous_axis, contiguous_axis_indicator, contiguous_batch_size, stride_rank, dense_dims, StaticArrayInterface.static_size, StaticArrayInterface.static_strides, StaticArrayInterface.offsets, ) for f in functions @inferred f(u) @test f(u) === f(vp) end end nothing end MPI.Init() Nxyz = (11, 21, 32) comm = MPI.COMM_WORLD Nproc = MPI.Comm_size(comm) myrank = MPI.Comm_rank(comm) let dev_null = @static Sys.iswindows() ? "nul" : "/dev/null" MPI.Comm_rank(comm) == 0 || redirect_stdout(open(dev_null, "w")) end rng = MersenneTwister(42 + myrank) topo = MPITopology(comm, Val(2)) pen1 = Pencil(topo, Nxyz, (2, 3)) pen2 = Pencil(pen1, decomp_dims=(1, 3), permute=Permutation(2, 1, 3)) pen3 = Pencil(pen2, decomp_dims=(1, 2), permute=Permutation(3, 2, 1)) pens = (pen1, pen2, pen3) @testset "StaticArrayInterface -- Pencil$(decomposition(p))" for p in pens test_array_interface(p) end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
6690
# Test PencilArrays wrapping arrays of type different from the base Array. # We use a custom TestArray type as well as the JLArray (<: AbstractGPUArray) # type defined in the GPUArrays.jl tests. using MPI using PencilArrays using PencilArrays: typeof_array using Random using Test ## ================================================================================ ## using JLArrays: JLArray, DenseJLVector, JLVector, DataRef # A bit of type piracy to help tests pass (the following functions seem to be defined for # CuArray). # This is a modified version of the resize! function defined in JLArrays.jl 0.1.5, which # avoids freeing memory that will be used in the future. function Base.resize!(a::DenseJLVector{T}, nl::Integer) where {T} a_resized = JLVector{T}(undef, nl) copyto!(a_resized, 1, a, 1, min(length(a), nl)) finalize(a) # free previous memory a.data = copy(a_resized.data) # this simply increments the reference count by 1 a.offset = 0 a.dims = size(a_resized) return a end function Base.unsafe_wrap(::Type{<:JLArray}, p::Ptr, dims::Dims; kws...) T = eltype(p) N = length(dims) p_obj = convert(Ptr{UInt8}, p) dims_obj = (sizeof(T) * prod(dims),) obj = unsafe_wrap(Array, p_obj, dims_obj; kws...) ref = DataRef(obj) x = JLArray{T,N}(ref, dims) @assert pointer(x) === p x end Base.unsafe_wrap(::Type{T}, p::Ptr, n::Integer; kws...) where {T <: JLArray} = unsafe_wrap(T, p, (n,); kws...) # Random.rand!(rng::AbstractRNG, u::JLArray, ::Type{X}) where {X} = (rand!(rng, u.data, X); u) # For some reason this kind of view doesn't work correctly in the original implementation, # returning a copy. function Base.view(u::DenseJLVector, I::AbstractUnitRange) a, b = first(I), last(I) inds = a:1:b # this kind of range works correctly view(u, inds) end # Note that MPI.Buffer is also defined for CuArray. function MPI.Buffer(u::JLArray) obj = u.data.rc.obj :: Vector{UInt8} count = length(u) datatype = MPI.Datatype(eltype(u)) MPI.Buffer(obj, count, datatype) end ## ================================================================================ ## # Define simple array wrapper type for tests. struct TestArray{T, N} <: DenseArray{T, N} data :: Array{T, N} end TestArray{T}(args...) where {T} = TestArray(Array{T}(args...)) TestArray{T,N}(args...) where {T,N} = TestArray(Array{T,N}(args...)) Base.parent(u::TestArray) = u # this is just for the tests... Base.size(u::TestArray) = size(u.data) Base.similar(u::TestArray, ::Type{T}, dims::Dims) where {T} = TestArray(similar(u.data, T, dims)) Base.getindex(u::TestArray, args...) = getindex(u.data, args...) Base.setindex!(u::TestArray, args...) = setindex!(u.data, args...) Base.resize!(u::TestArray, args...) = (resize!(u.data, args...); u) Base.pointer(u::TestArray) = pointer(u.data) Base.pointer(u::TestArray, n::Integer) = pointer(u.data, n) # needed to avoid ambiguity Base.unsafe_wrap(::Type{<:TestArray}, p::Ptr, dims::Union{Integer, Dims}; kws...) = TestArray(unsafe_wrap(Array, p, dims; kws...)) if isdefined(Base, :elsize) # This seems to be needed on Julia nightly (1.12.0-DEV) Base.elsize(::Type{<:TestArray{T, N}}) where {T, N} = Base.elsize(Array{T, N}) end MPI.Buffer(u::TestArray) = MPI.Buffer(u.data) # for `gather` Base.cconvert(::Type{MPI.MPIPtr}, u::TestArray{T}) where {T} = reinterpret(MPI.MPIPtr, pointer(u)) MPI.Init() comm = MPI.COMM_WORLD MPI.Comm_rank(comm) == 0 || redirect_stdout(devnull) @testset "Array type: $A" for A ∈ (Array, JLArray, TestArray) pen = @inferred Pencil(A, (8, 10), comm) @test @inferred(typeof_array(pen)) === A @test (@inferred (p -> p.send_buf)(pen)) isa A @test (@inferred (p -> p.recv_buf)(pen)) isa A # Check that creating a PencilArray with incorrect type of underlying data # fails. ArrayOther = A === Array ? TestArray : Array let dims = size_local(pen, MemoryOrder()) data = ArrayOther{Float32}(undef, dims) @test_throws ArgumentError PencilArray(pen, data) end u = @inferred PencilArray{Float32}(undef, pen) @test typeof(parent(u)) <: A{Float32} @test @inferred(typeof_array(pen)) === A @test @inferred(typeof_array(u)) === A # This is in particular to test that, for GPU arrays, scalar indexing is not # performed and the correct GPU functions are called. rng = MersenneTwister(42) @testset "Initialisation" begin @test_nowarn fill!(u, 4) @test_nowarn rand!(rng, u) @test_nowarn randn!(rng, u) end px = @inferred Pencil(A, (20, 16, 4), (1,), comm) @testset "Permutation: $perm" for perm ∈ (NoPermutation(), Permutation(2, 3, 1)) if perm != NoPermutation() # Make sure we're testing the more "interesting" case in which the # permutation is not its own inverse. @assert inv(perm) != perm end py = @inferred Pencil(px; decomp_dims = (2,), permute = perm) @test px.send_buf === py.send_buf @test permutation(py) == perm @test @inferred(typeof_array(px)) === A @test @inferred(typeof_array(py)) === A if A === JLArray GC.gc() @test px.send_buf.data.rc.count[] == 1 end @testset "Transpositions" begin ux = @test_nowarn rand!(rng, PencilArray{Float64}(undef, px)) uy = @inferred similar(ux, py) @test pencil(uy) === py tr = @inferred Transpositions.Transposition(uy, ux) if A === JLArray GC.gc() @test px.send_buf.data.rc.count[] == 1 end transpose!(tr) if A === JLArray GC.gc() @test px.send_buf.data.rc.count[] == 1 end @test_logs (:warn, r"is deprecated") MPI.Waitall!(tr) # Verify transposition gx = @inferred Nothing gather(ux) gy = @inferred Nothing gather(uy) if !(nothing === gx === gy) @test typeof(gx) === typeof(gy) <: Array @test gx == gy end end @testset "Multiarrays" begin M = @inferred ManyPencilArray{Float32}(undef, px, py) randn!(rng, M.data) ux = @inferred first(M) uy = @inferred last(M) @test ux isa PencilArray{Float32} @test uy isa PencilArray{Float32} uxp = parent(ux) uyp = parent(uy) @test uxp isa A{Float32} @test uyp isa A{Float32} @test @inferred(Tuple(M)) === (ux, uy) end end # permutation end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
656
using MPI using PencilArrays using Random using Test MPI.Initialized() || MPI.Init() dims = (8, 12, 9) comm = MPI.COMM_WORLD pen = Pencil(dims, comm; permute = Permutation(2, 3, 1)) MPI.Comm_rank(comm) == 0 || redirect_stdout(devnull) u = PencilArray{Float32}(undef, pen) randn!(u) ug = global_view(u) @testset "Indices" begin for A in (u, ug) @test all(zip(LinearIndices(A), CartesianIndices(A))) do (n, I) A[n] === A[I] end @test all(pairs(IndexLinear(), A)) do (n, v) A[n] === v end @test all(pairs(IndexCartesian(), A)) do (I, v) A[I] === v end end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1846
using MPI using PencilArrays using Random using Test using GPUArrays using JLArrays MPI.Init() comm = MPI.COMM_WORLD rank = MPI.Comm_rank(comm) rank == 0 || redirect_stdout(devnull) topo = MPITopology(comm, Val(1)) dims = (11, 12, 2) perm = Permutation(2, 3, 1) @assert inv(perm) != perm pencils = ( "Non-permuted" => Pencil(topo, dims, (2, )), "Permuted" => Pencil(topo, dims, (2, ); permute = perm), ) @testset "$s" for (s, pen) in pencils A = PencilArray{Float64}(undef, pen) randn!(A) perm = permutation(A) @testset "Broadcast" begin @test typeof(2A) == typeof(A) @test typeof(A .+ A) == typeof(A) @test typeof(A .+ A .+ 3) == typeof(A) @test parent(2A) == 2parent(A) let x = A, y = similar(x) broadcast!(+, y, x, x, 3) # precompile before measuring allocations alloc = @allocated broadcast!(+, y, x, x, 3) @test alloc == 0 @test y ≈ 2x .+ 3 end end @testset "Combinations" begin # Combine with regular Array P = parent(A) :: Array @test typeof(P .+ A) == typeof(A) @test P .+ A == 2A end @testset "GPU arrays" begin pp = Pencil(JLArray, pen) u = PencilArray{Float32}(undef, pp) randn!(u) # Some basic stuff that should work without scalar indexing # (Nothing to do with broadcasting though...) v = @test_nowarn copy(u) @test typeof(v) === typeof(u) @test_nowarn v == u @test v == u @test v ≈ u @test parent(u) isa JLArray @test_nowarn u .+ u # should avoid scalar indexing @test u .+ u == 2u @test typeof(u .+ u) == typeof(u) @test_nowarn v .= u .+ 2u @test typeof(v) == typeof(u) @test parent(v) ≈ 3parent(u) end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
6692
using HDF5 using MPI using PencilArrays using PencilArrays.PencilIO import JSON3 if !PencilIO.hdf5_has_parallel() @warn "HDF5 has no parallel support. Skipping HDF5 tests." exit(0) end using Random using Test # Copied from PencilArraysHDF5Ext.jl function _is_set(fapl::HDF5.FileAccessProperties, ::Val{:fclose_degree}) id = fapl.id degree = Ref{Cint}() status = ccall( (:H5Pget_fclose_degree, HDF5.API.libhdf5), HDF5.API.herr_t, (HDF5.API.hid_t, Ref{Cint}), id, degree) # A negative value means failure, which we interpret here as meaning that # "fclose_degree" has not been set. status ≥ 0 end function test_write_mpiio(filename, u::PencilArray) comm = get_comm(u) root = 0 rank = MPI.Comm_rank(comm) X = (u, u .+ 1, u .+ 2, u .+ 3, u .+ 4) kws = Iterators.product((false, true), (false, true)) @test_nowarn open(MPIIODriver(), filename, comm, write=true, create=true) do ff pos = 0 for (i, (collective, chunks)) in enumerate(kws) name = "field_$i" ff[name, collective=collective, chunks=chunks] = X[i] pos += sizeof_global(X[i]) @test position(ff) == pos end end # Append some data. open(MPIIODriver(), filename, comm, write=true, append=true) do ff ff["field_5", chunks=false] = X[5] ff["collection"] = X end @test isfile("$filename.json") meta = open(JSON3.read, "$filename.json", "r").datasets # Test file contents in serial mode. # First, gather data from all processes. # Note that we may need to permute indices of data, since data on disk is # written in memory (not logical) order. perm = Tuple(permutation(u)) Xg = map(X) do x xg = gather(x, root) # note: data is in logical order xg === nothing && return xg perm === nothing && return xg PermutedDimsArray(xg, perm) end @test (Xg[1] === nothing) == (rank != root) if rank == root open(filename, "r") do ff y = similar(Xg[1]) for (i, (collective, chunks)) in enumerate(kws) mpiio_read_serial!(ff, y, meta, "field_$i") if !chunks # if chunks = true, data is reordered into blocks @test y == Xg[i] end end # Verify appended data mpiio_read_serial!(ff, y, meta, "field_5") @test y == Xg[5] let y = similar.(Xg) mpiio_read_serial!(ff, y, meta, "collection") @test all(y .== Xg) end end end # Read stuff y = similar(X[1]) @test_nowarn open(MPIIODriver(), filename, comm, read=true) do ff @test_throws ErrorException read!(ff, y, "field not in file") let y = similar.(X) read!(ff, y, "collection") @test all(y .== X) end for (i, (collective, _)) in enumerate(kws) name = "field_$i" read!(ff, y, name, collective=collective) @test y == X[i] end read!(ff, y, "field_5") @test y == X[5] end # File without metadata filename_nometa = filename * "_nometa" rank == root && symlink(filename, filename_nometa) MPI.Barrier(comm) fill!(y, 0) @test_nowarn open( MPIIODriver(), filename_nometa, comm; read = true, ) do ff # We can't pass a name, since metadata is not available. @test_throws ArgumentError read!(ff, y, "name_doesnt_matter") # This should read the first written dataset (offset = 0). @test_nowarn read!(ff, y) # This will only be true if X[1] was written with chunks = false. @test y == X[1] end nothing end read_array!(ff, x) = read!(ff, x) read_array!(ff, t::Tuple) = map(x -> read_array!(ff, x), t) function mpiio_read_serial!(ff, x, meta, name) offset = meta[Symbol(name)].offset_bytes :: Int seek(ff, offset) read_array!(ff, x) end function test_write_hdf5(filename, u::PencilArray) comm = get_comm(u) rank = MPI.Comm_rank(comm) v = u .+ 1 w = u .+ 2 # Open file in serial mode first. if rank == 0 h5open(filename, "w") do ff # "HDF5 file was not opened with the MPIO driver" @test_throws ErrorException ff["scalar"] = u end end MPI.Barrier(comm) @test_nowarn open(PHDF5Driver(), filename, comm, write=true) do ff @test isopen(ff) @test_nowarn ff["scalar", collective=true, chunks=false] = u @test_nowarn ff["vector_tuple", collective=false, chunks=true] = (u, v, w) @test_nowarn ff["vector_array", collective=true, chunks=true] = [u, v, w] end @test_nowarn open(PHDF5Driver(), filename, comm, append=true) do ff @test isopen(ff) @test_nowarn ff["scalar_again"] = u end @test_nowarn open(PHDF5Driver(), filename, comm, read=true) do ff @test isopen(ff) uvw = (u, v, w) uvw_r = similar.(uvw) ur, vr, wr = uvw_r read!(ff, ur, "scalar") @test u == ur read!(ff, vr, "scalar_again") @test vr == ur let perm = Tuple(permutation(ur)) @test haskey(attributes(ff["scalar"]), "permutation") expected = perm === nothing ? false : collect(perm) @test read(ff["scalar"]["permutation"]) == expected end read!(ff, uvw_r, "vector_tuple") @test all(uvw .== uvw_r) fill!.(uvw_r, 0) read!(ff, collect(uvw_r), "vector_array", collective=false) @test all(uvw .== uvw_r) end nothing end MPI.Init() Nxyz = (16, 21, 41) comm = MPI.COMM_WORLD Nproc = MPI.Comm_size(comm) myrank = MPI.Comm_rank(comm) MPI.Comm_rank(comm) == 0 || redirect_stdout(devnull) @show HDF5.API.libhdf5 @testset "HDF5 properties" begin let fapl = HDF5.FileAccessProperties() @test _is_set(fapl, Val(:fclose_degree)) === false fapl.fclose_degree = :strong @test _is_set(fapl, Val(:fclose_degree)) === true @test fapl.fclose_degree === :strong end end rng = MersenneTwister(42) perms = (NoPermutation(), Permutation(2, 3, 1)) @testset "$perm" for perm in perms pen = Pencil(Nxyz, (1, 3), comm; permute = perm) u = PencilArray{Float64}(undef, pen) randn!(rng, u) u .+= 10 * myrank @testset "MPI-IO" begin filename = MPI.bcast(tempname(), 0, comm) test_write_mpiio(filename, u) end @testset "HDF5" begin filename = MPI.bcast(tempname(), 0, comm) test_write_hdf5(filename, u) end end # HDF5.API.h5_close() # MPI.Finalize()
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
2283
using MPI using PencilArrays using Test using PencilArrays.LocalGrids: LocalRectilinearGrid, components # TODO # - return SVector for grid elements? MPI.Init() comm = MPI.COMM_WORLD MPI.Comm_rank(comm) == 0 || redirect_stdout(devnull) perm = Permutation(2, 3, 1) @assert inv(perm) != perm dims = (6, 11, 21) pen = Pencil(dims, comm; permute = perm) @testset "LocalRectilinearGrid" begin coords_global = ( range(0, 1; length = dims[1]), range(0, 1; length = dims[2]), [n^2 for n = 1:dims[3]], # these are Int ) grid = @inferred localgrid(pen, coords_global) @test grid isa LocalRectilinearGrid{3} @test permutation(grid) === permutation(pen) @test ndims(grid) == 3 @test match( r"^LocalRectilinearGrid\{3\} with Permutation\(.*\) and coordinates:", repr(grid), ) !== nothing # Components @inferred (g -> (g.x, g.y, g.z))(grid) @inferred (g -> (g[1], g[2], g[3]))(grid) @test match( r"^Component i = 2 of LocalRectilinearGrid\{3\}:", repr(grid.y), ) !== nothing xl, yl, zl = @inferred components(grid) @test grid.x == xl @test all(i -> xl[i] == grid.x[i], eachindex(grid.x)) @test all(i -> yl[i] == grid.y[i], eachindex(grid.y)) @test all(i -> zl[i] == grid.z[i], eachindex(grid.z)) # Broadcasting u = PencilArray{Float32}(undef, pen) @test @inferred(localgrid(u, coords_global)) === grid @test_nowarn @. u = grid.x * grid.y + grid.z # Indexing @test @inferred(eachindex(grid)) === @inferred(CartesianIndices(grid)) @test eachindex(grid) === CartesianIndices(u) @test all(eachindex(grid)) do I x, y, z = grid[I] u[I] ≈ x * y + z end # Iteration: check that grids and arrays iterate in the same order @test all(zip(u, grid)) do (v, xyz) x, y, z = xyz v ≈ x * y + z end @test all(enumerate(grid)) do (i, xyz) x, y, z = xyz u[i] ≈ x * y + z end @test all(pairs(grid)) do (I, xyz) x, y, z = xyz u[I] ≈ x * y + z end coords_col = @inferred collect(grid) @test coords_col isa Vector @test eltype(coords_col) === eltype(grid) === typeof(map(first, components(grid))) # = Tuple{Float64, Float64, Int} end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
2838
# Test interaction with DifferentialEquations.jl. # We solve a trivial decoupled system of ODEs. import DiffEqBase using MPI using PencilArrays using OrdinaryDiffEqTsit5 using RecursiveArrayTools: ArrayPartition using StructArrays: StructArray using StaticArrays: SVector using Test function to_structarray(us::NTuple{N, A}) where {N, A <: AbstractArray} T = eltype(A) Vec = SVector{N, T} StructArray{Vec}(us) end MPI.Init() comm = MPI.COMM_WORLD rank = MPI.Comm_rank(comm) rank == 0 || redirect_stdout(devnull) dims = (13, 23, 17) # prime dimensions to test an unbalanced partitioning coords_global = map(N -> range(0, 1; length = N), dims) perm = Permutation(2, 3, 1) pen = Pencil(dims, comm; permute = perm) grid = localgrid(pen, coords_global) u0 = PencilArray{Float64}(undef, pen) @. u0 = grid.x * grid.y + grid.z function rhs!(du, u, p, t) @. du = -0.1 * u du end @testset "DiffEqBase" begin unorm = DiffEqBase.ODE_DEFAULT_NORM(u0, 0.0) unorms = MPI.Allgather(unorm, comm) @test allequal(unorms) # Note that ODE_DEFAULT_UNSTABLE_CHECK calls NAN_CHECK. w = copy(u0) wcheck = DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK(nothing, w, nothing, nothing) @test wcheck == false # After setting a single value to NaN, all processes should detect it. if rank == 0 w[1] = NaN end wcheck = DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK(nothing, w, nothing, nothing) @test wcheck == true end @testset "OrdinaryDiffEq" begin tspan = (0.0, 1000.0) params = (;) prob = @inferred ODEProblem{true}(rhs!, u0, tspan, params) # This is not fully inferred... integrator = init( prob, Tsit5(); adaptive = true, save_everystep = false, ) # Check that all timesteps are the same for _ = 1:10 local dts = MPI.Allgather(integrator.dt, comm) @test allequal(dts) step!(integrator) end @testset "ArrayPartition" begin v0 = ArrayPartition(u0) prob = @inferred ODEProblem{true}(rhs!, v0, tspan, params) # TODO for now this fails when permutations are enabled due to incompatible # broadcasting. @test_skip integrator = init( prob, Tsit5(); adaptive = true, save_everystep = false, ) end # Solve the equation for a 2D vector field represented by a StructArray. @testset "StructArray" begin v0 = to_structarray((u0, 2u0)) @assert eltype(v0) <: SVector{2} tspan = (0.0, 1.0) prob = @inferred ODEProblem{true}(rhs!, v0, tspan, params) integrator = init( prob, Tsit5(); adaptive = true, save_everystep = false, ) @test integrator.u == v0 for _ ∈ 1:10 step!(integrator) end @test integrator.u ≠ v0 end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
17819
using PencilArrays using PencilArrays.MPITopologies using MPI using BenchmarkTools using Random using Test const BENCHMARK_ARRAYS = "--benchmark" in ARGS Indexation(::Type{IndexLinear}) = LinearIndices Indexation(::Type{IndexCartesian}) = CartesianIndices # For testing `similar` for PencilArray. struct DummyArray{T,N} <: AbstractArray{T,N} dims :: Dims{N} DummyArray{T}(::UndefInitializer, dims::Dims) where {T} = new{T,length(dims)}(dims) end DummyArray{T}(init, dims...) where {T} = DummyArray{T}(init, dims) Base.size(x::DummyArray) = x.dims Base.getindex(::DummyArray{T}, ind...) where {T} = zero(T) Base.similar(x::DummyArray, ::Type{S}, dims::Dims) where {S} = DummyArray{S}(undef, dims) function benchmark_fill!(::Type{T}, u, val) where {T <: IndexStyle} indices = Indexation(T)(u) @inbounds for I in indices u[I] = val end u end function test_array_wrappers(p::Pencil, ::Type{T} = Float64) where {T} u = PencilArray{T}(undef, p) @test match(r"PencilArray{.*}\(::Pencil{.*}\)", summary(u)) !== nothing for x in (42, 10) fill!(u, x) @test all(==(x), u) end perm = permutation(u) @test perm === permutation(typeof(u)) let topo = topology(p) @test topo === topology(u) I = coords_local(topo) @test range_remote(u, I) === range_remote(p, I) end @test parent(u) === u.data @test eltype(u) === eltype(u.data) === T @test length.(axes(u)) === size_local(u) @test sizeof_global(u) == sizeof(T) * prod(size_global(u)) @test length_global(u) == prod(size_global(u)) @test sizeof_global((u, u)) == 2 * sizeof_global(u) let umat = [u for i = 1:2, j = 1:3] @test sizeof_global(umat) == 6 * sizeof_global(u) end @test length_global(u) == length_global(p) @test size_global(u) == size_global(p) @test length_local(u) == length_local(p) @test size_local(u) == size_local(p) let A = PermutedDimsArray(parent(u), perm) @test strides(A) === strides(u) end randn!(u) @test check_iteration_order(u) @inferred global_view(u) ug = global_view(u) @test check_iteration_order(ug) @test length(u) == length_local(u) @test size(u) == size_local(u) if BENCHMARK_ARRAYS for S in (IndexLinear, IndexCartesian) @info("Filling arrays using $S (Array, PencilArray, GlobalPencilArray)", permutation(p)) for v in (parent(u), u, ug) val = 3 * oneunit(eltype(v)) @btime benchmark_fill!($S, $v, $val) end println() end end @testset "similar" begin let v = @inferred similar(u) @test typeof(v) === typeof(u) @test length(v) == length(u) @test length_local(v) == length_local(u) @test size(v) == size(u) @test size_local(v) == size_local(u) @test pencil(v) === pencil(u) end let v = @inferred similar(u, Int) @test v isa PencilArray @test size_local(v) == size_local(u) @test eltype(v) === Int @test pencil(v) === pencil(u) end @test (@inferred similar(u, size(u))) isa PencilArray{T} @test (@inferred similar(u, Int, size(u))) isa PencilArray{Int} @test_throws DimensionMismatch similar(u, 12) @test_throws DimensionMismatch similar(u, Int, 12) @test_throws DimensionMismatch similar(u, size(u) .+ 1) @test_throws DimensionMismatch similar(u, Int, size(u) .+ 1) let A = DummyArray{Int}(undef, size_local(p, MemoryOrder())) pdummy = Pencil(DummyArray, p) local u = @inferred PencilArray(pdummy, A) @test parent(u) === A v = @inferred similar(u) @test typeof(v) === typeof(u) @test size(v) == size(u) end # Test similar(u, [T], q::Pencil) let N = ndims(p) permute = Permutation(N, ntuple(identity, N - 1)...) # = (N, 1, 2, ..., N - 1) decomp_dims = mod1.(decomposition(p) .+ 1, N) q = Pencil(p; decomp_dims = decomp_dims, permute = permute) v = @inferred similar(u, q) @test pencil(v) === q @test eltype(v) === eltype(u) @test size_global(v) === size_global(u) w = @inferred similar(u, Int, q) @test pencil(w) === q @test eltype(w) === Int @test size_global(w) === size_global(u) end end @test fill!(u, 42) === u let z = @inferred zero(u) @test all(iszero, z) @test typeof(z) === typeof(u) @test pencil(z) === pencil(u) @test size(z) === size(u) @test size_local(z) === size_local(u) end let v = similar(u) @test typeof(v) === typeof(u) psize = size_local(p, LogicalOrder()) @test psize === size_local(v) === size_local(u) @test psize === size_local(u, LogicalOrder()) === size_local(v, LogicalOrder()) vp = parent(v) randn!(vp) I = size_local(v) .>> 1 # non-permuted indices J = perm * I @test v[I...] == vp[J...] # the parent takes permuted indices end let psize = size_local(p, MemoryOrder()) a = zeros(T, psize) u = PencilArray(p, a) @test parent(u) === a @test IndexStyle(typeof(u)) === IndexStyle(typeof(a)) === IndexLinear() b = zeros(T, psize .+ 2) @test_throws DimensionMismatch PencilArray(p, b) @test_throws DimensionMismatch PencilArray(p, zeros(T, 3, psize...)) # This is allowed. w = PencilArray(p, zeros(T, psize..., 3)) @test size_global(w) === (size_global(p)..., 3) @inferred PencilArray(p, zeros(T, psize..., 3)) @inferred size_global(w) end nothing end function test_multiarrays(pencils::Vararg{Pencil,M}; element_type::Type{T} = Float64) where {M,T} @assert M >= 3 @inferred ManyPencilArray{T}(undef, pencils...) A = ManyPencilArray{T}(undef, pencils...) @test ndims(A) === ndims(first(pencils)) @test eltype(A) === T @test length(A) === M @inferred first(A) @inferred last(A) @inferred A[Val(2)] @inferred A[Val(M)] @test_throws ErrorException @inferred A[2] # type not inferred @test A[Val(1)] === first(A) === A[Val(UInt8(1))] === A[1] @test A[Val(2)] === A[2] === A.arrays[2] === A[Val(Int32(2))] @test A[Val(M)] === last(A) @test_throws BoundsError A[Val(0)] @test_throws BoundsError A[Val(M + 1)] @testset "In-place extra dimensions" begin e = (3, 2) @inferred ManyPencilArray{T}(undef, pencils...; extra_dims=e) A = ManyPencilArray{T}(undef, pencils...; extra_dims=e) @test extra_dims(first(A)) === extra_dims(last(A)) === e @test ndims_extra(first(A)) == ndims_extra(last(A)) == length(e) end @testset "In-place transpose" begin u = A[Val(1)] v = A[Val(2)] w = A[Val(3)] randn!(u) u_orig = copy(u) transpose!(v, u) # this also modifies `u`! @test compare_distributed_arrays(u_orig, v) # In the 1D decomposition case, this is a local transpose, since v and w # only differ in the permutation. transpose!(w, v) @test compare_distributed_arrays(u_orig, w) end nothing end function check_iteration_order(u::Union{PencilArray,GlobalPencilArray}) p = parent(parent(u)) :: Array # two `parent` are needed for GlobalPencilArray cart = CartesianIndices(u) lin = LinearIndices(u) # Check that the behaviour of `cart` is consistent with that of # CartesianIndices. @assert size(CartesianIndices(p)) == size(p) @test size(cart) == size_local(u) # Same for `lin`. @assert size(LinearIndices(p)) == size(p) @test size(lin) == size_local(u) # Check that Cartesian indices iterate in memory order. for (n, I) in enumerate(cart) l = lin[I] @assert l == n u[n] == p[n] == u[I] == u[l] || return false end # Also test iteration on LinearIndices and their conversion to Cartesian # indices. for (n, l) in enumerate(lin) @assert l == n # Convert linear to Cartesian index. I = cart[l] # this is relatively slow, don't do it in real code! u[n] == p[n] == u[I] == u[l] || return false end N = ndims(u) @test ndims(lin) == ndims(cart) == N true end function compare_distributed_arrays(u_local::PencilArray, v_local::PencilArray) comm = get_comm(u_local) root = 0 myrank = MPI.Comm_rank(comm) u = gather(u_local, root) v = gather(v_local, root) same = Ref(false) if u !== nothing && v !== nothing @assert myrank == root same[] = u == v end MPI.Bcast!(same, root, comm) same[] end MPI.Init() Nxyz = (16, 21, 41) comm = MPI.COMM_WORLD Nproc = MPI.Comm_size(comm) myrank = MPI.Comm_rank(comm) myrank == 0 || redirect_stdout(devnull) rng = MersenneTwister(42 + myrank) # Let MPI_Dims_create choose the values of (P1, P2). proc_dims = MPITopologies.dims_create(comm, Val(2)) # Note that using dims_create is the default in MPITopology @test MPITopology(comm, proc_dims) == MPITopology(comm, Val(2)) @test_throws ArgumentError MPITopology(comm, proc_dims .- 1) @test_throws ArgumentError MPITopology(comm, proc_dims .+ 1) topo = MPITopology(comm, proc_dims) @test match( r"^MPI topology: 2D decomposition \(\d+×\d+ processes\)$", string(topo), ) !== nothing @test ndims(topo) == length(proc_dims) == 2 pen1 = @inferred Pencil(topo, Nxyz) let p = @inferred Pencil(topo, Nxyz, (2, 3)) # this is the default decomposition @test decomposition(p) === decomposition(pen1) end pen2 = @inferred Pencil(pen1, decomp_dims=(1, 3), permute=Permutation(2, 3, 1)) pen3 = @inferred Pencil(pen2, decomp_dims=(1, 2), permute=Permutation(3, 2, 1)) @test match(r"Pencil{3, 2, NoPermutation, Array}", summary(pen1)) !== nothing @test match(r"Pencil{3, 2, Permutation{.*}, Array}", summary(pen2)) !== nothing println("Pencil 1: ", pen1, "\n") println("Pencil 2: ", pen2, "\n") println("Pencil 3: ", pen3, "\n") @testset "Pencil constructors" begin comm = MPI.COMM_WORLD p = @inferred Pencil((5, 4, 4, 3), comm) @test decomposition(p) == (2, 3, 4) @test ndims(topology(p)) == 3 @test permutation(p) == NoPermutation() p = @inferred Pencil((5, 4, 4, 3), comm; permute = Permutation(2, 3, 4, 1)) @test decomposition(p) == (2, 3, 4) @test ndims(topology(p)) == 3 @test permutation(p) == Permutation(2, 3, 4, 1) p = @inferred Pencil((5, 4, 4, 3), (2, 3), comm; permute = Permutation(2, 3, 4, 1)) @test decomposition(p) == (2, 3) @test ndims(topology(p)) == 2 @test permutation(p) == Permutation(2, 3, 4, 1) end @testset "ManyPencilArray" begin test_multiarrays(pen1, pen2, pen3) end @testset "Topology" begin @test topology(pen2) === topo @test range_remote(pen2, coords_local(topo)) == range_local(pen2) @test eachindex(topo) isa LinearIndices for (n, I) in zip(eachindex(topo), CartesianIndices(topo)) for order in (MemoryOrder(), LogicalOrder()) @test range_remote(pen2, Tuple(I), order) == range_remote(pen2, n, order) end end end # Note: the permutation of pen2 was chosen such that the inverse permutation # is different. @assert permutation(pen2) != inv(permutation(pen2)) @testset "Pencil constructor checks" begin # Invalid permutations @test_throws TypeError Pencil( topo, Nxyz, (1, 2), permute=(2, 3, 1)) @test_throws ArgumentError Pencil( topo, Nxyz, (1, 2), permute=Permutation(0, 3, 15)) # Decomposed dimensions may not be repeated. @test_throws ArgumentError Pencil(topo, Nxyz, (2, 2)) # Decomposed dimensions must be in 1:N = 1:3. @test_throws ArgumentError Pencil(topo, Nxyz, (1, 4)) @test_throws ArgumentError Pencil(topo, Nxyz, (0, 2)) @test Pencils.complete_dims(Val(5), (2, 3), (42, 12)) === (1, 42, 12, 1, 1) # Divide dimension of size = Nproc - 1 among Nproc processes. # => One process will have no data! global_dims = (12, Nproc - 1) decomp_dims = (2,) # These warning tests fail on Julia 1.6 for some reason. # The warning is shown, but @test_warn apparently fails to capture the # output. @static if VERSION ≥ v"1.7" @test_warn "have no data" Pencil(global_dims, decomp_dims, comm) # Throw warning if amount of local data is larger than typemax(Cint) (#58). if sizeof(Cint) == 4 # just in case Cint == Int64, if that can ever happen... let Nlocal = Int64(2) * (Int64(typemax(Cint)) + 1) local Nglobal = Int64(Nproc) * Nlocal local Nx = Int64(64) local Ny = Nglobal ÷ Nx @assert Nx * Ny == Nglobal @test_warn "size of local data is too large" Pencil((Nx, Ny), comm) end end end end @testset "Pencil" begin for p ∈ (pen1, pen2, pen3) @test size(p) === size_local(p, LogicalOrder()) @test length(p) === prod(size(p)) @inferred (p -> p.send_buf)(p) end @testset "similar" begin p = pen2 # Case 1a: identical pencil let q = @inferred similar(p) @test q === p end # Case 1b: different dimensions let q = @inferred similar(p, 2 .* size_global(p)) @test size_global(q) == 2 .* size_global(p) end # Case 2a: same dimensions but different array type let q = @inferred similar(p, DummyArray) @test q !== p @test q.axes_all === p.axes_all # array wasn't copied nor recomputed @test size_global(q) == size_global(p) @test Pencils.typeof_array(q) === DummyArray end # Case 2b: different dimensions and array type let q = @inferred similar(p, DummyArray, 2 .* size_global(p)) @test q !== p @test size_global(q) == 2 .* size_global(p) @test Pencils.typeof_array(q) === DummyArray end end end @testset "PencilArray" begin test_array_wrappers(pen1) test_array_wrappers(pen2) test_array_wrappers(pen3) end # Test arrays with extra dimensions. @testset "extra dimensions" begin T = Float32 u1 = PencilArray{T}(undef, pen1, 3, 4) u2 = PencilArray{T}(undef, pen2, 3, 4) u3 = PencilArray{T}(undef, pen3, 3, 4) @test range_local(u2) === (range_local(pen2)..., Base.OneTo.((3, 4))...) @test range_remote(u2, 1) === (range_remote(pen2, 1)..., Base.OneTo.((3, 4))...) randn!(rng, u1) transpose!(u2, u1) @test compare_distributed_arrays(u1, u2) transpose!(u3, u2) @test compare_distributed_arrays(u2, u3) for v in (u1, u2, u3) @test check_iteration_order(v) end @inferred global_view(u1) end # Test slab (1D) decomposition. @testset "1D decomposition" begin T = Float32 topo = MPITopology(comm, (Nproc, )) @test ndims(topo) == 1 pen1 = Pencil(topo, Nxyz, (1, )) pen2 = Pencil(pen1, decomp_dims=(2, )) # Same decomposed dimension as pen2, but different permutation. pen3 = Pencil(pen2, permute=Permutation(3, 2, 1)) u1 = PencilArray{T}(undef, pen1) u2 = @inferred similar(u1, pen2) u3 = @inferred similar(u1, pen3) @test pencil(u2) === pen2 @test pencil(u3) === pen3 randn!(rng, u1) transpose!(u2, u1) @test compare_distributed_arrays(u1, u2) transpose!(u3, u2) @test compare_distributed_arrays(u1, u3) @test check_iteration_order(u3) # Test transposition between two identical configurations. transpose!(u2, u2) @test compare_distributed_arrays(u1, u2) let v = similar(u2) @test pencil(u2) === pencil(v) transpose!(v, u2) @test compare_distributed_arrays(u1, v) end test_multiarrays(pen1, pen2, pen3) end # Test decomposition along all dimensions. @testset "3D decomposition" begin T = ComplexF32 topo = @inferred MPITopology(comm, Val(3)) @test ndims(topo) == 3 # Note that we can't really change the decomposition if we're decomposing # all dimensions, but we can at least change the permutation. pen1 = @inferred Pencil(topo, Nxyz) pen2 = @inferred Pencil(pen1; permute = Permutation(2, 3, 1)) u1 = @inferred PencilArray{T}(undef, pen1) u2 = @inferred similar(u1, pen2) @test permutation(u1) == Permutation(1, 2, 3) == NoPermutation() @test permutation(u2) == Permutation(2, 3, 1) randn!(rng, u1) transpose!(u2, u1) @test compare_distributed_arrays(u1, u2) end @testset "Inference" begin periods = zeros(Int, length(proc_dims)) comm_cart = MPI.Cart_create(comm, proc_dims; reorder = false) @inferred MPITopologies.create_subcomms(Val(2), comm_cart) @test_throws ArgumentError MPITopology{3}(comm_cart) # wrong dimensionality @inferred MPITopology{2}(comm_cart) @inferred MPITopologies.get_cart_ranks_subcomm(pen1.topology.subcomms[1]) @inferred PencilArrays.to_local(pen2, (1:2, 1:2, 1:2), MemoryOrder()) @inferred PencilArrays.to_local(pen2, (1:2, 1:2, 1:2), LogicalOrder()) @inferred PencilArrays.size_local(pen2, MemoryOrder()) T = Int @inferred PencilArray{T}(undef, pen2) @inferred PencilArray{T}(undef, pen2, 3, 4) u1 = PencilArray{T}(undef, pen1) u2 = similar(u1, pen2) @inferred Nothing gather(u2) @inferred transpose!(u2, u1) @inferred Transpositions.get_remote_indices(1, (2, 3), 8) end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1075
using OffsetArrays using PencilArrays: Permutation, PermutedLinearIndices, PermutedCartesianIndices using Test @testset "Permuted indices" begin Aoff = OffsetArray(rand(3, 4, 5), -2, -1, -3) lin = LinearIndices(Aoff) cart = CartesianIndices(Aoff) perm = Permutation(3, 1, 2) plin = @inferred PermutedLinearIndices(lin, perm) pcart = @inferred PermutedCartesianIndices(cart, perm) for f in (size, axes) @test f(plin) == perm \ f(lin) @test f(pcart) == perm \ f(cart) end for n in LinearIndices(lin) @test lin[n] == plin[n] @test cart[n] == perm * pcart[n] end for I in CartesianIndices(lin) @test lin[I] == plin[perm \ I] end for J in CartesianIndices(plin) @test lin[perm * J] == plin[J] end # Iterate over permuted indices for n in plin @test n == lin[n] == plin[n] @test cart[n] == perm * pcart[n] end for J in pcart @test pcart[J] == J end for (I, J) in zip(cart, pcart) @test I == perm * J end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1646
using MPI using PencilArrays using Test MPI.Init() comm = MPI.COMM_WORLD nprocs = MPI.Comm_size(comm) rank = MPI.Comm_rank(comm) myid = rank + 1 rank == 0 || redirect_stdout(devnull) pen = Pencil((16, 32, 14), comm) u = PencilArray{Int32}(undef, pen) fill!(u, 2myid) @testset "Reductions" begin @test minimum(u) == 2 @test maximum(u) == 2nprocs @test minimum(abs2, u) == 2^2 @test maximum(abs2, u) == (2nprocs)^2 @test sum(u) === MPI.Allreduce(sum(parent(u)), +, comm) @test sum(abs2, u) === MPI.Allreduce(sum(abs2, parent(u)), +, comm) @testset "Multiple PencilArrays" begin û = @. u + im * u v̂ = copy(û) a = @inferred sum(abs2, û; init = zero(eltype(û))) # `init` needed for inference when eltype(û) = Complex{Int32}... # These should all be equivalent: b = @inferred mapreduce((x, y) -> real(x * conj(y)), +, û, v̂) c = @inferred sum(Base.splat((x, y) -> real(x * conj(y))), zip(û, v̂)) d = @inferred sum(xs -> real(xs[1] * conj(xs[2])), zip(û, v̂)) @test a == b == c == d end # These exact equalities work because we're using integers. # They are not guaranteed to work with floats. @test foldl(min, u) === minimum(u) @test mapfoldl(abs2, min, u) === minimum(abs2, u) @test foldr(min, u) === minimum(u) @test mapfoldr(abs2, min, u) === minimum(abs2, u) @testset "any / all" begin @test any(==(2), u) === true # the first process has u[:] = 2myid = 2 @test any(==(-2), u) === false @test nprocs == 1 || all(==(2), u) === false @test all(>(0), u) === true end end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
1098
using MPIPreferences @show MPIPreferences.binary using InteractiveUtils using MPI: MPI, mpiexec # Load test packages to trigger precompilation using PencilArrays # These tests can be run in serial mode test_files_serial = [ "permutations.jl", ] test_files = [ "io.jl", "localgrid.jl", "reductions.jl", "broadcast.jl", "array_types.jl", "arrays.jl", "pencils.jl", "transpose.jl", "array_interface.jl", "adapt.jl", "ode.jl", ] Nproc = let N = get(ENV, "JULIA_MPI_TEST_NPROCS", nothing) N === nothing ? clamp(Sys.CPU_THREADS, 4, 6) : parse(Int, N) end println() versioninfo() MPI.versioninfo() if MPIPreferences.binary != "system" error(""" tests should be run with system MPI binaries for testing parallel HDF5 (found MPIPreferences.binary = $(MPIPreferences.binary)) """) end for fname in test_files_serial include(fname) end for fname in test_files @info "Running $fname with $Nproc processes..." mpiexec() do cmd run(`$cmd -n $Nproc $(Base.julia_cmd()) $fname`) end println() end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
code
2353
using PencilArrays using MPI using Test using Random function compare_distributed_arrays(u_local::PencilArray, v_local::PencilArray) comm = get_comm(u_local) root = 0 myrank = MPI.Comm_rank(comm) u = gather(u_local, root) v = gather(v_local, root) same = Ref(false) if u !== nothing && v !== nothing @assert myrank == root same[] = u == v end MPI.Bcast!(same, root, comm) same[] end function test_transpose(method) dims = (16, 21, 41) comm = MPI.COMM_WORLD pen1 = @inferred Pencil(dims, (2, 3), comm) pen2 = @inferred Pencil(pen1; decomp_dims = (1, 3), permute = Permutation(2, 3, 1)) pen3 = @inferred Pencil(pen2; decomp_dims = (1, 2), permute = Permutation(3, 2, 1)) T = Float64 u1 = PencilArray{T}(undef, pen1) u2 = PencilArray{T}(undef, pen2) u3 = PencilArray{T}(undef, pen3) # Set initial random data. myrank = MPI.Comm_rank(comm) rng = MersenneTwister(42 + myrank) randn!(rng, u1) u1 .+= 10 * myrank u1_orig = copy(u1) # Direct u1 -> u3 transposition is not possible! @test_throws ArgumentError transpose!(u3, u1; method) # Transpose back and forth between different pencil configurations transpose!(u2, u1; method) @test compare_distributed_arrays(u1, u2) transpose!(u3, u2; method) @test compare_distributed_arrays(u2, u3) transpose!(u2, u3; method) @test compare_distributed_arrays(u2, u3) transpose!(u1, u2; method) @test compare_distributed_arrays(u1, u2) @test u1_orig == u1 # Test transpositions without permutations. let pen2 = Pencil(pen1; decomp_dims = (1, 3)) u2 = PencilArray{T}(undef, pen2) transpose!(u2, u1; method) @test compare_distributed_arrays(u1, u2) end # Test transpositions with unsorted decomp_dims (#57). let pen_alt = @inferred Pencil(pen1; decomp_dims = (2, 1)) ualt = PencilArray{T}(undef, pen_alt) transpose!(ualt, u1; method) @test compare_distributed_arrays(u1, ualt) end nothing end MPI.Init() comm = MPI.COMM_WORLD MPI.Comm_rank(comm) == 0 || redirect_stdout(devnull) transpose_methods = ( Transpositions.PointToPoint(), Transpositions.Alltoallv(), ) @testset "transpose! $method" for method in transpose_methods test_transpose(method) end
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
docs
819
# Changelog The format is based on [Keep a Changelog] and [Common Changelog]. ## [0.19.0] - 2023-07-14 ### Changed - **Breaking:** change behaviour of `similar(u::PencilArray, [T], dims)` ([#83]) When the `dims` argument is passed, we now try to return a new `PencilArray` instead of another (non-distributed) array type. Since this is only possible when `dims` matches the array size, an error is now thrown if that is not the case. This allows things to play nicely with other packages such as [StructArrays.jl](https://github.com/JuliaArrays/StructArrays.jl), which in some cases end up calling `similar` with the `dims` argument. [Keep a Changelog]: https://keepachangelog.com/en/1.1.0/ [Common Changelog]: https://common-changelog.org/ [#83]: https://github.com/jipolanco/PencilArrays.jl/pull/83
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
docs
4912
# PencilArrays [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://jipolanco.github.io/PencilArrays.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://jipolanco.github.io/PencilArrays.jl/dev) [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.5148035.svg)](https://doi.org/10.5281/zenodo.5148035) [![Build Status](https://github.com/jipolanco/PencilArrays.jl/workflows/CI/badge.svg)](https://github.com/jipolanco/PencilArrays.jl/actions) [![Coverage](https://codecov.io/gh/jipolanco/PencilArrays.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/jipolanco/PencilArrays.jl) Distributed Julia arrays using the MPI protocol. This package provides a convenient framework for working with multidimensional Julia arrays distributed among MPI processes. The name of this package originates from the decomposition of 3D domains along two out of three dimensions, sometimes called *pencil* decomposition. This is illustrated by the figure below, which represents a distributed 3D array. Each coloured block is managed by a different MPI process. <p align="center"> <br/> <img width="85%" alt="Pencil decomposition of 3D domains" src="docs/src/img/pencils.svg"> </p> More generally, PencilArrays can decompose arrays of arbitrary dimension `N`, along an arbitrary number of subdimensions `M ≤ N`. (In the image above, `N = 3` and `M = 2`.) PencilArrays is the basis for the [PencilFFTs](https://github.com/jipolanco/PencilFFTs.jl) package, which provides efficient and highly scalable distributed FFTs. ## Features - distribution of `N`-dimensional arrays among MPI processes; - decomposition of arrays along all or a subset of dimensions; - tools for conveniently and efficiently iterating over the coordinates of distributed multidimensional geometries; - transpositions between different decomposition configurations, using point-to-point and collective MPI communications; - zero-cost, convenient dimension permutations using the [StaticPermutations.jl](https://github.com/jipolanco/StaticPermutations.jl) package; - convenient parallel I/O using either MPI-IO or the [Parallel HDF5](https://portal.hdfgroup.org/display/HDF5/Parallel+HDF5) libraries; - distributed FFTs and related transforms via the [PencilFFTs.jl](https://github.com/jipolanco/PencilFFTs.jl) package. ## Installation PencilArrays can be installed using the Julia package manager: julia> ] add PencilArrays ## Quick start ```julia using MPI using PencilArrays MPI.Init() comm = MPI.COMM_WORLD # MPI communicator rank = MPI.Comm_rank(comm) # rank of local process # Let's decompose a 3D grid across all MPI processes. # The resulting configuration is described by a Pencil object. dims_global = (42, 31, 29) # global dimensions of the array pen_x = Pencil(dims_global, comm) # By default the 3D grid is decomposed along the two last dimensions, similarly # to the "x-pencil" configuration in the figure above: println(pen_x) # Decomposition of 3D data # Data dimensions: (42, 31, 29) # Decomposed dimensions: (2, 3) # Data permutation: NoPermutation() # Array type: Array # We can now allocate distributed arrays in the x-pencil configuration. Ax = PencilArray{Float64}(undef, pen_x) fill!(Ax, rank * π) # each process locally fills its part of the array parent(Ax) # parent array holding the local data (here, an Array{Float64,3}) size(Ax) # total size of the array = (42, 31, 29) size_local(Ax) # size of local part, e.g. (42, 8, 10) for a given process range_local(Ax) # range of local part on global grid, e.g. (1:42, 16:23, 20:29) # Let's associate the dimensions to a global grid of coordinates (x_i, y_j, z_k) xs_global = range(0, 1; length = dims_global[1]) ys_global = range(0, 2; length = dims_global[2]) zs_global = range(0, 2π; length = dims_global[3]) # Part of the grid associated to the local MPI process: grid = localgrid(pen_x, (xs_global, ys_global, zs_global)) # This is convenient for example if we want to initialise the `Ax` array as # a function of the grid coordinates (x, y, z): @. Ax = grid.x + (2 * grid.y * cos(grid.z)) # Alternatively (useful in higher dimensions): @. Ax = grid[1] + (2 * grid[2] * cos(grid[3])) # Create another pencil configuration, decomposing along dimensions (1, 3). # We could use the same constructor as before, but it's recommended to reuse the # previous Pencil instead to reduce memory usage. pen_y = Pencil(pen_x; decomp_dims = (1, 3)) # Now transpose from the x-pencil to the y-pencil configuration, redistributing # the data initially in Ax. Ay = PencilArray{Float64}(undef, pen_y) transpose!(Ay, Ax) # We can check that Ax and Ay have the same data (but distributed differently) # by combining the data from all different processes onto a single process # (this should never be used for large datasets!) gather(Ax) == gather(Ay) # true ```
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
docs
2594
```@meta CurrentModule = PencilArrays.LocalGrids ``` # Working with grids PencilArrays.jl includes functionality for conveniently working with the coordinates associated to a multidimensional domain. For this, the [`localgrid`](@ref) function can be used to construct an object describing the grid coordinates associated to the local MPI process. This object can be used to easily and efficiently perform operations that depend on the local coordinates. ## Creating local grids As an example, say we are performing a 3D simulation on a [rectilinear grid](https://en.wikipedia.org/wiki/Regular_grid#Rectilinear_grid), so that the coordinates of a grid point are given by ``\bm{x}_{ijk} = (x_i, y_j, z_k)`` where `x`, `y` and `z` are separate one-dimensional arrays. For instance: ```@example LocalGrids Nx, Ny, Nz = 65, 17, 21 xs = range(0, 1; length = Nx) ys = range(-1, 1; length = Ny) zs = range(0, 2; length = Nz) nothing # hide ``` Before continuing, let's create a domain decomposition configuration: ```@example LocalGrids using MPI using PencilArrays MPI.Init() comm = MPI.COMM_WORLD pen = Pencil((Nx, Ny, Nz), comm) ``` Now, we can extract the local grid associated to the local MPI process: ```@example LocalGrids grid = localgrid(pen, (xs, ys, zs)) ``` Note that this example was run on a single MPI process, which makes things somewhat less interesting, but the same applies to more processes. With more than one process, the local grid is a subset of the global grid defined by the coordinates `(xs, ys, zs)`. ## Using local grids The `grid` object just created can be used to operate with `PencilArray`s. In particular, say we want to initialise a `PencilArray` to a function that depends on the domain coordinates, ``u(x, y, z) = x + 2y + z^2``. This can be easily done using the broadcasting syntax (here we use the `@.` macro for convenience): ```@example LocalGrids u = PencilArray{Float64}(undef, pen) # construct PencilArray first @. u = grid.x + 2 * grid.y + grid.z^2 nothing # hide ``` Here, `grid.x`, `grid.y` and `grid.z` are a convenient way of extracting the three components of the grid. Alternatively, one can use the syntax `grid[1]`, `grid[2]`, etc..., which is in particularly useful when working in dimensions higher than 3. Note that one could do the same as above using indexing instead of broadcasting: ```@example LocalGrids for I ∈ eachindex(grid) x, y, z = grid[I] u[I] = x + 2y + z^2 end ``` ## Library ```@docs AbstractLocalGrid LocalRectilinearGrid localgrid components ``` ## Index ```@index Pages = ["LocalGrids.md"] ```
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
docs
2138
# [MPI topology](@id sec:mpi_topology) The [`MPITopology`](@ref) type defines the MPI Cartesian topology of the decomposition. In other words, it contains information about the number of decomposed dimensions, and the number of processes in each of these dimensions. This type should only be used if more control is needed regarding the MPI decomposition. In particular, dealing with `MPITopology` is not required when using the [high-level interface](@ref pencil-high-level) to construct domain decomposition configurations. ## Construction The main `MPITopology` constructor takes a MPI communicator and a tuple specifying the number of processes in each dimension. For instance, to distribute 12 MPI processes on a $3 × 4$ grid: ```julia comm = MPI.COMM_WORLD # we assume MPI.Comm_size(comm) == 12 pdims = (3, 4) topology = MPITopology(comm, pdims) ``` A convenience constructor is provided that automatically chooses a default `pdims` from the number of processes and from the dimension `N` of decomposition grid. For instance, for a two-dimensional decomposition: ```julia topology = MPITopology(comm, Val(2)) ``` Under the hood, this works by letting [`MPI_Dims_create`](https://www.open-mpi.org/doc/current/man3/MPI_Dims_create.3.php) choose the number of divisions along each dimension. At the lower level, [`MPITopology`](@ref) uses [`MPI_Cart_create`](https://www.open-mpi.org/doc/current/man3/MPI_Cart_create.3.php) to define a Cartesian MPI communicator. For more control, one can also create a Cartesian communicator using [`MPI.Cart_create`](https://juliaparallel.org/MPI.jl/stable/reference/topology/#MPI.Cart_create), and pass that to `MPITopology`: ```julia dims = (3, 4) comm_cart = MPI.Cart_create(comm, dims) topology = MPITopology{2}(comm_cart) # note the "{2}"!! ``` Note that in this case, one needs to indicate the number of dimensions `M` of the decomposition (here `M = 2`). ## Types ```@docs MPITopology ``` ## Methods ```@docs get_comm(::MPITopology) coords_local(::MPITopology) length(::MPITopology) ndims(::MPITopology) size(::MPITopology) ``` ## Index ```@index Pages = ["MPITopology.md"] ```
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
docs
3780
# [Array wrappers](@id PencilArrays_module) ```@meta CurrentModule = PencilArrays ``` The `PencilArrays` module defines types for handling MPI-distributed data. The most important types are: - [`PencilArray`](@ref): array wrapper including MPI decomposition information. Takes *local* indices starting at 1, regardless of the location of each MPI process on the global topology. - [`GlobalPencilArray`](@ref): `PencilArray` wrapper that takes *global* indices, which generally don't start at 1. See also [Global views](@ref). ## Construction An uninitialised `PencilArray` can be constructed from a [`Pencil`](@ref) instance as ```julia pencil = Pencil(#= ... =#) A = PencilArray{Float64}(undef, pencil) parent(A) # returns the Array wrapped by `A` ``` This allocates a new `Array` with the local dimensions and data type associated to the `Pencil`. One can also construct a `PencilArray` wrapper from an existing `AbstractArray`, whose dimensions must be compatible with the `Pencil` configuration. For instance, the following works: ```julia dims = size_local(pencil, MemoryOrder()) # dimensions must be in memory order! data = zeros(dims) A = PencilArray(pencil, data) ``` Note that `data` does not need to be a `Array`, but can be any subtype of `AbstractArray`. It is also possible to construct higher dimensional arrays, as in: ```julia data = zeros(dims..., 3, 2) A = PencilArray(pencil, data) ``` This will construct a `PencilArray` where the rightmost dimensions (called *extra dimensions* in the PencilArrays API) will never be split among MPI processes. ## Dimension permutations Unlike the wrapped `AbstractArray`, the `PencilArray` wrapper takes indices in logical order. For instance, if the underlying permutation of the `Pencil` is `(2, 3, 1)`, then `A[i, j, k]` points to the same value as `parent(A)[j, k, i]`. ## Global views `PencilArray`s are accessed using local indices that start at 1, regardless of the location of the subdomain associated to the local process on the global grid. Sometimes it may be more convenient to use global indices describing the position of the local process in the domain. For this, the [`global_view`](@ref) function is provided that generates an [`OffsetArray`](https://github.com/JuliaArrays/OffsetArrays.jl) wrapper taking global indices. For more details, see for instance [the gradient example](https://jipolanco.github.io/PencilFFTs.jl/stable/examples/gradient/#gradient_method_global) in the PencilFFTs docs. !!! warning "Global views" Regular `PencilArray`s have more functionality than global view wrappers. This includes broadcasting, which is currently not supported for global views. In general it should be preferred to work with `PencilArray`s. ## Types ```@docs PencilArray GlobalPencilArray PencilArrayCollection AbstractManyPencilArray ManyPencilArray ``` ## Methods ### PencilArray ```@docs extra_dims(::PencilArray) get_comm(::MaybePencilArrayCollection) permutation global_view(::PencilArray) ndims_extra(::MaybePencilArrayCollection) ndims_space(::PencilArray) parent(::PencilArray) pencil(::PencilArray) pointer(::PencilArray) range_local(::MaybePencilArrayCollection) range_remote(::MaybePencilArrayCollection, etc...) similar(::PencilArray) length(::PencilArray) length_local(::PencilArray) length_global(::PencilArray) size(::PencilArray) size_local(::MaybePencilArrayCollection) size_global(::MaybePencilArrayCollection) sizeof_global(::PencilArray) topology(::MaybePencilArrayCollection) PencilArrays.typeof_array PencilArrays.typeof_ptr ``` ### ManyPencilArray ```@docs first(::ManyPencilArray) getindex(::ManyPencilArray) last(::ManyPencilArray) length(::ManyPencilArray) Tuple(::ManyPencilArray) ``` ## Index ```@index Pages = ["PencilArrays.md"] ```
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
docs
1201
# [Measuring performance](@id PencilArrays.measuring_performance) It is possible to measure the time spent in different sections of the MPI data transposition routines using the [TimerOutputs](https://github.com/KristofferC/TimerOutputs.jl) package. This has a (very small) performance overhead, so it is disabled by default. To enable time measurements, call `TimerOutputs.enable_debug_timings` after loading `PencilArrays` (see below for an example). For more details see the [TimerOutputs docs](https://github.com/KristofferC/TimerOutputs.jl#overhead). Minimal example: ```julia using MPI using PencilArrays using TimerOutputs # Enable timing of `PencilArrays` functions TimerOutputs.enable_debug_timings(PencilArrays) TimerOutputs.enable_debug_timings(Transpositions) MPI.Init() pencil = Pencil(#= args... =#) # [do stuff with `pencil`...] # Retrieve and print timing data associated to `plan` to = timer(pencil) print_timer(to) ``` By default, each `Pencil` has its own `TimerOutput`. If you already have a `TimerOutput`, you can pass it to the [`Pencil`](@ref) constructor: ```julia to = TimerOutput() pencil = Pencil(..., timer=to) # [do stuff with `pencil`...] print_timer(to) ```
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
docs
6130
# [Parallel I/O](@id PencilIO_module) ```@meta CurrentModule = PencilArrays.PencilIO ``` The `PencilArrays.PencilIO` module contains functions for saving and loading [`PencilArray`](@ref)s to disk using parallel I/O. Currently, two different output formats are supported: - raw binary files via the MPI-IO interface; - parallel HDF5 files. In both cases, information on dataset sizes, names and other metadata are included along with the binary data. The implemented approach consists in storing the data coming from different MPI processes in a single file. This strategy scales better in terms of number of files, and is more convenient, than that of storing one file per process. However, the performance is very sensitive to the configuration of the underlying file system. In distributed file systems such as [Lustre](https://en.wikipedia.org/wiki/Lustre_(file_system)), it is worth tuning parameters such as the stripe count and stripe size. For more information, see for instance the [Parallel HDF5 page](https://portal.hdfgroup.org/display/HDF5/Parallel+HDF5). ## Getting started The first step before writing `PencilArray`s is to choose the parallel I/O driver, which determines the format of the output data. Two different drivers are currently available: - [`MPIIODriver`](@ref): parallel I/O via the MPI-IO API and the [MPI.jl wrappers](https://juliaparallel.github.io/MPI.jl/latest/io/). This driver writes a raw binary file, along with a JSON file describing dataset metadata (name, dimensions, location in file, ...); - [`PHDF5Driver`](@ref): parallel I/O via the Parallel HDF5 API and [HDF5.jl](https://github.com/JuliaIO/HDF5.jl). This driver requires a special set-up, as detailed in the [dedicated section](@ref setting_up_parallel_hdf5). ### Writing data To open a parallel file, pass the MPI communicator and an instance of the chosen driver to [`open`](@ref). For instance, the following opens an MPI-IO file in write mode: ```julia using PencilArrays.PencilIO # needed for accessing parallel I/O functionality ff = open(MPIIODriver(), "filename.bin", MPI.COMM_WORLD; write=true) ``` Datasets, in the form of `PencilArray`s, can then be written as follows: ```julia v = PencilArray(...) ff["velocity"] = v ``` This writing step may be customised via keyword arguments such as `chunks` and `collective`. These options are supported by both MPI-IO and HDF5 drivers. For instance: ```julia ff["velocity", chunks=true, collective=false] = v ``` See [`setindex!`](@ref) for the meaning of these options for each driver, as well as for driver-specific options. After datasets are written, the file should be closed as usual by doing `close(ff)`. Note that the do-block syntax is also supported, as in ```julia open(MPIIODriver(), "filename.bin", MPI.COMM_WORLD; write=true) do ff ff["velocity"] = v end ``` ### Reading data Data is loaded into an existent `PencilArray` using [`read!`](@ref). For instance: ```julia v = PencilArray(...) open(MPIIODriver(), "filename.bin", MPI.COMM_WORLD; read=true) do ff read!(ff, v, "velocity") end ``` Note that, for the MPI-IO driver, a `filename.bin.json` file must be present along with the `filename.bin` file containing the binary data. The JSON file is automatically generated when writing data with this driver. Optional keyword arguments, such as `collective`, are also supported by [`read!`](@ref). ## [Setting-up Parallel HDF5](@id setting_up_parallel_hdf5) If using the [Parallel HDF5 driver](#PencilArrays.PencilIO.PHDF5Driver), the HDF5.jl package must be available and configured with MPI support. Note that HDF5.jl versions previous to [v0.15](https://github.com/JuliaIO/HDF5.jl/releases/tag/v0.15.0) are not supported. Parallel HDF5 is not enabled in the default installation of HDF5.jl. For Parallel HDF5 to work, the HDF5 C libraries wrapped by HDF5.jl must be compiled with parallel support and linked to the specific MPI implementation that will be used for parallel I/O. HDF5.jl must be explicitly instructed to use parallel-enabled HDF5 libraries available in the system. Similarly, MPI.jl must be instructed to use the corresponding MPI libraries. This is detailed in the sections below. Parallel-enabled HDF5 libraries are usually included in computing clusters and linked to the available MPI implementations. They are also available via the package manager of a number of Linux distributions. (For instance, Fedora includes the `hdf5-mpich-devel` and `hdf5-openmpi-devel` packages, respectively linked to the MPICH and OpenMPI libraries in the Fedora repositories.) The following step-by-step guide assumes one already has access to parallel-enabled HDF5 libraries linked to an existent MPI installation. ### 1. Using system-provided MPI libraries Select the system-provided MPI backend linked to the parallel HDF5 installation following the instructions in the [MPI.jl docs](https://juliaparallel.org/MPI.jl/v0.20/configuration/#Using-a-system-provided-MPI-backend). ### 2. Using parallel HDF5 libraries Set the `JULIA_HDF5_PATH` environment variable to the top-level installation directory of the HDF5 libraries compiled with parallel support are found. Then run `]build HDF5` from Julia. Note that the selected HDF5 library must be linked to the MPI library chosen in the previous section. Also note that HDF5 library versions older than 0.10.4 are not supported by HDF5.jl. For the set-up to be persistent across HDF5.jl updates, consider setting `JULIA_HDF5_PATH` in `~/.bashrc` or similar. See the [HDF5.jl README](https://github.com/JuliaIO/HDF5.jl#installation) for details. ### 3. Loading PencilIO In the `PencilIO` module, the HDF5.jl package is lazy-loaded using [Requires](https://github.com/JuliaPackaging/Requires.jl). This means that HDF5 functionality will be available after both the `PencilArrays.jl` and `HDF5.jl` packages have been loaded: ```julia using MPI using HDF5 using PencilArrays ``` ## Library ```@docs PencilIO.ParallelIODriver MPIIODriver PHDF5Driver PencilIO.MPIFile open setindex! read! hdf5_has_parallel ``` ## Index ```@index Pages = ["PencilIO.md"] ```
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
docs
6317
```@meta CurrentModule = PencilArrays.Pencils ``` # [Pencil configurations](@id sec:pencil_configs) A *pencil* configuration refers to a given distribution of multidimensional data among MPI processes. This information is encoded in the [`Pencil`](@ref) type. A pencil configuration includes: - [MPI topology](@ref sec:mpi_topology) information, - global and local dimensions of the numerical grid, - subset of decomposed dimensions, - definition of optional permutation of dimensions. ## Construction ### [High-level interface](@id pencil-high-level) The simplest way of constructing a new [`Pencil`](@ref) is by passing the global dataset dimensions and an MPI communicator to the `Pencil` constructor: ```julia-repl julia> dims_global = (16, 32, 64); julia> comm = MPI.COMM_WORLD; julia> pen = Pencil(dims_global, comm) Decomposition of 3D data Data dimensions: (16, 32, 64) Decomposed dimensions: (2, 3) Data permutation: NoPermutation() ``` This will decompose the data along the two last dimensions of the dataset:[^1] ```julia-repl julia> decomposition(pen) (2, 3) ``` For instance, if the communicator `comm` has 4 MPI processes, then each process will hold a subset of data of size `(16, 16, 32)`: ```julia-repl julia> topology(pen) MPI topology: 2D decomposition (2×2 processes) # assuming MPI.Comm_size(comm) == 4 julia> size_local(pen) (16, 16, 32) ``` Instead of the default, one may want to choose the subset of dimensions that should be decomposed. For instance, to decompose along the first dimension only: ```julia-repl julia> decomp_dims = (1,); julia> pen = Pencil(dims_global, decomp_dims, comm) Decomposition of 3D data Data dimensions: (16, 32, 64) Decomposed dimensions: (1,) Data permutation: NoPermutation() julia> decomposition(pen) (1,) julia> topology(pen) MPI topology: 1D decomposition (4 processes) # again, assuming 4 MPI processes ``` ### Low-level interface Note that the above high-level constructors don't require the definition of a [`MPITopology`](@ref), which is constructed implicitly. For more control, one may want to manually construct a `MPITopology`, and then construct a `Pencil` from that. As above, one may also specify the list of decomposed dimensions. For instance, we may want to decompose 32 MPI processes into a 8×4 Cartesian topology. This is done as follows: ```julia-repl julia> topo = MPITopology(comm, (8, 4)) # NOTE: fails if MPI.Comm_size(comm) ≠ 32 MPI topology: 2D decomposition (8×4 processes) julia> dims_global = (16, 32, 64); julia> pen = Pencil(topo, dims_global) Decomposition of 3D data Data dimensions: (16, 32, 64) Decomposed dimensions: (2, 3) Data permutation: NoPermutation() ``` As before, the decomposed dimensions are the rightmost ones by default (in this case, dimensions `2` and `3`). A different set of dimensions may be selected via an optional positional argument. For instance, to decompose along dimensions `1` and `3` instead: ```julia-repl julia> decomp_dims = (1, 3); julia> pen = Pencil(topo, dims_global, decomp_dims) Decomposition of 3D data Data dimensions: (16, 32, 64) Decomposed dimensions: (1, 3) Data permutation: NoPermutation() ``` ### Defining multiple pencils One may also want to work with multiple pencil configurations that differ, for instance, on the selection of decomposed dimensions. For this case, a constructor is available that takes an already existing `Pencil` instance. Calling this constructor should be preferred when possible since it allows sharing memory buffers (used for instance for [global transpositions](@ref Global-MPI-operations)) and thus reducing memory usage. The following creates a `Pencil` equivalent to the one above, but with different decomposed dimensions: ```julia-repl julia> pen_y = Pencil(pen; decomp_dims = (1, 3)) Decomposition of 3D data Data dimensions: (16, 32, 64) Decomposed dimensions: (1, 3) Data permutation: NoPermutation() ``` See the [`Pencil`](@ref) documentation for more details. ## Dimension permutations A `Pencil` may optionally be given information on dimension permutations. In this case, the layout of the data arrays in memory is different from the logical order of dimensions. For performance reasons, permutations are compile-time objects defined in the [StaticPermutations](https://github.com/jipolanco/StaticPermutations.jl) package. To make permutations clearer, consider the example above where the global data dimensions are $N_x × N_y × N_z = 16 × 32 × 64$. In this case, the logical order is $(x, y, z)$. Now let's say that we want the memory order of the data to be $(y, z, x)$,[^2] which corresponds to the permutation `(2, 3, 1)`. Permutations are passed to the `Pencil` constructor via the `permute` keyword argument. Dimension permutations should be specified using a [`Permutation`](https://jipolanco.github.io/StaticPermutations.jl/stable/#StaticPermutations.Permutation) object. For instance, ```julia-repl julia> perm = Permutation(2, 3, 1); julia> pen = Pencil(dims_global, comm; permute = perm) Decomposition of 3D data Data dimensions: (16, 32, 64) Decomposed dimensions: (2, 3) Data permutation: Permutation(2, 3, 1) ``` One can also pass a [`NoPermutation`](https://jipolanco.github.io/StaticPermutations.jl/stable/#StaticPermutations.NoPermutation) to disable permutations (this is the default). ## Types ```@docs Pencil Pencils.AbstractIndexOrder MemoryOrder LogicalOrder ``` ## Methods ```@docs topology(::Pencil) get_comm(::Pencil) decomposition(::Pencil) permutation(::Pencil) timer(::Pencil) length(::Pencil) size(::Pencil) ndims(::Pencil) range_remote(::Pencil, ::Integer, ::LogicalOrder) range_local(::Pencil, ::LogicalOrder) size_global(::Pencil, ::LogicalOrder) size_local(::Pencil, etc...) length_global(::Pencil) length_local(::Pencil) to_local(::Pencil) similar(::Pencil) ``` ## Index ```@index Pages = ["Pencils.md"] ``` [^1]: More generally, an ``N``-dimensional dataset is by default decomposed along its ``N - 1`` last dimensions. [^2]: Why would we want this? One application is to efficiently perform FFTs along $y$, which, under this permutation, would be the fastest dimension. This is used by the [PencilFFTs](https://github.com/jipolanco/PencilFFTs.jl) package.
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
docs
1184
# Global MPI operations ```@meta CurrentModule = PencilArrays ``` One of the most time-consuming parts of a large-scale computation involving multidimensional FFTs, is the global data transpositions between different MPI decomposition configurations. In `PencilArrays`, this is performed by the [`transpose!`](@ref Transpositions.transpose!) function, which takes two `PencilArray`s, typically associated to two different configurations. The implementation performs comparably to similar implementations in lower-level languages (see [PencilFFTs benchmarks](https://jipolanco.github.io/PencilFFTs.jl/stable/benchmarks/) for details). Also provided is a [`gather`](@ref) function that creates a single global array from decomposed data. This can be useful for tests (in fact, it is used in the PencilArrays tests to verify the correctness of the transpositions), but shouldn't be used with large datasets. It is generally useful for small problems where the global size of the data can easily fit the locally available memory. ## Library ```@docs Transpositions.Transposition Transpositions.transpose! MPI.Waitall gather ``` ## Index ```@index Pages = ["Transpositions.md"] ```
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
docs
4544
```@meta CurrentModule = PencilArrays ``` # PencilArrays Distributed Julia arrays using the MPI protocol. ## Introduction This package provides a convenient framework for working with multidimensional Julia arrays distributed among MPI processes. The name of this package originates from the decomposition of 3D domains along two out of three dimensions, sometimes called *pencil* decomposition. This is illustrated by the figure below,[^1] where each coloured block is managed by a different MPI process. ```@raw html <div class="figure"> <img width="85%" src="img/pencils.svg" alt="Pencil decomposition of 3D domains"> </div> ``` More generally, PencilArrays can decompose arrays of arbitrary dimension ``N``, along an arbitrary subset of ``M`` dimensions. (In the example above, ``N = 3`` and ``M = 2``.) PencilArrays is the basis for the [PencilFFTs](https://github.com/jipolanco/PencilFFTs.jl) package, which provides efficient and highly scalable distributed FFTs. ## Features - distribution of ``N``-dimensional arrays among MPI processes; - decomposition of arrays along all or a subset of dimensions; - tools for conveniently and efficiently iterating over the [coordinates of distributed multidimensional geometries](@ref Working-with-grids); - [transpositions](@ref Global-MPI-operations) between different decomposition configurations, using point-to-point and collective MPI communications; - zero-cost, convenient dimension permutations using [StaticPermutations.jl](https://github.com/jipolanco/StaticPermutations.jl); - convenient [parallel I/O](@ref PencilIO_module) of distributed arrays using either MPI-IO or the [Parallel HDF5](https://portal.hdfgroup.org/display/HDF5/Parallel+HDF5) libraries; - distributed FFTs and related transforms via the [PencilFFTs.jl](https://github.com/jipolanco/PencilFFTs.jl) package. ## Installation PencilArrays can be installed using the Julia package manager: julia> ] add PencilArrays ## Quick start ```julia using MPI using PencilArrays MPI.Init() comm = MPI.COMM_WORLD # MPI communicator rank = MPI.Comm_rank(comm) # rank of local process # Let's decompose a 3D grid across all MPI processes. # The resulting configuration is described by a Pencil object. dims_global = (42, 31, 29) # global dimensions of the array pen_x = Pencil(dims_global, comm) # By default the 3D grid is decomposed along the two last dimensions, similarly # to the "x-pencil" configuration in the figure above: println(pen_x) # Decomposition of 3D data # Data dimensions: (42, 31, 29) # Decomposed dimensions: (2, 3) # Data permutation: NoPermutation() # Array type: Array # We can now allocate distributed arrays in the x-pencil configuration. Ax = PencilArray{Float64}(undef, pen_x) fill!(Ax, rank * π) # each process locally fills its part of the array parent(Ax) # parent array holding the local data (here, an Array{Float64,3}) size(Ax) # total size of the array = (42, 31, 29) size_local(Ax) # size of local part, e.g. (42, 8, 10) for a given process range_local(Ax) # range of local part on global grid, e.g. (1:42, 16:23, 20:29) # Let's associate the dimensions to a global grid of coordinates (x_i, y_j, z_k) xs_global = range(0, 1; length = dims_global[1]) ys_global = range(0, 2; length = dims_global[2]) zs_global = range(0, 2π; length = dims_global[3]) # Part of the grid associated to the local MPI process: grid = localgrid(pen_x, (xs_global, ys_global, zs_global)) # This is convenient for example if we want to initialise the `Ax` array as # a function of the grid coordinates (x, y, z): @. Ax = grid.x + (2 * grid.y * cos(grid.z)) # Alternatively (useful in higher dimensions): @. Ax = grid[1] + (2 * grid[2] * cos(grid[3])) # Create another pencil configuration, decomposing along dimensions (1, 3). # We could use the same constructor as before, but it's recommended to reuse the # previous Pencil instead to reduce memory usage. pen_y = Pencil(pen_x; decomp_dims = (1, 3)) # Now transpose from the x-pencil to the y-pencil configuration, redistributing # the data initially in Ax. Ay = PencilArray{Float64}(undef, pen_y) transpose!(Ay, Ax) # We can check that Ax and Ay have the same data (but distributed differently) # by combining the data from all different processes onto a single process # (this should never be used for large datasets!) gather(Ax) == gather(Ay) # true ``` [^1]: Figure adapted from [this PhD thesis](https://hal.archives-ouvertes.fr/tel-02084215v1).
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
0.19.6
3d8a67ac2ea254cabea5d7b5118e78e6564dd75f
docs
1548
# Reductions Reduction over [`PencilArray`](@ref)s using Julia functions such as `minimum`, `maximum`, `sum`, `any` or `all` are performed on the global data. This involves first a local reduction over each process, followed by a global reduction of a scalar quantity using [`MPI.Allreduce`](https://juliaparallel.github.io/MPI.jl/latest/collective/#MPI.Allreduce). For example: ```julia using MPI using PencilArrays MPI.Init() comm = MPI.COMM_WORLD nprocs = MPI.Comm_size(comm) rank = MPI.Comm_rank(comm) id = rank + 1 pen = Pencil((16, 32, 14), comm) u = PencilArray{Int}(undef, pen) fill!(u, 2 * id) minimum(u) # = 2 maximum(u) # = 2 * nprocs minimum(abs2, u) # = 4 maximum(abs2, u) # = (2 * nprocs)^2 all(>(0), u) # true all(==(2), u) # false if nprocs > 1 any(==(2), u) # true ``` !!! note "Note on associativity" Associative reduction operations like [`foldl`](https://docs.julialang.org/en/v1/base/collections/#Base.foldl-Tuple{Any,%20Any}), [`foldr`](https://docs.julialang.org/en/v1/base/collections/#Base.foldr-Tuple{Any,%20Any}), [`mapfoldl`](https://docs.julialang.org/en/v1/base/collections/#Base.mapfoldl-Tuple{Any,%20Any,%20Any}) and [`mapfoldr`](https://docs.julialang.org/en/v1/base/collections/#Base.mapfoldr-Tuple{Any,%20Any,%20Any}) are also defined for consistency, but these operations are not guaranteed to strictly respect left or right associativity. In fact, associativity is only respected on each local process, before results are reduced among all processes.
PencilArrays
https://github.com/jipolanco/PencilArrays.jl.git
[ "MIT" ]
1.0.0
bcd90f754ce53b519551288418a7e85e42d21beb
code
3748
module WebAssemblyInterfaces export js_repr, js_types, js_def function fixname(s) # JS names have to be letter, numbers, or underscore replace(string(s), r"[^a-zA-Z0-9_]" => s"_") end BuiltinTypes = Union{Bool, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64, Float32, Float64} const default_map = Dict{Type,String}() for T in (Bool, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64) default_map[T] = string("'", lowercase(repr(T)), "'") end default_map[Float32] = "'f32'" default_map[Float64] = "'f64'" struct Context type_map::Dict{Type,String} new_types::Vector{String} end Context(; type_map = copy(default_map), new_types = String[]) = Context(type_map, new_types) function definition_repr(ctx::Context, x::Type) if !isconcretetype() return nothing end end function definition_repr(ctx::Context, x::AbstractVector{T}) where T string("[", definition_repr(ctx, x[1]), ", ", length(x), "]") end tname(::Type{T}) where {T} = string(nameof(T), join(T.parameters, "_")) function definition_repr(ctx::Context, x::Type{T}) where T if haskey(ctx.type_map, T) return ctx.type_map[T] end # if isconcretetype(T) && !ismutabletype(T) name = fixname(nameof(T)) collect(values(ctx.type_map)) if name in values(ctx.type_map) name = fixname(tname(T)) end ctx.type_map[T] = name s = string("const ", name, " = new ffi.Struct({\n") for i in 1:fieldcount(T) FT = fieldtype(T, i) if sizeof(FT) > 0 s *= string(" ", fixname(string(fieldname(T, i))), ": ", get(ctx.type_map, FT, definition_repr(ctx, FT)), ",\n") end end s *= "});\n" push!(ctx.new_types, s) return name # end end function definition_repr(ctx::Context, ::Type{NTuple{N, T}}) where {N,T} string("[", definition_repr(ctx, T), ", ", N, "]") end function definition_repr(ctx::Context, T::Type{<:Tuple}) string("ffi.rust.tuple([", join((definition_repr(ctx, p) for p in T.parameters), ","), "])") end function definition_repr(ctx::Context, ::Type{Base.RefValue{T}}) where T string("types.pointer(", definition_repr(ctx, T), ")") end function definition_repr(ctx::Context, ::Type{<:Enum}) # kludge for now string("'int32'") end function js_types(T::Type; ctx = Context()) definition_repr(ctx, T) return join(ctx.new_types, "\n") end function js_def(x::T; ctx = Context()) where T typename = definition_repr(ctx, T) s = string("new ", typename, "({\n") for i in 1:fieldcount(T) FT = fieldtype(T, i) if sizeof(FT) > 0 s *= string(fixname(string(fieldname(T, i))), ": ", js_def(getfield(x, i), ctx = ctx), ",\n") end end s *= "})" return s end js_def(x::T; args...) where T <: Union{BuiltinTypes} = x function js_def(x::NTuple{N,T}; ctx = Context()) where {N,T} string("[", join(string.(x), ","), "]") end function js_def(x::Base.RefValue{T}; ctx = Context()) where T string("new Pointer(", definition_repr(ctx, T), ", ", js_def(x[]; ctx), ")") end function js_def(x::T; ctx = Context()) where T <: Tuple string("new ffi.rust.tuple([", join((definition_repr(ctx, p) for p in T.parameters), ","), "], [", join((js_def(z; ctx) for z in x), ", "), "])") end function js_def(x::Enum; ctx = Context()) # kludge for now Int32(x) end function js_repr(x) ctx = Context() string( js_types(typeof(x); ctx), "\n", js_def(x; ctx), "\n", ) end end
WebAssemblyInterfaces
https://github.com/tshort/WebAssemblyInterfaces.jl.git
[ "MIT" ]
1.0.0
bcd90f754ce53b519551288418a7e85e42d21beb
code
631
using WebAssemblyInterfaces using Test mutable struct X{A,B,C} a::A b::B c::C end struct Y{A,B,C} a::A b::B c::C end x = X(2, Y(1.1, 2, (1, 1.1)), Y(1, 2, 3)) @testset "Basics" begin s = js_repr(x) println(s) @test contains(s, """ const Y = new ffi.Struct({ a: 'f64', b: 'int64', c: ffi.rust.tuple(['int64','f64']), }); """) @test contains(s, """ new X({ a: 2, b: new Y({ a: 1.1, b: 2, c: new ffi.rust.tuple(['int64','f64'], [1, 1.1]), }), c: new YInt64_Int64_Int64({ a: 1, b: 2, c: 3, }), }) """) # More sophisticated tests could use NodeJS.jl to run some JavaScript/WebAssembly. end
WebAssemblyInterfaces
https://github.com/tshort/WebAssemblyInterfaces.jl.git
[ "MIT" ]
1.0.0
bcd90f754ce53b519551288418a7e85e42d21beb
docs
3652
# WebAssemblyInterfaces [![Build Status](https://github.com/tshort/WebAssemblyInterfaces.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/tshort/WebAssemblyInterfaces.jl/actions/workflows/CI.yml?query=branch%3Amain) NOTE: This is still experimental, and not all features have been tested with WebAssembly. For a working example, see this [Lorenz Attraction App in Julia](http://tshort.github.io/Lorenz-WebAssembly-Model.jl). This is a small package to write out definitions in JavaScript that correspond to Julia types and object definitions. This JavaScript code is meant to be used with the [wasm-ffi](https://github.com/DeMille/wasm-ffi/tree/master) package, a great package for interfacing between JavaScript and WebAssembly. This allows JavaScript to read and write to memory that is shared by the Julia code (after being compiled to WebAssembly). The [wasm-ffi](https://github.com/DeMille/wasm-ffi/tree/master) package writes to the same memory layout used by Julia. The following types are supported: * Structs, tuples, named tuples * Concrete types that include: Bool, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64, Float32, and Float64 Functions and other types that don't have a size are not written. For vectors, the `MallocVector` type from [StaticTools](https://github.com/brenhinkeller/StaticTools.jl) works with the `ffi.rust.vector` type in wasm-ffi. The memory layouts do not match exactly, but it works for some uses. `wasm-ffi` performs allocations when objects are created on the JavaScript side. It is also possible to do allocation on the Julia side. The WebAssembly file needs to include `allocate` and `free` functions. Three functions are provided: * `js_types(T)`: Return a string with the JavaScript definition of type `T`. * `js_def(x)`: Return a string with the JavaScript code to define object `x`. * `js_repr(x)`: Return a string with the JavaScript code with the types and the code to define `x`. Here is an example of Julia code that defines a custom type and generates JavaScript interfacing code. ```jl mutable struct X{A,B,C} a::A b::B c::C end struct Y{A,B,C} a::A b::B c::C end x = X(2, Y(1.1, 2, (1, 1.1)), Y(1, 2, 3)) using WebAssemblyInterfaces print(js_repr(x)) ``` Here is the JavaScript code that is printed: ```js const Y = new ffi.Struct({ a: 'f64', b: 'int64', c: ffi.rust.tuple(['int64','f64']), }); const YInt64_Int64_Int64 = new ffi.Struct({ a: 'int64', b: 'int64', c: 'int64', }); const X = new ffi.Struct({ a: 'int64', b: Y, c: YInt64_Int64_Int64, }); new X({ a: 2, b: new Y({ a: 1.1, b: 2, c: new ffi.rust.tuple(['int64','f64'], [1, 1.1]), }), c: new YInt64_Int64_Int64({ a: 1, b: 2, c: 3, }), }) ``` Here is a Julia function that could operate on this object. This can be compiled with [StaticCompiler](https://github.com/tshort/StaticCompiler.jl). The Julia code can read data from the object passed in, and it can write to this object in memory. ```jl function f(x) x.a = x.b[2] * x.c[3] return x.c[1] + x.b.c[1] end # Compile it to WebAssembly: using StaticCompiler wasm_path = compile_wasm(f, Tuple{typeof(x)}, flags = `walloc.o`) ``` ### Options going forward * Should we include a copy of `wasm-ffi.browser.js`? It makes sense if we add support for more Julia types. * Figure out where `walloc.o` should live. Should we add object code from other sources to make WebAssembly easier? * We could create and package a set of method overrides for StaticCompiler that are targeted at WebAssembly. We could also develop Mixtape passes to be able to compile more code.
WebAssemblyInterfaces
https://github.com/tshort/WebAssemblyInterfaces.jl.git
[ "MIT" ]
0.4.0
9bda530fa178f41e92eeeb57312e7be1b9f47a9f
code
11801
module SPCSpectra using Dates export SPC mutable struct SPC data::Vector{Tuple{Vector{<:Number}, Vector{Float32}}} # xdata can be Float64 if calculated from range specs zdata::Vector{Float32} xlabel::String ylabel::String zlabel::String experimenttype::String timestamp::DateTime param_dict::Dict{String, String} params::Vector{String} end # Adaptation of the pythonpackage spc by rohanisaac # byte positon of various parts of the file # head_siz = 512 # old_head_siz = 256 subhead_siz = 32 log_siz = 64 "Units for x,z,w axes." const fxtype_op = ["Arbitrary", "Wavenumber (cm-1)", "Micrometers (um)", "Nanometers (nm)", "Seconds ", "Minutes", "Hertz (Hz)", "Kilohertz (KHz)", "Megahertz (MHz) ", "Mass (M/z)", "Parts per million (PPM)", "Days", "Years", "Raman Shift (cm-1)", "eV", "XYZ text labels in fcatxt (old 0x4D version only)", "Diode Number", "Channel", "Degrees", "Temperature (F)", "Temperature (C)", "Temperature (K)", "Data Points", "Milliseconds (mSec)", "Microseconds (uSec) ", "Nanoseconds (nSec)", "Gigahertz (GHz)", "Centimeters (cm)", "Meters (m)", "Millimeters (mm)", "Hours"] "Units y-axis." const fytype_op = ["Arbitrary Intensity", "Interferogram", "Absorbance", "Kubelka-Munk", "Counts", "Volts", "Degrees", "Milliamps", "Millimeters", "Millivolts", "Log(1/R)", "Percent", "Intensity", "Relative Intensity", "Energy", "", "Decibel", "", "", "Temperature (F)", "Temperature (C)", "Temperature (K)", "Index of Refraction [N]", "Extinction Coeff. [K]", "Real", "Imaginary", "Complex"] const fytype_op2 = ["Transmission", "Reflectance", "Arbitrary or Single Beam with Valley Peaks", "Emission"] const fexper_op = ["General SPC", "Gas Chromatogram", "General Chromatogram", "HPLC Chromatogram", "FT-IR, FT-NIR, FT-Raman Spectrum or Igram", "NIR Spectrum", "UV-VIS Spectrum", "X-ray Diffraction Spectrum", "Mass Spectrum ", "NMR Spectrum or FID", "Raman Spectrum", "Fluorescence Spectrum", "Atomic Spectrum", "Chromatography Diode Array Spectra"] flag_bits(n) = BitVector(digits(n, base = 2, pad = 8 * sizeof(n))) read_data(io::IO, T::DataType) = ltoh(read(io, T)) read_data(io::IO, ::Type{String}, n::Integer) = strip(String(read(io, n)), '\0') read_data(io::IO, T::DataType, n::Integer...) = ltoh.(reshape(reinterpret(T, read(io, prod(n) * sizeof(T))), Int64.(n)...)) read_data(io::IO, TT::Union{NTuple{N, DataType} where N, Vector{DataType}}) = ltoh.(read.(Ref(io), TT)) """ SPC(filename::AbstractString) Construct SPC objects. """ function SPC(filename::AbstractString) content = read(filename) io = IOBuffer(content) ftflg, fversn = content[1:2] # -------------------------------------------- # NEW FORMAT (LSB) # -------------------------------------------- fversn == 0x4b || return "Reading of file version $(repr(fversn)) not implemented" ftflg = read_data(io, UInt8) fversn = read_data(io, UInt8) fexper = read_data(io, UInt8) fexp = read_data(io, UInt8) fnpts = read_data(io, Int32) ffirst = read_data(io, Float64) flast = read_data(io, Float64) fnsub = read_data(io, Int32) fxtype = read_data(io, UInt8) fytype = read_data(io, UInt8) fztype = read_data(io, UInt8) fpost = read_data(io, UInt8) fdate = read_data(io, Int32) fres = read_data(io, String, 9) fsource = read_data(io, String, 9) fpeakpt = read_data(io, Int16) fspare = read_data(io, String, 32) fcmnt = read_data(io, String, 130) fcatxt = read_data(io, String, 30) flogoff = read_data(io, Int32) fmods = read_data(io, Int32) fprocs = read_data(io, UInt8) flevel = read_data(io, UInt8) fsampin = read_data(io, Int16) ffactor = read_data(io, Float32) fmethod = read_data(io, String, 48) fzinc = read_data(io, Float32) fwplanes = read_data(io, Int32) fwinc = read_data(io, Float32) fwtype = read_data(io, UInt8) freser = read_data(io, String, 187) # Flag bits tsprec, tcgram, tmulti, trandm, tordrd, talabs, txyxys, txvals = flag_bits(ftflg) # Convert date time to appropriate format year = fdate >> 20 month = (fdate >> 16) % (2^4) day = (fdate >> 11) % (2^5) hour = (fdate >> 6) % (2^5) minute = fdate % (2^6) timestamp = DateTime(year, month, day, hour, minute) # remove multiple spaces cmnt = replace(fcmnt, r"\s+" => " ") # figure out type of file dat_multi = fnsub > 1 dat_fmt = if txyxys # x values are given "-xy" elseif txvals # only one subfile, which contains the x data dat_fmt = "x-y" else # no x values are given, but they can be generated dat_fmt = "gx-y" end println("$dat_fmt($fnsub)") x = if ! txyxys # txyxys don't have global x data if txvals # if global x data is given read_data(io, Float32, fnpts) else # otherwise generate them range(ffirst, flast; length=fnpts) |> collect end end # make a list of subfiles xydata = [] zdata = Float32[] z0 = dz = 0f0 # if subfile directory is given if dat_fmt == "-xy" && fnpts > 0 directory = true # loop over entries in directory for i in 1:fnsub ssfposn, ssfsize, ssftime = read_data(io, (Int32, Int32, Float32)) # add sufile, load defaults for npts and exp pos = position(io) seek(io, ssfposn) # io buffer position is zero-based! xloc, y, z, zinc = subFile(io, 0, 0, true, tsprec, tmulti) if i == 1 z0 = z dz = zinc end seek(io, pos) push!(xydata, (isnothing(xloc) ? x : xloc, y)) push!(zdata, z) end else # don't have directory, for each subfile for i in 1:fnsub xloc, y, z, zinc = subFile(io, fnpts, fexp, txyxys, tsprec, tmulti) if i == 1 z0 = z dz = zinc end push!(xydata, (isnothing(xloc) ? x : xloc, y)) push!(zdata, z) end end # if log data exists # flog offset to log data offset not zero (bytes) param_dict = Dict{String, String}() params = String[] # put the rest into a list if flogoff > 0 log_head_end = flogoff + log_siz io_log = IOBuffer(content[flogoff+1:log_head_end]) # logstc_str = "<iiiii44s" logsizd, logsizm, logtxto, logbins, logdsks = read_data(io_log, Int32, 5) logspar = read_data(io_log, String, 44) log_pos = flogoff + logtxto log_end_pos = flogoff + logsizd # line endings: get rid of any '\r' and then split on '\n' log_content = split(strip(String(content[log_pos + 1:log_end_pos]), ['\0', '\r', '\n']), r"\r?\n") # split log data into dictionary based on = for x in log_content if occursin("=", x) # stop it from breaking if there is more than 1 = key, value = split(x, "=")[1:2] push!(param_dict, key => strip(value, '\0')) else push!(params, x) end end end labels = [ get(fxtype_op, fxtype + 1, "Unknown"), get(fytype_op, fytype + 1, get(fytype_op2, fytype - 127, "Unknown")), get(fxtype_op, fztype + 1, "Unknown") ] # -------------------------- # check if labels are included as text # -------------------------- # split it based on '\0' character # format x, y, z if talabs for (i, s) in enumerate(split(fcatxt, '\0', keepempty = false)) isempty(s) || (labels[i] = s) end end if (0x10 & ftflg == 0x0) fzinc > 0 && (dz == fzinc) zdata = z0 .+ collect(0:dz:((fnpts - 1) * dz)) end SPC(xydata, zdata, labels..., get(fexper_op, fexper + 1, "Unknown"), timestamp, param_dict, params) end """ subFile(io::IO, fnpts, fexp, txyxy, tsprec, tmulti) Process each subfile passed to it, extracts header information and data information and places them in data members Data - x: x-data (optional) - y: y-data - y_int: integer y-data if y-data is not floating """ function subFile(io::IO, fnpts, fexp, txyxy, tsprec, tmulti) # extract subheader info subflgs, subexp, subindx, subtime, subnext, subnois, subnpts, subscan, subwlevel, subresv = read_subheader(io) pts = txyxy ? subnpts : fnpts # Choosing exponent # ----------------- # choose local vs global exponent depending on tmulti exp = tmulti ? subexp : fexp # Make sure it is reasonable, if it out of range zero it (-128 < exp <= 128) || (exp = 0) # -------------------------- # if x_data present # -------------------------- x = if txyxy # x_str = '<' + 'i' * pts x_raw = read_data(io, Int32, pts) (2.0f0^(exp - 32)) .* x_raw else nothing end # -------------------------- # extract y_data # -------------------------- y = if exp == 128 # Floating y-values read_data(io, Float32, pts) else # integer format if tsprec # 16 bit y_raw16 = read_data(io, Int16, pts) (2.0f0^(exp - 16)) .* y_raw16 else # 32 bit, using size of subheader to figure out data type y_raw = read_data(io, Int32, pts) (2.0f0^(exp - 32)) .* y_raw end end z = subtime zinc = subnext - subtime x, y, z, zinc end """ read_subheader(io::IO) Return the subheader as a list: ------- 10 item list with the following data members: [1] subflgs [2] subexp [3] subindx [4] subtime [5] subnext [6] subnois [7] subnpts [8] subscan [9] subwlevel [10] subresv """ function read_subheader(io::IO) subflgs = read_data(io, UInt8) subexp = read_data(io, UInt8) subindx = read_data(io, Int16) subtime = read_data(io, Float32) subnext = read_data(io, Float32) subnois = read_data(io, Float32) subnpts = read_data(io, Int32) subscan = read_data(io, Int32) subwlevel = read_data(io, Float32) subresv = read_data(io, String, 4) subflgs, subexp, subindx, subtime, subnext, subnois, subnpts, subscan, subwlevel, subresv end end # module
SPCSpectra
https://github.com/hhaensel/SPCSpectra.jl.git
[ "MIT" ]
0.4.0
9bda530fa178f41e92eeeb57312e7be1b9f47a9f
code
394
using Test using SPCSpectra @testset "SPCSpectra" begin dir = joinpath(pkgdir(SPCSpectra), "test", "data") filename = "4d_map.spc" path = joinpath(dir, filename) spc = SPC(path) # The data is from a Nicolet FT-IR spectrometer. # That is, a Fourier infrared spectrometer. @test spc.param_dict["SRC"] == "IR Source" @test spc.param_dict["MODEL"] == "Nicolet" end
SPCSpectra
https://github.com/hhaensel/SPCSpectra.jl.git
[ "MIT" ]
0.4.0
9bda530fa178f41e92eeeb57312e7be1b9f47a9f
docs
3312
# SPCSpectra A module for working with .SPC files in Julia. SPC is a binary data format to store a variety of spectral data, developed by Galactic Industries Corporation in the '90s. Popularly used Thermo Fisher/Scientific software GRAMS/AI. Also used by others including Ocean Optics, Jobin Yvon Horiba. Can store a variety of spectrum including FT-IR, UV-VIS, X-ray Diffraction, Mass Spectroscopy, NMR, Raman and Fluorescence spectra. The SPC file format can store either single or multiple y-values, and the x-values can either be given explicitly or even spaced x-values can be generated based on initial and final points as well as number of points. In addition the format can store various log data and parameters, as well as various information such as axis labels and scan type. NOTE: This file is still in beta state and has not been fully tested. ## Acknowledgement This package is highly inspired the python package [`spc` by rohanisaac](https://github.com/rohanisaac/spc). ## Features 1. Extracts header information 2. Store x and y data of all traces into a vector `data`. Single traces can be addressed by `spc.data[1]` (, `spc.data[2]`, `spc.data[3]`, ...) 3. Attempts to interpret x-, y-, and z-labels, as well as experiment type 4. Store z values of multifiles into a vector `zdata` Currently only file version `0x4b` is supported. Data output is not yet implemented. ## Installation ```julia julia> ] pkg> add SPCSpectra ``` ## Usage ```julia using SPCSpectra datadir = joinpath(pkgdir(SPCSpectra), "test", "data") filenames = filter(endswith(r"\.spc"i), readdir(datadir; join=true)) spc = SPC(filenames[1]) # Plotting using PlotlyBase plotspc(spc::SPC) = plotspc(spc.data) plotspc(data) = Plot([scatter(x = s[1], y = s[2]) for s in data]) plotspc(spc) ``` ### Accessing data In contrast to the original spc python package, all data elements contain both x and y values. This is not a waste of storage as x arrays are stored by reference. The following fields are currently supported. metadata | variable ------------------- | ----------- x-label | spc.xlabel y-label | spc.ylabel z-label | spc.zlabel Timestamp | spc.timestamp Experiment type | spc.experimenttype Log dictionary | spc.param_dict Log (remaining) | spc.params ### File versions supported File versions are given by the second bit in the file. Currently the library supports the following `fversn` bytes. fversn | Description | Support | Notes ------ | ---------------- | ------------ | ---------------------------------------------------------------- 0x4B | New format (LSB) | Good | 0x4C | New format (MSB) | None | 0x4D | Old format | None | 0xCF | SHIMADZU format | None | ### Notes - Used format specification from Universal Data Format Specification [1], [2] - Loads entire file into memory - Data uses variable naming as in SPC.H ### Todo - support of other format versions - data output / conversion - integration of plot functions ## References [1] "SPC file format", Wikipedia (<https://en.wikipedia.org/wiki/SPC_file_format>) [2] "Universal Data Format Specification" (PDF). (<https://ensembles-eu.metoffice.gov.uk/met-res/aries/technical/GSPC_UDF.PDF>)
SPCSpectra
https://github.com/hhaensel/SPCSpectra.jl.git
[ "MIT" ]
0.5.4
9b9b347613394885fd1c8c7729bfc60528faa436
code
592
using Documenter, Arpack makedocs( format = Documenter.HTML( canonical = "https://julialinearalgebra.github.io/Arpack.jl/stable/", ), sitename = "Arpack.jl", modules = [Arpack], pages = [ "Home" => "index.md", "Standard Eigen Decomposition" => "eigs.md", "Generalized Eigen Decomposition" => "eigs_gen.md", "Singular Value Decomposition" => "svds.md", "API Reference" => "api.md", ] ) deploydocs( repo = "github.com/JuliaLinearAlgebra/Arpack.jl.git", target = "build", deps = nothing, make = nothing )
Arpack
https://github.com/JuliaLinearAlgebra/Arpack.jl.git
[ "MIT" ]
0.5.4
9b9b347613394885fd1c8c7729bfc60528faa436
code
15114
# This file is a part of Julia. License is MIT: https://julialang.org/license """ Arnoldi and Lanczos iteration for computing eigenvalues """ module Arpack # Load in our binary dependencies using Arpack_jll using LinearAlgebra: BlasFloat, BlasInt, Diagonal, I, SVD, UniformScaling, checksquare, factorize, ishermitian, issymmetric, mul!, rmul!, qr! import LinearAlgebra export eigs, svds include("libarpack.jl") ## eigs """ eigs(A; nev=6, ncv=max(20,2*nev+1), which=:LM, tol=0.0, maxiter=300, sigma=nothing, ritzvec=true, explicittransform=:auto, v0=zeros((0,)), check=0) -> (d,[v,],nconv,niter,nmult,resid) Computes eigenvalues `d` of `A` using implicitly restarted Lanczos or Arnoldi iterations for real symmetric or general nonsymmetric matrices respectively. See [the manual](@ref man-eigs) for more information. `eigs` returns the `nev` requested eigenvalues in `d`, the corresponding Ritz vectors `v` (only if `ritzvec=true`), the number of converged eigenvalues `nconv`, the number of iterations `niter` and the number of matrix vector multiplications `nmult`, as well as the final residual vector `resid`. The parameter `explicittransform` takes the values `:auto`, `:none` or `:shiftinvert`, specifying if shift and invert should be explicitly invoked in julia code. When `check = 0`, an error is thrown if maximum number of iterations taken (`info = 1`). This usually means all possible eigenvalues has been found according to ARPACK manual. When `check = 1`, return currently converged eigenvalues when `info = 1`. And a `@warn` will given. When `check = 2`, return currently converged eigenvalues when `info = 1`. # Examples ```jldoctest julia> using LinearAlgebra, Arpack julia> A = Diagonal(1:4); julia> λ, ϕ = eigs(A, nev = 2); julia> λ 2-element Array{Float64,1}: 3.9999999999999996 3.000000000000001 ``` """ eigs(A; kwargs...) = eigs(A, I; kwargs...) eigs(A::AbstractMatrix{<:BlasFloat}, ::UniformScaling; kwargs...) = _eigs(A, I; kwargs...) eigs(A::AbstractMatrix{T}, B::AbstractMatrix{T}; kwargs...) where {T<:BlasFloat} = _eigs(A, B; kwargs...) eigs(A::AbstractMatrix{BigFloat}, B::AbstractMatrix...; kwargs...) = throw(MethodError(eigs, Any[A,B,kwargs...])) eigs(A::AbstractMatrix{BigFloat}, B::UniformScaling; kwargs...) = throw(MethodError(eigs, Any[A,B,kwargs...])) function eigs(A::AbstractMatrix{T}, ::UniformScaling; kwargs...) where T Tnew = typeof(zero(T)/sqrt(one(T))) eigs(convert(AbstractMatrix{Tnew}, A), I; kwargs...) end function eigs(A::AbstractMatrix, B::AbstractMatrix; kwargs...) T = promote_type(eltype(A), eltype(B)) Tnew = typeof(zero(T)/sqrt(one(T))) eigs(convert(AbstractMatrix{Tnew}, A), convert(AbstractMatrix{Tnew}, B); kwargs...) end """ eigs(A, B; nev=6, ncv=max(20,2*nev+1), which=:LM, tol=0.0, maxiter=300, sigma=nothing, ritzvec=true, v0=zeros((0,)), check=0) -> (d,[v,],nconv,niter,nmult,resid) Computes generalized eigenvalues `d` of `A` and `B` using implicitly restarted Lanczos or Arnoldi iterations for real symmetric or general nonsymmetric matrices respectively. See [the manual](@ref man-eigsgen) for more information. When `check = 0`, an error is thrown if maximum number of iterations taken (`info = 1`). This usually means all possible eigenvalues has been found according to ARPACK manual. When `check = 1`, return currently converged eigenvalues when `info = 1`. And a `@warn` will given. When `check = 2`, return currently converged eigenvalues when `info = 1`. """ eigs(A, B; kwargs...) = _eigs(A, B; kwargs...) function _eigs(A, B; nev::Integer=6, ncv::Integer=max(20,2*nev+1), which=:LM, tol=0.0, maxiter::Integer=300, sigma=nothing, v0::Vector=zeros(eltype(A),(0,)), ritzvec::Bool=true, explicittransform::Symbol=:auto, check::Integer=0) n = checksquare(A) eigval_postprocess = false; # If we need to shift-and-invert eigvals as postprocessing T = eltype(A) iscmplx = T <: Complex isgeneral = B !== I sym = !iscmplx && issymmetric(A) && issymmetric(B) nevmax = sym ? n-1 : n-2 if nevmax <= 0 throw(ArgumentError("input matrix A is too small. Use eigen instead.")) end if nev > nevmax @warn "Adjusting nev from $nev to $nevmax" nev = nevmax end if nev <= 0 throw(ArgumentError("requested number of eigenvalues (nev) must be ≥ 1, got $nev")) end ncvmin = nev + (sym ? 1 : 2) if ncv < ncvmin @warn "Adjusting ncv from $ncv to $ncvmin" ncv = ncvmin end ncv = BlasInt(min(ncv, n)) bmat = isgeneral ? "G" : "I" isshift = sigma !== nothing if isa(which,AbstractString) @warn "Use symbols instead of strings for specifying which eigenvalues to compute" which=Symbol(which) end if (which != :LM && which != :SM && which != :LR && which != :SR && which != :LI && which != :SI && which != :BE) throw(ArgumentError("which must be :LM, :SM, :LR, :SR, :LI, :SI, or :BE, got $(repr(which))")) end if which == :BE && !sym throw(ArgumentError("which=:BE only possible for real symmetric problem")) end isshift && which == :SM && @warn "Use of :SM in shift-and-invert mode is not recommended, use :LM to find eigenvalues closest to sigma" if (explicittransform==:auto) # Try to automatically detect if it is good to carry out an explicittransform if (isgeneral && (isshift || which==:LM)) explicittransform = :shiftinvert else explicittransform = :none end end if sigma !== nothing && !iscmplx && isa(sigma,Complex) throw(ArgumentError("complex shifts for real problems are not yet supported")) end sigma = isshift ? convert(T,sigma) : zero(T) if (explicittransform==:shiftinvert && (which==:LM || which==:LR || which == :LI) && !isgeneral) @warn "Explicit transformation with :L* for standard eigenvalue problems has no meaning. Changing to explicittransform=false." explicittransform=:none end sigma0=sigma; # Store for inverted shift-and-invert if explicittransform==:shiftinvert isgeneral=false bmat="I" sym=false # Explicit transform destroys symmetry in general sigma=zero(T); if (isshift) # Try to keep the original meaning of which & sigma if (which == :LM) which = :SM elseif (which == :SM) which = :LM end if (which == :LR) which = :SR elseif (which == :SR) which = :LR end end end if !isempty(v0) if length(v0) != n throw(DimensionMismatch()) end if eltype(v0) != T throw(ArgumentError("starting vector must have element type $T, got $(eltype(v0))")) end end whichstr = "LM" if which == :SM whichstr = "SM" end if which == :BE whichstr = "BE" end if which == :LR whichstr = (!sym ? "LR" : "LA") end if which == :SR whichstr = (!sym ? "SR" : "SA") end if which == :LI if !sym whichstr = "LI" else throw(ArgumentError("largest imaginary is meaningless for symmetric eigenvalue problems")) end end if which == :SI if !sym whichstr = "SI" else throw(ArgumentError("smallest imaginary is meaningless for symmetric eigenvalue problems")) end end # Refer to ex-*.doc files in ARPACK/DOCUMENTS for calling sequence matvecA! = (y, x) -> mul!(y, A, x) if !isgeneral || (explicittransform==:shiftinvert) # Standard problem matvecB = x -> x if (explicittransform == :none) if !isshift # Regular mode mode = 1 solveSI = x->x else # Shift-invert mode mode = 3 F = factorize(A - UniformScaling(sigma)) solveSI = x -> F \ x end else # doing explicit transformation to standard eigprob if (which == :LM || which == :LI || which == :LR) eigval_postprocess = false # No eigval postprocess necessary the operator is B^{-1}A F = factorize(B); matvecA! = (y,x) -> (y[:]= F \ (A*x)) else eigval_postprocess = true sigma = zero(T); F = factorize(sigma0*B - A); matvecA! = (y,x) -> (y[:]= F \ (B*x)) end mode = 1; solveSI = x -> x; end else # Generalized eigenproblem matvecB = x -> B * x if !isshift # Regular inverse mode mode = 2 F = factorize(B) solveSI = x -> F \ x else # Shift-invert mode mode = 3 F = factorize(A - sigma*B) solveSI = x -> F \ x end end # Compute the Ritz values and Ritz vectors (resid, v, ldv, iparam, ipntr, workd, workl, lworkl, rwork, TOL) = aupd_wrapper(T, matvecA!, matvecB, solveSI, n, sym, iscmplx, bmat, nev, ncv, whichstr, tol, maxiter, mode, v0, check) # Postprocessing to get eigenvalues and eigenvectors check == 1 && (iparam[5] < nev) && @warn "nev = $nev, but only $(iparam[5]) found!" output = eupd_wrapper(T, n, sym, iscmplx, bmat, check == 0 ? nev : iparam[5], whichstr, ritzvec, TOL, resid, ncv, v, ldv, sigma, iparam, ipntr, workd, workl, lworkl, rwork) # Issue 10495, 10701: Check that all eigenvalues are converged nev = length(output[1]) nconv = output[ritzvec ? 3 : 2] nev ≤ nconv || @warn "Not all wanted Ritz pairs converged. Requested: $nev, converged: $nconv" if (eigval_postprocess) # invert the shift-and-inverse λ = sigma0 .- 1 ./output[1]; return (λ, output[2:end]...) end return output end ## svds struct SVDAugmented{T,S} <: AbstractArray{T, 2} X::S SVDAugmented{T,S}(X::AbstractMatrix) where {T,S} = new(X) end function SVDAugmented(A::AbstractMatrix{T}) where T Tnew = typeof(zero(T)/sqrt(one(T))) Anew = convert(AbstractMatrix{Tnew}, A) SVDAugmented{Tnew,typeof(Anew)}(Anew) end function LinearAlgebra.mul!(y::StridedVector{T}, A::SVDAugmented{T}, x::StridedVector{T}) where T m, mn = size(A.X, 1), length(x) mul!( view(y, 1:m), A.X, view(x, m + 1:mn)) # left singular vector mul!(view(y, m + 1:mn), adjoint(A.X), view(x, 1:m)) # right singular vector return y end Base.size(A::SVDAugmented) = ((+)(size(A.X)...), (+)(size(A.X)...)) LinearAlgebra.ishermitian(A::SVDAugmented) = true struct AtA_or_AAt{T,S} <: AbstractArray{T, 2} A::S buffer::Vector{T} end function AtA_or_AAt(A) T = eltype(A) Tnew = typeof(zero(T)/sqrt(one(T))) return AtA_or_AAt{Tnew,typeof(A)}(A, Vector{Tnew}(undef, max(size(A)...))) end function LinearAlgebra.mul!(y::StridedVector{T}, A::AtA_or_AAt{T}, x::StridedVector{T}) where T if size(A.A, 1) >= size(A.A, 2) mul!(A.buffer, A.A, x) return mul!(y, adjoint(A.A), A.buffer) else mul!(A.buffer, adjoint(A.A), x) return mul!(y, A.A, A.buffer) end end Base.size(A::AtA_or_AAt) = ntuple(i -> min(size(A.A)...), Val(2)) LinearAlgebra.ishermitian(s::AtA_or_AAt) = true svds(A::AbstractMatrix{<:BlasFloat}; kwargs...) = _svds(A; kwargs...) svds(A::AbstractMatrix{BigFloat}; kwargs...) = throw(MethodError(svds, Any[A, kwargs...])) function svds(A::AbstractMatrix{T}; kwargs...) where T Tnew = typeof(zero(T)/sqrt(one(T))) svds(convert(AbstractMatrix{Tnew}, A); kwargs...) end """ svds(A; nsv=6, ritzvec=true, tol=0.0, maxiter=1000, ncv=2*nsv, v0=zeros((0,))) -> (SVD([left_sv,] s, [right_sv,]), nconv, niter, nmult, resid, check=0) Computes the largest singular values `s` of `A` using implicitly restarted Lanczos iterations derived from [`eigs`](@ref). See [the manual](@ref man-svds) for more information. When `check = 0`, an error is thrown if maximum number of iterations taken (`info = 1`). This usually means all possible eigenvalues has been found according to ARPACK manual. When `check = 1`, return currently converged eigenvalues when `info = 1`. And a `@warn` will given. When `check = 2`, return currently converged eigenvalues when `info = 1`. """ svds(A; kwargs...) = _svds(A; kwargs...) function _orth!(P) Q,R = qr!(P) _sign(x) = iszero(x) ? one(x) : sign(x) rsign = [_sign(R[i,i]) for i in 1:size(R,2)] return rmul!(Matrix(Q), Diagonal(rsign)) end function _svds(X; nsv::Int = 6, ritzvec::Bool = true, tol::Float64 = 0.0, maxiter::Int = 1000, ncv::Int = 2*nsv, v0::Vector=zeros(eltype(X),(0,)), check::Integer=0) if nsv < 1 throw(ArgumentError("number of singular values (nsv) must be ≥ 1, got $nsv")) end if nsv >= minimum(size(X)) throw(ArgumentError("number of singular values (nsv) must be < $(minimum(size(X))), got $nsv")) end m, n = size(X) otype = eltype(X) if length(v0) ∉ (0, min(m, n)) min_mn = min(m, n) throw(DimensionMismatch("length of v0, the guess for the starting right Krylov vector, must be 0, or $min_mn, got $(length(v0))")) end ex = eigs(AtA_or_AAt(X), I; which = :LM, ritzvec = ritzvec, nev = nsv, tol = tol, maxiter = maxiter, v0=v0, check=check) check != 0 && (nsv = length(ex[1])) # ind = [1:2:ncv;] # sval = abs.(ex[1][ind]) realex1 = real.(ex[1]) threshold = max(eps(real(otype))*realex1[1], eps(real(otype))) firstzero = findfirst(v -> v <= threshold, realex1) r = firstzero === nothing ? nsv : firstzero-1 # rank of the decomposition realex1[r+1:end] .= zero(real(otype)) svals = sqrt.(realex1) if ritzvec # calculating singular vectors # left_sv = sqrt(2) * ex[2][ 1:size(X,1), ind ] .* sign.(ex[1][ind]') if size(X, 1) >= size(X, 2) V = ex[2] # We cannot assume that X*V is a Matrix even though V is. This is not # the case for e.g. LinearMaps.jl so we convert to Matrix explicitly U = _orth!(rmul!(convert(Matrix, X*V), Diagonal([inv.(svals[1:r]); ones(nsv-r)]))) else U = ex[2] # We cannot assume that X'U is a Matrix even though U is. This is not # the case for e.g. LinearMaps.jl so we convert to Matrix explicitly V = _orth!(rmul!(convert(Matrix, X'U), Diagonal([inv.(svals[1:r]); ones(nsv-r)]))) end # right_sv = sqrt(2) * ex[2][ size(X,1)+1:end, ind ] return (SVD(U, svals, copy(V')), ex[3], ex[4], ex[5], ex[6]) else #The sort is necessary to work around #10329 return (SVD(zeros(eltype(svals), n, 0), svals, zeros(eltype(svals), 0, m)), ex[2], ex[3], ex[4], ex[5]) end end end # module
Arpack
https://github.com/JuliaLinearAlgebra/Arpack.jl.git
[ "MIT" ]
0.5.4
9b9b347613394885fd1c8c7729bfc60528faa436
code
16575
# This file is a part of Julia. License is MIT: https://julialang.org/licenOAse import LinearAlgebra: BlasInt using Logging # A convenient shortcut to show unexpected behavior from libarpack const ERR_UNEXPECTED_BEHAVIOR = -999 struct XYAUPD_Exception <: Exception info::BlasInt end const AUPD_ERRORS = [ (3, "No shifts could be applied during a cycle of the Implicitly restarted Arnoldi iteration. One possibility is to increase the size of NCV relative to NEV. "), (2, "No longer an informational error. Deprecated starting with release 2 of ARPACK."), (1, """Maximum number of iterations taken. All possible eigenvalues of OP has been found. IPARAM(5) returns the number of wanted converged Ritz values."""), (0, "Normal exit."), (-1, "N must be positive."), (-2, "NEV must be positive."), (-3, "NCV-NEV >= 2 and less than or equal to N."), (-4, "The maximum number of Arnoldi update iterations allowed must be greater than zero."), (-5, " WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'"), (-6, "BMAT must be one of 'I' or 'G'."), (-7, "Length of private work array WORKL is not sufficient."), (-8, "Error return from LAPACK eigenvalue calculation."), (-9, "Starting vector is zero."), (-10, "IPARAM(7) must be 1,2,3,4."), (-11, "IPARAM(7) = 1 and BMAT = 'G' are incompatible."), (-12, "IPARAM(1) must be equal to 0 or 1."), (-13, "NEV and WHICH = 'BE' are incompatible."), (-9999, """Could not build an Arnoldi factorization. IPARAM(5) returns the size of the current Arnoldi factorization. The user is advised to check that enough workspace and array storage has been allocated.""") ] function Base.showerror(io::IO, ex::XYAUPD_Exception) info = ex.info if info == ERR_UNEXPECTED_BEHAVIOR @error "XYAUPD_Exception: Undefined error" else idx = searchsorted(AUPD_ERRORS, info, by=first, rev=true) if isempty(idx) @error "XYAUPD_Exception: Please check XYAUPD error codes in the ARPACK manual." info else @error "XYAUPD_Exception: $(last(AUPD_ERRORS[first(idx)]))" info end end end struct XYEUPD_Exception <: Exception info::BlasInt end const EUPD_ERRORS = [ (1, """The Schur form computed by LAPACK routine lahqr could not be reordered by LAPACK routine trsen. Re-enter subroutine neupd with IPARAM(5)NCV and increase the size of the arrays DR and DI to have dimension at least dimension NCV and allocate at least NCV columns for Z. NOTE: Not necessary if Z and V share the same space. Please notify the authors if this error occurs."""), (0, "Normal exit."), (-1, "N must be positive."), (-2, "NEV must be positive."), (-3, "NCV-NEV >= 2 and less than or equal to N."), (-5, "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'"), (-6, "BMAT must be one of 'I' or 'G'."), (-7, "Length of private work WORKL array is not sufficient."), (-8, """Error return from calculation of a real Schur form. "Informational error from LAPACK routine lahqr ."""), (-9, """Error return from calculation of eigenvectors. "Informational error from LAPACK routine dtrevc."""), (-10, "IPARAM(7) must be 1,2,3,4."), (-11, "IPARAM(7) = 1 and BMAT = 'G' are incompatible."), (-12, "HOWMNY = 'S' not yet implemented"), (-13, "HOWMNY must be one of 'A' or 'P' if RVEC = .true."), (-14, "DNAUPD did not find any eigenvalues to sufficient accuracy."), (-15, """DNEUPD got a different count of the number of converged Ritz values than NAUPD got. This indicates the user probably made an error in passing data from NAUPD to NEUPD or that the data was modified before entering NEUPD""") ] function Base.showerror(io::IO, ex::XYEUPD_Exception) info = ex.info if info == ERR_UNEXPECTED_BEHAVIOR @error "XYEUPD_Exception: Undefined error" else idx = searchsorted(EUPD_ERRORS, info, by=first, rev=true) if isempty(idx) @error "XYEUPD_Exception: Please check XYEUPD error codes in the ARPACK manual." info else @error "XYEUPD_Exception: $(last(EUPD_ERRORS[first(idx)]))" info end end end ## aupd and eupd wrappers function aupd_wrapper(T, matvecA!::Function, matvecB::Function, solveSI::Function, n::Integer, sym::Bool, cmplx::Bool, bmat, nev::Integer, ncv::Integer, which, tol::Real, maxiter::Integer, mode::Integer, v0::Vector, check::Integer) lworkl = cmplx ? ncv * (3*ncv + 5) : (sym ? ncv * (ncv + 8) : ncv * (3*ncv + 6) ) TR = cmplx ? T.types[1] : T TOL = Ref{TR}(tol) v = Matrix{T}(undef, n, ncv) workd = Vector{T}(undef, 3*n) workl = Vector{T}(undef, lworkl) rwork = cmplx ? Vector{TR}(undef, ncv) : Vector{TR}() if isempty(v0) resid = Vector{T}(undef, n) info = Ref{BlasInt}(0) else resid = deepcopy(v0) info = Ref{BlasInt}(1) end iparam = zeros(BlasInt, 11) ipntr = zeros(BlasInt, (sym && !cmplx) ? 11 : 14) ido = Ref{BlasInt}(0) iparam[1] = BlasInt(1) # ishifts iparam[3] = BlasInt(maxiter) # maxiter iparam[7] = BlasInt(mode) # mode zernm1 = 0:(n-1) while true if cmplx naupd(ido, bmat, n, which, nev, TOL, resid, ncv, v, n, iparam, ipntr, workd, workl, lworkl, rwork, info) elseif sym saupd(ido, bmat, n, which, nev, TOL, resid, ncv, v, n, iparam, ipntr, workd, workl, lworkl, info) else naupd(ido, bmat, n, which, nev, TOL, resid, ncv, v, n, iparam, ipntr, workd, workl, lworkl, info) end if info[] != 0 if info[] == 1 && check != 0 return (resid, v, n, iparam, ipntr, workd, workl, lworkl, rwork, TOL) end throw(XYAUPD_Exception(info[])) end x = view(workd, ipntr[1] .+ zernm1) y = view(workd, ipntr[2] .+ zernm1) if mode == 1 # corresponds to dsdrv1, dndrv1 or zndrv1 if ido[] == -1 || ido[] == 1 matvecA!(y, x) elseif ido[] == 99 break else throw(XYAUPD_Exception(ERR_UNEXPECTED_BEHAVIOR)) end elseif mode == 3 && bmat == "I" # corresponds to dsdrv2, dndrv2 or zndrv2 if ido[] == -1 || ido[] == 1 y[:] = solveSI(x) elseif ido[] == 99 break else throw(XYAUPD_Exception(ERR_UNEXPECTED_BEHAVIOR)) end elseif mode == 2 # corresponds to dsdrv3, dndrv3 or zndrv3 if ido[] == -1 || ido[] == 1 matvecA!(y, x) if sym x[:] = y # overwrite as per Remark 5 in dsaupd.f end y[:] = solveSI(y) elseif ido[] == 2 y[:] = matvecB(x) elseif ido[] == 99 break else throw(XYAUPD_Exception(ERR_UNEXPECTED_BEHAVIOR)) end elseif mode == 3 && bmat == "G" # corresponds to dsdrv4, dndrv4 or zndrv4 if ido[] == -1 y[:] = solveSI(matvecB(x)) elseif ido[] == 1 y[:] = solveSI(view(workd,ipntr[3] .+ zernm1)) elseif ido[] == 2 y[:] = matvecB(x) elseif ido[] == 99 break else throw(XYAUPD_Exception(ERR_UNEXPECTED_BEHAVIOR)) end else throw(ArgumentError("ARPACK mode ($mode) not yet supported")) end end return (resid, v, n, iparam, ipntr, workd, workl, lworkl, rwork, TOL) end function eupd_wrapper(T, n::Integer, sym::Bool, cmplx::Bool, bmat, nev::Integer, which, ritzvec::Bool, TOL::Ref, resid, ncv::Integer, v, ldv, sigma, iparam, ipntr, workd, workl, lworkl, rwork) howmny = "A" select = Vector{BlasInt}(undef, ncv) info = Ref{BlasInt}(0) dmap = if which == "LM" || which == "SM" abs elseif which == "LR" || which == "LA" || which == "BE" || which == "SR" || which == "SA" real elseif which == "LI" || which == "SI" abs ∘ imag # ARPACK returns largest,smallest abs(imaginary) (complex pairs come together) else error("unknown which string $which") end rev = which[1] == 'L' if iparam[7] == 3 # shift-and-invert dmap = dmap ∘ (x -> 1 / (x - sigma)) end if cmplx d = Vector{T}(undef, nev+1) sigmar = Ref{T}(sigma) workev = Vector{T}(undef, 2ncv) neupd(ritzvec, howmny, select, d, v, ldv, sigmar, workev, bmat, n, which, nev, TOL, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, rwork, info) if info[] != 0 throw(XYEUPD_Exception(info[])) end p = sortperm(d[1:nev], by=dmap, rev=rev) return ritzvec ? (d[p], v[1:n, p],iparam[5],iparam[3],iparam[9],resid) : (d[p],iparam[5],iparam[3],iparam[9],resid) elseif sym d = Vector{T}(undef, nev) sigmar = Ref{T}(sigma) seupd(ritzvec, howmny, select, d, v, ldv, sigmar, bmat, n, which, nev, TOL, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info) if info[] != 0 throw(XYEUPD_Exception(info[])) end p = sortperm(d, by=dmap, rev=rev) return ritzvec ? (d[p], v[1:n, p],iparam[5],iparam[3],iparam[9],resid) : (d[p],iparam[5],iparam[3],iparam[9],resid) else dr = Vector{T}(undef, nev+1) di = Vector{T}(undef, nev+1) fill!(dr,NaN) fill!(di,NaN) sigmar = Ref{T}(real(sigma)) sigmai = Ref{T}(imag(sigma)) workev = Vector{T}(undef, 3*ncv) neupd(ritzvec, howmny, select, dr, di, v, ldv, sigmar, sigmai, workev, bmat, n, which, nev, TOL, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info) if info[] != 0 throw(XYEUPD_Exception(info[])) end evec = complex.(Matrix{T}(undef, n, nev+1), Matrix{T}(undef, n, nev+1)) j = 1 while j <= nev if di[j] == 0 evec[:,j] = v[:,j] else # For complex conjugate pairs evec[:,j] = v[:,j] + im*v[:,j+1] evec[:,j+1] = v[:,j] - im*v[:,j+1] j += 1 end j += 1 end if j == nev+1 && !isnan(di[j]) if di[j] == 0 evec[:,j] = v[:,j] j += 1 else throw(XYEUPD_Exception(ERR_UNEXPECTED_BEHAVIOR)) end end d = complex.(dr, di) if j == nev+1 p = sortperm(d[1:nev], by=dmap, rev=rev) else p = sortperm(d, by=dmap, rev=rev) p = p[1:nev] end return ritzvec ? (d[p], evec[1:n, p],iparam[5],iparam[3],iparam[9],resid) : (d[p],iparam[5],iparam[3],iparam[9],resid) end end for (T, saupd_name, seupd_name, naupd_name, neupd_name) in ((:Float64, :dsaupd_, :dseupd_, :dnaupd_, :dneupd_), (:Float32, :ssaupd_, :sseupd_, :snaupd_, :sneupd_)) @eval begin function naupd(ido, bmat, n, evtype, nev, TOL::Ref{$T}, resid::Vector{$T}, ncv, v::Matrix{$T}, ldv, iparam, ipntr, workd::Vector{$T}, workl::Vector{$T}, lworkl, info) ccall(($(string(naupd_name)), libarpack), Cvoid, (Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{$T}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{BlasInt}, Clong, Clong), ido, bmat, n, evtype, nev, TOL, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info, 1, 2) end function neupd(rvec, howmny, select, dr, di, z, ldz, sigmar, sigmai, workev::Vector{$T}, bmat, n, evtype, nev, TOL::Ref{$T}, resid::Vector{$T}, ncv, v, ldv, iparam, ipntr, workd::Vector{$T}, workl::Vector{$T}, lworkl, info) ccall(($(string(neupd_name)), libarpack), Cvoid, (Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{$T}, Ptr{UInt8}, Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{$T}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{BlasInt}, Clong, Clong, Clong), rvec, howmny, select, dr, di, z, ldz, sigmar, sigmai, workev, bmat, n, evtype, nev, TOL, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info, 1, 1, 2) end function saupd(ido, bmat, n, which, nev, TOL::Ref{$T}, resid::Vector{$T}, ncv, v::Matrix{$T}, ldv, iparam, ipntr, workd::Vector{$T}, workl::Vector{$T}, lworkl, info) ccall(($(string(saupd_name)), libarpack), Cvoid, (Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{$T}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{BlasInt}, Clong, Clong), ido, bmat, n, which, nev, TOL, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info, 1, 2) end function seupd(rvec, howmny, select, d, z, ldz, sigma, bmat, n, evtype, nev, TOL::Ref{$T}, resid::Vector{$T}, ncv, v::Matrix{$T}, ldv, iparam, ipntr, workd::Vector{$T}, workl::Vector{$T}, lworkl, info) ccall(($(string(seupd_name)), libarpack), Cvoid, (Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{$T}, Ptr{UInt8}, Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{$T}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{BlasInt}, Clong, Clong, Clong), rvec, howmny, select, d, z, ldz, sigma, bmat, n, evtype, nev, TOL, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info, 1, 1, 2) end end end for (T, TR, naupd_name, neupd_name) in ((:ComplexF64, :Float64, :znaupd_, :zneupd_), (:ComplexF32, :Float32, :cnaupd_, :cneupd_)) @eval begin function naupd(ido, bmat, n, evtype, nev, TOL::Ref{$TR}, resid::Vector{$T}, ncv, v::Matrix{$T}, ldv, iparam, ipntr, workd::Vector{$T}, workl::Vector{$T}, lworkl, rwork::Vector{$TR}, info) ccall(($(string(naupd_name)), libarpack), Cvoid, (Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ref{$TR}, Ref{$T}, Ref{BlasInt}, Ref{$T}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{$TR}, Ref{BlasInt}, Clong, Clong), ido, bmat, n, evtype, nev, TOL, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, rwork, info, 1, 2) end function neupd(rvec, howmny, select, d, z, ldz, sigma, workev::Vector{$T}, bmat, n, evtype, nev, TOL::Ref{$TR}, resid::Vector{$T}, ncv, v::Matrix{$T}, ldv, iparam, ipntr, workd::Vector{$T}, workl::Vector{$T}, lworkl, rwork::Vector{$TR}, info) ccall(($(string(neupd_name)), libarpack), Cvoid, (Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ptr{UInt8}, Ref{BlasInt}, Ptr{UInt8}, Ref{BlasInt}, Ref{$TR}, Ref{$T}, Ref{BlasInt}, Ref{$T}, Ref{BlasInt}, Ref{BlasInt}, Ref{BlasInt}, Ref{$T}, Ref{$T}, Ref{BlasInt}, Ref{$TR}, Ref{BlasInt}, Clong, Clong, Clong), rvec, howmny, select, d, z, ldz, sigma, workev, bmat, n, evtype, nev, TOL, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, rwork, info, 1, 1, 2) end end end
Arpack
https://github.com/JuliaLinearAlgebra/Arpack.jl.git
[ "MIT" ]
0.5.4
9b9b347613394885fd1c8c7729bfc60528faa436
code
16151
# This file is a part of Julia. License is MIT: https://julialang.org/license using Arpack using Test, LinearAlgebra, SparseArrays, StableRNGs @testset "eigs" begin rng = StableRNG(1235) n = 10 areal = sprandn(rng, n, n, 0.4) breal = sprandn(rng, n, n, 0.4) acmplx = complex.(sprandn(rng, n, n, 0.4), sprandn(rng, n, n, 0.4)) bcmplx = complex.(sprandn(rng, n, n, 0.4), sprandn(rng, n, n, 0.4)) testtol = 1e-6 @testset for elty in (Float64, ComplexF64) if elty == ComplexF32 || elty == ComplexF64 a = acmplx b = bcmplx else a = areal b = breal end a_evs = eigvals(Array(a)) a = convert(SparseMatrixCSC{elty}, a) asym = copy(a') + a # symmetric indefinite apd = a'*a # symmetric positive-definite b = convert(SparseMatrixCSC{elty}, b) bsym = copy(b') + b bpd = b'*b + I (d,v) = eigs(a, nev=3) @test a*v[:,2] ≈ d[2]*v[:,2] @test norm(v) > testtol # eigenvectors cannot be null vectors (d,v) = eigs(a, LinearAlgebra.I, nev=3) # test eigs(A, B; kwargs...) @test a*v[:,2] ≈ d[2]*v[:,2] @test norm(v) > testtol # eigenvectors cannot be null vectors @test_logs (:warn, "Use symbols instead of strings for specifying which eigenvalues to compute") eigs(a, which="LM") @test_logs (:warn, "Adjusting ncv from 1 to 4") eigs(a, ncv=1, nev=2) @test_logs (:warn, "Adjusting nev from $n to $(n - 2)") eigs(a, nev=n) # (d,v) = eigs(a, b, nev=3, tol=1e-8) # not handled yet # @test a*v[:,2] ≈ d[2]*b*v[:,2] atol=testtol # @test norm(v) > testtol # eigenvectors cannot be null vectors if elty <: LinearAlgebra.BlasComplex sr_ind = argmin(real.(a_evs)) (d, v) = eigs(a, nev=1, which=:SR) @test d[1] ≈ a_evs[sr_ind] si_ind = argmin(imag.(a_evs)) (d, v) = eigs(a, nev=1, which=:SI) @test d[1] ≈ a_evs[si_ind] lr_ind = argmax(real.(a_evs)) (d, v) = eigs(a, nev=1, which=:LR) @test d[1] ≈ a_evs[lr_ind] li_ind = argmax(imag.(a_evs)) (d, v) = eigs(a, nev=1, which=:LI) @test d[1] ≈ a_evs[li_ind] end (d,v) = eigs(asym, nev=3) @test asym*v[:,1] ≈ d[1]*v[:,1] @test eigs(asym; nev=1, sigma=d[3])[1][1] ≈ d[3] @test norm(v) > testtol # eigenvectors cannot be null vectors (d,v) = eigs(apd, nev=3) @test apd*v[:,3] ≈ d[3]*v[:,3] @test eigs(apd; nev=1, sigma=d[3])[1][1] ≈ d[3] (d,v) = eigs(apd, bpd, nev=3, tol=1e-8) @test apd*v[:,2] ≈ d[2]*bpd*v[:,2] atol=testtol @test norm(v) > testtol # eigenvectors cannot be null vectors @testset "(shift-and-)invert mode" begin (d,v) = eigs(apd, nev=3, sigma=0) @test apd*v[:,3] ≈ d[3]*v[:,3] @test norm(v) > testtol # eigenvectors cannot be null vectors (d,v) = eigs(apd, bpd, nev=3, sigma=0, tol=1e-8) @test apd*v[:,1] ≈ d[1]*bpd*v[:,1] atol=testtol @test norm(v) > testtol # eigenvectors cannot be null vectors end @testset "ArgumentErrors" begin @test_throws ArgumentError eigs(rand(rng, elty, 2, 2)) @test_throws ArgumentError eigs(a, nev=-1) @test_throws ArgumentError eigs(a, which=:Z) @test_throws ArgumentError eigs(a, which=:BE) @test_throws DimensionMismatch eigs(a, v0=zeros(elty,n+2)) @test_throws ArgumentError eigs(a, v0=zeros(Int,n)) if elty == Float64 @test_throws ArgumentError eigs(a + copy(transpose(a)), which=:SI) @test_throws ArgumentError eigs(a + copy(transpose(a)), which=:LI) @test_throws ArgumentError eigs(a, sigma = rand(rng, ComplexF32)) end end end @testset "Symmetric generalized with singular B" begin rng = StableRNG(127) n = 10 k = 3 A = randn(rng, n, n); A = A'A B = randn(rng, n, k); B = B*B' @test sort(eigs(A, B, nev = k, sigma = 1.0, explicittransform=:none)[1]) ≈ sort(eigvals(A, B); by=abs)[1:k] end end @testset "Problematic example from #6965A" begin A6965 = [ 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 -1.0 2.0 0.0 0.0 0.0 0.0 0.0 1.0 -1.0 0.0 3.0 0.0 0.0 0.0 0.0 1.0 -1.0 0.0 0.0 4.0 0.0 0.0 0.0 1.0 -1.0 0.0 0.0 0.0 5.0 0.0 0.0 1.0 -1.0 0.0 0.0 0.0 0.0 6.0 0.0 1.0 -1.0 0.0 0.0 0.0 0.0 0.0 7.0 1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 8.0 ] d, = eigs(A6965,which=:LM,nev=2,ncv=4,tol=eps(), sigma=0.0) @test d[1] ≈ 2.5346936860350002 @test real(d[2]) ≈ 2.6159972444834976 @test abs(imag(d[2])) ≈ 1.2917858749046127 # Requires ARPACK 3.2 or a patched 3.1.5 #T6965 = [ 0.9 0.05 0.05 # 0.8 0.1 0.1 # 0.7 0.1 0.2 ] #d,v,nconv = eigs(T6965,nev=1,which=:LM) # @test T6965*v ≈ d[1]*v atol=1e-6 end # Example from Quantum Information Theory import Base: size mutable struct CPM{T<:LinearAlgebra.BlasFloat} <: AbstractMatrix{T} # completely positive map kraus::Array{T,3} # kraus operator representation end size(Phi::CPM) = (size(Phi.kraus,1)^2,size(Phi.kraus,3)^2) LinearAlgebra.issymmetric(Phi::CPM) = false LinearAlgebra.ishermitian(Phi::CPM) = false function LinearAlgebra.mul!(rho2::StridedVector{T},Phi::CPM{T},rho::StridedVector{T}) where {T<:LinearAlgebra.BlasFloat} rho = reshape(rho,(size(Phi.kraus,3),size(Phi.kraus,3))) rho1 = zeros(T,(size(Phi.kraus,1),size(Phi.kraus,1))) for s = 1:size(Phi.kraus,2) As = view(Phi.kraus,:,s,:) rho1 += As*rho*As' end return copyto!(rho2,rho1) end @testset "Test random isometry" begin (Q, R) = qr(randn(100, 50)) Q = reshape(Array(Q), (50, 2, 50)) # Construct trace-preserving completely positive map from this Phi = CPM(copy(Q)) (d,v,nconv,numiter,numop,resid) = eigs(Phi, nev=1, which=:LM) # Properties: largest eigenvalue should be 1, largest eigenvector, when reshaped as matrix # should be a Hermitian positive definite matrix (up to an arbitrary phase) @test d[1] ≈ 1. # largest eigenvalue should be 1. v = reshape(v, (50, 50)) # reshape to matrix v /= tr(v) # factor out arbitrary phase @test norm(imag(v)) ≈ 0. # it should be real v = real(v) # @test norm(v-v')/2 ≈ 0. # it should be Hermitian # Since this fails sometimes (numerical precision error),this test is commented out v = (v + v')/2 @test isposdef(v) # Repeat with starting vector (d2, v2, nconv2, numiter2, numop2, resid2) = eigs(Phi, nev=1, which=:LM, v0=reshape(v, (2500,))) v2 = reshape(v2, (50,50)) v2 /= tr(v2) @test numiter2 < numiter @test v ≈ v2 # Adjust the tolerance a bit since matrices with repeated eigenvalues # can be very stressful to ARPACK and this may therefore fail with # info = 3 if the tolerance is too small @test eigs(sparse(1.0I, 50, 50), nev=10, tol = 5e-16)[1] ≈ fill(1., 10) #Issue 4246 end @testset "real svds" begin A = sparse([1, 1, 2, 3, 4], [2, 1, 1, 3, 1], [2.0, -1.0, 6.1, 7.0, 1.5]) S1 = svds(A, nsv = 2) S2 = svd(Array(A)) ## singular values match: @test S1[1].S ≈ S2.S[1:2] @testset "singular vectors" begin ## 1st left singular vector s1_left = sign(S1[1].U[3,1]) * S1[1].U[:,1] s2_left = sign(S2.U[3,1]) * S2.U[:,1] @test s1_left ≈ s2_left ## 1st right singular vector s1_right = sign(S1[1].V[3,1]) * S1[1].V[:,1] s2_right = sign(S2.V[3,1]) * S2.V[:,1] @test s1_right ≈ s2_right end # Issue number 10329 # Ensure singular values from svds are in # the correct order @testset "singular values ordered correctly" begin B = sparse(Diagonal([1.0, 2.0, 34.0, 5.0, 6.0])) S3 = svds(B, ritzvec=false, nsv=2) @test S3[1].S ≈ [34.0, 6.0] S4 = svds(B, nsv=2) @test S4[1].S ≈ [34.0, 6.0] end @testset "passing guess for Krylov vectors" begin S1 = svds(A, nsv = 2, v0=rand(eltype(A), size(A,2))) @test S1[1].S ≈ S2.S[1:2] end @test_throws ArgumentError svds(A, nsv=0) @test_throws ArgumentError svds(A, nsv=20) @test_throws DimensionMismatch svds(A, nsv=2, v0=rand(size(A,2) + 1)) @testset "Orthogonal vectors with repeated singular values $i times. Issue 16608" for i in 2:3 rng = StableRNG(126) # Fragile to compute repeated values without blocking so we set the seed v0 = randn(rng, 20) d = sort(rand(rng, 20), rev = true) for j in 2:i d[j] = d[1] end A = qr(randn(rng, 20, 20)).Q*Diagonal(d)*qr(randn(rng, 20, 20)).Q @testset "Number of singular values: $j" for j in 2:6 # Default size of subspace F = svds(A, nsv = j, v0 = v0) @test F[1].U'F[1].U ≈ Matrix(I, j, j) @test F[1].V'F[1].V ≈ Matrix(I, j, j) @test F[1].S ≈ d[1:j] for k in 3j:2:5j # Custom size of subspace F = svds(A, nsv = j, ncv = k, v0 = v0) @test F[1].U'F[1].U ≈ Matrix(I, j, j) @test F[1].V'F[1].V ≈ Matrix(I, j, j) @test F[1].S ≈ d[1:j] end end end end @testset "complex svds" begin A = sparse([1, 1, 2, 3, 4], [2, 1, 1, 3, 1], exp.(im*[2.0:2:10;]), 5, 4) S1 = svds(A, nsv = 2) S2 = svd(Array(A)) ## singular values match: @test S1[1].S ≈ S2.S[1:2] @testset "singular vectors" begin ## left singular vectors s1_left = abs.(S1[1].U[:,1:2]) s2_left = abs.(S2.U[:,1:2]) @test s1_left ≈ s2_left ## right singular vectors s1_right = abs.(S1[1].V[:,1:2]) s2_right = abs.(S2.V[:,1:2]) @test s1_right ≈ s2_right end @testset "passing guess for Krylov vectors" begin S1 = svds(A, nsv = 2, v0=rand(eltype(A), size(A,2))) @test S1[1].S ≈ S2.S[1:2] end @test_throws ArgumentError svds(A,nsv=0) @test_throws ArgumentError svds(A,nsv=20) @test_throws DimensionMismatch svds(A,nsv=2,v0=complex(rand(size(A,2)+1))) end @testset "promotion" begin eigs(rand(1:10, 10, 10)) eigs(rand(1:10, 10, 10), rand(1:10, 10, 10) |> t -> t't) svds(rand(1:10, 10, 8)) @test_throws MethodError eigs(big.(rand(1:10, 10, 10))) @test_throws MethodError eigs(big.(rand(1:10, 10, 10)), rand(1:10, 10, 10)) @test_throws MethodError svds(big.(rand(1:10, 10, 8))) end struct MyOp{S} mat::S end Base.size(A::MyOp) = size(A.mat) Base.size(A::MyOp, i::Integer) = size(A.mat, i) Base.eltype(A::MyOp) = Float64 Base.:*(A::MyOp, B::AbstractMatrix) = A.mat*B LinearAlgebra.mul!(y::AbstractVector, A::MyOp, x::AbstractVector) = mul!(y, A.mat, x) LinearAlgebra.adjoint(A::MyOp) = MyOp(adjoint(A.mat)) @testset "svds for non-AbstractMatrix" begin A = MyOp(randn(10, 9)) @test svds(A, v0 = ones(9))[1].S == svds(A.mat, v0 = ones(9))[1].S end @testset "low rank" begin rng = StableRNG(123) @testset "$T coefficients" for T in [Float64, Complex{Float64}] @testset "rank $r" for r in [2, 5, 10] m, n = 3*r, 4*r nsv = 2*r FU = qr(randn(rng, T, m, r)) U = Matrix(FU.Q) S = 0.1 .+ sort(rand(rng, r), rev=true) FV = qr(randn(rng, T, n, r)) V = Matrix(FV.Q) A = U*Diagonal(S)*V' F = svds(A, nsv=nsv)[1] @test F.S[1:r] ≈ S if T == Complex{Float64} # This test fails since ARPACK does not have an Hermitian solver # for the complex case. This problem occurs for U in the "fat" # case. In the "tall" case the same may happen for V instead. @test_broken F.U'*F.U ≈ Matrix{T}(I, nsv, nsv) else @test F.U'*F.U ≈ Matrix{T}(I, nsv, nsv) end @test F.V'*F.V ≈ Matrix{T}(I, nsv, nsv) end end end @testset "Problematic examples from #41" begin @test all(Matrix(svds([1. 0.; 0. 0.],nsv=1)[1]) ≈ [1. 0.; 0. 0.] for i in 1:10) A = [1. 0. 0.; 0. 0. 0.; 0. 0. 0.] U,s,V = svds(A,nsv=2)[1] @test U*Diagonal(s)*V' ≈ A atol=1e-7 @test U'U ≈ I @test V'V ≈ I end # Problematic example from #118 @testset "issue 118" begin ωc = 1.2 ωa = 0.9 γ = 0.5 κ = 1.1 sz = sparse(ComplexF64[1 0; 0 -1]) sp = sparse(ComplexF64[0 1; 0 0]) sm = sparse(collect(sp')) ids = one(sz) a = sparse(diagm(1 => ComplexF64[sqrt(i) for i=1:10])) ida = one(a) Ha = kron(ida, 0.5*ωa*sz) Hc = kron(ωc*a'*a, ids) Hint = sparse(kron(a', sm) + kron(a, sp)) H = Ha + Hc + Hint Ja = kron(ida, sqrt(γ)*sm) Jc = kron(sqrt(κ)*a, ids) J = sqrt(2) .* [Ja, Jc] Jdagger = adjoint.(J) rates = 0.5 .* ones(length(J)) spre(x) = kron(one(x), x) spost(x) = kron(permutedims(x), one(x)) L = spre(-1im*H) + spost(1im*H) for i=1:length(J) jdagger_j = rates[i]/2*Jdagger[i]*J[i] L -= spre(jdagger_j) + spost(jdagger_j) L += spre(rates[i]*J[i]) * spost(Jdagger[i]) end for _=1:100 d, rest = eigs(L, nev=2, which=:LR) @test abs(d[1]) < 1e-9 end end # Problematic examples from #85 @testset "maxiter reach not throw err" begin a = rand(100, 100) a = a + a' nev = 5 try e, v = eigs(a, nev = nev, maxiter = 2) catch err @test isa(err, Arpack.XYAUPD_Exception) @test err.info == 1 end e, v = eigs(a, nev = nev, maxiter = 2, check = 2) println("An warning 'nev = $nev, but only x found!' is expected here:") e, v = eigs(a, nev = nev, maxiter = 2, check = 1) e0, v0 = eigs(a, nev = nev) n = length(e) @test all(e[1:n] .≈ e0[1:n]) @test abs.(v[:, 1:n]'v0[:, 1:n]) ≈ I try e, v = svds(a, nsv = 5, maxiter = 2) catch err @show typeof(err) @test isa(err, Arpack.XYAUPD_Exception) @test err.info == 1 end r, _ = svds(a, nsv = 5, maxiter = 2, check = 2) println("An warning 'nev = $nev, but only x found!' is expected here:") r, _ = svds(a, nsv = 5, maxiter = 2, check = 1) r0, _ = svds(a, nsv = 5) n = length(r.S) @test all(r.S[1:n] .≈ r0.S[1:n]) @test abs.(r.U[:, 1:n]'r0.U[:, 1:n]) ≈ I @test abs.(r.V[:, 1:n]'r0.V[:, 1:n]) ≈ I end # Regression test for #110. @testset "correct Krylov vector length check" begin m = 4 n = 8 a = sprandn(m,n,0.4) @test svds(a, nsv=1, v0 = ones(min(m, n)))[1].S ≈ svds(a', nsv=1, v0 = ones(min(m, n)))[1].S @test_throws DimensionMismatch svds(a, nsv=1, v0 = ones(max(m, n))) @test_throws DimensionMismatch svds(a', nsv=1, v0 = ones(max(m, n))) end @testset "ordering modes" begin N = 10 nev = 4 M = rand(N,N) S = eigvals(M) abs_imag = abs ∘ imag # ARPACK returns largest,smallest abs(imaginary) (complex pairs come together) @testset "no shift-invert" begin for (which, sortby, rev) in [(:LM, abs, true), (:LR, real, true), (:LI, abs_imag, true), (:SM, abs, false), (:SR, real, false), (:SI, abs_imag, false)] d, _ = eigs(M, nev=nev, which=which) e = partialsort(S, 1:nev, by=sortby, rev=rev) @test sortby.(e) ≈ sortby.(d) end end @testset "shift-invert" begin for (which, sortby, rev) in [(:LM, abs, true), (:LR, real, true), (:LI, abs_imag, true), (:SM, abs, false), (:SR, real, false), (:SI, abs_imag, false)] d, _ = eigs(M, nev=nev, which=which, sigma=0.0) e = S[partialsortperm(S, 1:nev, by=sortby ∘ inv, rev=rev)] @test sortby.(e) ≈ sortby.(d) end end end
Arpack
https://github.com/JuliaLinearAlgebra/Arpack.jl.git
[ "MIT" ]
0.5.4
9b9b347613394885fd1c8c7729bfc60528faa436
docs
931
# Arpack [![CI](https://github.com/JuliaLinearAlgebra/Arpack.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/JuliaLinearAlgebra/Arpack.jl/actions/workflows/ci.yml) [![][docs-stable-img]][docs-stable-url] Julia wrapper for the [arpack](https://github.com/opencollab/arpack-ng/) library designed to solve large-scale eigenvalue problems. ## Installation Install Arpack.jl through the Julia package manager: ```julia julia> Pkg.add("Arpack") ``` [docs-latest-img]: https://img.shields.io/badge/docs-latest-blue.svg [docs-latest-url]: http://arpack.JuliaLinearAlgebra.org/latest/ [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: http://arpack.JuliaLinearAlgebra.org/stable/ # Alternate packages Users running into issues with this package may want to try [KrylovKit.jl](https://github.com/Jutho/KrylovKit.jl) or [ArnoldiMethod.jl](https://github.com/haampie/ArnoldiMethod.jl).
Arpack
https://github.com/JuliaLinearAlgebra/Arpack.jl.git
[ "MIT" ]
0.5.4
9b9b347613394885fd1c8c7729bfc60528faa436
docs
188
# API ```@meta DocTestSetup = :(using Arpack, LinearAlgebra, SparseArrays) ``` ```@docs Arpack.eigs(::Any) Arpack.eigs(::Any, ::Any) Arpack.svds ``` ```@meta DocTestSetup = nothing ```
Arpack
https://github.com/JuliaLinearAlgebra/Arpack.jl.git
[ "MIT" ]
0.5.4
9b9b347613394885fd1c8c7729bfc60528faa436
docs
5720
# [Standard Eigen Decomposition](@id man-eigs) ```@meta DocTestSetup = :(using Arpack, LinearAlgebra, SparseArrays) ``` `eigs` calculates the eigenvalues and, optionally, eigenvectors of a matrix using implicitly restarted Lanczos or Arnoldi iterations for real symmetric or general nonsymmetric matrices respectively. The input matrix `A` can be any structured `AbstractMatrix` that implements the in-place product method `LinearAlgebra.mul!(y, A, x)`. For the single matrix version, `eigs(A; nev=6, ncv=max(20,2*nev+1), which=:LM, tol=0.0, maxiter=300, sigma=nothing, ritzvec=true, v0=zeros((0,))) -> (d,[v,],nconv,niter,nmult,resid)` the following keyword arguments are supported: * `nev`: Number of eigenvalues * `ncv`: Number of Krylov vectors used in the computation; should satisfy `nev+1 <= ncv <= n` for real symmetric problems and `nev+2 <= ncv <= n` for other problems, where `n` is the size of the input matrix `A`. The default is `ncv = max(20,2*nev+1)`. Note that these restrictions limit the input matrix `A` to be of dimension at least 2. * `which`: type of eigenvalues to compute. See the note below. | `which` | type of eigenvalues | |:--------|:--------------------------------------------------------------------------------------------------------------------------| | `:LM` | eigenvalues of largest magnitude (default) | | `:SM` | eigenvalues of smallest magnitude | | `:LR` | eigenvalues of largest real part | | `:SR` | eigenvalues of smallest real part | | `:LI` | eigenvalues of largest imaginary part (nonsymmetric or complex `A` only) | | `:SI` | eigenvalues of smallest imaginary part (nonsymmetric or complex `A` only) | | `:BE` | compute half of the eigenvalues from each end of the spectrum, biased in favor of the high end. (real symmetric `A` only) | * `tol`: parameter defining the relative tolerance for convergence of Ritz values (eigenvalue estimates). A Ritz value ``θ`` is considered converged when its associated residual is less than or equal to the product of `tol` and ``max(ɛ^{2/3}, |θ|)``, where `ɛ = eps(real(eltype(A)))/2` is LAPACK's machine epsilon. The residual associated with ``θ`` and its corresponding Ritz vector ``v`` is defined as the norm ``||Av - vθ||``. The specified value of `tol` should be positive; otherwise, it is ignored and ``ɛ`` is used instead. Default: ``ɛ``. * `maxiter`: Maximum number of iterations (default = 300) * `sigma`: Specifies the level shift used in inverse iteration. If `nothing` (default), defaults to ordinary (forward) iterations. Otherwise, find eigenvalues close to `sigma` using shift and invert iterations. * `ritzvec`: Returns the Ritz vectors `v` (eigenvectors) if `true` * `v0`: starting vector from which to start the iterations We can see the various keywords in action in the following examples: ```jldoctest; filter = r"(1|2)-element Array{(Float64|Complex{Float64}),1}:\n (.|\s)*$" julia> A = Diagonal(1:4); julia> λ, ϕ = eigs(A, nev = 2, which=:SM); julia> λ 2-element Array{Float64,1}: 1.0000000000000002 2.0 julia> B = Diagonal([1., 2., -3im, 4im]); julia> λ, ϕ = eigs(B, nev=1, which=:LI); julia> λ 1-element Array{Complex{Float64},1}: 1.3322676295501878e-15 + 4.0im julia> λ, ϕ = eigs(B, nev=1, which=:SI); julia> λ 1-element Array{Complex{Float64},1}: -2.498001805406602e-16 - 3.0000000000000018im julia> λ, ϕ = eigs(B, nev=1, which=:LR); julia> λ 1-element Array{Complex{Float64},1}: 2.0000000000000004 + 4.0615212488780827e-17im julia> λ, ϕ = eigs(B, nev=1, which=:SR); julia> λ 1-element Array{Complex{Float64},1}: -8.881784197001252e-16 + 3.999999999999997im julia> λ, ϕ = eigs(B, nev=1, sigma=1.5); julia> λ 1-element Array{Complex{Float64},1}: 1.0000000000000004 + 4.0417078924070745e-18im ``` !!! note The `sigma` and `which` keywords interact: the description of eigenvalues searched for by `which` do *not* necessarily refer to the eigenvalues of `A`, but rather the linear operator constructed by the specification of the iteration mode implied by `sigma`. | `sigma` | iteration mode | `which` refers to eigenvalues of | |:----------------|:---------------------------------|:---------------------------------| | `nothing` | ordinary (forward) | ``A`` | | real or complex | inverse with level shift `sigma` | ``(A - \sigma I )^{-1}`` | !!! note Although `tol` has a default value, the best choice depends strongly on the matrix `A`. We recommend that users _always_ specify a value for `tol` which suits their specific needs. For details of how the errors in the computed eigenvalues are estimated, see: * B. N. Parlett, "The Symmetric Eigenvalue Problem", SIAM: Philadelphia, 2/e (1998), Ch. 13.2, "Accessing Accuracy in Lanczos Problems", pp. 290-292 ff. * R. B. Lehoucq and D. C. Sorensen, "Deflation Techniques for an Implicitly Restarted Arnoldi Iteration", SIAM Journal on Matrix Analysis and Applications (1996), 17(4), 789–821. doi:10.1137/S0895479895281484 ```@meta DocTestSetup = nothing ```
Arpack
https://github.com/JuliaLinearAlgebra/Arpack.jl.git
[ "MIT" ]
0.5.4
9b9b347613394885fd1c8c7729bfc60528faa436
docs
4486
# [Generalized Eigen Decomposition](@id man-eigsgen) ```@meta DocTestSetup = :(using Arpack, LinearAlgebra, SparseArrays) ``` For the two-input generalized eigensolution version, `eigs(A, B; nev=6, ncv=max(20,2*nev+1), which=:LM, tol=0.0, maxiter=300, sigma=nothing, ritzvec=true, v0=zeros((0,))) -> (d,[v,],nconv,niter,nmult,resid)` the following keyword arguments are supported: * `nev`: Number of eigenvalues * `ncv`: Number of Krylov vectors used in the computation; should satisfy `nev+1 <= ncv <= n` for real symmetric problems and `nev+2 <= ncv <= n` for other problems, where `n` is the size of the input matrices `A` and `B`. The default is `ncv = max(20,2*nev+1)`. Note that these restrictions limit the input matrix `A` to be of dimension at least 2. * `which`: type of eigenvalues to compute. See the note below. | `which` | type of eigenvalues | |:--------|:--------------------------------------------------------------------------------------------------------------------------| | `:LM` | eigenvalues of largest magnitude (default) | | `:SM` | eigenvalues of smallest magnitude | | `:LR` | eigenvalues of largest real part | | `:SR` | eigenvalues of smallest real part | | `:LI` | eigenvalues of largest imaginary part (nonsymmetric or complex `A` only) | | `:SI` | eigenvalues of smallest imaginary part (nonsymmetric or complex `A` only) | | `:BE` | compute half of the eigenvalues from each end of the spectrum, biased in favor of the high end. (real symmetric `A` only) | * `tol`: relative tolerance used in the convergence criterion for eigenvalues, similar to `tol` in the [`eigs(A)`](@ref) method for the ordinary eigenvalue problem, but effectively for the eigenvalues of ``B^{-1} A`` instead of ``A``. See the documentation for the ordinary eigenvalue problem in [`eigs(A)`](@ref) and the accompanying note about `tol`. * `maxiter`: Maximum number of iterations (default = 300) * `sigma`: Specifies the level shift used in inverse iteration. If `nothing` (default), defaults to ordinary (forward) iterations. Otherwise, find eigenvalues close to `sigma` using shift and invert iterations. * `ritzvec`: Returns the Ritz vectors `v` (eigenvectors) if `true` * `v0`: starting vector from which to start the iterations `eigs` returns the `nev` requested eigenvalues in `d`, the corresponding Ritz vectors `v` (only if `ritzvec=true`), the number of converged eigenvalues `nconv`, the number of iterations `niter` and the number of matrix vector multiplications `nmult`, as well as the final residual vector `resid`. We can see the various keywords in action in the following examples: ```jldoctest; filter = r"(1|2)-element Array{(Float64|Complex{Float64}),1}:\n (.|\s)*$" julia> A = sparse(1.0I, 4, 4); B = Diagonal(1:4); julia> λ, ϕ = eigs(A, B, nev = 2); julia> λ 2-element Array{Float64,1}: 1.0000000000000002 0.5 julia> A = Diagonal([1, -2im, 3, 4im]); B = sparse(1.0I, 4, 4); julia> λ, ϕ = eigs(A, B, nev=1, which=:SI); julia> λ 1-element Array{Complex{Float64},1}: -1.5720931501039814e-16 - 1.9999999999999984im julia> λ, ϕ = eigs(A, B, nev=1, which=:LI); julia> λ 1-element Array{Complex{Float64},1}: 0.0 + 4.000000000000002im ``` !!! note The `sigma` and `which` keywords interact: the description of eigenvalues searched for by `which` do *not* necessarily refer to the eigenvalue problem ``Av = Bv\lambda``, but rather the linear operator constructed by the specification of the iteration mode implied by `sigma`. | `sigma` | iteration mode | `which` refers to the problem | |:----------------|:---------------------------------|:-----------------------------------| | `nothing` | ordinary (forward) | ``Av = Bv\lambda`` | | real or complex | inverse with level shift `sigma` | ``(A - \sigma B )^{-1}B = v\nu`` | ```@meta DocTestSetup = nothing ```
Arpack
https://github.com/JuliaLinearAlgebra/Arpack.jl.git
[ "MIT" ]
0.5.4
9b9b347613394885fd1c8c7729bfc60528faa436
docs
653
# [Arpack.jl](@id man-arpack) ```@meta DocTestSetup = :(using Arpack, LinearAlgebra, SparseArrays) ``` This package provides bindings to [ARPACK](http://www.caam.rice.edu/software/ARPACK/), which can be used to perform iterative solutions for eigensystems (using [`eigs`](@ref)) or singular value decompositions (using [`svds`](@ref)). **Notes** 1. The ARPACK Fortran library is not re-entrant. `Arpack.jl` should only be used from one thread in a Julia program. 2. ARPACK uses a random starting vector by default. This causes the phase of the singular vectors to be random (or just the sign, for real values). ```@meta DocTestSetup = nothing ```
Arpack
https://github.com/JuliaLinearAlgebra/Arpack.jl.git
[ "MIT" ]
0.5.4
9b9b347613394885fd1c8c7729bfc60528faa436
docs
2790
# [Singular Value Decomposition](@id man-svds) ```@meta DocTestSetup = :(using Arpack, LinearAlgebra, SparseArrays, Random) ``` `svds(A; nsv=6, ritzvec=true, tol=0.0, maxiter=1000, ncv=2*nsv, v0=zeros((0,))) -> (SVD([left_sv,] s, [right_sv,]), nconv, niter, nmult, resid)` Computes the largest singular values `s` of `A` using implicitly restarted Lanczos iterations derived from [`eigs`](@ref). **Inputs** * `A`: Linear operator whose singular values are desired. `A` may be represented as a subtype of `AbstractArray`, e.g., a sparse matrix, or any other type supporting the four methods `size(A)`, `eltype(A)`, `A * vector`, and `A' * vector`. * `nsv`: Number of singular values. Default: 6. * `ritzvec`: If `true`, return the left and right singular vectors `left_sv` and `right_sv`. If `false`, omit the singular vectors. Default: `true`. * `tol`: tolerance, see [`eigs`](@ref). * `maxiter`: Maximum number of iterations, see [`eigs`](@ref). Default: 1000. * `ncv`: Maximum size of the Krylov subspace, see [`eigs`](@ref) (there called `nev`). Default: `2*nsv`. * `v0`: Initial guess for the first Krylov vector. It may have length `min(size(A)...)`, or 0. **Outputs** * `svd`: An `SVD` object containing the left singular vectors, the requested values, and the right singular vectors. If `ritzvec = false`, the left and right singular vectors will be empty. `U`, `S`, `V` and `Vt` can be obtained from the SVD object with `Z.U`, `Z.S`, `Z.V` and `Z.Vt`, where `Z = svds(A)[1]` and `U * Diagonal(S) * Vt` is a low-rank approximation of `A` with rank `nsv`. Internally `Vt` is stored and hence `Vt` is more efficient to extract than `V`. * `nconv`: Number of converged singular values. * `niter`: Number of iterations. * `nmult`: Number of matrix--vector products used. * `resid`: Final residual vector. **Examples** ```jldoctest julia> Random.seed!(123); julia> A = Diagonal(1:5); julia> Z = svds(A, nsv = 2)[1]; julia> Z.U 5×2 Array{Float64,2}: 0.0 7.80626e-18 0.0 -0.0 -1.33227e-16 5.35947e-33 -6.38552e-17 1.0 -1.0 -6.38552e-17 julia> Z.S 2-element Array{Float64,1}: 5.0 3.999999999999999 julia> Z.Vt 2×5 Array{Float64,2}: -2.77556e-17 0.0 -2.22045e-16 -7.9819e-17 -1.0 3.1225e-17 1.89735e-19 0.0 1.0 -8.32667e-17 julia> Z.V 5×2 Adjoint{Float64,Array{Float64,2}}: -2.77556e-17 3.1225e-17 0.0 1.89735e-19 -2.22045e-16 0.0 -7.9819e-17 1.0 -1.0 -8.32667e-17 ``` !!! note "Implementation" `svds(A)` is formally equivalent to calling [`eigs`](@ref) to perform implicitly restarted Lanczos tridiagonalization on the Hermitian matrix ``A^\prime A`` or ``AA^\prime`` such that the size is smallest. ```@meta DocTestSetup = nothing ```
Arpack
https://github.com/JuliaLinearAlgebra/Arpack.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
585
module CairoMakieDemo using CairoMakie: heatmap using Kitten: text # CairoMakie also exports text using Kitten get("/") do text("welcome to the random plot api!") end # generate a random plot get("/plot/png") do fig, ax, pl = heatmap(rand(50, 50)) # or something png(fig) end get("/plot/svg") do fig, ax, pl = heatmap(rand(50, 50)) # or something svg(fig) end get("/plot/pdf") do fig, ax, pl = heatmap(rand(50, 50)) # or something pdf(fig) end get("/plot/html") do fig, ax, pl = heatmap(rand(50, 50)) # or something html(fig) end serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
1061
module AuthDemo using Kitten using HTTP @get "/divide/{a}/{b}" function(req::HTTP.Request, a::Float64, b::Float64) return a / b end const CORS_HEADERS = [ "Access-Control-Allow-Origin" => "*", "Access-Control-Allow-Headers" => "*", "Access-Control-Allow-Methods" => "POST, GET, OPTIONS" ] # https://juliaweb.github.io/HTTP.jl/stable/examples/#Cors-Server function CorsMiddleware(handler) return function(req::HTTP.Request) if HTTP.method(req)=="OPTIONS" return HTTP.Response(200, CORS_HEADERS) else return handler(req) end end end function AuthMiddleware(handler) return function(req::HTTP.Request) # ** NOT an actual security check ** # if !HTTP.headercontains(req, "Authorization", "true") return HTTP.Response(403) else return HTTP.Response(200, body=string(handler(req))) end end end # There is no hard limit on the number of middleware functions you can add serve(middleware=[CorsMiddleware, AuthMiddleware]) end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
1186
module BankingAppDemo using Base: @kwdef using Kitten struct Address street::String city::String state::String zip_code::String country::String end struct User id::Int first_name::String last_name::String email::String address::Address end @kwdef struct BankAccount id::Int account_number::String account_type::String = "checking" balance::Float64 user::User end @get "/" function() return "Welcome to the Banking App Demo" end """ Setup User related routes """ user = router("/user", tags=["user"]) @post user("/json") function(req, data::Json{User}) return data.payload end @post user("/form") function(req, data::Form{User}) return data.payload end @post user("/headers") function(req, data::Header{User}) return data.payload end """ Setup Account related routes """ acct = router("/account", tags=["account"]) @post acct("/json") function(req, data::Json{BankAccount}) return data.payload end @post acct("/form") function(req, data::Form{BankAccount}) return data.payload end @post acct("/headers") function(req, data::Header{BankAccount}) return data.payload end serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
674
module CorsDemo using Kitten using HTTP allowed_origins = [ "Access-Control-Allow-Origin" => "*" ] cors_headers = [ allowed_origins..., "Access-Control-Allow-Headers" => "*", "Access-Control-Allow-Methods" => "GET, POST" ] function CorsHandler(handle) return function (req::HTTP.Request) # return headers on OPTIONS request if HTTP.method(req) == "OPTIONS" return HTTP.Response(200, cors_headers) else r = handle(req) append!(r.headers, allowed_origins) return r end end end get("/") do text("hello world") end # more code here serve(middleware=[CorsHandler]) end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
942
module CronDemo using Kitten using HTTP using Dates # You can use the @cron macro directly @cron "*/2" function() println("every 2 seconds") end @cron "*/5" function every5seconds() println("every 5 seconds") end value = 0 # You can also just use the 'cron' keyword that's apart of the router() function @get router("/increment", cron="*/11", interval=4) function() global value += 1 return value end @get router("/getvalue") function() return value end # all endpoints will inherit this cron expression pingpong = router("/pingpong", cron="*/3") @get pingpong("/ping") function() println("ping") return "ping" end # here we override the inherited cron expression @get pingpong("/pong", cron="*/7") function() println("pong") return "pong" end @get "/home" function() "home" end @get "/stop" function() stopcronjobs() end @get "/start" function() startcronjobs() end serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
784
module CronManagementDemo using Kitten using HTTP using Dates get("/data") do Dict("msg" => "hello") end function logtime() @info "current time: $(now())" end # initialize the app with an already running cron job get(router("/log", cron="*/2")) do logtime() end get("/register") do @info "registering new job" @cron "*/2" logtime "registered jobs" end get("/start") do @info "/start POST endpoint hit; running job" startcronjobs() "started jobs" end get("/clear") do @info "clearing jobs" clearcronjobs() "cleared jobs" end get("/stop") do @info "/stop POST endpoint hit" stopcronjobs() "stopped jobs" end @cron "*/3" function() println("every 3 seconds") end try serve() finally terminate() end end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
656
module CustomSerializerDemo using Kitten using HTTP using JSON3 function middleware(handle) return function(req) try resp = handle(req) if resp isa HTTP.Messages.Response return resp end return HTTP.Response(200, [], body=JSON3.write(resp)) catch error @error "ERROR: " exception=(error, catch_backtrace()) return HTTP.Response(500, "The server encountered a problem") end end end @get "/hello" function (req::HTTP.Request) return "hello" end # disable default serializaiton serve(serialize=false, middleware=[middleware]) end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
404
module DynamicHeadersDemo using Kitten using HTTP get("/") do req::HTTP.Request return "hello world!" end # This function allows us to customize the headers on our static & dynamic resources function customize_headers(route::String, content_type::String, headers::Vector) return [headers; "My-Header" => "hello world!"] end staticfiles("content", set_headers=customize_headers) serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
1232
module ErgonomicsDemo using Kitten using StructTypes using Dates using HTTP using JSON3 using Base: @kwdef using BenchmarkTools struct Address street::String city::String state::String zip::String end struct Person name::String age::Int end @kwdef struct Sample limit::Int = 20 skip::Int = 33 end struct Parameters b::Int end @kwdef struct PersonWithDefault name::String age::Int money::Float64 = 100.0 address::Address = Address("123 Main Street", "Orlando", "FL", "32810") end @get "/add/{a}/{b}" function(req, a::String, path::Path{Parameters}, qparams::Query{Sample}, c::Float64=3.6) return (a=a, c=c, path=path, query=qparams) end @get "/headers" function(req, headers = Header(Sample, s -> s.limit < 30)) return headers.payload end @post "/json" function(req, data = Json(PersonWithDefault, p -> p.money < 1000 )) return data.payload end @post "/form" function(req, data::Form{PersonWithDefault}) return data.payload end @post "/body" function(req, data::Body{Int64}) return data.payload end @get "/get" function(req, data::Json{Sample}) return data.payload end @get "/" function(req) "home" end serve(docs=true, metrics=true) end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
515
module ErrorHandlingDemo using Kitten using HTTP @get "/" function(req::HTTP.Request) return "hello world!" end @get "/bad" function(req::HTTP.Request) throw("whoops") "hello" end function errorcatcher(handle) function(req) try response = handle(req) return response catch e return HTTP.Response(500, "here's a custom error response") end end end # start the web server serve(middleware=[errorcatcher], catch_errors=false) end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
3128
module Main using Kitten using HTTP using JSON3 using StructTypes struct Animal id::Int type::String name::String end # Add a supporting struct type definition to the Animal struct StructTypes.StructType(::Type{Animal}) = StructTypes.Struct() @get "/" function() return "home" end @get "/killserver" function () terminate() end # add a default handler for unmatched requests @get "*" function () return "looks like you hit an endpoint that doesn't exist" end # You can also interpolate variables into the endpoint operations = Dict("add" => +, "multiply" => *) for (pathname, operator) in operations @get "/$pathname/{a}/{b}" function (req, a::Float64, b::Float64) return operator(a, b) end end # demonstate how to use path params (without type definitions) @get "/power/{a}/{b}" function (req::HTTP.Request, a::String, b::String) return parse(Float64, a) ^ parse(Float64, b) end # demonstrate how to use path params with type definitions @get "/divide/{a}/{b}" function (req::HTTP.Request, a::Float64, b::Float64) return a / b end # Return the body of the request as a string @post "/echo-text" function (req::HTTP.Request) return text(req) end # demonstrates how to serialize JSON into a julia struct @post "/animal" function (req) return json(req, Animal) end # Return the body of the request as a JSON object @post "/echo-json" function (req::HTTP.Request) return json(req) end # You can also return your own customized HTTP.Response object from an endpoint @get "/custom-response" function (req::HTTP.Request) test_value = 77.8 return HTTP.Response(200, ["Content-Type" => "text/plain"], body = "$test_value") end # Any object retuned from a function will automatically be converted into JSON (by default) @get "/json" function(req::HTTP.Request) return Dict("message" => "hello world", "animal" => Animal(1, "cat", "whiskers")) end # show how to return a file from an endpoint @get "/files" function (req) return file("main.jl") end # show how to return a string that needs to be interpreted as html @get "/string-as-html" function (req) message = "Hello World!" return html(""" <!DOCTYPE html> <html> <body> <h1>$message</h1> </body> </html> """) end @route ["GET", "POST"] "/demo" function(req) return Animal(1, "cat", "whiskers") end # recursively mount all files inside the demo folder ex.) demo/main.jl => /static/demo/main.jl staticfiles("content") dynamicfiles("content", "dynamic") # CORS headers that show what kinds of complex requests are allowed to API headers = [ "Access-Control-Allow-Origin" => "*", "Access-Control-Allow-Headers" => "*", "Access-Control-Allow-Methods" => "GET, POST" ] function CorsHandler(handle) return function(req::HTTP.Request) # return headers on OPTIONS request if HTTP.method(req) == "OPTIONS" return HTTP.Response(200, headers) else return handle(req) end end end # start the web server serve(middleware=[CorsHandler]) end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
333
module CronManagementDemo using Kitten using HTTP using Dates get("/data") do Dict("msg" => "hello") end get("/random/sm") do sleep(rand(0.01:0.03)) "small random" end get("/random/md") do sleep(rand(0.03:0.07)) "small random" end get("/random/lg") do sleep(rand(0.07:.1)) "random" end serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
2542
module MiddlewareDemo using Kitten using HTTP using JSON3 function handler1(handler) return function(req::HTTP.Request) println("1") handler(req) end end function handler2(handler) return function(req::HTTP.Request) println("2") handler(req) end end function handler3(handler) return function(req::HTTP.Request) println("3") handler(req) end end function handler4(handler) return function(req::HTTP.Request) println("4") handler(req) end end """ Middleware rules All middleware is additive, any middleware defined at the application, router, our route level will get combined and get executed. Regardless if set or not, Middleware will always get executed in the following order: application -> router -> route Well, what if we don't want previous layers of middleware to run? You set middleware=[], it clears all middleware at that layer and skips all layers that come before it. For example, setting middleware=[] at the: - application layer: clears the application layer - router layer: clears the router layer and skips application layer - route layer: clears the route layer and skips the application & router layer """ # case 1: no middleware setup, uses the application middleware by default @get "/add/{a}/{b}" function (req::HTTP.Request, a::Float64, b::Float64) return a + b end # case 1: no middleware is defined at any level -> use application middleware @get router("/power/{a}/{b}") function (req::HTTP.Request, a::Float64, b::Float64) return a ^ b end math = router("/math", middleware=[handler3]) # case 2: middleware is cleared at route level so don't register any middleware @get math("/cube/{a}", middleware=[]) function(req, a::Float64) return a * a * a end # case 3: router-level is empty & route-level is defined other = router("/math", middleware=[]) @get other("/multiply/{a}/{b}", middleware=[handler3]) function (req::HTTP.Request, a::Float64, b::Float64) return a * b end # case 4 (both defined) @get math("/divide/{a}/{b}", middleware=[handler4]) function(req::HTTP.Request, a::Float64, b::Float64) return a / b end # case 5: only router level is defined @get math("/subtract/{a}/{b}") function(req::HTTP.Request, a::Float64, b::Float64) return a - b end # case 6: only route level middleware is defined empty = router() @get empty("/math/square/{a}", middleware=[handler3]) function(req, a::Float64) return a * a end serve(middleware=[handler1, handler2]) end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
572
module MultiInstanceDemo using Kitten using HTTP # Setup the first app app1 = instance() app1.get("/") do "welcome to server #1" end app1.@get("/subtract/{a}/{b}") do req, a::Int, b::Int ("answer" => a - b) end # Setup the second app app2 = instance() app2.get("/") do "welcome to server #2" end app2.@get("/add/{a}/{b}") do req, a::Int, b::Int ("answer" => a + b) end try # start both servers together app1.serve(port=8001, async=true) app2.serve(port=8002) finally # clean it up app1.terminate() app2.terminate() end end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
434
module MultiInstanceDemo module A using Kitten; @oxidise @get "/" function() text("server A") end @get "/another" function() text("another route in server A") end end module B using Kitten; @oxidise @get "/" function() text("server B") end end try A.serve(port=8001, async=true) B.serve(port=8002, async=false) finally A.terminate() B.terminate() end end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
306
module OxidiseDemo using Kitten; @oxidise @get("/") do req "home" end @get("/nihao") do req "你好" end @get "/greet" function() "hello world!" end @get "/saluer" () -> begin "Bonjour le monde!" end @get "/saludar" () -> "¡Hola Mundo!" @get "/salutare" f() = "ciao mondo!" serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
732
module ParallelDemo using Kitten using HTTP using JSON3 using StructTypes using SwaggerMarkdown using Base.Threads ############## Atomic variable example ############## StructTypes.StructType(::Type{Atomic{Int64}}) = StructTypes.Struct() x = Atomic{Int64}(0); @get "/atomic/show" function(req) return x end @get "/atomic/increment" function() atomic_add!(x, 1) return x end ############## ReentrantLock example ############## global a = 0 rl = ReentrantLock() @get "/lock/show" function() return a end @get "/lock/increment" function() lock(rl) try global a a += 1 finally unlock(rl) end return a end # start the web server in parallel mode serveparallel() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
437
module RepeatTasksDemo using Kitten const iterations = Ref{Int}(0) get(router("/one", interval=1)) do iterations[] += 1 end get(router("/two", interval=2)) do iterations[] += 1 end @repeat 3 function() iterations[] += 1 end @repeat 4 "every 4 seconds" function() iterations[] += 1 end starttasks() while iterations[] < 10 println("Iterations: ", iterations[]) sleep(1) end stoptasks() cleartasks() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
661
module RouterDemo using Kitten using HTTP using JSON3 hellorouter = router("/hello", tags=["greeting"]) @get hellorouter("/excited", tags=["good"]) function(req) return "excited" end @get hellorouter("/sad") function(req) return "sad" end repeat = router("/repeat", interval = 1, tags=["repeat"]) @get repeat("/one") function(req) println("one") return "one" end emptyrouter = router() @get emptyrouter("/empty", interval = 3) function(req) println("empty") return "empty" end # you can also pass the `router()` function itself @get router("/spam", tags=["spam"], interval=0.25) function() println("spam") end serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
543
module FunctionsRoutingDemo using Kitten using HTTP get("/") do "hello" end math = router("/math", tags=["math"]) get(math("/add/{x}/{y}")) do request::HTTP.Request, x::Int, y::Int x + y end route(["POST"], math("/other/{x}/{y}")) do req, x::Int, y::Int x - y end get(math("/multiply/{x}/{y}")) do request::HTTP.Request, x::Int, y::Int x * y end get("/get") do "test" end put("/put") do "put" end patch("/patch") do "patch" end delete("/delete") do "delete" end # start the web server serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
1460
module SSEDemo using JSON3 using Dates using HTTP using Kitten @get "/" function() html(""" <html> <head> <meta charset="UTF-8"> <title>Server-sent events demo</title> </head> <body> <h3>Fetched items:</h3> <ul id="list"></ul> </body> <script> const evtSource = new EventSource("http://127.0.0.1:8080/api/events") evtSource.onmessage = async function (event) { const newElement = document.createElement("li"); const eventList = document.getElementById("list"); newElement.textContent = event.data; eventList.appendChild(newElement); } evtSource.addEventListener("ping", function(event) { console.log('ping:', event.data) }); </script> </html> """) end @stream "/api/events" function(stream::HTTP.Stream) HTTP.setheader(stream, "Access-Control-Allow-Origin" => "*") HTTP.setheader(stream, "Access-Control-Allow-Methods" => "GET") HTTP.setheader(stream, "Content-Type" => "text/event-stream") HTTP.setheader(stream, "Cache-Control" => "no-cache") while true message = "The time is: $(now())" write(stream, format_sse_message(message)) write(stream, format_sse_message(message; event="ping")) sleep(1) end return nothing end serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
1711
module StreamingChunksDemo using JSON3 using Dates using HTTP using JSON3 using Kitten function chunks(data::Any, nchunks::Int) return chunks(JSON3.write(data), nchunks) end function chunks(data::String, nchunks::Int) # Convert the data to binary binarydata = Vector{UInt8}(data) data_size = sizeof(binarydata) # Calculate chunk size chunk_size = ceil(Int, data_size / nchunks) # return a generator for the chunks return (binarydata[i:min(i + chunk_size - 1, end)] for i in 1:chunk_size:data_size) end nchunks = 5 data = Dict() # Add new properties with large arrays of values for i in 1:100 data["property$i"] = rand(1000) # Each property will have an array of 1000 random numbers end @stream "/api/chunked/json" function(stream::HTTP.Stream) # Set headers HTTP.setheader(stream, "Content-Type" => "application/json") HTTP.setheader(stream, "Transfer-Encoding" => "chunked") # Start writing (if you need to send headers before the body) startwrite(stream) # Write each chunk to the stream for chunk in chunks(data, nchunks) write(stream, chunk) end # Close the stream to end the HTTP response properly closewrite(stream) end # Chunk Text @stream "/api/chunked/text" function(stream::HTTP.Stream) # Set headers HTTP.setheader(stream, "Content-Type" => "text/plain") HTTP.setheader(stream, "Transfer-Encoding" => "chunked") # Start writing (if you need to send headers before the body) startwrite(stream) data = ["a", "b", "c"] for chunk in data write(stream, chunk) end # Close the stream to end the HTTP response properly closewrite(stream) end serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
2611
module SwaggerDemo using Kitten using HTTP using SwaggerMarkdown using StructTypes using JSON3 using Dates @enum Fruit apple=1 orange=2 kiwi=3 struct Person name :: String age :: Int8 end # Add a supporting struct type definition to the Person struct StructTypes.StructType(::Type{Person}) = StructTypes.Struct() StructTypes.StructType(::Type{Complex{Float64}}) = StructTypes.Struct() @get "/fruit/{fruit}" function(req, fruit::Fruit) return fruit end @get "/date/{date}" function(req, date::Date) return date end @get "/datetime/{datetime}" function(req, datetime::DateTime) return datetime end @get "/complex/{complex}" function(req, complex::Complex{Float64}) return complex end @get "/list/{list}" function(req, list::Vector{Float32}) return list end @get "/data/{dict}" function(req, dict::Dict{String, Any}) return dict end @get "/tuple/{tuple}" function(req, tuple::Tuple{String, String}) return tuple end @get "/union/{value}" function(req, value::Union{Bool, String, Float64}) return value end @get "/boolean/{bool}" function(req, bool::Bool) return bool end @get "/person/{person}" function(req, person::Person) return person end @get "/float/{float}" function (req::HTTP.Request, float::Float32) return float end @swagger """ /divide/{a}/{b}: get: description: Return the value of a / b parameters: - name: a in: path required: true description: this is your value schema: type: number format: double responses: '200': description: Successfully returned an number. """ # demonstrate how to use path params with type definitions @get "/divide/{a}/{b}" function (req::HTTP.Request, a::Float64, b::Float64) return a / b end @get "/add/{a}/{b}" function (req::HTTP.Request, a::UInt32, b::Float16) return a + b end @get "/add/{success}" function (req::HTTP.Request, success::Bool) return success end @swagger """ /home: get: description: returns the home endpoint!! responses: "200": description: Returns a string "503": description: something bad happened """ @get "/home" function() "home" end # the version of the OpenAPI used is required openApi_version = "3.0" # the info of the API, title and version of the info are required info = Dict{String, Any}() info["title"] = "My custom api" info["version"] = openApi_version openApi = OpenAPI(openApi_version, info) swagger_document = build(openApi) # merge the SwaggerMarkdown schema with the internal schema mergeschema(swagger_document) serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
862
module WGLMakieDemo using WGLMakie using WGLMakie.Makie: FigureLike using Bonito, FileIO, Colors, HTTP using Kitten using Kitten: text, html get("/") do text("home") end get("/plot") do plt = heatmap(rand(50, 50)) html(plt) end get("/html/heatmap") do app = App() do session::Session return DOM.div( DOM.h1("Random 50x50 Heatmap"), DOM.div(heatmap(rand(50, 50))) ) end return html(app) end get("/page") do app = App() do session::Session hue_slider = Slider(0:360) color_swatch = DOM.div(class="h-6 w-6 p-2 m-2 rounded shadow") onjs(session, hue_slider.value, js"""function (hue){ $(color_swatch).style.backgroundColor = "hsl(" + hue + ",60%,50%)" }""") return Row(hue_slider, color_swatch) end return html(app) end serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
1409
module WebSocketDemo using Dates using HTTP using HTTP.WebSockets: send using Kitten @get "/" function() html(""" <html> <head> <meta charset="UTF-8"> <title>WebSocket demo</title> </head> <body> <h3>Sent messages:</h3> <ul id="list"></ul> </body> <script> const socket = new WebSocket("ws://127.0.0.1:8080/ws"); socket.onopen = function(event) { setInterval(function() { const message = "Hello, server! What time is it?"; socket.send(message); console.log('Sent:', message); }, 1000); }; socket.onmessage = function(event) { console.log('Received:', event.data); const newElement = document.createElement("li"); const messageList = document.getElementById("list"); newElement.textContent = event.data; messageList.appendChild(newElement); }; socket.onerror = function(error) { console.log('WebSocket Error:', error); }; </script> </html> """) end @websocket "/ws" function(ws::HTTP.WebSocket) for msg in ws @info "Received message: $msg" send(ws, "The time is: $(now())") end end serve() end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
2070
module ApiTester using HTTP using Distributions using Random function random_requester(urls::Array{String,1}, req_range::Tuple{Int, Int}) # Ensure the range is valid if req_range[1] > req_range[2] || req_range[1] < 0 error("Invalid range of requests per second.") end # Calculate the time interval range in seconds (as floating point numbers) interval_range = (1.0 / req_range[2], 1.0 / req_range[1]) while true # Choose a random URL from the list url = rand(urls) # Generate a random request interval from the specified range interval = rand(Uniform(interval_range[1], interval_range[2])) # Send the HTTP request try response = HTTP.get(url) println("Requested $(url): Status $(response.status)") catch e println("Failed to request $(url): $(e)") end # Wait for the random interval before sending the next request sleep(interval) end end # Example usage: urls = [ "http://localhost:8080/data", "http://localhost:8080/data", "http://localhost:8080/data", "http://localhost:8080/data", "http://localhost:8080/data", "http://localhost:8080/data", "http://localhost:8080/data", "http://localhost:8080/data", "http://localhost:8080/data", "http://localhost:8080/random/lg", "http://localhost:8080/random/lg", "http://localhost:8080/random/lg", "http://localhost:8080/random/md", "http://localhost:8080/random/md", "http://localhost:8080/random/md", "http://localhost:8080/random/md", "http://localhost:8080/random/sm", "http://localhost:8080/random/sm", "http://localhost:8080/random/sm", "http://localhost:8080/random/sm", "http://localhost:8080/random/sm", "http://localhost:8080/random/sm", "http://localhost:8080/fake", "http://localhost:8080/error", "http://localhost:8080/nothing", ] random_requester(urls, (1, 8)) # Randomly hit endpoints between 1 and 5 requests per second end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
809
# escape and replace text as needed function sanitizefile(filelines) content = "" skips = 0 for line in filelines if skips > 0 skips -= 1 continue elseif contains(line, "<!-- START HTML -->") content *= "```@raw html\n" elseif contains(line, "<!-- END HTML -->") content *= "```\n" elseif contains(line, "<!-- REPLACE") _, replace_value, _ = split(line, r"\{\{|\}\}") content *= "$replace_value\n" skips += 1 else content *= "$line\n" end end return content end # generate index.md and move assets readme = readlines("../README.md") write("src/index.md", sanitizefile(readme)) cp("../oxygen.png", "./src/oxygen.png", force=true)
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
815
using Documenter using Kitten makedocs( sitename = "Kitten.jl", format = Documenter.HTML(), modules = [Kitten], pages = [ "Overview" => "index.md", "api.md", "Manual" => [ "tutorial/first_steps.md", "tutorial/request_types.md", "tutorial/path_parameters.md", "tutorial/query_parameters.md", "tutorial/request_body.md", "tutorial/cron_scheduling.md", "tutorial/bigger_applications.md", "tutorial/oauth2.md" ] ] ) # Documenter can also automatically deploy documentation to gh-pages. # See "Hosting Documentation" and deploydocs() in the Documenter manual # for more information. deploydocs( repo = "github.com/JuliaKit/Kitten.jl.git", push_preview = false )
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
1486
module Kitten include("core.jl") using .Core include("instances.jl") using .Instances include("extensions/load.jl") import HTTP: Request, Response using .Core: Context, History, Server, Nullable using .Core: GET, POST, PUT, DELETE, PATCH const CONTEXT = Ref{Context}(Context()) import Base: get include("methods.jl") include("deprecated.jl") macro oxidise() quote import Kitten import Kitten: PACKAGE_DIR, Context, Nullable import Kitten: GET, POST, PUT, DELETE, PATCH, STREAM, WEBSOCKET const CONTEXT = Ref{Context}(Context()) include(joinpath(PACKAGE_DIR, "methods.jl")) nothing # to hide last definition end |> esc end export @oxidise, @get, @post, @put, @patch, @delete, @route, @staticfiles, @dynamicfiles, @cron, @repeat, @stream, @websocket, get, post, put, patch, delete, route, stream, websocket, serve, serveparallel, terminate, internalrequest, resetstate, instance, staticfiles, dynamicfiles, # Util redirect, queryparams, formdata, format_sse_message, html, text, json, file, xml, js, css, binary, # Extractors Path, Query, Header, Json, JsonFragment, Form, Body, extract, validate, # Docs configdocs, mergeschema, setschema, getschema, router, enabledocs, disabledocs, isdocsenabled, # Tasks & Cron starttasks, stoptasks, cleartasks, startcronjobs, stopcronjobs, clearcronjobs, # Common HTTP Types Request, Response, Stream, WebSocket end
Kitten
https://github.com/JuliaKit/Kitten.jl.git
[ "MIT" ]
0.1.0
9be647522c1dc531739aae8b9320cf6ae221e616
code
13560
module AutoDoc using HTTP using Dates using DataStructures using Reexport using RelocatableFolders using ..Util: html, recursive_merge using ..Constants using ..AppContext: Context, Documenation using ..Types: TaggedRoute, TaskDefinition, CronDefinition, Nullable, Param, isrequired using ..Extractors: isextractor, extracttype, isreqparam using ..Reflection: splitdef export registerschema, swaggerhtml, redochtml, mergeschema """ mergeschema(route::String, customschema::Dict) Merge the schema of a specific route """ function mergeschema(schema::Dict, route::String, customschema::Dict) schema["paths"][route] = recursive_merge(get(schema["paths"], route, Dict()), customschema) end """ mergeschema(customschema::Dict) Merge the top-level autogenerated schema with a custom schema """ function mergeschema(schema::Dict, customschema::Dict) updated_schema = recursive_merge(schema, customschema) merge!(schema, updated_schema) end """ Returns the openapi equivalent of each Julia type """ function gettype(type::Type)::String if type <: Bool return "boolean" elseif type <: AbstractFloat return "number" elseif type <: Integer return "integer" elseif type <: AbstractVector return "array" elseif type <: String || type == Date || type == DateTime return "string" elseif isstructtype(type) return "object" else return "string" end end """ Returns the specific format type for a given parameter ex.) DateTime(2022,1,1) => "date-time" """ function getformat(type::Type) :: Nullable{String} if type <: AbstractFloat if type == Float32 return "float" elseif type == Float64 return "double" end elseif type <: Integer if type == Int32 return "int32" elseif type == Int64 return "int64" end elseif type == Date return "date" elseif type == DateTime return "date-time" end return nothing end function getcomponent(name::AbstractString) :: String return "#/components/schemas/$name" end function getcomponent(t::DataType) :: String return getcomponent(string(nameof(t))) end function createparam(p::Param{T}, paramtype::String) :: Dict where {T} schema = Dict("type" => gettype(p.type)) # Add ref if the type is a custom struct if schema["type"] == "object" schema["\$ref"] = getcomponent(p.type) end # Add optional format if it's relevant format = getformat(p.type) if !isnothing(format) schema["format"] = format end # Add default value if it exists if p.hasdefault schema["default"] = string(p.default) end # path params are always required param_required = paramtype == "path" ? true : isrequired(p) param = Dict( "in" => paramtype, # path, query, header (where the parameter is located) "name" => String(p.name), "required" => param_required, "schema" => schema ) return param end """ This function helps format the individual parameters for each route in the openapi schema """ function formatparam!(params::Vector{Any}, p::Param{T}, paramtype::String) where T # Will need to flatten request extrators & append all properties to the schema if isextractor(p) && isreqparam(p) type = extracttype(p.type) info = splitdef(type) sig_names = OrderedSet{Symbol}(p.name for p in info.sig) for name in sig_names push!(params, createparam(info.sig_map[name], paramtype)) end else push!(params, createparam(p, paramtype)) end end """ This function helps format the content object for each route in the openapi schema. If similar body extractors are used, all schema's are included using an "allOf" relation. The only exception to this is the text/plain case, which excepts the Body extractor. If there are more than one Body extractor, the type defaults to string - since this is the only way to represent multiple formats at the same time. """ function formatcontent(bodyparams::Vector) :: OrderedDict body_refs = Dict{String,Vector{String}}() body_types = Dict() for p in bodyparams inner_type = p.type |> extracttype inner_type_name = inner_type |> nameof |> string extractor_name = p.type |> nameof |> string body_types[extractor_name] = gettype(inner_type) if !is_custom_struct(inner_type) continue end if !haskey(body_refs, extractor_name) body_refs[extractor_name] = [] end body_refs[extractor_name] = vcat(body_refs[extractor_name], getcomponent(inner_type_name)) end jsonschema = collectschemarefs(body_refs, ["Json", "JsonFragment"]) jsonschema = merge(jsonschema, Dict("type" => "object")) # The schema type for text/plain can vary unlike the other types textschema = collectschemarefs(body_refs, ["Body"]) # If there are multiple Body extractors, default to string type textschema_type = length(textschema["allOf"]) > 1 ? "string" : get(body_types, "Body", "string") textschema = merge(textschema, Dict("type" => textschema_type)) formschema = collectschemarefs(body_refs, ["Form"]) formschema = merge(formschema, Dict("type" => "object")) content = Dict( "application/json" => Dict( "schema" => jsonschema ), "text/plain" => Dict( "schema" => textschema ), "application/x-www-form-urlencoded" => Dict( "schema" => formschema ), "application/xml" => Dict( "schema" => Dict( "type" => "object" ) ), "multipart/form-data" => Dict( "schema" => Dict( "type" => "object", "properties" => Dict( "file" => Dict( "type" => "string", "format" => "binary" ) ), "required" => ["file"] ) ) ) ##### Add Schemas to this route, with the preferred content type first ##### ordered_content = OrderedDict() if !isempty(jsonschema["allOf"]) ordered_content["application/json"] = Dict("schema" => jsonschema) end if !isempty(textschema["allOf"]) ordered_content["text/plain"] = Dict("schema" => textschema) end if !isempty(formschema["allOf"]) ordered_content["application/x-www-form-urlencoded"] = Dict("schema" => formschema) end # Add all other content types (won't default to these, but they are available) for (key, value) in content if !haskey(ordered_content, key) ordered_content[key] = value end end return ordered_content end """ Used to generate & register schema related for a specific endpoint """ function registerschema( docs::Documenation, path::String, httpmethod::String, parameters::Vector, queryparams::Vector, headers::Vector, bodyparams::Vector, returntype::Vector) ##### Add all the body parameters to the schema ##### schemas = Dict() for p in bodyparams inner_type = p.type |> extracttype if is_custom_struct(inner_type) convertobject!(inner_type, schemas) end end components = Dict("components" => Dict("schemas" => schemas)) if !isempty(schemas) mergeschema(docs.schema, components) end ##### Append the parameter schema for the route ##### params = [] for (param_list, location) in [(parameters, "path"), (queryparams, "query"), (headers, "header")] for p in param_list formatparam!(params, p, location) end end ##### Set the schema for the body parameters ##### content = formatcontent(bodyparams) # lookup if this route has any registered tags if haskey(docs.taggedroutes, path) && httpmethod in docs.taggedroutes[path].httpmethods tags = docs.taggedroutes[path].tags else tags = [] end # Build the route schema route = Dict( "$(lowercase(httpmethod))" => Dict( "tags" => tags, "parameters" => params, "responses" => Dict( "200" => Dict("description" => "200 response"), "500" => Dict("description" => "500 Server encountered a problem") ) ) ) # Add a request body to the route if it's a POST, PUT, or PATCH request if httpmethod in ["POST", "PUT", "PATCH"] || !isempty(bodyparams) route[lowercase(httpmethod)]["requestBody"] = Dict( # if any body param is required, mark the entire body as required "required" => any(p -> isrequired(p), bodyparams), "content" => content ) end # remove any special regex patterns from the path before adding this path to the schema cleanedpath = replace(path, r"(?=:)(.*?)(?=}/)" => "") mergeschema(docs.schema, cleanedpath, route) end function collectschemarefs(data::Dict, keys::Vector{String}; schematype="allOf") refs = [] for key in keys if haskey(data, key) append!(refs, data[key]) end end return Dict("$schematype" => [ Dict("\$ref" => ref) for ref in refs ]) end function is_custom_struct(T::Type) return T.name.module ∉ (Base, Core) && (isstructtype(T) || isabstracttype(T)) end # takes a struct and converts it into an openapi 3.0 compliant dictionary function convertobject!(type::Type, schemas::Dict) :: Dict typename = type |> nameof |> string # intilaize this entry obj = Dict("type" => "object", "properties" => Dict()) # parse out the fields of the type info = splitdef(type) # Make sure we have a unique set of names (in case of duplicate field names when parsing types) # The same field names can show up as regular parameters and keyword parameters when the type is used with @kwdef sig_names = OrderedSet{Symbol}(p.name for p in info.sig) # loop over all unique fields for name in sig_names p = info.sig_map[name] field_name = string(p.name) current_type = p.type current_name = string(nameof(current_type)) # Case 1: Recursively convert nested structs & register schemas if is_custom_struct(current_type) && !haskey(schemas, current_name) # Set the field to be a reference to the custom struct obj["properties"][field_name] = Dict("\$ref" => getcomponent(current_name)) # Recursively convert nested structs convertobject!(current_type, schemas) # Case 2: Convert the individual fields of the current type to it's openapi equivalent else current_field = Dict("type" => gettype(current_type), "required" => isrequired(p)) # Add format if it exists format = getformat(current_type) if !isnothing(format) current_field["format"] = format end # Add default value if it exists if p.hasdefault current_field["default"] = string(p.default) end # convert the current field obj["properties"][field_name] = current_field end end schemas[typename] = obj return schemas end """ Read in a static file from the /data folder """ function readstaticfile(filepath::String)::String path = joinpath(DATA_PATH, filepath) return read(path, String) end function redochtml(schemapath::String, docspath::String) :: HTTP.Response redocjs = readstaticfile("$REDOC_VERSION/redoc.standalone.js") html(""" <!DOCTYPE html> <html lang="en"> <head> <title>Docs</title> <meta charset="utf-8"/> <meta name="description" content="Docs" /> <meta name="viewport" content="width=device-width, initial-scale=1"> <link rel="icon" type="image/x-icon" href="$docspath/metrics/favicon.ico"> </head> <body> <redoc spec-url="$schemapath"></redoc> <script>$redocjs</script> </body> </html> """) end """ Return HTML page to render the autogenerated docs """ function swaggerhtml(schemapath::String, docspath::String) :: HTTP.Response # load static content files swaggerjs = readstaticfile("$SWAGGER_VERSION/swagger-ui-bundle.js") swaggerstyles = readstaticfile("$SWAGGER_VERSION/swagger-ui.css") html(""" <!DOCTYPE html> <html lang="en"> <head> <title>Docs</title> <meta charset="utf-8" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="description" content="Docs" /> <style>$swaggerstyles</style> <link rel="icon" type="image/x-icon" href="$docspath/metrics/favicon.ico"> </head> <body> <div id="swagger-ui"></div> <script>$swaggerjs</script> <script> window.onload = () => { window.ui = SwaggerUIBundle({ url: window.location.origin + "$schemapath", dom_id: '#swagger-ui', }); }; </script> </body> </html> """) end end
Kitten
https://github.com/JuliaKit/Kitten.jl.git