licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
12233
""" GCPair(smarts,name;group_order = 1) Struct used to hold a description of a group. Contains the SMARTS string necessary to match the group within a SMILES query, and the assigned name. the `group_order` parameter is used for groups that follow a Constantinou-Gani approach: the list of `GCPair` with `group_order = 1` will be matched with strict coverage (failing if there is missing atoms to cover) while second order groups and above will not be stringly checked for total coverage. Each order group will be matched independendly. """ struct GCPair smarts::String name::String group_order::Int multiplicity::Int end GCPair(smarts,name;group_order = 1, multiplicity = 1) = GCPair(smarts,name,group_order,multiplicity) export GCPair smarts(x::GCPair) = x.smarts name(x::GCPair) = x.name group_order(x::GCPair) = x.group_order first_group_order(x::GCPair) = x.group_order == 1 #sorting comparison between 2 smatches function _isless_smatch(smatch1,smatch2) #fallback, if one is not matched, throw to the end len_smatch1 = length(smatch1) len_smatch2 = length(smatch1) if len_smatch1 == 0 || len_smatch2 == 0 return len_smatch1 < len_smatch2 end #first criteria: bigger groups go first, #the group with the bigger group atom_size1 = length(smatch1[1]["atoms"]) atom_size2 = length(smatch2[1]["atoms"]) if atom_size1 != atom_size2 return atom_size1 < atom_size2 end #second criteria #if the size of the match is the same, #return the one with the least amount of matches first if len_smatch1 != len_smatch2 len_smatch1 > len_smatch2 end #third criteria #return the match with more bonds bond_count1 = length(smatch1[1]["bonds"]) bond_count2 = length(smatch2[1]["bonds"]) if bond_count1 != bond_count2 return bond_count1 < bond_count2 end #no more comparizons? return false end function unique_groups!(groups) n = length(groups) counts = zeros(Int,n) to_delete = fill(false,n) #step 1: find uniques and group those for i in 1:(n-1) str,val =groups[i] counts[i] = val for j in (i+1):n str2,vals2 = groups[j] if str2 == str && !to_delete[j] to_delete[j] = true counts[i] += vals2 counts[j] = 0 end end end #step 2: set new values for i in 1:n str,val =groups[i] groups[i] = str => counts[i] end #step 3: delete groups with zero values return deleteat!(groups,to_delete) end """ get_grouplist(x) Should return a `Vector{GCPair}` containing the available groups for SMILES matching. """ function get_grouplist end get_grouplist(x::Vector{GCPair}) = x """ get_groups_from_smiles(smiles::String,groups;connectivity = false,check = true) Given a SMILES string and a group list (`groups::Vector{GCPair}`), returns a list of groups and their corresponding amount. If `connectivity` is true, then it will additionally return a vector containing the amount of bonds between each pair. ## Examples ```julia julia> get_groups_from_smiles("CCO",UNIFACGroups) ("CCO", ["CH3" => 1, "CH2" => 1, "OH(P)" => 1]) julia> get_groups_from_smiles("CCO",JobackGroups,connectivity = true) ("CCO", ["-CH3" => 1, "-CH2-" => 1, "-OH (alcohol)" => 1], [("-CH3", "-CH2-") => 1, ("-CH2-", "-OH (alcohol)") => 1]) ``` """ function get_groups_from_smiles(smiles::String,groups;connectivity = false,check = true) groups = get_grouplist(groups) count(first_group_order,groups) == length(groups) && return _get_groups_from_smiles(smiles,groups,connectivity,check) group_orders = group_order.(groups) |> unique! |> sort! #find all group orders, perform a match for each order, then join the results. conectivity_result = Vector{Pair{Tuple{String,String},Int}}[] results = Tuple{String,Vector{Pair{String,Int}}}[] for order in group_orders groups_n = filter(x -> group_order(x) == order,groups) if order == 1 result1 = _get_groups_from_smiles(smiles,groups_n,connectivity,check) if connectivity push!(conectivity_result,result1[3]) end push!(results,(result1[1],result1[2])) else result_n = _get_groups_from_smiles(smiles,groups_n,false,false) push!(results,result_n) end end gc_pairs = mapreduce(last,vcat,results) smiles_res = results[1][1] if connectivity return (smiles_res,gc_pairs,reduce(vcat,conectivity_result[1])) else return (smiles_res,gc_pairs) end end function _get_groups_from_smiles(smiles::String,groups::Vector{GCPair},connectivity=false,check = true) mol = get_mol(smiles) atoms = get_atoms(mol) natoms = length(atoms) __bonds = __getbondlist(mol) group_id_expanded, bond_mat_minimum = get_expanded_groups(mol, groups, atoms, __bonds, check, smiles) group_id = unique(group_id_expanded) group_occ_list = [sum(group_id_expanded .== i) for i in group_id] gcpairs = [name(groups[group_id[i]]) => group_occ_list[i]*groups[group_id[i]].multiplicity for i in 1:length(group_id)] if check if sum(bond_mat_minimum) != natoms error("Could not find all groups for "*smiles) end end if connectivity return (smiles,gcpairs,get_connectivity(mol,group_id,groups)) else return (smiles,gcpairs) end end function find_covered_atoms(mol, groups, atoms, __bonds, check) smatches = Vector{Dict{String, Vector{Int64}}}[] smatches_idx = Int[] #step 0.a, find all groups that could get a match for i in 1:length(groups) query_i = get_qmol(smarts(groups[i])) if has_substruct_match(mol,query_i) push!(smatches,get_substruct_matches(mol,query_i,__bonds)) push!(smatches_idx,i) end end #step 0.b, sort the matches by the amount of matched atoms. biggest groups come first. perm = sortperm(smatches,lt = _isless_smatch,rev = true) smatches = smatches[perm] smatches_idx = smatches_idx[perm] # Expand smatches so that groups are listed smatches_expanded = [smatches[i][j] for i in 1:length(smatches) for j in 1:length(smatches[i])] smatches_idx_expanded = [smatches_idx[i] for i in 1:length(smatches) for j in 1:length(smatches[i])] ngroups = length(smatches_expanded) natoms = length(atoms) # Create a matrix with the atoms that are in each group bond_mat = zeros(Int64, ngroups, natoms) for i in 1:ngroups smatches_expanded_i_atoms = smatches_expanded[i]["atoms"] for j in 1:length(smatches_expanded_i_atoms) bond_mat[i, smatches_expanded_i_atoms[j]+1] = 1 end end if check if any(sum(bond_mat,dims=2).==0) error("Could not find all groups for "*smiles) end end return smatches_idx_expanded, bond_mat end function get_connectivity(mol,group_id,groups) ngroups = length(group_id) A = zeros(ngroups,ngroups) connectivity = Pair{NTuple{2,String},Int}[] for i in 1:ngroups gci = groups[group_id[i]] smart1 = smarts(gci) smart2 = smarts(gci) querie = get_qmol(smart1*smart2) smatch = get_substruct_matches(mol,querie) name_i = name(gci) A[i,i] = length(unique(smatch)) if A[i,i]!=0 append!(connectivity,[(name_i,name_i)=>Int(A[i,i])]) end for j in i+1:ngroups gcj = groups[group_id[j]] smart2 = smarts(gcj) querie = get_qmol(smart1*smart2) smatch = get_substruct_matches(mol,querie) querie = get_qmol(smart2*smart1) append!(smatch,get_substruct_matches(mol,querie)) A[i,j] = length(unique(smatch)) name_j = name(gcj) if A[i,j]!=0 append!(connectivity,[(name_i,name_j)=>Int(A[i,j])]) end end end return connectivity end function get_expanded_groups(mol, groups, atoms, __bonds, check, smiles) smatches_idx_expanded, bond_mat = find_covered_atoms(mol, groups, atoms, __bonds, check) # Find all atoms that are in more than one group overlap = findall(sum(bond_mat, dims=1)[:] .> 1) # non_overlap = findall(sum(bond_mat, dims=1)[:] .== 1) # Split the groups in two sets: those that overlap and those that don't overlap_groups = findall(sum(bond_mat[:, overlap], dims=2)[:] .> 0) non_overlap_groups = [i for i in 1:length(smatches_idx_expanded) if !(i in overlap_groups)] # Remove the overlapping groups from the non-overlapping groups if !isempty(overlap) # Reduce the bond_mat to only the overlapping atoms bond_mat_overlap = bond_mat[overlap_groups, :] # remove columns with only zeros bond_mat_overlap = bond_mat_overlap[:, any(bond_mat_overlap .> 0, dims=1)[:]] # Generate all possible combinations of groups which cover all atoms i = 1 while sum(bond_mat_overlap, dims=1) != ones(Int64, 1, size(bond_mat_overlap, 2)) if i > length(overlap_groups) error("Could not find all groups for "*smiles) break end # for group i, check which other groups it's overlapping with overlapping_group_i = findall((sum(bond_mat_overlap[:,bond_mat_overlap[i, :].==1], dims=2).>=1 .&& 1:size(bond_mat_overlap,1).!==i)[:]) # for each of those groups, check if they can be removed (i.e. do all of their atoms have overlaps) can_remove = zeros(Bool, length(overlapping_group_i)) for j in 1:length(overlapping_group_i) covered_atoms_j = sum(bond_mat_overlap[:,bond_mat_overlap[overlapping_group_i[j], :].==1], dims =1) .> 1 if all(covered_atoms_j) can_remove[j] = true end end if all(can_remove) bond_mat_overlap = bond_mat_overlap[setdiff(1:size(bond_mat_overlap, 1), overlapping_group_i), :] overlap_groups = overlap_groups[setdiff(1:length(overlap_groups), overlapping_group_i)] end i += 1 end push!(non_overlap_groups, overlap_groups...) end bond_mat_minimum = bond_mat[non_overlap_groups, :] group_id_expanded = smatches_idx_expanded[non_overlap_groups] return group_id_expanded, bond_mat_minimum end #TODO: move this to Clapeyron? """ @gcstring_str(str) given a string of the form "Group1:n1;Group2:2", returns ["Group1" => n1,"Group2" => n2] """ macro gcstring_str(str) gcpairs = split(str,';') res = Pair{String,Int}[] for gci in gcpairs gc,_ni = split_2(gci,':') ni = parse(Int,_ni) push!(res,gc => ni) end res end """ group_replace(grouplist,keys...) given a group list generated by [`get_groups_from_smiles`](@ref), replaces certain groups in `grouplist` with the values specified in `keys`. ## Examples ``` groups1 = get_groups_from_smiles("CCO", UNIFACGroups) #["CH3" => 1, "CH2" => 1, "OH(P)" => 1] #we replace each "OH(P)" with 1 "OH" group #and each "CH3" group with 3 "H" group and 1 "C" group groups2 = group_replace(groups1[2],"OH(P)" => ("OH" => 1), "CH3" => [("C" => 1),("H" => 3)]) ``` """ function group_replace(grouplist,group_keys...) res = Dict{String,Int}(grouplist) for (k,v) in group_keys if haskey(res,k) multiplier = res[k] res[k] = 0 if v isa Pair v = (v,) end for vals in v knew = first(vals) vnew = last(vals) if haskey(res,knew) val_old = res[knew] res[knew] = val_old + vnew*multiplier else res[knew] = vnew*multiplier end end end end for kk in keys(res) if res[kk] == 0 delete!(res,kk) end end return [k => v for (k,v) in pairs(res)] end export get_groups_from_name, get_groups_from_smiles, group_replace
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
11097
""" find_missing_groups_from_smiles(smiles::String, groups;max_group_size = nothing, environment=false, reduced=false) Given a SMILES string and a group list (`groups::Vector{GCPair}`), returns a list of potential groups (`new_groups::Vector{GCPair}`) which could cover those atoms not covered within `groups`. If no `groups` vector is provided, it will simply generate all possible groups for the molecule. A set of heuristics are built into the code when it comes to combining heavy atoms into large groups: 1. If a carbon atom is bonded to another carbon atom, unless only one of the carbons is on a ring, they will not be combined into a group. 2. All other combinations of atoms are allowed. The logic behind the first heuristic is due to the fact that neighbouring atoms with similar electronegativities won't have a great impact on each other's properties. As such, they are not combined into a group. In the future, this approach could be extended to use HNMR data to determine which atoms can be combined into the same group. Optional arguments: - `max_group_size::Int`: The maximum number of atoms within a group to be generated. If `nothing`, the maximum size is however many atoms a central atom is bonded to. - `environment::Bool`: If true, the groups SMARTS will include information about the environment of the group is in. For example, in pentane, if environment is false, there will only be one CH2 group, whereas, if environment is true, there will be two CH2 groups, one bonded to CH3 and one bonded to another CH2. - `reduced::Bool`: If true, the groups will be generated such that the minimum number of groups required to represent the molecule, based on `max_group_size`, will be generated. If false, all possible groups will be generated. ## Example ```julia julia> find_missing_groups_from_smiles("CC(=O)O") 7-element Vector{GCIdentifier.GCPair}: GCIdentifier.GCPair("[CX4;H3;!R]", "CH3") GCIdentifier.GCPair("[CX3;H0;!R]", "C=") GCIdentifier.GCPair("[OX1;H0;!R]", "O=") GCIdentifier.GCPair("[OX2;H1;!R]", "OH") GCIdentifier.GCPair("[CX3;H0;!R](=[OX1;H0;!R])", "C=O=") GCIdentifier.GCPair("[CX3;H0;!R]([OX2;H1;!R])", "C=OH") GCIdentifier.GCPair("[CX3;H0;!R](=[OX1;H0;!R])([OX2;H1;!R])", "C=O=OH") ``` """ function find_missing_groups_from_smiles(smiles, groups=nothing; max_group_size=nothing, environment=false, reduced=false) mol = get_mol(smiles) __bonds = __getbondlist(mol) atoms = get_atoms(mol) if isnothing(groups) missing_atoms = ones(Bool, length(atoms)) else if count(first_group_order,groups) == length(groups) first_order_groups = groups else first_order_groups = filter(x -> group_order(x) == 1, groups) end smatches_idx_expanded, atom_coverage = find_covered_atoms(mol, first_order_groups, atoms, __bonds, false) missing_atoms = (sum(atom_coverage, dims=1) .== 0)[:] end atom_type = string.(MolecularGraph.atom_symbol(mol)) graph = MolecularGraph.to_dict(mol)["graph"] bond_mat = zeros(Int, length(atom_type), length(atom_type)) for i in 1:length(graph) bond_mat[graph[i][1], graph[i][2]] = MolecularGraph.props(mol, graph[i][1], graph[i][2]).order bond_mat[graph[i][2], graph[i][1]] = MolecularGraph.props(mol, graph[i][1], graph[i][2]).order end atom_type = atom_type[missing_atoms] bond_mat = bond_mat[missing_atoms, missing_atoms] is_bonded = bond_mat .> 0 ring = MolecularGraph.is_in_ring(mol)[missing_atoms] ring_string = [if i "" else "!" end for i in ring] hydrogens = MolecularGraph.total_hydrogens(mol)[missing_atoms] bonds = MolecularGraph.connectivity(mol)[missing_atoms] aromatic = MolecularGraph.is_aromatic(mol)[missing_atoms] hybrid = MolecularGraph.hybridization(mol)[missing_atoms] atom_type = [if aromatic[i] lowercase(atom_type[i]) else atom_type[i] end for i in 1:length(atom_type)] natoms = length(atom_type) smarts = @. "["*atom_type*"X"*string(bonds)*";H"*string(hydrogens)*";"*ring_string*"R"*"]" names = @. generate_group_name(atom_type, bonds, hydrogens, ring, aromatic, hybrid) if environment new_smarts = deepcopy(smarts) new_names = deepcopy(names) for i in 1:natoms bond_orders = bond_mat[i, is_bonded[i,:]] bonded_smarts = smarts[is_bonded[i,:]] aromatic_bondable = aromatic[is_bonded[i,:]] new_smarts[i] = new_smarts[i][1:end-1]*raw";$("*new_smarts[i]*prod([if aromatic_bondable[j] "("*bonded_smarts[j]*")" elseif bond_orders[j]==2 "(="*bonded_smarts[j]*")" elseif bond_orders[j]==3 "(#"*bonded_smarts[j]*")" else "("*bonded_smarts[j]*")" end for j in 1:length(bonded_smarts)])*")]" new_names[i] = new_names[i]*"("*prod(names[is_bonded[i,:]])*")" end smarts = new_smarts names = new_names end if max_group_size == 1 unique_smarts = unique(smarts) unique_names = String[] for i in 1:length(unique_smarts) push!(unique_names, names[findall(isequal(unique_smarts[i]), smarts)[1]]) end new_groups = [GCPair(unique_smarts[i], unique_names[i]) for i in 1:length(unique_smarts)] return new_groups end occurrence = ones(Int, length(smarts)) for i in 1:natoms # println(occurrence) # println(smarts[i]) # If carbon atom on ring if (atom_type[i] == "C" || atom_type[i] == "c") && ring[i] && (occurrence[i] > 0 || reduced) for j in 1:natoms if is_bonded[i,j] # Bond it to any other atom that is non-carbon atom on a ring or carbon atom not on a ring if (atom_type[j] == "C" && !ring[j] || (atom_type[j] != "C" && atom_type[j] != "c")) push!(smarts, smarts[i]*smarts[j]) push!(names, names[i]*names[j]) occurrence[i] -= 1 occurrence[j] -= 1 append!(occurrence, [1]) end end end elseif ((atom_type[i] != "C" && atom_type[i] != "c") || (atom_type[i] == "C" && !ring[i])) && (occurrence[i] > 0 || !reduced) # Bond it to any other atom that is not a carbon atom nbonds = sum(is_bonded[i,:].&occurrence[1:natoms] .> 0) bondable_atom_types = atom_type[1:natoms][is_bonded[i,:].&occurrence[1:natoms] .> 0] is_carbon = (bondable_atom_types .== "C") .| (bondable_atom_types .== "c") ncarbons = sum(is_carbon) nbonds = nbonds - ncarbons idx_bondable = is_bonded[i,:].&occurrence[1:natoms] .> 0 bondable_smarts = smarts[1:natoms][is_bonded[i,:].&occurrence[1:natoms] .> 0][.!(is_carbon)] bondable_names = names[1:natoms][is_bonded[i,:].&occurrence[1:natoms] .> 0][.!(is_carbon)] bondable_atom_types = bondable_atom_types[.!(is_carbon)] bond_orders = bond_mat[i, is_bonded[i,:].&occurrence[1:natoms] .> 0][.!(is_carbon)] if isnothing(max_group_size) max_size = nbonds+1 else max_size = max_group_size end if reduced min_size = max_size-1 else min_size = 1 end # println(smarts[i]) # println(max_size-1) # println(min_size) # println(nbonds) for k in min_size:max_size-1 # println(k) combs = Combinatorics.combinations(1:nbonds, k) for comb in combs # println(bondable_atom_types[comb]) if any((bondable_atom_types[comb] .== "C") .| (bondable_atom_types[comb] .== "c")) # println(comb) continue else new_smarts = deepcopy(smarts[i]) new_names = deepcopy(names[i]) for l in 1:length(comb) if bond_orders[comb[l]] == 2 new_smarts *= "(="*bondable_smarts[comb[l]]*")" elseif bond_orders[comb[l]] == 3 new_smarts *= "(#"*bondable_smarts[comb[l]]*")" else new_smarts *= "("*bondable_smarts[comb[l]]*")" end new_names *= bondable_names[comb[l]] end push!(smarts, new_smarts) push!(names, new_names) occurrence[i] -= 1 idx = 1:natoms idx = idx[idx_bondable][.!(is_carbon)][comb] occurrence[idx] .-= 1 append!(occurrence, [1]) end end end end end if reduced unique_smarts = unique(smarts[occurrence .> 0]) else unique_smarts = unique(smarts) end # find the names of the unique smarts unique_names = String[] occurrence = zeros(Int, length(unique_smarts)) for i in 1:length(unique_smarts) push!(unique_names, names[findall(x->x==unique_smarts[i], smarts)[1]]) query_i = get_qmol(unique_smarts[i]) occurrence[i] = length(get_substruct_matches(mol,query_i,__bonds)) # println(unique_smarts[i], " ", unique_names[i], " ", occurrence[i]) end new_groups = [GCPair(unique_smarts[i], unique_names[i]) for i in 1:length(unique_smarts)] return new_groups end function generate_group_name(atom_type::String, bond::Int, hydrogens::Int, ring::Bool, aromatic::Bool, hybrid::Symbol) name = "" if !ring # If is not on ring if hydrogens == 0 name = atom_type elseif hydrogens == 1 name = atom_type*"H" else name = atom_type*"H"*string(hydrogens) end elseif ring && lowercase(atom_type) != atom_type # If is on ring and not aromatic if hydrogens == 0 name = "c"*atom_type elseif hydrogens == 1 name = "c"*atom_type*"H" else name = "c"*atom_type*"H"*string(hydrogens) end elseif lowercase(atom_type) == atom_type # If is aromatic if hydrogens == 0 name = "a"*uppercase(atom_type) elseif hydrogens == 1 name = "a"*uppercase(atom_type)*"H" else name = "a"*uppercase(atom_type)*"H"*string(hydrogens) end end if hybrid == :sp2 && !aromatic name *= "=" elseif hybrid == :sp name *= "#" end return name end export find_missing_groups_from_smiles
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
1609
#we use MolecularGraph for windows, but we need the same api. function get_mol(smiles) mol = MolecularGraph.smilestomol(smiles) return mol end function get_qmol(smarts) return MolecularGraph.smartstomol(smarts) end function get_atoms(mol) 0:(length(mol.graph.fadjlist) - 1) end function has_substruct_match(mol,query) MolecularGraph.has_substruct_match(mol,query) end function __getbondlist(mol) res = Set{NTuple{2,Int}}() adjlist = mol.graph.fadjlist for (i,xi) in pairs(adjlist) for j in xi push!(res,minmax(i,j)) end end rvec = sort!(collect(res)) end function get_substruct_matches(mol,query,bonds = __getbondlist(mol)) matches = MolecularGraph.substruct_matches(mol,query) res = Dict{String,Vector{Int}}[] #convert to RDKitLib expected struct. for match in matches dictᵢ = Dict{String,Vector{Int}}() atomsᵢ = collect(keys(match)) if length(atomsᵢ) == 1 bondsᵢ = Int[] else bondsᵢ = __getbonds_mg(bonds,atomsᵢ) end atomsᵢ .-= 1 dictᵢ["atoms"] = atomsᵢ dictᵢ["bonds"] = bondsᵢ push!(res,dictᵢ) end return res end function __getbonds_mg(list,atoms) res_set = Set{Int}() n = length(atoms) for i in 1:n for j in (i+1):n ij = minmax(atoms[i],atoms[j]) bond_idx = findfirst(isequal(ij),list) if bond_idx !== nothing push!(res_set,bond_idx) end end end res = sort!(collect(res_set)) res .-= 1 return res end
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
1853
const JobackGroups = [GCPair(raw"[CX4H3]","-CH3"), GCPair(raw"[!R;CX4H2]","-CH2-"), GCPair(raw"[!R;CX4H]",">CH-"), GCPair(raw"[!R;CX4H0]",">C<"), GCPair(raw"[CX3H2][CX3H1]","CH2=CH-"), GCPair(raw"[CX3H1][CX3H1]","-CH=CH-"), GCPair(raw"[$([!R;#6X3H0]);!$([!R;#6X3H0]=[#8])]","=C<"), GCPair(raw"[$([CX2H0](=*)=*)]","=C="), GCPair(raw"[$([CX2H1]#[!#7])]","CH"), GCPair(raw"[$([CX2H0]#[!#7])]","C"), GCPair(raw"[R;CX4H2]","ring-CH2-"), GCPair(raw"[R;CX4H]","ring>CH-"), GCPair(raw"[R;CX4H0]","ring>C<"), GCPair(raw"[R;CX3H1,cX3H1]","ring=CH-"), GCPair(raw"[$([R;#6X3H0]);!$([R;#6X3H0]=[#8])]","ring=C<"), GCPair(raw"[F]","-F"), GCPair(raw"[Cl]","-Cl"), GCPair(raw"[Br]","-Br"), GCPair(raw"[I]","-I"), GCPair(raw"[OX2H;!$([OX2H]-[#6]=[O]);!$([OX2H]-a)]","-OH (alcohol)"), GCPair(raw"[O;H1;$(O-!@c)]","-OH (phenol)"), GCPair(raw"[OX2H0;!R;!$([OX2H0]-[#6]=[#8])]","-O- (non-ring)"), GCPair(raw"[#8X2H0;R;!$([#8X2H0]~[#6]=[#8])]","-O- (ring)"), GCPair(raw"[$([CX3H0](=[OX1]));!$([CX3](=[OX1])-[OX2]);!R]=O",">C=O (non-ring)"), GCPair(raw"[$([#6X3H0](=[OX1]));!$([#6X3](=[#8X1])~[#8X2]);R]=O",">C=O (ring)"), GCPair(raw"[CH;D2](=O)","O=CH- (aldehyde)"), GCPair(raw"[OX2H]-[C]=O","-COOH (acid)"), GCPair(raw"[#6X3H0;!$([#6X3H0](~O)(~O)(~O))](=[#8X1])[#8X2H0]","-COO- (ester)"), GCPair(raw"[OX1H0;!$([OX1H0]~[#6X3]);!$([OX1H0]~[#7X3]~[#8])]","=O (other than above)"), GCPair(raw"[NX3H2]","-NH2"), GCPair(raw"[NX3H1;!R]",">NH (non-ring)"), GCPair(raw"[#7X3H1;R]",">NH (ring)"), GCPair(raw"[#7X3H0;!$([#7](~O)~O)]",">N- (non-ring)"), GCPair(raw"[#7X2H0;!R]","-N= (non-ring)"), GCPair(raw"[#7X2H0;R]","-N= (ring)"), GCPair(raw"[#7X2H1]","=NH"), GCPair(raw"[#6X2]#[#7X1H0]","-CN"), GCPair(raw"[$([#7X3,#7X3+][!#8])](=[O])~[O-]","-NO2"), GCPair(raw"[SX2H]","-SH"), GCPair(raw"[#16X2H0;!R]","-S- (non-ring)"), GCPair(raw"[#16X2H0;R]","-S- (ring)") ] export JobackGroups
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
1296
const SAFTgammaMieGroups = [GCPair(raw"[CX4H3]","CH3"), GCPair(raw"[!R;CX4H2]","CH2"), GCPair(raw"[!R;CX4H]","CH"), GCPair(raw"[!R;CX4H0]","C"), GCPair(raw"[cX3;H1]","aCH"), GCPair(raw"[cX3;H0][CX4;H2]","aCCH2"), GCPair(raw"[cX3;H0][CX4;H1]","aCCH"), GCPair(raw"[CX3H2]","CH2="), GCPair(raw"[!R;CX3H1;!$([CX3H1](=O))]","CH="), GCPair(raw"[CH2;R]","cCH2"), GCPair(raw"[OX2H]-[C]=O","COOH"), GCPair(raw"[#6X3H0;!$([#6X3H0](~O)(~O)(~O))](=[#8X1])[#8X2H0]","COO"), GCPair(raw"[OX2H;!$([OX2H]-[#6]=[O]);!$([OX2H]-a)]","OH"), GCPair(raw"[CX4;H2;!R][OH1]","CH2OH"), GCPair(raw"[CX4;H1;!R][OH1]","CHOH"), GCPair(raw"[NX3H2]","NH2"), GCPair(raw"[NX3H1;!R]","NH"), GCPair(raw"[#7X3H0;!$([#7](~O)~O)]","N"), GCPair(raw"[#7X3H1;R]","cNH"), GCPair(raw"[#7X3H0;R]","cN"), GCPair(raw"[!R;CX3H0;!$([CX3H0](=O))]","CH="), GCPair(raw"[cX3;H0][CX4;H3]","aCCH3"), GCPair(raw"[cX3;H0;R][OX2;H1]","aCOH"), GCPair(raw"[CH1;R]","cCH"), GCPair(raw"[CH1;R][NH1;!R]","cCHNH"), GCPair(raw"[CH1;R][NH0;!R]","cCHN"), GCPair(raw"[cH0][C;!R](=O)[cH0]","aCCOaC"), GCPair(raw"[OX2H]-[C](=O)[cH0]","aCCOOH"), GCPair(raw"[cH0][NH1;!R][cH0]","aCNHaC"), GCPair(raw"[CH3][CX3](=O)","CH3CO"), GCPair(raw"[OH0;!R;$([OH0;!R][CH3;!R]);$([OH0;!R][CH2;!R])]","eO"), GCPair(raw"[OH0;!R;$([OH0;!R][CH2;!R])]","cO") ] export SAFTgammaMieGroups
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
3980
const UNIFACGroups = [GCPair(raw"[CX4;H3;!R]","CH3"), GCPair(raw"[CX4;H2;!R]","CH2"), GCPair(raw"[CX4;H1;!R]","CH"), GCPair(raw"[CX4;H0;!R]","C"), GCPair(raw"[CX3;H2]=[CX3;H1]","CH2=CH"), GCPair(raw"[CX3;H1]=[CX3;H1]","CH=CH"), GCPair(raw"[CX3;H2]=[CX3;H0]","CH2=C"), GCPair(raw"[CX3;H1]=[CX3;H0]","CH=C"), GCPair(raw"[OH1;$([OH1][CX4H2])]","OH(P)"), GCPair(raw"[CX4;H3][OX2;H1]","CH3OH"), GCPair(raw"[OH2]","H2O"), GCPair(raw"[cX3;H0;R][OX2;H1]","ACOH"), GCPair(raw"[CX4;H3][CX3;!H1](=O)","CH3CO"), GCPair(raw"[CX4;H2][CX3;!H1](=O)","CH2CO"), GCPair(raw"[CX3H1](=O)","CHO"), GCPair(raw"[CH3][CX3;H0](=[O])[OH0]","CH3COO"), GCPair(raw"[CX4;H2][CX3](=[OX1])[OX2]","CH2COO"), GCPair(raw"[CX3;H1](=[OX1])[OX2]","HCOO"), GCPair(raw"[CH3;!R][OH0;!R]","CH3O"), GCPair(raw"[CH2;!R][OH0;!R]","CH2O"), GCPair(raw"[C;H1;!R][OH0;!R]","CHO"), GCPair(raw"[cX3;H1]","ACH"), GCPair(raw"[cX3;H0]","AC"), GCPair(raw"[cX3;H0][CX4;H3]","ACCH3"), GCPair(raw"[cX3;H0][CX4;H2]","ACCH2"), GCPair(raw"[cX3;H0][CX4;H1]","ACCH"), GCPair(raw"[CX4;H2;R;$(C(C)OCC)][OX2;R][CX4;H2;R]","THF"), GCPair(raw"[CX4;H3][NX3;H2]","CH3NH2"), GCPair(raw"[CX4;H2][NX3;H2]","CH2NH2"), GCPair(raw"[CX4;H1][NX3;H2]","CHNH2"), GCPair(raw"[CX4;H3][NX3;H1]","CH3NH"), GCPair(raw"[CX4;H2][NX3;H1]","CH2NH"), GCPair(raw"[CX4;H1][NX3;H1]","CHNH"), GCPair(raw"[CX4;H3][NX3;H0]","CH3N"), GCPair(raw"[CX4;H2][NX3;H0]","CH2N"), GCPair(raw"[c][NX3;H2]","ACNH2"), GCPair(raw"[cX3H1][n][cX3H1]","AC2H2N"), GCPair(raw"[cX3H0][n][cX3H1]","AC2HN"), GCPair(raw"[cX3H0][n][cX3H0]","AC2N"), GCPair(raw"[CX4;H3][CX2]#[NX1]","CH3CN"), GCPair(raw"[CX4;H2][CX2]#[NX1]","CH2CN"), GCPair(raw"[CX3,cX3](=[OX1])[OX2H0,oX2H0]","COO"), GCPair(raw"[CX3](=[OX1])[O;H1]","COOH"), GCPair(raw"[CX3;H1](=[OX1])[OX2;H1]","HCOOH"), GCPair(raw"[CX4;H2;!$(C(Cl)(Cl))](Cl)","CH2CL"), GCPair(raw"[CX4;H1;!$(C(Cl)(Cl))](Cl)","CHCL"), GCPair(raw"[CX4;H0](Cl)","CCL"), GCPair(raw"[CX4;H2;!$(C(Cl)(Cl)(Cl))](Cl)(Cl)","CH2CL2"), GCPair(raw"[CX4;H1;!$(C(Cl)(Cl)(Cl))](Cl)(Cl)","CHCL2"), GCPair(raw"[CX4;H0;!$(C(Cl)(Cl)(Cl))](Cl)(Cl)","CCL2"), GCPair(raw"[CX4;H1;!$([CX4;H0](Cl)(Cl)(Cl)(Cl))](Cl)(Cl)(Cl)","CHCL3"), GCPair(raw"[CX4;H0;!$([CX4;H0](Cl)(Cl)(Cl)(Cl))](Cl)(Cl)(Cl)","CCL3"), GCPair(raw"[CX4;H0]([Cl])([Cl])([Cl])([Cl])","CCL4"), GCPair(raw"[c][Cl]","ACCL"), GCPair(raw"[CX4;H3][NX3](=[OX1])([OX1])","CH3NO2"), GCPair(raw"[CX4;H2][NX3](=[OX1])([OX1])","CH2NO2"), GCPair(raw"[CX4;H1][NX3](=[OX1])([OX1])","CHNO2"), GCPair(raw"[cX3][NX3](=[OX1])([OX1])","ACNO2"), GCPair(raw"C(=S)=S","CS2"), GCPair(raw"[SX2H][CX4;H3]","CH3SH"), GCPair(raw"[SX2H][CX4;H2]","CH2SH"), GCPair(raw"c1cc(oc1)C=O","FURFURAL"), GCPair(raw"[OX2;H1][CX4;H2][CX4;H2][OX2;H1]","DOH"), GCPair(raw"[I]","I"), GCPair(raw"[Br]","BR"), GCPair(raw"[CX2;H1]#[CX2;H0]","CH=-C"), GCPair(raw"[CX2;H0]#[CX2;H0]","C=-C"), GCPair(raw"[SX3H0](=[OX1])([CX4;H3])[CX4;H3]","DMSO"), GCPair(raw"[CX3;H2]=[CX3;H1][CX2;H0]#[NX1;H0]","ACRY"), GCPair(raw"[$([Cl;H0]([C]=[C]))]","CL-(C=C)"), GCPair(raw"[CX3;H0]=[CX3;H0]","C=C"), GCPair(raw"[cX3][F]","ACF"), GCPair(raw"[CX4;H3][N]([CX4;H3])[CX3;H1]=[O]","DMF"), GCPair(raw"[NX3]([CX4;H2])([CX4;H2])[CX3;H1](=[OX1])","HCON(CH2)2"), GCPair(raw"C(F)(F)F","CF3"), GCPair(raw"C(F)F","CF2"), GCPair(raw"C(F)","CF"), GCPair(raw"[CH2;R]","CY-CH2"), GCPair(raw"[CH1;R]","CY-CH"), GCPair(raw"[CH0;R]","CY-C"), GCPair(raw"[OH1;$([OH1][CX4H1])]","OH(S)"), GCPair(raw"[OH1;$([OH1][CX4H0])]","OH(T)"), GCPair(raw"[CX4H2;R][OX2;R;$(O(CC)C)][CX4H2;R][OX2;R][CX4H2;R]","CY-CH2O", 1, 2), GCPair(raw"[CX4H2;R][OX2;R;$(O(C)C)]","TRIOXAN"), GCPair(raw"[CX4H0][NH2]","CNH2"), GCPair(raw"[OX1H0]=[C;R][NX3H0;R][CH3]","NMP"), GCPair(raw"[OX1H0]=[CH0X3;R][H0;R][CH2]","NEP"), GCPair(raw"[OX1H0;!R]=[CX3H0;R][NX3H0;R][C;!R]","NIPP"), GCPair(raw"[OX1H0;!R]=[CH0X3;R][NX3H0;R][CH0;!R]","NTBP"), GCPair(raw"[CX3H0](=[OX1H0])[NX3H2]","CONH2"), GCPair(raw"[OX1H0;!R]=[CX3H0;!R][NH1X3;!R][CH3;!R]","CONHCH3"), GCPair(raw"[CH2X4;!R][NH1X3;!R][CX3H0;!R]=[OX1H0;!R]","CONHCH2")] export UNIFACGroups
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
138
include("Joback.jl") include("SAFTgammaMie.jl") include("ogUNIFAC.jl") include("UNIFAC.jl") include("gcPCSAFT.jl") include("gcPPCSAFT.jl")
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
780
const gcPCSAFTGroups = [ GCPair(raw"[CX4H3]", "CH3"), GCPair(raw"[!R;CX4H2]", "CH2"), GCPair(raw"[!R;CX4H]", "CH"), GCPair(raw"[!R;CX4H0]", "C"), GCPair(raw"[CX3H2]", "CH2="), GCPair(raw"[!R;CX3H1;!$([CX3H1](=O))]", "CH="), GCPair(raw"[$([!R;#6X3H0]);!$([!R;#6X3H0]=[#8])]", "=C<"), GCPair(raw"[CX2;H1]#[CX2;H0]", "C#CH"), GCPair(raw"[CH2;R1;$(C1CCCC1)]", "cCH2_pen"), GCPair(raw"[CH1;R1;$(C1CCCC1)]", "cCH_pen"), GCPair(raw"[CH2;R1;$(C1CCCCC1)]", "cCH2_hex"), GCPair(raw"[CH1;R1;$(C1CCCCC1)]", "cCH_hex"), GCPair(raw"[cX3;H1]", "aCH"), GCPair(raw"[cX3;H0]", "aCH"), GCPair(raw"[OX2H;!$([OX2H]-[#6]=[O]);!$([OX2H]-a)]", "OH"), GCPair(raw"[NX3H2]", "NH2"), GCPair(raw"[O;H2]", "H2O") ] export gcPCSAFTGroups
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
960
const gcPPCSAFTGroups = [GCPair(raw"[CX4H3]","CH3"), GCPair(raw"[!R;CX4H2]","CH2"), GCPair(raw"[!R;CX4H]","CH"), GCPair(raw"[!R;CX4H0]","C"), GCPair(raw"[CX3H2]","CH2="), GCPair(raw"[!R;CX3H1;!$([CX3H1](=O))]","CH="), GCPair(raw"[$([!R;#6X3H0]);!$([!R;#6X3H0]=[#8])]","C="), GCPair(raw"[CX2;H1]#[CX2;H0]","CH#C"), GCPair(raw"[CH2;R1;$(C1AAAA1)]","cCH2_pent"), GCPair(raw"[CH1;R1;$(C1AAAA1)]","cCH_pent"), GCPair(raw"[CH2;R1;$(C1AAAAA1)]","cCH2_hex"), GCPair(raw"[CH1;R1;$(C1AAAAA1)]","cCH_hex"), GCPair(raw"[cX3;H1]","aCH"), GCPair(raw"[cX3;H0]","aC"), GCPair(raw"[OX2H;!$([OX2H]-[#6]=[O]);!$([OX2H]-a)]","OH"), GCPair(raw"[NX3H2]","NH2"), GCPair(raw"[CX3H0](=O)","C=O"), GCPair(raw"[CH;D2](=O)","CH=O"), GCPair(raw"[#6X3H0](=[#8X1])[#8X2H0]","COO"), GCPair(raw"[CX4H3][OX2H0;!R;!$([OX2H0]-[#6]=[#8])]","OCH3"), GCPair(raw"[CX4H2][OX2H0;!R;!$([OX2H0]-[#6]=[#8])]","OCH2"), GCPair(raw"[CH;D2](=O)[OX2H0;!R;!$([OX2H0]-[#6]=[#8])]","HCOO")] export gcPPCSAFTGroups
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
3814
const ogUNIFACGroups = [GCPair(raw"[CX4;H3;!R]","CH3"), GCPair(raw"[CX4;H2;!R]","CH2"), GCPair(raw"[CX4;H1;!R]","CH"), GCPair(raw"[CX4;H0;!R]","C"), GCPair(raw"[CX3;H2]=[CX3;H1]","CH2=CH"), GCPair(raw"[CX3;H1]=[CX3;H1]","CH=CH"), GCPair(raw"[CX3;H2]=[CX3;H0]","CH2=C"), GCPair(raw"[CX3;H1]=[CX3;H0]","CH=C"), GCPair(raw"[cX3;H1]","ACH"), GCPair(raw"[cX3;H0]","AC"), GCPair(raw"[cX3;H0][CX4;H3]","ACCH3"), GCPair(raw"[cX3;H0][CX4;H2]","ACCH2"), GCPair(raw"[cX3;H0][CX4;H1]","ACCH"), GCPair(raw"[OH1;$([OH1][CX4H2])]","OH(P)"), GCPair(raw"[CX4;H3][OX2;H1]","CH3OH"), GCPair(raw"[OH2]","H2O"), GCPair(raw"[cX3;H0;R][OX2;H1]","ACOH"), GCPair(raw"[CX4;H3][CX3](=O)","CH3CO"), GCPair(raw"[CX4;H2][CX3](=O)","CH2CO"), GCPair(raw"[CX3H1](=O)","CHO"), GCPair(raw"[CH3][CX3;H0](=[O])[O]","CH3COO"), GCPair(raw"[CX4;H2][CX3](=[OX1])[OX2]","CH2COO"), GCPair(raw"[CX3;H1](=[OX1])[OX2]","HCOO"), GCPair(raw"[CH3;!R][OH0;!R]","CH3O"), GCPair(raw"[CH2;!R][OH0;!R]","CH2O"), GCPair(raw"[C;H1;!R][OH0;!R]","CHO"), GCPair(raw"[CX3H1](=O)","HCO"), GCPair(raw"[CX4;H2;R][OX2;R][CX4;H2;R]","THF"), GCPair(raw"[CX4;H3][NX3;H2]","CH3NH2"), GCPair(raw"[CX4;H2][NX3;H2]","CH2NH2"), GCPair(raw"[CX4;H1][NX3;H2]","CHNH2"), GCPair(raw"[CX4;H3][NX3;H1]","CH3NH"), GCPair(raw"[CX4;H2][NX3;H1]","CH2NH"), GCPair(raw"[CX4;H1][NX3;H1]","CHNH"), GCPair(raw"[CX4;H3][NX3;H0]","CH3N"), GCPair(raw"[CX4;H2][NX3;H0]","CH2N"), GCPair(raw"[c][NX3;H2]","ACNH2"), GCPair(raw"[cX3H1][n][cX3H1]","AC2H2N"), GCPair(raw"[cX3H0][n][cX3H1]","AC2HN"), GCPair(raw"[cX3H0][n][cX3H0]","AC2N"), GCPair(raw"[CX4;H3][CX2]#[NX1]","CH3CN"), GCPair(raw"[CX4;H2][CX2]#[NX1]","CH2CN"), GCPair(raw"[CX3,cX3](=[OX1])[OX2H0,oX2H0]","COO"), GCPair(raw"[CX3](=[OX1])[O;H1]","COOH"), GCPair(raw"[CX3;H1](=[OX1])[OX2;H1]","HCOOH"), GCPair(raw"[CX4;H2;!$(C(Cl)(Cl))](Cl)","CH2CL"), GCPair(raw"[CX4;H1;!$(C(Cl)(Cl))](Cl)","CHCL"), GCPair(raw"[CX4;H0](Cl)","CCL"), GCPair(raw"[CX4;H2;!$(C(Cl)(Cl)(Cl))](Cl)(Cl)","CH2CL2"), GCPair(raw"[CX4;H1;!$(C(Cl)(Cl)(Cl))](Cl)(Cl)","CHCL2"), GCPair(raw"[CX4;H0;!$(C(Cl)(Cl)(Cl))](Cl)(Cl)","CCL2"), GCPair(raw"[CX4;H1;!$([CX4;H0](Cl)(Cl)(Cl)(Cl))](Cl)(Cl)(Cl)","CHCL3"), GCPair(raw"[CX4;H0;!$([CX4;H0](Cl)(Cl)(Cl)(Cl))](Cl)(Cl)(Cl)","CCL3"), GCPair(raw"[CX4;H0]([Cl])([Cl])([Cl])([Cl])","CCL4"), GCPair(raw"[c][Cl]","ACCL"), GCPair(raw"[CX4;H3][NX3](=[OX1])([OX1])","CH3NO2"), GCPair(raw"[CX4;H2][NX3](=[OX1])([OX1])","CH2NO2"), GCPair(raw"[CX4;H1][NX3](=[OX1])([OX1])","CHNO2"), GCPair(raw"[cX3][NX3](=[OX1])([OX1])","ACNO2"), GCPair(raw"C(=S)=S","CS2"), GCPair(raw"[SX2H][CX4;H3]","CH3SH"), GCPair(raw"[SX2H][CX4;H2]","CH2SH"), GCPair(raw"c1cc(oc1)C=O","FURFURAL"), GCPair(raw"[OX2;H1][CX4;H2][CX4;H2][OX2;H1]","DOH"), GCPair(raw"[I]","I"), GCPair(raw"[Br]","BR"), GCPair(raw"[CX2;H1]#[CX2;H0]","CH=-C"), GCPair(raw"[CX2;H0]#[CX2;H0]","C=-C"), GCPair(raw"[SX3H0](=[OX1])([CX4;H3])[CX4;H3]","DMSO"), GCPair(raw"[CX3;H2]=[CX3;H1][CX2;H0]#[NX1;H0]","ACRY"), GCPair(raw"[$([Cl;H0]([C]=[C]))]","CL-(C=C)"), GCPair(raw"[CX3;H0]=[CX3;H0]","C=C"), GCPair(raw"[cX3][F]","ACF"), GCPair(raw"[CX4;H3][N]([CX4;H3])[CX3;H1]=[O]","DMF"), GCPair(raw"[NX3]([CX4;H2])([CX4;H2])[CX3;H1](=[OX1])","HCON(CH2)2"), GCPair(raw"C(F)(F)F","CF3"), GCPair(raw"C(F)F","CF2"), GCPair(raw"C(F)","CF"), GCPair(raw"[OH1;$([OH1][CX4H1])]","OH(S)"), GCPair(raw"[OH1;$([OH1][CX4H0])]","OH(T)"), GCPair(raw"[CX4H2;R][OX2;R]","TRIOXAN"), GCPair(raw"[CX4H0][NH2]","CNH2"), GCPair(raw"[OX1H0]=[C;R][NX3H0;R][CH3]","NMP"), GCPair(raw"[OX1H0]=[CH0X3;R][H0;R][CH2]","NEP"), GCPair(raw"[OX1H0;!R]=[CX3H0;R][NX3H0;R][C;!R]","NIPP"), GCPair(raw"[OX1H0;!R]=[CH0X3;R][NX3H0;R][CH0;!R]","NTBP"), GCPair(raw"[CX3H0](=[OX1H0])[NX3H2]","CONH2"), GCPair(raw"[OX1H0;!R]=[CX3H0;!R][NH1X3;!R][CH3;!R]","CONHCH3"), GCPair(raw"[CH2X4;!R][NH1X3;!R][CX3H0;!R]=[OX1H0;!R]","CONHCH2")] export ogUNIFACGroups
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
253
using GCIdentifier using Test using GCIdentifier: @gcstring_str @testset "All tests" begin include("test_group_search.jl") include("test_missing_groups.jl") include("test_ext_clapeyron.jl") include("test_ext_chemicalidentifiers.jl") end
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
412
using ChemicalIdentifiers @testset "Extension - ChemicalIdentifiers" begin name = "ibuprofen" (component, groups) = get_groups_from_name(name, UNIFACGroups) @test isequal(groups, ["COOH" => 1, "CH3" => 3, "CH" => 1, "ACH" => 4, "ACCH2" => 1, "ACCH" => 1]) end
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
377
using Clapeyron @testset "Extension - Clapeyron" begin smiles = "c1ccccc1C(CCCC)(CCCC(C))C" (component, groups) = get_groups_from_smiles(smiles, JobackIdeal) @test isequal(groups,["-CH3" => 3, "-CH2-" => 7, ">C<" => 1, "ring=CH-" => 5, "ring=C<" => 1]) end
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
4432
function test_gcmatch(groups,smiles,result) evaluated = Set(get_groups_from_smiles(smiles,groups,check = false)[2]) reference = Set(result) @test isequal(evaluated,reference) end test_gcmatch(groups) = (smiles,result) -> test_gcmatch(groups,smiles,result) @testset "UNIFAC examples" begin #http://www.aim.env.uea.ac.uk/aim/info/UNIFACgroups.html unifac = test_gcmatch(UNIFACGroups) #alkane group unifac("CC",gcstring"CH3:2") #ethane unifac("CCCC",gcstring"CH3:2;CH2:2") #n-butane unifac("CC(C)C",gcstring"CH3:3;CH:1") #isobutane unifac("CC(C)(C)C",gcstring"CH3:4;C:1") #neopentane #alpha-olefin group unifac("CCCCC=C",gcstring"CH3:1;CH2:3;CH2=CH:1") #hexene-1 unifac("CCCC=CC",gcstring"CH3:2;CH2:2;CH=CH:1") #hexene-2 unifac("CCC(C)=C",gcstring"CH3:2;CH2:1;CH2=C:1") #2-methyl-1-butene unifac("CC=C(C)C",gcstring"CH3:3;CH=C:1") #2-methyl-2-butene unifac("CC(=C(C)C)C",gcstring"CH3:4;C=C:1") #2,3-dimethylbutene #aromatic carbon unifac("c1c2ccccc2ccc1",gcstring"ACH:8;AC:2") #napthaline unifac("c1ccccc1C=C",gcstring"ACH:5;AC:1;CH2=CH:1") #styrene #aromatic carbon-alkane unifac("Cc1ccccc1",gcstring"ACH:5;ACCH3:1") #toluene unifac("CCc1ccccc1",gcstring"ACH:5;ACCH2:1;CH3:1") #ethylbenzene unifac("CC(C)c1ccccc1",gcstring"ACH:5;ACCH:1;CH3:2") #cumene #alcohol unifac("CC(O)C",gcstring"CH3:2;CH:1;OH(S):1") #2-propanol unifac("CCO",gcstring"CH3:1;CH2:1;OH(P):1") #ethanol #methanol unifac("CO",gcstring"CH3OH:1") #methanol #water unifac("O",gcstring"H2O:1") #water #aromatic carbon-alcohol unifac("Oc1ccccc1",gcstring"ACH:5;ACOH:1") #phenol #carbonyl unifac("O=C(C)CC",gcstring"CH3:1;CH2:1;CH3CO:1") #butanone unifac("O=C(CC)CC",gcstring"CH3:2;CH2:1;CH2CO:1") #pentanone-3 #aldehyde unifac("CCC=O",gcstring"CH3:1;CH2:1;CHO:1") #propionaldehyde , fails at the matching stage #acetate group unifac("CCCCOC(=O)C",gcstring"CH3:1;CH2:3;CH3COO:1") #Butyl acetate #fails at the matching stage unifac("O=C(OC)CC",gcstring"CH3:2;CH2COO:1") #methyl propionate #fails at the matching stage #formate group unifac("O=COCC",gcstring"CH3:1;CH2:1;HCOO:1") #ethyl formate #ether unifac("COC",gcstring"CH3:1;CH3O:1") #dimethyl ether unifac("CCOCC",gcstring"CH3:2;CH2:1;CH2O:1") #diethyl ether unifac("O(C(C)C)C(C)C",gcstring"CH3:4;CH:1;CHO:1") #diisopropyl ether unifac("C1CCOC1",gcstring"CY-CH2:2;THF:1") #tetrahydrofuran #check? #primary amine unifac("CN",gcstring"CH3NH2:1") #methylamine unifac("CCN",gcstring"CH3:1;CH2NH2:1") #ethylamine unifac("CC(C)N",gcstring"CH3:2;CHNH2:1") #isopropyl amine #secondary amine group unifac("CNC",gcstring"CH3:1;CH3NH:1") #dimethylamine unifac("CCNCC",gcstring"CH3:2;CH2:1;CH2NH:1") #diethylamine unifac("CC(C)NC(C)C",gcstring"CH3:4;CH:1;CHNH:1") #diisopropyl amine #tertiary amine unifac("CN(C)C",gcstring"CH3:2;CH3N:1") #trimethylamine unifac("CCN(CC)CC",gcstring"CH3:3;CH2:2;CH2N:1") #triethylamine #aromatic amine unifac("c1ccc(cc1)N",gcstring"ACH:5;ACNH2:1") #aniline #furfural unifac("c1cc(oc1)C=O",gcstring"FURFURAL:1") #furfural #carboxylic acids unifac("CC(=O)O",gcstring"CH3:1;COOH:1") #acetic acid #cyclic ethers unifac("C1OCOCO1",gcstring"TRIOXAN:3") unifac("C1OCOCC1",gcstring"CY-CH2:1;CY-CH2O:2") unifac("C1OCCC1",gcstring"CY-CH2:2;THF:1") #non-unique group assignment unifac("c1ccccc1COCCOCC",gcstring"ACH:5;ACCH2:1;CH2O:2;CH2:1;CH3:1") end @testset "gcPPC-SAFT Connectivity" begin # Test a highly branched hydrocarbon smiles = "c1ccccc1C(CCCC)(CCCC(C))C" (component, groups, connectivity) = get_groups_from_smiles(smiles, gcPPCSAFTGroups; connectivity=true) @test isequal(["CH2" => 7, "aCH" => 5, "CH3" => 3, "aC" => 1, "C" => 1] |> Set,Set(groups)) @test isequal([("aCH", "aCH") => 4, ("CH2", "C") => 2, ("C", "aC") => 1, ("aCH", "aC") => 2, ("CH3", "CH2") => 3, ("CH2", "CH2") => 5, ("CH3", "C") => 1] |> Set,Set(connectivity)) # Test case where order matters # Test a highly branched hydrocarbon smiles = "CC(=O)OC" (component, groups, connectivity) = get_groups_from_smiles(smiles, gcPPCSAFTGroups; connectivity=true) @test isequal(["CH3" => 2, "COO" => 1] |> Set,Set(groups)) @test isequal([("CH3", "COO") => 2] |> Set,Set(connectivity)) end
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
code
2210
@testset "Missing groups functionality" begin @testset "Ketones in SAFT-γ Mie" begin smiles = "CCC(=O)CC" @test_throws ErrorException get_groups_from_smiles(smiles,SAFTgammaMieGroups) new_groups = find_missing_groups_from_smiles(smiles, SAFTgammaMieGroups) @test isequal(new_groups,[GCIdentifier.GCPair("[CX3;H0;!R]", "C="), GCIdentifier.GCPair("[OX1;H0;!R]", "O="), GCIdentifier.GCPair("[CX3;H0;!R](=[OX1;H0;!R])", "C=O=")]) new_groups = find_missing_groups_from_smiles(smiles, SAFTgammaMieGroups; max_group_size=1) @test isequal(new_groups,[GCIdentifier.GCPair("[CX3;H0;!R]", "C="), GCIdentifier.GCPair("[OX1;H0;!R]", "O=")]) new_groups = find_missing_groups_from_smiles(smiles, SAFTgammaMieGroups; reduced = true) @test isequal(new_groups,[GCIdentifier.GCPair("[CX3;H0;!R](=[OX1;H0;!R])", "C=O=")]) new_groups = find_missing_groups_from_smiles("CCC(=O)CC", SAFTgammaMieGroups; environment=true) @test isequal(new_groups, [GCIdentifier.GCPair("[CX3;H0;!R;\$([CX3;H0;!R](=[OX1;H0;!R]))]", "C=(O=)"), GCIdentifier.GCPair("[OX1;H0;!R;\$([OX1;H0;!R](=[CX3;H0;!R]))]", "O=(C=)"), GCIdentifier.GCPair("[CX3;H0;!R;\$([CX3;H0;!R](=[OX1;H0;!R]))](=[OX1;H0;!R;\$([OX1;H0;!R](=[CX3;H0;!R]))])", "C=(O=)O=(C=)")]) end @testset "Generic groups for AMP" begin smiles = "C1=NC(=C2C(=N1)N(C=N2)C3C(C(C(O3)COP(=O)(O)O)O)O)N" groups = find_missing_groups_from_smiles(smiles) @test isequal(groups[end-1], GCIdentifier.GCPair("[PX4;H0;!R]([OX2;H0;!R])(=[OX1;H0;!R])([OX2;H1;!R])([OX2;H1;!R])", "POO=OHOH")) groups = find_missing_groups_from_smiles(smiles; reduced = true) @test isequal(groups[end-2], GCIdentifier.GCPair("[OX2;H0;!R]([PX4;H0;!R])", "OP")) groups = find_missing_groups_from_smiles(smiles; reduced = true, max_group_size = 5) @test isequal(groups[end], GCIdentifier.GCPair("[PX4;H0;!R]([OX2;H0;!R])(=[OX1;H0;!R])([OX2;H1;!R])([OX2;H1;!R])", "POO=OHOH")) end end
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
docs
4148
[![Build Status](https://github.com/ClapeyronThermo/GCIdentifier.jl/workflows/CI/badge.svg)](https://github.com/ClapeyronThermo/GCIdentifier.jl/actions) [![codecov](https://codecov.io/gh/ClapeyronThermo/GCIdentifier.jl/branch/master/graph/badge.svg?token=ZVGGR4AAFB)](https://codecov.io/gh/ClapeyronThermo/GCIdentifier.jl) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://clapeyronthermo.github.io/GCIdentifier.jl/dev) [![project chat](https://img.shields.io/badge/zulip-join_chat-brightgreen.svg)](https://julialang.zulipchat.com/#narrow/stream/265161-Clapeyron.2Ejl) [![DOI](https://zenodo.org/badge/595426258.svg)](https://zenodo.org/badge/latestdoi/595426258) # GCIdentifier.jl Welcome to GCIdentifier! This module provides utilities needed to fragment a given molecular SMILES (or name) based on the groups provided in existing group-contribution methods (such as UNIFAC, Joback's method and SAFT-$\gamma$ Mie). Additional functionalities have been provided to automatically identify and propose new groups. ![](paper/figures/ibuprofen.svg) ## Basis Usage Once installed (more details below), GCIdentifier can easy be called upon: ```julia julia> using GCIdentifier ``` Let's consider the case where we want to get the groups for ibuprofen from the UNIFAC group-contribution method. The SMILES representation for ibuprofen is CC(Cc1ccc(cc1)C(C(=O)O)C)C. To get the corresponding groups, simply use: ```julia julia> (component,groups) = get_groups_from_smiles("CC(Cc1ccc(cc1)C(C(=O)O)C)C", UNIFACGroups) ("CC(Cc1ccc(cc1)C(C(=O)O)C)C", ["COOH" => 1, "CH3" => 3, "CH" => 1, "ACH" => 4, "ACCH2" => 1, "ACCH" => 1]) ``` If the SMILES representation is not known, it is possible to use GCIdentifier in conjunction with [ChemicalIdentifiers](https://github.com/longemen3000/ChemicalIdentifiers.jl) where one can simply specify the molecule name: ```julia julia> using ChemicalIdentifiers julia> (component,groups) = get_groups_from_name("ibuprofen",UNIFACGroups) ("ibuprofen", ["COOH" => 1, "CH3" => 3, "CH" => 1, "ACH" => 4, "ACCH2" => 1, "ACCH" => 1]) ``` These groups can then be used in packages such as [Clapeyron](https://github.com/ClapeyronThermo/Clapeyron.jl) to be used to obtain our desired properties: ```julia julia> using Clapeyron julia> model = UNIFAC(["water",(component,groups)]) julia> activity_coefficient(model,1e5,298.15,[1.,0.]) 2-element Vector{Float64}: 1.0 421519.07740198134 ``` More details have been provided in the [docs](https://clapeyronthermo.github.io/GCIdentifier.jl/dev/) where we provide additional details regarding how one can obtain the connectivity between groups, identifying new groups within a structure and how one could apply their own GC method. ## Installing GCIdentifier The minimum supported version is Julia 1.6. To install GCIdentifier, launch Julia with ```julia > julia ``` Hit the ```]``` key to enter Pkg mode, then type ```julia Pkg> add GCIdentifier ``` Exit Pkg mode by hitting backspace. Now you may begin using functions from the GCIdentifier library by entering the command ```julia using GCIdentifier ``` To remove the package, hit the ```]``` key to enter Pkg mode, then type ```julia Pkg> rm GCIdentifier ``` ## Contributing If you'd like to make a contribution to GCIdentifier, you can: * Report an issue: If you encounter an error in which groups are assigned or any other type of error, feel free to raise an issue and one of the developers will try to address it. If you've found the source of the error and fixed it yourself, feel free to also open a Pull Request so that it can be reviewed and pushed to the main branch. * Implement your own modifications: We are always open to making changes to the source code and documentation! If you'd like to add your own groups and/or functionalities to the package, feel free to open a pull request and one of the developers will review it before merging it with the main branch. * General support: If you have questions regarding the usage of this package or are having difficulties getting started, feel free to open a Discussion on GitHub or contact us directly on Zulip (link in badge above)!
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
docs
386
```@meta CurrentModule = GCIdentifier ``` ## Contents ```@contents Pages = ["api.md"] ``` ## Index ```@index Pages = ["api.md"] ``` ## types and methods ```@docs GCIdentifier.GCPair GCIdentifier.get_groups_from_smiles GCIdentifier.get_groups_from_name GCIdentifier.find_missing_groups_from_smiles GCIdentifier.get_grouplist GCIdentifier.@gcstring_str GCIdentifier.group_replace ```
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
docs
1384
# Defining Custom Groups Within GCIdentifier, we support the following group-contribution methods: * Joback's Method * Original UNIFAC * (Dortmund) UNIFAC * gcPC-SAFT * gcPPC-SAFT * SAFT-$\gamma$ Mie There are many more available that we have yet to implement. If you wish do so yourself, then all that needs to be done is define a vector of `GCPair`s. `GCPair` is a struct contain the group SMARTS and name: ```julia julia> group = GCPair("[CX4H3]","CH3") julia> group.name "CH3" julia> group.smarts "[CX4H3]" ``` While the group name is entirely arbitrary, one must be very careful when defining the SMARTS as this is the information used by GCIdentifier (and MolecularGraph) to identify the groups. To learn more about SMARTS, one can consult: * [Guide to understanding the SMARTS nomenclature](https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html) * [Tool to visualise SMARTS](https://smarts.plus) Once the user is certain of their SMARTS representation and made the vector of `GCPair`s, then one can simply feed in this vector (`GroupList`) into `get_groups_from_smiles`: ```julia julia> GroupList = [GCPair("[CX4H3]","CH3"),GCPair("[CX4H2]","CH2")] julia> get_groups_from_smiles("CCCC", GroupList) ("CCCC", ["CH3" => 2, "CH2" => 2]) ``` If you've defined your own `GroupList` for an existing (or new) group-contribution method, feel free to open a pull request!
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
docs
3426
# Group Assignment The primary function of GCIdentifier is to automatically assign groups to a molecule given a specific group-contribution method. This assumes that the groups in the method being used are extensive enough to cover most molecules that might be of interest. Let's consider the case where we want to get the groups for ibuprofen from the UNIFAC group-contribution method. The SMILES representation for ibuprofen is CC(Cc1ccc(cc1)C(C(=O)O)C)C. To get the corresponding groups, simply use: ```julia julia> (smiles,groups) = get_groups_from_smiles("CC(Cc1ccc(cc1)C(C(=O)O)C)C", UNIFACGroups) ("CC(Cc1ccc(cc1)C(C(=O)O)C)C", ["COOH" => 1, "CH3" => 3, "CH" => 1, "ACH" => 4, "ACCH2" => 1, "ACCH" => 1]) ``` where `smiles` will output the molecular SMILES and `groups` is a vector of pairs where the first element is the group name and the second is the number of times the group occurs within the molecule. If this function fails, it is usually because, either, the SMILES is unphysical, or the method used doesn't cover all atoms present within a molecule. In the case of the latter, one can still obtain the groups that have been identified by specifying `check=false` in the optional arguments. For example, SAFT-$\gamma$ Mie does not have the functional group for ketones: ```julia julia> (smiles,groups) = get_groups_from_smiles("CCC(=O)CC", SAFTgammaMieGroups; check=false) ("CCC(=O)CC", ["CH3" => 2, "CH2" => 2]) ``` To propose new groups that cover the missing atoms, take a look at our [`find_missing_groups` function](./missing_groups.md). ## Connectivity There are certain group-contribution approaches, such as gcPCP-SAFT and s-SAFT-$\gamma$ Mie where information about how groups are linked to each other is required. It is possible to obtain information about the connectivity between groups from GCIdentifier by simply specifying `connectivity=true` within the `get_groups_from_smiles` function. For example, in the case of acetone: ```julia julia> (smiles,groups,connectivity) = get_groups_from_smiles("CC(=O)C", gcPPCSAFTGroups; connectivity=true) ("CC(=O)C", ["C=O" => 1, "CH3" => 2], [("C=O", "CH3") => 2]) ``` where `connectivity` is a vector of pairs where the first element is the groups involved in the link and the second element is the number of times this link occurs. ## Extensions Unfortunately, the process of obtaining the SMILES representation of a molecule can be itself a challenge. As such, we have included an extension of GCIdentifier where, if called in conjunction with [ChemicalIdentifiers](https://github.com/longemen3000/ChemicalIdentifiers.jl), one can simply specify the molecule name: ```julia julia> using ChemicalIdentifiers julia> (component,groups) = get_groups_from_name("ibuprofen",UNIFACGroups) ("ibuprofen", ["COOH" => 1, "CH3" => 3, "CH" => 1, "ACH" => 4, "ACCH2" => 1, "ACCH" => 1]) ``` This should greatly simplify the use of GCIdentifier. These groups can then be used in packages such as [Clapeyron](https://github.com/ClapeyronThermo/Clapeyron.jl) to be used to obtain our desired properties, such as the solubility of ibuprofen in water: ```julia julia> using Clapeyron julia> liquid = UNIFAC(["water",(component,groups)]) julia> solid = SolidHfus(["water","ibuprofen"]) julia> model = CompositeModel(["water","ibuprofen"]; solid=solid, liquid=liquid) julia> sle_solubility(model,1e5,298.15, [1.,0.]; solute=["ibuprofen"])[2] 5.547514144547524e-7 ```
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
docs
1697
```@meta CurrentModule = GCIdentifier ``` # GCIdentifier.jl Welcome to GCIdentifier! This module provides utilities needed to fragment a given molecular SMILES (or name) based on the groups provided in existing group-contribution methods (such as UNIFAC, Joback's method and SAFT-$\gamma$ Mie). Additional functionalities have been provided to automatically identify and propose new groups. Group-contribution approaches are vital when it comes to computer-aided molecular design (CAMD) of, for example, novel refrigerants or in drug discovery, where their ability to accurately predict physical properties for new species aids in evaluating the performance of a hypothetical molecule. Here, the assignment of groups must be done thousands of times and, in some cases, for rather complex molecules. This is the primary motivator for the development of GCIdentifier. The documentation is laid out as follows: - **Group Assignment**: Find out how to assign groups to a species within a group-contribution method. - **Finding Missing Groups**: Find out how to identify missing groups for a given species. - **Custom Groups**: Find out how to implement your own groups within GCIdentifier. - **API**: A list of all available methods. ### Authors - [Pierre J. Walker](mailto:[email protected]), California Institute of Technology - [Andrés Riedemann](mailto:[email protected]), University of Concepción ### License GCIdentifier.jl is licensed under the [MIT license](https://github.com/ClapeyronThermo/GCIdentifier.jl/blob/master/LICENSE.md). ### Installation GCIdentifier.jl is a registered package, it can be installed from the general registry by: ``` pkg> add GCIdentifier ```
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
docs
5877
# Find Missing Groups In some cases, our group contribution method will not have every group needed to cover every atom within a molecule. The example we gave previously was how SAFT-$\gamma$ Mie lacked a group for ketones: ```julia julia> (smiles,groups) = get_groups_from_smiles("CCC(=O)CC", SAFTgammaMieGroups) ERROR: Could not find all groups for CCC(=O)CC ``` In this case, it could be possible that GCIdentifier simply hasn't included the missing group within our database or perhaps that group needs to be parameterised. To find out which groups might help fill-in the missing atoms, one can use `find_missing_groups_from_smiles`: ```julia julia> groups = find_missing_groups_from_smiles("CCC(=O)CC", SAFTgammaMieGroups) 3-element Vector{GCPair}: GCPair("[CX3;H0;!R]", "C=") GCPair("[OX1;H0;!R]", "O=") GCPair("[CX3;H0;!R](=[OX1;H0;!R])", "C=O=") ``` where `groups` is a vector of `GCPair`s with proposed names of the groups. As we can see, GCIdentifier has proposed three potential groups, where the last is a combination of the first two. From this list, the users can decide which group might be best to parameterise. However, we also have our own [internal heuristics](./api.md) for proposing a _minimal_ group representation of molecules within GCIdentifier which will reduce this list to what we recommend: ```julia julia> groups = find_missing_groups_from_smiles("CCC(=O)CC", SAFTgammaMieGroups; reduced=true) 1-element Vector{GCPair}: GCPair("[CX3;H0;!R](=[OX1;H0;!R])", "C=O=") ``` In the case of the ketone, we would only really want to parameterise this group. ## Automatically fragment a molecule Let us now consider an extreme case where we are trying to fragment a molecule into groups with no reference group-contribution approach. In the case of our ketone, the code will fragment the molecule into atomic groups, along with combinations of those atomic groups: ```julia julia> groups = find_missing_groups_from_smiles("CCCC(=O)CCC") 5-element Vector{GCPair}: GCPair("[CX4;H3;!R]", "CH3") GCPair("[CX4;H2;!R]", "CH2") GCPair("[CX3;H0;!R]", "C=") GCPair("[OX1;H0;!R]", "O=") GCPair("[CX3;H0;!R](=[OX1;H0;!R])", "C=O=") julia> groups = find_missing_groups_from_smiles("CCCC(=O)CCC"; reduced=true) 3-element Vector{GCPair}: GCPair("[CX4;H3;!R]", "CH3") GCPair("[CX4;H2;!R]", "CH2") GCPair("[CX3;H0;!R](=[OX1;H0;!R])", "C=O=") ``` As we can see, GCIdentifier proposes all the groups that one requires to represent this ketone. However, one aspect of this fragmentation that users may care about is that the methylene (CH$_2$) groups bonded to the ketone group versus those bonded to the methyl group could technically be treated different, due to the difference in environment within which they exist. This distinction can be made by adding the `environment=true` optional argument: ```julia julia> groups = find_missing_groups_from_smiles("CCCC(=O)CCC"; reduced=true, environment=true) 6-element Vector{GCPair}: GCPair("[CX4;H3;!R;$([CX4;H3;!R]([CX4;H2;!R]))]", "CH3(CH2)") GCPair("[CX4;H2;!R;$([CX4;H2;!R]([CX4;H3;!R])([CX4;H2;!R]))]", "CH2(CH3CH2)") GCPair("[CX4;H2;!R;$([CX4;H2;!R]([CX4;H2;!R])([CX3;H0;!R]))]", "CH2(CH2C=)") GCPair("[CX3;H0;!R;$([CX3;H0;!R]([CX4;H2;!R])(=[OX1;H0;!R])([CX4;H2;!R]))](=[OX1;H0;!R;$([OX1;H0;!R](=[CX3;H0;!R]))])", "C=(CH2O=CH2)O=(C=)") GCPair("[CX4;H2;!R;$([CX4;H2;!R]([CX3;H0;!R])([CX4;H2;!R]))]", "CH2(C=CH2)") GCPair("[CX4;H2;!R;$([CX4;H2;!R]([CX4;H2;!R])([CX4;H3;!R]))]", "CH2(CH2CH3)") ``` As we can see in the above, GCIdentifier now proposes many more groups as we now care about the environment within which each group exists. One last flexible element of the `find_missing_groups_from_smiles` function is related to the size of the groups. In all of the above cases, the groups proposed only involve one or two heavy atoms. This is fine for most small molecules. However, for larger ones, such as adenylic acid, the groups proposed may not necessarily be the best representation: ```julia julia> groups = find_missing_groups_from_smiles("C1=NC(=C2C(=N1)N(C=N2)C3C(C(C(O3)COP(=O)(O)O)O)O)N"; reduced=true) 12-element Vector{GCPair}: GCPair("[cX3;H1;R][nX2;H0;R]", "aCHaN") GCPair("[cX3;H0;R][nX2;H0;R]", "aCaN") GCPair("[cX3;H0;R][NX3;H2;!R]", "aCNH2") GCPair("[cX3;H0;R][nX3;H0;R]", "aCaN") GCPair("[cX3;H1;R][nX3;H0;R]", "aCHaN") GCPair("[CX4;H1;R][nX3;H0;R]", "cCHaN") GCPair("[CX4;H1;R][OX2;H0;R]", "cCHcO") GCPair("[CX4;H1;R][OX2;H1;!R]", "cCHOH") GCPair("[CX4;H1;R][CX4;H2;!R]", "cCHCH2") GCPair("[OX2;H0;!R]([PX4;H0;!R])", "OP") GCPair("[OX1;H0;!R]", "O=") GCPair("[OX2;H1;!R]", "OH") ``` Most groups here are quite reasonable, with the exception of the "O=" and "OH" groups as those will be bonded directly to the phosphorous atom, which we would expect results in very different "O=" and "OH" groups than you'd find on, for example, alcohols. While we could again use the `environment` capability of GCIdentifier to simply specify the environment in which these groups exist, this will result in far more groups being proposed. Ideally, we would like to combine the phosphate group into one. This can be done by specifying a larger `max_group_size` in the optional arguments: ```julia julia> groups = find_missing_groups_from_smiles("C1=NC(=C2C(=N1)N(C=N2)C3C(C(C(O3)COP(=O)(O)O)O)O)N"; reduced=true, max_group_size=5) 10-element Vector{GCPair}: GCPair("[cX3;H1;R][nX2;H0;R]", "aCHaN") GCPair("[cX3;H0;R][nX2;H0;R]", "aCaN") GCPair("[cX3;H0;R][NX3;H2;!R]", "aCNH2") GCPair("[cX3;H0;R][nX3;H0;R]", "aCaN") GCPair("[cX3;H1;R][nX3;H0;R]", "aCHaN") GCPair("[CX4;H1;R][nX3;H0;R]", "cCHaN") GCPair("[CX4;H1;R][OX2;H0;R]", "cCHcO") GCPair("[CX4;H1;R][OX2;H1;!R]", "cCHOH") GCPair("[CX4;H1;R][CX4;H2;!R]", "cCHCH2") GCPair("[PX4;H0;!R]([OX2;H0;!R])(=[OX1;H0;!R])([OX2;H1;!R])([OX2;H1;!R])", "POO=OHOH") ``` This is now a very reasonable representation of adenylic acid.
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.3.5
3e53af9fa1ce5e05ed4201758f5518b6268303b9
docs
6368
--- title: 'GCIdentifier.jl: A Julia package for identifying molecular fragments from SMILES' tags: - Julia - Group-contribution - Thermodynamics - Molecular Design authors: - name: Pierre J. Walker orcid: 0000-0001-8628-6561 corresponding: true affiliation: "1, 2" - name: Andrés Riedemann corresponding: true affiliation: 3 - name: Zhen-Gang Wang affiliation: 1 orcid: 0000-0002-3361-6114 affiliations: - name: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States index: 1 - name: Department of Chemical Engineering, Imperial College, London SW7 2AZ, United Kingdom index: 2 - name: Departamento de Ingeniería Química, Universidad de Concepción, Concepción 4030000, Chile index: 3 date: 9 February 2024 bibliography: paper.bib --- # Summary GCIdentifier.jl is an open-source toolkit for the automatic identification of group fragments based on the name of a molecule or its SMILES. Obtaining chemical properties of species, such as heat capacities [@bensonAdditivityRulesEstimation1958] or solvation free energies [@plattsEstimationMolecularLinear2000], will typically involve a set of parameters that represent a given species. For example, ideal isobaric heat capacities over a range of temperature of a pure component can be obtained using Reid polynomials with just four parameters ($a$, $b$, $c$ and $d$). Unfortunately, in this case, the parameters obtained are only applicable to a specific species and cannot be transferred to others (i.e. the $a$, $b$, $c$, $d$ parameters for water cannot then be used to model ibuprofen). A solution to this would be to split a set of molecules with similar chemical structures into moieties, known as groups, each of which will have their own parameters associated with them and adjust these parameters against experimental data for all of these molecules. The combination of these groups (and their associated parameters) can then be used to predict the properties of ibuprofen. In the case of the Joback method [@jobackEstimationPureComponentProperties1987], the Reid polynomial parameters can be obtained by summing over the group-specific parameters ($a_i$, $b_i$, $c_i$ and $d_i$) weighted by the occurrence of those groups in a species. The benefit of such approaches is that these groups can be combined many different ways such that they represent a larger variety of molecules. This type of approach is known as group contribution, where many examples of such approaches exist [@weidlichModifiedUNIFACModel1987;@walkerNewPredictiveGroupContribution2020;@chungGroupContributionMachine2022;@papaioannouGroupContributionMethodology2014] which can be used to predict a range of properties such as pharmaceutical solubilities [@wehbePhaseBehaviourPHsolubility2022], interfacial tensions [@rehnerSurfactantModelingUsing2021] and thermal conductivities [@hoppThermalConductivityEntropy2019]. An example of this process is shown in figure 1. ![Fragmentation of ibuprofen into UNIFAC groups.](figures/ibuprofen.pdf) Unfortunately, the challenge with using group-contribution approaches is the assignment of the groups to represent a given species. While this assignment can be done manually, it is more convenient and, as discussed later, efficient to automate this process. Indeed, this is the exact objective of GCIdentifier. By simply feeding a species name or SMILES, along with the group-contribution approach one wishes to use, the group assignment is done automatically: ```julia using GCIdentifier, ChemicalIdentifiers groups = get_groups_from_name("ibuprofen", UNIFACGroups) ``` The output from this function can then be used in other packages, such as Clapeyron [@walkerClapeyronJlExtensible2022], to obtain chemical properties. # Statement of need Group-contribution approaches are vital when it comes to computer-aided molecular design (CAMD) of, for example, novel refrigerants [@sahinidisDesignAlternativeRefrigerants2003] or in drug discovery [@houADMEEvaluationDrug2004]. Here, the assignment of groups must be done thousands of times and, in some cases, for rather complex molecules. This is the primary motivator for the development of GCIdentifier. While other packages [@degenArtCompilingUsing2008;@liuBreakOrderBuild2017;@mullerFlexibleHeuristicAlgorithm2019] with similar functionalities have been developed in other languages, GCIdentifier.jl stands apart for multiple reasons. GCIdentifier.jl is the first of such packages to be compatible with multiple group-contribution approaches, such as UNIFAC and SAFT-$\gamma$ Mie. By standardising the representation of groups using SMARTS and leveraging the powerful MolecularGraph [@seiji_matsuoka_2024_10478701] package, our group-identification code can be used with any existing group-contribution thermodynamic model. This extends to group-contribution approaches which require information about the connectivity between groups [@sauerComparisonHomoHeterosegmented2014] where, by simply specifying `connectivity=true` within the `get_groups_from_name` function, the connectivity matrix between groups will automatically be generated. While packages in other languages are able to generate groups from _existing_ group databases, GCIdentifier.jl is able to systematically propose _new_ groups for a given molecule. Consider a case where an existing group-contribution framework is unable to cover all atoms present in a molecule. GCIdentifier.jl is able to consider these un-represented atoms and propose a list of new groups. From this list, users will be able to determine which groups they should obtain new parameters for. In the extreme case where we wish to generate a list of all possible groups that represent a molecule, GCIdentifier.jl will automatically split the molecule into groups, from which either the user or a set of built-in heuristics can then decide which set best represent the molecule. These two features present within GCIdentifier.jl have potential applications beyond thermodynamic modelling, such as the development of molecular dynamics forcefields which could be integrated into packages such as Molly [@greenerDifferentiableSimulationDevelop2023]. # Acknowledgments Z-G.W. acknowledges funding from Hong Kong Quantum AI Lab, AIR\@InnoHK of the Hong Kong Government. # References
GCIdentifier
https://github.com/ClapeyronThermo/GCIdentifier.jl.git
[ "MIT" ]
0.1.0
330289636fb8107c5f32088d2741e9fd7a061a5c
code
607
using SIMDTypes using Documenter DocMeta.setdocmeta!(SIMDTypes, :DocTestSetup, :(using SIMDTypes); recursive=true) makedocs(; modules=[SIMDTypes], authors="Julia Computing, Inc. and Contributors", repo="https://github.com/JuliaSIMD/SIMDTypes.jl/blob/{commit}{path}#{line}", sitename="SIMDTypes.jl", format=Documenter.HTML(; prettyurls=get(ENV, "CI", "false") == "true", canonical="https://JuliaSIMD.github.io/SIMDTypes.jl", assets=String[], ), pages=[ "Home" => "index.md", ], ) deploydocs(; repo="github.com/JuliaSIMD/SIMDTypes.jl", )
SIMDTypes
https://github.com/JuliaSIMD/SIMDTypes.jl.git
[ "MIT" ]
0.1.0
330289636fb8107c5f32088d2741e9fd7a061a5c
code
714
module SIMDTypes # using Static: StaticInt struct Bit; data::Bool; end # Dummy for Ptr # @inline Base.convert(::Type{Bool}, b::Bit) = getfield(b, :data) const FloatingTypes = Union{Float16,Float32,Float64} const SignedHW = Union{Int8,Int16,Int32,Int64} const UnsignedHW = Union{UInt8,UInt16,UInt32,UInt64} const IntegerTypesHW = Union{SignedHW,UnsignedHW} # const IntegerTypes = Union{StaticInt,IntegerTypesHW} const NativeTypesExceptBitandFloat16 = Union{Bool,Base.HWReal} const NativeTypesExceptBit = Union{Bool,Base.HWReal,Float16} const NativeTypesExceptFloat16 = Union{Bool,Base.HWReal,Bit} const NativeTypes = Union{NativeTypesExceptBit, Bit} const _Vec{W,T<:Number} = NTuple{W,Core.VecElement{T}} end
SIMDTypes
https://github.com/JuliaSIMD/SIMDTypes.jl.git
[ "MIT" ]
0.1.0
330289636fb8107c5f32088d2741e9fd7a061a5c
code
1196
using SIMDTypes using Test @testset "SIMDTypes.jl" begin @test SIMDTypes.Bit(true).data @test !SIMDTypes.Bit(false).data @test SIMDTypes.Bit(true) isa SIMDTypes.NativeTypes @test !(SIMDTypes.Bit(true) isa SIMDTypes.NativeTypesExceptBit) @test SIMDTypes.Bit(true) isa SIMDTypes.NativeTypesExceptFloat16 @test !(SIMDTypes.Bit(true) isa SIMDTypes.NativeTypesExceptBitandFloat16) @test Float16(1) isa SIMDTypes.NativeTypes @test Float16(1) isa SIMDTypes.NativeTypesExceptBit @test !(Float16(1) isa SIMDTypes.NativeTypesExceptFloat16) @test !(Float16(1) isa SIMDTypes.NativeTypesExceptBitandFloat16) @test 1f0 isa SIMDTypes.NativeTypesExceptBitandFloat16 @test 1.3 isa SIMDTypes.FloatingTypes # @test !(1.3 isa SIMDTypes.IntegerTypes) @test !(1.3 isa SIMDTypes.IntegerTypesHW) # @test 1 isa SIMDTypes.IntegerTypes @test 1 isa SIMDTypes.SignedHW @test !(1 isa SIMDTypes.UnsignedHW) @test 1 isa SIMDTypes.IntegerTypesHW # @test one(UInt) isa SIMDTypes.IntegerTypes @test !(one(UInt) isa SIMDTypes.SignedHW) @test one(UInt) isa SIMDTypes.UnsignedHW @test one(UInt) isa SIMDTypes.IntegerTypesHW @test ntuple(Core.VecElement, 2) isa SIMDTypes._Vec end
SIMDTypes
https://github.com/JuliaSIMD/SIMDTypes.jl.git
[ "MIT" ]
0.1.0
330289636fb8107c5f32088d2741e9fd7a061a5c
docs
499
# SIMDTypes [![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://JuliaSIMD.github.io/SIMDTypes.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://JuliaSIMD.github.io/SIMDTypes.jl/dev) [![Build Status](https://github.com/JuliaSIMD/SIMDTypes.jl/workflows/CI/badge.svg)](https://github.com/JuliaSIMD/SIMDTypes.jl/actions) [![Coverage](https://codecov.io/gh/JuliaSIMD/SIMDTypes.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/JuliaSIMD/SIMDTypes.jl)
SIMDTypes
https://github.com/JuliaSIMD/SIMDTypes.jl.git
[ "MIT" ]
0.1.0
330289636fb8107c5f32088d2741e9fd7a061a5c
docs
182
```@meta CurrentModule = SIMDTypes ``` # SIMDTypes Documentation for [SIMDTypes](https://github.com/JuliaSIMD/SIMDTypes.jl). ```@index ``` ```@autodocs Modules = [SIMDTypes] ```
SIMDTypes
https://github.com/JuliaSIMD/SIMDTypes.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
code
1110
__precompile__() module TSAnalysis # Libraries using Dates, Distributed, Logging; using LinearAlgebra, Distributions, Optim, Statistics; # Custom dependencies const local_path = dirname(@__FILE__); include("$local_path/types.jl"); include("$local_path/methods.jl"); include("$local_path/kalman.jl"); include("$local_path/subsampling.jl"); include("$local_path/uc_models.jl"); # Export types export JVector, JArray, FloatVector, FloatMatrix, FloatArray, SymMatrix, DiagMatrix, KalmanSettings, ImmutableKalmanSettings, MutableKalmanSettings, KalmanStatus, ARIMASettings, VARIMASettings; # Export methods export check_bounds, isnothing, error_info, verb_message, interpolate, soft_thresholding, isconverged, mean_skipmissing, std_skipmissing, is_vector_in_matrix, demean, lag, companion_form; # Export functions export kfilter!, kforecast, ksmoother, fmin_uc_models, arima, varima, forecast, block_jackknife, optimal_d, artificial_jackknife, moving_block_bootstrap, stationary_block_bootstrap; end
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
code
9472
""" apriori(X::FloatVector, settings::KalmanSettings) Kalman filter a-priori prediction for X. # Arguments - `X`: Last expected value of the states - `settings`: KalmanSettings struct apriori(P::SymMatrix, settings::KalmanSettings) Kalman filter a-priori prediction for P. # Arguments - `P`: Last conditional covariance the states - `settings`: KalmanSettings struct """ apriori(X::FloatVector, settings::KalmanSettings) = settings.C * X; apriori(P::SymMatrix, settings::KalmanSettings) = Symmetric(settings.C * P * settings.C' + settings.V)::SymMatrix; """ apriori!(::Type{Nothing}, settings::KalmanSettings, status::KalmanStatus) Kalman filter a-priori prediction for t==1. # Arguments - `::Type{Nothing}`: first prediction - `settings`: KalmanSettings struct - `status`: KalmanStatus struct apriori!(::Type{FloatVector}, settings::KalmanSettings, status::KalmanStatus) Kalman filter a-priori prediction. # Arguments - `::Type{FloatVector}`: standard prediction - `settings`: KalmanSettings struct - `status`: KalmanStatus struct """ function apriori!(::Type{Nothing}, settings::KalmanSettings, status::KalmanStatus) status.X_prior = apriori(settings.X0, settings); status.P_prior = apriori(settings.P0, settings); if settings.compute_loglik == true status.loglik = 0.0; end if settings.store_history == true status.history_X_prior = Array{FloatVector,1}(); status.history_X_post = Array{FloatVector,1}(); status.history_P_prior = Array{SymMatrix,1}(); status.history_P_post = Array{SymMatrix,1}(); end end function apriori!(::Type{FloatVector}, settings::KalmanSettings, status::KalmanStatus) status.X_prior = apriori(status.X_post, settings); status.P_prior = apriori(status.P_post, settings); end """ find_observed_data(settings::KalmanSettings, status::KalmanStatus) Return position of the observed measurements at time t. # Arguments - `settings`: KalmanSettings struct - `status`: KalmanStatus struct """ function find_observed_data(settings::KalmanSettings, status::KalmanStatus) if status.t <= settings.T Y_t_all = @view settings.Y[:, status.t]; ind_not_missings = findall(ismissing.(Y_t_all) .== false); if length(ind_not_missings) > 0 return ind_not_missings; end end end """ update_loglik!(status::KalmanStatus, ε_t::FloatVector, Σ_t::SymMatrix) Update status.loglik. # Arguments - `status`: KalmanStatus struct - `ε_t`: Forecast error - `Σ_t`: Forecast error covariance """ function update_loglik!(status::KalmanStatus, ε_t::FloatVector, Σ_t::SymMatrix) status.loglik -= 0.5*(logdet(Σ_t) + ε_t'*inv(Σ_t)*ε_t); end """ aposteriori!(settings::KalmanSettings, status::KalmanStatus, ind_not_missings::Array{Int64,1}) Kalman filter a-posteriori update. Measurements are observed (or partially observed) at time t. # Arguments - `settings`: KalmanSettings struct - `status`: KalmanStatus struct - `ind_not_missings`: Position of the observed measurements aposteriori!(settings::KalmanSettings, status::KalmanStatus, ind_not_missings::Nothing) Kalman filter a-posteriori update. All measurements are not observed at time t. # Arguments - `settings`: KalmanSettings struct - `status`: KalmanStatus struct - `ind_not_missings`: Empty array """ function aposteriori!(settings::KalmanSettings, status::KalmanStatus, ind_not_missings::Array{Int64,1}) Y_t = @view settings.Y[ind_not_missings, status.t]; B_t = @view settings.B[ind_not_missings, :]; R_t = @view settings.R[ind_not_missings, ind_not_missings]; # Forecast error ε_t = Y_t - B_t*status.X_prior; Σ_t = Symmetric(B_t*status.P_prior*B_t' + R_t)::SymMatrix; # Kalman gain K_t = status.P_prior*B_t'*inv(Σ_t); # A posteriori estimates status.X_post = status.X_prior + K_t*ε_t; status.P_post = Symmetric(status.P_prior - K_t*B_t*status.P_prior)::SymMatrix; # Update log likelihood if settings.compute_loglik == true update_loglik!(status, ε_t, Σ_t); end end function aposteriori!(settings::KalmanSettings, status::KalmanStatus, ind_not_missings::Nothing) status.X_post = copy(status.X_prior); status.P_post = copy(status.P_prior); end """ kfilter!(settings::KalmanSettings, status::KalmanStatus) Kalman filter: a-priori prediction and a-posteriori update. # Model The state space model used below is, ``Y_{t} = B*X_{t} + e_{t}`` ``X_{t} = C*X_{t-1} + v_{t}`` Where ``e_{t} ~ N(0, R)`` and ``v_{t} ~ N(0, V)``. # Arguments - `settings`: KalmanSettings struct - `status`: KalmanStatus struct """ function kfilter!(settings::KalmanSettings, status::KalmanStatus) # Update status.t status.t += 1; # A-priori prediction apriori!(typeof(status.X_prior), settings, status); # Handle missing observations ind_not_missings = find_observed_data(settings, status); # Ex-post update aposteriori!(settings, status, ind_not_missings); # Update history of *_prior and *_post if settings.store_history == true push!(status.history_X_prior, status.X_prior); push!(status.history_X_post, status.X_post); push!(status.history_P_prior, status.P_prior); push!(status.history_P_post, status.P_post); end end """ kforecast(settings::KalmanSettings, X::Union{FloatVector, Nothing}, h::Int64) Forecast X up to h-step ahead. kforecast(settings::KalmanSettings, X::Union{FloatVector, Nothing}, P::Union{SymMatrix, Nothing}, h::Int64) Forecast X and P up to h-step ahead. # Model The state space model used below is, ``Y_{t} = B*X_{t} + e_{t}`` ``X_{t} = C*X_{t-1} + v_{t}`` Where ``e_{t} ~ N(0, R)`` and ``v_{t} ~ N(0, V)``. """ function kforecast(settings::KalmanSettings, Xt::Union{FloatVector, Nothing}, h::Int64) # Initialise forecast history history_X = Array{FloatVector,1}(); X = copy(Xt); # Loop over forecast horizons for horizon=1:h X = apriori(X, settings); push!(history_X, X); end # Return output return history_X; end function kforecast(settings::KalmanSettings, Xt::Union{FloatVector, Nothing}, Pt::Union{SymMatrix, Nothing}, h::Int64) # Initialise forecast history history_X = Array{FloatVector,1}(); history_P = Array{SymMatrix,1}(); X = copy(Xt); P = copy(Pt); # Loop over forecast horizons for horizon=1:h X = apriori(X, settings); P = apriori(P, settings); push!(history_X, X); push!(history_P, P); end # Return output return history_X, history_P; end """ compute_J1(Pf_lagged::SymMatrix, Pp::SymMatrix, settings::KalmanSettings) Compute J_{t-1} as in Shumway and Stoffer (2011, chapter 6) to operate the RTS smoother. """ compute_J1(Pf_lagged::SymMatrix, Pp::SymMatrix, settings::KalmanSettings) = Pf_lagged*settings.C'*inv(Pp); """ backwards_pass(Xf_lagged::FloatVector, J1::FloatArray, Xs::FloatVector, Xp::FloatVector) Backwards pass for X to get the smoothed states at time t-1. # Arguments - `Xf_lagged`: Filtered states for time t-1 - `J1`: J_{t-1} as in Shumway and Stoffer (2011, chapter 6) - `Xs`: Smoothed states for time t - `Xp`: A-priori states for time t backwards_pass(Pf_lagged::SymMatrix, J1::FloatArray, Ps::SymMatrix, Pp::SymMatrix) Backwards pass for P to get the smoothed conditional covariance at time t-1. # Arguments - `Pf_lagged`: Filtered conditional covariance for time t-1 - `J1`: J_{t-1} as in Shumway and Stoffer (2011, chapter 6) - `Ps`: Smoothed conditional covariance for time t - `Pp`: A-priori conditional covariance for time t """ backwards_pass(Xf_lagged::FloatVector, J1::FloatArray, Xs::FloatVector, Xp::FloatVector) = Xf_lagged + J1*(Xs-Xp); backwards_pass(Pf_lagged::SymMatrix, J1::FloatArray, Ps::SymMatrix, Pp::SymMatrix) = Symmetric(Pf_lagged + J1*(Ps-Pp)*J1')::SymMatrix; """ ksmoother(settings::KalmanSettings, status::KalmanStatus) Kalman smoother: RTS smoother from the last evaluated time period in status to t==0. # Model The state space model used below is, ``Y_{t} = B*X_{t} + e_{t}`` ``X_{t} = C*X_{t-1} + v_{t}`` Where ``e_{t} ~ N(0, R)`` and ``v_{t} ~ N(0, V)``. # Arguments - `settings`: KalmanSettings struct - `status`: KalmanStatus struct """ function ksmoother(settings::KalmanSettings, status::KalmanStatus) # Initialise smoother history history_X = Array{FloatVector,1}(); history_P = Array{SymMatrix,1}(); push!(history_X, copy(status.X_post)); push!(history_P, copy(status.P_post)); # Loop over t for t=status.t:-1:2 # Pointers Xp = status.history_X_prior[t]; Pp = status.history_P_prior[t]; Xf_lagged = status.history_X_post[t-1]; Pf_lagged = status.history_P_post[t-1]; Xs = history_X[1]; Ps = history_P[1]; # Smoothed estimates for t-1 J1 = compute_J1(Pf_lagged, Pp, settings); pushfirst!(history_X, backwards_pass(Xf_lagged, J1, Xs, Xp)); pushfirst!(history_P, backwards_pass(Pf_lagged, J1, Ps, Pp)); end # Pointers Xp = status.history_X_prior[1]; Pp = status.history_P_prior[1]; Xs = history_X[1]; Ps = history_P[1]; # Compute smoothed estimates for t==0 J1 = compute_J1(settings.P0, Pp, settings); X0 = backwards_pass(settings.X0, J1, Xs, Xp); P0 = backwards_pass(settings.P0, J1, Ps, Pp); # Return output return history_X, history_P, X0, P0; end
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
code
10351
#= -------------------------------------------------------------------------------------------------------------------------------- Base and generic math -------------------------------------------------------------------------------------------------------------------------------- =# """ isnothing(::Any) True if the argument is ```nothing``` (false otherwise). """ isnothing(::Any) = false; isnothing(::Nothing) = true; """ verb_message(verb::Bool, message::String) @info `message` if `verb` is true. """ verb_message(verb::Bool, message::String) = verb ? @info(message) : nothing; """ check_bounds(X::Number, LB::Number, UB::Number) Check whether `X` is larger or equal than `LB` and lower or equal than `UB` check_bounds(X::Number, LB::Number) Check whether `X` is larger or equal than `LB` """ check_bounds(X::Number, LB::Number, UB::Number) = X < LB || X > UB ? throw(DomainError) : nothing check_bounds(X::Number, LB::Number) = X < LB ? throw(DomainError) : nothing """ error_info(err::Exception) error_info(err::RemoteException) Return error main information """ error_info(err::Exception) = (err, err.msg, stacktrace(catch_backtrace())); error_info(err::RemoteException) = (err.captured.ex, err.captured.ex.msg, [err.captured.processed_bt[i][1] for i=1:length(err.captured.processed_bt)]); """ mean_skipmissing(X::AbstractArray{Float64,1}) mean_skipmissing(X::AbstractArray{Union{Missing, Float64},1}) Compute the mean of the observed values in `X`. mean_skipmissing(X::AbstractArray{Float64}) mean_skipmissing(X::AbstractArray{Union{Missing, Float64}}) Compute the mean of the observed values in `X` column wise. # Examples ```jldoctest julia> mean_skipmissing([1.0; missing; 3.0]) 2.0 julia> mean_skipmissing([1.0 2.0; missing 3.0; 3.0 5.0]) 3-element Array{Float64,1}: 1.5 3.0 4.0 ``` """ mean_skipmissing(X::AbstractArray{Float64,1}) = mean(X); mean_skipmissing(X::AbstractArray{Float64}) = mean(X, dims=2); mean_skipmissing(X::AbstractArray{Union{Missing, Float64},1}) = mean(skipmissing(X)); mean_skipmissing(X::AbstractArray{Union{Missing, Float64}}) = vcat([mean_skipmissing(X[i,:]) for i=1:size(X,1)]...); """ std_skipmissing(X::AbstractArray{Float64,1}) std_skipmissing(X::AbstractArray{Union{Missing, Float64},1}) Compute the standard deviation of the observed values in `X`. std_skipmissing(X::AbstractArray{Float64}) std_skipmissing(X::AbstractArray{Union{Missing, Float64}}) Compute the standard deviation of the observed values in `X` column wise. # Examples ```jldoctest julia> std_skipmissing([1.0; missing; 3.0]) 1.4142135623730951 julia> std_skipmissing([1.0 2.0; missing 3.0; 3.0 5.0]) 3-element Array{Float64,1}: 0.7071067811865476 NaN 1.4142135623730951 ``` """ std_skipmissing(X::AbstractArray{Float64,1}) = std(X); std_skipmissing(X::AbstractArray{Float64}) = std(X, dims=2); std_skipmissing(X::AbstractArray{Union{Missing, Float64},1}) = std(skipmissing(X)); std_skipmissing(X::AbstractArray{Union{Missing, Float64}}) = vcat([std_skipmissing(X[i,:]) for i=1:size(X,1)]...); """ is_vector_in_matrix(vect::AbstractVector, matr::AbstractMatrix) Check whether the vector `vect` is included in the matrix `matr`. # Examples julia> is_vector_in_matrix([1;2], [1 2; 2 3]) true """ is_vector_in_matrix(vect::AbstractVector, matr::AbstractMatrix) = sum(sum(vect .== matr, dims=1) .== length(vect)) > 0; """ isconverged(new::Float64, old::Float64, tol::Float64, ε::Float64, increasing::Bool) Check whether `new` is close enough to `old`. # Arguments - `new`: new objective or loss - `old`: old objective or loss - `tol`: tolerance - `ε`: small Float64 - `increasing`: true if `new` increases, at each iteration, with respect to `old` """ isconverged(new::Float64, old::Float64, tol::Float64, ε::Float64, increasing::Bool) = increasing ? (new-old)./(abs(old)+ε) <= tol : -(new-old)./(abs(old)+ε) <= tol; """ soft_thresholding(z::Float64, ζ::Float64) Soft thresholding operator. """ soft_thresholding(z::Float64, ζ::Float64) = sign(z)*max(abs(z)-ζ, 0); """ square_vandermonde_matrix(λ::FloatVector) Construct square vandermonde matrix on the basis of a vector of eigenvalues λ. """ square_vandermonde_matrix(λ::FloatVector) = λ'.^collect(length(λ)-1:-1:0); #= -------------------------------------------------------------------------------------------------------------------------------- Parameter transformations -------------------------------------------------------------------------------------------------------------------------------- =# """ get_bounded_log(Θ_unbound::Float64, MIN::Float64) Compute parameters with bounded support using a generalised log transformation. """ get_bounded_log(Θ_unbound::Float64, MIN::Float64) = exp(Θ_unbound) + MIN; """ get_unbounded_log(Θ_bound::Float64, MIN::Float64) Compute parameters with unbounded support using a generalised log transformation. """ get_unbounded_log(Θ_bound::Float64, MIN::Float64) = log(Θ_bound - MIN); """ get_bounded_logit(Θ_unbound::Float64, MIN::Float64, MAX::Float64) Compute parameters with bounded support using a generalised logit transformation. """ get_bounded_logit(Θ_unbound::Float64, MIN::Float64, MAX::Float64) = (MIN + (MAX * exp(Θ_unbound))) / (1 + exp(Θ_unbound)); """ get_unbounded_logit(Θ_bound::Float64, MIN::Float64, MAX::Float64) Compute parameters with unbounded support using a generalised logit transformation. """ get_unbounded_logit(Θ_bound::Float64, MIN::Float64, MAX::Float64) = log((Θ_bound - MIN) / (MAX - Θ_bound)); #= -------------------------------------------------------------------------------------------------------------------------------- Time series -------------------------------------------------------------------------------------------------------------------------------- =# """ demean(X::FloatVector) demean(X::JVector) Demean data. demean(X::FloatMatrix) demean(X::JArray) Demean data. # Examples ```jldoctest julia> demean([1.0; 1.5; 2.0; 2.5; 3.0]) 5-element Array{Float64,1}: -1.0 -0.5 0.0 0.5 1.0 julia> demean([1.0 3.5 1.5 4.0 2.0; 4.5 2.5 5.0 3.0 5.5]) 2×5 Array{Float64,2}: -1.4 1.1 -0.9 1.6 -0.4 0.4 -1.6 0.9 -1.1 1.4 ``` """ demean(X::FloatVector) = X .- mean(X); demean(X::FloatMatrix) = X .- mean(X,dims=2); demean(X::JVector) = X .- mean_skipmissing(X); demean(X::JArray) = X .- mean_skipmissing(X); """ interpolate(X::JArray{Float64}, n::Int64, T::Int64) Interpolate each series in `X`, in turn, by replacing missing observations with the sample average of the non-missing values. # Arguments - `X`: observed measurements (`nxT`) - `n` and `T` are the number of series and observations interpolate(X::Array{Float64}, n::Int64, T::Int64) # Arguments - `X`: observed measurements (`nxT`) - `n` and `T` are the number of series and observations """ function interpolate(X::JArray{Float64}, n::Int64, T::Int64) data = copy(X); for i=1:n data[i, ismissing.(X[i, :])] .= mean_skipmissing(X[i, :]); end data = data |> FloatArray; return data; end interpolate(X::FloatArray, n::Int64, T::Int64) = X; """ lag(X::FloatArray, p::Int64) Construct the data required to run a standard vector autoregression. # Arguments - `X`: observed measurements (`nxT`), where `n` and `T` are the number of series and observations. - `p`: number of lags in the vector autoregression # Output - `X_{t}` - `X_{t-1}` """ function lag(X::FloatArray, p::Int64) # VAR(p) data X_t = X[:, 1+p:end]; X_lagged = vcat([X[:, p-j+1:end-j] for j=1:p]...); # Return output return X_t, X_lagged; end """ companion_form(θ::FloatVector) Construct the companion form parameters of θ. """ function companion_form(θ::FloatVector) # Number of parameters in θ k = length(θ); # Return companion form return [permutedims(θ); Matrix(I, k-1, k-1) zeros(k-1)]; end #= ------------------------------------------------------------------------------------------------------------------------------- Combinatorics and probability ------------------------------------------------------------------------------------------------------------------------------- =# """ no_combinations(n::Int64, k::Int64) Compute the binomial coefficient of `n` observations and `k` groups, for big integers. # Examples ```jldoctest julia> no_combinations(1000000,100000) 7.333191945934207610471288280331309569215030711272858517142085449641265002716664e+141178 ``` """ no_combinations(n::Int64, k::Int64) = factorial(big(n))/(factorial(big(k))*factorial(big(n-k))); """ rand_without_replacement(nT::Int64, d::Int64) Draw `length(P)-d` elements from the positional vector `P` without replacement. `P` is permanently changed in the process. rand_without_replacement(n::Int64, T::Int64, d::Int64) Draw `length(P)-d` elements from the positional vector `P` without replacement. In the sampling process, no more than n-1 elements are removed for each point in time. `P` is permanently changed in the process. # Examples ```jldoctest julia> rand_without_replacement(20, 5) 15-element Array{Int64,1}: 1 2 3 5 7 8 10 11 13 14 16 17 18 19 20 ``` """ function rand_without_replacement(nT::Int64, d::Int64) # Positional vector P = collect(1:nT); # Draw without replacement d times for i=1:d deleteat!(P, findall(P.==rand(P))); end # Return output return setdiff(1:nT, P); end function rand_without_replacement(n::Int64, T::Int64, d::Int64) # Positional vector P = collect(1:n*T); # Full set of coordinates coord = [repeat(1:n, T) kron(1:T, convert(Array{Int64}, ones(n)))]; # Counter coord_counter = convert(Array{Int64}, zeros(T)); # Loop over d for i=1:d while true # New candidate draw draw = rand(P); coord_draw = @view coord[draw, :]; # Accept the draw if all observations are not missing for time t = coord[draw, :][2] if coord_counter[coord_draw[2]] < n-1 coord_counter[coord_draw[2]] += 1; # Draw without replacement deleteat!(P, findall(P.==draw)); break; end end end # Return output return setdiff(1:n*T, P); end
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
code
9160
#= -------------------------------------------------------------------------------------------------------------------------------- Subsampling: Jackknife -------------------------------------------------------------------------------------------------------------------------------- =# """ block_jackknife(Y::Union{FloatMatrix, JArray{Float64,2}}, subsample::Float64) Generate block jackknife (Kunsch, 1989) samples. This implementation is described in Pellegrino (2020). This technique subsamples a time series dataset by removing, in turn, all the blocks of consecutive observations with a given size. # Arguments - `Y`: Observed measurements (`nxT`), where `n` and `T` are the number of series and observations. - `subsample`: Block size as a percentage of number of observed periods. It is bounded between 0 and 1. # References Kunsch (1989) and Pellegrino (2020). """ function block_jackknife(Y::Union{FloatMatrix, JArray{Float64,2}}, subsample::Float64) # Check inputs check_bounds(subsample, 0, 1); # Dimensions n, T = size(Y); # Block size block_size = Int64(ceil(subsample*T)); if block_size == 0 error("subsample is too small!"); end # Number of block jackknifes samples - as in Kunsch (1989) samples = T-block_size+1; # Initialise jackknife_data jackknife_data = JArray{Float64,3}(undef, n, T, samples); # Loop over j=1, ..., samples for j=1:samples # Index of missings ind_j = collect(j:j+block_size-1); # Block jackknife data jackknife_data[:, :, j] = Y; jackknife_data[:, ind_j, j] .= missing; end # Return jackknife_data return jackknife_data; end """ optimal_d(n::Int64, T::Int64) Select the optimal value for d. See artificial_jackknife (...) for more details on d. # Arguments - `n`: Number of series - `T`: Number of observations """ function optimal_d(n::Int64, T::Int64) objfun_array = zeros(n*T); for d=1:fld(n*T,2) objfun_array[d] = objfun_optimal_d(n, T, d); end return argmax(objfun_array); end """ objfun_optimal_d(n::Int64, T::Int64, d::Int64) Objective function to select the optimal value for d. # Arguments - `n`: Number of series - `T`: Number of observations - `d`: Candidate d """ function objfun_optimal_d(n::Int64, T::Int64, d::Int64) fun = no_combinations(n*T, d) - (d>=n).*no_combinations(n*T-n, d-n)*T; for i=2:fld(d, n) fun -= (-1^(i-1))*no_combinations(T, i)*no_combinations(n*T-i*n, d-i*n); end return fun; end """ artificial_jackknife(Y::Union{FloatMatrix, JArray{Float64,2}}, subsample::Float64, max_samples::Int64) Generate artificial jackknife samples as in Pellegrino (2020). The artificial delete-d jackknife is an extension of the delete-d jackknife for dependent data problems. - This technique replaces the actual data removal step with a fictitious deletion, which consists of imposing `d`-dimensional (artificial) patterns of missing observations to the data. - This approach does not alter the data order nor destroy the correlation structure. # Arguments - `Y`: Observed measurements (`nxT`), where `n` and `T` are the number of series and observations. - `subsample`: `d` as a percentage of the original sample size. It is bounded between 0 and 1. - `max_samples`: If `C(n*T,d)` is large, artificial_jackknife would generate `max_samples` jackknife samples. # References Pellegrino (2020). """ function artificial_jackknife(Y::Union{FloatMatrix, JArray{Float64,2}}, subsample::Float64, max_samples::Int64) # Dimensions n, T = size(Y); nT = n*T; # Check inputs check_bounds(subsample, 0, 1); # Set d using subsample d = Int64(ceil(subsample*nT)); # Error management if d == 0 error("subsample is too small!"); end # Warning if subsample > 0.5 @warn "this algorithm might be unstable for `subsample` larger than 0.5!"; end # Get vec(Y) vec_Y = convert(JArray{Float64}, Y[:]); # Initialise loop (controls) C_nT_d = no_combinations(nT, d); samples = convert(Int64, min(C_nT_d, max_samples)); zeros_vec = zeros(d); # Initialise loop (output) ind_missings = Array{Int64}(zeros(d, samples)); jackknife_data = JArray{Float64,3}(undef, n, T, samples); # Loop over j=1, ..., samples for j=1:samples # First draw if j == 1 if samples == C_nT_d ind_missings[:,j] = rand_without_replacement(nT, d); else ind_missings[:,j] = rand_without_replacement(n, T, d); end # Iterates until ind_missings[:,j] is neither a vector of zeros, nor already included in ind_missings else while ind_missings[:,j] == zeros_vec || is_vector_in_matrix(ind_missings[:,j], ind_missings[:, 1:j-1]) if samples == C_nT_d ind_missings[:,j] = rand_without_replacement(nT, d); else ind_missings[:,j] = rand_without_replacement(n, T, d); end end end # Add (artificial) missing observations vec_Y_j = copy(vec_Y); vec_Y_j[ind_missings[:,j]] .= missing; # Store data jackknife_data[:, :, j] = reshape(vec_Y_j, n, T); end # Return jackknife_data return jackknife_data; end #= -------------------------------------------------------------------------------------------------------------------------------- Subsampling: Bootstrap -------------------------------------------------------------------------------------------------------------------------------- =# """ moving_block_bootstrap(Y::Union{FloatMatrix, JArray{Float64,2}}, subsample::Float64, samples::Int64) Generate moving block bootstrap samples. The moving block bootstrap randomly subsamples a time series into ordered and overlapped blocks of consecutive observations. # Arguments - `Y`: Observed measurements (`nxT`), where `n` and `T` are the number of series and observations. - `subsample`: Block size as a percentage of number of observed periods. It is bounded between 0 and 1. - `samples`: Number of bootstrap samples. # References Kunsch (1989) and Liu and Singh (1992). """ function moving_block_bootstrap(Y::Union{FloatMatrix, JArray{Float64,2}}, subsample::Float64, samples::Int64) # Check inputs check_bounds(subsample, 0, 1); # Dimensions n, T = size(Y); # Block size block_size = Int64(ceil(subsample*T)); if block_size == 0 error("subsample is too small!"); end # Initialise bootstrap_data bootstrap_data = JArray{Float64,3}(undef, n, block_size, samples); # Loop over j=1, ..., samples for j=1:samples # Starting point for the moving block ind_j = rand(1:T-block_size+1); # Bootstrap data bootstrap_data[:, :, j] .= Y[:, ind_j:ind_j+block_size-1]; end # Return bootstrap_data return bootstrap_data; end """ stationary_block_bootstrap(Y::Union{FloatMatrix, JArray{Float64,2}}, subsample::Float64, samples::Int64) Generate stationary block bootstrap samples. The stationary bootstrap is similar to the block bootstrap proposed in independently in Kunsch (1989) and Liu and Singh (1992). There are two main differences: - The blocks have random length - In order to achieve stationarity, the stationary (block) bootstrap "wraps" the data around in a "circle" so that the first observation follows the last. Note: Block size is exponentially distributed with mean `Int64(ceil(subsample*T))`. # Arguments - `Y`: Observed measurements (`nxT`), where `n` and `T` are the number of series and observations. - `subsample`: Block size as a percentage of number of observed periods. It is bounded between 0 and 1. - `samples`: Number of bootstrap samples. # References Politis and Romano (1994). """ function stationary_block_bootstrap(Y::Union{FloatMatrix, JArray{Float64,2}}, subsample::Float64, samples::Int64) # Check inputs check_bounds(subsample, 0, 1); # Dimensions n, T = size(Y); # Block length is exponentially distributed with mean avg_block_size = Int64(ceil(subsample*T)); if avg_block_size == 0 error("subsample is too small!"); end # Initialise bootstrap_data bootstrap_data = JArray{Float64,3}(undef, n, T, samples); # Loop over j=1, ..., samples for j=1:samples # Merge multiple blocks of random size ind_j = zeros(T) |> Array{Int64,1}; ind_j[1] = rand(1:T); # Loop over t=2,...,T for t=2:T # Let ind_j[t] be picked at random if rand() < 1/avg_block_size; ind_j[t] = rand(1:T); # Let ind_j[t] be ind_j[t-1] + 1 else if ind_j[t-1] == T ind_j[t] = 1; else ind_j[t] = ind_j[t-1] + 1; end end end # Generate j-th bootstrap sample bootstrap_data[:, :, j] .= Y[:, ind_j]; end # Return bootstrap_data return bootstrap_data; end
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
code
7260
# Aliases (types) const FloatVector = Array{Float64,1}; const FloatMatrix = Array{Float64,2}; const FloatArray = Array{Float64}; const SymMatrix = Symmetric{Float64,Array{Float64,2}}; const DiagMatrix = Diagonal{Float64,Array{Float64,1}}; const JVector{T} = Array{Union{Missing, T}, 1}; const JArray{T, N} = Array{Union{Missing, T}, N}; #= -------------------------------------------------------------------------------------------------------------------------------- Kalman structures -------------------------------------------------------------------------------------------------------------------------------- =# abstract type KalmanSettings end """ ImmutableKalmanSettings(...) Define an immutable structure that includes all the Kalman filter and smoother inputs. # Model The state space model used below is, ``Y_{t} = B*X_{t} + e_{t}`` ``X_{t} = C*X_{t-1} + v_{t}`` Where ``e_{t} ~ N(0, R)`` and ``v_{t} ~ N(0, V)``. # Arguments - `Y`: Observed measurements (`nxT`) - `B`: Measurement equations' coefficients - `R`: Covariance matrix of the measurement equations' error terms - `C`: Transition equations' coefficients - `V`: Covariance matrix of the transition equations' error terms - `X0`: Mean vector for the states at time t=0 - `P0`: Covariance matrix for the states at time t=0 - `n`: Number of series - `T`: Number of observations - `m`: Number of latent states - `compute_loglik`: Boolean (true for computing the loglikelihood in the Kalman filter) - `store_history`: Boolean (true to store the history of the filter and smoother) """ struct ImmutableKalmanSettings <: KalmanSettings Y::Union{FloatMatrix, JArray{Float64,2}} B::FloatMatrix R::SymMatrix C::FloatMatrix V::SymMatrix X0::FloatVector P0::SymMatrix n::Int64 T::Int64 m::Int64 compute_loglik::Bool store_history::Bool end # ImmutableKalmanSettings constructor function ImmutableKalmanSettings(Y::Union{FloatMatrix, JArray{Float64,2}}, B::FloatMatrix, R::SymMatrix, C::FloatMatrix, V::SymMatrix; compute_loglik::Bool=true, store_history::Bool=true) # Compute default value for missing parameters n, T = size(Y); m = size(B,2); X0 = zeros(m); P0 = Symmetric(reshape((I-kron(C, C))\V[:], m, m)); # Return ImmutableKalmanSettings return ImmutableKalmanSettings(Y, B, R, C, V, X0, P0, n, T, m, compute_loglik, store_history); end # ImmutableKalmanSettings constructor function ImmutableKalmanSettings(Y::Union{FloatMatrix, JArray{Float64,2}}, B::FloatMatrix, R::SymMatrix, C::FloatMatrix, V::SymMatrix, X0::FloatVector, P0::SymMatrix; compute_loglik::Bool=true, store_history::Bool=true) # Compute default value for missing parameters n, T = size(Y); m = size(B,2); # Return ImmutableKalmanSettings return ImmutableKalmanSettings(Y, B, R, C, V, X0, P0, n, T, m, compute_loglik, store_history); end """ MutableKalmanSettings(...) Define a mutable structure identical in shape to ImmutableKalmanSettings. See the docstring of ImmutableKalmanSettings for more information. """ mutable struct MutableKalmanSettings <: KalmanSettings Y::Union{FloatMatrix, JArray{Float64,2}} B::FloatMatrix R::SymMatrix C::FloatMatrix V::SymMatrix X0::FloatVector P0::SymMatrix n::Int64 T::Int64 m::Int64 compute_loglik::Bool store_history::Bool end # MutableKalmanSettings constructor function MutableKalmanSettings(Y::Union{FloatMatrix, JArray{Float64,2}}, B::FloatMatrix, R::SymMatrix, C::FloatMatrix, V::SymMatrix; compute_loglik::Bool=true, store_history::Bool=true) # Compute default value for missing parameters n, T = size(Y); m = size(B,2); X0 = zeros(m); P0 = Symmetric(reshape((I-kron(C, C))\V[:], m, m)); # Return MutableKalmanSettings return MutableKalmanSettings(Y, B, R, C, V, X0, P0, n, T, m, compute_loglik, store_history); end # MutableKalmanSettings constructor function MutableKalmanSettings(Y::Union{FloatMatrix, JArray{Float64,2}}, B::FloatMatrix, R::SymMatrix, C::FloatMatrix, V::SymMatrix, X0::FloatVector, P0::SymMatrix; compute_loglik::Bool=true, store_history::Bool=true) # Compute default value for missing parameters n, T = size(Y); m = size(B,2); # Return MutableKalmanSettings return MutableKalmanSettings(Y, B, R, C, V, X0, P0, n, T, m, compute_loglik, store_history); end """ KalmanStatus(...) Define a mutable structure to manage the status of the Kalman filter and smoother. # Arguments - `t`: Current point in time - `loglik`: Loglikelihood - `X_prior`: Latest a-priori X - `X_post`: Latest a-posteriori X - `P_prior`: Latest a-priori P - `P_post`: Latest a-posteriori P - `history_X_prior`: History of a-priori X - `history_X_post`: History of a-posteriori X - `history_P_prior`: History of a-priori P - `history_P_post`: History of a-posteriori P """ mutable struct KalmanStatus t::Int64 loglik::Union{Float64, Nothing} X_prior::Union{FloatVector, Nothing} X_post::Union{FloatVector, Nothing} P_prior::Union{SymMatrix, Nothing} P_post::Union{SymMatrix, Nothing} history_X_prior::Union{Array{FloatVector,1}, Nothing} history_X_post::Union{Array{FloatVector,1}, Nothing} history_P_prior::Union{Array{SymMatrix,1}, Nothing} history_P_post::Union{Array{SymMatrix,1}, Nothing} end # KalmanStatus constructors KalmanStatus() = KalmanStatus(0, [nothing for i=1:9]...); #= -------------------------------------------------------------------------------------------------------------------------------- UC models: structures -------------------------------------------------------------------------------------------------------------------------------- =# abstract type UCSettings end """ VARIMASettings(...) Define an immutable structure to manage VARIMA specifications. # Arguments - `Y_levels`: Observed measurements (`nxT`) - in levels - `Y`: Observed measurements (`nxT`) - differenced and demeaned - `μ`: Sample average (per series) - `n`: Number of series - `d`: Degree of differencing - `p`: Order of the autoregressive model - `q`: Order of the moving average model - `nr`: n*max(p, q+1) - `np`: n*p - `nq`: n*q - `nnp`: (n^2)*p - `nnq`: (n^2)*q """ struct VARIMASettings <: UCSettings Y_levels::Union{FloatMatrix, JArray{Float64,2}} Y::Union{FloatMatrix, JArray{Float64,2}} μ::FloatVector n::Int64 d::Int64 p::Int64 q::Int64 nr::Int64 np::Int64 nq::Int64 nnp::Int64 nnq::Int64 end # VARIMASettings constructor function VARIMASettings(Y_levels::Union{FloatMatrix, JArray{Float64,2}}, d::Int64, p::Int64, q::Int64) # Initialise n = size(Y_levels, 1); r = max(p, q+1); # Differenciate data Y = copy(Y_levels); if d > 0 for i=1:d Y = diff(Y, dims=2); end end # Mean μ = mean_skipmissing(Y)[:,1]; # Demean data Y = demean(Y); # VARIMASettings return VARIMASettings(Y_levels, Y, μ, n, d, p, q, n*r, n*p, n*q, (n^2)*p, (n^2)*q); end """ ARIMASettings(...) Define an alias of VARIMASettings for arima models. """ ARIMASettings(Y_levels::Union{FloatMatrix, JArray{Float64,2}}, d::Int64, p::Int64, q::Int64) = VARIMASettings(Y_levels, d, p, q);
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
code
10867
#= -------------------------------------------------------------------------------------------------------------------------------- UC models: general interface -------------------------------------------------------------------------------------------------------------------------------- =# """ penalty_eigen(λ::Float64) Return penalty value for a single eigenvalue λ. """ penalty_eigen(λ::Float64) = abs(λ) < 1 ? abs(λ)/(1-abs(λ)) : Inf; penalty_eigen(λ::Complex{Float64}) = abs(λ) < 1 ? abs(λ)/(1-abs(λ)) : Inf; """ fmin_uc_models(θ_unbound::FloatVector, lb::FloatVector, ub::FloatVector, transform_id::Array{Int64,1}, model_structure::Function, settings::UCSettings) Return fmin for the UC model specified by model_structure(settings). # Arguments - `θ_unbound`: Model parameters (with unbounded support) - `lb`: Lower bound for the parameters - `ub`: Upper bound for the parameters - `transform_id`: Type of transformation required for the parameters (0 = none, 1 = generalised log, 2 = generalised logit) - `model_structure`: Function to setup the state-space structure - `settings`: Settings for model_structure - `tightness`: Controls the strength of the penalty (if any) """ function fmin_uc_models(θ_unbound::FloatVector, lb::FloatVector, ub::FloatVector, transform_id::Array{Int64,1}, model_structure::Function, uc_settings::UCSettings, tightness::Float64) # Compute parameters with bounded support θ = copy(θ_unbound); for i=1:length(θ) if transform_id[i] == 1 θ[i] = get_bounded_log(θ_unbound[i], lb[i]); elseif transform_id[i] == 2 θ[i] = get_bounded_logit(θ_unbound[i], lb[i], ub[i]); end end # Kalman status and settings status = KalmanStatus(); model_instance, model_penalty = model_structure(θ, uc_settings); if ~isinf(model_penalty) settings = ImmutableKalmanSettings(model_instance...); # Compute loglikelihood for t = 1, ..., T for t=1:size(settings.Y,2) kfilter!(settings, status); end # Return fmin return -status.loglik + tightness*model_penalty; else return 1/eps(); end end """ forecast(settings::KalmanSettings, h::Int64) Compute the h-step ahead forecast for the data included in settings. # Arguments - `settings`: KalmanSettings struct - `h`: Forecast horizon forecast(settings::KalmanSettings, X::FloatVector, h::Int64) Compute the h-step ahead forecast for the data included in settings, starting from X. # Arguments - `settings`: KalmanSettings struct - `X`: Last known value of the latent states - `h`: Forecast horizon """ function forecast(settings::KalmanSettings, h::Int64) # Initialise Kalman status status = KalmanStatus(); # Compute the period referring to the last observation of each series last_observations = zeros(settings.n) |> Array{Int64,1}; for i=1:settings.n last_observations[i] = findall(.~ismissing.(settings.Y[i,:]))[end]; end # Starting point for the forecast starting_point = minimum(last_observations); # Filter for t=1,...,T for t=1:settings.T kfilter!(settings, status); end # Initial forecast: series with a shorter history are forecasted until they match the others fc = zeros(settings.m, settings.T-starting_point+h); if starting_point < settings.T fc[:,1:settings.T-starting_point] = hcat(status.history_X_post[starting_point+1:settings.T]...); end # h-steps ahead forecast of the states from last observed point fc[:,settings.T-starting_point+1:end] = hcat(kforecast(settings, status.X_post, h)...); # Compute forecast for Y Y_fc = settings.B*fc; if settings.T-starting_point > 0 Y_fc[last_observations.==settings.T, settings.T-starting_point] .= NaN; end # Return forecast for Y return Y_fc; end forecast(settings::KalmanSettings, X::FloatVector, h::Int64) = settings.B*hcat(kforecast(settings, X, h)...); #= -------------------------------------------------------------------------------------------------------------------------------- VARIMA model -------------------------------------------------------------------------------------------------------------------------------- =# """ varma_structure(θ::FloatVector, settings::VARIMASettings) VARMA(p,q) representation similar to the form reported in Hamilton (1994) for ARIMA(p,q) models. # Arguments - `θ`: Model parameters - `settings`: VARIMASettings struct """ function varma_structure(θ::FloatVector, settings::VARIMASettings) # Initialise ϑ = copy(θ); I_n = Matrix(I, settings.n, settings.n) |> FloatMatrix; UT_n = UpperTriangular(ones(settings.n, settings.n)) |> FloatMatrix; UT_n[I_n.==1] .= 0; # Observation equation B = [I_n reshape(ϑ[1:settings.nnq], settings.n, settings.nq) zeros(settings.n, settings.nr-settings.nq-settings.n)]; R = Symmetric(I_n*1e-8); # Transition equation: coefficients C = [reshape(ϑ[settings.nnq+1:settings.nnq+settings.nnp], settings.n, settings.np) zeros(settings.n, settings.nr-settings.np); Matrix(I, settings.nr-settings.n, settings.nr-settings.n) zeros(settings.nr-settings.n, settings.n)]; # VARMA(p,q) var-cov matrix V1 = Diagonal(ϑ[settings.nnq+settings.nnp+1:settings.nnq+settings.nnp+settings.n]) |> FloatMatrix; # Transition equation: variance V = Symmetric(cat(dims=[1,2], V1, zeros(settings.nr-settings.n, settings.nr-settings.n))); # Companion form for the moving average part companion_vma = [B[:,settings.n+1:settings.n+settings.nq]; Matrix(I, settings.nq-settings.n, settings.nq-settings.n) zeros(settings.nq-settings.n, settings.n)]; # Compute penalty varma_penalty = 0.0; for λ = [eigvals(C); eigvals(companion_vma)] varma_penalty += penalty_eigen(λ); end # Return state-space structure return (settings.Y, B, R, C, V), varma_penalty; end """ varima(θ::FloatVector, settings::VARIMASettings) Return KalmanSettings for a varima(d,p,q) model with parameters θ. # Arguments - `θ`: Model parameters - `settings`: VARIMASettings struct varima(settings::VARIMASettings, args...; tightness::Float64=1.0) Estimate varima(d,p,q) model. # Arguments - `settings`: VARIMASettings struct - `args`: Arguments for Optim.optimize - `tightness`: Controls the strength of the penalty for the non-causal / non-invertible case (default = 1) """ function varima(θ::FloatVector, settings::VARIMASettings) # Compute state-space parameters model_instance, _ = varma_structure(θ, settings); output = ImmutableKalmanSettings(model_instance...); # TBD: update the warnings #= # Warning 1: invertibility (in the past) eigval_ma = eigvals(companion_form(output.B[2:end])); if maximum(abs.(eigval_ma)) >= 1 @warn("Invertibility (in the past) is not properly enforced! \n Re-estimate the model increasing the degree of differencing."); end # Warning 2: causality eigval_ar = eigvals(output.C); if maximum(abs.(eigval_ar)) >= 1 @warn("Causality is not properly enforced! \n Re-estimate the model increasing the degree of differencing."); end # Warning 3: parameter redundancy intersection_ar_ma = intersect(eigval_ar, eigval_ma); if length(intersection_ar_ma) > 0 @warn("Parameter redundancy! \n Check the AR and MA polynomials."); end =# # Return output return output end function varima(settings::VARIMASettings, args...; tightness::Float64=1.0) # Starting point θ_starting = 1e-4*ones(settings.nnp+settings.nnq+settings.n); # Bounds lb = [-0.99*ones(settings.nnp+settings.nnq); 1e-6*ones(settings.n)]; ub = [0.99*ones(settings.nnp+settings.nnq); Inf*ones(settings.n)]; transform_id = [2*ones(settings.nnp+settings.nnq); ones(settings.n)] |> Array{Int64,1}; # Estimate the model res = Optim.optimize(θ_unbound->fmin_uc_models(θ_unbound, lb, ub, transform_id, varma_structure, settings, tightness), θ_starting, args...); # Apply bounds θ_minimizer = copy(res.minimizer); for i=1:length(θ_minimizer) if transform_id[i] == 1 θ_minimizer[i] = get_bounded_log(θ_minimizer[i], lb[i]); elseif transform_id[i] == 2 θ_minimizer[i] = get_bounded_logit(θ_minimizer[i], lb[i], ub[i]); end end # Return output return varima(θ_minimizer, settings); end """ arima(settings::VARIMASettings, args...; tightness::Float64=1.0) Define an alias of the varima function for arima models. """ arima(settings::VARIMASettings, args...; tightness::Float64=1.0) = varima(settings, args..., tightness=tightness); """ forecast(settings::KalmanSettings, h::Int64, varima_settings::VARIMASettings) Compute the h-step ahead forecast for the data included in settings (in the varima_settings.Y_levels scale). # Arguments - `settings`: KalmanSettings struct - `h`: Forecast horizon - `varima_settings`: VARIMASettings struct """ function forecast(settings::KalmanSettings, h::Int64, varima_settings::VARIMASettings) # VARIMA if varima_settings.d > 0 Y = zeros(varima_settings.d, varima_settings.n); # Loop over each series for i=1:varima_settings.n # Initialise Y_all Y_all = zeros(varima_settings.d, varima_settings.d); # Last observed point last_observation = findall(.~ismissing.(varima_settings.Y_levels[i,:]))[end]; # The first row of Y_all is the data in levels Y_all[1,:] = varima_settings.Y_levels[i, last_observation-varima_settings.d+1:last_observation]; # Differenced data, ex. (1-L)^d * Y_levels for j=1:varima_settings.d-1 Y_all[1+j,:] = [NaN * ones(1,j) permutedims(diff(Y_all[j,:]))]; end # Cut Y_all Y[:,i] = permutedims(Y_all[:,end]); end # Initial cumulated forecast fc_differenced = forecast(settings, h) .+ varima_settings.μ; fc = zeros(size(fc_differenced)); # Loop over d to compute a prediction for the levels for i=1:varima_settings.n starting_point = findall(.~isnan.(fc_differenced[i,:]))[1]; fc[i,starting_point:end] .= cumsum(fc_differenced[i,starting_point:end], dims=2); for j=varima_settings.d:-1:1 fc[i,starting_point:end] .+= Y[j,i]; if j != 1 fc[i,starting_point:end] = cumsum(fc[i,starting_point:end]); end end end # Insert NaNs fc[isnan.(fc_differenced)] .= NaN; # VARMA else # Compute forecast for varima_settings.Y (adjusted by its mean) fc = forecast(settings, h) .+ varima_settings.μ; end return fc; end
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
code
8461
""" ksettings_input_test(ksettings::KalmanSettings, Y::JArray, B::FloatMatrix, R::SymMatrix, C::FloatMatrix, V::SymMatrix; compute_loglik::Bool=true, store_history::Bool=true) Return true if the entries of ksettings are correct (false otherwise). """ function ksettings_input_test(ksettings::KalmanSettings, Y::JArray, B::FloatMatrix, R::SymMatrix, C::FloatMatrix, V::SymMatrix; compute_loglik::Bool=true, store_history::Bool=true) return ~false in [ksettings.Y == Y; ksettings.B == B; ksettings.R == R; ksettings.C == C; ksettings.V == V; ksettings.compute_loglik == compute_loglik; ksettings.store_history == store_history]; end """ kalman_test(Y::JArray, B::FloatMatrix, R::SymMatrix, C::FloatMatrix, V::SymMatrix, benchmark_data::Tuple) Run a series of tests to check whether the kalman.jl functions work. """ function kalman_test(Y::JArray, B::FloatMatrix, R::SymMatrix, C::FloatMatrix, V::SymMatrix, benchmark_data::Tuple) # Benchmark data benchmark_X0, benchmark_P0, benchmark_X_prior, benchmark_P_prior, benchmark_X_post, benchmark_P_post, benchmark_X_fc, benchmark_P_fc, benchmark_loglik, benchmark_X0_sm, benchmark_P0_sm, benchmark_X_sm, benchmark_P_sm = benchmark_data; # Loop over ImmutableKalmanSettings and MutableKalmanSettings for ksettings_type = [ImmutableKalmanSettings; MutableKalmanSettings] # Tests on KalmanSettings ksettings1 = ksettings_type(Y, B, R, C, V, compute_loglik=true, store_history=true); @test ksettings_input_test(ksettings1, Y, B, R, C, V, compute_loglik=true, store_history=true); ksettings2 = ksettings_type(Y, B, R, C, V, compute_loglik=false, store_history=true); @test ksettings_input_test(ksettings2, Y, B, R, C, V, compute_loglik=false, store_history=true); ksettings3 = ksettings_type(Y, B, R, C, V, compute_loglik=true, store_history=false); @test ksettings_input_test(ksettings3, Y, B, R, C, V, compute_loglik=true, store_history=false); ksettings4 = ksettings_type(Y, B, R, C, V, compute_loglik=false, store_history=false); @test ksettings_input_test(ksettings4, Y, B, R, C, V, compute_loglik=false, store_history=false); ksettings5 = ksettings_type(Y, B, R, C, V); @test ksettings_input_test(ksettings5, Y, B, R, C, V); # Initial conditions @test round.(ksettings1.X0, digits=10) == benchmark_X0; @test round.(ksettings1.P0, digits=10) == benchmark_P0; @test ksettings1.X0 == ksettings2.X0; @test ksettings1.X0 == ksettings3.X0; @test ksettings1.X0 == ksettings4.X0; @test ksettings1.X0 == ksettings5.X0; @test ksettings1.P0 == ksettings2.P0; @test ksettings1.P0 == ksettings3.P0; @test ksettings1.P0 == ksettings4.P0; @test ksettings1.P0 == ksettings5.P0; # Set default ksettings ksettings = ksettings5; # Initialise kstatus kstatus = KalmanStatus(); for t=1:size(Y,2) # Run filter kfilter!(ksettings, kstatus); # A-priori @test round.(kstatus.X_prior, digits=10) == benchmark_X_prior[t]; @test round.(kstatus.P_prior, digits=10) == benchmark_P_prior[t]; # A-posteriori @test round.(kstatus.X_post, digits=10) == benchmark_X_post[t]; @test round.(kstatus.P_post, digits=10) == benchmark_P_post[t]; # 12-step ahead forecast @test round.(kforecast(ksettings, kstatus.X_post, 12)[end], digits=10) == benchmark_X_fc[t]; @test round.(kforecast(ksettings, kstatus.X_post, kstatus.P_post, 12)[1][end], digits=10) == benchmark_X_fc[t]; @test round.(kforecast(ksettings, kstatus.X_post, kstatus.P_post, 12)[2][end], digits=10) == benchmark_P_fc[t]; end # Final value of the loglikelihood @test round.(kstatus.loglik, digits=10) == benchmark_loglik; # Kalman smoother X_sm, P_sm, X0_sm, P0_sm = ksmoother(ksettings, kstatus); for t=1:size(Y,2) @test round.(X_sm[t], digits=10) == benchmark_X_sm[t]; @test round.(P_sm[t], digits=10) == benchmark_P_sm[t]; end @test round.(X0_sm, digits=10) == benchmark_X0_sm; @test round.(P0_sm, digits=10) == benchmark_P0_sm; end end @testset "univariate model" begin # Initialise data and state-space parameters Y = [0.35 0.62 missing missing 1.11 missing 2.76 2.73 3.45 3.66]; B = ones(1,1); R = Symmetric(1e-4*ones(1,1)); C = 0.9*ones(1,1); V = Symmetric(ones(1,1)); # Correct estimates: initial conditions benchmark_X0 = read_test_input("./input/univariate/benchmark_X0"); benchmark_P0 = read_test_input("./input/univariate/benchmark_P0"); # Correct estimates: a priori benchmark_X_prior = read_test_input("./input/univariate/benchmark_X_prior"); benchmark_P_prior = read_test_input("./input/univariate/benchmark_P_prior"); # Correct estimates: a posteriori benchmark_X_post = read_test_input("./input/univariate/benchmark_X_post"); benchmark_P_post = read_test_input("./input/univariate/benchmark_P_post"); # Correct estimates: 12-step ahead forecast benchmark_X_fc = read_test_input("./input/univariate/benchmark_X_fc"); benchmark_P_fc = read_test_input("./input/univariate/benchmark_P_fc"); # Correct estimates: loglikelihood benchmark_loglik = read_test_input("./input/univariate/benchmark_loglik")[1]; # Correct estimates: kalman smoother (smoothed initial conditions) benchmark_X0_sm = read_test_input("./input/univariate/benchmark_X0_sm"); benchmark_P0_sm = read_test_input("./input/univariate/benchmark_P0_sm"); # Correct estimates: kalman smoother benchmark_X_sm = read_test_input("./input/univariate/benchmark_X_sm"); benchmark_P_sm = read_test_input("./input/univariate/benchmark_P_sm"); # Benchmark data benchmark_data = (benchmark_X0, benchmark_P0, benchmark_X_prior, benchmark_P_prior, benchmark_X_post, benchmark_P_post, benchmark_X_fc, benchmark_P_fc, benchmark_loglik, benchmark_X0_sm, benchmark_P0_sm, benchmark_X_sm, benchmark_P_sm); # Run tests kalman_test(Y, B, R, C, V, benchmark_data); end @testset "multivariate model" begin # Initialise data and state-space parameters Y = [0.72 missing 1.86 missing missing 2.52 2.98 3.81 missing 4.36; 0.95 0.70 missing missing missing missing 2.84 3.88 3.84 4.63]; B = [1.0 0.0; 1.0 1.0]; R = Symmetric(1e-4*Matrix(I,2,2)); C = [0.9 0.0; 0.0 0.1]; V = Symmetric(1.0*Matrix(I,2,2)); # Correct estimates: initial conditions benchmark_X0 = read_test_input("./input/multivariate/benchmark_X0"); benchmark_P0 = read_test_input("./input/multivariate/benchmark_P0"); # Correct estimates: a priori benchmark_X_prior = read_test_input("./input/multivariate/benchmark_X_prior"); benchmark_P_prior = read_test_input("./input/multivariate/benchmark_P_prior"); # Correct estimates: a posteriori benchmark_X_post = read_test_input("./input/multivariate/benchmark_X_post"); benchmark_P_post = read_test_input("./input/multivariate/benchmark_P_post"); # Correct estimates: 12-step ahead forecast benchmark_X_fc = read_test_input("./input/multivariate/benchmark_X_fc"); benchmark_P_fc = read_test_input("./input/multivariate/benchmark_P_fc"); # Correct estimates: loglikelihood benchmark_loglik = read_test_input("./input/multivariate/benchmark_loglik")[1]; # Correct estimates: kalman smoother (smoothed initial conditions) benchmark_X0_sm = read_test_input("./input/multivariate/benchmark_X0_sm"); benchmark_P0_sm = read_test_input("./input/multivariate/benchmark_P0_sm"); # Correct estimates: kalman smoother benchmark_X_sm = read_test_input("./input/multivariate/benchmark_X_sm"); benchmark_P_sm = read_test_input("./input/multivariate/benchmark_P_sm"); # Benchmark data benchmark_data = (benchmark_X0, benchmark_P0, benchmark_X_prior, benchmark_P_prior, benchmark_X_post, benchmark_P_post, benchmark_X_fc, benchmark_P_fc, benchmark_loglik, benchmark_X0_sm, benchmark_P0_sm, benchmark_X_sm, benchmark_P_sm); # Run tests kalman_test(Y, B, R, C, V, benchmark_data); end
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
code
100
include("./tools.jl"); include("./kalman.jl"); include("./subsampling.jl"); include("./varima.jl");
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
code
1545
""" subsampling_test(folder_name::String, subsampling_method::Function, args...) Run a series of tests to check whether the subsampling functions in subsampling.jl work. """ function subsampling_test(folder_name::String, subsampling_method::Function, args...) # Load data Y = read_test_input("./input/subsampling/data"); # Copy Y and subsample Y_copy = deepcopy(Y); args_copy = deepcopy(args); # Run `subsampling_method` with fixed random seed Random.seed!(1); output = subsampling_method(Y, args...); # Load benchmark output benchmark = read_test_input("./input/subsampling/$(folder_name)/output_chunk1"); benchmark_size = length(readdir("./input/subsampling/$(folder_name)")); for i=2:size(output,3) benchmark = cat(dims=3, benchmark, read_test_input("./input/subsampling/$(folder_name)/output_chunk$(i)")); end # Run tests @test Y_copy == Y; @test args_copy == args; @test size(output,3) == benchmark_size; @test sum(output .=== benchmark) == prod(size(output)); end @testset "block jackknife" begin subsampling_test("block_jackknife", block_jackknife, 0.2) end @testset "artificial jackknife" begin subsampling_test("artificial_jackknife", artificial_jackknife, 0.2, 100) end @testset "moving block bootstrap" begin subsampling_test("moving_block_bootstrap", moving_block_bootstrap, 0.2, 100) end @testset "stationary block bootstrap" begin subsampling_test("stationary_block_bootstrap", stationary_block_bootstrap, 0.2, 100) end
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
code
522
using LinearAlgebra, Optim, Random, Test, TSAnalysis; """ read_test_input(filepath::String) Read input data necessary to run the test for the Kalman routines. It does not use external dependencies to read input files. """ function read_test_input(filepath::String) # Load CSV into Array{SubString{String},1} data_str = split(read(open("$filepath.txt"), String), "\n"); deleteat!(data_str, findall(x->x=="", data_str)); # Return output data = eval(Meta.parse(data_str[1])); return data; end
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
code
5541
""" varima_test(Y::Array{Float64,2}, d::Int64, p::Int64, q::Int64, benchmark_data::Tuple) Run a series of tests to check whether the varima functions in uc_models.jl work. """ function varima_test(Y::JArray{Float64,2}, d::Int64, p::Int64, q::Int64, benchmark_data::Tuple) # Benchmark data benchmark_X0, benchmark_P0, benchmark_B, benchmark_R, benchmark_C, benchmark_V, benchmark_fc = benchmark_data; # Tests on VARIMASettings varima_settings = VARIMASettings(Y, d, p, q); @test varima_settings.d == d; @test varima_settings.p == p; @test varima_settings.q == q; @test varima_settings.n == size(Y,1); @test varima_settings.nr == size(Y,1)*max(p, q+1); @test varima_settings.np == size(Y,1)*p; @test varima_settings.nq == size(Y,1)*q; @test varima_settings.nnp == size(Y,1)^2*p; @test varima_settings.nnq == size(Y,1)^2*q; # Estimate parameters varima_out = varima(varima_settings, NelderMead(), Optim.Options(iterations=10000, f_tol=1e-2, x_tol=1e-2, g_tol=1e-2, show_trace=true, show_every=500)); # Test on the parameters @test round.(varima_out.B, digits=10) == benchmark_B; @test round.(varima_out.R, digits=10) == benchmark_R; @test round.(varima_out.C, digits=10) == benchmark_C; @test round.(varima_out.V, digits=10) == benchmark_V; @test round.(varima_out.X0, digits=10) == benchmark_X0; @test round.(varima_out.P0, digits=10) == benchmark_P0; # 12-step ahead forecast fc = forecast(varima_out, 12, varima_settings); @test round.(fc, digits=10) == benchmark_fc; end @testset "arma" begin # Load data Y = permutedims(read_test_input("./input/arma/data")); # Settings for ARMA(1,1) d = 0; p = 1; q = 1; # Correct estimates: initial conditions benchmark_X0 = read_test_input("./input/arma/benchmark_X0"); benchmark_P0 = read_test_input("./input/arma/benchmark_P0"); # Correct estimates: observation equation benchmark_B = read_test_input("./input/arma/benchmark_B"); benchmark_R = read_test_input("./input/arma/benchmark_R"); # Correct estimates: transition equation benchmark_C = read_test_input("./input/arma/benchmark_C"); benchmark_V = read_test_input("./input/arma/benchmark_V"); # Correct estimates: forecast benchmark_fc = read_test_input("./input/arma/benchmark_fc"); # Benchmark data benchmark_data = (benchmark_X0, benchmark_P0, benchmark_B, benchmark_R, benchmark_C, benchmark_V, benchmark_fc); # Run tests varima_test(Y, d, p, q, benchmark_data); end @testset "arima" begin # Load data Y = permutedims(read_test_input("./input/arima/data")); # Settings for arima(1,1) d = 1; p = 1; q = 1; # Correct estimates: initial conditions benchmark_X0 = read_test_input("./input/arima/benchmark_X0"); benchmark_P0 = read_test_input("./input/arima/benchmark_P0"); # Correct estimates: observation equation benchmark_B = read_test_input("./input/arima/benchmark_B"); benchmark_R = read_test_input("./input/arima/benchmark_R"); # Correct estimates: transition equation benchmark_C = read_test_input("./input/arima/benchmark_C"); benchmark_V = read_test_input("./input/arima/benchmark_V"); # Correct estimates: forecast benchmark_fc = read_test_input("./input/arima/benchmark_fc"); # Benchmark data benchmark_data = (benchmark_X0, benchmark_P0, benchmark_B, benchmark_R, benchmark_C, benchmark_V, benchmark_fc); # Run tests varima_test(Y, d, p, q, benchmark_data); end @testset "varma" begin # Load data Y = read_test_input("./input/varma/data"); # Settings for ARMA(1,1) d = 0; p = 1; q = 1; # Correct estimates: initial conditions benchmark_X0 = read_test_input("./input/varma/benchmark_X0"); benchmark_P0 = read_test_input("./input/varma/benchmark_P0"); # Correct estimates: observation equation benchmark_B = read_test_input("./input/varma/benchmark_B"); benchmark_R = read_test_input("./input/varma/benchmark_R"); # Correct estimates: transition equation benchmark_C = read_test_input("./input/varma/benchmark_C"); benchmark_V = read_test_input("./input/varma/benchmark_V"); # Correct estimates: forecast benchmark_fc = read_test_input("./input/varma/benchmark_fc"); # Benchmark data benchmark_data = (benchmark_X0, benchmark_P0, benchmark_B, benchmark_R, benchmark_C, benchmark_V, benchmark_fc); # Run tests varima_test(Y, d, p, q, benchmark_data); end @testset "varima" begin # Load data Y = read_test_input("./input/varima/data"); # Settings for ARMA(1,1) d = 1; p = 1; q = 1; # Correct estimates: initial conditions benchmark_X0 = read_test_input("./input/varima/benchmark_X0"); benchmark_P0 = read_test_input("./input/varima/benchmark_P0"); # Correct estimates: observation equation benchmark_B = read_test_input("./input/varima/benchmark_B"); benchmark_R = read_test_input("./input/varima/benchmark_R"); # Correct estimates: transition equation benchmark_C = read_test_input("./input/varima/benchmark_C"); benchmark_V = read_test_input("./input/varima/benchmark_V"); # Correct estimates: forecast benchmark_fc = read_test_input("./input/varima/benchmark_fc"); # Benchmark data benchmark_data = (benchmark_X0, benchmark_P0, benchmark_B, benchmark_R, benchmark_C, benchmark_V, benchmark_fc); # Run tests varima_test(Y, d, p, q, benchmark_data); end
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "BSD-3-Clause" ]
0.1.4
8a4516144f4b231223cfeb2ed99e37644ad7e1d0
docs
15059
# TSAnalysis.jl ```TSAnalysis``` includes basic tools for time series analysis, compatible with incomplete data. ```julia import Pkg; Pkg.add("TSAnalysis") ``` ## Preface The Kalman filter and smoother included in this package use symmetric matrices (via ```LinearAlgebra```). This is particularly beneficial for the stability and speed of estimation algorithms (e.g., the EM algorithm in Shumway and Stoffer, 1982), and to handle high-dimensional forecasting problems. For the examples below, I used economic data from FRED (https://fred.stlouisfed.org/) downloaded via the ```FredData``` package. The dependencies for the examples can be installed via: ```julia import Pkg; Pkg.add("FredData"); Pkg.add("Optim"); Pkg.add("Plots"); Pkg.add("Measures"); ``` Make sure that your FRED API is accessible to ```FredData``` (as in https://github.com/micahjsmith/FredData.jl). To run the examples below, execute first the following block of code: ```julia using Dates, DataFrames, LinearAlgebra, FredData, Optim, Plots, Measures; using TSAnalysis; # Plots backend plotlyjs(); # Initialise FredData f = Fred(); """ download_fred_vintage(tickers::Array{String,1}, transformations::Array{String,1}) Download multivariate data from FRED2. """ function download_fred_vintage(tickers::Array{String,1}, transformations::Array{String,1}) # Initialise output output_data = DataFrame(); # Loop over tickers for i=1:length(tickers) # Download from FRED2 fred_data = get_data(f, tickers[i], observation_start="1984-01-01", units=transformations[i]).data[:, [:date, :value]]; rename!(fred_data, Symbol.(["date", tickers[i]])); # Store current vintage if i == 1 output_data = copy(fred_data); else output_data = join(output_data, fred_data, on=:date, kind = :outer); end end # Return output return output_data; end ``` ## Examples - [ARIMA models](#arima-models) - [VARIMA models](#varima-models) - [Kalman filter and smoother](#kalman-filter-and-smoother) - [Estimation of state-space models](#estimation-of-state-space-models) - [Bootstrap and jackknife subsampling](#subsampling) ### ARIMA models #### Data Use the following lines of code to download the data for the examples on the ARIMA models: ```julia # Download data of interest Y_df = download_fred_vintage(["INDPRO"], ["log"]); # Convert to JArray{Float64} Y = Y_df[:,2:end] |> JArray{Float64}; Y = permutedims(Y); ``` #### Estimation Suppose that we want to estimate an ARIMA(1,1,1) model for the Industrial Production Index. ```TSAnalysis``` provides a simple interface for that: ```julia # Estimation settings for an ARIMA(1,1,1) d = 1; p = 1; q = 1; arima_settings = ARIMASettings(Y, d, p, q); # Estimation arima_out = arima(arima_settings, NelderMead(), Optim.Options(iterations=10000, f_tol=1e-2, x_tol=1e-2, g_tol=1e-2, show_trace=true, show_every=500)); ``` Please note that in the estimation process of the underlying ARMA(p,q), the model is constrained to be causal and invertible in the past by default, for all candidate parameters. This behaviour can be controlled via the ```tightness``` keyword argument of the ```arima``` function. #### Forecast The standard forecast function generates prediction for the data in levels. In the example above, this implies that the standard forecast would be referring to industrial production in log-levels: ```julia # 12-step ahead forecast max_hz = 12; fc = forecast(arima_out, max_hz, arima_settings); ``` This can be easily plotted via ```julia # Extend date vector date_ext = Y_df[!,:date] |> Array{Date,1}; for hz=1:max_hz last_month = month(date_ext[end]); last_year = year(date_ext[end]); if last_month == 12 last_month = 1; last_year += 1; else last_month += 1; end push!(date_ext, Date("01/$(last_month)/$(last_year)", "dd/mm/yyyy")) end # Generate plot p_arima = plot(date_ext, [Y[1,:]; NaN*ones(max_hz)], label="Data", color=RGB(0,0,200/255), xtickfont=font(8, "Helvetica Neue"), ytickfont=font(8, "Helvetica Neue"), title="INDPRO", titlefont=font(10, "Helvetica Neue"), framestyle=:box, legend=:right, size=(800,250), dpi=300, margin = 5mm); plot!(date_ext, [NaN*ones(length(date_ext)-size(fc,2)); fc[1,:]], label="Forecast", color=RGB(0,0,200/255), line=:dot) ``` <img src="./img/arima.svg"> ### VARIMA models #### Data Use the following lines of code to download the data for the examples on the VARIMA models: ```julia # Tickers for data of interest tickers = ["INDPRO", "PAYEMS", "CPIAUCSL"]; # Transformations for data of interest transformations = ["log", "log", "log"]; # Download data of interest Y_df = download_fred_vintage(tickers, transformations); # Convert to JArray{Float64} Y = Y_df[:,2:end] |> JArray{Float64}; Y = permutedims(Y); ``` #### Estimation Suppose that we want to estimate a VARIMA(1,1,1) model. This can be done using: ```julia # Estimation settings for a VARIMA(1,1,1) d = 1; p = 1; q = 1; varima_settings = VARIMASettings(Y, d, p, q); # Estimation varima_out = varima(varima_settings, NelderMead(), Optim.Options(iterations=20000, f_tol=1e-2, x_tol=1e-2, g_tol=1e-2, show_trace=true, show_every=500)); ``` Please note that in the estimation process of the underlying VARMA(p,q), the model is constrained to be causal and invertible in the past by default, for all candidate parameters. This behaviour can be controlled via the ```tightness``` keyword argument of the ```varima``` function. #### Forecast The standard forecast function generates prediction for the data in levels. In the example above, this implies that the standard forecast would be referring to data in log-levels: ```julia # 12-step ahead forecast max_hz = 12; fc = forecast(varima_out, max_hz, varima_settings); ``` This can be easily plotted via ```julia # Extend date vector date_ext = Y_df[!,:date] |> Array{Date,1}; for hz=1:max_hz last_month = month(date_ext[end]); last_year = year(date_ext[end]); if last_month == 12 last_month = 1; last_year += 1; else last_month += 1; end push!(date_ext, Date("01/$(last_month)/$(last_year)", "dd/mm/yyyy")) end # Generate plot figure = Array{Any,1}(undef, varima_settings.n) for i=1:varima_settings.n figure[i] = plot(date_ext, [Y[i,:]; NaN*ones(max_hz)], label="Data", color=RGB(0,0,200/255), xtickfont=font(8, "Helvetica Neue"), ytickfont=font(8, "Helvetica Neue"), title=tickers[i], titlefont=font(10, "Helvetica Neue"), framestyle=:box, legend=:right, size=(800,250), dpi=300, margin = 5mm); plot!(date_ext, [NaN*ones(length(date_ext)-size(fc,2)); fc[i,:]], label="Forecast", color=RGB(0,0,200/255), line=:dot); end ``` Industrial production (log-levels) ```julia figure[1] ``` <img src="./img/varima_p1.svg"> Non-farm payrolls (log-levels) ```julia figure[2] ``` <img src="./img/varima_p2.svg"> Headline CPI (log-levels) ```julia figure[3] ``` <img src="./img/varima_p3.svg"> ### Kalman filter and smoother #### Data The following examples show how to perform a standard univariate state-space decomposition (local linear trend + seasonal + noise decomposition) using the implementations of the Kalman filter and smoother in ```TSAnalysis```. These examples use non-seasonally adjusted (NSA) data that can be downloaded via: ```julia # Download data of interest Y_df = download_fred_vintage(["IPGMFN"], ["log"]); # Convert to JArray{Float64} Y = Y_df[:,2:end] |> JArray{Float64}; Y = permutedims(Y); ``` #### Kalman filter ```julia # Initialise the Kalman filter and smoother status kstatus = KalmanStatus(); # Specify the state-space structure # Observation equation B = hcat([1.0 0.0], [[1.0 0.0] for j=1:6]...); R = Symmetric(ones(1,1)*0.01); # Transition equation C = cat(dims=[1,2], [1.0 1.0; 0.0 1.0], [[cos(2*pi*j/12) sin(2*pi*j/12); -sin(2*pi*j/12) cos(2*pi*j/12)] for j=1:6]...); V = Symmetric(cat(dims=[1,2], [1e-4 0.0; 0.0 1e-4], 1e-4*Matrix(I,12,12))); # Initial conditions X0 = zeros(14); P0 = Symmetric(cat(dims=[1,2], 1e3*Matrix(I,2,2), 1e3*Matrix(I,12,12))); # Settings ksettings = ImmutableKalmanSettings(Y, B, R, C, V, X0, P0); # Filter for t = 1, ..., T (the output is dynamically stored into kstatus) for t=1:size(Y,2) kfilter!(ksettings, kstatus); end # Filtered trend trend_llts = hcat(kstatus.history_X_post...)[1,:]; ``` #### Kalman filter (out-of-sample forecast) ```TSAnalysis``` allows to compute *h*-step ahead forecasts for the latent states without resetting the Kalman filter. This is particularly efficient for applications wherein the number of observed time periods is particularly large, or for heavy out-of-sample exercises. An easy way to compute the 12-step ahead prediction is to edit the block ```julia # Filter for t = 1, ..., T (the output is dynamically stored into kstatus) for t=1:size(Y,1) kfilter!(ksettings, kstatus); end ``` into ```julia # Initialise forecast history forecast_history = Array{Array{Float64,1},1}(); # 12-step ahead forecast max_hz = 12; # Filter for t = 1, ..., T (the output is dynamically stored into kstatus) for t=1:size(Y,1) kfilter!(ksettings, kstatus); # Multiplying for B gives the out-of-sample forecast of the data push!(forecast_history, (B*hcat(kforecast(ksettings, kstatus.X_post, max_hz)...))[:]); end ``` #### Kalman smoother At any point in time, the Kalman smoother can be executed via ```julia history_Xs, history_Ps, X0s, P0s = ksmoother(ksettings, kstatus); ``` ### Estimation of state-space models State-space models without a high-level interface can be estimated using ```TSAnalysis``` and ```Optim``` jointly. The state-space model described in the previous section can be estimated following the steps below. ```julia function llt_seasonal_noise(θ_bound, Y, s) # Initialise the Kalman filter and smoother status kstatus = KalmanStatus(); # Specify the state-space structure s_half = Int64(s/2); # Observation equation B = hcat([1.0 0.0], [[1.0 0.0] for j=1:s_half]...); R = Symmetric(ones(1,1)*θ_bound[1]); # Transition equation C = cat(dims=[1,2], [1.0 1.0; 0.0 1.0], [[cos(2*pi*j/s) sin(2*pi*j/s); -sin(2*pi*j/s) cos(2*pi*j/s)] for j=1:s_half]...); V = Symmetric(cat(dims=[1,2], [θ_bound[2] 0.0; 0.0 θ_bound[3]], θ_bound[4]*Matrix(I,s,s))); # Initial conditions X0 = zeros(2+s); P0 = Symmetric(cat(dims=[1,2], 1e3*Matrix(I,2+s,2+s))); # Settings ksettings = ImmutableKalmanSettings(Y, B, R, C, V, X0, P0); # Filter for t = 1, ..., T (the output is dynamically stored into kstatus) for t=1:size(Y,2) kfilter!(ksettings, kstatus); end return ksettings, kstatus; end function fmin(θ_unbound, Y; s::Int64=12) # Apply bounds θ_bound = copy(θ_unbound); for i=1:length(θ_bound) θ_bound[i] = TSAnalysis.get_bounded_log(θ_bound[i], 1e-8); end # Compute loglikelihood ksettings, kstatus = llt_seasonal_noise(θ_bound, Y, s) # Return -loglikelihood return -kstatus.loglik; end # Starting point θ_starting = 1e-8*ones(4); # Estimate the model res = Optim.optimize(θ_unbound->fmin(θ_unbound, Y, s=12), θ_starting, NelderMead(), Optim.Options(iterations=10000, f_tol=1e-4, x_tol=1e-4, show_trace=true, show_every=500)); # Apply bounds θ_bound = copy(res.minimizer); for i=1:length(θ_bound) θ_bound[i] = TSAnalysis.get_bounded_log(θ_bound[i], 1e-8); end ``` More options for the optimisation can be found at https://github.com/JuliaNLSolvers/Optim.jl. The results of the estimation can be visualised using ```Plots```. ```julia # Kalman smoother estimates ksettings, kstatus = llt_seasonal_noise(θ_bound, Y, 12); history_Xs, history_Ps, X0s, P0s = ksmoother(ksettings, kstatus); # Data vs trend p_trend = plot(Y_df[!,:date], permutedims(Y), label="Data", color=RGB(185/255,185/255,185/255), xtickfont=font(8, "Helvetica Neue"), ytickfont=font(8, "Helvetica Neue"), title="IPGMFN", titlefont=font(10, "Helvetica Neue"), framestyle=:box, legend=:right, size=(800,250), dpi=300, margin = 5mm); plot!(Y_df[!,:date], hcat(history_Xs...)[1,:], label="Trend", color=RGB(0,0,200/255)) ``` <img src="./img/ks_trend.svg"> and ```julia # Slope (of the trend) p_slope = plot(Y_df[!,:date], hcat(history_Xs...)[2,:], label="Slope", color=RGB(0,0,200/255), xtickfont=font(8, "Helvetica Neue"), ytickfont=font(8, "Helvetica Neue"), titlefont=font(10, "Helvetica Neue"), framestyle=:box, legend=:right, size=(800,250), dpi=300, margin = 5mm) ``` <img src="./img/ks_slope_trend.svg"> ### Bootstrap and jackknife subsampling ```TSAnalysis``` provides support for the bootstrap and jackknife subsampling methods introduced in Kunsch (1989), Liu and Singh (1992), Pellegrino (2020), Politis and Romano (1994): * Artificial delete-*d* jackknife * Block bootstrap * Block jackknife * Stationary bootstrap #### Data Use the following lines of code to download the data for the examples below: ```julia # Tickers for data of interest tickers = ["INDPRO", "PAYEMS", "CPIAUCSL"]; # Transformations for data of interest transformations = ["log", "log", "log"]; # Download data of interest Y_df = download_fred_vintage(tickers, transformations); # Convert to JArray{Float64} Y = Y_df[:,2:end] |> JArray{Float64}; Y = 100*permutedims(diff(Y, dims=1)); ``` #### Subsampling ##### Artificial delete-*d* jackknife ```julia # Optimal d. See Pellegrino (2020) for more details. d_hat = optimal_d(size(Y)...); # 100 artificial jackknife samples output_ajk = artificial_jackknife(Y, d_hat/prod(size(Y)), 100); ``` ##### Block bootstrap ```julia # Block size block_size = 10; # 100 block bootstrap samples output_bb = moving_block_bootstrap(Y, block_size/size(Y,2), 100); ``` ##### Block jackknife ```julia # Block size block_size = 10; # Block jackknife samples (full collection) output_bjk = block_jackknife(Y, block_size/size(Y,2)); ``` ##### Stationary bootstrap ```julia # Average block size avg_block_size = 10; # 100 stationary bootstrap samples output_sb = stationary_block_bootstrap(Y, avg_block_size/size(Y,2), 100); ``` ## Bibliography * Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. The annals of Statistics, 1217-1241. * Liu, R. Y., & Singh, K. (1992). Moving blocks jackknife and bootstrap capture weak dependence. Exploring the limits of bootstrap, 225, 248. * Pellegrino, F. (2020). Selecting time-series hyperparameters with the artificial jackknife. arXiv preprint arXiv:2002.04697. * Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the American Statistical association, 89(428), 1303-1313. * Shumway, R. H., & Stoffer, D. S. (1982). An approach to time series smoothing and forecasting using the EM algorithm. Journal of time series analysis, 3(4), 253-264.
TSAnalysis
https://github.com/fipelle/TSAnalysis.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
636
using Documenter, Surrogates cp("./docs/Manifest.toml", "./docs/src/assets/Manifest.toml", force = true) cp("./docs/Project.toml", "./docs/src/assets/Project.toml", force = true) # Make sure that plots don't throw a bunch of warnings / errors! ENV["GKSwstype"] = "100" using Plots include("pages.jl") makedocs(sitename = "Surrogates.jl", linkcheck = true, warnonly = [:missing_docs], format = Documenter.HTML(analytics = "UA-90474609-3", assets = ["assets/favicon.ico"], canonical = "https://docs.sciml.ai/Surrogates/stable/"), pages = pages) deploydocs(repo = "github.com/SciML/Surrogates.jl.git")
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1796
pages = ["index.md" "Tutorials" => [ "Basics" => "tutorials.md", "Radials" => "radials.md", "Kriging" => "kriging.md", "Gaussian Process" => "abstractgps.md", "Lobachevsky" => "lobachevsky.md", "Linear" => "LinearSurrogate.md", "InverseDistance" => "InverseDistance.md", "RandomForest" => "randomforest.md", "SecondOrderPolynomial" => "secondorderpoly.md", "NeuralSurrogate" => "neural.md", "Wendland" => "wendland.md", "Polynomial Chaos" => "polychaos.md", "Variable Fidelity" => "variablefidelity.md", "Gradient Enhanced Kriging" => "gek.md", "GEKPLS" => "gekpls.md", "MOE" => "moe.md", "Parallel Optimization" => "parallel.md" ] "User guide" => [ "Samples" => "samples.md", "Surrogates" => "surrogate.md", "Optimization" => "optimizations.md" ] "Benchmarks" => [ "Sphere function" => "sphere_function.md", "Lp norm" => "lp.md", "Rosenbrock" => "rosenbrock.md", "Tensor product" => "tensor_prod.md", "Cantilever beam" => "cantilever.md", "Water Flow function" => "water_flow.md", "Welded beam function" => "welded_beam.md", "Branin function" => "BraninFunction.md", "Improved Branin function" => "ImprovedBraninFunction.md", "Ackley function" => "ackley.md", "Gramacy & Lee Function" => "gramacylee.md", "Salustowicz Benchmark" => "Salustowicz.md", "Multi objective optimization" => "multi_objective_opt.md" ]]
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1559
module SurrogatesAbstractGPs import Surrogates: add_point!, AbstractSurrogate, std_error_at_point, _check_dimension export AbstractGPSurrogate, var_at_point, logpdf_surrogate using AbstractGPs mutable struct AbstractGPSurrogate{X, Y, GP, GP_P, S} <: AbstractSurrogate x::X y::Y gp::GP gp_posterior::GP_P Σy::S end # constructor function AbstractGPSurrogate(x, y; gp = GP(Matern52Kernel()), Σy = 0.1) AbstractGPSurrogate(x, y, gp, posterior(gp(x, Σy), y), Σy) end # predictor function (g::AbstractGPSurrogate)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(g, val) return only(mean(g.gp_posterior([val]))) end # for add point # copies of x and y need to be made because we get #"Error: cannot resize array with shared data " if we push! directly to x and y function add_point!(g::AbstractGPSurrogate, new_x, new_y) if new_x in g.x println("Adding a sample that already exists, cannot build AbstracgGPSurrogate.") return end x_copy = copy(g.x) push!(x_copy, new_x) y_copy = copy(g.y) push!(y_copy, new_y) updated_posterior = posterior(g.gp(x_copy, g.Σy), y_copy) g.x, g.y, g.gp_posterior = x_copy, y_copy, updated_posterior nothing end function std_error_at_point(g::AbstractGPSurrogate, val) return sqrt(only(var(g.gp_posterior([val])))) end # Log marginal posterior predictive probability. function logpdf_surrogate(g::AbstractGPSurrogate) return logpdf(g.gp_posterior(g.x), g.y) end end # module
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
4675
using SafeTestsets, Test using Surrogates: sample, SobolSample @safetestset "AbstractGPSurrogate" begin using Surrogates using SurrogatesAbstractGPs using AbstractGPs using Zygote @testset "1D -> 1D" begin lb = 0.0 ub = 3.0 f = x -> log(x) * exp(x) x = sample(5, lb, ub, SobolSample()) y = f.(x) agp1D = AbstractGPSurrogate(x, y, gp = GP(SqExponentialKernel()), Σy = 0.05) x_new = 2.5 y_actual = f.(x_new) y_predicted = agp1D([x_new]) @test isapprox(y_predicted, y_actual, atol = 0.1) end @testset "add points 1D" begin lb = 0.0 ub = 3.0 f = x -> x^2 x_points = sample(5, lb, ub, SobolSample()) y_points = f.(x_points) agp1D = AbstractGPSurrogate([x_points[1]], [y_points[1]], gp = GP(SqExponentialKernel()), Σy = 0.05) x_new = 2.5 y_actual = f.(x_new) for i in 2:length(x_points) add_point!(agp1D, x_points[i], y_points[i]) end y_predicted = agp1D([x_new]) @test isapprox(y_predicted, y_actual, atol = 0.1) end @testset "2D -> 1D" begin lb = [0.0; 0.0] ub = [2.0; 2.0] log_exp_f = x -> log(x[1]) * exp(x[2]) x = sample(50, lb, ub, SobolSample()) y = log_exp_f.(x) agp_2D = AbstractGPSurrogate(x, y) x_new_2D = (2.0, 1.0) y_actual = log_exp_f(x_new_2D) y_predicted = agp_2D(x_new_2D) @test isapprox(y_predicted, y_actual, atol = 0.1) end @testset "add points 2D" begin lb = [0.0; 0.0] ub = [2.0; 2.0] sphere = x -> x[1]^2 + x[2]^2 x = sample(20, lb, ub, SobolSample()) y = sphere.(x) agp_2D = AbstractGPSurrogate([x[1]], [y[1]]) logpdf_vals = [] push!(logpdf_vals, logpdf_surrogate(agp_2D)) for i in 2:length(x) add_point!(agp_2D, x[i], y[i]) push!(logpdf_vals, logpdf_surrogate(agp_2D)) end @test first(logpdf_vals) < last(logpdf_vals) #as more points are added log marginal posterior predictive probability increases end @testset "check ND prediction" begin lb = [-1.0; -1.0; -1.0] ub = [1.0; 1.0; 1.0] f = x -> hypot(x...) x = sample(25, lb, ub, SobolSample()) y = f.(x) agpND = AbstractGPSurrogate(x, y, gp = GP(SqExponentialKernel()), Σy = 0.05) x_new = (-0.8, 0.8, 0.8) @test agpND(x_new)≈f(x_new) atol=0.2 end @testset "Optimization 1D" begin objective_function = x -> 2 * x + 1 lb = 0.0 ub = 6.0 x = [2.0, 4.0, 6.0] y = [5.0, 9.0, 13.0] p = 2 a = 2 b = 6 my_k_EI1 = AbstractGPSurrogate(x, y) surrogate_optimize(objective_function, EI(), a, b, my_k_EI1, RandomSample(), maxiters = 200, num_new_samples = 155) end @testset "Optimization ND" begin objective_function_ND = z -> 3 * hypot(z...) + 1 x = [(1.2, 3.0), (3.0, 3.5), (5.2, 5.7)] y = objective_function_ND.(x) theta = [2.0, 2.0] lb = [1.0, 1.0] ub = [6.0, 6.0] my_k_E1N = AbstractGPSurrogate(x, y) surrogate_optimize(objective_function_ND, EI(), lb, ub, my_k_E1N, RandomSample()) end @testset "check working of logpdf_surrogate 1D" begin lb = 0.0 ub = 3.0 f = x -> log(x) * exp(x) x = sample(5, lb, ub, SobolSample()) y = f.(x) agp1D = AbstractGPSurrogate(x, y, gp = GP(SqExponentialKernel()), Σy = 0.05) logpdf_surrogate(agp1D) end @testset "check working of logpdf_surrogate ND" begin lb = [0.0; 0.0] ub = [2.0; 2.0] f = x -> log(x[1]) * exp(x[2]) x = sample(5, lb, ub, SobolSample()) y = f.(x) agpND = AbstractGPSurrogate(x, y, gp = GP(SqExponentialKernel()), Σy = 0.05) logpdf_surrogate(agpND) end lb = 0.0 ub = 3.0 n = 10 x = sample(n, lb, ub, SobolSample()) f = x -> x^2 y = f.(x) #AbstractGP 1D @testset "AbstractGP 1D" begin agp1D = AbstractGPSurrogate(x, y, gp = GP(SqExponentialKernel()), Σy = 0.05) g = x -> agp1D'(x) g([2.0]) end lb = [0.0, 0.0] ub = [10.0, 10.0] n = 5 x = sample(n, lb, ub, SobolSample()) f = x -> x[1] * x[2] y = f.(x) # AbstractGP ND @testset "AbstractGPSurrogate ND" begin my_agp = AbstractGPSurrogate(x, y, gp = GP(SqExponentialKernel()), Σy = 0.05) g = x -> Zygote.gradient(my_agp, x) #g([(2.0,5.0)]) g((2.0, 5.0)) end end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1570
module SurrogatesFlux import Surrogates: add_point!, AbstractSurrogate, _check_dimension export NeuralSurrogate using Flux mutable struct NeuralSurrogate{X, Y, M, L, O, P, N, A, U} <: AbstractSurrogate x::X y::Y model::M loss::L opt::O ps::P n_echos::N lb::A ub::U end """ NeuralSurrogate(x,y,lb,ub,model,loss,opt,n_echos) - model: Flux layers - loss: loss function - opt: optimization function """ function NeuralSurrogate(x, y, lb, ub; model = Chain(Dense(length(x[1]), 1), first), loss = (x, y) -> Flux.mse(model(x), y), opt = Descent(0.01), n_echos::Int = 1) X = vec.(collect.(x)) data = zip(X, y) ps = Flux.params(model) for epoch in 1:n_echos Flux.train!(loss, ps, data, opt) end return NeuralSurrogate(x, y, model, loss, opt, ps, n_echos, lb, ub) end function (my_neural::NeuralSurrogate)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(my_neural, val) v = [val...] out = my_neural.model(v) if length(out) == 1 return out[1] else return out end end function add_point!(my_n::NeuralSurrogate, x_new, y_new) if eltype(x_new) == eltype(my_n.x) append!(my_n.x, x_new) append!(my_n.y, y_new) else push!(my_n.x, x_new) push!(my_n.y, y_new) end X = vec.(collect.(my_n.x)) data = zip(X, my_n.y) for epoch in 1:(my_n.n_echos) Flux.train!(my_n.loss, my_n.ps, data, my_n.opt) end nothing end end # module
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
4695
using SafeTestsets @safetestset "SurrogatesFlux" begin using Surrogates using Surrogates: SobolSample using Flux using SurrogatesFlux using LinearAlgebra using Zygote #1D a = 0.0 b = 10.0 obj_1D = x -> 2 * x + 3 x = sample(10, 0.0, 10.0, SobolSample()) y = obj_1D.(x) my_model = Chain(Dense(1, 1), first) my_loss(x, y) = Flux.mse(my_model(x), y) my_opt = Descent(0.01) n_echos = 1 my_neural = NeuralSurrogate(x, y, a, b, model = my_model, loss = my_loss, opt = my_opt, n_echos = 1) my_neural_kwargs = NeuralSurrogate(x, y, a, b) add_point!(my_neural, 8.5, 20.0) add_point!(my_neural, [3.2, 3.5], [7.4, 8.0]) val = my_neural(5.0) #ND lb = [0.0, 0.0] ub = [5.0, 5.0] x = sample(5, lb, ub, SobolSample()) obj_ND_neural(x) = x[1] * x[2] y = obj_ND_neural.(x) my_model = Chain(Dense(2, 1), first) my_loss(x, y) = Flux.mse(my_model(x), y) my_opt = Descent(0.01) n_echos = 1 my_neural = NeuralSurrogate(x, y, lb, ub, model = my_model, loss = my_loss, opt = my_opt, n_echos = 1) my_neural_kwargs = NeuralSurrogate(x, y, lb, ub) my_neural((3.5, 1.49)) my_neural([3.4, 1.4]) add_point!(my_neural, (3.5, 1.4), 4.9) add_point!(my_neural, [(3.5, 1.4), (1.5, 1.4), (1.3, 1.2)], [1.3, 1.4, 1.5]) # Multi-output #98 f = x -> [x^2, x] lb = 1.0 ub = 10.0 x = sample(5, lb, ub, SobolSample()) push!(x, 2.0) y = f.(x) my_model = Chain(Dense(1, 2)) my_loss(x, y) = Flux.mse(my_model(x), y) surrogate = NeuralSurrogate(x, y, lb, ub, model = my_model, loss = my_loss, opt = my_opt, n_echos = 1) surr_kwargs = NeuralSurrogate(x, y, lb, ub) f = x -> [x[1], x[2]^2] lb = [1.0, 2.0] ub = [10.0, 8.5] x = sample(20, lb, ub, SobolSample()) push!(x, (1.0, 2.0)) y = f.(x) my_model = Chain(Dense(2, 2)) my_loss(x, y) = Flux.mse(my_model(x), y) surrogate = NeuralSurrogate(x, y, lb, ub, model = my_model, loss = my_loss, opt = my_opt, n_echos = 1) surrogate_kwargs = NeuralSurrogate(x, y, lb, ub) surrogate((1.0, 2.0)) x_new = (2.0, 2.0) y_new = f(x_new) add_point!(surrogate, x_new, y_new) #Optimization lb = [1.0, 1.0] ub = [6.0, 6.0] x = sample(5, lb, ub, SobolSample()) objective_function_ND = z -> 3 * norm(z) + 1 y = objective_function_ND.(x) model = Chain(Dense(2, 1), first) loss(x, y) = Flux.mse(model(x), y) opt = Descent(0.01) n_echos = 1 my_neural_ND_neural = NeuralSurrogate(x, y, lb, ub) surrogate_optimize(objective_function_ND, SRBF(), lb, ub, my_neural_ND_neural, SobolSample(), maxiters = 15) # AD Compatibility lb = 0.0 ub = 3.0 n = 10 x = sample(n, lb, ub, SobolSample()) f = x -> x^2 y = f.(x) #NN @testset "NN" begin my_model = Chain(Dense(1, 1), first) my_loss(x, y) = Flux.mse(my_model(x), y) my_opt = Descent(0.01) n_echos = 1 my_neural = NeuralSurrogate(x, y, lb, ub, model = my_model, loss = my_loss, opt = my_opt, n_echos = 1) g = x -> my_neural'(x) g(3.4) end lb = [0.0, 0.0] ub = [10.0, 10.0] n = 5 x = sample(n, lb, ub, SobolSample()) f = x -> x[1] * x[2] y = f.(x) #NN @testset "NN ND" begin my_model = Chain(Dense(2, 1), first) my_loss(x, y) = Flux.mse(my_model(x), y) my_opt = Descent(0.01) n_echos = 1 my_neural = NeuralSurrogate(x, y, lb, ub, model = my_model, loss = my_loss, opt = my_opt, n_echos = 1) g = x -> Zygote.gradient(my_neural, x) g((2.0, 5.0)) end # ###### ND -> ND ###### lb = [0.0, 0.0] ub = [10.0, 2.0] n = 5 x = sample(n, lb, ub, SobolSample()) f = x -> [x[1]^2, x[2]] y = f.(x) #NN @testset "NN ND -> ND" begin my_model = Chain(Dense(2, 2)) my_loss(x, y) = Flux.mse(my_model(x), y) my_opt = Descent(0.01) n_echos = 1 my_neural = NeuralSurrogate(x, y, lb, ub, model = my_model, loss = my_loss, opt = my_opt, n_echos = 1) Zygote.gradient(x -> sum(my_neural(x)), (2.0, 5.0)) my_rad = RadialBasis(x, y, lb, ub, rad = linearRadial()) Zygote.gradient(x -> sum(my_rad(x)), (2.0, 5.0)) my_p = 1.4 my_inverse = InverseDistanceSurrogate(x, y, lb, ub, p = my_p) my_inverse((2.0, 5.0)) Zygote.gradient(x -> sum(my_inverse(x)), (2.0, 5.0)) my_second = SecondOrderPolynomialSurrogate(x, y, lb, ub) Zygote.gradient(x -> sum(my_second(x)), (2.0, 5.0)) end end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
13588
module SurrogatesMOE import Surrogates: AbstractSurrogate, linearRadial, cubicRadial, multiquadricRadial, thinplateRadial, RadialBasisStructure, RadialBasis, InverseDistanceSurrogate, Kriging, LobachevskyStructure, LobachevskySurrogate, NeuralStructure, PolyChaosStructure, LinearSurrogate, add_point! export MOE using GaussianMixtures using Random using Distributions using LinearAlgebra using SurrogatesFlux using SurrogatesPolyChaos using SurrogatesRandomForest using XGBoost mutable struct MOE{X, Y, C, D, M, E, ND, NC} <: AbstractSurrogate x::X y::Y c::C #clusters (C) - vector of gaussian mixture clusters d::D #distributions (D) - vector of frozen multivariate distributions m::M # models (M) - vector of trained models correspnoding to clusters (C) and distributions (D) e::E #expert types nd::ND #number of dimensions nc::NC #number of clusters end """ MOE(x, y, expert_types; ndim=1, n_clusters=2) constructor for MOE; takes in x, y and expert types and returns an MOE struct """ function MOE(x, y, expert_types; ndim = 1, n_clusters = 2, quantile = 10) if (ndim > 1) #x = _vector_of_tuples_to_matrix(x) X = _vector_of_tuples_to_matrix(x) values = hcat(X, y) else values = hcat(x, y) end x_and_y_test, x_and_y_train = _extract_part(values, quantile) # We get posdef error without jitter; And if values repeat we get NaN vals # https://github.com/davidavdav/GaussianMixtures.jl/issues/21 jitter_vals = ((rand(eltype(x_and_y_train), size(x_and_y_train))) ./ 10000) gm_cluster = GMM(n_clusters, x_and_y_train + jitter_vals, kind = :full, nInit = 50, nIter = 20) mvn_distributions = _create_clusters_distributions(gm_cluster, ndim, n_clusters) cluster_classifier_train = _cluster_predict(gm_cluster, x_and_y_train) clusters_train = _cluster_values(x_and_y_train, cluster_classifier_train, n_clusters) cluster_classifier_test = _cluster_predict(gm_cluster, x_and_y_test) clusters_test = _cluster_values(x_and_y_test, cluster_classifier_test, n_clusters) best_models = [] for i in 1:n_clusters best_model = _find_best_model(clusters_train[i], clusters_test[i], ndim, expert_types) push!(best_models, best_model) end # X = values[:, 1:ndim] # y = values[:, 2] #return MOE(X, y, gm_cluster, mvn_distributions, best_models) return MOE(x, y, gm_cluster, mvn_distributions, best_models, expert_types, ndim, n_clusters) end """ (moe::MOE)(val::Number) predictor for 1D inputs """ function (moe::MOE)(val::Number) val = [val] weights = GaussianMixtures.weights(moe.c) rvs = [Distributions.pdf(moe.d[k], val) for k in 1:length(weights)] probs = weights .* rvs rad = sum(probs) if rad > 0 probs = probs / rad end max_index = argmax(probs) prediction = moe.m[max_index](val[1]) return prediction end """ (moe::MOE)(val) predictor for ndimensional inputs """ function (moe::MOE)(val) val = collect(val) #to handle inputs that may sometimes be tuples weights = GaussianMixtures.weights(moe.c) rvs = [Distributions.pdf(moe.d[k], val) for k in 1:length(weights)] probs = weights .* rvs rad = sum(probs) if rad > 0 probs = probs ./ rad end max_index = argmax(probs) prediction = moe.m[max_index](val) return prediction end """ _cluster_predict(gmm:GMM, X::Matrix) gmm - a trained Gaussian Mixture Model X - a matrix of points with dimensions equal to the inputs used for the training of the model Return - Clusters to which each of the points belong to (starts at int 1) Example: X = [1.0 2; 1 4; 1 0; 10 2; 10 4; 10 0] + rand(Float64, (6, 2)) gm = GMM(2, X) _cluster_predict(gm, [0.0 0.0; 12.0 3.0]) #returns [1,2] """ function _cluster_predict(gmm::GMM, X::Matrix) llpg_X = llpg(gmm, X) #log likelihood probability of X belonging to each of the clusters in the gaussian mixture return map(argmax, eachrow(llpg_X)) end """ _extract_part(values, quantile) values - a matrix containing all the input values (n test points by d dimensions) quantiles - the interval between rows returns a test values matrix and a training values matrix Ex: values = [1.0 2.0; 3.0 4.0; 5.0 6.0; 7.0 8.0; 9.0 10] quantile = 4 test, train = _extract_part(values, quantile) test # [1.0 2.0; 9.0 10.0] train # [3.0 4.0; 5.0 6.0; 7.0 8.0] """ function _extract_part(values, quantile) num = size(values, 1) indices = collect(1:quantile:num) mask = falses(num) mask[indices] .= true #mask return values[mask, :], values[.~mask, :] end """ _cluster_values(values, cluster_classifier, num_clusters) values - a concatenation of input and output values cluster_classifier - a vector of integers representing which cluster each data point belongs to num_clusters - number of clusters output clusters - values grouped by clusters ## Ex: vals = [1.0 2.0; 3.0 4.0; 5.0 6.0; 7.0 8.0; 9.0 10.0] cluster_classifier = [1, 2, 2, 2, 1] num_clusters = 2 clusters = _cluster_values(vals, cluster_classifier, num_clusters) @show clusters #prints values below [[1.0, 2.0], [9.0, 10.0]] [[3.0, 4.0], [5.0, 6.0], [7.0, 8.0]] """ function _cluster_values(values, cluster_classifier, num_clusters) num = length(cluster_classifier) if (size(values, 1) != num) error("Number of values don't match number of cluster_classifier points") end clusters = [[] for n in 1:num_clusters] for i in 1:num push!(clusters[cluster_classifier[i]], (values[i, :])) end return clusters end """ _create_clusters_distributions(gmm::GMM, ndim, n_clusters) gmm - a gaussian mixture model with concatenated X and y values that have been clustered ndim - number of dimensions in X n_clusters - number of clusters output distribs - a vector containing frozen multivariate normal distributions for each cluster """ function _create_clusters_distributions(gmm::GMM, ndim, n_clusters) means = gmm.μ cov = covars(gmm) distribs = [] for k in 1:n_clusters meansk = means[k, 1:ndim] covk = cov[k][1:ndim, 1:ndim] mvn = MvNormal(meansk, covk) # todo - check if we need allow_singular=True and implement push!(distribs, mvn) end return distribs end """ _find_upper_lower_bounds(m::Matrix) returns upper and lower bounds in vector form """ function _find_upper_lower_bounds(X::Matrix) ub = [] lb = [] for col in eachcol(X) push!(ub, findmax(col)[1]) push!(lb, findmin(col)[1]) end if (size(X, 2) == 1) return lb[1][1], ub[1][1] else return lb, ub end end """ _find_best_model(clustered_values, clustered_test_values) finds best model for each set of clustered values by validating against the clustered_test_values """ function _find_best_model(clustered_train_values, clustered_test_values, dim, enabled_expert_types) # find upper and lower bounds for clustered_train and test values concatenated x_vec = [a[1:dim] for a in clustered_train_values] y_vec = [last(a) for a in clustered_train_values] x_test_vec = [a[1:dim] for a in clustered_test_values] y_test_vec = [last(a) for a in clustered_test_values] if (dim == 1) xtrain_mat = reshape(x_vec, (size(clustered_train_values, 1), dim)) xtest_mat = reshape(x_test_vec, (size(clustered_test_values, 1), dim)) else xtrain_mat = _vector_of_tuples_to_matrix(x_vec) xtest_mat = _vector_of_tuples_to_matrix(x_test_vec) end X = !isnothing(xtest_mat) ? vcat(xtrain_mat, xtest_mat) : xtrain_mat x_test_vec = !isnothing(xtest_mat) ? x_test_vec : x_vec y_test_vec = !isnothing(xtest_mat) ? y_test_vec : y_vec lb, ub = _find_upper_lower_bounds(X) # call on _surrogate_builder with clustered_train_vals, enabled expert types, lb, ub surr_vec = _surrogate_builder( enabled_expert_types, length(enabled_expert_types), x_vec, y_vec, lb, ub) # use the models to find best model after validating against test data and return best model best_rmse = Inf best_model = surr_vec[1] #initial assignment can be any model for surr_model in surr_vec pred = surr_model.(x_test_vec) rmse = norm(pred - y_test_vec, 2) if (rmse < best_rmse) best_rmse = rmse best_model = surr_model end end return best_model end """ _surrogate_builder(local_kind, k, x, y, lb, ub) takes in an array of surrogate types, and number of cluster, builds the surrogates and returns an array of surrogate objects """ function _surrogate_builder(local_kind, k, x, y, lb, ub) local_surr = [] for i in 1:k if local_kind[i][1] == "RadialBasis" #fit and append to local_surr my_local_i = RadialBasis(x, y, lb, ub, rad = local_kind[i].radial_function, scale_factor = local_kind[i].scale_factor, sparse = local_kind[i].sparse) push!(local_surr, my_local_i) elseif local_kind[i][1] == "Kriging" #because Kriging takes abs of two vectors if (length(lb) == 1) x = [a[1] for a in x] end my_local_i = Kriging(x, y, lb, ub, p = local_kind[i].p, theta = local_kind[i].theta) push!(local_surr, my_local_i) elseif local_kind[i][1] == "GEK" my_local_i = GEK(x, y, lb, ub, p = local_kind[i].p, theta = local_kind[i].theta) push!(local_surr, my_local_i) elseif local_kind[i] == "LinearSurrogate" my_local_i = LinearSurrogate(x, y, lb, ub) push!(local_surr, my_local_i) elseif local_kind[i][1] == "InverseDistanceSurrogate" my_local_i = InverseDistanceSurrogate(x, y, lb, ub, local_kind[i].p) push!(local_surr, my_local_i) elseif local_kind[i][1] == "LobachevskySurrogate" my_local_i = LobachevskyStructure(x, y, lb, ub, alpha = local_kind[i].alpha, n = local_kind[i].n, sparse = local_kind[i].sparse) push!(local_surr, my_local_i) elseif local_kind[i][1] == "NeuralSurrogate" my_local_i = NeuralSurrogate(x, y, lb, ub, model = local_kind[i].model, loss = local_kind[i].loss, opt = local_kind[i].opt, n_echos = local_kind[i].n_echos) push!(local_surr, my_local_i) elseif local_kind[i][1] == "RandomForestSurrogate" my_local_i = RandomForestSurrogate(x, y, lb, ub, num_round = local_kind[i].num_round) push!(local_surr, my_local_i) elseif local_kind[i] == "SecondOrderPolynomialSurrogate" my_local_i = SecondOrderPolynomialSurrogate(x, y, lb, ub) push!(local_surr, my_local_i) elseif local_kind[i][1] == "Wendland" my_local_i = Wendand(x, y, lb, ub, eps = local_kind[i].eps, maxiters = local_kind[i].maxiters, tol = local_kind[i].tol) push!(local_surr, my_local_i) elseif local_kind[i][1] == "PolynomialChaosSurrogate" my_local_i = PolynomialChaosSurrogate(x, y, lb, ub, op = local_kind[i].op) push!(local_surr, my_local_i) else throw("A surrogate with name provided does not exist or is not currently supported with MOE.") end end return local_surr end """ add_point!(m::MOE, new_x, new_y) add a new point to the dataset. """ function add_point!(m::MOE, x, y) #function add_point!(m) #this works push!(m.x, x) push!(m.y, y) quantile = 10 if (m.nd > 1) #numbef of dimensions X = _vector_of_tuples_to_matrix(m.x) values = hcat(X, m.y) else values = hcat(m.x, m.y) end x_and_y_test, x_and_y_train = _extract_part(values, quantile) # We get posdef error without jitter; And if values repeat we get NaN vals # https://github.com/davidavdav/GaussianMixtures.jl/issues/21 jitter_vals = ((rand(eltype(x_and_y_train), size(x_and_y_train))) ./ 10000) gm_cluster = GMM(m.nc, x_and_y_train + jitter_vals, kind = :full, nInit = 50, nIter = 20) mvn_distributions = _create_clusters_distributions(gm_cluster, m.nd, m.nc) cluster_classifier_train = _cluster_predict(gm_cluster, x_and_y_train) clusters_train = _cluster_values(x_and_y_train, cluster_classifier_train, m.nc) cluster_classifier_test = _cluster_predict(gm_cluster, x_and_y_test) clusters_test = _cluster_values(x_and_y_test, cluster_classifier_test, m.nc) best_models = [] for i in 1:(m.nc) best_model = _find_best_model(clusters_train[i], clusters_test[i], m.nd, m.e) push!(best_models, best_model) end m.c = gm_cluster m.d = mvn_distributions m.m = best_models end """ _vector_of_tuples_to_matrix(v) takes in a vector of tuples or vector of vectors and converts it into a matrix """ function _vector_of_tuples_to_matrix(v) if !isempty(v) num_rows = length(v) num_cols = length(first(v)) K = zeros(num_rows, num_cols) for row in 1:num_rows for col in 1:num_cols K[row, col] = v[row][col] end end return K end return nothing end end #module
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
5484
using SafeTestsets using StableRNGs, Random const SEED = 42 Random.seed!(StableRNG(SEED), SEED) # #test 1D function that is discontinuous @safetestset "1D" begin using Surrogates using SurrogatesMOE function discont_1D(x) if x < 0.0 return -5.0 elseif x >= 0.0 return 5.0 end end lb = -1.0 ub = 1.0 x = sample(50, lb, ub, SobolSample()) y = discont_1D.(x) # Radials vs MOE RAD_1D = RadialBasis(x, y, lb, ub, rad = linearRadial(), scale_factor = 1.0, sparse = false) expert_types = [ RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false), RadialBasisStructure(radial_function = cubicRadial(), scale_factor = 1.0, sparse = false) ] MOE_1D_RAD_RAD = MOE(x, y, expert_types) MOE_at0 = MOE_1D_RAD_RAD(0.0) RAD_at0 = RAD_1D(0.0) true_val = 5.0 @test (abs(RAD_at0 - true_val) > abs(MOE_at0 - true_val)) # Krig vs MOE KRIG_1D = Kriging(x, y, lb, ub, p = 1.0, theta = 1.0) expert_types = [InverseDistanceStructure(p = 1.0), KrigingStructure(p = 1.0, theta = 1.0) ] MOE_1D_INV_KRIG = MOE(x, y, expert_types) MOE_at0 = MOE_1D_INV_KRIG(0.0) KRIG_at0 = KRIG_1D(0.0) true_val = 5.0 @test (abs(KRIG_at0 - true_val) > abs(MOE_at0 - true_val)) end @safetestset "ND" begin using Surrogates using SurrogatesMOE # helper to test accuracy of predictors function rmse(a, b) a = vec(a) b = vec(b) if (size(a) != size(b)) println("error in inputs") return end n = size(a, 1) return sqrt(sum((a - b) .^ 2) / n) end # multidimensional input function function discont_NDIM(x) if (x[1] >= 0.0 && x[2] >= 0.0) return sum(x .^ 2) + 5 else return sum(x .^ 2) - 5 end end lb = [-1.0, -1.0] ub = [1.0, 1.0] n = 150 x = sample(n, lb, ub, SobolSample()) y = discont_NDIM.(x) x_test = sample(9, lb, ub, GoldenSample()) expert_types = [ KrigingStructure(p = [1.0, 1.0], theta = [1.0, 1.0]), RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false) ] moe_nd_krig_rad = MOE(x, y, expert_types, ndim = 2, quantile = 5) moe_pred_vals = moe_nd_krig_rad.(x_test) true_vals = discont_NDIM.(x_test) moe_rmse = rmse(true_vals, moe_pred_vals) rbf = RadialBasis(x, y, lb, ub) rbf_pred_vals = rbf.(x_test) rbf_rmse = rmse(true_vals, rbf_pred_vals) krig = Kriging(x, y, lb, ub, p = [1.0, 1.0], theta = [1.0, 1.0]) krig_pred_vals = krig.(x_test) krig_rmse = rmse(true_vals, krig_pred_vals) @test (rbf_rmse > moe_rmse) @test (krig_rmse > moe_rmse) end @safetestset "Miscellaneous" begin using Surrogates using SurrogatesMOE using SurrogatesFlux using Flux # multidimensional input function function discont_NDIM(x) if (x[1] >= 0.0 && x[2] >= 0.0) return sum(x .^ 2) + 5 else return sum(x .^ 2) - 5 end end lb = [-1.0, -1.0] ub = [1.0, 1.0] n = 120 x = sample(n, lb, ub, LatinHypercubeSample()) y = discont_NDIM.(x) x_test = sample(10, lb, ub, GoldenSample()) # test if MOE handles 3 experts including SurrogatesFlux expert_types = [ RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false), LinearStructure(), InverseDistanceStructure(p = 1.0) ] moe_nd_3_experts = MOE(x, y, expert_types, ndim = 2, n_clusters = 3) moe_pred_vals = moe_nd_3_experts.(x_test) # test if MOE handles SurrogatesFlux model = Chain(Dense(2, 1), first) loss(x, y) = Flux.mse(model(x), y) opt = Descent(0.01) n_echos = 1 expert_types = [ NeuralStructure(model = model, loss = loss, opt = opt, n_echos = n_echos), LinearStructure() ] moe_nn_ln = MOE(x, y, expert_types, ndim = 2) moe_pred_vals = moe_nn_ln.(x_test) end @safetestset "Add Point 1D" begin using Surrogates using SurrogatesMOE function discont_1D(x) if x < 0.0 return -5.0 elseif x >= 0.0 return 5.0 end end lb = -1.0 ub = 1.0 x = sample(50, lb, ub, SobolSample()) y = discont_1D.(x) expert_types = [ RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false), RadialBasisStructure(radial_function = cubicRadial(), scale_factor = 1.0, sparse = false) ] moe = MOE(x, y, expert_types) add_point!(moe, 0.5, 5.0) end @safetestset "Add Point ND" begin using Surrogates using SurrogatesMOE # multidimensional input function function discont_NDIM(x) if (x[1] >= 0.0 && x[2] >= 0.0) return sum(x .^ 2) + 5 else return sum(x .^ 2) - 5 end end lb = [-1.0, -1.0] ub = [1.0, 1.0] n = 110 x = sample(n, lb, ub, LatinHypercubeSample()) y = discont_NDIM.(x) expert_types = [InverseDistanceStructure(p = 1.0), RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false) ] moe_nd_inv_rad = MOE(x, y, expert_types, ndim = 2) add_point!(moe_nd_inv_rad, (0.5, 0.5), sum((0.5, 0.5) .^ 2) + 5) end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
3435
module SurrogatesPolyChaos import Surrogates: AbstractSurrogate, add_point!, _check_dimension export PolynomialChaosSurrogate using PolyChaos mutable struct PolynomialChaosSurrogate{X, Y, L, U, C, O, N} <: AbstractSurrogate x::X y::Y lb::L ub::U coeff::C ortopolys::O num_of_multi_indexes::N end function _calculatepce_coeff(x, y, num_of_multi_indexes, op::AbstractCanonicalOrthoPoly) n = length(x) A = zeros(eltype(x), n, num_of_multi_indexes) for i in 1:n A[i, :] = PolyChaos.evaluate(x[i], op) end return (A' * A) \ (A' * y) end function PolynomialChaosSurrogate(x, y, lb::Number, ub::Number; op::AbstractCanonicalOrthoPoly = GaussOrthoPoly(2)) n = length(x) poly_degree = op.deg num_of_multi_indexes = 1 + poly_degree if n < 2 + 3 * num_of_multi_indexes throw("To avoid numerical problems, it's strongly suggested to have at least $(2+3*num_of_multi_indexes) samples") end coeff = _calculatepce_coeff(x, y, num_of_multi_indexes, op) return PolynomialChaosSurrogate(x, y, lb, ub, coeff, op, num_of_multi_indexes) end function (pc::PolynomialChaosSurrogate)(val::Number) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(pc, val) return sum([pc.coeff[i] * PolyChaos.evaluate(val, pc.ortopolys)[i] for i in 1:(pc.num_of_multi_indexes)]) end function _calculatepce_coeff(x, y, num_of_multi_indexes, op::MultiOrthoPoly) n = length(x) d = length(x[1]) A = zeros(eltype(x[1]), n, num_of_multi_indexes) for i in 1:n xi = zeros(eltype(x[1]), d) for j in 1:d xi[j] = x[i][j] end A[i, :] = PolyChaos.evaluate(xi, op) end return (A' * A) \ (A' * y) end function PolynomialChaosSurrogate(x, y, lb, ub; op::MultiOrthoPoly = MultiOrthoPoly([GaussOrthoPoly(2) for j in 1:length(lb)], 2)) n = length(x) d = length(lb) poly_degree = op.deg num_of_multi_indexes = binomial(d + poly_degree, poly_degree) if n < 2 + 3 * num_of_multi_indexes throw("To avoid numerical problems, it's strongly suggested to have at least $(2+3*num_of_multi_indexes) samples") end coeff = _calculatepce_coeff(x, y, num_of_multi_indexes, op) return PolynomialChaosSurrogate(x, y, lb, ub, coeff, op, num_of_multi_indexes) end function (pcND::PolynomialChaosSurrogate)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(pcND, val) sum = zero(eltype(val[1])) for i in 1:(pcND.num_of_multi_indexes) sum = sum + pcND.coeff[i] * first(PolyChaos.evaluate(pcND.ortopolys.ind[i, :], collect(val), pcND.ortopolys)) end return sum end function add_point!(polych::PolynomialChaosSurrogate, x_new, y_new) if length(polych.lb) == 1 #1D polych.x = vcat(polych.x, x_new) polych.y = vcat(polych.y, y_new) polych.coeff = _calculatepce_coeff(polych.x, polych.y, polych.num_of_multi_indexes, polych.ortopolys) else polych.x = vcat(polych.x, x_new) polych.y = vcat(polych.y, y_new) polych.coeff = _calculatepce_coeff(polych.x, polych.y, polych.num_of_multi_indexes, polych.ortopolys) end nothing end end # module
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
3198
using SafeTestsets @safetestset "PolynomialChaosSurrogates" begin using Surrogates using PolyChaos using Surrogates: sample, SobolSample using SurrogatesPolyChaos using Zygote #1D n = 20 lb = 0.0 ub = 4.0 f = x -> 2 * x x = sample(n, lb, ub, SobolSample()) y = f.(x) my_pce = PolynomialChaosSurrogate(x, y, lb, ub) val = my_pce(2.0) add_point!(my_pce, 3.0, 6.0) my_pce_changed = PolynomialChaosSurrogate(x, y, lb, ub, op = Uniform01OrthoPoly(1)) #ND n = 60 lb = [0.0, 0.0] ub = [5.0, 5.0] f = x -> x[1] * x[2] x = sample(n, lb, ub, SobolSample()) y = f.(x) my_pce = PolynomialChaosSurrogate(x, y, lb, ub) val = my_pce((2.0, 2.0)) add_point!(my_pce, (2.0, 3.0), 6.0) op1 = Uniform01OrthoPoly(1) op2 = Beta01OrthoPoly(2, 2, 1.2) ops = [op1, op2] multi_poly = MultiOrthoPoly(ops, min(1, 2)) my_pce_changed = PolynomialChaosSurrogate(x, y, lb, ub, op = multi_poly) # Surrogate optimization test lb = 0.0 ub = 15.0 p = 1.99 a = 2 b = 6 objective_function = x -> 2 * x + 1 x = sample(20, lb, ub, SobolSample()) y = objective_function.(x) my_poly1d = PolynomialChaosSurrogate(x, y, lb, ub) @test_broken surrogate_optimize(objective_function, SRBF(), a, b, my_poly1d, LowDiscrepancySample(; base = 2)) lb = [0.0, 0.0] ub = [10.0, 10.0] obj_ND = x -> log(x[1]) * exp(x[2]) x = sample(40, lb, ub, RandomSample()) y = obj_ND.(x) my_polyND = PolynomialChaosSurrogate(x, y, lb, ub) surrogate_optimize(obj_ND, SRBF(), lb, ub, my_polyND, SobolSample(), maxiters = 15) # AD Compatibility lb = 0.0 ub = 3.0 n = 10 x = sample(n, lb, ub, SobolSample()) f = x -> x^2 y = f.(x) # #Polynomialchaos @testset "Polynomial Chaos" begin f = x -> x^2 n = 50 x = sample(n, lb, ub, SobolSample()) y = f.(x) my_poli = PolynomialChaosSurrogate(x, y, lb, ub) g = x -> my_poli'(x) g(3.0) end # #PolynomialChaos @testset "Polynomial Chaos ND" begin n = 50 lb = [0.0, 0.0] ub = [10.0, 10.0] x = sample(n, lb, ub, SobolSample()) f = x -> x[1] * x[2] y = f.(x) my_poli_ND = PolynomialChaosSurrogate(x, y, lb, ub) g = x -> Zygote.gradient(my_poli_ND, x) g((1.0, 1.0)) n = 10 d = 2 lb = [0.0, 0.0] ub = [5.0, 5.0] x = sample(n, lb, ub, SobolSample()) f = x -> x[1]^2 + x[2]^2 y1 = f.(x) grad1 = x -> 2 * x[1] grad2 = x -> 2 * x[2] function create_grads(n, d, grad1, grad2, y) c = 0 y2 = zeros(eltype(y[1]), n * d) for i in 1:n y2[i + c] = grad1(x[i]) y2[i + c + 1] = grad2(x[i]) c = c + 1 end return y2 end y2 = create_grads(n, d, grad1, grad2, y) y = vcat(y1, y2) my_gek_ND = GEK(x, y, lb, ub) g = x -> Zygote.gradient(my_gek_ND, x) @test_broken g((2.0, 5.0)) #breaks after Zygote version 0.6.43 end end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1738
module SurrogatesRandomForest using SurrogatesBase using XGBoost: xgboost, predict export RandomForestSurrogate, update! mutable struct RandomForestSurrogate{X, Y, B, L, U, N} <: SurrogatesBase.AbstractDeterministicSurrogate x::X y::Y bst::B lb::L ub::U num_round::N end """ RandomForestSurrogate(x, y, lb, ub, num_round) Build Random forest surrogate. num_round is the number of trees. ## Arguments - `x`: Input data points. - `y`: Output data points. - `lb`: Lower bound of input data points. - `ub`: Upper bound of output data points. ## Keyword Arguments - `num_round`: number of rounds of training. """ function RandomForestSurrogate(x, y, lb, ub; num_round::Int = 1) X = Array{Float64, 2}(undef, length(x), length(x[1])) if length(lb) == 1 for j in eachindex(x) X[j, 1] = x[j] end else for j in eachindex(x) X[j, :] = x[j] end end bst = xgboost((X, y); num_round) RandomForestSurrogate(x, y, bst, lb, ub, num_round) end function (rndfor::RandomForestSurrogate)(val::Number) return rndfor([val]) end function (rndfor::RandomForestSurrogate)(val) return predict(rndfor.bst, reshape(val, length(val), 1))[1] end function SurrogatesBase.update!(rndfor::RandomForestSurrogate, x_new, y_new) rndfor.x = vcat(rndfor.x, x_new) rndfor.y = vcat(rndfor.y, y_new) if length(rndfor.lb) == 1 rndfor.bst = xgboost((reshape(rndfor.x, length(rndfor.x), 1), rndfor.y); num_round = rndfor.num_round) else rndfor.bst = xgboost( (transpose(reduce(hcat, rndfor.x)), rndfor.y); num_round = rndfor.num_round) end nothing end end # module
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1299
using SafeTestsets @safetestset "RandomForestSurrogate" begin using Surrogates using SurrogatesRandomForest using Test using XGBoost: xgboost, predict @testset "1D" begin obj_1D = x -> 3 * x + 1 x = [1.0, 2.0, 3.0, 4.0, 5.0] y = obj_1D.(x) a = 0.0 b = 10.0 num_round = 2 my_forest_1D = RandomForestSurrogate(x, y, a, b; num_round = 2) xgboost1 = xgboost((reshape(x, length(x), 1), y); num_round = 2) val = my_forest_1D(3.5) @test predict(xgboost1, [3.5;;])[1] == val update!(my_forest_1D, [6.0], [19.0]) update!(my_forest_1D, [7.0, 8.0], obj_1D.([7.0, 8.0])) end @testset "ND" begin lb = [0.0, 0.0, 0.0] ub = [10.0, 10.0, 10.0] x = collect.(sample(5, lb, ub, SobolSample())) obj_ND = x -> x[1] * x[2]^2 * x[3] y = obj_ND.(x) my_forest_ND = RandomForestSurrogate(x, y, lb, ub; num_round = 2) xgboostND = xgboost((reduce(hcat, x)', y); num_round = 2) val = my_forest_ND([1.0, 1.0, 1.0]) @test predict(xgboostND, reshape([1.0, 1.0, 1.0], 3, 1))[1] == val update!(my_forest_ND, [[1.0, 1.0, 1.0]], [1.0]) update!(my_forest_ND, [[1.2, 1.2, 1.0], [1.5, 1.5, 1.0]], [1.728, 3.375]) end end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1777
module SurrogatesSVM using SurrogatesBase using LIBSVM export SVMSurrogate, update! mutable struct SVMSurrogate{X, Y, M, L, U} <: AbstractDeterministicSurrogate x::X y::Y model::M lb::L ub::U end """ SVMSurrogate(x, y, lb, ub) Builds a SVM Surrogate using [LIBSVM](https://github.com/JuliaML/LIBSVM.jl). ## Arguments - `x`: Input data points. - `y`: Output data points. - `lb`: Lower bound of input data points. - `ub`: Upper bound of output data points. """ function SVMSurrogate(x, y, lb, ub) X = Array{Float64, 2}(undef, length(x), length(first(x))) if length(lb) == 1 for j in eachindex(x) X[j, 1] = x[j] end else for j in eachindex(x) X[j, :] = x[j] end end model = LIBSVM.fit!(SVC(), X, y) SVMSurrogate(x, y, model, lb, ub) end function (svmsurr::SVMSurrogate)(val::Number) return svmsurr([val]) end function (svmsurr::SVMSurrogate)(val) n = length(val) return LIBSVM.predict(svmsurr.model, reshape(val, 1, n))[1] end """ update!(svmsurr::SVMSurrogate, x_new, y_new) ## Arguments - `svmsurr`: Surrogate of type [`SVMSurrogate`](@ref). - `x_new`: Vector of new data points to be added to the training set of SVMSurrogate. - `y_new`: Vector of new output points to be added to the training set of SVMSurrogate. """ function SurrogatesBase.update!(svmsurr::SVMSurrogate, x_new, y_new) svmsurr.x = vcat(svmsurr.x, x_new) svmsurr.y = vcat(svmsurr.y, y_new) if length(svmsurr.lb) == 1 svmsurr.model = LIBSVM.fit!( SVC(), reshape(svmsurr.x, length(svmsurr.x), 1), svmsurr.y) else svmsurr.model = LIBSVM.fit!(SVC(), transpose(reduce(hcat, svmsurr.x)), svmsurr.y) end end end # module
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1518
using SafeTestsets @safetestset "SVMSurrogate" begin using SurrogatesSVM using Surrogates using LIBSVM using Test @testset "1D" begin obj_1D = x -> 2 * x + 1 a = 0.0 b = 10.0 x = sample(5, a, b, SobolSample()) y = obj_1D.(x) svm = LIBSVM.fit!(SVC(), reshape(x, length(x), 1), y) my_svm_1D = SVMSurrogate(x, y, a, b) val = my_svm_1D([5.0]) @test LIBSVM.predict(svm, [5.0;;])[1] == val update!(my_svm_1D, [3.1], [7.2]) update!(my_svm_1D, [3.2, 3.5], [7.4, 8.0]) svm = LIBSVM.fit!(SVC(), reshape(my_svm_1D.x, length(my_svm_1D.x), 1), my_svm_1D.y) val = my_svm_1D(3.1) @test LIBSVM.predict(svm, [3.1;;])[1] == val end @testset "ND" begin obj_N = x -> x[1]^2 * x[2] lb = [0.0, 0.0] ub = [10.0, 10.0] x = collect.(sample(100, lb, ub, RandomSample())) y = obj_N.(x) svm = LIBSVM.fit!(SVC(), transpose(reduce(hcat, x)), y) my_svm_ND = SVMSurrogate(x, y, lb, ub) x_test = [5.0, 1.2] val = my_svm_ND(x_test) @test LIBSVM.predict(svm, reshape(x_test, 1, 2))[1] == val update!(my_svm_ND, [[1.0, 1.0]], [1.0]) update!(my_svm_ND, [[1.2, 1.2], [1.5, 1.5]], [1.728, 3.375]) svm = LIBSVM.fit!(SVC(), transpose(reduce(hcat, my_svm_ND.x)), my_svm_ND.y) x_test = [1.0, 1.0] val = my_svm_ND(x_test) @test LIBSVM.predict(svm, reshape(x_test, 1, 2))[1] == val end end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
13588
using LinearAlgebra mutable struct EarthSurrogate{X, Y, L, U, B, C, P, M, N, R, G, I, T} <: AbstractSurrogate x::X y::Y lb::L ub::U basis::B coeff::C penalty::P n_min_terms::M n_max_terms::N rel_res_error::R rel_GCV::G intercept::I maxiters::T end _hinge(x::Number, knot::Number) = max(0, x - knot) _hinge_mirror(x::Number, knot::Number) = max(0, knot - x) function _coeff_1d(x, y, basis) n = length(x) d = length(basis) X = zeros(eltype(x[1]), n, d) @inbounds for i in 1:n for j in 1:d X[i, j] = basis[j](x[i]) end end return (X' * X) \ (X' * y) end function _forward_pass_1d(x, y, n_max_terms, rel_res_error, maxiters) n = length(x) basis = Array{Function}(undef, 0) current_sse = +Inf intercept = sum([y[i] for i in 1:length(y)]) / length(y) num_terms = 0 pos_of_knot = 0 iters = 0 while num_terms < n_max_terms || iters > maxiters #Look for best addition: new_addition = false for i in 1:length(x) #Add or not add the knot var_i? var_i = x[i] new_basis = copy(basis) #select best new pair hinge1 = x -> _hinge(x, var_i) hinge2 = x -> _hinge_mirror(x, var_i) push!(new_basis, hinge1) push!(new_basis, hinge2) #find coefficients d = length(new_basis) X = zeros(eltype(x[1]), n, d) @inbounds for i in 1:n for j in 1:d X[i, j] = new_basis[j](x[i]) end end if (cond(X' * X) > 1e8) condition_number = false new_sse = +Inf else condition_number = true coeff = (X' * X) \ (X' * y) new_sse = zero(y[1]) d = length(new_basis) for i in 1:n val_i = sum(coeff[j] * new_basis[j](x[i]) for j in 1:d) + intercept new_sse = new_sse + (y[i] - val_i)^2 end end #is the i-esim the best? if ((new_sse < current_sse) && (abs(current_sse - new_sse) >= rel_res_error) && condition_number) #Add the hinge function to the basis pos_of_knot = i current_sse = new_sse new_addition = true end end iters = iters + 1 if new_addition best_hinge1 = z -> _hinge(z, x[pos_of_knot]) best_hinge2 = z -> _hinge_mirror(z, x[pos_of_knot]) push!(basis, best_hinge1) push!(basis, best_hinge2) num_terms = num_terms + 1 else break end end if length(basis) == 0 throw("Earth surrogate did not add any term, just the intercept. It is advised to double check the parameters.") end return basis end function _backward_pass_1d(x, y, n_min_terms, basis, penalty, rel_GCV) n = length(x) d = length(basis) intercept = sum([y[i] for i in 1:length(y)]) / length(y) coeff = _coeff_1d(x, y, basis) sse = zero(y[1]) for i in 1:n val_i = sum(coeff[j] * basis[j](x[i]) for j in 1:d) + intercept sse = sse + (y[i] - val_i)^2 end effect_num_params = d + penalty * (d - 1) / 2 current_gcv = sse / (n * (1 - effect_num_params / n)^2) num_terms = d while (num_terms > n_min_terms) #Basis-> select worst performing element-> eliminate it if num_terms <= 1 break end found_new_to_eliminate = false for i in 1:n current_basis = copy(basis) #remove i-esim element from current basis deleteat!(current_basis, i) coef = _coeff_1d(x, y, current_basis) new_sse = zero(y[i]) for a in 1:n val_a = sum(coeff[j] * basis[j](x[a]) for j in 1:num_terms) + intercept new_sse = new_sse + (y[a] - val_a)^2 end effect_num_params = num_terms + penalty * (num_terms - 1) / 2 i_gcv = new_sse / (n * (1 - effect_num_params / n)^2) if i_gcv < current_gcv basis_to_remove = i new_gcv = i_gcv found_new_to_eliminate = true end end if !found_new_to_eliminate break end if abs(current_gcv - new_gcv) < rel_GCV break else num_terms = num_terms - 1 deleteat!(basis, basis_to_remove) end end return basis end function EarthSurrogate(x, y, lb::Number, ub::Number; penalty::Number = 2.0, n_min_terms::Int = 2, n_max_terms::Int = 10, rel_res_error::Number = 1e-2, rel_GCV::Number = 1e-2, maxiters = 100) intercept = sum([y[i] for i in 1:length(y)]) / length(y) basis_after_forward = _forward_pass_1d(x, y, n_max_terms, rel_res_error, maxiters) basis = _backward_pass_1d(x, y, n_min_terms, basis_after_forward, penalty, rel_GCV) coeff = _coeff_1d(x, y, basis) return EarthSurrogate(x, y, lb, ub, basis, coeff, penalty, n_min_terms, n_max_terms, rel_res_error, rel_GCV, intercept, maxiters) end function (earth::EarthSurrogate)(val::Number) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(earth, val) return sum([earth.coeff[i] * earth.basis[i](val) for i in 1:length(earth.coeff)]) + earth.intercept end #ND #inside arr_hing I have functions like g(x) = x -> _hinge(x,5.0) or g(x) = one(x) #_product_hinge(val,arr_hing) = prod([arr_hing[i](val[i]) for i = 1:length(val)]) function _coeff_nd(x, y, basis) n = length(x) base_len = length(basis) d = length(x[1]) X = zeros(eltype(x[1]), n, base_len) @inbounds for a in 1:n for b in 1:base_len X[a, b] = prod([basis[b][c](x[a][c]) for c in 1:d]) end end return (X' * X) \ (X' * y) end function _forward_pass_nd(x, y, n_max_terms, rel_res_error, maxiters) n = length(x) basis = Array{Array{Function, 1}}(undef, 0) #ex of basis: push!(x,[x->1.0,x->1.0,x->_hinge(x,knot)]) so basis is of the form arr_hing and then I can pass my val current_sse = +Inf const_1 = x -> 1.0 intercept = sum([y[i] for i in 1:length(y)]) / length(y) num_terms = 0 d = length(x[1]) best_hinge1 = best_hinge2 = [x -> one(eltype(x[1])) for j in 1:d] new_addition = false iters = 0 while num_terms <= n_max_terms || iters > maxiters current_basis = copy(basis) new_addition = false for i in 1:n for j in 1:d for k in 1:n for l in 1:d new_basis = copy(basis) #model with interaction between x[i][j] and x[k][l] new_hinge1 = [w != j ? x -> one(eltype(x[1])) : z -> _hinge(z, x[i][j]) for w in 1:d] new_hinge2 = [w != l ? x -> one(eltype(x[1])) : z -> _hinge_mirror(z, x[k][l]) for w in 1:d] push!(new_basis, new_hinge1) push!(new_basis, new_hinge2) #build the model, find sse and check if it's better than current best, if so save the params bas_len = length(new_basis) X = zeros(eltype(x[1]), n, bas_len) @inbounds for a in 1:n for b in 1:bas_len X[a, b] = prod([new_basis[b][c](x[a][c]) for c in 1:d]) end end if (cond(X' * X) > 1e8) condition_number = false new_sse = +Inf else condition_number = true coeff = (X' * X) \ (X' * y) new_sse = zero(y[1]) for a in 1:n val_a = sum(coeff[b] * prod([new_basis[b][c](x[a][c]) for c in 1:d]) for b in 1:bas_len) + intercept new_sse = new_sse + (y[a] - val_a)^2 end end #is the i-esim the best? if ((new_sse < current_sse) && (abs(current_sse - new_sse) >= rel_res_error) && condition_number) #Add the hinge function to the basis best_hinge1 = new_hinge1 best_hinge2 = new_hinge2 current_sse = new_sse new_addition = true end end end end end iters = iters + 1 if new_addition push!(basis, best_hinge1) push!(basis, best_hinge2) num_terms = num_terms + 1 else break end end if (length(basis) == 0) throw("Earth surrogate did not add any term, just the intercept. It is advised to double check the parameters.") end return basis end function _backward_pass_nd(x, y, n_min_terms, basis, penalty, rel_GCV) n = length(x) d = length(x[1]) base_len = length(basis) intercept = sum([y[i] for i in 1:length(y)]) / length(y) coeff = _coeff_nd(x, y, basis) sse = zero(y[1]) for a in 1:n val_a = sum(coeff[b] * prod([basis[b][c](x[a][c]) for c in 1:d]) for b in 1:base_len) + intercept sse = sse + (y[a] - val_a)^2 end effect_num_params = base_len + penalty * (base_len - 1) / 2 current_gcv = sse / (n * (1 - effect_num_params / n)^2) num_terms = base_len new_gcv = +Inf basis_to_remove = 0 while (num_terms > n_min_terms) #Basis-> select worst performing element-> eliminate it if num_terms <= 1 break end found_new_to_eliminate = false for i in 1:num_terms current_basis = copy(basis) #remove i-esim element from current basis deleteat!(current_basis, i) coef = _coeff_nd(x, y, current_basis) new_sse = zero(y[i]) current_base_len = num_terms - 1 for a in 1:n val_a = sum(coeff[b] * prod([current_basis[b][c](x[a][c]) for c in 1:d]) for b in 1:current_base_len) + intercept new_sse = new_sse + (y[a] - val_a)^2 end curr_effect_num_params = current_base_len + penalty * (current_base_len - 1) / 2 i_gcv = new_sse / (n * (1 - curr_effect_num_params / n)^2) if i_gcv < current_gcv basis_to_remove = i new_gcv = i_gcv found_new_to_eliminate = true end end if !found_new_to_eliminate break elseif abs(current_gcv - new_gcv) < rel_GCV break else num_terms = num_terms - 1 deleteat!(basis, basis_to_remove) end end return basis end function EarthSurrogate(x, y, lb, ub; penalty::Number = 2.0, n_min_terms::Int = 2, n_max_terms::Int = 10, rel_res_error::Number = 1e-2, rel_GCV::Number = 1e-2, maxiters = 100) intercept = sum([y[i] for i in 1:length(y)]) / length(y) basis_after_forward = _forward_pass_nd(x, y, n_max_terms, rel_res_error, maxiters) basis = _backward_pass_nd(x, y, n_min_terms, basis_after_forward, penalty, rel_GCV) coeff = _coeff_nd(x, y, basis) return EarthSurrogate(x, y, lb, ub, basis, coeff, penalty, n_min_terms, n_max_terms, rel_res_error, rel_GCV, intercept, maxiters) end function (earth::EarthSurrogate)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(earth, val) return sum([earth.coeff[i] * prod([earth.basis[i][j](val[j]) for j in 1:length(val)]) for i in 1:length(earth.coeff)]) + earth.intercept end function add_point!(earth::EarthSurrogate, x_new, y_new) if length(earth.x[1]) == 1 #1D earth.x = vcat(earth.x, x_new) earth.y = vcat(earth.y, y_new) earth.intercept = sum([earth.y[i] for i in 1:length(earth.y)]) / length(earth.y) basis_after_forward = _forward_pass_1d(earth.x, earth.y, earth.n_max_terms, earth.rel_res_error, earth.maxiters) earth.basis = _backward_pass_1d(earth.x, earth.y, earth.n_min_terms, basis_after_forward, earth.penalty, earth.rel_GCV) earth.coeff = _coeff_1d(earth.x, earth.y, earth.basis) nothing else #ND earth.x = vcat(earth.x, x_new) earth.y = vcat(earth.y, y_new) earth.intercept = sum([earth.y[i] for i in 1:length(earth.y)]) / length(earth.y) basis_after_forward = _forward_pass_nd(earth.x, earth.y, earth.n_max_terms, earth.rel_res_error, earth.maxiters) earth.basis = _backward_pass_nd(earth.x, earth.y, earth.n_min_terms, basis_after_forward, earth.penalty, earth.rel_GCV) earth.coeff = _coeff_nd(earth.x, earth.y, earth.basis) nothing end end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
6611
mutable struct GEK{X, Y, L, U, P, T, M, B, S, R} <: AbstractSurrogate x::X y::Y lb::L ub::U p::P theta::T mu::M b::B sigma::S inverse_of_R::R end function _calc_gek_coeffs(x, y, p::Number, theta::Number) nd1 = length(y) #2n n = length(x) R = zeros(eltype(x[1]), nd1, nd1) #top left @inbounds for i in 1:n for j in 1:n R[i, j] = exp(-theta * abs(x[i] - x[j])^p) end end #top right @inbounds for i in 1:n for j in (n + 1):nd1 R[i, j] = 2 * theta * (x[i] - x[j - n]) * exp(-theta * abs(x[i] - x[j - n])^p) end end #bottom left @inbounds for i in (n + 1):nd1 for j in 1:n R[i, j] = -2 * theta * (x[i - n] - x[j]) * exp(-theta * abs(x[i - n] - x[j])^p) end end #bottom right @inbounds for i in (n + 1):nd1 for j in (n + 1):nd1 R[i, j] = -4 * theta * (x[i - n] - x[j - n])^2 * exp(-theta * abs(x[i - n] - x[j - n])^p) end end one = ones(eltype(x[1]), nd1, 1) for i in (n + 1):nd1 one[i] = zero(eltype(x[1])) end one_t = one' inverse_of_R = inv(R) mu = (one_t * inverse_of_R * y) / (one_t * inverse_of_R * one) b = inverse_of_R * (y - one * mu) sigma = ((y - one * mu)' * inverse_of_R * (y - one * mu)) / n mu[1], b, sigma[1], inverse_of_R end function std_error_at_point(k::GEK, val::Number) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(k, val) phi(z) = exp(-(abs(z))^k.p) nd1 = length(k.y) n = length(k.x) r = zeros(eltype(k.x[1]), nd1, 1) @inbounds for i in 1:n r[i] = phi(val - k.x[i]) end one = ones(eltype(k.x[1]), nd1, 1) @inbounds for i in (n + 1):nd1 one[i] = zero(eltype(k.x[1])) end one_t = one' a = r' * k.inverse_of_R * r a = a[1] b = one_t * k.inverse_of_R * one b = b[1] mean_squared_error = k.sigma * (1 - a + (1 - a)^2 / (b)) return sqrt(abs(mean_squared_error)) end function (k::GEK)(val::Number) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(k, val) phi = z -> exp(-(abs(z))^k.p) n = length(k.x) prediction = zero(eltype(k.x[1])) @inbounds for i in 1:n prediction = prediction + k.b[i] * phi(val - k.x[i]) end prediction = k.mu + prediction return prediction end function GEK(x, y, lb::Number, ub::Number; p = 1.0, theta = 1.0) if length(x) != length(unique(x)) println("There exists a repetition in the samples, cannot build Kriging.") return end mu, b, sigma, inverse_of_R = _calc_gek_coeffs(x, y, p, theta) return GEK(x, y, lb, ub, p, theta, mu, b, sigma, inverse_of_R) end function _calc_gek_coeffs(x, y, p, theta) nd = length(y) n = length(x) d = length(x[1]) R = zeros(eltype(x[1]), nd, nd) #top left @inbounds for i in 1:n for j in 1:n R[i, j] = prod([exp(-theta[l] * (x[i][l] - x[j][l])) for l in 1:d]) end end #top right @inbounds for i in 1:n jr = 1 for j in (n + 1):d:nd for l in 1:d R[i, j + l - 1] = +2 * theta[l] * (x[i][l] - x[jr][l]) * R[i, jr] end jr = jr + 1 end end #bottom left @inbounds for j in 1:n ir = 1 for i in (n + 1):d:nd for l in 1:d R[i + l - 1, j] = -2 * theta[l] * (x[ir][l] - x[j][l]) * R[ir, j] end ir = ir + 1 end end #bottom right ir = 1 @inbounds for i in (n + 1):d:nd for j in (n + 1):d:nd jr = 1 for l in 1:d for k in 1:d R[i + l - 1, j + k - 1] = -4 * theta[l] * theta[k] * (x[ir][l] - x[jr][l]) * (x[ir][k] - x[jr][k]) * R[ir, jr] end end jr = jr + 1 end ir = ir + +1 end one = ones(eltype(x[1]), nd, 1) for i in (n + 1):nd one[i] = zero(eltype(x[1])) end one_t = one' inverse_of_R = inv(R) mu = (one_t * inverse_of_R * y) / (one_t * inverse_of_R * one) b = inverse_of_R * (y - one * mu) sigma = ((y - one * mu)' * inverse_of_R * (y - one * mu)) / n mu[1], b, sigma[1], inverse_of_R end function std_error_at_point(k::GEK, val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(k, val) nd1 = length(k.y) n = length(k.x) d = length(k.x[1]) r = zeros(eltype(k.x[1]), nd1, 1) @inbounds for i in 1:n sum = zero(eltype(k.x[1])) for l in 1:d sum = sum + k.theta[l] * norm(val[l] - k.x[i][l])^(k.p[l]) end r[i] = exp(-sum) end one = ones(eltype(k.x[1]), nd1, 1) @inbounds for i in (n + 1):nd1 one[i] = zero(eltype(k.x[1])) end one_t = one' a = r' * k.inverse_of_R * r a = a[1] b = one_t * k.inverse_of_R * one b = b[1] mean_squared_error = k.sigma * (1 - a + (1 - a)^2 / (b)) return sqrt(abs(mean_squared_error)) end function (k::GEK)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(k, val) d = length(val) n = length(k.x) return k.mu + sum(k.b[i] * exp(-sum(k.theta[j] * norm(val[j] - k.x[i][j])^k.p[j] for j in 1:d)) for i in 1:n) end function GEK(x, y, lb, ub; p = collect(one.(x[1])), theta = collect(one.(x[1]))) if length(x) != length(unique(x)) println("There exists a repetition in the samples, cannot build Kriging.") return end mu, b, sigma, inverse_of_R = _calc_gek_coeffs(x, y, p, theta) GEK(x, y, lb, ub, p, theta, mu, b, sigma, inverse_of_R) end function add_point!(k::GEK, new_x, new_y) if new_x in k.x println("Adding a sample that already exists, cannot build Kriging.") return end if (length(new_x) == 1 && length(new_x[1]) == 1) || (length(new_x) > 1 && length(new_x[1]) == 1 && length(k.theta) > 1) n = length(k.x) k.x = insert!(k.x, n + 1, new_x) k.y = insert!(k.y, n + 1, new_y) else n = length(k.x) k.x = insert!(k.x, n + 1, new_x) k.y = insert!(k.y, n + 1, new_y) end k.mu, k.b, k.sigma, k.inverse_of_R = _calc_gek_coeffs(k.x, k.y, k.p, k.theta) nothing end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
21626
using LinearAlgebra using Statistics """ GEKPLS(x, y, x_matrix, y_matrix, grads, xlimits, delta_x, extra_points, n_comp, beta, gamma, theta, reduced_likelihood_function_value, X_offset, X_scale, X_after_std, pls_mean_reshaped, y_mean, y_std) """ mutable struct GEKPLS{T, X, Y} <: AbstractSurrogate x::X y::Y x_matrix::Matrix{T} #1 y_matrix::Matrix{T} #2 grads::Matrix{T} #3 xl::Matrix{T} #xlimits #4 delta::T #5 extra_points::Int #6 num_components::Int #7 beta::Vector{T} #8 gamma::Matrix{T} #9 theta::Vector{T} #10 reduced_likelihood_function_value::T #11 X_offset::Matrix{T} #12 X_scale::Matrix{T} #13 X_after_std::Matrix{T} #14 - X after standardization pls_mean::Matrix{T} #15 y_mean::T #16 y_std::T #17 end """ bounds_error(x, xl) Checks if input x values are within range of upper and lower bounds """ function bounds_error(x, xl) num_x_rows = size(x, 1) num_dim = size(xl, 1) for i in 1:num_x_rows for j in 1:num_dim if (x[i, j] < xl[j, 1] || x[i, j] > xl[j, 2]) return true end end end return false end """ GEKPLS(X, y, grads, n_comp, delta_x, lb, ub, extra_points, theta) Constructor for GEKPLS Struct - x_vec: vector of tuples with x values - y_vec: vector of floats with outputs - grads_vec: gradients associated with each of the X points - n_comp: number of components - lb: lower bounds - ub: upper bounds - delta_x: step size while doing Taylor approximation - extra_points: number of points to consider - theta: initial expected variance of PLS regression components """ function GEKPLS(x_vec, y_vec, grads_vec, n_comp, delta_x, lb, ub, extra_points, theta) xlimits = hcat(lb, ub) X = vector_of_tuples_to_matrix(x_vec) y = reshape(y_vec, (size(X, 1), 1)) grads = vector_of_tuples_to_matrix2(grads_vec) #ensure that X values are within the upper and lower bounds if bounds_error(X, xlimits) println("X values outside bounds") return end pls_mean, X_after_PLS, y_after_PLS = _ge_compute_pls(X, y, n_comp, grads, delta_x, xlimits, extra_points) X_after_std, y_after_std, X_offset, y_mean, X_scale, y_std = standardization( X_after_PLS, y_after_PLS) D, ij = cross_distances(X_after_std) pls_mean_reshaped = reshape(pls_mean, (size(X, 2), n_comp)) d = componentwise_distance_PLS(D, "squar_exp", n_comp, pls_mean_reshaped) nt, nd = size(X_after_PLS) beta, gamma, reduced_likelihood_function_value = _reduced_likelihood_function(theta, "squar_exp", d, nt, ij, y_after_std) return GEKPLS(x_vec, y_vec, X, y, grads, xlimits, delta_x, extra_points, n_comp, beta, gamma, theta, reduced_likelihood_function_value, X_offset, X_scale, X_after_std, pls_mean_reshaped, y_mean, y_std) end """ (g::GEKPLS)(X_test) Take in a set of one or more points and provide predicted approximate outputs (predictor). """ function (g::GEKPLS)(x_vec) _check_dimension(g, x_vec) X_test = prep_data_for_pred(x_vec) n_eval, n_features_x = size(X_test) X_cont = (X_test .- g.X_offset) ./ g.X_scale dx = differences(X_cont, g.X_after_std) pred_d = componentwise_distance_PLS(dx, "squar_exp", g.num_components, g.pls_mean) nt = size(g.X_after_std, 1) r = transpose(reshape(squar_exp(g.theta, pred_d), (nt, n_eval))) f = ones(n_eval, 1) y_ = (f * g.beta) + (r * g.gamma) y = g.y_mean .+ g.y_std * y_ return y[1] end """ add_point!(g::GEKPLS, new_x, new_y, new_grads) add a new point to the dataset. """ function add_point!(g::GEKPLS, x_tup, y_val, grad_tup) new_x = prep_data_for_pred(x_tup) new_grads = prep_data_for_pred(grad_tup) if vec(new_x) in eachrow(g.x_matrix) println("Adding a sample that already exists. Cannot build GEKPLS") return end if bounds_error(new_x, g.xl) println("x values outside bounds") return end temp_y = copy(g.y) #without the copy here, we get error ("cannot resize array with shared data") push!(g.x, x_tup) push!(temp_y, y_val) g.y = temp_y g.x_matrix = vcat(g.x_matrix, new_x) g.y_matrix = vcat(g.y_matrix, y_val) g.grads = vcat(g.grads, new_grads) pls_mean, X_after_PLS, y_after_PLS = _ge_compute_pls(g.x_matrix, g.y_matrix, g.num_components, g.grads, g.delta, g.xl, g.extra_points) g.X_after_std, y_after_std, g.X_offset, g.y_mean, g.X_scale, g.y_std = standardization( X_after_PLS, y_after_PLS) D, ij = cross_distances(g.X_after_std) g.pls_mean = reshape(pls_mean, (size(g.x_matrix, 2), g.num_components)) d = componentwise_distance_PLS(D, "squar_exp", g.num_components, g.pls_mean) nt, nd = size(X_after_PLS) g.beta, g.gamma, g.reduced_likelihood_function_value = _reduced_likelihood_function( g.theta, "squar_exp", d, nt, ij, y_after_std) end """ _ge_compute_pls(X, y, n_comp, grads, delta_x, xlimits, extra_points) ## Gradient-enhanced PLS-coefficients. Parameters - X: [n_obs,dim] - The input variables. - y: [n_obs,ny] - The output variable - n_comp: int - Number of principal components used. - gradients: - The gradient values. Matrix size (n_obs,dim) - delta_x: real - The step used in the First Order Taylor Approximation - xlimits: [dim, 2]- The upper and lower var bounds. - extra_points: int - The number of extra points per each training point. Returns * * * - Coeff_pls: [dim, n_comp] - The PLS-coefficients. - X: Concatenation of XX: [extra_points*nt, dim] - Extra points added (when extra_points > 0) and X - y: Concatenation of yy[extra_points*nt, 1]- Extra points added (when extra_points > 0) and y """ function _ge_compute_pls(X, y, n_comp, grads, delta_x, xlimits, extra_points) # this function is equivalent to a combination of # https://github.com/SMTorg/smt/blob/f124c01ffa78c04b80221dded278a20123dac742/smt/utils/kriging_utils.py#L1036 # and https://github.com/SMTorg/smt/blob/f124c01ffa78c04b80221dded278a20123dac742/smt/surrogate_models/gekpls.py#L48 nt, dim = size(X) XX = zeros(0, dim) yy = zeros(0, size(y)[2]) coeff_pls = zeros((dim, n_comp, nt)) for i in 1:nt if dim >= 3 bb_vals = circshift(boxbehnken(dim, 1), 1) else bb_vals = [0.0 0.0; #center 1.0 0.0; #right 0.0 1.0; #up -1.0 0.0; #left 0.0 -1.0; #down 1.0 1.0; #right up -1.0 1.0; #left up -1.0 -1.0; #left down 1.0 -1.0] end _X = zeros((size(bb_vals)[1], dim)) _y = zeros((size(bb_vals)[1], 1)) bb_vals = bb_vals .* (delta_x * (xlimits[:, 2] - xlimits[:, 1]))' #smt calls this sign. I've called it bb_vals _X = X[i, :]' .+ bb_vals bb_vals = bb_vals .* grads[i, :]' _y = y[i, :] .+ sum(bb_vals, dims = 2) #_pls.fit(_X, _y) # relic from sklearn version; retained for future reference. #coeff_pls[:, :, i] = _pls.x_rotations_ #relic from sklearn version; retained for future reference. coeff_pls[:, :, i] = _modified_pls(_X, _y, n_comp) #_modified_pls returns the equivalent of SKLearn's _pls.x_rotations_ if extra_points != 0 start_index = max(1, length(coeff_pls[:, 1, i]) - extra_points + 1) max_coeff = sortperm(broadcast(abs, coeff_pls[:, 1, i]))[start_index:end] for ii in max_coeff XX = [XX; transpose(X[i, :])] XX[end, ii] += delta_x * (xlimits[ii, 2] - xlimits[ii, 1]) yy = [yy; y[i]] yy[end] += grads[i, ii] * delta_x * (xlimits[ii, 2] - xlimits[ii, 1]) end end end if extra_points != 0 X = [X; XX] y = [y; yy] end pls_mean = mean(broadcast(abs, coeff_pls), dims = 3) return pls_mean, X, y end ######start of bbdesign###### # # Adapted from 'ExperimentalDesign.jl: Design of Experiments in Julia' # https://github.com/phrb/ExperimentalDesign.jl # MIT License # ExperimentalDesign.jl: Design of Experiments in Julia # Copyright (C) 2019 Pedro Bruel <[email protected]> # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # The above copyright notice and this permission notice (including the next # paragraph) shall be included in all copies or substantial portions of the # Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # function boxbehnken(matrix_size::Int) boxbehnken(matrix_size, matrix_size) end function boxbehnken(matrix_size::Int, center::Int) @assert matrix_size >= 3 A_fact = explicit_fullfactorial(Tuple([-1, 1] for i in 1:2)) rows = floor(Int, (0.5 * matrix_size * (matrix_size - 1)) * size(A_fact)[1]) A = zeros(rows, matrix_size) l = 0 for i in 1:(matrix_size - 1) for j in (i + 1):matrix_size l = l + 1 A[(max(0, (l - 1) * size(A_fact)[1]) + 1):(l * size(A_fact)[1]), i] = A_fact[:, 1] A[(max(0, (l - 1) * size(A_fact)[1]) + 1):(l * size(A_fact)[1]), j] = A_fact[:, 2] end end if center == matrix_size if matrix_size <= 16 points = [0, 0, 3, 3, 6, 6, 6, 8, 9, 10, 12, 12, 13, 14, 15, 16] center = points[matrix_size] end end A = transpose(hcat(transpose(A), transpose(zeros(center, matrix_size)))) end function explicit_fullfactorial(factors::Tuple) explicit_fullfactorial(fullfactorial(factors)) end function explicit_fullfactorial(iterator::Base.Iterators.ProductIterator) hcat(vcat.(collect(iterator)...)...) end function fullfactorial(factors::Tuple) Base.Iterators.product(factors...) end ######end of bb design###### """ We subtract the mean from each variable. Then, we divide the values of each variable by its standard deviation. ## Parameters X - The input variables. y - The output variable. ## Returns X: [n_obs, dim] The standardized input matrix. y: [n_obs, 1] The standardized output vector. X_offset: The mean (or the min if scale_X_to_unit=True) of each input variable. y_mean: The mean of the output variable. X_scale: The standard deviation of each input variable. y_std: The standard deviation of the output variable. """ function standardization(X, y) #Equivalent of https://github.com/SMTorg/smt/blob/4a4df255b9259965439120091007f9852f41523e/smt/utils/kriging_utils.py#L21 X_offset = mean(X, dims = 1) X_scale = std(X, dims = 1) X_scale = map(x -> (x == 0.0) ? x = 1 : x = x, X_scale) #to prevent division by 0 below y_mean = mean(y) y_std = std(y) y_std = map(y -> (y == 0) ? y = 1 : y = y, y_std) #to prevent division by 0 below X = (X .- X_offset) ./ X_scale y = (y .- y_mean) ./ y_std return X, y, X_offset, y_mean, X_scale, y_std end """ Computes the nonzero componentwise cross-distances between the vectors in X ## Parameters X: [n_obs, dim] ## Returns D: [n_obs * (n_obs - 1) / 2, dim] - The cross-distances between the vectors in X. ij: [n_obs * (n_obs - 1) / 2, 2] - The indices i and j of the vectors in X associated to the cross- distances in D. """ function cross_distances(X) # equivalent of https://github.com/SMTorg/smt/blob/4a4df255b9259965439120091007f9852f41523e/smt/utils/kriging_utils.py#L86 n_samples, n_features = size(X) n_nonzero_cross_dist = (n_samples * (n_samples - 1)) ÷ 2 ij = zeros((n_nonzero_cross_dist, 2)) D = zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in 1:(n_samples - 1) ll_0 = ll_1 + 1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 1] .= k ij[ll_0:ll_1, 2] = (k + 1):1:n_samples D[ll_0:ll_1, :] = -(X[(k + 1):n_samples, :] .- X[k, :]') end return D, Int.(ij) end """ Computes the nonzero componentwise cross-spatial-correlation-distance between the vectors in X. Equivalent of https://github.com/SMTorg/smt/blob/4a4df255b9259965439120091007f9852f41523e/smt/utils/kriging_utils.py#L1257 with some simplifications (removed theta and return_derivative as it's not required for GEKPLS) Parameters ---------- D: [n_obs * (n_obs - 1) / 2, dim] - The L1 cross-distances between the vectors in X. corr: str - Name of the correlation function used. squar_exp or abs_exp. n_comp: int - Number of principal components used. coeff_pls: [dim, n_comp] - The PLS-coefficients. Returns ------- D_corr: [n_obs * (n_obs - 1) / 2, n_comp] - The componentwise cross-spatial-correlation-distance between the vectors in X. """ function componentwise_distance_PLS(D, corr, n_comp, coeff_pls) #equivalent of https://github.com/SMTorg/smt/blob/4a4df255b9259965439120091007f9852f41523e/smt/utils/kriging_utils.py#L1257 #todo #figure out how to handle this computation in the case of very large matrices #similar to what SMT has done #at https://github.com/SMTorg/smt/blob/4a4df255b9259965439120091007f9852f41523e/smt/utils/kriging_utils.py#L1257 D_corr = zeros((size(D)[1], n_comp)) if corr == "squar_exp" D_corr = D .^ 2 * coeff_pls .^ 2 else #abs_exp D_corr = abs.(D) * abs.(coeff_pls) end return D_corr end """ ## Squared exponential correlation model. Equivalent of https://github.com/SMTorg/smt/blob/4a4df255b9259965439120091007f9852f41523e/smt/utils/kriging_utils.py#L604 Parameters: theta : Hyperparameters of the correlation model d: componentwise distances from componentwise_distance_PLS ## Returns: r: array containing the values of the autocorrelation model """ function squar_exp(theta, d) n_components = size(d)[2] theta = reshape(theta, (1, n_components)) return exp.(-sum(theta .* d, dims = 2)) end """ differences(X, Y) return differences between two arrays given an input like this: X = [1.0 1.0 1.0; 2.0 2.0 2.0] Y = [1.0 2.0 3.0; 4.0 5.0 6.0; 7.0 8.0 9.0] diff = differences(X,Y) We get an output (diff) that looks like this: [ 0. -1. -2. -3. -4. -5. -6. -7. -8. 1. 0. -1. -2. -3. -4. -5. -6. -7.] """ function differences(X, Y) #equivalent of https://github.com/SMTorg/smt/blob/4a4df255b9259965439120091007f9852f41523e/smt/utils/kriging_utils.py#L392 #code credit: Elias Carvalho - https://stackoverflow.com/questions/72392010/row-wise-operations-between-matrices-in-julia Rx = repeat(X, inner = (size(Y, 1), 1)) Ry = repeat(Y, size(X, 1)) return Rx - Ry end """ _reduced_likelihood_function(theta, kernel_type, d, nt, ij, y_norma, noise = 0.0) Compute the reduced likelihood function value and other coefficients necessary for prediction This function is a loose translation of SMT code from https://github.com/SMTorg/smt/blob/4a4df255b9259965439120091007f9852f41523e/smt/surrogate_models/krg_based.py#L247 It determines the BLUP parameters and evaluates the reduced likelihood function for the given theta. ## Parameters theta: array containing the parameters at which the Gaussian Process model parameters should be determined. kernel_type: name of the correlation function. d: The componentwise cross-spatial-correlation-distance between the vectors in X. nt: number of training points ij: The indices i and j of the vectors in X associated to the cross-distances in D. y_norma: Standardized y values noise: noise hyperparameter - increasing noise reduces reduced_likelihood_function_value ## Returns reduced_likelihood_function_value: real - The value of the reduced likelihood function associated with the given autocorrelation parameters theta. beta: Generalized least-squares regression weights gamma: Gaussian Process weights. """ function _reduced_likelihood_function(theta, kernel_type, d, nt, ij, y_norma, noise = 0.0) #equivalent of https://github.com/SMTorg/smt/blob/4a4df255b9259965439120091007f9852f41523e/smt/surrogate_models/krg_based.py#L247 reduced_likelihood_function_value = -Inf nugget = 1000000.0 * eps() #a jitter for numerical stability; reducing the multiple from 1000000.0 results in positive definite error for Cholesky decomposition; if kernel_type == "squar_exp" #todo - add other kernel type abs_exp etc. r = squar_exp(theta, d) end R = (I + zeros(nt, nt)) .* (1.0 + nugget + noise) for k in 1:size(ij)[1] R[ij[k, 1], ij[k, 2]] = r[k] R[ij[k, 2], ij[k, 1]] = r[k] end C = cholesky(R).L #todo - #values diverge at this point from SMT code; verify impact F = ones(nt, 1) #todo - examine if this should be a parameter for this function Ft = C \ F Q, G = qr(Ft) Q = Array(Q) Yt = C \ y_norma #todo - in smt, they check if the matrix is ill-conditioned using SVD. Verify and include if necessary beta = G \ [(transpose(Q) ⋅ Yt)] rho = Yt .- (Ft .* beta) gamma = transpose(C) \ rho sigma2 = sum((rho) .^ 2, dims = 1) / nt detR = prod(diag(C) .^ (2.0 / nt)) reduced_likelihood_function_value = -nt * log10(sum(sigma2)) - nt * log10(detR) return beta, gamma, reduced_likelihood_function_value end ### MODIFIED PLS BELOW ### # The code below is a simplified version of # SKLearn's PLS # https://github.com/scikit-learn/scikit-learn/blob/80598905e/sklearn/cross_decomposition/_pls.py # It is completely self-contained (no dependencies) function _center_scale(X, Y) x_mean = mean(X, dims = 1) X .-= x_mean y_mean = mean(Y, dims = 1) Y .-= y_mean x_std = std(X, dims = 1) x_std[x_std .== 0] .= 1.0 X ./= x_std y_std = std(Y, dims = 1) y_std[y_std .== 0] .= 1.0 Y ./= y_std return X, Y end function _svd_flip_1d(u, v) # equivalent of https://github.com/scikit-learn/scikit-learn/blob/80598905e517759b4696c74ecc35c6e2eb508cff/sklearn/cross_decomposition/_pls.py#L149 biggest_abs_val_idx = findmax(abs.(vec(u)))[2] sign_ = sign(u[biggest_abs_val_idx]) u .*= sign_ v .*= sign_ end function _get_first_singular_vectors_power_method(X, Y) my_eps = eps() y_score = vec(Y) x_weights = transpose(X)y_score / dot(y_score, y_score) x_weights ./= (sqrt(dot(x_weights, x_weights)) + my_eps) x_score = X * x_weights y_weights = transpose(Y)x_score / dot(x_score, x_score) y_score = Y * y_weights / (dot(y_weights, y_weights) + my_eps) #Equivalent in intent to https://github.com/scikit-learn/scikit-learn/blob/80598905e517759b4696c74ecc35c6e2eb508cff/sklearn/cross_decomposition/_pls.py#L66 if any(isnan.(x_weights)) || any(isnan.(y_weights)) return false, false end return x_weights, y_weights end function _modified_pls(X, Y, n_components) x_weights_ = zeros(size(X, 2), n_components) _x_scores = zeros(size(X, 1), n_components) x_loadings_ = zeros(size(X, 2), n_components) Xk, Yk = _center_scale(X, Y) for k in 1:n_components x_weights, y_weights = _get_first_singular_vectors_power_method(Xk, Yk) if x_weights == false break end _svd_flip_1d(x_weights, y_weights) x_scores = Xk * x_weights x_loadings = transpose(x_scores)Xk / dot(x_scores, x_scores) Xk = Xk - (x_scores * x_loadings) y_loadings = transpose(x_scores) * Yk / dot(x_scores, x_scores) Yk = Yk - x_scores * y_loadings x_weights_[:, k] = x_weights _x_scores[:, k] = x_scores x_loadings_[:, k] = vec(x_loadings) end x_rotations_ = x_weights_ * pinv(transpose(x_loadings_)x_weights_) return x_rotations_ end ### MODIFIED PLS ABOVE ### ### BELOW ARE HELPER FUNCTIONS TO HELP MODIFY VECTORS INTO ARRAYS function vector_of_tuples_to_matrix(v) num_rows = length(v) num_cols = length(first(v)) K = zeros(num_rows, num_cols) for row in 1:num_rows for col in 1:num_cols K[row, col] = v[row][col] end end return K end function vector_of_tuples_to_matrix2(v) #convert gradients into matrix form num_rows = length(v) num_cols = length(first(first(v))) K = zeros(num_rows, num_cols) for row in 1:num_rows for col in 1:num_cols K[row, col] = v[row][1][col] end end return K end function prep_data_for_pred(v) l = length(first(v)) if (l == 1) return [tup[k] for k in 1:1, tup in v] end return [tup[k] for tup in v, k in 1:l] end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1747
""" mutable struct InverseDistanceSurrogate{X,Y,P,C,L,U} <: AbstractSurrogate The inverse distance weighting model is an interpolating method and the unknown points are calculated with a weighted average of the sampling points. p is a positive real number called the power parameter. p > 1 is needed for the derivative to be continuous. """ mutable struct InverseDistanceSurrogate{X, Y, L, U, P} <: AbstractSurrogate x::X y::Y lb::L ub::U p::P end function InverseDistanceSurrogate(x, y, lb, ub; p::Number = 1.0) return InverseDistanceSurrogate(x, y, lb, ub, p) end function (inverSurr::InverseDistanceSurrogate)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(inverSurr, val) if val in inverSurr.x return inverSurr.y[findfirst(x -> x == val, inverSurr.x)] else if length(inverSurr.lb) == 1 num = sum(inverSurr.y[i] * (norm(val .- inverSurr.x[i]))^(-inverSurr.p) for i in 1:length(inverSurr.x)) den = sum(norm(val .- inverSurr.x[i])^(-inverSurr.p) for i in 1:length(inverSurr.x)) return num / den else βᵢ = [norm(val .- inverSurr.x[i])^(-inverSurr.p) for i in 1:length(inverSurr.x)] num = sum(inverSurr.y[i] * βᵢ[i] for i in 1:length(inverSurr.y)) den = sum(βᵢ) return num / den end end end function add_point!(inverSurr::InverseDistanceSurrogate, x_new, y_new) if eltype(x_new) == eltype(inverSurr.x) #1D append!(inverSurr.x, x_new) append!(inverSurr.y, y_new) else #ND push!(inverSurr.x, x_new) push!(inverSurr.y, y_new) end nothing end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
7669
#= One-dimensional Kriging method, following these papers: "Efficient Global Optimization of Expensive Black Box Functions" and "A Taxonomy of Global Optimization Methods Based on Response Surfaces" both by DONALD R. JONES =# mutable struct Kriging{X, Y, L, U, P, T, M, B, S, R} <: AbstractSurrogate x::X y::Y lb::L ub::U p::P theta::T mu::M b::B sigma::S inverse_of_R::R end """ Gives the current estimate for array 'val' with respect to the Kriging object k. """ function (k::Kriging)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(k, val) n = length(k.x) d = length(val) return k.mu + sum(k.b[i] * exp(-sum(k.theta[j] * norm(val[j] - k.x[i][j])^k.p[j] for j in 1:d)) for i in 1:n) end """ Returns sqrt of expected mean_squared_error error at the point. """ function std_error_at_point(k::Kriging, val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(k, val) n = length(k.x) d = length(k.x[1]) r = zeros(eltype(k.x[1]), n, 1) r = [let sum = zero(eltype(k.x[1])) for l in 1:d sum = sum + k.theta[l] * norm(val[l] - k.x[i][l])^(k.p[l]) end exp(-sum) end for i in 1:n] one = ones(eltype(k.x[1]), n, 1) one_t = one' a = r' * k.inverse_of_R * r b = one_t * k.inverse_of_R * one mean_squared_error = k.sigma * (1 - a[1] + (1 - a[1])^2 / b[1]) return sqrt(abs(mean_squared_error)) end """ Gives the current estimate for 'val' with respect to the Kriging object k. """ function (k::Kriging)(val::Number) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(k, val) n = length(k.x) return k.mu + sum(k.b[i] * exp(-sum(k.theta * abs(val - k.x[i])^k.p)) for i in 1:n) end """ Returns sqrt of expected mean_squared_error error at the point. """ function std_error_at_point(k::Kriging, val::Number) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(k, val) n = length(k.x) r = [exp(-k.theta * abs(val - k.x[i])^k.p) for i in 1:n] one = ones(eltype(k.x), n) one_t = one' a = r' * k.inverse_of_R * r b = one_t * k.inverse_of_R * one mean_squared_error = k.sigma * (1 - a[1] + (1 - a[1])^2 / b[1]) return sqrt(abs(mean_squared_error)) end """ Kriging(x, y, lb::Number, ub::Number; p::Number=2.0, theta::Number = 0.5/var(x)) Constructor for type Kriging. #Arguments: -(x,y): sampled points -p: value between 0 and 2 modelling the smoothness of the function being approximated, 0-> rough 2-> C^infinity - theta: value > 0 modeling how much the function is changing in the i-th variable. """ function Kriging(x, y, lb::Number, ub::Number; p = 2.0, theta = 0.5 / max(1e-6 * abs(ub - lb), std(x))^p) if length(x) != length(unique(x)) println("There exists a repetition in the samples, cannot build Kriging.") return end if p > 2.0 || p < 0.0 throw(ArgumentError("Hyperparameter p must be between 0 and 2! Got: $p.")) end if theta ≤ 0 throw(ArgumentError("Hyperparameter theta must be positive! Got: $theta")) end mu, b, sigma, inverse_of_R = _calc_kriging_coeffs(x, y, p, theta) Kriging(x, y, lb, ub, p, theta, mu, b, sigma, inverse_of_R) end function _calc_kriging_coeffs(x, y, p::Number, theta::Number) n = length(x) R = [exp(-theta * abs(x[i] - x[j])^p) for i in 1:n, j in 1:n] # Estimate nugget based on maximum allowed condition number # This regularizes R to allow for points being close to each other without R becoming # singular, at the cost of slightly relaxing the interpolation condition # Derived from "An analytic comparison of regularization methods for Gaussian Processes" # by Mohammadi et al (https://arxiv.org/pdf/1602.00853.pdf) λ = eigen(R).values λmax = λ[end] λmin = λ[1] κmax = 1e8 λdiff = λmax - κmax * λmin if λdiff ≥ 0 nugget = λdiff / (κmax - 1) else nugget = 0.0 end one = ones(eltype(x[1]), n) one_t = one' R = R + Diagonal(nugget * one) inverse_of_R = inv(R) mu = (one_t * inverse_of_R * y) / (one_t * inverse_of_R * one) b = inverse_of_R * (y - one * mu) sigma = ((y - one * mu)' * b) / n mu[1], b, sigma[1], inverse_of_R end """ Kriging(x,y,lb,ub;p=collect(one.(x[1])),theta=collect(one.(x[1]))) Constructor for Kriging surrogate. - (x,y): sampled points - p: array of values 0<=p<2 modeling the smoothness of the function being approximated in the i-th variable. low p -> rough, high p -> smooth - theta: array of values > 0 modeling how much the function is changing in the i-th variable. """ function Kriging(x, y, lb, ub; p = 2.0 .* collect(one.(x[1])), theta = [0.5 / max(1e-6 * norm(ub .- lb), std(x_i[i] for x_i in x))^p[i] for i in 1:length(x[1])]) if length(x) != length(unique(x)) println("There exists a repetition in the samples, cannot build Kriging.") return end for i in 1:length(x[1]) if p[i] > 2.0 || p[i] < 0.0 throw(ArgumentError("All p must be between 0 and 2! Got: $p.")) end if theta[i] ≤ 0.0 throw(ArgumentError("All theta must be positive! Got: $theta.")) end end mu, b, sigma, inverse_of_R = _calc_kriging_coeffs(x, y, p, theta) Kriging(x, y, lb, ub, p, theta, mu, b, sigma, inverse_of_R) end function _calc_kriging_coeffs(x, y, p, theta) n = length(x) d = length(x[1]) R = [let sum = zero(eltype(x[1])) for l in 1:d sum = sum + theta[l] * norm(x[i][l] - x[j][l])^p[l] end exp(-sum) end for j in 1:n, i in 1:n] # Estimate nugget based on maximum allowed condition number # This regularizes R to allow for points being close to each other without R becoming # singular, at the cost of slightly relaxing the interpolation condition # Derived from "An analytic comparison of regularization methods for Gaussian Processes" # by Mohammadi et al (https://arxiv.org/pdf/1602.00853.pdf) λ = eigen(R).values λmax = λ[end] λmin = λ[1] κmax = 1e8 λdiff = λmax - κmax * λmin if λdiff ≥ 0 nugget = λdiff / (κmax - 1) else nugget = 0.0 end one = ones(eltype(x[1]), n) one_t = one' R = R + Diagonal(nugget * one[:, 1]) inverse_of_R = inv(R) mu = (one_t * inverse_of_R * y) / (one_t * inverse_of_R * one) y_minus_1μ = y - one * mu b = inverse_of_R * y_minus_1μ sigma = (y_minus_1μ' * b) / n mu[1], b, sigma[1], inverse_of_R end """ add_point!(k::Kriging,new_x,new_y) Adds the new point and its respective value to the sample points. Warning: If you are just adding a single point, you have to wrap it with []. Returns the updated Kriging model. """ function add_point!(k::Kriging, new_x, new_y) if new_x in k.x println("Adding a sample that already exists, cannot build Kriging.") return end if (length(new_x) == 1 && length(new_x[1]) == 1) || (length(new_x) > 1 && length(new_x[1]) == 1 && length(k.theta) > 1) push!(k.x, new_x) push!(k.y, new_y) else append!(k.x, new_x) append!(k.y, new_y) end k.mu, k.b, k.sigma, k.inverse_of_R = _calc_kriging_coeffs(k.x, k.y, k.p, k.theta) nothing end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
2249
using GLM mutable struct LinearSurrogate{X, Y, C, L, U} <: AbstractSurrogate x::X y::Y coeff::C lb::L ub::U end function LinearSurrogate(x, y, lb::Number, ub::Number) ols = lm(reshape(x, length(x), 1), y) LinearSurrogate(x, y, coef(ols), lb, ub) end function add_point!(my_linear::LinearSurrogate, new_x, new_y) if length(my_linear.lb) == 1 #1D my_linear.x = vcat(my_linear.x, new_x) my_linear.y = vcat(my_linear.y, new_y) md = lm(reshape(my_linear.x, length(my_linear.x), 1), my_linear.y) my_linear.coeff = coef(md) else #ND n_previous = length(my_linear.x) a = vcat(my_linear.x, new_x) n_after = length(a) dim_new = n_after - n_previous n = length(my_linear.x) d = length(my_linear.x[1]) tot_dim = n + dim_new X = Array{Float64, 2}(undef, tot_dim, d) for j in 1:n X[j, :] = vec(collect(my_linear.x[j])) end if dim_new == 1 X[n + 1, :] = vec(collect(new_x)) else i = 1 for j in (n + 1):tot_dim X[j, :] = vec(collect(new_x[i])) i = i + 1 end end my_linear.x = vcat(my_linear.x, new_x) my_linear.y = vcat(my_linear.y, new_y) md = lm(X, my_linear.y) my_linear.coeff = coef(md) end nothing end function (lin::LinearSurrogate)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(lin, val) return lin.coeff' * [val...] end """ LinearSurrogate(x,y,lb,ub) Builds a linear surrogate using GLM.jl """ function LinearSurrogate(x, y, lb, ub) #X = Array{eltype(x[1]),2}(undef,length(x),length(x[1])) #= X = Array{eltype(x[1]),2}(undef,length(x),length(x[1])) for j = 1:length(x) X[j,:] = vec(collect(x[j])) end =# T = collect(reshape(collect(Base.Iterators.flatten(x)), (length(x[1]), length(x)))') #T = transpose(reshape(reinterpret(eltype(x[1]), x), length(x[1]), length(x))) X = Array{eltype(x[1]), 2}(undef, length(x), length(x[1])) X = copy(T) ols = lm(X, y) return LinearSurrogate(x, y, coef(ols), lb, ub) end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
5926
using ExtendableSparse mutable struct LobachevskySurrogate{X, Y, A, N, L, U, C, S} <: AbstractSurrogate x::X y::Y alpha::A n::N lb::L ub::U coeff::C sparse::S end function phi_nj1D(point, x, alpha, n) val = false * x[1] for l in 0:n a = sqrt(n / 3) * alpha * (point - x) + (n - 2 * l) if a > 0 if l % 2 == 0 val += binomial(n, l) * a^(n - 1) else val -= binomial(n, l) * a^(n - 1) end end end val *= sqrt(n / 3) / (2^n * factorial(n - 1)) return val end function _calc_loba_coeff1D(x, y, alpha, n, sparse) dim = length(x) if sparse D = ExtendableSparseMatrix{eltype(x), Int}(dim, dim) else D = zeros(eltype(x[1]), dim, dim) end for i in 1:dim for j in 1:dim D[i, j] = phi_nj1D(x[i], x[j], alpha, n) end end Sym = Symmetric(D, :U) return Sym \ y end """ Lobachevsky interpolation, suggested parameters: 0 <= alpha <= 4, n must be even. """ function LobachevskySurrogate( x, y, lb::Number, ub::Number; alpha::Number = 1.0, n::Int = 4, sparse = false) if alpha > 4 || alpha < 0 error("Alpha must be between 0 and 4") end if n % 2 != 0 error("Parameter n must be even") end coeff = _calc_loba_coeff1D(x, y, alpha, n, sparse) LobachevskySurrogate(x, y, alpha, n, lb, ub, coeff, sparse) end function (loba::LobachevskySurrogate)(val::Number) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(loba, val) return sum(loba.coeff[j] * phi_nj1D(val, loba.x[j], loba.alpha, loba.n) for j in 1:length(loba.x)) end function phi_njND(point, x, alpha, n) return prod(phi_nj1D(point[h], x[h], alpha[h], n) for h in 1:length(x)) end function _calc_loba_coeffND(x, y, alpha, n, sparse) dim = length(x) if sparse D = ExtendableSparseMatrix{eltype(x[1]), Int}(dim, dim) else D = zeros(eltype(x[1]), dim, dim) end for i in 1:dim for j in 1:dim D[i, j] = phi_njND(x[i], x[j], alpha, n) end end Sym = Symmetric(D, :U) return Sym \ y end """ LobachevskySurrogate(x,y,alpha,n::Int,lb,ub,sparse = false) Build the Lobachevsky surrogate with parameters alpha and n. """ function LobachevskySurrogate(x, y, lb, ub; alpha = collect(one.(x[1])), n::Int = 4, sparse = false) if n % 2 != 0 error("Parameter n must be even") end coeff = _calc_loba_coeffND(x, y, alpha, n, sparse) LobachevskySurrogate(x, y, alpha, n, lb, ub, coeff, sparse) end function (loba::LobachevskySurrogate)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(loba, val) return sum(loba.coeff[j] * phi_njND(val, loba.x[j], loba.alpha, loba.n) for j in 1:length(loba.x)) end function add_point!(loba::LobachevskySurrogate, x_new, y_new) if length(loba.x[1]) == 1 #1D append!(loba.x, x_new) append!(loba.y, y_new) loba.coeff = _calc_loba_coeff1D(loba.x, loba.y, loba.alpha, loba.n, loba.sparse) else #ND loba.x = vcat(loba.x, x_new) loba.y = vcat(loba.y, y_new) loba.coeff = _calc_loba_coeffND(loba.x, loba.y, loba.alpha, loba.n, loba.sparse) end nothing end #Lobachevsky integrals function _phi_int(point, n) res = zero(eltype(point)) for k in 0:n c = sqrt(n / 3) * point + (n - 2 * k) if c > 0 res = res + (-1)^k * binomial(n, k) * c^n end end res *= 1 / (2^n * factorial(n)) end function lobachevsky_integral(loba::LobachevskySurrogate, lb::Number, ub::Number) val = zero(eltype(loba.y[1])) n = length(loba.x) for i in 1:n a = loba.alpha * (ub - loba.x[i]) b = loba.alpha * (lb - loba.x[i]) int = 1 / loba.alpha * (_phi_int(a, loba.n) - _phi_int(b, loba.n)) val = val + loba.coeff[i] * int end return val end """ lobachevsky_integral(loba::LobachevskySurrogate,lb,ub) Calculates the integral of the Lobachevsky surrogate, which has a closed form. """ function lobachevsky_integral(loba::LobachevskySurrogate, lb, ub) d = length(lb) val = zero(eltype(loba.y[1])) for j in 1:length(loba.x) I = 1.0 for i in 1:d upper = loba.alpha[i] * (ub[i] - loba.x[j][i]) lower = loba.alpha[i] * (lb[i] - loba.x[j][i]) I *= 1 / loba.alpha[i] * (_phi_int(upper, loba.n) - _phi_int(lower, loba.n)) end val = val + loba.coeff[j] * I end return val end """ lobachevsky_integrate_dimension(loba::LobachevskySurrogate,lb,ub,dimension) Integrating the surrogate on selected dimension dim """ function lobachevsky_integrate_dimension(loba::LobachevskySurrogate, lb, ub, dim::Int) gamma_d = zero(loba.coeff[1]) n = length(loba.x) for i in 1:n a = loba.alpha[dim] * (ub[dim] - loba.x[i][dim]) b = loba.alpha[dim] * (lb[dim] - loba.x[i][dim]) int = 1 / loba.alpha[dim] * (_phi_int(a, loba.n) - _phi_int(b, loba.n)) gamma_d = gamma_d + loba.coeff[i] * int end new_coeff = loba.coeff .* gamma_d if length(lb) == 2 # Integrating one dimension -> 1D new_x = zeros(eltype(loba.x[1][1]), n) for i in 1:n new_x[i] = deleteat!(collect(loba.x[i]), dim)[1] end else dummy = loba.x[1] dummy = deleteat!(collect(dummy), dim) new_x = typeof(Tuple(dummy))[] for i in 1:n push!(new_x, Tuple(deleteat!(collect(loba.x[i]), dim))) end end new_lb = deleteat!(lb, dim) new_ub = deleteat!(ub, dim) new_loba = deleteat!(loba.alpha, dim) return LobachevskySurrogate(new_x, loba.y, loba.alpha, loba.n, new_lb, new_ub, new_coeff, loba.sparse) end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
9829
#= using Clustering #using GaussianMixtures using LinearAlgebra mutable struct MOE{X,Y,L,U,S,K,M,V,W} <: AbstractSurrogate x::X y::Y lb::L ub::U local_surr::S k::K means::M varcov::V weights::W end function MOE(x,y,lb::Number,ub::Number; scale_factor::Number = 1.0, k::Int = 2, local_kind = [RadialBasisStructure(radial_function = linearRadial, scale_factor=1.0,sparse = false),RadialBasisStructure(radial_function = cubicRadial, scale_factor=1.0, sparse = false)]) if k != length(local_kind) throw("Number of mixtures = $k is not equal to length of local surrogates") end n = length(x) x = x ./ scale_factor y = y ./ scale_factor # find weight, mean and variance for each mixture # For GaussianMixtures I need nxd matrix X_G = reshape(x,(n,1)) moe_gmm = GaussianMixtures.GMM(k,X_G) weights = GaussianMixtures.weights(moe_gmm) means = GaussianMixtures.means(moe_gmm) variances = moe_gmm.Σ #cluster the points #For clustering I need dxn matrix X_C = reshape(x,(1,n)) KNN = kmeans(X_C, k) x_c = [ Array{eltype(x)}(undef,0) for i = 1:k] y_c = [ Array{eltype(y)}(undef,0) for i = 1:k] a = assignments(KNN) @inbounds for i = 1:n pos = a[i] append!(x_c[pos],x[i]) append!(y_c[pos],y[i]) end local_surr = Dict() for i = 1:k if local_kind[i][1] == "RadialBasis" #fit and append to local_surr my_local_i = RadialBasis(x_c[i],y_c[i],lb,ub,rad = local_kind[i].radial_function, scale_factor = local_kind[i].scale_factor, sparse = local_kind[i].sparse) local_surr[i] = my_local_i elseif local_kind[i][1] == "Kriging" my_local_i = Kriging(x_c[i], y_c[i],lb,ub, p = local_kind[i].p, theta = local_kind[i].theta) local_surr[i] = my_local_i elseif local_kind[i][1] == "GEK" my_local_i = GEK(x_c[i], y_c[i],lb,ub, p = local_kind[i].p, theta = local_kind[i].theta) local_surr[i] = my_local_i elseif local_kind[i] == "LinearSurrogate" my_local_i = LinearSurrogate(x_c[i], y_c[i],lb,ub) local_surr[i] = my_local_i elseif local_kind[i][1] == "InverseDistanceSurrogate" my_local_i = InverseDistanceSurrogate(x_c[i], y_c[i],lb,ub, local_kind[i].p) local_surr[i] = my_local_i elseif local_kind[i][1] == "LobachevskySurrogate" my_local_i = LobachevskySurrogate(x_c[i], y_c[i],lb,ub,alpha = local_kind[i].alpha , n = local_kind[i].n, sparse = local_kind[i].sparse) local_surr[i] = my_local_i elseif local_kind[i][1] == "NeuralSurrogate" my_local_i = NeuralSurrogate(x_c[i], y_c[i],lb,ub, model = local_kind[i].model , loss = local_kind[i].loss ,opt = local_kind[i].opt ,n_echos = local_kind[i].n_echos) local_surr[i] = my_local_i elseif local_kind[i][1] == "RandomForestSurrogate" my_local_i = RandomForestSurrogate(x_c[i], y_c[i],lb,ub, num_round = local_kind[i].num_round) local_surr[i] = my_local_i elseif local_kind[i] == "SecondOrderPolynomialSurrogate" my_local_i = SecondOrderPolynomialSurrogate(x_c[i], y_c[i],lb,ub) local_surr[i] = my_local_i elseif local_kind[i][1] == "Wendland" my_local_i = Wendand(x_c[i], y_c[i],lb,ub, eps = local_kind[i].eps, maxiters = local_kind[i].maxiters, tol = local_kind[i].tol) local_surr[i] = my_local_i elseif local_kind[i][1] == "PolynomialChaosSurrogate" my_local_i = PolynomialChaosSurrogate(x,y,lb,ub, op = local_kind[i].op) local_surr[i] = my_local_i else throw("A surrogate with name provided does not exist or is not currently supported with MOE.") end end return MOE(x,y,lb,ub,local_surr,k,means,variances,weights) end function MOE(x,y,lb,ub; k::Int = 2, scale_factor::Number = 1.0, local_kind = [RadialBasisStructure(radial_function = linearRadial, scale_factor=1.0, sparse = false),RadialBasisStructure(radial_function = cubicRadial, scale_factor=1.0, sparse = false)]) n = length(x) d = length(lb) for i = 1:n x[i] = x[i] ./ scale_factor end y = y ./ scale_factor #GMM parameters: X_G = collect(reshape(collect(Base.Iterators.flatten(x)), (d,n))') my_gmm = GMM(k,X_G,kind = :full) weights = my_gmm.w means = my_gmm.μ varcov = my_gmm.Σ #cluster the points X_C = collect(reshape(collect(Base.Iterators.flatten(x)), (d,n))) KNN = kmeans(X_C, k) x_c = [ Array{eltype(x)}(undef,0) for i = 1:k] y_c = [ Array{eltype(y)}(undef,0) for i = 1:k] a = assignments(KNN) @inbounds for i = 1:n pos = a[i] x_c[pos] = vcat(x_c[pos],x[i]) append!(y_c[pos],y[i]) end local_surr = Dict() for i = 1:k if local_kind[i][1] == "RadialBasis" #fit and append to local_surr my_local_i = RadialBasis(x_c[i],y_c[i],lb,ub,rad = local_kind[i].radial_function, scale_factor = local_kind[i].scale_factor, sparse = local_kind[i].sparse) local_surr[i] = my_local_i elseif local_kind[i][1] == "Kriging" my_local_i = Kriging(x_c[i], y_c[i],lb,ub, p = local_kind[i].p, theta = local_kind[i].theta) local_surr[i] = my_local_i elseif local_kind[i][1] == "GEK" my_local_i = GEK(x_c[i], y_c[i],lb,ub, p = local_kind[i].p, theta = local_kind[i].theta) local_surr[i] = my_local_i elseif local_kind[i] == "LinearSurrogate" my_local_i = LinearSurrogate(x_c[i], y_c[i],lb,ub) local_surr[i] = my_local_i elseif local_kind[i][1] == "InverseDistanceSurrogate" my_local_i = InverseDistanceSurrogate(x_c[i], y_c[i],lb,ub, local_kind[i].p) local_surr[i] = my_local_i elseif local_kind[i][1] == "LobachevskySurrogate" my_local_i = LobachevskySurrogate(x_c[i], y_c[i],lb,ub,alpha = local_kind[i].alpha , n = local_kind[i].n, sparse = local_kind[i].sparse) local_surr[i] = my_local_i elseif local_kind[i][1] == "NeuralSurrogate" my_local_i = NeuralSurrogate(x_c[i], y_c[i],lb,ub, model = local_kind[i].model , loss = local_kind[i].loss ,opt = local_kind[i].opt ,n_echos = local_kind[i].n_echos) local_surr[i] = my_local_i elseif local_kind[i][1] == "RandomForestSurrogate" my_local_i = RandomForestSurrogate(x_c[i], y_c[i],lb,ub, num_round = local_kind[i].num_round) local_surr[i] = my_local_i elseif local_kind[i] == "SecondOrderPolynomialSurrogate" my_local_i = SecondOrderPolynomialSurrogate(x_c[i], y_c[i],lb,ub) local_surr[i] = my_local_i elseif local_kind[i][1] == "Wendland" my_local_i = Wendand(x_c[i], y_c[i],lb,ub, eps = local_kind[i].eps, maxiters = local_kind[i].maxiters, tol = local_kind[i].tol) local_surr[i] = my_local_i elseif local_kind[i][1] == "PolynomialChaosSurrogate" my_local_i = PolynomialChaosSurrogate(x,y,lb,ub, op = local_kind[i].op) local_surr[i] = my_local_i else throw("A surrogate with name "* local_kind[i][1] *" does not exist or is not currently supported with MOE.") end end return MOE(x,y,lb,ub,local_surr,k,means,varcov,weights) end function _prob_x_in_i(x::Number,i,mu,varcov,alpha,k) num = (1/sqrt(varcov[i]))*alpha[i]*exp(-0.5(x-mu[i])*(1/varcov[i])*(x-mu[i])) den = sum([(1/sqrt(varcov[j]))*alpha[j]*exp(-0.5(x-mu[j])*(1/varcov[j])*(x-mu[j])) for j = 1:k]) return num/den end function _prob_x_in_i(x,i,mu,varcov,alpha,k) num = (1/sqrt(det(varcov[i])))*alpha[i]*exp(-0.5*(x .- mu[i,:])'*(inv(varcov[i]))*(x .- mu[i,:])) den = sum([(1/sqrt(det(varcov[j])))*alpha[j]*exp(-0.5*(x .- mu[j,:])'*(inv(varcov[j]))*(x .- mu[j,:])) for j = 1:k]) return num/den end function (moe::MOE)(val) return prod([moe.local_surr[i](val)*_prob_x_in_i(val,i,moe.means,moe.varcov,moe.weights,moe.k) for i = 1:moe.k]) end function add_point!(my_moe::MOE,x_new,y_new) if length(my_moe.x[1]) == 1 #1D my_moe.x = vcat(my_moe.x,x_new) my_moe.y = vcat(my_moe.y,y_new) n = length(my_moe.x) #New mixture parameters X_G = reshape(my_moe.x,(n,1)) moe_gmm = GaussianMixtures.GMM(my_moe.k,X_G) my_moe.weights = GaussianMixtures.weights(moe_gmm) my_moe.means = GaussianMixtures.means(moe_gmm) my_moe.varcov = moe_gmm.Σ #Find cluster of new point(s): n_added = length(x_new) X_C = reshape(my_moe.x,(1,n)) KNN = kmeans(X_C, my_moe.k) a = assignments(KNN) #Recalculate only relevant surrogates for i = 1:n_added pos = a[n-n_added+i] add_point!(my_moe.local_surr[i],my_moe.x[n-n_added+i],my_moe.y[n-n_added+i]) end else #ND my_moe.x = vcat(my_moe.x,x_new) my_moe.y = vcat(my_moe.y,y_new) n = length(my_moe.x) d = length(my_moe.lb) #New mixture parameters X_G = collect(reshape(collect(Base.Iterators.flatten(my_moe.x)), (d,n))') my_gmm = GMM(my_moe.k,X_G,kind = :full) my_moe.weights = my_gmm.w my_moe.means = my_gmm.μ my_moe.varcov = my_gmm.Σ #cluster the points X_C = collect(reshape(collect(Base.Iterators.flatten(my_moe.x)), (d,n))) KNN = kmeans(X_C, my_moe.k) a = assignments(KNN) n_added = length(x_new) for i = 1:n_added pos = a[n-n_added+i] add_point!(my_moe.local_surr[i],my_moe.x[n-n_added+i],my_moe.y[n-n_added+i]) end end nothing end =#
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
75924
using LinearAlgebra using Distributions using Zygote abstract type SurrogateOptimizationAlgorithm end abstract type ParallelStrategy end struct KrigingBeliever <: ParallelStrategy end struct KrigingBelieverUpperBound <: ParallelStrategy end struct KrigingBelieverLowerBound <: ParallelStrategy end struct MinimumConstantLiar <: ParallelStrategy end struct MaximumConstantLiar <: ParallelStrategy end struct MeanConstantLiar <: ParallelStrategy end #single objective optimization struct SRBF <: SurrogateOptimizationAlgorithm end struct LCBS <: SurrogateOptimizationAlgorithm end struct EI <: SurrogateOptimizationAlgorithm end struct DYCORS <: SurrogateOptimizationAlgorithm end struct SOP{P} <: SurrogateOptimizationAlgorithm p::P end #multi objective optimization struct SMB <: SurrogateOptimizationAlgorithm end struct RTEA{K, Z, P, N, S} <: SurrogateOptimizationAlgorithm k::K z::Z p::P n_c::N sigma::S end function merit_function(point, w, surr::AbstractSurrogate, s_max, s_min, d_max, d_min, box_size) if length(point) == 1 D_x = box_size + 1 for i in 1:length(surr.x) distance = norm(surr.x[i] - point) if distance < D_x D_x = distance end end return w * (surr(point) - s_min) / (s_max - s_min) + (1 - w) * ((d_max - D_x) / (d_max - d_min)) else D_x = norm(box_size) + 1 for i in 1:length(surr.x) distance = norm(surr.x[i] .- point) if distance < D_x D_x = distance end end return w * (surr(point) - s_min) / (s_max - s_min) + (1 - w) * ((d_max - D_x) / (d_max - d_min)) end end """ The main idea is to pick the new evaluations from a set of candidate points, where each candidate point is generated as an N(0, sigma^2) distributed perturbation from the current best solution. The value of sigma is modified based on progress and follows the same logic as in many trust region methods: we increase sigma if we make a lot of progress (the surrogate is accurate) and decrease sigma when we aren’t able to make progress (the surrogate model is inaccurate). More details about how sigma is updated are given in the original papers. After generating the candidate points, we predict their objective function value and compute the minimum distance to the previously evaluated point. Let the candidate points be denoted by C and let the function value predictions be s(x\\_i) and the distance values be d(x\\_i), both rescaled through a linear transformation to the interval [0,1]. This is done to put the values on the same scale. The next point selected for evaluation is the candidate point x that minimizes the weighted-distance merit function: ``merit(x) = ws(x) + (1-w)(1-d(x))`` where ``0 \\leq w \\leq 1``. That is, we want a small function value prediction and a large minimum distance from the previously evaluated points. The weight w is commonly cycled between a few values to achieve both exploitation and exploration. When w is close to zero, we do pure exploration, while w close to 1 corresponds to exploitation. """ function surrogate_optimize(obj::Function, ::SRBF, lb, ub, surr::AbstractSurrogate, sample_type::SamplingAlgorithm; maxiters = 100, num_new_samples = 100, needs_gradient = false) scale = 0.2 success = 0 failure = 0 w_range = [0.3, 0.5, 0.7, 0.95] #Vector containing size in each direction box_size = lb - ub success = 0 failures = 0 dtol = 1e-3 * norm(ub - lb) d = length(surr.x) num_of_iterations = 0 for w in Iterators.cycle(w_range) num_of_iterations += 1 if num_of_iterations == maxiters index = argmin(surr.y) return (surr.x[index], surr.y[index]) end for k in 1:maxiters incumbent_value = minimum(surr.y) incumbent_x = surr.x[argmin(surr.y)] new_lb = incumbent_x .- 3 * scale * norm(incumbent_x .- lb) new_ub = incumbent_x .+ 3 * scale * norm(incumbent_x .- ub) new_lb = vec(max.(new_lb, lb)) new_ub = vec(min.(new_ub, ub)) new_sample = sample(num_new_samples, new_lb, new_ub, sample_type) s = zeros(eltype(surr.x[1]), num_new_samples) for j in 1:num_new_samples s[j] = surr(new_sample[j]) end s_max = maximum(s) s_min = minimum(s) d_min = norm(box_size .+ 1) d_max = 0.0 for r in 1:length(surr.x) for c in 1:num_new_samples distance_rc = norm(surr.x[r] .- new_sample[c]) if distance_rc > d_max d_max = distance_rc end if distance_rc < d_min d_min = distance_rc end end end #3)Evaluate merit function in the sampled points evaluation_of_merit_function = zeros(float(eltype(surr.x[1])), num_new_samples) @inbounds for r in 1:num_new_samples evaluation_of_merit_function[r] = merit_function(new_sample[r], w, surr, s_max, s_min, d_max, d_min, box_size) end new_addition = false adaptive_point_x = Tuple{} diff_x = zeros(eltype(surr.x[1]), d) while new_addition == false #find minimum new_min_y = minimum(evaluation_of_merit_function) min_index = argmin(evaluation_of_merit_function) new_min_x = new_sample[min_index] for l in 1:d diff_x[l] = norm(surr.x[l] .- new_min_x) end bit_x = diff_x .> dtol #new_min_x has to have some distance from krig.x if false in bit_x #The new_point is not actually that new, discard it! deleteat!(evaluation_of_merit_function, min_index[1]) deleteat!(new_sample, min_index) if length(new_sample) == 0 println("Out of sampling points") index = argmin(surr.y) return (surr.x[index], surr.y[index]) end else new_addition = true adaptive_point_x = Tuple(new_min_x) end end #4) Evaluate objective function at adaptive point adaptive_point_y = obj(adaptive_point_x) #5) Update surrogate with (adaptive_point,objective(adaptive_point) if (needs_gradient) adaptive_grad = Zygote.gradient(obj, adaptive_point_x) add_point!(surr, adaptive_point_x, adaptive_point_y, adaptive_grad) else add_point!(surr, adaptive_point_x, adaptive_point_y) end #6) How to go on? if surr(adaptive_point_x) < incumbent_value #success incumbent_x = adaptive_point_x incumbent_value = adaptive_point_y if failure == 0 success += 1 else failure = 0 success += 1 end else #failure if success == 0 failure += 1 else success = 0 failure += 1 end end if success == 3 scale = scale * 2 if scale > 0.8 * norm(ub - lb) println("Exiting, scale too big") index = argmin(surr.y) return (surr.x[index], surr.y[index]) end success = 0 failure = 0 end if failure == 5 scale = scale / 2 #check bounds and go on only if > 1e-5*interval if scale < 1e-5 println("Exiting, too narrow") index = argmin(surr.y) return (surr.x[index], surr.y[index]) end success = 0 failure = 0 end end end end """ SRBF 1D: surrogate_optimize(obj::Function,::SRBF,lb::Number,ub::Number,surr::AbstractSurrogate,sample_type::SamplingAlgorithm;maxiters=100,num_new_samples=100) """ function surrogate_optimize(obj::Function, ::SRBF, lb::Number, ub::Number, surr::AbstractSurrogate, sample_type::SamplingAlgorithm; maxiters = 100, num_new_samples = 100) #Suggested by: #https://www.mathworks.com/help/gads/surrogate-optimization-algorithm.html scale = 0.2 success = 0 failure = 0 w_range = [0.3, 0.5, 0.7, 0.95] box_size = lb - ub success = 0 failures = 0 dtol = 1e-3 * norm(ub - lb) num_of_iterations = 0 for w in Iterators.cycle(w_range) num_of_iterations += 1 if num_of_iterations == maxiters index = argmin(surr.y) return (surr.x[index], surr.y[index]) end for k in 1:maxiters #1) Sample near incumbent (the 2 fraction is arbitrary here) incumbent_value = minimum(surr.y) incumbent_x = surr.x[argmin(surr.y)] new_lb = incumbent_x - scale * norm(incumbent_x - lb) new_ub = incumbent_x + scale * norm(incumbent_x - ub) if new_lb < lb new_lb = lb end if new_ub > ub new_ub = ub end new_sample = sample(num_new_samples, new_lb, new_ub, sample_type) #2) Create merit function s = zeros(eltype(surr.x[1]), num_new_samples) for j in 1:num_new_samples s[j] = surr(new_sample[j]) end s_max = maximum(s) s_min = minimum(s) d_min = box_size + 1 d_max = 0.0 for r in 1:length(surr.x) for c in 1:num_new_samples distance_rc = norm(surr.x[r] - new_sample[c]) if distance_rc > d_max d_max = distance_rc end if distance_rc < d_min d_min = distance_rc end end end #3) Evaluate merit function at the sampled points evaluation_of_merit_function = merit_function.(new_sample, w, surr, s_max, s_min, d_max, d_min, box_size) new_addition = false adaptive_point_x = zero(eltype(new_sample[1])) while new_addition == false #find minimum new_min_y = minimum(evaluation_of_merit_function) min_index = argmin(evaluation_of_merit_function) new_min_x = new_sample[min_index] diff_x = abs.(surr.x .- new_min_x) bit_x = diff_x .> dtol #new_min_x has to have some distance from krig.x if false in bit_x #The new_point is not actually that new, discard it! deleteat!(evaluation_of_merit_function, min_index) deleteat!(new_sample, min_index) if length(new_sample) == 0 println("Out of sampling points") index = argmin(surr.y) return (surr.x[index], surr.y[index]) end else new_addition = true adaptive_point_x = new_min_x end end #4) Evaluate objective function at adaptive point adaptive_point_y = obj(adaptive_point_x) #5) Update surrogate with (adaptive_point,objective(adaptive_point) add_point!(surr, adaptive_point_x, adaptive_point_y) #6) How to go on? if surr(adaptive_point_x) < incumbent_value #success incumbent_x = adaptive_point_x incumbent_value = adaptive_point_y if failure == 0 success += 1 else failure = 0 success += 1 end else #failure if success == 0 failure += 1 else success = 0 failure += 1 end end if success == 3 scale = scale * 2 #check bounds cannot go more than [a,b] if scale > 0.8 * norm(ub - lb) println("Exiting, scale too big") index = argmin(surr.y) return (surr.x[index], surr.y[index]) end success = 0 failure = 0 end if failure == 5 scale = scale / 2 #check bounds and go on only if > 1e-5*interval if scale < 1e-5 println("Exiting, too narrow") index = argmin(surr.y) return (surr.x[index], surr.y[index]) end success = 0 failure = 0 end end end end # Ask SRBF ND function potential_optimal_points(::SRBF, strategy, lb, ub, surr::AbstractSurrogate, sample_type::SamplingAlgorithm, n_parallel; num_new_samples = 500) scale = 0.2 w_range = [0.3, 0.5, 0.7, 0.95] w_cycle = Iterators.cycle(w_range) w, state = iterate(w_cycle) #Vector containing size in each direction box_size = lb - ub dtol = 1e-3 * norm(ub - lb) d = length(surr.x) incumbent_x = surr.x[argmin(surr.y)] new_lb = incumbent_x .- 3 * scale * norm(incumbent_x .- lb) new_ub = incumbent_x .+ 3 * scale * norm(incumbent_x .- ub) @inbounds for i in 1:length(new_lb) if new_lb[i] < lb[i] new_lb = collect(new_lb) new_lb[i] = lb[i] end if new_ub[i] > ub[i] new_ub = collect(new_ub) new_ub[i] = ub[i] end end new_sample = sample(num_new_samples, new_lb, new_ub, sample_type) s = zeros(eltype(surr.x[1]), num_new_samples) for j in 1:num_new_samples s[j] = surr(new_sample[j]) end s_max = maximum(s) s_min = minimum(s) d_min = norm(box_size .+ 1) d_max = 0.0 for r in 1:length(surr.x) for c in 1:num_new_samples distance_rc = norm(surr.x[r] .- new_sample[c]) if distance_rc > d_max d_max = distance_rc end if distance_rc < d_min d_min = distance_rc end end end tmp_surr = deepcopy(surr) new_addition = 0 diff_x = zeros(eltype(surr.x[1]), d) evaluation_of_merit_function = zeros(float(eltype(surr.x[1])), num_new_samples) proposed_points_x = Vector{typeof(surr.x[1])}(undef, n_parallel) merit_of_proposed_points = zeros(Float64, n_parallel) while new_addition < n_parallel #find minimum @inbounds for r in eachindex(evaluation_of_merit_function) evaluation_of_merit_function[r] = merit_function(new_sample[r], w, tmp_surr, s_max, s_min, d_max, d_min, box_size) end min_index = argmin(evaluation_of_merit_function) new_min_x = new_sample[min_index] min_x_merit = evaluation_of_merit_function[min_index] for l in 1:d diff_x[l] = norm(surr.x[l] .- new_min_x) end bit_x = diff_x .> dtol #new_min_x has to have some distance from krig.x if false in bit_x #The new_point is not actually that new, discard it! deleteat!(evaluation_of_merit_function, min_index) deleteat!(new_sample, min_index) if length(new_sample) == 0 println("Out of sampling points") index = argmin(surr.y) return (surr.x[index], surr.y[index]) end else new_addition += 1 proposed_points_x[new_addition] = new_min_x merit_of_proposed_points[new_addition] = min_x_merit # Update temporary surrogate using provided strategy calculate_liars(strategy, tmp_surr, surr, new_min_x) end #4) Update w w, state = iterate(w_cycle, state) end return (proposed_points_x, merit_of_proposed_points) end # Ask SRBF 1D function potential_optimal_points(::SRBF, strategy, lb::Number, ub::Number, surr::AbstractSurrogate, sample_type::SamplingAlgorithm, n_parallel; num_new_samples = 500) scale = 0.2 success = 0 w_range = [0.3, 0.5, 0.7, 0.95] w_cycle = Iterators.cycle(w_range) w, state = iterate(w_cycle) box_size = lb - ub success = 0 failures = 0 dtol = 1e-3 * norm(ub - lb) num_of_iterations = 0 #1) Sample near incumbent (the 2 fraction is arbitrary here) incumbent_x = surr.x[argmin(surr.y)] new_lb = incumbent_x - scale * norm(incumbent_x - lb) new_ub = incumbent_x + scale * norm(incumbent_x - ub) if new_lb < lb new_lb = lb end if new_ub > ub new_ub = ub end new_sample = sample(num_new_samples, new_lb, new_ub, sample_type) #2) Create merit function s = zeros(eltype(surr.x[1]), num_new_samples) for j in 1:num_new_samples s[j] = surr(new_sample[j]) end s_max = maximum(s) s_min = minimum(s) d_min = box_size + 1 d_max = 0.0 for r in 1:length(surr.x) for c in 1:num_new_samples distance_rc = norm(surr.x[r] - new_sample[c]) if distance_rc > d_max d_max = distance_rc end if distance_rc < d_min d_min = distance_rc end end end new_addition = 0 proposed_points_x = zeros(eltype(new_sample[1]), n_parallel) merit_of_proposed_points = zeros(eltype(new_sample[1]), n_parallel) # Temporary surrogate for virtual points tmp_surr = deepcopy(surr) # Loop until we have n_parallel new points while new_addition < n_parallel #3) Evaluate merit function at the sampled points in parallel evaluation_of_merit_function = merit_function.(new_sample, w, tmp_surr, s_max, s_min, d_max, d_min, box_size) #find minimum min_index = argmin(evaluation_of_merit_function) new_min_x = new_sample[min_index] min_x_merit = evaluation_of_merit_function[min_index] diff_x = abs.(tmp_surr.x .- new_min_x) bit_x = diff_x .> dtol #new_min_x has to have some distance from krig.x if false in bit_x #The new_point is not actually that new, discard it! deleteat!(evaluation_of_merit_function, min_index) deleteat!(new_sample, min_index) if length(new_sample) == 0 println("Out of sampling points") return (proposed_points_x[1:new_addition], merit_of_proposed_points[1:new_addition]) end else new_addition += 1 proposed_points_x[new_addition] = new_min_x merit_of_proposed_points[new_addition] = min_x_merit # Update temporary surrogate using provided strategy calculate_liars(strategy, tmp_surr, surr, new_min_x) end #4) Update w w, state = iterate(w_cycle, state) end return (proposed_points_x, merit_of_proposed_points) end """ This is an implementation of Lower Confidence Bound (LCB), a popular acquisition function in Bayesian optimization. Under a Gaussian process (GP) prior, the goal is to minimize: ``LCB(x) := E[x] - k * \\sqrt{(V[x])}`` default value ``k = 2``. """ function surrogate_optimize(obj::Function, ::LCBS, lb::Number, ub::Number, krig, sample_type::SamplingAlgorithm; maxiters = 100, num_new_samples = 100, k = 2.0) dtol = 1e-3 * norm(ub - lb) for i in 1:maxiters new_sample = sample(num_new_samples, lb, ub, sample_type) evaluations = zeros(eltype(krig.x[1]), num_new_samples) for j in 1:num_new_samples evaluations[j] = krig(new_sample[j]) + k * std_error_at_point(krig, new_sample[j]) end new_addition = false min_add_x = zero(eltype(new_sample[1])) min_add_y = zero(eltype(krig.y[1])) while new_addition == false #find minimum new_min_y = minimum(evaluations) min_index = argmin(evaluations) new_min_x = new_sample[min_index] diff_x = abs.(krig.x .- new_min_x) bit_x = diff_x .> dtol #new_min_x has to have some distance from krig.x if false in bit_x #The new_point is not actually that new, discard it! deleteat!(evaluations, min_index) deleteat!(new_sample, min_index) if length(new_sample) == 0 println("Out of sampling points") index = argmin(krig.y) return (krig.x[index], krig.y[index]) end else new_addition = true min_add_x = new_min_x min_add_y = new_min_y end end if min_add_y < 1e-6 * (maximum(krig.y) - minimum(krig.y)) return else if (abs(min_add_y) == Inf || min_add_y == NaN) println("New point being added is +Inf or NaN, skipping.\n") else add_point!(krig, min_add_x, min_add_y) end end end end """ This is an implementation of Lower Confidence Bound (LCB), a popular acquisition function in Bayesian optimization. Under a Gaussian process (GP) prior, the goal is to minimize: ``LCB(x) := E[x] - k * \\sqrt{(V[x])}`` default value ``k = 2``. """ function surrogate_optimize(obj::Function, ::LCBS, lb, ub, krig, sample_type::SamplingAlgorithm; maxiters = 100, num_new_samples = 100, k = 2.0) dtol = 1e-3 * norm(ub - lb) for i in 1:maxiters d = length(krig.x) new_sample = sample(num_new_samples, lb, ub, sample_type) evaluations = zeros(eltype(krig.x[1]), num_new_samples) for j in 1:num_new_samples evaluations[j] = krig(new_sample[j]) + k * std_error_at_point(krig, new_sample[j]) end new_addition = false min_add_x = Tuple{} min_add_y = zero(eltype(krig.y[1])) diff_x = zeros(eltype(krig.x[1]), d) while new_addition == false #find minimum new_min_y = minimum(evaluations) min_index = argmin(evaluations) new_min_x = new_sample[min_index] for l in 1:d diff_x[l] = norm(krig.x[l] .- new_min_x) end bit_x = diff_x .> dtol #new_min_x has to have some distance from krig.x if false in bit_x #The new_point is not actually that new, discard it! deleteat!(evaluations, min_index) deleteat!(new_sample, min_index) if length(new_sample) == 0 println("Out of sampling points") index = argmin(krig.y) return (krig.x[index], krig.y[index]) end else new_addition = true min_add_x = new_min_x min_add_y = new_min_y end end if min_add_y < 1e-6 * (maximum(krig.y) - minimum(krig.y)) index = argmin(krig.y) return (krig.x[index], krig.y[index]) else min_add_y = obj(min_add_x) # I actually add the objc function at that point if (abs(min_add_y) == Inf || min_add_y == NaN) println("New point being added is +Inf or NaN, skipping.\n") else add_point!(krig, Tuple(min_add_x), min_add_y) end end end end """ Expected improvement method 1D """ function surrogate_optimize(obj::Function, ::EI, lb::Number, ub::Number, krig, sample_type::SamplingAlgorithm; maxiters = 100, num_new_samples = 100) dtol = 1e-3 * norm(ub - lb) eps = 0.01 for i in 1:maxiters # Sample lots of points from the design space -- we will evaluate the EI function at these points new_sample = sample(num_new_samples, lb, ub, sample_type) # Find the best point so far f_min = minimum(krig.y) # Allocate some arrays evaluations = zeros(eltype(krig.x[1]), num_new_samples) # Holds EI function evaluations point_found = false # Whether we have found a new point to test new_x_max = zero(eltype(krig.x[1])) # New x point new_EI_max = zero(eltype(krig.x[1])) # EI at new x point while point_found == false # For each point in the sample set, evaluate the Expected Improvement function for j in 1:length(new_sample) std = std_error_at_point(krig, new_sample[j]) u = krig(new_sample[j]) if abs(std) > 1e-6 z = (f_min - u - eps) / std else z = 0 end # Evaluate EI at point new_sample[j] evaluations[j] = (f_min - u - eps) * cdf(Normal(), z) + std * pdf(Normal(), z) end # find the sample which maximizes the EI function index_max = argmax(evaluations) x_new = new_sample[index_max] # x point which maximized EI y_new = maximum(evaluations) # EI at the new point diff_x = abs.(krig.x .- x_new) bit_x = diff_x .> dtol #new_min_x has to have some distance from krig.x if false in bit_x #The new_point is not actually that new, discard it! deleteat!(evaluations, index_max) deleteat!(new_sample, index_max) if length(new_sample) == 0 println("Out of sampling points") index = argmin(krig.y) return (krig.x[index], krig.y[index]) end else point_found = true new_x_max = x_new new_EI_max = y_new end end # if the EI is less than some tolerance times the difference between the maximum and minimum points # in the surrogate, then we terminate the optimizer. if new_EI_max < 1e-6 * norm(maximum(krig.y) - minimum(krig.y)) index = argmin(krig.y) println("Termination tolerance reached.") return (krig.x[index], krig.y[index]) end # Otherwise, evaluate the true objective function at the new point and repeat. add_point!(krig, new_x_max, obj(new_x_max)) end println("Completed maximum number of iterations") end # Ask EI 1D & ND function potential_optimal_points(::EI, strategy, lb, ub, krig, sample_type::SamplingAlgorithm, n_parallel::Number; num_new_samples = 100) lb = krig.lb ub = krig.ub dtol = 1e-3 * norm(ub - lb) eps = 0.01 tmp_krig = deepcopy(krig) # Temporary copy of the kriging model to store virtual points new_x_max = Vector{typeof(tmp_krig.x[1])}(undef, n_parallel) # New x point new_EI_max = zeros(eltype(tmp_krig.x[1]), n_parallel) # EI at new x point for i in 1:n_parallel # Sample lots of points from the design space -- we will evaluate the EI function at these points new_sample = sample(num_new_samples, lb, ub, sample_type) # Find the best point so far f_min = minimum(tmp_krig.y) # Allocate some arrays evaluations = zeros(eltype(tmp_krig.x[1]), num_new_samples) # Holds EI function evaluations point_found = false # Whether we have found a new point to test while point_found == false # For each point in the sample set, evaluate the Expected Improvement function for j in eachindex(new_sample) std = std_error_at_point(tmp_krig, new_sample[j]) u = tmp_krig(new_sample[j]) if abs(std) > 1e-6 z = (f_min - u - eps) / std else z = 0 end # Evaluate EI at point new_sample[j] evaluations[j] = (f_min - u - eps) * cdf(Normal(), z) + std * pdf(Normal(), z) end # find the sample which maximizes the EI function index_max = argmax(evaluations) x_new = new_sample[index_max] # x point which maximized EI y_new = maximum(evaluations) # EI at the new point diff_x = [norm(prev_point .- x_new) for prev_point in tmp_krig.x] bit_x = [diff_x_point .> dtol for diff_x_point in diff_x] #new_min_x has to have some distance from tmp_krig.x if false in bit_x #The new_point is not actually that new, discard it! deleteat!(evaluations, index_max) deleteat!(new_sample, index_max) if length(new_sample) == 0 println("Out of sampling points") index = argmin(tmp_krig.y) return (tmp_krig.x[index], tmp_krig.y[index]) end else point_found = true new_x_max[i] = x_new new_EI_max[i] = y_new calculate_liars(strategy, tmp_krig, krig, x_new) end end end return (new_x_max, new_EI_max) end """ This is an implementation of Expected Improvement (EI), arguably the most popular acquisition function in Bayesian optimization. Under a Gaussian process (GP) prior, the goal is to maximize expected improvement: ``EI(x) := E[max(f_{best}-f(x),0)`` """ function surrogate_optimize(obj::Function, ::EI, lb, ub, krig, sample_type::SamplingAlgorithm; maxiters = 100, num_new_samples = 100) dtol = 1e-3 * norm(ub - lb) eps = 0.01 for i in 1:maxiters d = length(krig.x) # Sample lots of points from the design space -- we will evaluate the EI function at these points new_sample = sample(num_new_samples, lb, ub, sample_type) # Find the best point so far f_min = minimum(krig.y) # Allocate some arrays evaluations = zeros(eltype(krig.x[1]), num_new_samples) # Holds EI function evaluations point_found = false # Whether we have found a new point to test new_x_max = zero(eltype(krig.x[1])) # New x point new_EI_max = zero(eltype(krig.x[1])) # EI at new x point diff_x = zeros(eltype(krig.x[1]), d) while point_found == false # For each point in the sample set, evaluate the Expected Improvement function for j in 1:length(new_sample) std = std_error_at_point(krig, new_sample[j]) u = krig(new_sample[j]) if abs(std) > 1e-6 z = (f_min - u - eps) / std else z = 0 end # Evaluate EI at point new_sample[j] evaluations[j] = (f_min - u - eps) * cdf(Normal(), z) + std * pdf(Normal(), z) end # find the sample which maximizes the EI function index_max = argmax(evaluations) x_new = new_sample[index_max] # x point which maximized EI EI_new = maximum(evaluations) # EI at the new point for l in 1:d diff_x[l] = norm(krig.x[l] .- x_new) end bit_x = diff_x .> dtol #new_min_x has to have some distance from krig.x if false in bit_x #The new_point is not actually that new, discard it! deleteat!(evaluations, index_max) deleteat!(new_sample, index_max) if length(new_sample) == 0 println("Out of sampling points.") index = argmin(krig.y) return (krig.x[index], krig.y[index]) end else point_found = true new_x_max = x_new new_EI_max = EI_new end end # if the EI is less than some tolerance times the difference between the maximum and minimum points # in the surrogate, then we terminate the optimizer. if new_EI_max < 1e-6 * norm(maximum(krig.y) - minimum(krig.y)) index = argmin(krig.y) println("Termination tolerance reached.") return (krig.x[index], krig.y[index]) end # Otherwise, evaluate the true objective function at the new point and repeat. add_point!(krig, Tuple(new_x_max), obj(new_x_max)) end println("Completed maximum number of iterations.") end function adjust_step_size(sigma_n, sigma_min, C_success, t_success, C_fail, t_fail) if C_success >= t_success sigma_n = 2 * sigma_n C_success = 0 end if C_fail >= t_fail sigma_n = max(sigma_n / 2, sigma_min) C_fail = 0 end return sigma_n, C_success, C_fail end function select_evaluation_point_1D(new_points1, surr1::AbstractSurrogate, numb_iters, maxiters) v = [0.3, 0.5, 0.8, 0.95] k = 4 n = length(surr1.x) if mod(maxiters - 1, 4) != 0 w_nR = v[mod(maxiters - 1, 4)] else w_nR = v[4] end w_nD = 1 - w_nR l = length(new_points1) evaluations1 = zeros(eltype(surr1.y[1]), l) for i in 1:l evaluations1[i] = surr1(new_points1[i]) end s_max = maximum(evaluations1) s_min = minimum(evaluations1) V_nR = zeros(eltype(surr1.y[1]), l) for i in 1:l if abs(s_max - s_min) <= 10e-6 V_nR[i] = 1.0 else V_nR[i] = (evaluations1[i] - s_min) / (s_max - s_min) end end #Compute score V_nD V_nD = zeros(eltype(surr1.y[1]), l) delta_n_x = zeros(eltype(surr1.x[1]), l) delta = zeros(eltype(surr1.x[1]), n) for j in 1:l for i in 1:n delta[i] = norm(new_points1[j] - surr1.x[i]) end delta_n_x[j] = minimum(delta) end delta_n_max = maximum(delta_n_x) delta_n_min = minimum(delta_n_x) for i in 1:l if abs(delta_n_max - delta_n_min) <= 10e-6 V_nD[i] = 1.0 else V_nD[i] = (delta_n_max - delta_n_x[i]) / (delta_n_max - delta_n_min) end end #Compute weighted score W_n = w_nR * V_nR + w_nD * V_nD return new_points1[argmin(W_n)] end """ surrogate_optimize(obj::Function,::DYCORS,lb::Number,ub::Number,surr1::AbstractSurrogate,sample_type::SamplingAlgorithm;maxiters=100,num_new_samples=100) DYCORS optimization method in 1D, following closely: Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization". """ function surrogate_optimize(obj::Function, ::DYCORS, lb::Number, ub::Number, surr1::AbstractSurrogate, sample_type::SamplingAlgorithm; maxiters = 100, num_new_samples = 100) x_best = argmin(surr1.y) y_best = minimum(surr1.y) sigma_n = 0.2 * norm(ub - lb) d = length(lb) sigma_min = 0.2 * (0.5)^6 * norm(ub - lb) t_success = 3 t_fail = max(d, 5) C_success = 0 C_fail = 0 for k in 1:maxiters p_select = min(20 / d, 1) * (1 - log(k)) / log(maxiters - 1) # In 1D I_perturb is always equal to one, no need to sample d = 1 I_perturb = d new_points = zeros(eltype(surr1.x[1]), num_new_samples) for i in 1:num_new_samples new_points[i] = x_best + rand(Normal(0, sigma_n)) while new_points[i] < lb || new_points[i] > ub if new_points[i] > ub #reflection new_points[i] = max(lb, maximum(surr1.x) - norm(new_points[i] - maximum(surr1.x))) end if new_points[i] < lb #reflection new_points[i] = min(ub, minimum(surr1.x) + norm(new_points[i] - minimum(surr1.x))) end end end x_new = select_evaluation_point_1D(new_points, surr1, k, maxiters) f_new = obj(x_new) if f_new < y_best C_success = C_success + 1 C_fail = 0 else C_fail = C_fail + 1 C_success = 0 end sigma_n, C_success, C_fail = adjust_step_size(sigma_n, sigma_min, C_success, t_success, C_fail, t_fail) if f_new < y_best x_best = x_new y_best = f_new end add_point!(surr1, x_new, f_new) end index = argmin(surr1.y) return (surr1.x[index], surr1.y[index]) end function select_evaluation_point_ND(new_points, surrn::AbstractSurrogate, numb_iters, maxiters) v = [0.3, 0.5, 0.8, 0.95] k = 4 n = size(surrn.x, 1) d = size(surrn.x, 2) if mod(maxiters - 1, 4) != 0 w_nR = v[mod(maxiters - 1, 4)] else w_nR = v[4] end w_nD = 1 - w_nR l = size(new_points, 1) evaluations = zeros(eltype(surrn.y[1]), l) for i in 1:l evaluations[i] = surrn(Tuple(new_points[i, :])) end s_max = maximum(evaluations) s_min = minimum(evaluations) V_nR = zeros(eltype(surrn.y[1]), l) for i in 1:l if abs(s_max - s_min) <= 10e-6 V_nR[i] = 1.0 else V_nR[i] = (evaluations[i] - s_min) / (s_max - s_min) end end #Compute score V_nD V_nD = zeros(eltype(surrn.y[1]), l) delta_n_x = zeros(eltype(surrn.x[1]), l) delta = zeros(eltype(surrn.x[1]), n) for j in 1:l for i in 1:n delta[i] = norm(new_points[j, :] - collect(surrn.x[i])) end delta_n_x[j] = minimum(delta) end delta_n_max = maximum(delta_n_x) delta_n_min = minimum(delta_n_x) for i in 1:l if abs(delta_n_max - delta_n_min) <= 10e-6 V_nD[i] = 1.0 else V_nD[i] = (delta_n_max - delta_n_x[i]) / (delta_n_max - delta_n_min) end end #Compute weighted score W_n = w_nR * V_nR + w_nD * V_nD return new_points[argmin(W_n), :] end """ surrogate_optimize(obj::Function,::DYCORS,lb::Number,ub::Number,surr1::AbstractSurrogate,sample_type::SamplingAlgorithm;maxiters=100,num_new_samples=100) This is an implementation of the DYCORS strategy by Regis and Shoemaker: Rommel G Regis and Christine A Shoemaker. Combining radial basis function surrogates and dynamic coordinate search in high-dimensional expensive black-box optimization. Engineering Optimization, 45(5): 529–555, 2013. This is an extension of the SRBF strategy that changes how the candidate points are generated. The main idea is that many objective functions depend only on a few directions, so it may be advantageous to perturb only a few directions. In particular, we use a perturbation probability to perturb a given coordinate and decrease this probability after each function evaluation, so fewer coordinates are perturbed later in the optimization. """ function surrogate_optimize(obj::Function, ::DYCORS, lb, ub, surrn::AbstractSurrogate, sample_type::SamplingAlgorithm; maxiters = 100, num_new_samples = 100) x_best = collect(surrn.x[argmin(surrn.y)]) y_best = minimum(surrn.y) sigma_n = 0.2 * norm(ub - lb) d = length(lb) sigma_min = 0.2 * (0.5)^6 * norm(ub - lb) t_success = 3 t_fail = max(d, 5) C_success = 0 C_fail = 0 for k in 1:maxiters p_select = min(20 / d, 1) * (1 - log(k)) / log(maxiters - 1) new_points = zeros(eltype(surrn.x[1]), num_new_samples, d) for j in 1:num_new_samples w = sample(d, 0, 1, sample_type) I_perturb = w .< p_select if ~(true in I_perturb) val = rand(1:d) I_perturb = vcat(zeros(Int, val - 1), 1, zeros(Int, d - val)) end I_perturb = Int.(I_perturb) for i in 1:d if I_perturb[i] == 1 new_points[j, i] = x_best[i] + rand(Normal(0, sigma_n)) else new_points[j, i] = x_best[i] end end end for i in 1:num_new_samples for j in 1:d while new_points[i, j] < lb[j] || new_points[i, j] > ub[j] if new_points[i, j] > ub[j] new_points[i, j] = max(lb[j], maximum(surrn.x)[j] - norm(new_points[i, j] - maximum(surrn.x)[j])) end if new_points[i, j] < lb[j] new_points[i, j] = min(ub[j], minimum(surrn.x)[j] + norm(new_points[i] - minimum(surrn.x)[j])) end end end end #ND version x_new = select_evaluation_point_ND(new_points, surrn, k, maxiters) f_new = obj(x_new) if f_new < y_best C_success = C_success + 1 C_fail = 0 else C_fail = C_fail + 1 C_success = 0 end sigma_n, C_success, C_fail = adjust_step_size(sigma_n, sigma_min, C_success, t_success, C_fail, t_fail) if f_new < y_best x_best = x_new y_best = f_new end add_point!(surrn, Tuple(x_new), f_new) end index = argmin(surrn.y) return (surrn.x[index], surrn.y[index]) end function obj2_1D(value, points) min = +Inf my_p = filter(x -> abs(x - value) > 10^-6, points) for i in 1:length(my_p) new_val = norm(my_p[i] - value) if new_val < min min = new_val end end return min end function I_tier_ranking_1D(P, surrSOP::AbstractSurrogate) #obj1 = objective_function #obj2 = obj2_1D Fronts = Dict{Int, Array{eltype(surrSOP.x[1]), 1}}() i = 1 while true F = [] j = 1 for p in P n_p = 0 k = 1 for q in P #I use equality with floats because p and q are in surrSOP.x #for sure at this stage p_index = j q_index = k val1_p = surrSOP.y[p_index] val2_p = obj2_1D(p, P) val1_q = surrSOP.y[q_index] val2_q = obj2_1D(q, P) p_dominates_q = (val1_p < val1_q || abs(val1_p - val1_q) <= 10^-5) && (val2_p < val2_q || abs(val2_p - val2_q) <= 10^-5) && ((val1_p < val1_q) || (val2_p < val2_q)) q_dominates_p = (val1_p < val1_q || abs(val1_p - val1_q) < 10^-5) && (val2_p < val2_q || abs(val2_p - val2_q) < 10^-5) && ((val1_p < val1_q) || (val2_p < val2_q)) if q_dominates_p n_p += 1 end k = k + 1 end if n_p == 0 # no individual dominates p push!(F, p) end j = j + 1 end if length(F) > 0 Fronts[i] = F P = setdiff(P, F) i = i + 1 else return Fronts end end return F end function II_tier_ranking_1D(D::Dict, srg::AbstractSurrogate) for i in 1:length(D) pos = [] yn = [] for j in 1:length(D[i]) push!(pos, findall(e -> e == D[i][j], srg.x)) push!(yn, srg.y[pos[j]]) end D[i] = D[i][sortperm(D[i])] end return D end function Hypervolume_Pareto_improving(f1_new, f2_new, Pareto_set) if size(Pareto_set, 1) == 1 area_before = zero(eltype(f1_new)) else my_p = Pareto_set #Area before v_ref = [maximum(Pareto_set[:, 1]), maximum(Pareto_set[:, 2])] my_p = vcat(my_p, v_ref) v = sortperm(my_p[:, 2]) my_p[:, 1] = my_p[:, 1][v] my_p[:, 2] = my_p[:, 2][v] area_before = zero(eltype(f1_new)) for j in 1:(length(v) - 1) area_before += (my_p[j + 1, 2] - my_p[j, 2]) * (v_ref[1] - my_p[j]) end end #Area after Pareto_set = vcat(Pareto_set, [f1_new f2_new]) v_ref = [maximum(Pareto_set[:, 1]) maximum(Pareto_set[:, 2])] Pareto_set = vcat(Pareto_set, v_ref) v = sortperm(Pareto_set[:, 2]) Pareto_set[:, 1] = Pareto_set[:, 1][v] Pareto_set[:, 2] = Pareto_set[:, 2][v] area_after = zero(eltype(f1_new)) for j in 1:(length(v) - 1) area_after += (Pareto_set[j + 1, 2] - Pareto_set[j, 2]) * (v_ref[1] - Pareto_set[j]) end return area_after - area_before end """ surrogate_optimize(obj::Function,::SOP,lb::Number,ub::Number,surr::AbstractSurrogate,sample_type::SamplingAlgorithm;maxiters=100,num_new_samples=100) SOP Surrogate optimization method, following closely the following papers: - SOP: parallel surrogate global optimization with Pareto center selection for computationally expensive single objective problems by Tipaluck Krityakierne - Multiobjective Optimization Using Evolutionary Algorithms by Kalyan Deb #Suggested number of new_samples = min(500*d,5000) """ function surrogate_optimize(obj::Function, sop1::SOP, lb::Number, ub::Number, surrSOP::AbstractSurrogate, sample_type::SamplingAlgorithm; maxiters = 100, num_new_samples = min(500 * 1, 5000)) d = length(lb) N_fail = 3 N_tenure = 5 tau = 10^-5 num_P = sop1.p centers_global = surrSOP.x r_centers_global = 0.2 * norm(ub - lb) * ones(length(surrSOP.x)) N_failures_global = zeros(length(surrSOP.x)) tabu = [] N_tenures_tabu = [] for k in 1:maxiters N_tenures_tabu .+= 1 #deleting points that have been in tabu for too long del = N_tenures_tabu .> N_tenure if length(del) > 0 for i in 1:length(del) if del[i] del[i] = i end end deleteat!(N_tenures_tabu, del) deleteat!(tabu, del) end ##### P CENTERS ###### C = [] #S(x) set of points already evaluated #Rank points in S with: #1) Non dominated sorting Fronts_I = I_tier_ranking_1D(centers_global, surrSOP) #2) Second tier ranking Fronts = II_tier_ranking_1D(Fronts_I, surrSOP) ranked_list = [] for i in 1:length(Fronts) for j in 1:length(Fronts[i]) push!(ranked_list, Fronts[i][j]) end end ranked_list = eltype(surrSOP.x[1]).(ranked_list) centers_full = 0 i = 1 while i <= length(ranked_list) && centers_full == 0 flag = 0 for j in 1:length(ranked_list) for m in 1:length(tabu) if abs(ranked_list[j] - tabu[m]) < tau flag = 1 end end for l in 1:length(centers_global) if abs(ranked_list[j] - centers_global[l]) < tau flag = 1 end end end if flag == 1 skip else push!(C, ranked_list[i]) if length(C) == num_P centers_full = 1 end end i = i + 1 end #I examined all the points in the ranked list but num_selected < num_p #I just iterate again using only radius rule if length(C) < num_P i = 1 while i <= length(ranked_list) && centers_full == 0 flag = 0 for j in 1:length(ranked_list) for m in 1:length(centers_global) if abs(centers_global[j] - ranked_list[m]) < tau flag = 1 end end end if flag == 1 skip else push!(C, ranked_list[i]) if length(C) == num_P centers_full = 1 end end i = i + 1 end end #If I still have num_selected < num_P, I double down on some centers iteratively if length(C) < num_P i = 1 while i <= length(ranked_list) push!(C, ranked_list[i]) if length(C) == num_P centers_full = 1 end i = i + 1 end end #Here I have selected C = [] containing the centers r_centers = 0.2 * norm(ub - lb) * ones(num_P) N_failures = zeros(num_P) #2.3 Candidate search new_points = zeros(eltype(surrSOP.x[1]), num_P, 2) for i in 1:num_P N_candidates = zeros(eltype(surrSOP.x[1]), num_new_samples) #Using phi(n) just like DYCORS, merit function = surrogate #Like in DYCORS, I_perturb = 1 always evaluations = zeros(eltype(surrSOP.y[1]), num_new_samples) for j in 1:num_new_samples a = lb - C[i] b = ub - C[i] N_candidates[j] = C[i] + rand(truncated(Normal(0, r_centers[i]), a, b)) evaluations[j] = surrSOP(N_candidates[j]) end x_best = N_candidates[argmin(evaluations)] y_best = minimum(evaluations) new_points[i, 1] = x_best new_points[i, 2] = y_best end #new_points[i] now contains: #[x_1,y_1; x_2,y_2,...,x_{num_new_samples},y_{num_new_samples}] #2.4 Adaptive learning and tabu archive for i in 1:num_P if new_points[i, 1] in centers_global r_centers[i] = r_centers_global[i] N_failures[i] = N_failures_global[i] end f_1 = obj(new_points[i, 1]) f_2 = obj2_1D(f_1, surrSOP.x) l = length(Fronts[1]) Pareto_set = zeros(eltype(surrSOP.x[1]), l, 2) for j in 1:l val = obj2_1D(Fronts[1][j], surrSOP.x) Pareto_set[j, 1] = obj(Fronts[1][j]) Pareto_set[j, 2] = val end if (Hypervolume_Pareto_improving(f_1, f_2, Pareto_set) < tau) #failure r_centers[i] = r_centers[i] / 2 N_failures[i] += 1 if N_failures[i] > N_fail push!(tabu, C[i]) push!(N_tenures_tabu, 0) end else #P_i is success #Adaptive_learning add_point!(surrSOP, new_points[i, 1], new_points[i, 2]) push!(r_centers_global, r_centers[i]) push!(N_failures_global, N_failures[i]) end end end index = argmin(surrSOP.y) return (surrSOP.x[index], surrSOP.y[index]) end function obj2_ND(value, points) min = +Inf my_p = filter(x -> norm(x .- value) > 10^-6, points) for i in 1:length(my_p) new_val = norm(my_p[i] .- value) if new_val < min min = new_val end end return min end function I_tier_ranking_ND(P, surrSOPD::AbstractSurrogate) #obj1 = objective_function #obj2 = obj2_1D Fronts = Dict{Int, Array{eltype(surrSOPD.x), 1}}() i = 1 while true F = Array{eltype(surrSOPD.x), 1}() j = 1 for p in P n_p = 0 k = 1 for q in P #I use equality with floats because p and q are in surrSOP.x #for sure at this stage p_index = j q_index = k val1_p = surrSOPD.y[p_index] val2_p = obj2_ND(p, P) val1_q = surrSOPD.y[q_index] val2_q = obj2_ND(q, P) p_dominates_q = (val1_p < val1_q || abs(val1_p - val1_q) <= 10^-5) && (val2_p < val2_q || abs(val2_p - val2_q) <= 10^-5) && ((val1_p < val1_q) || (val2_p < val2_q)) q_dominates_p = (val1_p < val1_q || abs(val1_p - val1_q) < 10^-5) && (val2_p < val2_q || abs(val2_p - val2_q) < 10^-5) && ((val1_p < val1_q) || (val2_p < val2_q)) if q_dominates_p n_p += 1 end k = k + 1 end if n_p == 0 # no individual dominates p push!(F, p) end j = j + 1 end if length(F) > 0 Fronts[i] = F P = setdiff(P, F) i = i + 1 else return Fronts end end return F end function II_tier_ranking_ND(D::Dict, srgD::AbstractSurrogate) for i in 1:length(D) pos = [] yn = [] for j in 1:length(D[i]) push!(pos, findall(e -> e == D[i][j], srgD.x)) push!(yn, srgD.y[pos[j]]) end D[i] = D[i][sortperm(D[i])] end return D end function surrogate_optimize(obj::Function, sopd::SOP, lb, ub, surrSOPD::AbstractSurrogate, sample_type::SamplingAlgorithm; maxiters = 100, num_new_samples = min(500 * length(lb), 5000)) d = length(lb) N_fail = 3 N_tenure = 5 tau = 10^-5 num_P = sopd.p centers_global = surrSOPD.x r_centers_global = 0.2 * norm(ub .- lb) * ones(length(surrSOPD.x)) N_failures_global = zeros(length(surrSOPD.x)) tabu = [] N_tenures_tabu = [] for k in 1:maxiters N_tenures_tabu .+= 1 #deleting points that have been in tabu for too long del = N_tenures_tabu .> N_tenure if length(del) > 0 for i in 1:length(del) if del[i] del[i] = i end end deleteat!(N_tenures_tabu, del) deleteat!(tabu, del) end ##### P CENTERS ###### C = Array{eltype(surrSOPD.x), 1}() #S(x) set of points already evaluated #Rank points in S with: #1) Non dominated sorting Fronts_I = I_tier_ranking_ND(centers_global, surrSOPD) #2) Second tier ranking Fronts = II_tier_ranking_ND(Fronts_I, surrSOPD) ranked_list = Array{eltype(surrSOPD.x), 1}() for i in 1:length(Fronts) for j in 1:length(Fronts[i]) push!(ranked_list, Fronts[i][j]) end end centers_full = 0 i = 1 while i <= length(ranked_list) && centers_full == 0 flag = 0 for j in 1:length(ranked_list) for m in 1:length(tabu) if norm(ranked_list[j] .- tabu[m]) < tau flag = 1 end end for l in 1:length(centers_global) if norm(ranked_list[j] .- centers_global[l]) < tau flag = 1 end end end if flag == 1 skip else push!(C, ranked_list[i]) if length(C) == num_P centers_full = 1 end end i = i + 1 end #I examined all the points in the ranked list but num_selected < num_p #I just iterate again using only radius rule if length(C) < num_P i = 1 while i <= length(ranked_list) && centers_full == 0 flag = 0 for j in 1:length(ranked_list) for m in 1:length(centers_global) if norm(centers_global[j] .- ranked_list[m]) < tau flag = 1 end end end if flag == 1 skip else push!(C, ranked_list[i]) if length(C) == num_P centers_full = 1 end end i = i + 1 end end #If I still have num_selected < num_P, I double down on some centers iteratively if length(C) < num_P i = 1 while i <= length(ranked_list) push!(C, ranked_list[i]) if length(C) == num_P centers_full = 1 end i = i + 1 end end #Here I have selected C = [(1.0,2.0),(3.0,4.0),.....] containing the centers r_centers = 0.2 * norm(ub .- lb) * ones(num_P) N_failures = zeros(num_P) #2.3 Candidate search new_points_x = Array{eltype(surrSOPD.x), 1}() new_points_y = zeros(eltype(surrSOPD.y[1]), num_P) for i in 1:num_P N_candidates = zeros(eltype(surrSOPD.x[1]), num_new_samples, d) #Using phi(n) just like DYCORS, merit function = surrogate #Like in DYCORS, I_perturb = 1 always evaluations = zeros(eltype(surrSOPD.y[1]), num_new_samples) for j in 1:num_new_samples for k in 1:d a = lb[k] - C[i][k] b = ub[k] - C[i][k] N_candidates[j, k] = C[i][k] + rand(truncated(Normal(0, r_centers[i]), a, b)) end evaluations[j] = surrSOPD(Tuple(N_candidates[j, :])) end x_best = Tuple(N_candidates[argmin(evaluations), :]) y_best = minimum(evaluations) push!(new_points_x, x_best) new_points_y[i] = y_best end #new_points[i] is split in new_points_x and new_points_y now contains: #[x_1,y_1; x_2,y_2,...,x_{num_new_samples},y_{num_new_samples}] #2.4 Adaptive learning and tabu archive for i in 1:num_P if new_points_x[i] in centers_global r_centers[i] = r_centers_global[i] N_failures[i] = N_failures_global[i] end f_1 = obj(Tuple(new_points_x[i])) f_2 = obj2_ND(f_1, surrSOPD.x) l = length(Fronts[1]) Pareto_set = zeros(eltype(surrSOPD.x[1]), l, 2) for j in 1:l val = obj2_ND(Fronts[1][j], surrSOPD.x) Pareto_set[j, 1] = obj(Tuple(Fronts[1][j])) Pareto_set[j, 2] = val end if (Hypervolume_Pareto_improving(f_1, f_2, Pareto_set) < tau)#check this #failure r_centers[i] = r_centers[i] / 2 N_failures[i] += 1 if N_failures[i] > N_fail push!(tabu, C[i]) push!(N_tenures_tabu, 0) end else #P_i is success #Adaptive_learning add_point!(surrSOPD, new_points_x[i], new_points_y[i]) push!(r_centers_global, r_centers[i]) push!(N_failures_global, N_failures[i]) end end end index = argmin(surrSOPD.y) return (surrSOPD.x[index], surrSOPD.y[index]) end #EGO _dominates(x, y) = all(x .<= y) && any(x .< y) function _nonDominatedSorting(arr::Array{Float64, 2}) fronts::Array{Array, 1} = Array[] ind::Array{Int64, 1} = collect(1:size(arr, 1)) while !isempty(arr) s = size(arr, 1) red = dropdims( sum([_dominates(arr[i, :], arr[j, :]) for i in 1:s, j in 1:s], dims = 1) .== 0, dims = 1) a = 1:s sel::Array{Int64, 1} = a[red] push!(fronts, ind[sel]) da::Array{Int64, 1} = deleteat!(collect(1:s), sel) ind = deleteat!(ind, sel) arr = arr[da, :] end return fronts end function surrogate_optimize(obj::Function, sbm::SMB, lb::Number, ub::Number, surrSMB::AbstractSurrogate, sample_type::SamplingAlgorithm; maxiters = 100, n_new_look = 1000) #obj contains a function for each output dimension dim_out = length(surrSMB.y[1]) d = 1 x_to_look = sample(n_new_look, lb, ub, sample_type) for iter in 1:maxiters index_min = 0 min_mean = +Inf for i in 1:n_new_look new_mean = sum(obj(x_to_look[i])) / dim_out if new_mean < min_mean min_mean = new_mean index_min = i end end x_new = x_to_look[index_min] deleteat!(x_to_look, index_min) n_new_look = n_new_look - 1 # evaluate the true function at that point y_new = obj(x_new) #update the surrogate add_point!(surrSMB, x_new, y_new) end #Find and return Pareto y = surrSMB.y y = permutedims(reshape(hcat(y...), (length(y[1]), length(y)))) #2d matrix Fronts = _nonDominatedSorting(y) #this returns the indexes pareto_front_index = Fronts[1] pareto_set = [] pareto_front = [] for i in 1:length(pareto_front_index) push!(pareto_set, surrSMB.x[pareto_front_index[i]]) push!(pareto_front, surrSMB.y[pareto_front_index[i]]) end return pareto_set, pareto_front end function surrogate_optimize(obj::Function, smb::SMB, lb, ub, surrSMBND::AbstractSurrogate, sample_type::SamplingAlgorithm; maxiters = 100, n_new_look = 1000) #obj contains a function for each output dimension dim_out = length(surrSMBND.y[1]) d = length(lb) x_to_look = sample(n_new_look, lb, ub, sample_type) for iter in 1:maxiters index_min = 0 min_mean = +Inf for i in 1:n_new_look new_mean = sum(obj(x_to_look[i])) / dim_out if new_mean < min_mean min_mean = new_mean index_min = i end end x_new = x_to_look[index_min] deleteat!(x_to_look, index_min) n_new_look = n_new_look - 1 # evaluate the true function at that point y_new = obj(x_new) #update the surrogate add_point!(surrSMBND, x_new, y_new) end #Find and return Pareto y = surrSMBND.y y = permutedims(reshape(hcat(y...), (length(y[1]), length(y)))) #2d matrix Fronts = _nonDominatedSorting(y) #this returns the indexes pareto_front_index = Fronts[1] pareto_set = [] pareto_front = [] for i in 1:length(pareto_front_index) push!(pareto_set, surrSMBND.x[pareto_front_index[i]]) push!(pareto_front, surrSMBND.y[pareto_front_index[i]]) end return pareto_set, pareto_front end # RTEA (Noisy model based multi objective optimization + standard rtea by fieldsen), use this for very noisy objective functions because there are a lot of re-evaluations function surrogate_optimize(obj, rtea::RTEA, lb::Number, ub::Number, surrRTEA::AbstractSurrogate, sample_type::SamplingAlgorithm; maxiters = 100, n_new_look = 1000) Z = rtea.z K = rtea.k p_cross = rtea.p n_c = rtea.n_c sigma = rtea.sigma #find pareto set of the first evaluations: (estimated pareto) y = surrRTEA.y y = permutedims(reshape(hcat(y...), (length(y[1]), length(y)))) #2d matrix Fronts = _nonDominatedSorting(y) #this returns the indexes pareto_front_index = Fronts[1] pareto_set = [] pareto_front = [] for i in 1:length(pareto_front_index) push!(pareto_set, surrRTEA.x[pareto_front_index[i]]) push!(pareto_front, surrRTEA.y[pareto_front_index[i]]) end number_of_revaluations = zeros(Int, length(pareto_set)) iter = 1 d = 1 dim_out = length(surrRTEA.y[1]) while iter < maxiters if iter < (1 - Z) * maxiters #1) propose new point x_new #sample randomly from (estimated) pareto v and u if length(pareto_set) < 2 throw("Starting pareto set is too small, increase number of sampling point of the surrogate") end u = pareto_set[rand(1:length(pareto_set))] v = pareto_set[rand(1:length(pareto_set))] #children if rand() < p_cross mu = rand() if mu <= 0.5 beta = (2 * mu)^(1 / n_c + 1) else beta = (1 / (2 * (1 - mu)))^(1 / n_c + 1) end x = 0.5 * ((1 + beta) * v + (1 - beta) * u) else x = v end #mutation x_new = x + rand(Normal(0, sigma)) y_new = obj(x_new) #update pareto new_to_pareto = false for i in 1:length(pareto_set) counter = zeros(Int, dim_out) #compare the y_new values to pareto, if there is at least one entry where it dominates all the others, then it can be in pareto for l in 1:dim_out if y_new[l] < pareto_front[i][l] counter[l] end end end for j in 1:dim_out if counter[j] == dim_out new_to_pareto = true end end if new_to_pareto == true push!(pareto_set, x_new) push!(pareto_front, y_new) push!(number_of_revaluations, 0) end add_point!(surrRTEA, new_x, new_y) end for k in 1:K val, pos = findmin(number_of_revaluations) x_r = pareto_set[pos] y_r = obj(x_r) number_of_revaluations[pos] = number_of_revaluations + 1 #check if it is again in the pareto set or not, if not eliminate it from pareto still_in_pareto = false for i in 1:length(pareto_set) counter = zeros(Int, dim_out) for l in 1:dim_out if y_r[l] < pareto_front[i][l] counter[l] end end end for j in 1:dim_out if counter[j] == dim_out still_in_pareto = true end end if still_in_pareto == false #remove from pareto deleteat!(pareto_set, pos) deleteat!(pareto_front, pos) deleteat!(number_of_revaluationsm, pos) end end iter = iter + 1 end return pareto_set, pareto_front end function surrogate_optimize(obj, rtea::RTEA, lb, ub, surrRTEAND::AbstractSurrogate, sample_type::SamplingAlgorithm; maxiters = 100, n_new_look = 1000) Z = rtea.z K = rtea.k p_cross = rtea.p n_c = rtea.n_c sigma = rtea.sigma #find pareto set of the first evaluations: (estimated pareto) y = surrRTEAND.y y = permutedims(reshape(hcat(y...), (length(y[1]), length(y)))) #2d matrix Fronts = _nonDominatedSorting(y) #this returns the indexes pareto_front_index = Fronts[1] pareto_set = [] pareto_front = [] for i in 1:length(pareto_front_index) push!(pareto_set, surrRTEAND.x[pareto_front_index[i]]) push!(pareto_front, surrRTEAND.y[pareto_front_index[i]]) end number_of_revaluations = zeros(Int, length(pareto_set)) iter = 1 d = length(lb) dim_out = length(surrRTEAND.y[1]) while iter < maxiters if iter < (1 - Z) * maxiters #sample pareto_set if length(pareto_set) < 2 throw("Starting pareto set is too small, increase number of sampling point of the surrogate") end u = pareto_set[rand(1:length(pareto_set))] v = pareto_set[rand(1:length(pareto_set))] #children if rand() < p_cross mu = rand() if mu <= 0.5 beta = (2 * mu)^(1 / n_c + 1) else beta = (1 / (2 * (1 - mu)))^(1 / n_c + 1) end x = 0.5 * ((1 + beta) * v + (1 - beta) * u) else x = v end #mutation for i in 1:d x_new[i] = x[i] + rand(Normal(0, sigma)) end y_new = obj(x_new) #update pareto new_to_pareto = false for i in 1:length(pareto_set) counter = zeros(Int, dim_out) #compare the y_new values to pareto, if there is at least one entry where it dominates all the others, then it can be in pareto for l in 1:dim_out if y_new[l] < pareto_front[i][l] counter[l] end end end for j in 1:dim_out if counter[j] == dim_out new_to_pareto = true end end if new_to_pareto == true push!(pareto_set, x_new) push!(pareto_front, y_new) push!(number_of_revaluations, 0) end add_point!(surrRTEAND, new_x, new_y) end for k in 1:K val, pos = findmin(number_of_revaluations) x_r = pareto_set[pos] y_r = obj(x_r) number_of_revaluations[pos] = number_of_revaluations + 1 #check if it is again in the pareto set or not, if not eliminate it from pareto still_in_pareto = false for i in 1:length(pareto_set) counter = zeros(Int, dim_out) for l in 1:dim_out if y_r[l] < pareto_front[i][l] counter[l] end end end for j in 1:dim_out if counter[j] == dim_out still_in_pareto = true end end if still_in_pareto == false #remove from pareto deleteat!(pareto_set, pos) deleteat!(pareto_front, pos) deleteat!(number_of_revaluationsm, pos) end end iter = iter + 1 end return pareto_set, pareto_front end function surrogate_optimize( obj::Function, ::EI, lb::AbstractArray, ub::AbstractArray, krig, sample_type::SectionSample; maxiters = 100, num_new_samples = 100) dtol = 1e-3 * norm(ub - lb) eps = 0.01 for i in 1:maxiters d = length(krig.x) # Sample lots of points from the design space -- we will evaluate the EI function at these points new_sample = sample(num_new_samples, lb, ub, sample_type) # Find the best point so far f_min = minimum(krig.y) # Allocate some arrays evaluations = zeros(eltype(krig.x[1]), num_new_samples) # Holds EI function evaluations point_found = false # Whether we have found a new point to test new_x_max = zero(eltype(krig.x[1])) # New x point new_EI_max = zero(eltype(krig.x[1])) # EI at new x point diff_x = zeros(eltype(krig.x[1]), d) # For each point in the sample set, evaluate the Expected Improvement function while point_found == false for j in 1:length(new_sample) std = std_error_at_point(krig, new_sample[j]) u = krig(new_sample[j]) if abs(std) > 1e-6 z = (f_min - u - eps) / std else z = 0 end # Evaluate EI at point new_sample[j] evaluations[j] = (f_min - u - eps) * cdf(Normal(), z) + std * pdf(Normal(), z) end # find the sample which maximizes the EI function index_max = argmax(evaluations) x_new = new_sample[index_max] # x point which maximized EI EI_new = maximum(evaluations) # EI at the new point for l in 1:d diff_x[l] = norm(krig.x[l] .- x_new) end bit_x = diff_x .> dtol #new_min_x has to have some distance from krig.x if false in bit_x #The new_point is not actually that new, discard it! deleteat!(evaluations, index_max) deleteat!(new_sample, index_max) if length(new_sample) == 0 println("Out of sampling points.") return section_sampler_returner(sample_type, krig.x, krig.y, lb, ub, krig) end else point_found = true new_x_max = x_new new_EI_max = EI_new end end # if the EI is less than some tolerance times the difference between the maximum and minimum points # in the surrogate, then we terminate the optimizer. if new_EI_max < 1e-6 * norm(maximum(krig.y) - minimum(krig.y)) println("Termination tolerance reached.") return section_sampler_returner(sample_type, krig.x, krig.y, lb, ub, krig) end add_point!(krig, Tuple(new_x_max), obj(new_x_max)) end println("Completed maximum number of iterations.") end function section_sampler_returner(sample_type::SectionSample, surrn_x, surrn_y, lb, ub, surrn) d_fixed = fixed_dimensions(sample_type) @assert length(surrn_y) == size(surrn_x)[1] surrn_xy = [(surrn_x[y], surrn_y[y]) for y in 1:length(surrn_y)] section_surr1_xy = filter(xyz -> xyz[1][d_fixed] == Tuple(sample_type.x0[d_fixed]), surrn_xy) section_surr1_x = [xy[1] for xy in section_surr1_xy] section_surr1_y = [xy[2] for xy in section_surr1_xy] if length(section_surr1_xy) == 0 @debug "No new point added - surrogate locally stable" N_NEW_POINTS = 100 section_surr1_x = sample(N_NEW_POINTS, lb, ub, sample_type) section_surr1_y = zeros(N_NEW_POINTS) for i in 1:size(section_surr1_x, 1) xi = Tuple([section_surr1_x[i, :]...])[1] section_surr1_y[i] = surrn(xi) end end index = argmin(section_surr1_y) return (section_surr1_x[index, :][1], section_surr1_y[index]) end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
3291
using PolyChaos mutable struct PolynomialChaosSurrogate{X, Y, L, U, C, O, N} <: AbstractSurrogate x::X y::Y lb::L ub::U coeff::C ortopolys::O num_of_multi_indexes::N end function _calculatepce_coeff(x, y, num_of_multi_indexes, op::AbstractCanonicalOrthoPoly) n = length(x) A = zeros(eltype(x), n, num_of_multi_indexes) for i in 1:n A[i, :] = PolyChaos.evaluate(x[i], op) end return (A' * A) \ (A' * y) end function PolynomialChaosSurrogate(x, y, lb::Number, ub::Number; op::AbstractCanonicalOrthoPoly = GaussOrthoPoly(2)) n = length(x) poly_degree = op.deg num_of_multi_indexes = 1 + poly_degree if n < 2 + 3 * num_of_multi_indexes throw("To avoid numerical problems, it's strongly suggested to have at least $(2+3*num_of_multi_indexes) samples") end coeff = _calculatepce_coeff(x, y, num_of_multi_indexes, op) return PolynomialChaosSurrogate(x, y, lb, ub, coeff, op, num_of_multi_indexes) end function (pc::PolynomialChaosSurrogate)(val::Number) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(pc, val) return sum([pc.coeff[i] * PolyChaos.evaluate(val, pc.ortopolys)[i] for i in 1:(pc.num_of_multi_indexes)]) end function _calculatepce_coeff(x, y, num_of_multi_indexes, op::MultiOrthoPoly) n = length(x) d = length(x[1]) A = zeros(eltype(x[1]), n, num_of_multi_indexes) for i in 1:n xi = zeros(eltype(x[1]), d) for j in 1:d xi[j] = x[i][j] end A[i, :] = PolyChaos.evaluate(xi, op) end return (A' * A) \ (A' * y) end function PolynomialChaosSurrogate(x, y, lb, ub; op::MultiOrthoPoly = MultiOrthoPoly([GaussOrthoPoly(2) for j in 1:length(lb)], 2)) n = length(x) d = length(lb) poly_degree = op.deg num_of_multi_indexes = binomial(d + poly_degree, poly_degree) if n < 2 + 3 * num_of_multi_indexes throw("To avoid numerical problems, it's strongly suggested to have at least $(2+3*num_of_multi_indexes) samples") end coeff = _calculatepce_coeff(x, y, num_of_multi_indexes, op) return PolynomialChaosSurrogate(x, y, lb, ub, coeff, op, num_of_multi_indexes) end function (pcND::PolynomialChaosSurrogate)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(pcND, val) sum = zero(eltype(val[1])) for i in 1:(pcND.num_of_multi_indexes) sum = sum + pcND.coeff[i] * first(PolyChaos.evaluate(pcND.ortopolys.ind[i, :], collect(val), pcND.ortopolys)) end return sum end function add_point!(polych::PolynomialChaosSurrogate, x_new, y_new) if length(polych.lb) == 1 #1D polych.x = vcat(polych.x, x_new) polych.y = vcat(polych.y, y_new) polych.coeff = _calculatepce_coeff(polych.x, polych.y, polych.num_of_multi_indexes, polych.ortopolys) else polych.x = vcat(polych.x, x_new) polych.y = vcat(polych.y, y_new) polych.coeff = _calculatepce_coeff(polych.x, polych.y, polych.num_of_multi_indexes, polych.ortopolys) end nothing end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
7259
using LinearAlgebra using ExtendableSparse _copy(t::Tuple) = t _copy(t) = copy(t) mutable struct RadialBasis{F, Q, X, Y, L, U, C, S, D} <: AbstractSurrogate phi::F dim_poly::Q x::X y::Y lb::L ub::U coeff::C scale_factor::S sparse::D end mutable struct RadialFunction{Q, P} q::Q # degree of polynomial phi::P end linearRadial() = RadialFunction(0, z -> norm(z)) cubicRadial() = RadialFunction(1, z -> norm(z)^3) multiquadricRadial(c = 1.0) = RadialFunction(1, z -> sqrt((c * norm(z))^2 + 1)) thinplateRadial() = RadialFunction(2, z -> begin result = norm(z)^2 * log(norm(z)) ifelse(iszero(z), zero(result), result) end) """ RadialBasis(x,y,lb,ub,rad::RadialFunction, scale_factor::Float = 1.0) Constructor for RadialBasis surrogate, of the form ``f(x) = \\sum_{i=1}^{N} w_i \\phi(|x - \\bold{c}_i|) \\bold{v}^{T} + \\bold{v}^{\\mathrm{T}} [ 0; \\bold{x} ]`` where ``w_i`` are the weights of polyharmonic splines ``\\phi(x)`` and ``\\bold{v}`` are coefficients of a polynomial term. References: https://en.wikipedia.org/wiki/Polyharmonic_spline """ function RadialBasis(x, y, lb, ub; rad::RadialFunction = linearRadial(), scale_factor::Real = 0.5, sparse = false) q = rad.q phi = rad.phi coeff = _calc_coeffs(x, y, lb, ub, phi, q, scale_factor, sparse) return RadialBasis(phi, q, x, y, lb, ub, coeff, scale_factor, sparse) end function _calc_coeffs(x, y, lb, ub, phi, q, scale_factor, sparse) nd = length(first(x)) num_poly_terms = binomial(q + nd, q) D = _construct_rbf_interp_matrix(x, first(x), lb, ub, phi, q, scale_factor, sparse) Y = _construct_rbf_y_matrix(y, first(y), length(y) + num_poly_terms) if (typeof(y) == Vector{Float64}) #single output case coeff = _copy(transpose(D \ y)) else coeff = _copy(transpose(D \ Y[1:size(D)[1], :])) #if y is multi output; end return coeff end function _construct_rbf_interp_matrix(x, x_el::Number, lb, ub, phi, q, scale_factor, sparse) n = length(x) if sparse D = ExtendableSparseMatrix{eltype(x_el), Int}(n, n) else D = zeros(eltype(x_el), n, n) end @inbounds for i in 1:n for j in i:n D[i, j] = phi((x[i] .- x[j]) ./ scale_factor) end end D_sym = Symmetric(D, :U) return D_sym end function _construct_rbf_interp_matrix(x, x_el, lb, ub, phi, q, scale_factor, sparse) n = length(x) nd = length(x_el) if sparse D = ExtendableSparseMatrix{eltype(x_el), Int}(n, n) else D = zeros(eltype(x_el), n, n) end @inbounds for i in 1:n for j in i:n D[i, j] = phi((x[i] .- x[j]) ./ scale_factor) end end D_sym = Symmetric(D, :U) return D_sym end function _construct_rbf_y_matrix(y, y_el::Number, m) [i <= length(y) ? y[i] : zero(y_el) for i in 1:m] end function _construct_rbf_y_matrix(y, y_el, m) [i <= length(y) ? y[i][j] : zero(first(y_el)) for i in 1:m, j in 1:length(y_el)] end using Zygote: Buffer using ChainRulesCore: @non_differentiable function _make_combination(n, d, ix) exponents_combinations = [e for e in collect(Iterators.product(Iterators.repeated(0:n, d)...))[:] if sum(e) <= n] return exponents_combinations[ix + 1] end # TODO: Is this correct? Do we ever want to differentiate w.r.t n, d, or ix? # By using @non_differentiable we force the gradient to be 1 for n, d, ix @non_differentiable _make_combination(n, d, ix) """ multivar_poly_basis(x, ix, d, n) Evaluates in `x` the `ix`-th element of the multivariate polynomial basis of maximum degree `n` and `d` dimensions. Time complexity: `(n+1)^d.` # Example For n=2, d=2 the multivariate polynomial basis is ```` 1, x,y x^2,y^2,xy ```` Therefore the 3rd (ix=3) element is `y` . Therefore when x=(13,43) and ix=3 this function will return 43. """ function multivar_poly_basis(x, ix, d, n) if n == 0 return one(eltype(x)) else prod(a^d for (a, d) in zip(x, _make_combination(n, d, ix))) end end """ Calculates current estimate of value 'val' with respect to the RadialBasis object. """ function (rad::RadialBasis)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(rad, val) approx = _approx_rbf(val, rad) return _match_container(approx, first(rad.y)) end function _approx_rbf(val::Number, rad::RadialBasis) n = length(rad.x) approx = zero(rad.coeff[:, 1]) for i in 1:n approx += rad.coeff[:, i] * rad.phi((val .- rad.x[i]) / rad.scale_factor) end return approx end function _make_approx(val, rad::RadialBasis) l = size(rad.coeff, 1) return Buffer(zeros(eltype(val), l), false) end function _add_tmp_to_approx!(approx, i, tmp, rad::RadialBasis; f = identity) @inbounds @simd ivdep for j in 1:size(rad.coeff, 1) approx[j] += rad.coeff[j, i] * f(tmp) end end # specialise when only single output dimension function _make_approx(val, ::RadialBasis{F, Q, X, <:AbstractArray{<:Number}}) where {F, Q, X} return Ref(zero(eltype(val))) end function _add_tmp_to_approx!(approx::Base.RefValue, i, tmp, rad::RadialBasis{F, Q, X, <:AbstractArray{<:Number}}; f = identity) where {F, Q, X} @inbounds @simd ivdep for j in 1:size(rad.coeff, 1) approx[] += rad.coeff[j, i] * f(tmp) end end _ret_copy(v::Base.RefValue) = v[] _ret_copy(v) = copy(v) function _approx_rbf(val, rad::RadialBasis) n = length(rad.x) # make sure @inbounds is safe if n > size(rad.coeff, 2) throw("Length of model's x vector exceeds number of calculated coefficients ($n != $(size(rad.coeff, 2))).") end approx = _make_approx(val, rad) if rad.phi === linearRadial().phi for i in 1:n tmp = zero(eltype(val)) @inbounds @simd ivdep for j in 1:length(val) tmp += ((val[j] - rad.x[i][j]) / rad.scale_factor)^2 end tmp = sqrt(tmp) _add_tmp_to_approx!(approx, i, tmp, rad) end else tmp = collect(val) @inbounds for i in 1:n tmp = (val .- rad.x[i]) ./ rad.scale_factor _add_tmp_to_approx!(approx, i, tmp, rad; f = rad.phi) end end return _ret_copy(approx) end _scaled_chebyshev(x, k, lb, ub) = cos(k * acos(-1 + 2 * (x - lb) / (ub - lb))) _center_bounds(x::Tuple, lb, ub) = ntuple(i -> (ub[i] - lb[i]) / 2, length(x)) _center_bounds(x, lb, ub) = (ub .- lb) ./ 2 """ add_point!(rad::RadialBasis,new_x,new_y) Add new samples x and y and update the coefficients. Return the new object radial. """ function add_point!(rad::RadialBasis, new_x, new_y) if (length(new_x) == 1 && length(new_x[1]) == 1) || (length(new_x) > 1 && length(new_x[1]) == 1 && length(rad.lb) > 1) push!(rad.x, new_x) push!(rad.y, new_y) else append!(rad.x, new_x) append!(rad.y, new_y) end rad.coeff = _calc_coeffs(rad.x, rad.y, rad.lb, rad.ub, rad.phi, rad.dim_poly, rad.scale_factor, rad.sparse) nothing end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
4579
using QuasiMonteCarlo using QuasiMonteCarlo: SamplingAlgorithm # We need to convert the matrix that QuasiMonteCarlo produces into a vector of Tuples like Surrogates expects # This will eventually be removed once we refactor the rest of the code to work with d x n matrices instead # of vectors of Tuples function sample(args...; kwargs...) s = QuasiMonteCarlo.sample(args...; kwargs...) if isone(size(s, 1)) # 1D case: s is a Vector return vec(s) else # ND case: s is a d x n matrix, where d is the dimension and n is the number of samples return collect(reinterpret(reshape, NTuple{size(s, 1), eltype(s)}, s)) end end #### SectionSample #### """ SectionSample{T}(x0, sa) `SectionSample(x0, sampler)` where `sampler` is any sampler above and `x0` is a vector of either `NaN` for a free dimension or some scalar for a constrained dimension. """ struct SectionSample{ R <: Real, I <: Integer, VR <: AbstractVector{R}, VI <: AbstractVector{I} } <: SamplingAlgorithm x0::VR sa::SamplingAlgorithm fixed_dims::VI end fixed_dimensions(section_sampler::SectionSample)::Vector{Int64} = findall(x -> x == false, isnan.(section_sampler.x0)) free_dimensions(section_sampler::SectionSample)::Vector{Int64} = findall(x -> x == true, isnan.(section_sampler.x0)) """ sample(n,lb,ub,K::SectionSample) Returns Tuples constrained to a section. In surrogate-based identification and control, optimization can alternate between unconstrained sampling in the full-dimensional parameter space, and sampling constrained on specific sections (e.g. a planes in a 3D volume), A SectionSample allows sampling and optimizing on a subset of 'free' dimensions while keeping 'fixed' ones constrained. The sampler is defined as in e.g. `section_sampler_y_is_10 = SectionSample([NaN64, NaN64, 10.0, 10.0], UniformSample())` where the first argument is a Vector{T} in which numbers are fixed coordinates and `NaN`s correspond to free dimensions, and the second argument is a SamplingAlgorithm which is used to sample in the free dimensions. """ function sample(n::Integer, lb::T, ub::T, section_sampler::SectionSample) where { T <: Union{Base.AbstractVecOrTuple, Number}} @assert n>0 ZERO_SAMPLES_MESSAGE QuasiMonteCarlo._check_sequence(lb, ub, length(lb)) if lb isa Number if isnan(section_sampler.x0[1]) return vec(sample(n, lb, ub, section_sampler.sa)) else return fill(section_sampler.x0[1], n) end else d_free = free_dimensions(section_sampler) @info d_free new_samples = QuasiMonteCarlo.sample(n, lb[d_free], ub[d_free], section_sampler.sa) out_as_vec = collect(repeat(section_sampler.x0', n, 1)') for y in 1:size(out_as_vec, 2) for (xi, d) in enumerate(d_free) out_as_vec[d, y] = new_samples[xi, y] end end return isone(size(out_as_vec, 1)) ? vec(out_as_vec) : collect(reinterpret(reshape, NTuple{size(out_as_vec, 1), eltype(out_as_vec)}, out_as_vec)) end end function SectionSample(x0::AbstractVector, sa::SamplingAlgorithm) SectionSample(x0, sa, findall(isnan, x0)) end """ SectionSample(n, d, K::SectionSample) In surrogate-based identification and control, optimization can alternate between unconstrained sampling in the full-dimensional parameter space, and sampling constrained on specific sections (e.g. planes in a 3D volume). `SectionSample` allows sampling and optimizing on a subset of 'free' dimensions while keeping 'fixed' ones constrained. The sampler is defined `SectionSample([NaN64, NaN64, 10.0, 10.0], UniformSample())` where the first argument is a Vector{T} in which numbers are fixed coordinates and `NaN`s correspond to free dimensions, and the second argument is a SamplingAlgorithm which is used to sample in the free dimensions. """ function sample(n::Integer, d::Integer, section_sampler::SectionSample, T = eltype(section_sampler.x0)) QuasiMonteCarlo._check_sequence(n) @assert eltype(section_sampler.x0) == T @assert length(section_sampler.fixed_dims) == d return sample(n, section_sampler) end @views function sample(n::Integer, section_sampler::SectionSample{T}) where {T} samples = Matrix{T}(undef, n, length(section_sampler.x0)) fixed_dims = section_sampler.fixed_dims samples[:, fixed_dims] .= sample(n, length(fixed_dims), section_sampler.sa, T) return vec(samples) end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
2244
""" mutable struct InverseDistanceSurrogate{X,Y,P,L,U} <: AbstractSurrogate The square polynomial model can be expressed by 𝐲 = 𝐗β + ϵ, with β = 𝐗ᵗ𝐗⁻¹𝐗ᵗ𝐲 """ mutable struct SecondOrderPolynomialSurrogate{X, Y, B, L, U} <: AbstractSurrogate x::X y::Y β::B lb::L ub::U end function SecondOrderPolynomialSurrogate(x, y, lb, ub) X = _construct_2nd_order_interp_matrix(x, first(x)) Y = _construct_y_matrix(y, first(y)) β = X \ Y return SecondOrderPolynomialSurrogate(x, y, β, lb, ub) end function _construct_2nd_order_interp_matrix(x, x_el) n = length(x) d = length(x_el) D = 1 + 2 * d + d * (d - 1) ÷ 2 X = ones(eltype(x_el), n, D) for i in 1:n, j in 1:d X[i, j + 1] = x[i][j] end idx = d + 1 for j in 1:d, k in (j + 1):d idx += 1 for i in 1:n X[i, idx] = x[i][j] * x[i][k] end end for i in 1:n, j in 1:d X[i, j + 1 + d + d * (d - 1) ÷ 2] = x[i][j]^2 end return X end _construct_y_matrix(y, y_el::Number) = y _construct_y_matrix(y, y_el) = [y[i][j] for i in 1:length(y), j in 1:length(y_el)] function (my_second_ord::SecondOrderPolynomialSurrogate)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(my_second_ord, val) #just create the val vector as X and multiply d = length(val) y = my_second_ord.β[1, :] for j in 1:d y += val[j] * my_second_ord.β[j + 1, :] end idx = d + 1 for j in 1:d, k in (j + 1):d idx += 1 y += val[j] * val[k] * my_second_ord.β[idx, :] end for j in 1:d y += val[j]^2 * my_second_ord.β[j + 1 + d + d * (d - 1) ÷ 2, :] end return _match_container(y, first(my_second_ord.y)) end function add_point!(my_second::SecondOrderPolynomialSurrogate, x_new, y_new) if eltype(x_new) == eltype(my_second.x) append!(my_second.x, x_new) append!(my_second.y, y_new) else push!(my_second.x, x_new) push!(my_second.y, y_new) end X = _construct_2nd_order_interp_matrix(my_second.x, first(my_second.x)) Y = _construct_y_matrix(my_second.y, first(my_second.y)) β = X \ Y my_second.β = β nothing end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
3765
module Surrogates using LinearAlgebra using Distributions abstract type AbstractSurrogate <: Function end include("utils.jl") include("Radials.jl") include("Kriging.jl") include("Sampling.jl") include("Optimization.jl") include("Lobachevsky.jl") include("LinearSurrogate.jl") include("InverseDistanceSurrogate.jl") include("SecondOrderPolynomialSurrogate.jl") include("Wendland.jl") include("MOE.jl") #rewrite gaussian mixture with own algorithm to fix deps issue include("VariableFidelity.jl") include("Earth.jl") include("GEK.jl") include("GEKPLS.jl") include("VirtualStrategy.jl") current_surrogates = ["Kriging", "LinearSurrogate", "LobachevskySurrogate", "NeuralSurrogate", "RadialBasis", "RandomForestSurrogate", "SecondOrderPolynomialSurrogate", "Wendland", "GEK", "PolynomialChaosSurrogate"] #Radial structure: function RadialBasisStructure(; radial_function, scale_factor, sparse) return (name = "RadialBasis", radial_function = radial_function, scale_factor = scale_factor, sparse = sparse) end #Kriging structure: function KrigingStructure(; p, theta) return (name = "Kriging", p = p, theta = theta) end function GEKStructure(; p, theta) return (name = "GEK", p = p, theta = theta) end #Linear structure function LinearStructure() return (name = "LinearSurrogate") end #InverseDistance structure function InverseDistanceStructure(; p) return (name = "InverseDistanceSurrogate", p = p) end #Lobachevsky structure function LobachevskyStructure(; alpha, n, sparse) return (name = "LobachevskySurrogate", alpha = alpha, n = n, sparse = sparse) end #Neural structure function NeuralStructure(; model, loss, opt, n_echos) return (name = "NeuralSurrogate", model = model, loss = loss, opt = opt, n_echos = n_echos) end #Random forest structure function RandomForestStructure(; num_round) return (name = "RandomForestSurrogate", num_round = num_round) end #Second order poly structure function SecondOrderPolynomialStructure() return (name = "SecondOrderPolynomialSurrogate") end #Wendland structure function WendlandStructure(; eps, maxiters, tol) return (name = "Wendland", eps = eps, maxiters = maxiters, tol = tol) end #Polychaos structure function PolyChaosStructure(; op) return (name = "PolynomialChaosSurrogate", op = op) end export current_surrogates export GEKPLS export RadialBasisStructure, KrigingStructure, LinearStructure, InverseDistanceStructure export LobachevskyStructure, NeuralStructure, RandomForestStructure, SecondOrderPolynomialStructure export WendlandStructure export AbstractSurrogate, SamplingAlgorithm export Kriging, RadialBasis, add_point!, std_error_at_point # Parallelization Strategies export potential_optimal_points export MinimumConstantLiar, MaximumConstantLiar, MeanConstantLiar, KrigingBeliever, KrigingBelieverUpperBound, KrigingBelieverLowerBound # radial basis functions export linearRadial, cubicRadial, multiquadricRadial, thinplateRadial # samplers export sample, GridSample, RandomSample, SobolSample, LatinHypercubeSample, HaltonSample export RandomSample, KroneckerSample, GoldenSample, SectionSample # Optimization algorithms export SRBF, LCBS, EI, DYCORS, SOP, RTEA, SMB, surrogate_optimize export LobachevskySurrogate, lobachevsky_integral, lobachevsky_integrate_dimension export LinearSurrogate export InverseDistanceSurrogate export SecondOrderPolynomialSurrogate export Wendland export RadialBasisStructure, KrigingStructure, LinearStructure, InverseDistanceStructure export LobachevskyStructure, NeuralStructure, RandomForestStructure, SecondOrderPolynomialStructure export WendlandStructure #export MOE export VariableFidelitySurrogate export EarthSurrogate export GEK end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
6863
mutable struct VariableFidelitySurrogate{X, Y, L, U, N, F, E} <: AbstractSurrogate x::X y::Y lb::L ub::U num_high_fidel::N low_fid_surr::F eps_surr::E end function VariableFidelitySurrogate(x, y, lb, ub; num_high_fidel = Int(floor(length(x) / 2)), low_fid_structure = RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false), high_fid_structure = RadialBasisStructure(radial_function = cubicRadial(), scale_factor = 1.0, sparse = false)) x_high = x[1:num_high_fidel] x_low = x[(num_high_fidel + 1):end] y_high = y[1:num_high_fidel] y_low = y[(num_high_fidel + 1):end] #Fit low fidelity surrogate: if low_fid_structure[1] == "RadialBasis" #fit and append to local_surr low_fid_surr = RadialBasis(x_low, y_low, lb, ub, rad = low_fid_structure.radial_function, scale_factor = low_fid_structure.scale_factor, sparse = low_fid_structure.sparse) elseif low_fid_structure[1] == "Kriging" low_fid_surr = Kriging(x_low, y_low, lb, ub, p = low_fid_structure.p, theta = low_fid_structure.theta) elseif low_fid_structure[1] == "GEK" low_fid_surr = GEK(x_low, y_low, lb, ub, p = low_fid_structure.p, theta = low_fid_structure.theta) elseif low_fid_structure == "LinearSurrogate" low_fid_surr = LinearSurrogate(x_low, y_low, lb, ub) elseif low_fid_structure[1] == "InverseDistanceSurrogate" low_fid_surr = InverseDistanceSurrogate(x_low, y_low, lb, ub, p = low_fid_structure.p) elseif low_fid_structure[1] == "LobachevskySurrogate" low_fid_surr = LobachevskySurrogate(x_low, y_low, lb, ub, alpha = low_fid_structure.alpha, n = low_fid_structure.n, sparse = low_fid_structure.sparse) elseif low_fid_structure[1] == "NeuralSurrogate" low_fid_surr = NeuralSurrogate(x_low, y_low, lb, ub, model = low_fid_structure.model, loss = low_fid_structure.loss, opt = low_fid_structure.opt, n_echos = low_fid_structure.n_echos) elseif low_fid_structure[1] == "RandomForestSurrogate" low_fid_surr = RandomForestSurrogate(x_low, y_low, lb, ub, num_round = low_fid_structure.num_round) elseif low_fid_structure == "SecondOrderPolynomialSurrogate" low_fid_surr = SecondOrderPolynomialSurrogate(x_low, y_low, lb, ub) elseif low_fid_structure[1] == "Wendland" low_fid_surr = Wendand(x_low, y_low, lb, ub, eps = low_fid_surr.eps, maxiters = low_fid_surr.maxiters, tol = low_fid_surr.tol) else throw("A surrogate with the name provided does not exist or is not currently supported with VariableFidelity") end #Fit surrogate eps on high fidelity data with objective function y_high - low_find_surr y_eps = zeros(eltype(y), num_high_fidel) @inbounds for i in 1:num_high_fidel y_eps[i] = y_high[i] - low_fid_surr(x_high[i]) end if high_fid_structure[1] == "RadialBasis" #fit and append to local_surr eps = RadialBasis(x_high, y_eps, lb, ub, rad = high_fid_structure.radial_function, scale_factor = high_fid_structure.scale_factor, sparse = high_fid_structure.sparse) elseif high_fid_structure[1] == "Kriging" eps = Kriging(x_high, y_eps, lb, ub, p = high_fid_structure.p, theta = high_fid_structure.theta) elseif high_fid_structure == "LinearSurrogate" eps = LinearSurrogate(x_high, y_eps, lb, ub) elseif high_fid_structure[1] == "InverseDistanceSurrogate" eps = InverseDistanceSurrogate(x_high, y_eps, lb, ub, high_fid_structure.p) elseif high_fid_structure[1] == "LobachevskySurrogate" eps = LobachevskySurrogate(x_high, y_eps, lb, ub, alpha = high_fid_structure.alpha, n = high_fid_structure.n, sparse = high_fid_structure.sparse) elseif high_fid_structure[1] == "NeuralSurrogate" eps = NeuralSurrogate(x_high, y_eps, lb, ub, model = high_fid_structure.model, loss = high_fid_structure.loss, opt = high_fid_structure.opt, n_echos = high_fid_structure.n_echos) elseif high_fid_structure[1] == "RandomForestSurrogate" eps = RandomForestSurrogate(x_high, y_eps, lb, ub, num_round = high_fid_structure.num_round) elseif high_fid_structure == "SecondOrderPolynomialSurrogate" eps = SecondOrderPolynomialSurrogate(x_high, y_eps, lb, ub) elseif high_fid_structure[1] == "Wendland" eps = Wendand(x_high, y_eps, lb, ub, eps = high_fid_structure.eps, maxiters = high_fid_structure.maxiters, tol = high_fid_structure.tol) else throw("A surrogate with the name provided does not exist or is not currently supported with VariableFidelity") end return VariableFidelitySurrogate(x, y, lb, ub, num_high_fidel, low_fid_surr, eps) end #= function (varfid::VariableFidelitySurrogate)(val::Number) return varfid.eps_surr(val) + varfid.low_fid_surr(val) end """ VariableFidelitySurrogate(x,y,lb,ub; num_high_fidel = Int(floor(length(x)/2)) low_fid = RadialBasisStructure(radial_function = linearRadial, scale_factor=1.0, sparse = false), high_fid = RadialBasisStructure(radial_function = cubicRadial ,scale_factor=1.0,sparse=false)) First section (1:num_high_fidel) of samples are high fidelity, second section are low fidelity """ function VariableFidelitySurrogate(x,y,lb,ub; num_high_fidel = Int(floor(length(x)/2)) low_fid = RadialBasisStructure(radial_function = linearRadial, scale_factor=1.0, sparse = false), high_fid = RadialBasisStructure(radial_function = cubicRadial ,scale_factor=1.0,sparse=false)) end =# function (varfid::VariableFidelitySurrogate)(val) return varfid.eps_surr(val) + varfid.low_fid_surr(val) end """ add_point!(varfid::VariableFidelitySurrogate,x_new,y_new) I expect to add low fidelity data to the surrogate. """ function add_point!(varfid::VariableFidelitySurrogate, x_new, y_new) if length(varfid.x[1]) == 1 #1D varfid.x = vcat(varfid.x, x_new) varfid.y = vcat(varfid.y, y_new) #I added a new lowfidelity datapoint, I need to update the low_fid_surr: add_point!(varfid.low_fid_surr, x_new, y_new) else #ND varfid.x = vcat(varfid.x, x_new) varfid.y = vcat(varfid.y, y_new) #I added a new lowfidelity datapoint, I need to update the low_fid_surr: add_point!(varfid.low_fid_surr, x_new, y_new) end end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1272
# Minimum Constant Liar function calculate_liars(::MinimumConstantLiar, tmp_surr::AbstractSurrogate, surr::AbstractSurrogate, new_x) new_y = minimum(surr.y) add_point!(tmp_surr, new_x, new_y) end # Maximum Constant Liar function calculate_liars(::MaximumConstantLiar, tmp_surr::AbstractSurrogate, surr::AbstractSurrogate, new_x) new_y = maximum(surr.y) add_point!(tmp_surr, new_x, new_y) end # Mean Constant Liar function calculate_liars(::MeanConstantLiar, tmp_surr::AbstractSurrogate, surr::AbstractSurrogate, new_x) new_y = mean(surr.y) add_point!(tmp_surr, new_x, new_y) end # Kriging Believer function calculate_liars(::KrigingBeliever, tmp_k::Kriging, k::Kriging, new_x) new_y = k(new_x) add_point!(tmp_k, new_x, new_y) end # Kriging Believer Upper Bound function calculate_liars(::KrigingBelieverUpperBound, tmp_k::Kriging, k::Kriging, new_x) new_y = k(new_x) + 3 * std_error_at_point(k, new_x) add_point!(tmp_k, new_x, new_y) end # Kriging Believer Lower Bound function calculate_liars(::KrigingBelieverLowerBound, tmp_k::Kriging, k::Kriging, new_x) new_y = k(new_x) - 3 * std_error_at_point(k, new_x) add_point!(tmp_k, new_x, new_y) end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1922
using IterativeSolvers using ExtendableSparse using LinearAlgebra mutable struct Wendland{X, Y, L, U, C, I, T, E} <: AbstractSurrogate x::X y::Y lb::L ub::U coeff::C maxiters::I tol::T eps::E end @inline _l(s, k) = floor(s / 2) + k + 1 function _wendland(x, eps) r = eps * norm(x) val = (1.0 - r) if val >= 0 dim = length(x) #at the moment only k = 1 is supported, but we could also support # missing wendland (k=1/2,k=3/2,k=5/2), and different k's. ell = _l(dim, 1) powerTerm = ell + 1.0 val = (1.0 - r) return val^powerTerm * (powerTerm * r + 1.0) else return zero(eltype(x[1])) end end function _calc_coeffs_wend(x, y, eps, maxiters, tol) n = length(x) W = ExtendableSparseMatrix{eltype(x[1]), Int}(n, n) @inbounds for i in 1:n k = i #wendland is symmetric for j in k:n W[i, j] = _wendland(x[i] .- x[j], eps) end end U = Symmetric(W, :U) return cg(U, y, maxiter = maxiters, reltol = tol) end function Wendland(x, y, lb, ub; eps = 1.0, maxiters = 300, tol = 1e-6) c = _calc_coeffs_wend(x, y, eps, maxiters, tol) return Wendland(x, y, lb, ub, c, maxiters, tol, eps) end function (wend::Wendland)(val) # Check to make sure dimensions of input matches expected dimension of surrogate _check_dimension(wend, val) return sum(wend.coeff[j] * _wendland(val, wend.eps) for j in 1:length(wend.coeff)) end function add_point!(wend::Wendland, new_x, new_y) if (length(new_x) == 1 && length(new_x[1]) == 1) || (length(new_x) > 1 && length(new_x[1]) == 1 && length(wend.lb) > 1) push!(wend.x, new_x) push!(wend.y, new_y) else append!(wend.x, new_x) append!(wend.y, new_y) end wend.coeff = _calc_coeffs_wend(wend.x, wend.y, wend.eps, wend.maxiters, wend.tol) nothing end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
448
remove_tracker(x) = x _match_container(y, y_el::Number) = first(y) _match_container(y, y_el) = y _expected_dimension(x) = length(x[1]) function _check_dimension(surr, input) expected_dim = _expected_dimension(surr.x) input_dim = length(input) if input_dim != expected_dim throw(ArgumentError("This surrogate expects $expected_dim-dimensional inputs, but the input had dimension $input_dim.")) end return nothing end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
4993
using Surrogates using LinearAlgebra using Zygote using Test #using Zygote: @nograd #= #FORWARD ###### 1D ###### lb = 0.0 ub = 10.0 n = 5 x = sample(n,lb,ub,SobolSample()) f = x -> x^2 y = f.(x) #Radials my_rad = RadialBasis(x,y,lb,ub,x->norm(x),2) g = x -> ForwardDiff.derivative(my_rad,x) g(5.0) #Kriging p = 1.5 my_krig = Kriging(x,y,p) g = x -> ForwardDiff.derivative(my_krig,x) g(5.0) #Linear Surrogate my_linear = LinearSurrogate(x,y,lb,ub) g = x -> ForwardDiff.derivative(my_linear,x) g(5.0) #Inverse distance p = 1.4 my_inverse = InverseDistanceSurrogate(x,y,p,lb,ub) g = x -> ForwardDiff.derivative(my_inverse,x) g(5.0) #Lobachevsky n = 4 α = 2.4 my_loba = LobachevskySurrogate(x,y,α,n,lb,ub) g = x -> ForwardDiff.derivative(my_loba,x) g(5.0) #Second order polynomial my_second = SecondOrderPolynomialSurrogate(x,y,lb,ub) g = x -> ForwardDiff.derivative(my_second,x) g(5.0) ###### ND ###### lb = [0.0,0.0] ub = [10.0,10.0] n = 5 x = sample(n,lb,ub,SobolSample()) f = x -> x[1]*x[2] y = f.(x) #Radials my_rad = RadialBasis(x,y,[lb,ub],z->norm(z),2) g = x -> ForwardDiff.gradient(my_rad,x) g([2.0,5.0]) #Kriging theta = [2.0,2.0] p = [1.9,1.9] my_krig = Kriging(x,y,p,theta) g = x -> ForwardDiff.gradient(my_krig,x) g([2.0,5.0]) #Linear Surrogate my_linear = LinearSurrogate(x,y,lb,ub) g = x -> ForwardDiff.gradient(my_linear,x) g([2.0,5.0]) #Inverse Distance p = 1.4 my_inverse = InverseDistanceSurrogate(x,y,p,lb,ub) g = x -> ForwardDiff.gradient(my_inverse,x) g([2.0,5.0]) #Lobachevsky alpha = [1.4,1.4] n = 4 my_loba_ND = LobachevskySurrogate(x,y,alpha,n,lb,ub) g = x -> ForwardDiff.gradient(my_loba_ND,x) g([2.0,5.0]) #Second order polynomial my_second = SecondOrderPolynomialSurrogate(x,y,lb,ub) g = x -> ForwardDiff.gradient(my_second,x) g([2.0,5.0]) =# ############## ### ZYGOTE ### ############## ############ #### 1D #### ############ lb = 0.0 ub = 3.0 n = 10 x = sample(n, lb, ub, SobolSample()) f = x -> x^2 y = f.(x) #Radials @testset "Radials 1D" begin my_rad = RadialBasis(x, y, lb, ub, rad = linearRadial()) g = x -> my_rad'(x) g(5.0) end # #Kriging @testset "Kriging 1D" begin my_p = 1.5 my_krig = Kriging(x, y, lb, ub, p = my_p) g = x -> my_krig'(x) g(5.0) end # #Linear Surrogate @testset "Linear Surrogate" begin my_linear = LinearSurrogate(x, y, lb, ub) g = x -> my_linear'(x) g(5.0) end #Inverse distance @testset "Inverse Distance" begin my_p = 1.4 my_inverse = InverseDistanceSurrogate(x, y, lb, ub, p = my_p) g = x -> my_inverse'(x) g(5.0) end #Second order polynomial @testset "Second Order Polynomial" begin my_second = SecondOrderPolynomialSurrogate(x, y, lb, ub) g = x -> my_second'(x) g(5.0) end #Lobachevsky @testset "Lobachevsky" begin n = 4 α = 2.4 my_loba = LobachevskySurrogate(x, y, lb, ub, alpha = α, n = 4) g = x -> my_loba'(x) g(0.0) end #Wendland @testset "Wendland" begin my_wend = Wendland(x, y, lb, ub) g = x -> my_wend'(x) g(3.0) end # MOE and VariableFidelity for free because they are Linear combinations # of differentiable surrogates # #Gek @testset "GEK" begin n = 10 lb = 0.0 ub = 5.0 x = sample(n, lb, ub, SobolSample()) f = x -> x^2 y1 = f.(x) der = x -> 2 * x y2 = der.(x) y = vcat(y1, y2) my_gek = GEK(x, y, lb, ub) g = x -> my_gek'(x) g(3.0) end ################ ###### ND ###### ################ lb = [0.0, 0.0] ub = [10.0, 10.0] n = 5 x = sample(n, lb, ub, SobolSample()) f = x -> x[1] * x[2] y = f.(x) #Radials @testset "Radials ND" begin my_rad = RadialBasis(x, y, lb, ub, rad = linearRadial(), scale_factor = 2.1) g = x -> Zygote.gradient(my_rad, x) g((2.0, 5.0)) end # Kriging @testset "Kriging ND" begin my_theta = [2.0, 2.0] my_p = [1.9, 1.9] my_krig = Kriging(x, y, lb, ub, p = my_p, theta = my_theta) g = x -> Zygote.gradient(my_krig, x) g((2.0, 5.0)) end # Linear Surrogate @testset "Linear Surrogate ND" begin my_linear = LinearSurrogate(x, y, lb, ub) g = x -> Zygote.gradient(my_linear, x) g((2.0, 5.0)) end #Inverse Distance @testset "Inverse Distance ND" begin my_p = 1.4 my_inverse = InverseDistanceSurrogate(x, y, lb, ub, p = my_p) g = x -> Zygote.gradient(my_inverse, x) g((2.0, 5.0)) end #Lobachevsky not working yet weird issue with Zygote @nograd #= Zygote.refresh() alpha = [1.4,1.4] n = 4 my_loba_ND = LobachevskySurrogate(x,y,alpha,n,lb,ub) g = x -> Zygote.gradient(my_loba_ND,x) g((2.0,5.0)) =# # Second order polynomial mutating arrays @testset "SecondOrderPolynomialSurrogate ND" begin my_second = SecondOrderPolynomialSurrogate(x, y, lb, ub) g = x -> Zygote.gradient(my_second, x) g((2.0, 5.0)) end #wendland @testset "Wendland ND" begin my_wend_ND = Wendland(x, y, lb, ub) g = x -> Zygote.gradient(my_wend_ND, x) g((2.0, 5.0)) end # #MOE and VariableFidelity for free because they are Linear combinations # #of differentiable surrogates
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1251
using Surrogates #1D n = 10 lb = 0.0 ub = 5.0 x = sample(n, lb, ub, SobolSample()) f = x -> x^2 y1 = f.(x) der = x -> 2 * x y2 = der.(x) y = vcat(y1, y2) my_gek = GEK(x, y, lb, ub) val = my_gek(2.0) std_err = std_error_at_point(my_gek, 1.0) add_point!(my_gek, 2.5, 2.5^2) # Test that input dimension is properly checked for 1D GEK surrogates @test_throws ArgumentError my_gek(Float64[]) @test_throws ArgumentError my_gek((2.0, 3.0, 4.0)) #ND n = 10 d = 2 lb = [0.0, 0.0] ub = [5.0, 5.0] x = sample(n, lb, ub, SobolSample()) f = x -> x[1]^2 + x[2]^2 y1 = f.(x) grad1 = x -> 2 * x[1] grad2 = x -> 2 * x[2] function create_grads(n, d, grad1, grad2, y) c = 0 y2 = zeros(eltype(y[1]), n * d) for i in 1:n y2[i + c] = grad1(x[i]) y2[i + c + 1] = grad2(x[i]) c = c + 1 end return y2 end y2 = create_grads(n, d, grad1, grad2, y) y = vcat(y1, y2) my_gek_ND = GEK(x, y, lb, ub) val = my_gek_ND((1.0, 1.0)) std_err = std_error_at_point(my_gek_ND, (1.0, 1.0)) add_point!(my_gek_ND, (2.0, 2.0), 8.0) # Test that input dimension is properly checked for ND GEK surrogates @test_throws ArgumentError my_gek_ND(Float64[]) @test_throws ArgumentError my_gek_ND(2.0) @test_throws ArgumentError my_gek_ND((2.0, 3.0, 4.0))
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
8125
using Surrogates using Zygote # #water flow function tests function water_flow(x) r_w = x[1] r = x[2] T_u = x[3] H_u = x[4] T_l = x[5] H_l = x[6] L = x[7] K_w = x[8] log_val = log(r / r_w) return (2 * pi * T_u * (H_u - H_l)) / (log_val * (1 + (2 * L * T_u / (log_val * r_w^2 * K_w)) + T_u / T_l)) end n = 1000 lb = [0.05, 100, 63070, 990, 63.1, 700, 1120, 9855] ub = [0.15, 50000, 115600, 1110, 116, 820, 1680, 12045] x = sample(n, lb, ub, SobolSample()) grads = gradient.(water_flow, x) y = water_flow.(x) n_test = 100 x_test = sample(n_test, lb, ub, GoldenSample()) y_true = water_flow.(x_test) @testset "Test 1: Water Flow Function Test (dimensions = 8; n_comp = 2; extra_points = 2)" begin n_comp = 2 delta_x = 0.0001 extra_points = 2 initial_theta = [0.01 for i in 1:n_comp] g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) y_pred = g.(x_test) rmse = sqrt(sum(((y_pred - y_true) .^ 2) / n_test)) @test isapprox(rmse, 0.03, atol = 0.02) #rmse: 0.039 end @testset "Test 2: Water Flow Function Test (dimensions = 8; n_comp = 3; extra_points = 2)" begin n_comp = 3 delta_x = 0.0001 extra_points = 2 initial_theta = [0.01 for i in 1:n_comp] g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) y_pred = g.(x_test) rmse = sqrt(sum(((y_pred - y_true) .^ 2) / n_test)) @test isapprox(rmse, 0.02, atol = 0.01) #rmse: 0.027 end @testset "Test 3: Water Flow Function Test (dimensions = 8; n_comp = 3; extra_points = 3)" begin n_comp = 3 delta_x = 0.0001 extra_points = 3 initial_theta = [0.01 for i in 1:n_comp] g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) y_pred = g.(x_test) rmse = sqrt(sum(((y_pred - y_true) .^ 2) / n_test)) @test isapprox(rmse, 0.02, atol = 0.01) #rmse: 0.027 end # ## welded beam tests function welded_beam(x) h = x[1] l = x[2] t = x[3] a = 6000 / (sqrt(2) * h * l) b = (6000 * (14 + 0.5 * l) * sqrt(0.25 * (l^2 + (h + t)^2))) / (2 * (0.707 * h * l * (l^2 / 12 + 0.25 * (h + t)^2))) return (sqrt(a^2 + b^2 + l * a * b)) / (sqrt(0.25 * (l^2 + (h + t)^2))) end n = 1000 lb = [0.125, 5.0, 5.0] ub = [1.0, 10.0, 10.0] x = sample(n, lb, ub, SobolSample()) grads = gradient.(welded_beam, x) y = welded_beam.(x) n_test = 100 x_test = sample(n_test, lb, ub, GoldenSample()) y_true = welded_beam.(x_test) @testset "Test 4: Welded Beam Function Test (dimensions = 3; n_comp = 3; extra_points = 2)" begin n_comp = 3 delta_x = 0.0001 extra_points = 2 initial_theta = [0.01 for i in 1:n_comp] g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) y_pred = g.(x_test) rmse = sqrt(sum(((y_pred - y_true) .^ 2) / n_test)) @test isapprox(rmse, 50.0, atol = 0.5)#rmse: 38.988 end @testset "Test 5: Welded Beam Function Test (dimensions = 3; n_comp = 2; extra_points = 2)" begin n_comp = 2 delta_x = 0.0001 extra_points = 2 initial_theta = [0.01 for i in 1:n_comp] g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) y_pred = g.(x_test) rmse = sqrt(sum(((y_pred - y_true) .^ 2) / n_test)) @test isapprox(rmse, 51.0, atol = 0.5) #rmse: 39.481 end ## increasing extra points increases accuracy @testset "Test 6: Welded Beam Function Test (dimensions = 3; n_comp = 2; extra_points = 4)" begin n_comp = 2 delta_x = 0.0001 extra_points = 4 initial_theta = [0.01 for i in 1:n_comp] g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) y_pred = g.(x_test) rmse = sqrt(sum(((y_pred - y_true) .^ 2) / n_test)) @test isapprox(rmse, 49.0, atol = 0.5) #rmse: 37.87 end ## sphere function tests function sphere_function(x) return sum(x .^ 2) end ## 3D n = 100 lb = [-5.0, -5.0, -5.0] ub = [5.0, 5.0, 5.0] x = sample(n, lb, ub, SobolSample()) grads = gradient.(sphere_function, x) y = sphere_function.(x) n_test = 100 x_test = sample(n_test, lb, ub, GoldenSample()) y_true = sphere_function.(x_test) @testset "Test 7: Sphere Function Test (dimensions = 3; n_comp = 2; extra_points = 2)" begin n_comp = 2 delta_x = 0.0001 extra_points = 2 initial_theta = [0.01 for i in 1:n_comp] g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) y_pred = g.(x_test) rmse = sqrt(sum(((y_pred - y_true) .^ 2) / n_test)) @test isapprox(rmse, 0.001, atol = 0.05) #rmse: 0.00083 end ## 2D n = 50 lb = [-10.0, -10.0] ub = [10.0, 10.0] x = sample(n, lb, ub, SobolSample()) grads = gradient.(sphere_function, x) y = sphere_function.(x) n_test = 10 x_test = sample(n_test, lb, ub, GoldenSample()) y_true = sphere_function.(x_test) @testset "Test 8: Sphere Function Test (dimensions = 2; n_comp = 2; extra_points = 2" begin n_comp = 2 delta_x = 0.0001 extra_points = 2 initial_theta = [0.01 for i in 1:n_comp] g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) y_pred = g.(x_test) rmse = sqrt(sum(((y_pred - y_true) .^ 2) / n_test)) @test isapprox(rmse, 0.1, atol = 0.5) #rmse: 0.0022 end @testset "Test 9: Add Point Test (dimensions = 3; n_comp = 2; extra_points = 2)" begin #first we create a surrogate model with just 3 input points initial_x_vec = [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0), (7.0, 8.0, 9.0)] initial_y = sphere_function.(initial_x_vec) initial_grads = gradient.(sphere_function, initial_x_vec) lb = [-5.0, -5.0, -5.0] ub = [10.0, 10.0, 10.0] n_comp = 2 delta_x = 0.0001 extra_points = 2 initial_theta = [0.01 for i in 1:n_comp] g = GEKPLS(initial_x_vec, initial_y, initial_grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) n_test = 100 x_test = sample(n_test, lb, ub, GoldenSample()) y_true = sphere_function.(x_test) y_pred1 = g.(x_test) rmse1 = sqrt(sum(((y_pred1 - y_true) .^ 2) / n_test)) #rmse1 = 31.91 #then we update the model with more points to see if performance improves n = 100 x = sample(n, lb, ub, SobolSample()) grads = gradient.(sphere_function, x) y = sphere_function.(x) for i in 1:size(x, 1) add_point!(g, x[i], y[i], grads[i][1]) end y_pred2 = g.(x_test) rmse2 = sqrt(sum(((y_pred2 - y_true) .^ 2) / n_test)) #rmse2 = 0.0015 @test (rmse2 < rmse1) end @testset "Test 10: Check optimization (dimensions = 3; n_comp = 2; extra_points = 2)" begin lb = [-5.0, -5.0, -5.0] ub = [10.0, 10.0, 10.0] n_comp = 2 delta_x = 0.0001 extra_points = 2 initial_theta = [0.01 for i in 1:n_comp] n = 100 x = sample(n, lb, ub, SobolSample()) grads = gradient.(sphere_function, x) y = sphere_function.(x) g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) x_point, minima = surrogate_optimize(sphere_function, SRBF(), lb, ub, g, RandomSample(); maxiters = 20, num_new_samples = 20, needs_gradient = true) @test isapprox(minima, 0.0, atol = 0.0001) end @testset "Test 11: Check gradient (dimensions = 3; n_comp = 2; extra_points = 3)" begin lb = [-5.0, -5.0, -5.0] ub = [10.0, 10.0, 10.0] n_comp = 2 delta_x = 0.0001 extra_points = 3 initial_theta = [0.01 for i in 1:n_comp] n = 100 x = sample(n, lb, ub, SobolSample()) grads = gradient.(sphere_function, x) y = sphere_function.(x) g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) grad_surr = gradient(g, (1.0, 1.0, 1.0)) #test at a single point grad_true = gradient(sphere_function, (1.0, 1.0, 1.0)) bool_tup = isapprox.((grad_surr[1] .- grad_true[1]), (0.0, 0.0, 0.0), (atol = 0.001)) @test (true, true, true) == bool_tup #test for a bunch of points grads_surr_vec = gradient.(g, x) sum_of_rmse = 0.0 for i in eachindex(grads_surr_vec) sum_of_rmse += sqrt((sum((grads_surr_vec[i][1] .- grads[i][1]) .^ 2) / 3.0)) end @test isapprox(sum_of_rmse, 0.05, atol = 0.01) end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
4020
using LinearAlgebra using Surrogates using Test using Statistics #1D lb = 0.0 ub = 10.0 f = x -> log(x) * exp(x) x = sample(5, lb, ub, SobolSample()) y = f.(x) my_p = 1.9 # Check hyperparameter validation for constructing 1D Kriging surrogates @test_throws ArgumentError my_k=Kriging(x, y, lb, ub, p = -1.0) @test_throws ArgumentError my_k=Kriging(x, y, lb, ub, p = 3.0) @test_throws ArgumentError my_k=Kriging(x, y, lb, ub, theta = -2.0) my_k = Kriging(x, y, lb, ub, p = my_p) @test my_k.theta ≈ 0.5 * std(x)^(-my_p) # Check input dimension validation for 1D Kriging surrogates @test_throws ArgumentError my_k(rand(3)) @test_throws ArgumentError my_k(Float64[]) add_point!(my_k, 4.0, 75.68) add_point!(my_k, [5.0, 6.0], [238.86, 722.84]) pred = my_k(5.5) @test 238.86 ≤ pred ≤ 722.84 @test my_k(5.0) ≈ 238.86 @test std_error_at_point(my_k, 5.0) < 1e-3 * my_k(5.0) #WITHOUT ADD POINT x = [1.0, 2.0, 3.0] y = [4.0, 5.0, 6.0] my_p = 1.3 my_k = Kriging(x, y, lb, ub, p = my_p) est = my_k(1.0) @test est == 4.0 std_err = std_error_at_point(my_k, 1.0) @test std_err < 10^(-6) #WITH ADD POINT adding singleton x = [1.0, 2.0, 3.0] y = [4.0, 5.0, 6.0] my_p = 1.3 my_k = Kriging(x, y, lb, ub, p = my_p) add_point!(my_k, 4.0, 9.0) est = my_k(4.0) std_err = std_error_at_point(my_k, 4.0) @test std_err < 10^(-6) #WITH ADD POINT adding more x = [1.0, 2.0, 3.0] y = [4.0, 5.0, 6.0] my_p = 1.3 my_k = Kriging(x, y, lb, ub, p = my_p) add_point!(my_k, [4.0, 5.0, 6.0], [9.0, 13.0, 15.0]) est = my_k(4.0) std_err = std_error_at_point(my_k, 4.0) @test std_err < 10^(-6) #Testing kwargs 1D kwar_krig = Kriging(x, y, lb, ub); # Check hyperparameter initialization for 1D Kriging surrogates p_expected = 2.0 @test kwar_krig.p == p_expected @test kwar_krig.theta == 0.5 / std(x)^p_expected #ND lb = [0.0, 0.0, 1.0] ub = [5.0, 7.5, 10.0] x = sample(5, lb, ub, SobolSample()) f = x -> x[1] + x[2] * x[3] y = f.(x) my_theta = [2.0, 2.0, 2.0] my_p = [1.9, 1.9, 1.9] my_k = Kriging(x, y, lb, ub, p = my_p, theta = my_theta) add_point!(my_k, (4.0, 3.2, 9.5), 34.4) add_point!(my_k, [(1.0, 4.65, 6.4), (2.3, 5.4, 6.7)], [30.76, 38.48]) pred = my_k((3.5, 5.5, 6.5)) #test sets #WITHOUT ADD POINT x = [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0), (7.0, 8.0, 9.0)] y = [1.0, 2.0, 3.0] my_p = [1.0, 1.0, 1.0] my_theta = [2.0, 2.0, 2.0] my_k = Kriging(x, y, lb, ub, p = my_p, theta = my_theta) est = my_k((1.0, 2.0, 3.0)) std_err = std_error_at_point(my_k, (1.0, 2.0, 3.0)) #WITH ADD POINT adding singleton x = [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0), (7.0, 8.0, 9.0)] y = [1.0, 2.0, 3.0] my_p = [1.0, 1.0, 1.0] my_theta = [2.0, 2.0, 2.0] my_k = Kriging(x, y, lb, ub, p = my_p, theta = my_theta) add_point!(my_k, (10.0, 11.0, 12.0), 4.0) est = my_k((10.0, 11.0, 12.0)) std_err = std_error_at_point(my_k, (10.0, 11.0, 12.0)) @test std_err < 10^(-6) #WITH ADD POINT ADDING MORE x = [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0), (7.0, 8.0, 9.0)] y = [1.0, 2.0, 3.0] my_p = [1.0, 1.0, 1.0] my_theta = [2.0, 2.0, 2.0] my_k = Kriging(x, y, lb, ub, p = my_p, theta = my_theta) add_point!(my_k, [(10.0, 11.0, 12.0), (13.0, 14.0, 15.0)], [4.0, 5.0]) est = my_k((10.0, 11.0, 12.0)) std_err = std_error_at_point(my_k, (10.0, 11.0, 12.0)) @test std_err < 10^(-6) #test kwargs ND (hyperparameter initialization) kwarg_krig_ND = Kriging(x, y, lb, ub) # Check hyperparameter validation for ND kriging surrogate construction @test_throws ArgumentError Kriging(x, y, lb, ub, p = 3 * my_p) @test_throws ArgumentError Kriging(x, y, lb, ub, p = -my_p) @test_throws ArgumentError Kriging(x, y, lb, ub, theta = -my_theta) # Check input dimension validation for ND kriging surrogates @test_throws ArgumentError kwarg_krig_ND(1.0) @test_throws ArgumentError kwarg_krig_ND([1.0]) @test_throws ArgumentError kwarg_krig_ND([2.0, 3.0]) @test_throws ArgumentError kwarg_krig_ND(ones(5)) # Test hyperparameter initialization d = length(x[3]) p_expected = 2.0 @test all(==(p_expected), kwarg_krig_ND.p) @test all(kwarg_krig_ND.theta .≈ [0.5 / std(x_i[ℓ] for x_i in x)^p_expected for ℓ in 1:3])
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
736
using Surrogates #= #1D MOE n = 30 lb = 0.0 ub = 5.0 x = Surrogates.sample(n,lb,ub,RandomSample()) f = x-> 2*x y = f.(x) #Standard definition my_moe = MOE(x,y,lb,ub) val = my_moe(3.0) #Local surrogates redefinition my_local_kind = [InverseDistanceStructure(p = 1.0), KrigingStructure(p=1.0, theta=1.0)] my_moe = MOE(x,y,lb,ub,k = 2,local_kind = my_local_kind) #ND MOE n = 30 lb = [0.0,0.0] ub = [5.0,5.0] x = sample(n,lb,ub,LatinHypercubeSample()) f = x -> x[1]*x[2] y = f.(x) my_moe_ND = MOE(x,y,lb,ub) val = my_moe_ND((1.0,1.0)) #Local surr redefinition my_locals = [InverseDistanceStructure(p = 1.0), RandomForestStructure(num_round=1)] my_moe_redef = MOE(x,y,lb,ub,k = 2,local_kind = my_locals) =#
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
5111
using Base using Test using LinearAlgebra using Surrogates #1D lb = 0.0 ub = 4.0 x = [1.0, 2.0, 3.0] y = [4.0, 5.0, 6.0] linear = x -> norm(x) cubic = x -> x^3 λ = 2.3 multiquadr = x -> sqrt(x^2 + λ^2) q = 1 my_rad = RadialBasis(x, y, lb, ub, rad = linearRadial()) est = my_rad(3.0) @test est ≈ 6.0 add_point!(my_rad, 4.0, 10.0) est = my_rad(3.0) @test est ≈ 6.0 add_point!(my_rad, [3.2, 3.3, 3.4], [8.0, 9.0, 10.0]) est = my_rad(3.0) @test est ≈ 6.0 my_rad = RadialBasis(x, y, lb, ub, rad = cubicRadial()) q = 2 my_rad = RadialBasis(x, y, lb, ub, rad = multiquadricRadial()) # Test that input dimension is properly checked for 1D radial surrogates @test_throws ArgumentError my_rad(Float64[]) @test_throws ArgumentError my_rad((2.0, 3.0, 4.0)) #ND x = [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0), (7.0, 8.0, 9.0)] y = [4.0, 5.0, 6.0] lb = [0.0, 3.0, 6.0] ub = [4.0, 7.0, 10.0] #bounds = [[0.0, 3.0, 6.0], [4.0, 7.0, 10.0]] my_rad = RadialBasis(x, y, lb, ub) est = my_rad((1.0, 2.0, 3.0)) @test est ≈ 4.0 #WITH ADD_POINT, adding singleton x = [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0), (7.0, 8.0, 9.0)] y = [4.0, 5.0, 6.0] lb = [0.0, 3.0, 6.0] ub = [4.0, 7.0, 10.0] #bounds = [[0.0,3.0,6.0],[4.0,7.0,10.0]] my_rad = RadialBasis(x, y, lb, ub, rad = linearRadial(), scale_factor = 1.0) add_point!(my_rad, (9.0, 10.0, 11.0), 10.0) est = my_rad((1.0, 2.0, 3.0)) @test est ≈ 4.0 #WITH ADD_POINT, adding more x = [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0), (7.0, 8.0, 9.0)] y = [4.0, 5.0, 6.0] #bounds = [[0.0,3.0,6.0],[4.0,7.0,10.0]] lb = [0.0, 3.0, 6.0] ub = [4.0, 7.0, 10.0] my_rad = RadialBasis(x, y, lb, ub) add_point!(my_rad, [(9.0, 10.0, 11.0), (12.0, 13.0, 14.0)], [10.0, 11.0]) est = my_rad((1.0, 2.0, 3.0)) @test est ≈ 4.0 lb = [0.0, 0.0, 0.0] ub = [10.0, 10.0, 10.0] #bounds = [lb,ub] x = [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0), (7.0, 8.0, 9.0)] y = [4.0, 5.0, 6.0] my_rad_ND = RadialBasis(x, y, lb, ub) add_point!(my_rad_ND, (3.5, 4.5, 1.2), 18.9) add_point!(my_rad_ND, [(3.2, 1.2, 6.7), (3.4, 9.5, 7.4)], [25.72, 239.0]) my_rad_ND = RadialBasis(x, y, lb, ub, rad = cubicRadial()) my_rad_ND = RadialBasis(x, y, lb, ub, rad = multiquadricRadial()) prediction = my_rad_ND((1.0, 1.0, 1.0)) f = x -> x[1] * x[2] lb = [1.0, 2.0] ub = [10.0, 8.5] x = sample(500, lb, ub, SobolSample()) push!(x, (1.0, 2.0)) y = f.(x) my_radial_basis = RadialBasis(x, y, lb, ub, rad = linearRadial()) @test my_radial_basis((1.0, 2.0)) ≈ 2 my_radial_basis = RadialBasis(x, y, lb, ub, rad = linearRadial()) @test my_radial_basis((1.0, 2.0)) ≈ 2 f = x -> x[1] * x[2] lb = [1.0, 2.0] ub = [10.0, 8.5] x = sample(5, lb, ub, SobolSample()) push!(x, (1.0, 2.0)) y = f.(x) my_radial_basis = RadialBasis(x, y, lb, ub, rad = linearRadial()) @test my_radial_basis((1.0, 2.0)) ≈ 2 # Test that input dimension is properly checked for ND radial surrogates @test_throws ArgumentError my_radial_basis((1.0,)) @test_throws ArgumentError my_radial_basis((2.0, 3.0, 4.0)) # Multi-output f = x -> [x^2, x] lb = 1.0 ub = 10.0 x = sample(5, lb, ub, SobolSample()) push!(x, 2.0) y = f.(x) my_radial_basis = RadialBasis(x, y, lb, ub, rad = linearRadial()) my_radial_basis(2.0) @test my_radial_basis(2.0) ≈ [4, 2] f = x -> [x[1] * x[2], x[1] + x[2]^2] lb = [1.0, 2.0] ub = [10.0, 8.5] x = sample(5, lb, ub, SobolSample()) push!(x, (1.0, 2.0)) y = f.(x) my_radial_basis = RadialBasis(x, y, lb, ub, rad = linearRadial()) my_radial_basis((1.0, 2.0)) @test my_radial_basis((1.0, 2.0)) ≈ [2, 5] x_new = (2.0, 2.0) y_new = f(x_new) add_point!(my_radial_basis, x_new, y_new) @test my_radial_basis(x_new) ≈ y_new #sparse #1D lb = 0.0 ub = 4.0 x = [1.0, 2.0, 3.0] y = [4.0, 5.0, 6.0] my_rad = RadialBasis(x, y, lb, ub, rad = linearRadial(), sparse = true) #ND x = [(1.0, 2.0, 3.0), (4.0, 5.0, 6.0), (7.0, 8.0, 9.0)] y = [4.0, 5.0, 6.0] lb = [0.0, 3.0, 6.0] ub = [4.0, 7.0, 10.0] #bounds = [[0.0, 3.0, 6.0], [4.0, 7.0, 10.0]] my_rad = RadialBasis(x, y, lb, ub, sparse = true) #test to verify multiquadricRadial with default scale_factor lb = [0.0, 0.0, 0.0] ub = [3.0, 3.0, 3.0] n_samples = 100 g(x) = sqrt(x[1]^2 + x[2]^2 + x[3]^2) x = sample(n_samples, lb, ub, SobolSample()) y = g.(x) mq_rad = RadialBasis(x, y, lb, ub, rad = multiquadricRadial()) @test isapprox(mq_rad([2.0, 2.0, 1.0]), g([2.0, 2.0, 1.0]), atol = 0.0001) mq_rad = RadialBasis(x, y, lb, ub, rad = multiquadricRadial(0.9)) # different shape parameter should not be as accurate @test !isapprox(mq_rad([2.0, 2.0, 1.0]), g([2.0, 2.0, 1.0]), atol = 0.0001) # Issue 316 x = sample(1024, [-0.45, -0.4, -0.9], [0.40, 0.55, 0.35], SobolSample()) lb = [-0.45 -0.4 -0.9] ub = [0.40 0.55 0.35] function mockvalues(in) x, y, z = in p1 = reverse(vec([1.09903695e+01 -1.01500500e+01 -4.06629740e+01 -1.41834931e+01 1.00604784e+01 4.34951623e+00 -1.06519689e-01 -1.93335202e-03])) p2 = vec([2.12791877 2.12791877 4.23881665 -1.05464575]) f = evalpoly(z, p1) f += p2[1] * x^2 + p2[2] * y^2 + p2[3] * x^2 * y + p2[4] * x * y^2 f end y = mockvalues.(x) rbf = RadialBasis(x, y, lb, ub, rad = multiquadricRadial(1.788)) test = (lb .+ ub) ./ 2 @test isapprox(rbf(test), mockvalues(test), atol = 0.001)
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1221
""" Sobel-sample x+y in [0,10]x[0,10], then minimize it on Section([NaN,10.0]), and verify that the minimum is on x,y=(0,10) rather than in (0,0) """ using QuasiMonteCarlo using Surrogates using Test lb = [0.0, 0.0, 0.0] ub = [10.0, 10.0, 10.0] x = Surrogates.sample(10, lb, ub, LatinHypercubeSample()) f = x -> x[1] + x[2] + x[3] y = f.(x) f([0, 0, 0]) == 0 f_hat = Kriging(x, y, lb, ub) f_hat([0, 0, 0]) isapprox(f([0, 0, 0]), f_hat([0, 0, 0])) """ The global minimum is at (0,0) """ (xy_min, f_hat_min) = surrogate_optimize(f, DYCORS(), lb, ub, f_hat, SobolSample()) isapprox(xy_min[1], 0.0, atol = 1e-1) """ The minimum on the (0,10) section is around (0,10) """ section_sampler_z_is_10 = SectionSample([NaN64, NaN64, 10.0], Surrogates.RandomSample()) @test [3] == Surrogates.fixed_dimensions(section_sampler_z_is_10) @test [1, 2] == Surrogates.free_dimensions(section_sampler_z_is_10) Surrogates.sample(5, lb, ub, section_sampler_z_is_10) (xy_min, f_hat_min) = surrogate_optimize(f, EI(), lb, ub, f_hat, section_sampler_z_is_10, maxiters = 1000) isapprox(xy_min[1], 0.0, atol = 0.1) isapprox(xy_min[2], 0.0, atol = 0.1) isapprox(xy_min[3], 10.0, atol = 0.1)
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1031
using Surrogates #1D n = 10 lb = 0.0 ub = 10.0 x = sample(n, lb, ub, SobolSample()) f = x -> 2 * x y = f.(x) my_varfid = VariableFidelitySurrogate(x, y, lb, ub) val = my_varfid(3.0) add_point!(my_varfid, 3.0, 6.0) val = my_varfid(3.0) my_varfid_change_struct = VariableFidelitySurrogate(x, y, lb, ub, num_high_fidel = 2, low_fid_structure = InverseDistanceStructure(p = 1.0), high_fid_structure = RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false)) #ND n = 10 lb = [0.0, 0.0] ub = [5.0, 5.0] x = sample(n, lb, ub, SobolSample()) f = x -> x[1] * x[2] y = f.(x) my_varfidND = VariableFidelitySurrogate(x, y, lb, ub) val = my_varfidND((2.0, 2.0)) add_point!(my_varfidND, (3.0, 3.0), 9.0) my_varfidND_change_struct = VariableFidelitySurrogate(x, y, lb, ub, num_high_fidel = 2, low_fid_structure = InverseDistanceStructure(p = 1.0), high_fid_structure = RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false))
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
842
using Surrogates #1D x = [1.0, 2.0, 3.0] y = [3.0, 5.0, 7.0] lb = 0.0 ub = 5.0 my_wend = Wendland(x, y, lb, ub) add_point!(my_wend, 0.5, 4.0) val = my_wend(0.5) # Test that input dimension is properly checked for 1D Wendland surrogates @test_throws ArgumentError my_wend(Float64[]) @test_throws ArgumentError my_wend((2.0, 3.0, 4.0)) #ND lb = [0.0, 0.0] ub = [4.0, 4.0] x = sample(5, lb, ub, SobolSample()) f = x -> x[1] + x[2] y = f.(x) my_wend_ND = Wendland(x, y, lb, ub) est = my_wend_ND((1.0, 2.0)) add_point!(my_wend_ND, (3.0, 3.5), 4.0) add_point!(my_wend_ND, [(9.0, 10.0), (12.0, 13.0)], [10.0, 11.0]) # Test that input dimension is properly checked for ND Wendland surrogates @test_throws ArgumentError my_wend_ND(Float64[]) @test_throws ArgumentError my_wend_ND(2.0) @test_throws ArgumentError my_wend_ND((2.0, 3.0, 4.0)) #todo
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
820
using Surrogates #1D lb = 0.0 ub = 5.0 n = 20 x = sample(n, lb, ub, SobolSample()) f = x -> 2 * x + x^2 y = f.(x) my_ear1d = EarthSurrogate(x, y, lb, ub) val = my_ear1d(3.0) add_point!(my_ear1d, 6.0, 48.0) # Test that input dimension is properly checked for 1D Earth surrogates @test_throws ArgumentError my_ear1d(Float64[]) @test_throws ArgumentError my_ear1d((2.0, 3.0, 4.0)) #ND lb = [0.0, 0.0] ub = [10.0, 10.0] n = 30 x = sample(n, lb, ub, SobolSample()) f = x -> x[1] * x[2] + x[1] y = f.(x) my_earnd = EarthSurrogate(x, y, lb, ub) val = my_earnd((2.0, 2.0)) add_point!(my_earnd, (2.0, 2.0), 6.0) # Test that input dimension is properly checked for ND Earth surrogates @test_throws ArgumentError my_earnd(Float64[]) @test_throws ArgumentError my_earnd(2.0) @test_throws ArgumentError my_earnd((2.0, 3.0, 4.0))
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1888
using Surrogates using Test using QuasiMonteCarlo #1D obj = x -> sin(x) + sin(x)^2 + sin(x)^3 lb = 0.0 ub = 10.0 x = sample(5, lb, ub, HaltonSample()) y = obj.(x) p = 3.5 InverseDistance = InverseDistanceSurrogate(x, y, lb, ub, p = 2.4) InverseDistance_kwargs = InverseDistanceSurrogate(x, y, lb, ub) prediction = InverseDistance(5.0) add_point!(InverseDistance, 5.0, -0.91) add_point!(InverseDistance, [5.1, 5.2], [1.0, 2.0]) # Test that input dimension is properly checked for 1D inverse distance surrogates @test_throws ArgumentError InverseDistance(Float64[]) @test_throws ArgumentError InverseDistance((2.0, 3.0, 4.0)) #ND lb = [0.0, 0.0] ub = [10.0, 10.0] n = 100 x = sample(n, lb, ub, SobolSample()) f = x -> x[1] * x[2]^2 y = f.(x) p = 3.0 InverseDistance = InverseDistanceSurrogate(x, y, lb, ub, p = p) prediction = InverseDistance((1.0, 2.0)) add_point!(InverseDistance, (5.0, 3.4), -0.91) add_point!(InverseDistance, [(5.1, 5.2), (5.3, 6.7)], [1.0, 2.0]) # Test that input dimension is properly checked for 1D inverse distance surrogates @test_throws ArgumentError InverseDistance(Float64[]) @test_throws ArgumentError InverseDistance(2.0) @test_throws ArgumentError InverseDistance((2.0, 3.0, 4.0)) # Multi-output #98 f = x -> [x^2, x] lb = 1.0 ub = 10.0 x = sample(5, lb, ub, SobolSample()) push!(x, 2.0) y = f.(x) surrogate = InverseDistanceSurrogate(x, y, lb, ub, p = 1.2) surrogate_kwargs = InverseDistanceSurrogate(x, y, lb, ub) @test surrogate(2.0) ≈ [4, 2] f = x -> [x[1], x[2]^2] lb = [1.0, 2.0] ub = [10.0, 8.5] x = sample(20, lb, ub, SobolSample()) push!(x, (1.0, 2.0)) y = f.(x) surrogate = InverseDistanceSurrogate(x, y, lb, ub, p = 1.2) surrogate_kwargs = InverseDistanceSurrogate(x, y, lb, ub) @test surrogate((1.0, 2.0)) ≈ [1, 4] x_new = (2.0, 2.0) y_new = f(x_new) add_point!(surrogate, x_new, y_new) @test surrogate(x_new) ≈ y_new surrogate((0.0, 0.0))
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
963
using Surrogates #1D x = [1.0, 2.0, 3.0] y = [1.5, 3.5, 5.3] lb = 0.0 ub = 7.0 my_linear_surr_1D = LinearSurrogate(x, y, lb, ub) val = my_linear_surr_1D(5.0) add_point!(my_linear_surr_1D, 4.0, 7.2) add_point!(my_linear_surr_1D, [5.0, 6.0], [8.3, 9.7]) # Test that input dimension is properly checked for 1D Linear surrogates @test_throws ArgumentError my_linear_surr_1D(Float64[]) @test_throws ArgumentError my_linear_surr_1D((2.0, 3.0, 4.0)) #ND lb = [0.0, 0.0] ub = [10.0, 10.0] x = sample(5, lb, ub, SobolSample()) y = [4.0, 5.0, 6.0, 7.0, 8.0] my_linear_ND = LinearSurrogate(x, y, lb, ub) add_point!(my_linear_ND, (10.0, 11.0), 9.0) add_point!(my_linear_ND, [(8.0, 5.0), (9.0, 9.5)], [4.0, 5.0]) val = my_linear_ND((10.0, 11.0)) # Test that input dimension is properly checked for ND Linear surrogates @test_throws ArgumentError my_linear_ND(Float64[]) @test_throws ArgumentError my_linear_ND(1.0) @test_throws ArgumentError my_linear_ND((2.0, 3.0, 4.0))
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
2233
using Surrogates using LinearAlgebra using Test using QuadGK using Cubature #1D obj = x -> 3 * x + log(x) a = 1.0 b = 4.0 x = sample(2000, a, b, SobolSample()) y = obj.(x) alpha = 2.0 n = 6 my_loba = LobachevskySurrogate(x, y, a, b, alpha = 2.0, n = 6) val = my_loba(3.83) # Test that input dimension is properly checked for 1D Lobachevsky surrogates @test_throws ArgumentError my_loba(Float64[]) @test_throws ArgumentError my_loba((2.0, 3.0, 4.0)) #1D integral int_1D = lobachevsky_integral(my_loba, a, b) int = quadgk(obj, a, b) int_val_true = int[1] - int[2] @test abs(int_1D - int_val_true) < 2 * 10^-5 add_point!(my_loba, 3.7, 12.1) add_point!(my_loba, [1.23, 3.45], [5.20, 109.67]) #ND obj = x -> x[1] + log(x[2]) lb = [0.0, 0.0] ub = [8.0, 8.0] alpha = [2.4, 2.4] n = 8 x = sample(3200, lb, ub, SobolSample()) y = obj.(x) my_loba_ND = LobachevskySurrogate(x, y, lb, ub, alpha = [2.4, 2.4], n = 8) my_loba_kwargs = LobachevskySurrogate(x, y, lb, ub) pred = my_loba_ND((1.0, 2.0)) # Test that input dimension is properly checked for ND Lobachevsky surrogates @test_throws ArgumentError my_loba_ND(Float64[]) @test_throws ArgumentError my_loba_ND(1.0) @test_throws ArgumentError my_loba_ND((2.0, 3.0, 4.0)) #ND int_ND = lobachevsky_integral(my_loba_ND, lb, ub) int = hcubature(obj, lb, ub) int_val_true = int[1] - int[2] @test abs(int_ND - int_val_true) < 10^-1 add_point!(my_loba_ND, (10.0, 11.0), 4.0) add_point!(my_loba_ND, [(12.0, 15.0), (13.0, 14.0)], [4.0, 5.0]) lobachevsky_integrate_dimension(my_loba_ND, lb, ub, 2) obj = x -> x[1] + log(x[2]) + exp(x[3]) lb = [0.0, 0.0, 0.0] ub = [8.0, 8.0, 8.0] alpha = [2.4, 2.4, 2.4] x = sample(50, lb, ub, SobolSample()) y = obj.(x) n = 4 my_loba_ND = LobachevskySurrogate(x, y, lb, ub) lobachevsky_integrate_dimension(my_loba_ND, lb, ub, 2) #Sparse #1D obj = x -> 3 * x + log(x) a = 1.0 b = 4.0 x = sample(100, a, b, SobolSample()) y = obj.(x) alpha = 2.0 n = 6 my_loba = LobachevskySurrogate(x, y, a, b, alpha = 2.0, n = 6, sparse = true) #ND obj = x -> x[1] + log(x[2]) lb = [0.0, 0.0] ub = [8.0, 8.0] alpha = [2.4, 2.4] n = 8 x = sample(100, lb, ub, SobolSample()) y = obj.(x) my_loba_ND = LobachevskySurrogate(x, y, lb, ub, alpha = [2.4, 2.4], n = 8, sparse = true)
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
8891
using Surrogates using LinearAlgebra using QuasiMonteCarlo #######SRBF############ ##### 1D ##### lb = 0.0 ub = 15.0 objective_function = x -> 2 * x + 1 x = [2.5, 4.0, 6.0] y = [6.0, 9.0, 13.0] # In 1D values of p closer to 2 make the det(R) closer and closer to 0, #this does not happen in higher dimensions because p would be a vector and not #all components are generally C^inf p = 1.99 a = 2 b = 6 #Using Kriging x = [2.5, 4.0, 6.0] y = [6.0, 9.0, 13.0] my_k_SRBF1 = Kriging(x, y, lb, ub; p) xstar, fstar = surrogate_optimize(objective_function, SRBF(), a, b, my_k_SRBF1, RandomSample()) #Using RadialBasis x = [2.5, 4.0, 6.0] y = [6.0, 9.0, 13.0] my_rad_SRBF1 = RadialBasis(x, y, a, b, rad = linearRadial()) (xstar, fstar) = surrogate_optimize(objective_function, SRBF(), a, b, my_rad_SRBF1, RandomSample()) x = [2.5, 4.0, 6.0] y = [6.0, 9.0, 13.0] my_wend_1d = Wendland(x, y, lb, ub) xstar, fstar = surrogate_optimize(objective_function, SRBF(), a, b, my_wend_1d, RandomSample()) x = [2.5, 4.0, 6.0] y = [6.0, 9.0, 13.0] my_earth1d = EarthSurrogate(x, y, lb, ub) xstar, fstar = surrogate_optimize(objective_function, SRBF(), a, b, my_earth1d, HaltonSample()) ##### ND ##### objective_function_ND = z -> 3 * norm(z) + 1 lb = [1.0, 1.0] ub = [6.0, 6.0] x = sample(5, lb, ub, SobolSample()) y = objective_function_ND.(x) #Kriging my_k_SRBFN = Kriging(x, y, lb, ub) #Every optimization method now returns the y_min and its position x_min, y_min = surrogate_optimize(objective_function_ND, SRBF(), lb, ub, my_k_SRBFN, RandomSample()) #Radials lb = [1.0, 1.0] ub = [6.0, 6.0] x = sample(5, lb, ub, SobolSample()) objective_function_ND = z -> 3 * norm(z) + 1 y = objective_function_ND.(x) my_rad_SRBFN = RadialBasis(x, y, lb, ub, rad = linearRadial()) surrogate_optimize(objective_function_ND, SRBF(), lb, ub, my_rad_SRBFN, RandomSample()) # Lobachevsky x = sample(5, lb, ub, RandomSample()) y = objective_function_ND.(x) alpha = [2.0, 2.0] n = 4 my_loba_ND = LobachevskySurrogate(x, y, lb, ub) surrogate_optimize(objective_function_ND, SRBF(), lb, ub, my_loba_ND, RandomSample()) #Linear lb = [1.0, 1.0] ub = [6.0, 6.0] x = sample(500, lb, ub, SobolSample()) objective_function_ND = z -> 3 * norm(z) + 1 y = objective_function_ND.(x) my_linear_ND = LinearSurrogate(x, y, lb, ub) surrogate_optimize(objective_function_ND, SRBF(), lb, ub, my_linear_ND, SobolSample(), maxiters = 15) #= #SVM lb = [1.0,1.0] ub = [6.0,6.0] x = sample(5,lb,ub,SobolSample()) objective_function_ND = z -> 3*norm(z)+1 y = objective_function_ND.(x) my_SVM_ND = SVMSurrogate(x,y,lb,ub) surrogate_optimize(objective_function_ND,SRBF(),lb,ub,my_SVM_ND,SobolSample(),maxiters=15) =# #Inverse distance surrogate lb = [1.0, 1.0] ub = [6.0, 6.0] x = sample(5, lb, ub, SobolSample()) objective_function_ND = z -> 3 * norm(z) + 1 my_p = 2.5 y = objective_function_ND.(x) my_inverse_ND = InverseDistanceSurrogate(x, y, lb, ub, p = my_p) surrogate_optimize(objective_function_ND, SRBF(), lb, ub, my_inverse_ND, SobolSample(), maxiters = 15) #SecondOrderPolynomialSurrogate lb = [0.0, 0.0] ub = [10.0, 10.0] obj_ND = x -> log(x[1]) * exp(x[2]) x = sample(15, lb, ub, RandomSample()) y = obj_ND.(x) my_second_order_poly_ND = SecondOrderPolynomialSurrogate(x, y, lb, ub) surrogate_optimize(obj_ND, SRBF(), lb, ub, my_second_order_poly_ND, SobolSample(), maxiters = 15) ####### LCBS ######### ######1D###### objective_function = x -> 2 * x + 1 lb = 0.0 ub = 15.0 x = [2.0, 4.0, 6.0] y = [5.0, 9.0, 13.0] p = 1.8 a = 2.0 b = 6.0 my_k_LCBS1 = Kriging(x, y, lb, ub) surrogate_optimize(objective_function, LCBS(), a, b, my_k_LCBS1, RandomSample()) ##### ND ##### objective_function_ND = z -> 3 * norm(z) + 1 x = [(1.2, 3.0), (3.0, 3.5), (5.2, 5.7)] y = objective_function_ND.(x) p = [1.2, 1.2] theta = [2.0, 2.0] lb = [1.0, 1.0] ub = [6.0, 6.0] #Kriging my_k_LCBSN = Kriging(x, y, lb, ub) surrogate_optimize(objective_function_ND, LCBS(), lb, ub, my_k_LCBSN, RandomSample()) ##### EI ###### ###1D### objective_function = x -> (x + 1)^2 - x + 2# Minimum of this function is at x = -0.5, y = -2.75 true_min_x = -0.5 true_min_y = objective_function(true_min_x) lb = -5 ub = 5 x = sample(5, lb, ub, SobolSample()) y = objective_function.(x) my_k_EI1 = Kriging(x, y, lb, ub; p = 2) surrogate_optimize(objective_function, EI(), lb, ub, my_k_EI1, SobolSample(), maxiters = 200, num_new_samples = 155) # Check that EI is correctly minimizing the objective y_min, index_min = findmin(my_k_EI1.y) x_min = my_k_EI1.x[index_min] @test norm(x_min - true_min_x) < 0.05 * norm(ub .- lb) @test abs(y_min - true_min_y) < 0.05 * (objective_function(ub) - objective_function(lb)) ###ND### objective_function_ND = z -> 3 * norm(z) + 1 # this is minimized at x = (0, 0), y = 1 true_min_x = (0.0, 0.0) true_min_y = objective_function_ND(true_min_x) x = [(1.2, 3.0), (3.0, 3.5), (5.2, 5.7)] y = objective_function_ND.(x) min_y = minimum(y) p = [1.2, 1.2] theta = [2.0, 2.0] lb = [-1.0, -1.0] ub = [6.0, 6.0] #Kriging my_k_EIN = Kriging(x, y, lb, ub) surrogate_optimize(objective_function_ND, EI(), lb, ub, my_k_EIN, SobolSample()) # Check that EI is correctly minimizing instead of maximizing y_min, index_min = findmin(my_k_EIN.y) x_min = my_k_EIN.x[index_min] @test norm(x_min .- true_min_x) < 0.05 * norm(ub .- lb) @test abs(y_min - true_min_y) < 0.05 * (objective_function_ND(ub) - objective_function_ND(lb)) ###ND with SectionSampler### # We will make sure the EI function finds the minimum when constrained to a specific slice of 3D space objective_function_section = x -> x[1]^2 + x[2]^2 + x[3]^2 # this is minimized at x = (0, 0, 0), y = 0 # We will constrain x[2] to some value x2_constraint = 2.0 true_min_x = (0.0, x2_constraint, 0.0) true_min_y = objective_function_section(true_min_x) sampler = SectionSample([NaN64, x2_constraint, NaN64], SobolSample()) lb = [-1.0, x2_constraint, -1.0] ub = [6.0, x2_constraint, 6.0] x = sample(5, lb, ub, sampler) y = objective_function_section.(x) #Kriging my_k_EIN_section = Kriging(x, y, lb, ub) # Constrain our sampling to the plane where x[2] = 1 surrogate_optimize(objective_function_section, EI(), lb, ub, my_k_EIN_section, sampler) # Check that EI is correctly minimizing instead of maximizing y_min, index_min = findmin(my_k_EIN_section.y) x_min = my_k_EIN_section.x[index_min] @test norm(x_min .- true_min_x) < 0.05 * norm(ub .- lb) @test abs(y_min - true_min_y) < 0.05 * (objective_function_section(ub) - objective_function_section(lb)) ## DYCORS ## #1D# objective_function = x -> 3 * x + 1 x = [2.1, 2.5, 4.0, 6.0] y = objective_function.(x) p = 1.9 lb = 2.0 ub = 6.0 my_k_DYCORS1 = Kriging(x, y, lb, ub, p = 1.9) surrogate_optimize(objective_function, DYCORS(), lb, ub, my_k_DYCORS1, RandomSample()) my_rad_DYCORS1 = RadialBasis(x, y, lb, ub, rad = linearRadial()) surrogate_optimize(objective_function, DYCORS(), lb, ub, my_rad_DYCORS1, RandomSample()) #ND# objective_function_ND = z -> 2 * norm(z) + 1 x = [(2.3, 2.2), (1.4, 1.5)] y = objective_function_ND.(x) p = [1.5, 1.5] theta = [2.0, 2.0] lb = [1.0, 1.0] ub = [6.0, 6.0] my_k_DYCORSN = Kriging(x, y, lb, ub) surrogate_optimize(objective_function_ND, DYCORS(), lb, ub, my_k_DYCORSN, RandomSample(), maxiters = 30) my_rad_DYCORSN = RadialBasis(x, y, lb, ub, rad = linearRadial()) surrogate_optimize(objective_function_ND, DYCORS(), lb, ub, my_rad_DYCORSN, RandomSample(), maxiters = 30) my_wend_ND = Wendland(x, y, lb, ub) surrogate_optimize(objective_function_ND, DYCORS(), lb, ub, my_wend_ND, RandomSample(), maxiters = 30) ### SOP ### # 1D objective_function = x -> 3 * x + 1 x = sample(20, 1.0, 6.0, SobolSample()) y = objective_function.(x) p = 1.9 lb = 1.0 ub = 6.0 num_centers = 2 my_k_SOP1 = Kriging(x, y, lb, ub, p = 1.9) surrogate_optimize(objective_function, SOP(num_centers), lb, ub, my_k_SOP1, SobolSample(), maxiters = 60) #ND objective_function_ND = z -> 2 * norm(z) + 1 x = [(2.3, 2.2), (1.4, 1.5)] y = objective_function_ND.(x) p = [1.5, 1.5] theta = [2.0, 2.0] lb = [1.0, 1.0] ub = [6.0, 6.0] my_k_SOPND = Kriging(x, y, lb, ub) num_centers = 2 surrogate_optimize(objective_function_ND, SOP(num_centers), lb, ub, my_k_SOPND, SobolSample(), maxiters = 20) #multi optimization #= f = x -> [x^2, x] lb = 1.0 ub = 10.0 x = sample(100, lb, ub, SobolSample()) y = f.(x) my_radial_basis_smb = RadialBasis(x, y, lb, ub, rad = linearRadial()) surrogate_optimize(f,SMB(),lb,ub,my_radial_basis_ego,SobolSample()) f = x -> [x^2, x] lb = 1.0 ub = 10.0 x = sample(100, lb, ub, SobolSample()) y = f.(x) my_radial_basis_rtea = RadialBasis(x, y, lb, ub, rad = linearRadial()) Z = 0.8 #percentage K = 2 #number of revaluations p_cross = 0.5 #crossing vs copy n_c = 1.0 # hyperparameter for children creation sigma = 1.5 # mutation surrogate_optimize(f,RTEA(Z,K,p_cross,n_c,sigma),lb,ub,my_radial_basis_rtea,SobolSample()) =#
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
1507
using Surrogates using Test using Revise #1D lb = 0.0 ub = 10.0 f = x -> log(x) * exp(x) x = sample(5, lb, ub, SobolSample()) y = f.(x) # Test lengths of new_x and EI (1D) # TODO my_k = Kriging(x, y, lb, ub) new_x, eis = potential_optimal_points(EI(), MeanConstantLiar(), lb, ub, my_k, SobolSample(), 3) @test length(new_x) == 3 @test length(eis) == 3 # Test lengths of new_x and SRBF (1D) my_surr = RadialBasis(x, y, lb, ub) new_x, eis = potential_optimal_points(SRBF(), MeanConstantLiar(), lb, ub, my_surr, SobolSample(), 3) @test length(new_x) == 3 @test length(eis) == 3 # Test lengths of new_x and EI (ND) lb = [0.0, 0.0, 1.0] ub = [5.0, 7.5, 10.0] x = sample(5, lb, ub, SobolSample()) f = x -> x[1] + x[2] * x[3] y = f.(x) my_k = Kriging(x, y, lb, ub) new_x, eis = potential_optimal_points(EI(), MeanConstantLiar(), lb, ub, my_k, SobolSample(), 5) @test length(new_x) == 5 @test length(eis) == 5 @test length(new_x[1]) == 3 # Test lengths of new_x and SRBF (ND) my_surr = RadialBasis(x, y, lb, ub) new_x, eis = potential_optimal_points(SRBF(), MeanConstantLiar(), lb, ub, my_surr, SobolSample(), 5) @test length(new_x) == 5 @test length(eis) == 5 @test length(new_x[1]) == 3 # # Check hyperparameter validation for potential_optimal_points @test_throws ArgumentError new_x, eis=potential_optimal_points(EI(), MeanConstantLiar(), lb, ub, my_k, SobolSample(), -1)
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
388
using Surrogates, Aqua @testset "Aqua" begin Aqua.find_persistent_tasks_deps(Surrogates) Aqua.test_ambiguities(Surrogates, recursive = false) Aqua.test_deps_compat(Surrogates) Aqua.test_piracies(Surrogates) Aqua.test_project_extras(Surrogates) Aqua.test_stale_deps(Surrogates) Aqua.test_unbound_args(Surrogates) Aqua.test_undefined_exports(Surrogates) end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
2196
using Surrogates using Test using SafeTestsets using Pkg function dev_subpkg(subpkg) subpkg_path = joinpath(dirname(@__DIR__), "lib", subpkg) Pkg.develop(PackageSpec(path = subpkg_path)) end @testset "Surrogates" begin @safetestset "Quality Assurance" begin include("qa.jl") end @testset "Libs" begin @testset "$pkg" for pkg in [ "SurrogatesAbstractGPs", "SurrogatesFlux", "SurrogatesPolyChaos", "SurrogatesMOE", "SurrogatesRandomForest", "SurrogatesSVM"] @time begin dev_subpkg(pkg) Pkg.test(pkg) end end end @testset "Algorithms" begin @time @safetestset "GEKPLS" begin include("GEKPLS.jl") end @time @safetestset "Radials" begin include("Radials.jl") end @time @safetestset "Kriging" begin include("Kriging.jl") end @time @safetestset "Sampling" begin include("sampling.jl") end @time @safetestset "Optimization" begin include("optimization.jl") end @time @safetestset "LinearSurrogate" begin include("linearSurrogate.jl") end @time @safetestset "Lobachevsky" begin include("lobachevsky.jl") end @time @safetestset "InverseDistanceSurrogate" begin include("inverseDistanceSurrogate.jl") end @time @safetestset "SecondOrderPolynomialSurrogate" begin include("secondOrderPolynomialSurrogate.jl") end # @time @safetestset "AD_Compatibility" begin include("AD_compatibility.jl") end @time @safetestset "Wendland" begin include("Wendland.jl") end @time @safetestset "VariableFidelity" begin include("VariableFidelity.jl") end @time @safetestset "Earth" begin include("earth.jl") end @time @safetestset "Gradient Enhanced Kriging" begin include("GEK.jl") end @time @safetestset "Section Samplers" begin include("SectionSampleTests.jl") end end end
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
3857
using Surrogates using QuasiMonteCarlo using QuasiMonteCarlo: KroneckerSample, GoldenSample using Distributions: Cauchy, Normal using Test #1D lb = 0.0 ub = 5.0 n = 5 d = 1 ## Sampling methods from QuasiMonteCarlo.jl ## # GridSample s = Surrogates.sample(n, lb, ub, GridSample()) @test s isa Vector{Float64} && length(s) == n && all(x -> lb ≤ x ≤ ub, s) # RandomSample s = Surrogates.sample(n, lb, ub, RandomSample()) @test s isa Vector{Float64} && length(s) == n && all(x -> lb ≤ x ≤ ub, s) # SobolSample s = Surrogates.sample(n, lb, ub, SobolSample()) @test s isa Vector{Float64} && length(s) == n && all(x -> lb ≤ x ≤ ub, s) # LatinHypercubeSample s = Surrogates.sample(n, lb, ub, LatinHypercubeSample()) @test s isa Vector{Float64} && length(s) == n && all(x -> lb ≤ x ≤ ub, s) # LowDiscrepancySample s = Surrogates.sample(20, lb, ub, HaltonSample()) @test s isa Vector{Float64} && length(s) == 20 && all(x -> lb ≤ x ≤ ub, s) # LatticeRuleSample (not originally in Surrogates.jl, now available through QuasiMonteCarlo.jl) s = Surrogates.sample(20, lb, ub, LatticeRuleSample()) @test s isa Vector{Float64} && length(s) == 20 && all(x -> lb ≤ x ≤ ub, s) # Distribution sampling (Cauchy) s = Surrogates.sample(n, d, Cauchy()) @test s isa Vector{Float64} && length(s) == n # Distributions sampling (Normal) s = Surrogates.sample(n, d, Normal(0, 4)) @test s isa Vector{Float64} && length(s) == n ## Sampling methods specific to Surrogates.jl ## # KroneckerSample s = Surrogates.sample(n, lb, ub, KroneckerSample([sqrt(2)], NoRand())) @test s isa Vector{Float64} && length(s) == n && all(x -> lb ≤ x ≤ ub, s) # GoldenSample s = Surrogates.sample(n, lb, ub, GoldenSample()) @test s isa Vector{Float64} && length(s) == n && all(x -> lb ≤ x ≤ ub, s) # SectionSample constrained_val = 1.0 s = Surrogates.sample(n, lb, ub, SectionSample([NaN64], RandomSample())) @test s isa Vector{Float64} && length(s) == n && all(x -> lb ≤ x ≤ ub, s) s = Surrogates.sample(n, lb, ub, SectionSample([constrained_val], RandomSample())) @test s isa Vector{Float64} && length(s) == n && all(x -> lb ≤ x ≤ ub, s) @test all(==(constrained_val), s) # ND # Now that we use QuasiMonteCarlo.jl, these tests are to make sure that we transform the output # from a Matrix to a Vector of Tuples properly for ND problems. lb = [0.1, -0.5] ub = [1.0, 20.0] n = 5 d = 2 #GridSample{T} s = Surrogates.sample(n, lb, ub, GridSample()) @test isa(s, Array{Tuple{typeof(s[1][1]), typeof(s[1][1])}, 1}) == true #RandomSample() s = Surrogates.sample(n, lb, ub, RandomSample()) @test isa(s, Array{Tuple{typeof(s[1][1]), typeof(s[1][1])}, 1}) == true #SobolSample() s = Surrogates.sample(n, lb, ub, SobolSample()) @test isa(s, Array{Tuple{typeof(s[1][1]), typeof(s[1][1])}, 1}) == true #LHS s = Surrogates.sample(n, lb, ub, LatinHypercubeSample()) @test isa(s, Array{Tuple{typeof(s[1][1]), typeof(s[1][1])}, 1}) == true #LDS s = Surrogates.sample(n, lb, ub, HaltonSample()) @test isa(s, Array{Tuple{typeof(s[1][1]), typeof(s[1][1])}, 1}) == true #Distribution 1 s = Surrogates.sample(n, d, Cauchy()) @test isa(s, Array{Tuple{typeof(s[1][1]), typeof(s[1][1])}, 1}) == true #Distribution 2 s = Surrogates.sample(n, d, Normal(3, 5)) @test isa(s, Array{Tuple{typeof(s[1][1]), typeof(s[1][1])}, 1}) == true #Kronecker s = Surrogates.sample(n, lb, ub, KroneckerSample([sqrt(2), 3.1415], NoRand())) @test isa(s, Array{Tuple{typeof(s[1][1]), typeof(s[1][1])}, 1}) == true #Golden s = Surrogates.sample(n, lb, ub, GoldenSample()) @test isa(s, Array{Tuple{typeof(s[1][1]), typeof(s[1][1])}, 1}) == true # SectionSample constrained_val = 1.0 s = Surrogates.sample(n, lb, ub, SectionSample([NaN64, constrained_val], RandomSample())) @test all(x -> x[end] == constrained_val, s) @test isa(s, Array{Tuple{typeof(s[1][1]), typeof(s[1][1])}, 1}) == true @test all(x -> lb[1] ≤ x[1] ≤ ub[1], s)
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
code
2293
using Surrogates using Test #1D lb = 0.0 ub = 5.0 obj_1D = x -> log(x) * exp(x) x = sample(5, lb, ub, SobolSample()) y = obj_1D.(x) my_second_order_poly = SecondOrderPolynomialSurrogate(x, y, lb, ub) val = my_second_order_poly(5.0) add_point!(my_second_order_poly, 5.0, 238.86) add_point!(my_second_order_poly, [6.0, 7.0], [722.84, 2133.94]) # Test that input dimension is properly checked for 1D SecondOrderPolynomial surrogates @test_throws ArgumentError my_second_order_poly(Float64[]) @test_throws ArgumentError my_second_order_poly((2.0, 3.0, 4.0)) #ND lb = [0.0, 0.0] ub = [10.0, 10.0] obj_ND = x -> log(x[1]) * exp(x[2]) x = sample(10, lb, ub, RandomSample()) y = obj_ND.(x) my_second_order_poly = SecondOrderPolynomialSurrogate(x, y, lb, ub) val = my_second_order_poly((5.0, 7.0)) add_point!(my_second_order_poly, (5.0, 7.0), 1764.96) add_point!(my_second_order_poly, [(1.5, 1.5), (3.4, 5.4)], [1.817, 270.95]) # Test that input dimension is properly checked for ND SecondOrderPolynomial surrogates @test_throws ArgumentError my_second_order_poly(Float64[]) @test_throws ArgumentError my_second_order_poly(2.0) @test_throws ArgumentError my_second_order_poly((2.0, 3.0, 4.0)) # Multi-output #98 f = x -> [x^2, x] lb = 1.0 ub = 10.0 x = sample(5, lb, ub, SobolSample()) push!(x, 2.0) y = f.(x) surrogate = SecondOrderPolynomialSurrogate(x, y, lb, ub) # should be exact @test surrogate.β ≈ [0 0; 0 1; 1 0] @test surrogate(2.0) ≈ [4, 2] @test surrogate(1.0) ≈ [1, 1] f = x -> [x[1], x[2]^2] lb = [1.0, 2.0] ub = [10.0, 8.5] x = sample(20, lb, ub, SobolSample()) push!(x, (1.0, 2.0)) y = f.(x) surrogate = SecondOrderPolynomialSurrogate(x, y, lb, ub) @test surrogate.β ≈ [0 0; 1 0; 0 0; 0 0; 0 0; 0 1] @test surrogate((1.0, 2.0)) ≈ [1, 4] x_new = (2.0, 2.0) y_new = f(x_new) @test surrogate(x_new) ≈ y_new add_point!(surrogate, x_new, y_new) @test surrogate(x_new) ≈ y_new # surrogate should recover 2nd order polynomial function second_order_target(x; a = 0.3, b = [0.7, 0.1], c = [0.3 0.4; 0.4 0.1]) a + b' * x + x' * c * x end second_order_target(x::Tuple; kwargs...) = f([x...]; kwargs...) lb = fill(-5.0, 2); ub = fill(5.0, 2); n = 10^3; x = sample(n, lb, ub, SobolSample()) y = second_order_target.(x) sec = SecondOrderPolynomialSurrogate(x, y, lb, ub) @test y ≈ sec.(x)
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
700
# Contributing 1. Fork the repository on github. (Click the `Fork` button in the top-right corner) 2. Clone the repository you have just forked. `git clone https://github.com/YOUR_USERNAME/Surrogates.jl.git` 3. `cd Surrogates.jl` Enter the repository's directory. 4. `julia` Open the Julia REPL. 5. `]` Enter package mode 6. Activate the local environment `activate .` 7. Install the dependencies. `instantiate` 8. Perform your edits (Atom with Juno, or VSCode with the Julia plugin are good editor choices) 9. Stage, Commit, and Push your changes 10. [Open a Pull Request](https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request-from-a-fork)
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
2493
## Surrogates.jl [![Join the chat at https://julialang.zulipchat.com #sciml-bridged](https://img.shields.io/static/v1?label=Zulip&message=chat&color=9558b2&labelColor=389826)](https://julialang.zulipchat.com/#narrow/stream/279055-sciml-bridged) [![Global Docs](https://img.shields.io/badge/docs-SciML-blue.svg)](https://docs.sciml.ai/Surrogates/stable/) [![codecov](https://codecov.io/gh/SciML/Surrogates.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/SciML/Surrogates.jl) [![Build Status](https://github.com/SciML/Surrogates.jl/workflows/CI/badge.svg)](https://github.com/SciML/Surrogates.jl/actions?query=workflow%3ACI) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor%27s%20Guide-blueviolet)](https://github.com/SciML/ColPrac) [![SciML Code Style](https://img.shields.io/static/v1?label=code%20style&message=SciML&color=9558b2&labelColor=389826)](https://github.com/SciML/SciMLStyle) A surrogate model is an approximation method that mimics the behavior of a computationally expensive simulation. In more mathematical terms: suppose we are attempting to optimize a function `f(p)`, but each calculation of `f` is very expensive. It may be the case we need to solve a PDE for each point or use advanced numerical linear algebra machinery, which is usually costly. The idea is then to develop a surrogate model `g` which approximates `f` by training on previous data collected from evaluations of `f`. The construction of a surrogate model can be seen as a three-step process: 1. Sample selection 2. Construction of the surrogate model 3. Surrogate optimization Sampling can be done through [QuasiMonteCarlo.jl](https://github.com/SciML/QuasiMonteCarlo.jl), all the functions available there can be used in Surrogates.jl. ## ALL the currently available surrogate models: - Kriging - Kriging using Stheno - Radial Basis - Wendland - Linear - Second Order Polynomial - Support Vector Machines (Wait for LIBSVM resolution) - Neural Networks - Random Forests - Lobachevsky - Inverse-distance - Polynomial expansions - Variable fidelity - Mixture of experts (Waiting GaussianMixtures package to work on v1.5) - Earth - Gradient Enhanced Kriging ## ALL the currently available optimization methods: - SRBF - LCBS - DYCORS - EI - SOP - Multi-optimization: SMB and RTEA ## Installing Surrogates package ```julia using Pkg Pkg.add("Surrogates") ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
2749
# Branin Function The Branin function is commonly used as a test function for metamodelling in computer experiments, especially in the context of optimization. The expression of the Branin Function is given as: ``f(x) = (x_2 - \frac{5.1}{4\pi^2}x_1^{2} + \frac{5}{\pi}x_1 - 6)^2 + 10(1-\frac{1}{8\pi})\cos(x_1) + 10`` where ``x = (x_1, x_2)`` with ``-5\leq x_1 \leq 10, 0 \leq x_2 \leq 15`` First of all, we will import these two packages: `Surrogates` and `Plots`. ```@example BraninFunction using Surrogates using Plots default() ``` Now, let's define our objective function: ```@example BraninFunction function branin(x) x1 = x[1] x2 = x[2] b = 5.1 / (4 * pi^2) c = 5 / pi r = 6 a = 1 s = 10 t = 1 / (8 * pi) term1 = a * (x2 - b * x1^2 + c * x1 - r)^2 term2 = s * (1 - t) * cos(x1) y = term1 + term2 + s end ``` Now, let's plot it: ```@example BraninFunction n_samples = 80 lower_bound = [-5, 0] upper_bound = [10, 15] xys = sample(n_samples, lower_bound, upper_bound, SobolSample()) zs = branin.(xys); x, y = -5.00:10.00, 0.00:15.00 p1 = surface(x, y, (x1, x2) -> branin((x1, x2))) xs = [xy[1] for xy in xys] ys = [xy[2] for xy in xys] scatter!(xs, ys, zs) p2 = contour(x, y, (x1, x2) -> branin((x1, x2))) scatter!(xs, ys) plot(p1, p2, title = "True function") ``` Now it's time to try fitting different surrogates, and then we will plot them. We will have a look at the radial basis surrogate `Radial Basis Surrogate`. : ```@example BraninFunction radial_surrogate = RadialBasis(xys, zs, lower_bound, upper_bound) ``` ```@example BraninFunction p1 = surface(x, y, (x, y) -> radial_surrogate([x y])) scatter!(xs, ys, zs, marker_z = zs) p2 = contour(x, y, (x, y) -> radial_surrogate([x y])) scatter!(xs, ys, marker_z = zs) plot(p1, p2, title = "Radial Surrogate") ``` Now, we will have a look at `Inverse Distance Surrogate`: ```@example BraninFunction InverseDistance = InverseDistanceSurrogate(xys, zs, lower_bound, upper_bound) ``` ```@example BraninFunction p1 = surface(x, y, (x, y) -> InverseDistance([x y])) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> InverseDistance([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2, title = "Inverse Distance Surrogate") # hide ``` Now, let's talk about `Lobachevsky Surrogate`: ```@example BraninFunction Lobachevsky = LobachevskySurrogate( xys, zs, lower_bound, upper_bound, alpha = [2.8, 2.8], n = 8) ``` ```@example BraninFunction p1 = surface(x, y, (x, y) -> Lobachevsky([x y])) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> Lobachevsky([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2, title = "Lobachevsky Surrogate") # hide ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1857
# Branin Function The Branin Function is commonly used as a test function for metamodelling in computer experiments, especially in the context of optimization. # Modifications for Improved Branin Function: To enhance the Branin function, changes were made to introduce irregularities, variability, and a dynamic aspect to its landscape. Here's an example: ```@example improved_branin function improved_branin(x, time_step) x1 = x[1] x2 = x[2] b = 5.1 / (4 * pi^2) c = 5 / pi r = 6 a = 1 s = 10 t = 1 / (8 * pi) # Adding noise to the function's output noise = randn() * time_step # Simulating time-varying noise term1 = a * (x2 - b * x1^2 + c * x1 - r)^2 term2 = s * (1 - t) * cos(x1 + noise) # Introducing dynamic component y = term1 + term2 + s end ``` This improved function now incorporates irregularities, variability, and a dynamic aspect. These changes aim to make the optimization landscape more challenging and realistic. # Using the Improved Branin Function: After defining the improved Branin function, you can proceed to test different surrogates and visualize their performance using the updated function. Here's an example of using the improved function with the Radial Basis surrogate: ```@example improved_branin using Surrogates, Plots n_samples = 80 lower_bound = [-5, 0] upper_bound = [10, 15] xys = sample(n_samples, lower_bound, upper_bound, SobolSample()) zs = [improved_branin(xy, 0.1) for xy in xys] radial_surrogate = RadialBasis(xys, zs, lower_bound, upper_bound) x, y = -5.00:10.00, 0.00:15.00 xs = [xy[1] for xy in xys] ys = [xy[2] for xy in xys] p1 = surface(x, y, (x, y) -> radial_surrogate([x, y])) scatter!(xs, ys, marker_z = zs) p2 = contour(x, y, (x, y) -> radial_surrogate([x, y])) scatter!(xs, ys, marker_z = zs) plot(p1, p2, title = "Radial Surrogate") ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
5380
The **Inverse Distance Surrogate** is an interpolating method, and in this method, the unknown points are calculated with a weighted average of the sampling points. This model uses the inverse distance between the unknown and training points to predict the unknown point. We do not need to fit this model because the response of an unknown point x is computed with respect to the distance between x and the training points. Let's optimize the following function to use Inverse Distance Surrogate: $f(x) = sin(x) + sin(x)^2 + sin(x)^3$. First of all, we have to import these two packages: `Surrogates` and `Plots`. ```@example Inverse_Distance1D using Surrogates using Plots default() ``` ### Sampling We choose to sample f in 25 points between 0 and 10 using the `sample` function. The sampling points are chosen using a Low Discrepancy, this can be done by passing `HaltonSample()` to the `sample` function. ```@example Inverse_Distance1D f(x) = sin(x) + sin(x)^2 + sin(x)^3 n_samples = 25 lower_bound = 0.0 upper_bound = 10.0 x = sample(n_samples, lower_bound, upper_bound, HaltonSample()) y = f.(x) scatter(x, y, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) ``` ## Building a Surrogate ```@example Inverse_Distance1D InverseDistance = InverseDistanceSurrogate(x, y, lower_bound, upper_bound) add_point!(InverseDistance, 5.0, f(5.0)) add_point!(InverseDistance, [5.1, 5.2], [f(5.1), f(5.2)]) prediction = InverseDistance(5.0) ``` Now, we will simply plot `InverseDistance`: ```@example Inverse_Distance1D plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) plot!(InverseDistance, label = "Surrogate function", xlims = (lower_bound, upper_bound), legend = :top) ``` ## Optimizing Having built a surrogate, we can now use it to search for minima in our original function `f`. To optimize using our surrogate we call `surrogate_optimize` method. We choose to use Stochastic RBF as the optimization technique and again Sobol sampling as the sampling technique. ```@example Inverse_Distance1D @show surrogate_optimize( f, SRBF(), lower_bound, upper_bound, InverseDistance, SobolSample()) scatter(x, y, label = "Sampled points", legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) plot!(InverseDistance, label = "Surrogate function", xlims = (lower_bound, upper_bound), legend = :top) ``` ## Inverse Distance Surrogate Tutorial (ND): First of all we will define the `Schaffer` function we are going to build a surrogate for. Notice, how its argument is a vector of numbers, one for each coordinate, and its output is a scalar. ```@example Inverse_DistanceND using Plots # hide default(c = :matter, legend = false, xlabel = "x", ylabel = "y") # hide using Surrogates # hide function schaffer(x) x1 = x[1] x2 = x[2] fact1 = (sin(x1^2 - x2^2))^2 - 0.5 fact2 = (1 + 0.001 * (x1^2 + x2^2))^2 y = 0.5 + fact1 / fact2 end ``` ### Sampling Let's define our bounds, this time we are working in two dimensions. In particular we want our first dimension `x` to have bounds `-5, 10`, and `0, 15` for the second dimension. We are taking 60 samples of the space using Sobol Sequences. We then evaluate our function on all the sampling points. ```@example Inverse_DistanceND n_samples = 60 lower_bound = [-5.0, 0.0] upper_bound = [10.0, 15.0] xys = sample(n_samples, lower_bound, upper_bound, SobolSample()) zs = schaffer.(xys); ``` ```@example Inverse_DistanceND x, y = -5:10, 0:15 # hide p1 = surface(x, y, (x1, x2) -> schaffer((x1, x2))) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide scatter!(xs, ys, zs) # hide p2 = contour(x, y, (x1, x2) -> schaffer((x1, x2))) # hide scatter!(xs, ys) # hide plot(p1, p2, title = "True function") # hide ``` ### Building a surrogate Using the sampled points we build the surrogate, the steps are analogous to the 1-dimensional case. ```@example Inverse_DistanceND InverseDistance = InverseDistanceSurrogate(xys, zs, lower_bound, upper_bound) ``` ```@example Inverse_DistanceND p1 = surface(x, y, (x, y) -> InverseDistance([x y])) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> InverseDistance([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2, title = "Surrogate") # hide ``` ### Optimizing With our surrogate, we can now search for the minima of the function. Notice how the new sampled points, which were created during the optimization process, are appended to the `xys` array. This is why its size changes. ```@example Inverse_DistanceND size(xys) ``` ```@example Inverse_DistanceND surrogate_optimize(schaffer, SRBF(), lower_bound, upper_bound, InverseDistance, SobolSample(), maxiters = 10) ``` ```@example Inverse_DistanceND size(xys) ``` ```@example Inverse_DistanceND p1 = surface(x, y, (x, y) -> InverseDistance([x y])) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide zs = schaffer.(xys) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> InverseDistance([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2) # hide ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
5073
## Linear Surrogate Linear Surrogate is a linear approach to modeling the relationship between a scalar response or dependent variable and one or more explanatory variables. We will use Linear Surrogate to optimize following function: $f(x) = \sin(x) + \log(x)$ First of all we have to import these two packages: `Surrogates` and `Plots`. ```@example linear_surrogate1D using Surrogates using Plots default() ``` ### Sampling We choose to sample f in 20 points between 0 and 10 using the `sample` function. The sampling points are chosen using a Sobol sequence, this can be done by passing `SobolSample()` to the `sample` function. ```@example linear_surrogate1D f(x) = sin(x) + log(x) n_samples = 20 lower_bound = 5.2 upper_bound = 12.5 x = sample(n_samples, lower_bound, upper_bound, SobolSample()) y = f.(x) scatter(x, y, label = "Sampled points", xlims = (lower_bound, upper_bound)) plot!(f, label = "True function", xlims = (lower_bound, upper_bound)) ``` ## Building a Surrogate With our sampled points, we can build the **Linear Surrogate** using the `LinearSurrogate` function. We can simply calculate `linear_surrogate` for any value. ```@example linear_surrogate1D my_linear_surr_1D = LinearSurrogate(x, y, lower_bound, upper_bound) add_point!(my_linear_surr_1D, 4.0, 7.2) add_point!(my_linear_surr_1D, [5.0, 6.0], [8.3, 9.7]) val = my_linear_surr_1D(5.0) ``` Now, we will simply plot `linear_surrogate`: ```@example linear_surrogate1D plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lower_bound, upper_bound)) plot!(f, label = "True function", xlims = (lower_bound, upper_bound)) plot!(my_linear_surr_1D, label = "Surrogate function", xlims = (lower_bound, upper_bound)) ``` ## Optimizing Having built a surrogate, we can now use it to search for minima in our original function `f`. To optimize using our surrogate we call `surrogate_optimize` method. We choose to use Stochastic RBF as the optimization technique and again Sobol sampling as the sampling technique. ```@example linear_surrogate1D @show surrogate_optimize( f, SRBF(), lower_bound, upper_bound, my_linear_surr_1D, SobolSample()) scatter(x, y, label = "Sampled points") plot!(f, label = "True function", xlims = (lower_bound, upper_bound)) plot!(my_linear_surr_1D, label = "Surrogate function", xlims = (lower_bound, upper_bound)) ``` ## Linear Surrogate tutorial (ND) First of all we will define the `Egg Holder` function we are going to build a surrogate for. Notice, one how its argument is a vector of numbers, one for each coordinate, and its output is a scalar. ```@example linear_surrogateND using Plots # hide default(c = :matter, legend = false, xlabel = "x", ylabel = "y") # hide using Surrogates # hide function egg(x) x1 = x[1] x2 = x[2] term1 = -(x2 + 47) * sin(sqrt(abs(x2 + x1 / 2 + 47))) term2 = -x1 * sin(sqrt(abs(x1 - (x2 + 47)))) y = term1 + term2 end ``` ### Sampling Let's define our bounds, this time we are working in two dimensions. In particular we want our first dimension `x` to have bounds `-10, 5`, and `0, 15` for the second dimension. We are taking 50 samples of the space using Sobol Sequences. We then evaluate our function on all of the sampling points. ```@example linear_surrogateND n_samples = 50 lower_bound = [-10.0, 0.0] upper_bound = [5.0, 15.0] xys = sample(n_samples, lower_bound, upper_bound, SobolSample()) zs = egg.(xys); ``` ```@example linear_surrogateND x, y = -10:5, 0:15 # hide p1 = surface(x, y, (x1, x2) -> egg((x1, x2))) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide scatter!(xs, ys, zs) # hide p2 = contour(x, y, (x1, x2) -> egg((x1, x2))) # hide scatter!(xs, ys) # hide plot(p1, p2, title = "True function") # hide ``` ### Building a surrogate Using the sampled points, we build the surrogate, the steps are analogous to the 1-dimensional case. ```@example linear_surrogateND my_linear_ND = LinearSurrogate(xys, zs, lower_bound, upper_bound) ``` ```@example linear_surrogateND p1 = surface(x, y, (x, y) -> my_linear_ND([x y])) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> my_linear_ND([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2, title = "Surrogate") # hide ``` ### Optimizing With our surrogate, we can now search for the minima of the function. Notice how the new sampled points, which were created during the optimization process, are appended to the `xys` array. This is why its size changes. ```@example linear_surrogateND size(xys) ``` ```@example linear_surrogateND surrogate_optimize( egg, SRBF(), lower_bound, upper_bound, my_linear_ND, SobolSample(), maxiters = 10) ``` ```@example linear_surrogateND size(xys) ``` ```@example linear_surrogateND p1 = surface(x, y, (x, y) -> my_linear_ND([x y])) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide zs = egg.(xys) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> my_linear_ND([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2) # hide ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
2757
## Salustowicz Benchmark Function The true underlying function HyGP had to approximate is the 1D Salustowicz function. The function can be evaluated in the given domain: ``x \in [0, 10]``. The Salustowicz benchmark function is as follows: ``f(x) = e^{-x} x^3 \cos(x) \sin(x) (\cos(x) \sin^2(x) - 1)`` Let's import these two packages `Surrogates` and `Plots`: ```@example salustowicz1D using Surrogates using Plots default() ``` Now, let's define our objective function: ```@example salustowicz1D function salustowicz(x) term1 = 2.72^(-x) * x^3 * cos(x) * sin(x) term2 = (cos(x) * sin(x) * sin(x) - 1) y = term1 * term2 end ``` Let's sample f in 30 points between 0 and 10 using the `sample` function. The sampling points are chosen using a Sobol Sample, this can be done by passing `SobolSample()` to the `sample` function. ```@example salustowicz1D n_samples = 30 lower_bound = 0 upper_bound = 10 num_round = 2 x = sample(n_samples, lower_bound, upper_bound, SobolSample()) y = salustowicz.(x) xs = lower_bound:0.001:upper_bound scatter(x, y, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(xs, salustowicz.(xs), label = "True function", legend = :top) ``` Now, let's fit the Salustowicz function with different surrogates: ```@example salustowicz1D InverseDistance = InverseDistanceSurrogate(x, y, lower_bound, upper_bound) lobachevsky_surrogate = LobachevskySurrogate( x, y, lower_bound, upper_bound, alpha = 2.0, n = 6) scatter( x, y, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :topright) plot!(xs, salustowicz.(xs), label = "True function", legend = :topright) plot!(xs, InverseDistance.(xs), label = "InverseDistanceSurrogate", legend = :topright) plot!(xs, lobachevsky_surrogate.(xs), label = "Lobachevsky", legend = :topright) ``` Not's let's see Kriging Surrogate with different hyper parameter: ```@example salustowicz1D kriging_surrogate1 = Kriging(x, y, lower_bound, upper_bound, p = 0.9); kriging_surrogate2 = Kriging(x, y, lower_bound, upper_bound, p = 1.5); kriging_surrogate3 = Kriging(x, y, lower_bound, upper_bound, p = 1.9); scatter( x, y, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :topright) plot!(xs, salustowicz.(xs), label = "True function", legend = :topright) plot!(xs, kriging_surrogate1.(xs), label = "kriging_surrogate1", ribbon = p -> std_error_at_point(kriging_surrogate1, p), legend = :topright) plot!(xs, kriging_surrogate2.(xs), label = "kriging_surrogate2", ribbon = p -> std_error_at_point(kriging_surrogate2, p), legend = :topright) plot!(xs, kriging_surrogate3.(xs), label = "kriging_surrogate3", ribbon = p -> std_error_at_point(kriging_surrogate3, p), legend = :topright) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
4606
# Gaussian Process Surrogate Tutorial !!! note This surrogate requires the 'SurrogatesAbstractGPs' module, which can be added by inputting "]add SurrogatesAbstractGPs" from the Julia command line. Gaussian Process regression in Surrogates.jl is implemented as a simple wrapper around the [AbstractGPs.jl](https://github.com/JuliaGaussianProcesses/AbstractGPs.jl) package. AbstractGPs comes with a variety of covariance functions (kernels). See [KernelFunctions.jl](https://github.com/JuliaGaussianProcesses/KernelFunctions.jl/) for examples. !!! tip The examples below demonstrate the use of AbstractGPs with out-of-the-box settings without hyperparameter optimization (i.e. without changing parameters like lengthscale, signal variance, and noise variance). Beyond hyperparameter optimization, careful initialization of hyperparameters and priors on the parameters is required for this surrogate to work properly. For more details on how to fit GPs in practice, check out [A Practical Guide to Gaussian Processes](https://infallible-thompson-49de36.netlify.app/). Also see this [example](https://juliagaussianprocesses.github.io/AbstractGPs.jl/stable/examples/1-mauna-loa/#Hyperparameter-Optimization) to understand hyperparameter optimization with AbstractGPs. ## 1D Example In the example below, the 'gp_surrogate' assignment code can be commented / uncommented to see how the different kernels influence the predictions. ```@example gp_tutorial1d using Surrogates using Plots default() using AbstractGPs #required to access different types of kernels using SurrogatesAbstractGPs f(x) = (6 * x - 2)^2 * sin(12 * x - 4) n_samples = 4 lower_bound = 0.0 upper_bound = 1.0 xs = lower_bound:0.001:upper_bound x = sample(n_samples, lower_bound, upper_bound, SobolSample()) y = f.(x) #gp_surrogate = AbstractGPSurrogate(x,y, gp=GP(SqExponentialKernel()), Σy=0.05) #example of Squared Exponential Kernel #gp_surrogate = AbstractGPSurrogate(x,y, gp=GP(MaternKernel()), Σy=0.05) #example of MaternKernel gp_surrogate = AbstractGPSurrogate( x, y, gp = GP(PolynomialKernel(; c = 2.0, degree = 5)), Σy = 0.25) plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lower_bound, upper_bound), ylims = (-7, 17), legend = :top) plot!(xs, f.(xs), label = "True function", legend = :top) plot!(0:0.001:1, gp_surrogate.gp_posterior; label = "Posterior", ribbon_scale = 2) ``` ## Optimization Example This example shows the use of AbstractGP Surrogates to find the minima of a function: ```@example abstractgps_tutorial_optimization using Surrogates using Plots using AbstractGPs using SurrogatesAbstractGPs f(x) = (x - 2)^2 n_samples = 4 lower_bound = 0.0 upper_bound = 4.0 xs = lower_bound:0.1:upper_bound x = sample(n_samples, lower_bound, upper_bound, SobolSample()) y = f.(x) gp_surrogate = AbstractGPSurrogate(x, y) @show surrogate_optimize(f, SRBF(), lower_bound, upper_bound, gp_surrogate, SobolSample()) ``` Plotting the function and the sampled points: ```@example abstractgps_tutorial_optimization scatter(gp_surrogate.x, gp_surrogate.y, label = "Sampled points", ylims = (-1.0, 5.0), legend = :top) plot!(xs, gp_surrogate.(xs), label = "Surrogate function", ribbon = p -> std_error_at_point(gp_surrogate, p), legend = :top) plot!(xs, f.(xs), label = "True function", legend = :top) ``` ## ND Example ```@example abstractgps_tutorialnd using Plots default(c = :matter, legend = false, xlabel = "x", ylabel = "y") using Surrogates using AbstractGPs using SurrogatesAbstractGPs hypot_func = z -> 3 * hypot(z...) + 1 n_samples = 50 lower_bound = [-1.0, -1.0] upper_bound = [1.0, 1.0] xys = sample(n_samples, lower_bound, upper_bound, SobolSample()) zs = hypot_func.(xys); x, y = -2:2, -2:2 p1 = surface(x, y, (x1, x2) -> hypot_func((x1, x2))) xs = [xy[1] for xy in xys] ys = [xy[2] for xy in xys] scatter!(xs, ys, zs) p2 = contour(x, y, (x1, x2) -> hypot_func((x1, x2))) scatter!(xs, ys) plot(p1, p2, title = "True function") ``` Now let's see how our surrogate performs: ```@example abstractgps_tutorialnd gp_surrogate = AbstractGPSurrogate(xys, zs) p1 = surface(x, y, (x, y) -> gp_surrogate([x y])) scatter!(xs, ys, zs, marker_z = zs) p2 = contour(x, y, (x, y) -> gp_surrogate([x y])) scatter!(xs, ys, marker_z = zs) plot(p1, p2, title = "Surrogate") ``` ```@example abstractgps_tutorialnd @show gp_surrogate((0.2, 0.2)) ``` ```@example abstractgps_tutorialnd @show hypot_func((0.2, 0.2)) ``` And this is our log marginal posterior predictive probability: ```@example abstractgps_tutorialnd @show logpdf_surrogate(gp_surrogate) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1889
# Ackley Function The Ackley function is defined as: ``f(x) = -a*\exp(-b\sqrt{\frac{1}{d}\sum_{i=1}^d x_i^2}) - \exp(\frac{1}{d} \sum_{i=1}^d \cos(cx_i)) + a + \exp(1)`` Usually the recommended values are: ``a = 20``, ``b = 0.2`` and ``c = 2\pi`` Let's see the 1D case. ```@example ackley using Surrogates using Plots default() ``` Now, let's define the `Ackley` function: ```@example ackley function ackley(x) a, b, c = 20.0, 0.2, 2.0 * π len_recip = inv(length(x)) sum_sqrs = zero(eltype(x)) sum_cos = sum_sqrs for i in x sum_cos += cos(c * i) sum_sqrs += i^2 end return (-a * exp(-b * sqrt(len_recip * sum_sqrs)) - exp(len_recip * sum_cos) + a + 2.71) end ``` ```@example ackley n = 100 lb = -32.768 ub = 32.768 x = sample(n, lb, ub, SobolSample()) y = ackley.(x) xs = lb:0.001:ub scatter(x, y, label = "Sampled points", xlims = (lb, ub), ylims = (0, 30), legend = :top) plot!(xs, ackley.(xs), label = "True function", legend = :top) ``` ```@example ackley my_rad = RadialBasis(x, y, lb, ub) my_loba = LobachevskySurrogate(x, y, lb, ub) ``` ```@example ackley scatter(x, y, label = "Sampled points", xlims = (lb, ub), ylims = (0, 30), legend = :top) plot!(xs, ackley.(xs), label = "True function", legend = :top) plot!(xs, my_rad.(xs), label = "Polynomial expansion", legend = :top) plot!(xs, my_loba.(xs), label = "Lobachevsky", legend = :top) ``` The fit looks good. Let's now see if we are able to find the minimum value using optimization methods: ```@example ackley surrogate_optimize(ackley, DYCORS(), lb, ub, my_rad, RandomSample()) scatter(x, y, label = "Sampled points", xlims = (lb, ub), ylims = (0, 30), legend = :top) plot!(xs, ackley.(xs), label = "True function", legend = :top) plot!(xs, my_rad.(xs), label = "Radial basis optimized", legend = :top) ``` The DYCORS method successfully finds the minimum.
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1790
# Cantilever Beam Function The Cantilever Beam function is defined as: ``f(w,t) = \frac{4L^3}{Ewt}*\sqrt{ (\frac{Y}{t^2})^2 + (\frac{X}{w^2})^2 }`` With parameters L,E,X and Y given. Let's import Surrogates and Plots: ```@example beam using Surrogates using SurrogatesPolyChaos using Plots default() ``` Define the objective function: ```@example beam function f(x) t = x[1] w = x[2] L = 100.0 E = 2.770674127819261e7 X = 530.8038576066307 Y = 997.8714938733949 return (4 * L^3) / (E * w * t) * sqrt((Y / t^2)^2 + (X / w^2)^2) end ``` Let's plot it: ```@example beam n = 100 lb = [1.0, 1.0] ub = [8.0, 8.0] xys = sample(n, lb, ub, SobolSample()); zs = f.(xys); x, y = 0.0:8.0, 0.0:8.0 p1 = surface(x, y, (x1, x2) -> f((x1, x2))) xs = [xy[1] for xy in xys] ys = [xy[2] for xy in xys] scatter!(xs, ys, zs) # hide p2 = contour(x, y, (x1, x2) -> f((x1, x2))) scatter!(xs, ys) plot(p1, p2, title = "True function") ``` Fitting different surrogates: ```@example beam mypoly = PolynomialChaosSurrogate(xys, zs, lb, ub) loba = LobachevskySurrogate(xys, zs, lb, ub) rad = RadialBasis(xys, zs, lb, ub) ``` Plotting: ```@example beam p1 = surface(x, y, (x, y) -> mypoly([x y])) scatter!(xs, ys, zs, marker_z = zs) p2 = contour(x, y, (x, y) -> mypoly([x y])) scatter!(xs, ys, marker_z = zs) plot(p1, p2, title = "Polynomial expansion") ``` ```@example beam p1 = surface(x, y, (x, y) -> loba([x y])) scatter!(xs, ys, zs, marker_z = zs) p2 = contour(x, y, (x, y) -> loba([x y])) scatter!(xs, ys, marker_z = zs) plot(p1, p2, title = "Lobachevsky") ``` ```@example beam p1 = surface(x, y, (x, y) -> rad([x y])) scatter!(xs, ys, zs, marker_z = zs) p2 = contour(x, y, (x, y) -> rad([x y])) scatter!(xs, ys, marker_z = zs) plot(p1, p2, title = "Inverse distance") ```
Surrogates
https://github.com/SciML/Surrogates.jl.git