licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
4027
## Gradient Enhanced Kriging Gradient-enhanced Kriging is an extension of kriging which supports gradient information. GEK is usually more accurate than kriging. However, it is not computationally efficient when the number of inputs, the number of sampling points, or both, are high. This is mainly due to the size of the corresponding correlation matrix, which increases proportionally with both the number of inputs and the number of sampling points. Let's have a look at the following function to use Gradient Enhanced Surrogate: ``f(x) = sin(x) + 2*x^2`` First of all, we will import `Surrogates` and `Plots` packages: ```@example GEK1D using Surrogates using Plots default() ``` ### Sampling We choose to sample f in 8 points between 0 and 1 using the `sample` function. The sampling points are chosen using a Sobol sequence, this can be done by passing `SobolSample()` to the `sample` function. ```@example GEK1D n_samples = 10 lower_bound = 2 upper_bound = 10 xs = lower_bound:0.001:upper_bound x = sample(n_samples, lower_bound, upper_bound, SobolSample()) f(x) = x^3 - 6x^2 + 4x + 12 y1 = f.(x) der = x -> 3 * x^2 - 12 * x + 4 y2 = der.(x) y = vcat(y1, y2) scatter(x, y1, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) ``` ### Building a surrogate With our sampled points, we can build the Gradient Enhanced Kriging surrogate using the `GEK` function. ```@example GEK1D my_gek = GEK(x, y, lower_bound, upper_bound, p = 1.4); scatter(x, y1, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) plot!(my_gek, label = "Surrogate function", ribbon = p -> std_error_at_point(my_gek, p), xlims = (lower_bound, upper_bound), legend = :top) ``` ## Gradient Enhanced Kriging Surrogate Tutorial (ND) First of all, let's define the function we are going to build a surrogate for. ```@example GEK_ND using Plots # hide default(c = :matter, legend = false, xlabel = "x", ylabel = "y") # hide using Surrogates # hide ``` Now, let's define the function: ```@example GEK_ND function leon(x) x1 = x[1] x2 = x[2] term1 = 100 * (x2 - x1^3)^2 term2 = (1 - x1)^2 y = term1 + term2 end ``` ### Sampling Let's define our bounds, this time we are working in two dimensions. In particular, we want our first dimension `x` to have bounds `0, 10`, and `0, 10` for the second dimension. We are taking 80 samples of the space using Sobol Sequences. We then evaluate our function on all the sampling points. ```@example GEK_ND n_samples = 45 lower_bound = [0, 0] upper_bound = [10, 10] xys = sample(n_samples, lower_bound, upper_bound, SobolSample()) y1 = leon.(xys); ``` ```@example GEK_ND x, y = 0:10, 0:10 # hide p1 = surface(x, y, (x1, x2) -> leon((x1, x2))) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide scatter!(xs, ys, y1) # hide p2 = contour(x, y, (x1, x2) -> leon((x1, x2))) # hide scatter!(xs, ys) # hide plot(p1, p2, title = "True function") # hide ``` ### Building a surrogate Using the sampled points, we build the surrogate, the steps are analogous to the 1-dimensional case. ```@example GEK_ND grad1 = x1 -> 2 * (300 * (x[1])^5 - 300 * (x[1])^2 * x[2] + x[1] - 1) grad2 = x2 -> 200 * (x[2] - (x[1])^3) d = 2 n = 10 function create_grads(n, d, grad1, grad2, y) c = 0 y2 = zeros(eltype(y[1]), n * d) for i in 1:n y2[i + c] = grad1(x[i]) y2[i + c + 1] = grad2(x[i]) c = c + 1 end return y2 end y2 = create_grads(n, d, grad2, grad2, y) y = vcat(y1, y2) ``` ```@example GEK_ND my_GEK = GEK(xys, y, lower_bound, upper_bound, p = [1.9, 1.9]) ``` ```@example GEK_ND p1 = surface(x, y, (x, y) -> my_GEK([x y])) # hide scatter!(xs, ys, y1, marker_z = y1) # hide p2 = contour(x, y, (x, y) -> my_GEK([x y])) # hide scatter!(xs, ys, marker_z = y1) # hide plot(p1, p2, title = "Surrogate") # hide ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
2923
## GEKPLS Surrogate Tutorial Gradient Enhanced Kriging with Partial Least Squares Method (GEKPLS) is a surrogate modeling technique that brings down computation time and returns improved accuracy for high-dimensional problems. The Julia implementation of GEKPLS is adapted from the Python version by [SMT](https://github.com/SMTorg) which is based on this [paper](https://arxiv.org/pdf/1708.02663.pdf). The following are the inputs when building a GEKPLS surrogate: 1. x - The vector containing the training points 2. y - The vector containing the training outputs associated with each of the training points 3. grads - The gradients at each of the input X training points 4. n_comp - Number of components to retain for the partial least squares regression (PLS) 5. delta_x - The step size to use for the first order Taylor approximation 6. lb - The lower bound for the training points 7. ub - The upper bound for the training points 8. extra_points - The number of additional points to use for the PLS 9. theta - The hyperparameter to use for the correlation model ### Basic GEKPLS Usage The following example illustrates how to use GEKPLS: ```@example gekpls_water_flow using Surrogates using Zygote function water_flow(x) r_w = x[1] r = x[2] T_u = x[3] H_u = x[4] T_l = x[5] H_l = x[6] L = x[7] K_w = x[8] log_val = log(r / r_w) return (2 * pi * T_u * (H_u - H_l)) / (log_val * (1 + (2 * L * T_u / (log_val * r_w^2 * K_w)) + T_u / T_l)) end n = 1000 lb = [0.05, 100, 63070, 990, 63.1, 700, 1120, 9855] ub = [0.15, 50000, 115600, 1110, 116, 820, 1680, 12045] x = sample(n, lb, ub, SobolSample()) grads = gradient.(water_flow, x) y = water_flow.(x) n_test = 100 x_test = sample(n_test, lb, ub, GoldenSample()) y_true = water_flow.(x_test) n_comp = 2 delta_x = 0.0001 extra_points = 2 initial_theta = [0.01 for i in 1:n_comp] g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) y_pred = g.(x_test) rmse = sqrt(sum(((y_pred - y_true) .^ 2) / n_test)) #root mean squared error println(rmse) #0.0347 ``` ### Using GEKPLS With Surrogate Optimization GEKPLS can also be used to find the minimum of a function with the surrogates.jl optimization function. This next example demonstrates how this can be accomplished. ```@example gekpls_optimization using Surrogates using Zygote function sphere_function(x) return sum(x .^ 2) end lb = [-5.0, -5.0, -5.0] ub = [5.0, 5.0, 5.0] n_comp = 2 delta_x = 0.0001 extra_points = 2 initial_theta = [0.01 for i in 1:n_comp] n = 100 x = sample(n, lb, ub, SobolSample()) grads = gradient.(sphere_function, x) y = sphere_function.(x) g = GEKPLS(x, y, grads, n_comp, delta_x, lb, ub, extra_points, initial_theta) x_point, minima = surrogate_optimize(sphere_function, SRBF(), lb, ub, g, RandomSample(); maxiters = 20, num_new_samples = 20, needs_gradient = true) println(minima) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1885
## Gramacy & Lee Function the Gramacy & Lee function is a continuous function. It is not convex. The function is defined on a 1-dimensional space. It is unimodal. The function can be defined on any input domain, but it is usually evaluated on ``x \in [-0.5, 2.5]``. The Gramacy & Lee is as follows: ``f(x) = \frac{\sin(10\pi x)}{2x} + (x-1)^4``. Let's import these two packages `Surrogates` and `Plots`: ```@example gramacylee1D using Surrogates using SurrogatesPolyChaos using Plots default() ``` Now, let's define our objective function: ```@example gramacylee1D function gramacylee(x) term1 = sin(10 * pi * x) / 2 * x term2 = (x - 1)^4 y = term1 + term2 end ``` Let's sample f in 25 points between -0.5 and 2.5 using the `sample` function. The sampling points are chosen using a Sobol sample, this can be done by passing `SobolSample()` to the `sample` function. ```@example gramacylee1D n = 25 lower_bound = -0.5 upper_bound = 2.5 x = sample(n, lower_bound, upper_bound, SobolSample()) y = gramacylee.(x) xs = lower_bound:0.001:upper_bound scatter(x, y, label = "Sampled points", xlims = (lower_bound, upper_bound), ylims = (-5, 20), legend = :top) plot!(xs, gramacylee.(xs), label = "True function", legend = :top) ``` Now, let's fit Gramacy & Lee function with different surrogates: ```@example gramacylee1D my_pol = PolynomialChaosSurrogate(x, y, lower_bound, upper_bound) loba_1 = LobachevskySurrogate(x, y, lower_bound, upper_bound) krig = Kriging(x, y, lower_bound, upper_bound) scatter(x, y, label = "Sampled points", xlims = (lower_bound, upper_bound), ylims = (-5, 20), legend = :top) plot!(xs, gramacylee.(xs), label = "True function", legend = :top) plot!(xs, my_pol.(xs), label = "Polynomial expansion", legend = :top) plot!(xs, loba_1.(xs), label = "Lobachevsky", legend = :top) plot!(xs, krig.(xs), label = "Kriging", legend = :top) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
5381
# Surrogates.jl: Surrogate models and optimization for scientific machine learning A surrogate model is an approximation method that mimics the behavior of a computationally expensive simulation. In more mathematical terms: suppose we are attempting to optimize a function ``\; f(p)``, but each calculation of ``\; f`` is very expensive. It may be the case that we need to solve a PDE for each point or use advanced numerical linear algebra machinery, which is usually costly. The idea is then to develop a surrogate model ``\; g`` which approximates ``\; f`` by training on previous data collected from evaluations of ``\; f``. The construction of a surrogate model can be seen as a three-step process: 1. Sample selection 2. Construction of the surrogate model 3. Surrogate optimization The sampling methods are super important for the behavior of the surrogate. Sampling can be done through [QuasiMonteCarlo.jl](https://github.com/SciML/QuasiMonteCarlo.jl), all the functions available there can be used in Surrogates.jl. The available surrogates are: - Linear - Radial Basis - Kriging - Custom Kriging provided with Stheno - Neural Network - Support Vector Machine - Random Forest - Second Order Polynomial - Inverse Distance After the surrogate is built, we need to optimize it with respect to some objective function. That is, simultaneously looking for a minimum **and** sampling the most unknown region. The available optimization methods are: - Stochastic RBF (SRBF) - Lower confidence-bound strategy (LCBS) - Expected improvement (EI) - Dynamic coordinate search (DYCORS) ## Multi-output Surrogates In certain situations, the function being modeled may have a multi-dimensional output space. In such a case, the surrogate models can take advantage of correlations between the observed output variables to obtain more accurate predictions. When constructing the original surrogate, each element of the passed `y` vector should itself be a vector. For example, the following `y` are all valid. ``` using Surrogates using StaticArrays x = sample(5, [0.0; 0.0], [1.0; 1.0], SobolSample()) f_static = (x) -> StaticVector(x[1], log(x[2]*x[1])) f = (x) -> [x, log(x)/2] y = f_static.(x) y = f.(x) ``` Currently, the following are implemented as multi-output surrogates: - Radial Basis - Neural Network (via Flux) - Second Order Polynomial - Inverse Distance - Custom Kriging (via Stheno) ## Gradients The surrogates implemented here are all automatically differentiable via Zygote. Because of this property, surrogates are useful models for processes which aren't explicitly differentiable, and can be used as layers in, for instance, Flux models. ## Installation Surrogates is registered in the Julia General Registry. In the REPL: ``` using Pkg Pkg.add("Surrogates") ``` ## Contributing - Please refer to the [SciML ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://github.com/SciML/ColPrac/blob/master/README.md) for guidance on PRs, issues, and other matters relating to contributing to SciML. - See the [SciML Style Guide](https://github.com/SciML/SciMLStyle) for common coding practices and other style decisions. - There are a few community forums: + The #diffeq-bridged and #sciml-bridged channels in the [Julia Slack](https://julialang.org/slack/) + The #diffeq-bridged and #sciml-bridged channels in the [Julia Zulip](https://julialang.zulipchat.com/#narrow/stream/279055-sciml-bridged) + On the [Julia Discourse forums](https://discourse.julialang.org) + See also [SciML Community page](https://sciml.ai/community/) ## Quick example ```@example using Surrogates num_samples = 10 lb = 0.0 ub = 10.0 #Sampling x = sample(num_samples, lb, ub, SobolSample()) f = x -> log(x) * x^2 + x^3 y = f.(x) #Creating surrogate alpha = 2.0 n = 6 my_lobachevsky = LobachevskySurrogate(x, y, lb, ub, alpha = alpha, n = n) #Approximating value at 5.0 value = my_lobachevsky(5.0) #Adding more data points surrogate_optimize(f, SRBF(), lb, ub, my_lobachevsky, RandomSample()) #New approximation value = my_lobachevsky(5.0) ``` ## Reproducibility ```@raw html <details><summary>The documentation of this SciML package was built using these direct dependencies,</summary> ``` ```@example using Pkg # hide Pkg.status() # hide ``` ```@raw html </details> ``` ```@raw html <details><summary>and using this machine and Julia version.</summary> ``` ```@example using InteractiveUtils # hide versioninfo() # hide ``` ```@raw html </details> ``` ```@raw html <details><summary>A more complete overview of all dependencies and their versions is also provided.</summary> ``` ```@example using Pkg # hide Pkg.status(; mode = PKGMODE_MANIFEST) # hide ``` ```@raw html </details> ``` ```@eval using TOML using Markdown version = TOML.parse(read("../../Project.toml", String))["version"] name = TOML.parse(read("../../Project.toml", String))["name"] link_manifest = "https://github.com/SciML/" * name * ".jl/tree/gh-pages/v" * version * "/assets/Manifest.toml" link_project = "https://github.com/SciML/" * name * ".jl/tree/gh-pages/v" * version * "/assets/Project.toml" Markdown.parse("""You can also download the [manifest]($link_manifest) file and the [project]($link_project) file. """) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
5456
## Kriging surrogate tutorial (1D) Kriging or Gaussian process regression, is a method of interpolation in which the interpolated values are modeled by a Gaussian process. We are going to use a Kriging surrogate to optimize $f(x)=(6x-2)^2sin(12x-4)$. (function from Forrester et al. (2008)). First of all, import `Surrogates` and `Plots`. ```@example kriging_tutorial1d using Surrogates using Plots default() ``` ### Sampling We choose to sample f in 4 points between 0 and 1 using the `sample` function. The sampling points are chosen using a Sobol sequence; This can be done by passing `SobolSample()` to the `sample` function. ```@example kriging_tutorial1d # https://www.sfu.ca/~ssurjano/forretal08.html # Forrester et al. (2008) Function f(x) = (6 * x - 2)^2 * sin(12 * x - 4) n_samples = 4 lower_bound = 0.0 upper_bound = 1.0 xs = lower_bound:0.001:upper_bound x = sample(n_samples, lower_bound, upper_bound, SobolSample()) y = f.(x) scatter( x, y, label = "Sampled points", xlims = (lower_bound, upper_bound), ylims = (-7, 17)) plot!(xs, f.(xs), label = "True function", legend = :top) ``` ### Building a surrogate With our sampled points, we can build the Kriging surrogate using the `Kriging` function. `kriging_surrogate` behaves like an ordinary function, which we can simply plot. A nice statistical property of this surrogate is being able to calculate the error of the function at each point. We plot this as a confidence interval using the `ribbon` argument. ```@example kriging_tutorial1d kriging_surrogate = Kriging(x, y, lower_bound, upper_bound); plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lower_bound, upper_bound), ylims = (-7, 17), legend = :top) plot!(xs, f.(xs), label = "True function", legend = :top) plot!(xs, kriging_surrogate.(xs), label = "Surrogate function", ribbon = p -> std_error_at_point(kriging_surrogate, p), legend = :top) ``` ### Optimizing Having built a surrogate, we can now use it to search for minima in our original function `f`. To optimize using our surrogate, we call `surrogate_optimize` method. We choose to use Stochastic RBF as the optimization technique and again Sobol sampling as the sampling technique. ```@example kriging_tutorial1d @show surrogate_optimize( f, SRBF(), lower_bound, upper_bound, kriging_surrogate, SobolSample()) scatter(x, y, label = "Sampled points", ylims = (-7, 7), legend = :top) plot!(xs, f.(xs), label = "True function", legend = :top) plot!(xs, kriging_surrogate.(xs), label = "Surrogate function", ribbon = p -> std_error_at_point(kriging_surrogate, p), legend = :top) ``` ## Kriging surrogate tutorial (ND) First of all, let's define the function we are going to build a surrogate for. Notice how its argument is a vector of numbers, one for each coordinate, and its output is a scalar. ```@example kriging_tutorialnd using Plots # hide default(c = :matter, legend = false, xlabel = "x", ylabel = "y") # hide using Surrogates # hide function branin(x) x1 = x[1] x2 = x[2] a = 1 b = 5.1 / (4 * Ο€^2) c = 5 / Ο€ r = 6 s = 10 t = 1 / (8Ο€) a * (x2 - b * x1 + c * x1 - r)^2 + s * (1 - t) * cos(x1) + s end ``` ### Sampling Let's define our bounds, this time we are working in two dimensions. In particular, we want our first dimension `x` to have bounds `-5, 10`, and `0, 15` for the second dimension. We are taking 50 samples of the space using Sobol sequences. We then evaluate our function on all the sampling points. ```@example kriging_tutorialnd n_samples = 10 lower_bound = [-5.0, 0.0] upper_bound = [10.0, 15.0] xys = sample(n_samples, lower_bound, upper_bound, GoldenSample()) zs = branin.(xys); ``` ```@example kriging_tutorialnd x, y = -5:10, 0:15 # hide p1 = surface(x, y, (x1, x2) -> branin((x1, x2))) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide scatter!(xs, ys, zs) # hide p2 = contour(x, y, (x1, x2) -> branin((x1, x2))) # hide scatter!(xs, ys) # hide plot(p1, p2, title = "True function") # hide ``` ### Building a surrogate Using the sampled points, we build the surrogate, the steps are analogous to the 1-dimensional case. ```@example kriging_tutorialnd kriging_surrogate = Kriging( xys, zs, lower_bound, upper_bound, p = [2.0, 2.0], theta = [0.03, 0.003]) ``` ```@example kriging_tutorialnd p1 = surface(x, y, (x, y) -> kriging_surrogate([x y])) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> kriging_surrogate([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2, title = "Surrogate") # hide ``` ### Optimizing With our surrogate, we can now search for the minima of the branin function. Notice how the new sampled points, which were created during the optimization process, are appended to the `xys` array. This is why its size changes. ```@example kriging_tutorialnd size(xys) ``` ```@example kriging_tutorialnd surrogate_optimize(branin, SRBF(), lower_bound, upper_bound, kriging_surrogate, SobolSample(); maxiters = 100, num_new_samples = 10) ``` ```@example kriging_tutorialnd size(xys) ``` ```@example kriging_tutorialnd p1 = surface(x, y, (x, y) -> kriging_surrogate([x y])) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide zs = branin.(xys) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> kriging_surrogate([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2) # hide ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
5354
# Lobachevsky surrogate tutorial Lobachevsky splines function is a function that is used for univariate and multivariate scattered interpolation. Introduced by Lobachevsky in 1842 to investigate errors in astronomical measurements. We are going to use a Lobachevsky surrogate to optimize $f(x)=sin(x)+sin(10/3 * x)$. First of all import `Surrogates` and `Plots`. ```@example LobachevskySurrogate_tutorial using Surrogates using Plots default() ``` ## Sampling We choose to sample f in 4 points between 0 and 4 using the `sample` function. The sampling points are chosen using a Sobol sequence, this can be done by passing `SobolSample()` to the `sample` function. ```@example LobachevskySurrogate_tutorial f(x) = sin(x) + sin(10 / 3 * x) n_samples = 5 lower_bound = 1.0 upper_bound = 4.0 x = sample(n_samples, lower_bound, upper_bound, SobolSample()) y = f.(x) scatter(x, y, label = "Sampled points", xlims = (lower_bound, upper_bound)) plot!(f, label = "True function", xlims = (lower_bound, upper_bound)) ``` ## Building a surrogate With our sampled points, we can build the Lobachevsky surrogate using the `LobachevskySurrogate` function. `lobachevsky_surrogate` behaves like an ordinary function, which we can simply plot. Alpha is the shape parameter, and n specifies how close you want Lobachevsky function to be to the radial basis function. ```@example LobachevskySurrogate_tutorial alpha = 2.0 n = 6 lobachevsky_surrogate = LobachevskySurrogate( x, y, lower_bound, upper_bound, alpha = 2.0, n = 6) plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lower_bound, upper_bound)) plot!(f, label = "True function", xlims = (lower_bound, upper_bound)) plot!( lobachevsky_surrogate, label = "Surrogate function", xlims = (lower_bound, upper_bound)) ``` ## Optimizing Having built a surrogate, we can now use it to search for minima in our original function `f`. To optimize using our surrogate we call `surrogate_optimize` method. We choose to use Stochastic RBF as the optimization technique and again Sobol sampling as the sampling technique. ```@example LobachevskySurrogate_tutorial @show surrogate_optimize( f, SRBF(), lower_bound, upper_bound, lobachevsky_surrogate, SobolSample()) scatter(x, y, label = "Sampled points") plot!(f, label = "True function", xlims = (lower_bound, upper_bound)) plot!( lobachevsky_surrogate, label = "Surrogate function", xlims = (lower_bound, upper_bound)) ``` In the example below, it shows how to use `lobachevsky_surrogate` for higher dimension problems. # Lobachevsky Surrogate Tutorial (ND): First of all, we will define the `Schaffer` function we are going to build surrogate for. Notice, one how its argument is a vector of numbers, one for each coordinate, and its output is a scalar. ```@example LobachevskySurrogate_ND using Plots # hide default(c = :matter, legend = false, xlabel = "x", ylabel = "y") # hide using Surrogates # hide function schaffer(x) x1 = x[1] x2 = x[2] fact1 = x1^2 fact2 = x2^2 y = fact1 + fact2 end ``` ## Sampling Let's define our bounds, this time we are working in two dimensions. In particular, we want our first dimension `x` to have bounds `0, 8`, and `0, 8` for the second dimension. We are taking 60 samples of the space using Sobol Sequences. We then evaluate our function on all of the sampling points. ```@example LobachevskySurrogate_ND n_samples = 60 lower_bound = [0.0, 0.0] upper_bound = [8.0, 8.0] xys = sample(n_samples, lower_bound, upper_bound, SobolSample()) zs = schaffer.(xys); ``` ```@example LobachevskySurrogate_ND x, y = 0:8, 0:8 # hide p1 = surface(x, y, (x1, x2) -> schaffer((x1, x2))) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide scatter!(xs, ys, zs) # hide p2 = contour(x, y, (x1, x2) -> schaffer((x1, x2))) # hide scatter!(xs, ys) # hide plot(p1, p2, title = "True function") # hide ``` ## Building a surrogate Using the sampled points, we build the surrogate, the steps are analogous to the 1-dimensional case. ```@example LobachevskySurrogate_ND Lobachevsky = LobachevskySurrogate( xys, zs, lower_bound, upper_bound, alpha = [2.4, 2.4], n = 8) ``` ```@example LobachevskySurrogate_ND p1 = surface(x, y, (x, y) -> Lobachevsky([x y])) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> Lobachevsky([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2, title = "Surrogate") # hide ``` ## Optimizing With our surrogate, we can now search for the minima of the function. Notice how the new sampled points, which were created during the optimization process, are appended to the `xys` array. This is why its size changes. ```@example LobachevskySurrogate_ND size(Lobachevsky.x) ``` ```@example LobachevskySurrogate_ND surrogate_optimize(schaffer, SRBF(), lower_bound, upper_bound, Lobachevsky, SobolSample(), maxiters = 1, num_new_samples = 10) ``` ```@example LobachevskySurrogate_ND size(Lobachevsky.x) ``` ```@example LobachevskySurrogate_ND p1 = surface(x, y, (x, y) -> Lobachevsky([x y])) # hide xys = Lobachevsky.x # hide xs = [i[1] for i in xys] # hide ys = [i[2] for i in xys] # hide zs = schaffer.(xys) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> Lobachevsky([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2) # hide ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1202
# Lp norm function The Lp norm function is defined as: ``f(x) = \sqrt[p]{ \sum_{i=1}^d \vert x_i \vert ^p}`` Let's import Surrogates and Plots: ```@example lp using Surrogates using SurrogatesPolyChaos using Plots using LinearAlgebra default() ``` Define the objective function: ```@example lp function f(x, p) return norm(x, p) end ``` Let's see a simple 1D case: ```@example lp n = 30 lb = -5.0 ub = 5.0 p = 1.3 x = sample(n, lb, ub, SobolSample()) y = f.(x, p) xs = lb:0.001:ub plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lb, ub), ylims = (0, 5), legend = :top) plot!(xs, f.(xs, p), label = "True function", legend = :top) ``` Fitting different surrogates: ```@example lp my_pol = PolynomialChaosSurrogate(x, y, lb, ub) loba_1 = LobachevskySurrogate(x, y, lb, ub) krig = Kriging(x, y, lb, ub) plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lb, ub), ylims = (0, 5), legend = :top) plot!(xs, f.(xs, p), label = "True function", legend = :top) plot!(xs, my_pol.(xs), label = "Polynomial expansion", legend = :top) plot!(xs, loba_1.(xs), label = "Lobachevsky", legend = :top) plot!(xs, krig.(xs), label = "Kriging", legend = :top) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
4026
## Mixture of Experts (MOE) !!! note This surrogate requires the 'SurrogatesMOE' module, which can be added by inputting "]add SurrogatesMOE" from the Julia command line. The Mixture of Experts (MOE) Surrogate model represents the interpolating function as a combination of other surrogate models. SurrogatesMOE is a Julia implementation of the [Python version from SMT](https://smt.readthedocs.io/en/latest/_src_docs/applications/moe.html). MOE is most useful when we have a discontinuous function. For example, let's say we want to build a surrogate for the following function: ### 1D Example ```@example MOE_1D function discont_1D(x) if x < 0.0 return -5.0 elseif x >= 0.0 return 5.0 end end nothing # hide ``` Let's choose the MOE Surrogate for 1D. Note that we have to import the `SurrogatesMOE` package in addition to `Surrogates` and `Plots`. ```@example MOE_1D using Surrogates using SurrogatesMOE using Plots default() lb = -1.0 ub = 1.0 x = sample(50, lb, ub, SobolSample()) y = discont_1D.(x) scatter( x, y, label = "Sampled Points", xlims = (lb, ub), ylims = (-6.0, 7.0), legend = :top) ``` How does a regular surrogate perform on such a dataset? ```@example MOE_1D RAD_1D = RadialBasis(x, y, lb, ub, rad = linearRadial(), scale_factor = 1.0, sparse = false) RAD_at0 = RAD_1D(0.0) #true value should be 5.0 ``` As we can see, the prediction is far from the ground truth. Now, how does the MOE perform? ```@example MOE_1D expert_types = [ RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false), RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false) ] MOE_1D_RAD_RAD = MOE(x, y, expert_types) MOE_at0 = MOE_1D_RAD_RAD(0.0) ``` As we can see, the accuracy is significantly better. ### Under the Hood - How SurrogatesMOE Works First, we create Gaussian Mixture Models for the number of expert types provided using the x and y values. For example, in the above example, we create two clusters. Then, using a small test dataset kept aside from the input data, we choose the best surrogate model for each of the clusters. At prediction time, we use the appropriate surrogate model based on the cluster to which the new point belongs. ### N-Dimensional Example ```@example MOE_ND using Surrogates using SurrogatesMOE # helper to test accuracy of predictors function rmse(a, b) a = vec(a) b = vec(b) if (size(a) != size(b)) println("error in inputs") return end n = size(a, 1) return sqrt(sum((a - b) .^ 2) / n) end # multidimensional input function function discont_NDIM(x) if (x[1] >= 0.0 && x[2] >= 0.0) return sum(x .^ 2) + 5 else return sum(x .^ 2) - 5 end end lb = [-1.0, -1.0] ub = [1.0, 1.0] n = 150 x = sample(n, lb, ub, RandomSample()) y = discont_NDIM.(x) x_test = sample(10, lb, ub, GoldenSample()) expert_types = [ RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false), RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false) ] moe_nd_rad_rad = MOE(x, y, expert_types, ndim = 2) moe_pred_vals = moe_nd_rad_rad.(x_test) true_vals = discont_NDIM.(x_test) moe_rmse = rmse(true_vals, moe_pred_vals) rbf = RadialBasis(x, y, lb, ub) rbf_pred_vals = rbf.(x_test) rbf_rmse = rmse(true_vals, rbf_pred_vals) println(rbf_rmse > moe_rmse) ``` ### Usage Notes - Example With Other Surrogates From the above example, simply change or add to the expert types: ```@example SurrogateExamples using Surrogates #To use Inverse Distance and Radial Basis Surrogates expert_types = [ KrigingStructure(p = [1.0, 1.0], theta = [1.0, 1.0]), InverseDistanceStructure(p = 1.0) ] #With 3 Surrogates expert_types = [ RadialBasisStructure(radial_function = linearRadial(), scale_factor = 1.0, sparse = false), LinearStructure(), InverseDistanceStructure(p = 1.0) ] nothing # hide ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1287
# Multi-objective optimization ## Case 1: Non-colliding objective functions ```@example multi_obj using Surrogates m = 10 f = x -> [x^i for i in 1:m] lb = 1.0 ub = 10.0 x = sample(50, lb, ub, GoldenSample()) y = f.(x) my_radial_basis_ego = RadialBasis(x, y, lb, ub) pareto_set, pareto_front = surrogate_optimize( f, SMB(), lb, ub, my_radial_basis_ego, SobolSample(); maxiters = 10, n_new_look = 100) m = 5 f = x -> [x^i for i in 1:m] lb = 1.0 ub = 10.0 x = sample(50, lb, ub, SobolSample()) y = f.(x) my_radial_basis_rtea = RadialBasis(x, y, lb, ub) Z = 0.8 K = 2 p_cross = 0.5 n_c = 1.0 sigma = 1.5 surrogate_optimize( f, RTEA(Z, K, p_cross, n_c, sigma), lb, ub, my_radial_basis_rtea, SobolSample()) ``` ## Case 2: objective functions with conflicting minima ```@example multi_obj f = x -> [sqrt((x[1] - 4)^2 + 25 * (x[2])^2), sqrt((x[1] + 4)^2 + 25 * (x[2])^2), sqrt((x[1] - 3)^2 + (x[2] - 1)^2)] lb = [2.5, -0.5] ub = [3.5, 0.5] x = sample(50, lb, ub, SobolSample()) y = f.(x) my_radial_basis_ego = RadialBasis(x, y, lb, ub) #I can find my pareto set and pareto front by calling again the surrogate_optimize function: pareto_set, pareto_front = surrogate_optimize( f, SMB(), lb, ub, my_radial_basis_ego, SobolSample(); maxiters = 10, n_new_look = 100); ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
2122
# Neural network tutorial !!! note This surrogate requires the 'SurrogatesFlux' module, which can be added by inputting "]add SurrogatesFlux" from the Julia command line. It's possible to define a neural network as a surrogate, using Flux. This is useful because we can call optimization methods on it. First of all we will define the `Schaffer` function we are going to build a surrogate for. ```@example Neural_surrogate using Plots default(c = :matter, legend = false, xlabel = "x", ylabel = "y") # hide using Surrogates using Flux using SurrogatesFlux function schaffer(x) x1 = x[1] x2 = x[2] fact1 = x1^2 fact2 = x2^2 y = fact1 + fact2 end ``` ## Sampling Let's define our bounds, this time we are working in two dimensions. In particular we want our first dimension `x` to have bounds `0, 8`, and `0, 8` for the second dimension. We are taking 60 samples of the space using Sobol Sequences. We then evaluate our function on all the sampling points. ```@example Neural_surrogate n_samples = 60 lower_bound = [0.0, 0.0] upper_bound = [8.0, 8.0] xys = sample(n_samples, lower_bound, upper_bound, SobolSample()) zs = schaffer.(xys); ``` ```@example Neural_surrogate x, y = 0:8, 0:8 # hide p1 = surface(x, y, (x1, x2) -> schaffer((x1, x2))) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide scatter!(xs, ys, zs) # hide p2 = contour(x, y, (x1, x2) -> schaffer((x1, x2))) # hide scatter!(xs, ys) # hide plot(p1, p2, title = "True function") # hide ``` ## Building a surrogate You can specify your own model, optimization function, loss functions, and epochs. As always, getting the model right is the hardest thing. ```@example Neural_surrogate model1 = Chain( Dense(2, 5, Οƒ), Dense(5, 2, Οƒ), Dense(2, 1) ) neural = NeuralSurrogate(xys, zs, lower_bound, upper_bound, model = model1, n_echos = 10) ``` ## Optimization We can now call an optimization function on the neural network: ```@example Neural_surrogate surrogate_optimize(schaffer, SRBF(), lower_bound, upper_bound, neural, SobolSample(), maxiters = 20, num_new_samples = 10) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1179
# Optimization techniques - SRBF ```@docs surrogate_optimize(obj::Function,::SRBF,lb,ub,surr::AbstractSurrogate,sample_type::SamplingAlgorithm;maxiters=100,num_new_samples=100) ``` - LCBS ```@docs surrogate_optimize(obj::Function,::LCBS,lb,ub,krig,sample_type::SamplingAlgorithm;maxiters=100,num_new_samples=100) ``` - EI ```@docs surrogate_optimize(obj::Function,::EI,lb,ub,krig,sample_type::SamplingAlgorithm;maxiters=100,num_new_samples=100) ``` - DYCORS ```@docs surrogate_optimize(obj::Function,::DYCORS,lb,ub,surrn::AbstractSurrogate,sample_type::SamplingAlgorithm;maxiters=100,num_new_samples=100) ``` - SOP ```@docs surrogate_optimize(obj::Function,sop1::SOP,lb::Number,ub::Number,surrSOP::AbstractSurrogate,sample_type::SamplingAlgorithm;maxiters=100,num_new_samples=min(500*1,5000)) ``` ## Adding another optimization method To add another optimization method, you just need to define a new SurrogateOptimizationAlgorithm and write its corresponding algorithm, overloading the following: ``` surrogate_optimize(obj::Function,::NewOptimizationType,lb,ub,surr::AbstractSurrogate,sample_type::SamplingAlgorithm;maxiters=100,num_new_samples=100) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
3391
# Parallel Optimization There are some situations where it can be beneficial to run multiple optimizations in parallel. For example, if your objective function is very expensive to evaluate, you may want to run multiple evaluations in parallel. ## Ask-Tell Interface To enable parallel optimization, we make use of an Ask-Tell interface. The user will construct the initial surrogate model the same way as for non-parallel surrogate models, but instead of using `surrogate_optimize`, the user will use `potential_optimal_points`. This will return the coordinates of points that the optimizer has determined are most useful to evaluate next. How the user evaluates these points is up to them. The Ask-Tell interface requires more manual control than `surrogate_optimize`, but it allows for more flexibility. After the point has been evaluated, the user will *tell* the surrogate model the new points with the `add_point!` function. ## Virtual Points To ensure that points of interest returned by `potential_optimal_points` are sufficiently far from each other, the function makes use of *virtual points*. They are used as follows: 1. `potential_optimal_points` is told to return `n` points. 2. The point with the highest merit function value is selected. 3. This point is now treated as a virtual point and is assigned a temporary value that changes the landscape of the merit function. How the temporary value is chosen depends on the strategy used. (see below) 4. The point with the new highest merit is selected. 5. The process is repeated until `n` points have been selected. The following strategies are available for virtual point selection for all optimization algorithms: - "Minimum Constant Liar (MinimumConstantLiar)": + The virtual point is assigned using the lowest known value of the merit function across all evaluated points. - "Mean Constant Liar (MeanConstantLiar)": + The virtual point is assigned using the mean of the merit function across all evaluated points. - "Maximum Constant Liar (MaximumConstantLiar)": + The virtual point is assigned using the greatest known value of the merit function across all evaluated points. For Kriging surrogates, specifically, the above and following strategies are available: - "Kriging Believer (KrigingBeliever): + The virtual point is assigned using the mean of the Kriging surrogate at the virtual point. - "Kriging Believer Upper Bound (KrigingBelieverUpperBound)": + The virtual point is assigned using 3$\sigma$ above the mean of the Kriging surrogate at the virtual point. - "Kriging Believer Lower Bound (KrigingBelieverLowerBound)": + The virtual point is assigned using 3$\sigma$ below the mean of the Kriging surrogate at the virtual point. In general, MinimumConstantLiar and KrigingBelieverLowerBound tend to favor exploitation, while MaximumConstantLiar and KrigingBelieverUpperBound tend to favor exploration. MeanConstantLiar and KrigingBeliever tend to be compromises between the two. ## Examples ```@example using Surrogates lb = 0.0 ub = 10.0 f = x -> log(x) * exp(x) x = sample(5, lb, ub, SobolSample()) y = f.(x) my_k = Kriging(x, y, lb, ub) for _ in 1:10 new_x, eis = potential_optimal_points( EI(), MeanConstantLiar(), lb, ub, my_k, SobolSample(), 3) add_point!(my_k, new_x, f.(new_x)) end ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1720
# Polynomial chaos surrogate !!! note This surrogate requires the 'SurrogatesPolyChaos' module which can be added by inputting "]add SurrogatesPolyChaos" from the Julia command line. We can create a surrogate using a polynomial expansion, with a different polynomial basis depending on the distribution of the data we are trying to fit. Under the hood, PolyChaos.jl has been used. It is possible to specify a type of polynomial for each dimension of the problem. ### Sampling We choose to sample f in 25 points between 0 and 10 using the `sample` function. The sampling points are chosen using a Low Discrepancy. This can be done by passing `HaltonSample()` to the `sample` function. ```@example polychaos using Surrogates using SurrogatesPolyChaos using Plots default() n = 20 lower_bound = 1.0 upper_bound = 6.0 x = sample(n, lower_bound, upper_bound, HaltonSample()) f = x -> log(x) * x + sin(x) y = f.(x) scatter(x, y, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) ``` ## Building a Surrogate ```@example polychaos poly1 = PolynomialChaosSurrogate(x, y, lower_bound, upper_bound) poly2 = PolynomialChaosSurrogate( x, y, lower_bound, upper_bound, op = SurrogatesPolyChaos.GaussOrthoPoly(5)) plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) plot!(poly1, label = "First polynomial", xlims = (lower_bound, upper_bound), legend = :top) plot!(poly2, label = "Second polynomial", xlims = (lower_bound, upper_bound), legend = :top) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
5538
## Radial Surrogates The Radial Basis Surrogate model represents the interpolating function as a linear combination of basis functions, one for each training point. Let's start with something easy to get our hands dirty. I want to build a surrogate for: ```math f(x) = \log(x) \cdot x^2+x^3 ``` Let's choose the Radial Basis Surrogate for 1D. First of all we have to import these two packages: `Surrogates` and `Plots`, ```@example RadialBasisSurrogate using Surrogates using Plots default() ``` We choose to sample f in 30 points between 5 to 25 using `sample` function. The sampling points are chosen using a Sobol sequence, this can be done by passing `SobolSample()` to the `sample` function. ```@example RadialBasisSurrogate f(x) = log(x) * x^2 + x^3 n_samples = 30 lower_bound = 5.0 upper_bound = 25.0 x = sort(sample(n_samples, lower_bound, upper_bound, SobolSample())) y = f.(x) scatter(x, y, label = "Sampled Points", xlims = (lower_bound, upper_bound), legend = :top) plot!(x, y, label = "True function", legend = :top) ``` ## Building Surrogate With our sampled points we can build the **Radial Surrogate** using the `RadialBasis` function. We can simply calculate `radial_surrogate` for any value. ```@example RadialBasisSurrogate radial_surrogate = RadialBasis(x, y, lower_bound, upper_bound) val = radial_surrogate(5.4) ``` We can also use cubic radial basis functions. ```@example RadialBasisSurrogate radial_surrogate = RadialBasis(x, y, lower_bound, upper_bound, rad = cubicRadial()) val = radial_surrogate(5.4) ``` Currently, available radial basis functions are `linearRadial` (the default), `cubicRadial`, `multiquadricRadial`, and `thinplateRadial`. Now, we will simply plot `radial_surrogate`: ```@example RadialBasisSurrogate plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) plot!(radial_surrogate, label = "Surrogate function", xlims = (lower_bound, upper_bound), legend = :top) ``` ## Optimizing Having built a surrogate, we can now use it to search for minima in our original function `f`. To optimize using our surrogate, we call `surrogate_optimize` method. We choose to use Stochastic RBF as the optimization technique and again Sobol sampling as the sampling technique. ```@example RadialBasisSurrogate @show surrogate_optimize( f, SRBF(), lower_bound, upper_bound, radial_surrogate, SobolSample()) scatter(x, y, label = "Sampled points", legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) plot!(radial_surrogate, label = "Surrogate function", xlims = (lower_bound, upper_bound), legend = :top) ``` ## Radial Basis Surrogate tutorial (ND) First of all, we will define the `Booth` function we are going to build the surrogate for: $f(x) = (x_1 + 2*x_2 - 7)^2 + (2*x_1 + x_2 - 5)^2$ Notice, how its argument is a vector of numbers, one for each coordinate, and its output is a scalar. ```@example RadialBasisSurrogateND using Plots # hide default(c = :matter, legend = false, xlabel = "x", ylabel = "y") # hide using Surrogates # hide function booth(x) x1 = x[1] x2 = x[2] term1 = (x1 + 2 * x2 - 7)^2 term2 = (2 * x1 + x2 - 5)^2 y = term1 + term2 end ``` ### Sampling Let's define our bounds, this time we are working in two dimensions. In particular we want our first dimension `x` to have bounds `-5, 10`, and `0, 15` for the second dimension. We are taking 80 samples of the space using Sobol Sequences. We then evaluate our function on all of the sampling points. ```@example RadialBasisSurrogateND n_samples = 80 lower_bound = [-5.0, 0.0] upper_bound = [10.0, 15.0] xys = sample(n_samples, lower_bound, upper_bound, SobolSample()) zs = booth.(xys); ``` ```@example RadialBasisSurrogateND x, y = -5.0:10.0, 0.0:15.0 # hide p1 = surface(x, y, (x1, x2) -> booth((x1, x2))) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide scatter!(xs, ys, zs) # hide p2 = contour(x, y, (x1, x2) -> booth((x1, x2))) # hide scatter!(xs, ys) # hide plot(p1, p2, title = "True function") # hide ``` ### Building a surrogate Using the sampled points we build the surrogate, the steps are analogous to the 1-dimensional case. ```@example RadialBasisSurrogateND radial_basis = RadialBasis(xys, zs, lower_bound, upper_bound) ``` ```@example RadialBasisSurrogateND p1 = surface(x, y, (x, y) -> radial_basis([x y])) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> radial_basis([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2, title = "Surrogate") # hide ``` ### Optimizing With our surrogate, we can now search for the minima of the function. Notice how the new sampled points, which were created during the optimization process, are appended to the `xys` array. This is why its size changes. ```@example RadialBasisSurrogateND size(xys) ``` ```@example RadialBasisSurrogateND surrogate_optimize( booth, SRBF(), lower_bound, upper_bound, radial_basis, RandomSample(), maxiters = 50) ``` ```@example RadialBasisSurrogateND size(xys) ``` ```@example RadialBasisSurrogateND p1 = surface(x, y, (x, y) -> radial_basis([x y])) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide zs = booth.(xys) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> radial_basis([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2) # hide ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
5319
## Random forests surrogate tutorial !!! note This surrogate requires the 'SurrogatesRandomForest' module, which can be added by inputting "]add SurrogatesRandomForest" from the Julia command line. Random forests is a supervised learning algorithm that randomly creates and merges multiple decision trees into one forest. We are going to use a random forests surrogate to optimize $f(x)=sin(x)+sin(10/3 * x)$. First of all import `Surrogates` and `Plots`. ```@example RandomForestSurrogate_tutorial using Surrogates using SurrogatesRandomForest using Plots default() ``` ### Sampling We choose to sample f in 4 points between 0 and 1 using the `sample` function. The sampling points are chosen using a Sobol sequence, this can be done by passing `SobolSample()` to the `sample` function. ```@example RandomForestSurrogate_tutorial f(x) = sin(x) + sin(10 / 3 * x) n_samples = 5 lower_bound = 2.7 upper_bound = 7.5 x = sample(n_samples, lower_bound, upper_bound, SobolSample()) y = f.(x) scatter(x, y, label = "Sampled points", xlims = (lower_bound, upper_bound)) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) ``` ### Building a surrogate With our sampled points, we can build the Random forests surrogate using the `RandomForestSurrogate` function. `randomforest_surrogate` behaves like an ordinary function, which we can simply plot. Additionally, you can specify the number of trees created using the parameter num_round ```@example RandomForestSurrogate_tutorial num_round = 2 randomforest_surrogate = RandomForestSurrogate( x, y, lower_bound, upper_bound, num_round = 2) plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) plot!(randomforest_surrogate, label = "Surrogate function", xlims = (lower_bound, upper_bound), legend = :top) ``` ### Optimizing Having built a surrogate, we can now use it to search for minima in our original function `f`. To optimize using our surrogate, we call `surrogate_optimize` method. We choose to use Stochastic RBF as the optimization technique and again Sobol sampling as the sampling technique. ```@example RandomForestSurrogate_tutorial @show surrogate_optimize( f, SRBF(), lower_bound, upper_bound, randomforest_surrogate, SobolSample()) scatter(x, y, label = "Sampled points") plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) plot!(randomforest_surrogate, label = "Surrogate function", xlims = (lower_bound, upper_bound), legend = :top) ``` ## Random Forest ND First of all we will define the `Bukin Function N. 6` function we are going to build a surrogate for. ```@example RandomForestSurrogateND using Plots # hide default(c = :matter, legend = false, xlabel = "x", ylabel = "y") # hide using Surrogates # hide function bukin6(x) x1 = x[1] x2 = x[2] term1 = 100 * sqrt(abs(x2 - 0.01 * x1^2)) term2 = 0.01 * abs(x1 + 10) y = term1 + term2 end ``` ### Sampling Let's define our bounds, this time we are working in two dimensions. In particular we want our first dimension `x` to have bounds `-5, 10`, and `0, 15` for the second dimension. We are taking 50 samples of the space using Sobol Sequences. We then evaluate our function on all the sampling points. ```@example RandomForestSurrogateND n_samples = 50 lower_bound = [-5.0, 0.0] upper_bound = [10.0, 15.0] xys = sample(n_samples, lower_bound, upper_bound, SobolSample()) zs = bukin6.(xys); ``` ```@example RandomForestSurrogateND x, y = -5:10, 0:15 # hide p1 = surface(x, y, (x1, x2) -> bukin6((x1, x2))) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide scatter!(xs, ys, zs) # hide p2 = contour(x, y, (x1, x2) -> bukin6((x1, x2))) # hide scatter!(xs, ys) # hide plot(p1, p2, title = "True function") # hide ``` ### Building a surrogate Using the sampled points, we build the surrogate, the steps are analogous to the 1-dimensional case. ```@example RandomForestSurrogateND using SurrogatesRandomForest RandomForest = RandomForestSurrogate(xys, zs, lower_bound, upper_bound) ``` ```@example RandomForestSurrogateND p1 = surface(x, y, (x, y) -> RandomForest([x y])) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> RandomForest([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2, title = "Surrogate") # hide ``` ### Optimizing With our surrogate, we can now search for the minima of the function. Notice how the new sampled points, which were created during the optimization process, are appended to the `xys` array. This is why its size changes. ```@example RandomForestSurrogateND size(xys) ``` ```@example RandomForestSurrogateND surrogate_optimize( bukin6, SRBF(), lower_bound, upper_bound, RandomForest, SobolSample(), maxiters = 20) ``` ```@example RandomForestSurrogateND size(xys) ``` ```@example RandomForestSurrogateND p1 = surface(x, y, (x, y) -> RandomForest([x y])) # hide xs = [xy[1] for xy in xys] # hide ys = [xy[2] for xy in xys] # hide zs = bukin6.(xys) # hide scatter!(xs, ys, zs, marker_z = zs) # hide p2 = contour(x, y, (x, y) -> RandomForest([x y])) # hide scatter!(xs, ys, marker_z = zs) # hide plot(p1, p2) # hide ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1724
# Rosenbrock function The Rosenbrock function is defined as: ``f(x) = \sum_{i=1}^{d-1}[ (x_{i+1}-x_i)^2 + (x_i - 1)^2]`` I will treat the 2D version, which is commonly defined as: ``f(x,y) = (1-x)^2 + 100(y-x^2)^2`` Let's import Surrogates and Plots: ```@example rosen using Surrogates using SurrogatesPolyChaos using Plots default() ``` Define the objective function: ```@example rosen function f(x) x1 = x[1] x2 = x[2] return (1 - x1)^2 + 100 * (x2 - x1^2)^2 end ``` Let's plot it: ```@example rosen n = 100 lb = [0.0, 0.0] ub = [8.0, 8.0] xys = sample(n, lb, ub, SobolSample()); zs = f.(xys); x, y = 0:8, 0:8 p1 = surface(x, y, (x1, x2) -> f((x1, x2))) xs = [xy[1] for xy in xys] ys = [xy[2] for xy in xys] scatter!(xs, ys, zs) # hide p2 = contour(x, y, (x1, x2) -> f((x1, x2))) scatter!(xs, ys) plot(p1, p2, title = "True function") ``` Fitting different surrogates: ```@example rosen mypoly = PolynomialChaosSurrogate(xys, zs, lb, ub) loba = LobachevskySurrogate(xys, zs, lb, ub) inver = InverseDistanceSurrogate(xys, zs, lb, ub) ``` Plotting: ```@example rosen p1 = surface(x, y, (x, y) -> mypoly([x y])) scatter!(xs, ys, zs, marker_z = zs) p2 = contour(x, y, (x, y) -> mypoly([x y])) scatter!(xs, ys, marker_z = zs) plot(p1, p2, title = "Polynomial expansion") ``` ```@example rosen p1 = surface(x, y, (x, y) -> loba([x y])) scatter!(xs, ys, zs, marker_z = zs) p2 = contour(x, y, (x, y) -> loba([x y])) scatter!(xs, ys, marker_z = zs) plot(p1, p2, title = "Lobachevsky") ``` ```@example rosen p1 = surface(x, y, (x, y) -> inver([x y])) scatter!(xs, ys, zs, marker_z = zs) p2 = contour(x, y, (x, y) -> inver([x y])) scatter!(xs, ys, marker_z = zs) plot(p1, p2, title = "Inverse distance") ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1218
# Sampling Sampling methods are provided by the [QuasiMonteCarlo package](https://docs.sciml.ai/QuasiMonteCarlo/stable/). The syntax for sampling in an interval or region is the following: ``` sample(n,lb,ub,S::SamplingAlgorithm) ``` where lb and ub are, respectively, the lower and upper bounds. There are many sampling algorithms to choose from: - Grid sample ``` GridSample{T} sample(n,lb,ub,S::GridSample) ``` - Uniform sample ``` sample(n,lb,ub,::RandomSample) ``` - Sobol sample ``` sample(n,lb,ub,::SobolSample) ``` - Latin Hypercube sample ``` sample(n,lb,ub,::LatinHypercubeSample) ``` - Low Discrepancy sample ``` sample(n,lb,ub,S::HaltonSample) ``` - Sample on section ``` SectionSample sample(n,lb,ub,S::SectionSample) ``` ## Adding a new sampling method Adding a new sampling method is a two- step process: 1. Adding a new SamplingAlgorithm type 2. Overloading the sample function with the new type. **Example** ``` struct NewAmazingSamplingAlgorithm{OPTIONAL} <: QuasiMonteCarlo.SamplingAlgorithm end function sample(n,lb,ub,::NewAmazingSamplingAlgorithm) if lb is Number ... return x else ... return Tuple.(x) end end ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1197
# Second order polynomial tutorial The square polynomial model can be expressed by: ``y = XΞ² + Ο΅`` Where X is the matrix of the linear model augmented by adding 2d columns, containing pair by pair products of variables and variables squared. ```@example second_order_tut using Surrogates using Plots default() ``` ## Sampling ```@example second_order_tut f = x -> 3 * sin(x) + 10 / x lb = 3.0 ub = 6.0 n = 10 x = sample(n, lb, ub, HaltonSample()) y = f.(x) scatter(x, y, label = "Sampled points", xlims = (lb, ub)) plot!(f, label = "True function", xlims = (lb, ub)) ``` ## Building the surrogate ```@example second_order_tut sec = SecondOrderPolynomialSurrogate(x, y, lb, ub) plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lb, ub)) plot!(f, label = "True function", xlims = (lb, ub)) plot!(sec, label = "Surrogate function", xlims = (lb, ub)) ``` ## Optimizing ```@example second_order_tut @show surrogate_optimize(f, SRBF(), lb, ub, sec, SobolSample()) scatter(x, y, label = "Sampled points") plot!(f, label = "True function", xlims = (lb, ub)) plot!(sec, label = "Surrogate function", xlims = (lb, ub)) ``` The optimization method successfully found the minimum.
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
2160
# Sphere function The sphere function of dimension d is defined as: ``f(x) = \sum_{i=1}^d x_i^2`` with lower bound -10 and upper bound 10. Let's import Surrogates and Plots: ```@example sphere_function using Surrogates using Plots default() ``` Define the objective function: ```@example sphere_function function sphere_function(x) return sum(x .^ 2) end ``` The 1D case is just a simple parabola, let's plot it: ```@example sphere_function n = 20 lb = -10 ub = 10 x = sample(n, lb, ub, SobolSample()) y = sphere_function.(x) xs = lb:0.001:ub plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lb, ub), ylims = (-2, 120), legend = :top) plot!(xs, sphere_function.(xs), label = "True function", legend = :top) ``` Fitting RadialSurrogate with different radial basis: ```@example sphere_function rad_1d_linear = RadialBasis(x, y, lb, ub) rad_1d_cubic = RadialBasis(x, y, lb, ub, rad = cubicRadial()) rad_1d_multiquadric = RadialBasis(x, y, lb, ub, rad = multiquadricRadial()) plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lb, ub), ylims = (-2, 120), legend = :top) plot!(xs, sphere_function.(xs), label = "True function", legend = :top) plot!(xs, rad_1d_linear.(xs), label = "Radial surrogate with linear", legend = :top) plot!(xs, rad_1d_cubic.(xs), label = "Radial surrogate with cubic", legend = :top) plot!(xs, rad_1d_multiquadric.(xs), label = "Radial surrogate with multiquadric", legend = :top) ``` Fitting Lobachevsky Surrogate with different values of hyperparameter alpha: ```@example sphere_function loba_1 = LobachevskySurrogate(x, y, lb, ub) loba_2 = LobachevskySurrogate(x, y, lb, ub, alpha = 1.5, n = 6) loba_3 = LobachevskySurrogate(x, y, lb, ub, alpha = 0.3, n = 6) plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lb, ub), ylims = (-2, 120), legend = :top) plot!(xs, sphere_function.(xs), label = "True function", legend = :top) plot!(xs, loba_1.(xs), label = "Lobachevsky surrogate 1", legend = :top) plot!(xs, loba_2.(xs), label = "Lobachevsky surrogate 2", legend = :top) plot!(xs, loba_3.(xs), label = "Lobachevsky surrogate 3", legend = :top) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
2061
# Surrogate Every surrogate has a different definition depending on the parameters needed. However, they have in common: 1. `add_point!(::AbstractSurrogate,x_new,y_new)` 2. `AbstractSurrogate(value)` The first function adds a sample point to the surrogate, thus changing the internal coefficients. The second one calculates the approximation at value. - Linear surrogate ```@docs LinearSurrogate(x,y,lb,ub) ``` - Radial basis function surrogate ```@docs RadialBasis(x, y, lb, ub; rad::RadialFunction = linearRadial, scale_factor::Real=1.0, sparse = false) ``` - Kriging surrogate ```@docs Kriging(x,y,p,theta) ``` - Lobachevsky surrogate ```@docs LobachevskySurrogate(x,y,lb,ub; alpha = collect(one.(x[1])),n::Int = 4, sparse = false) lobachevsky_integral(loba::LobachevskySurrogate,lb,ub) ``` - Support vector machine surrogate, requires `using LIBSVM` and `using SurrogatesSVM` ``` SVMSurrogate(x,y,lb::Number,ub::Number) ``` - Random forest surrogate, requires `using XGBoost` and `using SurrogatesRandomForest` ``` RandomForestSurrogate(x,y,lb,ub;num_round::Int = 1) ``` - Neural network surrogate, requires `using Flux` and `using SurrogatesFlux` ``` NeuralSurrogate(x,y,lb,ub; model = Chain(Dense(length(x[1]),1), first), loss = (x,y) -> Flux.mse(model(x), y),opt = Descent(0.01),n_echos::Int = 1) ``` # Creating another surrogate It's great that you want to add another surrogate to the library! You will need to: 1. Define a new mutable struct and a constructor function 2. Define add\_point!(your\_surrogate::AbstractSurrogate,x\_new,y\_new) 3. Define your\_surrogate(value) for the approximation **Example** ``` mutable struct NewSurrogate{X,Y,L,U,C,A,B} <: AbstractSurrogate x::X y::Y lb::L ub::U coeff::C alpha::A beta::B end function NewSurrogate(x,y,lb,ub,parameters) ... return NewSurrogate(x,y,lb,ub,calculated\_coeff,alpha,beta) end function add_point!(NewSurrogate,x\_new,y\_new) nothing end function (s::NewSurrogate)(value) return s.coeff*value + s.alpha end ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1012
# Tensor product function The tensor product function is defined as: ``f(x) = \prod_{i=1}^d \cos(a\pi x_i)`` Let's import Surrogates and Plots: ```@example tensor using Surrogates using Plots default() ``` Define the 1D objective function: ```@example tensor function f(x) a = 0.5 return cos(a * pi * x) end ``` ```@example tensor n = 30 lb = -5.0 ub = 5.0 a = 0.5 x = sample(n, lb, ub, SobolSample()) y = f.(x) xs = lb:0.001:ub scatter(x, y, label = "Sampled points", xlims = (lb, ub), ylims = (-1, 1), legend = :top) plot!(xs, f.(xs), label = "True function", legend = :top) ``` Fitting and plotting different surrogates: ```@example tensor loba_1 = LobachevskySurrogate(x, y, lb, ub) krig = Kriging(x, y, lb, ub) scatter( x, y, label = "Sampled points", xlims = (lb, ub), ylims = (-2.5, 2.5), legend = :bottom) plot!(xs, f.(xs), label = "True function", legend = :top) plot!(xs, loba_1.(xs), label = "Lobachevsky", legend = :top) plot!(xs, krig.(xs), label = "Kriging", legend = :top) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
3302
## Surrogates 101 Let's start with something easy to get our hands dirty. I want to build a surrogate for ``f(x) = \log(x) \cdot x^2+x^3``. Let's choose the radial basis surrogate. ```@example using Surrogates f = x -> log(x) * x^2 + x^3 lb = 1.0 ub = 10.0 x = sample(50, lb, ub, SobolSample()) y = f.(x) my_radial_basis = RadialBasis(x, y, lb, ub) #I want an approximation at 5.4 approx = my_radial_basis(5.4) ``` Let's now see an example in 2D. ```@example using Surrogates using LinearAlgebra f = x -> x[1] * x[2] lb = [1.0, 2.0] ub = [10.0, 8.5] x = sample(50, lb, ub, SobolSample()) y = f.(x) my_radial_basis = RadialBasis(x, y, lb, ub) #I want an approximation at (1.0,1.4) approx = my_radial_basis((1.0, 1.4)) ``` ## Kriging standard error Let's now use the Kriging surrogate, which is a single-output Gaussian process. This surrogate has a nice feature: not only does it approximate the solution at a point, it also calculates the standard error at such a point. Let's see an example: ```@example kriging using Surrogates f = x -> exp(x) * x^2 + x^3 lb = 0.0 ub = 10.0 x = sample(50, lb, ub, RandomSample()) y = f.(x) p = 1.9 my_krig = Kriging(x, y, lb, ub, p = p) #I want an approximation at 5.4 approx = my_krig(5.4) #I want to find the standard error at 5.4 std_err = std_error_at_point(my_krig, 5.4) ``` Let's now optimize the Kriging surrogate using the lower confidence bound method. This is just a one-liner: ```@example kriging surrogate_optimize( f, LCBS(), lb, ub, my_krig, RandomSample(); maxiters = 10, num_new_samples = 10) ``` Surrogate optimization methods have two purposes: they both sample the space in unknown regions and look for the minima at the same time. ## Lobachevsky integral The Lobachevsky surrogate has the nice feature of having a closed formula for its integral, which is something that other surrogates are missing. Let's compare it with QuadGK: ```@example using Surrogates using QuadGK obj = x -> 3 * x + log(x) a = 1.0 b = 4.0 x = sample(2000, a, b, SobolSample()) y = obj.(x) alpha = 2.0 n = 6 my_loba = LobachevskySurrogate(x, y, a, b, alpha = alpha, n = n) #1D integral int_1D = lobachevsky_integral(my_loba, a, b) int = quadgk(obj, a, b) int_val_true = int[1] - int[2] println(int_1D) println(int_val_true) ``` ## Example of NeuralSurrogate Basic example of fitting a neural network on a simple function of two variables. ```@example using Surrogates using Flux using Statistics using SurrogatesFlux f = x -> x[1]^2 + x[2]^2 bounds = Float32[-1.0, -1.0], Float32[1.0, 1.0] # Flux models are in single precision by default. # Thus, single precision will also be used here for our training samples. x_train = sample(100, bounds..., SobolSample()) y_train = f.(x_train) # Perceptron with one hidden layer of 20 neurons. model = Chain(Dense(2, 20, relu), Dense(20, 1)) loss(x, y) = Flux.mse(model(x), y) # Training of the neural network learning_rate = 0.1 optimizer = Descent(learning_rate) # Simple gradient descent. See Flux documentation for other options. n_epochs = 50 sgt = NeuralSurrogate(x_train, y_train, bounds..., model = model, loss = loss, opt = optimizer, n_echos = n_epochs) # Testing the new model x_test = sample(30, bounds..., SobolSample()) test_error = mean(abs2, sgt(x)[1] - f(x) for x in x_test) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1123
# Variable fidelity Surrogates With the variable fidelity surrogate, we can specify two different surrogates: one for high-fidelity data and one for low-fidelity data. By default, the first half of the samples are considered high-fidelity and the second half low-fidelity. ```@example variablefid using Surrogates using Plots default() ``` ```@example variablefid n = 20 lower_bound = 1.0 upper_bound = 6.0 x = sample(n, lower_bound, upper_bound, SobolSample()) f = x -> 1 / 3 * x y = f.(x) plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) ``` ```@example variablefid varfid = VariableFidelitySurrogate(x, y, lower_bound, upper_bound) ``` ```@example variablefid plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) plot!( varfid, label = "Surrogate function", xlims = (lower_bound, upper_bound), legend = :top) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1271
# Water flow function The water flow function is defined as: ``f(r_w,r,T_u,H_u,T_l,H_l,L,K_w) = \frac{2*\pi*T_u(H_u - H_l)}{\log(\frac{r}{r_w})*[1 + \frac{2LT_u}{\log(\frac{r}{r_w})*r_w^2*K_w}+ \frac{T_u}{T_l} ]}`` It has 8 dimensions. ```@example water using Surrogates using SurrogatesPolyChaos using Plots using LinearAlgebra default() ``` Define the objective function: ```@example water function f(x) r_w = x[1] r = x[2] T_u = x[3] H_u = x[4] T_l = x[5] H_l = x[6] L = x[7] K_w = x[8] log_val = log(r / r_w) return (2 * pi * T_u * (H_u - H_l)) / (log_val * (1 + (2 * L * T_u / (log_val * r_w^2 * K_w)) + T_u / T_l)) end ``` ```@example water n = 180 d = 8 lb = [0.05, 100, 63070, 990, 63.1, 700, 1120, 9855] ub = [0.15, 50000, 115600, 1110, 116, 820, 1680, 12045] x = sample(n, lb, ub, SobolSample()) y = f.(x) n_test = 1000 x_test = sample(n_test, lb, ub, GoldenSample()); y_true = f.(x_test); ``` ```@example water my_rad = RadialBasis(x, y, lb, ub) y_rad = my_rad.(x_test) my_poly = PolynomialChaosSurrogate(x, y, lb, ub) y_poly = my_poly.(x_test) mse_rad = norm(y_true - y_rad, 2) / n_test mse_poly = norm(y_true - y_poly, 2) / n_test println("MSE Radial: $mse_rad") println("MSE Radial: $mse_poly") ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1252
# Welded beam function The welded beam function is defined as: ``f(h,l,t) = \sqrt{\frac{a^2 + b^2 + abl}{\sqrt{0.25(l^2+(h+t)^2)}}}`` With: ``a = \frac{6000}{\sqrt{2}hl}`` ``b = \frac{6000(14 + 0.5l)*\sqrt{0.25(l^2+(h+t)^2)}}{2*[0.707hl(\frac{l^2}{12}+0.25*(h+t)^2)]}`` It has 3 dimension. ```@example welded using Surrogates using Plots using LinearAlgebra default() ``` Define the objective function: ```@example welded function f(x) h = x[1] l = x[2] t = x[3] a = 6000 / (sqrt(2) * h * l) b = (6000 * (14 + 0.5 * l) * sqrt(0.25 * (l^2 + (h + t)^2))) / (2 * (0.707 * h * l * (l^2 / 12 + 0.25 * (h + t)^2))) return (sqrt(a^2 + b^2 + l * a * b)) / (sqrt(0.25 * (l^2 + (h + t)^2))) end ``` ```@example welded n = 300 d = 3 lb = [0.125, 5.0, 5.0] ub = [1.0, 10.0, 10.0] x = sample(n, lb, ub, SobolSample()) y = f.(x) n_test = 1000 x_test = sample(n_test, lb, ub, GoldenSample()); y_true = f.(x_test); ``` ```@example welded my_rad = RadialBasis(x, y, lb, ub) y_rad = my_rad.(x_test) mse_rad = norm(y_true - y_rad, 2) / n_test println("MSE Radial: $mse_rad") my_loba = LobachevskySurrogate(x, y, lb, ub) y_loba = my_loba.(x_test) mse_rad = norm(y_true - y_loba, 2) / n_test println("MSE Lobachevsky: $mse_rad") ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
6.10.0
ba29564853a3f7b10eb699f1e99a62cdb6a3770f
docs
1215
# Wendland Surrogate The Wendland surrogate is a compact surrogate: it allocates much less memory than other surrogates. The coefficients are found using an iterative solver. ``f = x -> exp(-x^2)`` ```@example wendland using Surrogates using Plots ``` ```@example wendland n = 40 lower_bound = 0.0 upper_bound = 1.0 f = x -> exp(-x^2) x = sample(n, lower_bound, upper_bound, SobolSample()) y = f.(x) ``` We choose to sample f in 30 points between 5 and 25 using `sample` function. The sampling points are chosen using a Sobol sequence, this can be done by passing `SobolSample()` to the `sample` function. ## Building Surrogate The choice of the right parameter is especially important here: a slight change in Ο΅ would produce a totally different fit. Try it yourself with this function! ```@example wendland my_eps = 0.5 wend = Wendland(x, y, lower_bound, upper_bound, eps = my_eps) ``` ```@example wendland plot(x, y, seriestype = :scatter, label = "Sampled points", xlims = (lower_bound, upper_bound), legend = :top) plot!(f, label = "True function", xlims = (lower_bound, upper_bound), legend = :top) plot!(wend, label = "Surrogate function", xlims = (lower_bound, upper_bound), legend = :top) ```
Surrogates
https://github.com/SciML/Surrogates.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
853
using Documenter using SatelliteToolboxAtmosphericModels makedocs( modules = [SatelliteToolboxAtmosphericModels], format = Documenter.HTML( prettyurls = !("local" in ARGS), canonical = "https://juliaspace.github.io/SatelliteToolboxAtmosphericModels.jl/stable/", ), sitename = "SatelliteToolboxAtmosphericModels.jl", authors = "Ronan Arraes Jardim Chagas", pages = [ "Home" => "index.md", "Atmospheric Models" => [ "Exponential" => "man/exponential.md", "Jacchia-Roberts 1971" => "man/jr1971.md", "Jacchia-Bowman 2008" => "man/jb2008.md", "NRLMSISE-00" => "man/nrlmsise00.md" ], "Library" => "lib/library.md", ], ) deploydocs( repo = "github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git", target = "build", )
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
1712
## Description ############################################################################# # # Definition of the module AtmosphericModels to access the models defined here. # ############################################################################################ module AtmosphericModels using Accessors using Crayons using LinearAlgebra using PolynomialRoots using Printf using SpaceIndices using SatelliteToolboxBase using SatelliteToolboxCelestialBodies using SatelliteToolboxLegendre import Base: show ############################################################################################ # Constants # ############################################################################################ const _D = string(Crayon(reset = true)) const _B = string(crayon"bold") ############################################################################################ # Includes # ############################################################################################ include("./exponential/constants.jl") include("./exponential/exponential.jl") include("./jr1971/types.jl") include("./jr1971/constants.jl") include("./jr1971/jr1971.jl") include("./jr1971/show.jl") include("./jb2008/types.jl") include("./jb2008/constants.jl") include("./jb2008/jb2008.jl") include("./jb2008/show.jl") include("./nrlmsise00/types.jl") include("./nrlmsise00/auxiliary.jl") include("./nrlmsise00/constants.jl") include("./nrlmsise00/math.jl") include("./nrlmsise00/nrlmsise00.jl") include("./nrlmsise00/show.jl") end # module AtmosphericModels
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
475
module SatelliteToolboxAtmosphericModels using Reexport @reexport using SpaceIndices export AtmosphericModels ############################################################################################ # Includes # ############################################################################################ include("./AtmosphericModels.jl") end # module SatelliteToolboxAtmosphericModels
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
1865
## Description ############################################################################# # # Constants for the exponential atmosphere model. # ## References ############################################################################## # # [1] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. # Microcosm Press, Hawthorn, CA, USA. # ############################################################################################ """ const _EXPONENTIAL_ATMOSPHERE_Hβ‚€ Base altitude for the exponential atmospheric model [km]. """ const _EXPONENTIAL_ATMOSPHERE_Hβ‚€ = [ 0, 25, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000 ] """ const _EXPONENTIAL_ATMOSPHERE_ρ₀ Nominal density for the exponential atmospheric model [kg / mΒ³]. """ const _EXPONENTIAL_ATMOSPHERE_ρ₀ = [ 1.225, 3.899e-2, 1.774e-2, 3.972e-3, 1.057e-3, 3.206e-4, 8.770e-5, 1.905e-5, 3.396e-6, 5.297e-7, 9.661e-8, 2.438e-8, 8.484e-9, 3.845e-9, 2.070e-9, 5.464e-10, 2.789e-10, 7.248e-11, 2.418e-11, 9.518e-12, 3.725e-12, 1.585e-12, 6.967e-13, 1.454e-13, 3.614e-14, 1.170e-14, 5.245e-15, 3.019e-15 ] """ const _EXPONENTIAL_ATMOSPHERE_H Scale height for the exponential atmospheric model [km]. """ const _EXPONENTIAL_ATMOSPHERE_H = [ 7.249, 6.349, 6.682, 7.554, 8.382, 7.714, 6.549, 5.799, 5.382, 5.877, 7.263, 9.473, 12.636, 16.149, 22.523, 29.740, 37.105, 45.546, 53.628, 53.298, 58.515, 60.828, 63.822, 71.835, 88.667, 124.64, 181.05, 268.00 ]
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
1435
## Description ############################################################################# # # Exponential atmosphere model. # ## Reference ############################################################################### # # [1] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. # Microcosm Press, Hawthorn, CA, USA. # ############################################################################################ export exponential """ exponential(h::Number) -> Float64 Compute the atmospheric density [kg / mΒ³] at the altitude `h` [m] above the ellipsoid using the exponential atmospheric model: β”Œ ┐ β”‚ h - hβ‚€ β”‚ ρ(h) = ρ₀ . exp β”‚ - ──────── β”‚ , β”‚ H β”‚ β”” β”˜ in which `ρ₀`, `hβ‚€`, and `H` are parameters obtained from tables that depend only on `h`. """ function exponential(h::Number) # Check the bounds. h < 0 && throw(ArgumentError("The height must be positive.")) # Transform `h` to km. h /= 1000 # Get the values for the exponential model. aux = findfirst(>(0), _EXPONENTIAL_ATMOSPHERE_Hβ‚€ .- h) id = isnothing(aux) ? 28 : aux - 1 hβ‚€ = _EXPONENTIAL_ATMOSPHERE_Hβ‚€[id] ρ₀ = _EXPONENTIAL_ATMOSPHERE_ρ₀[id] H = _EXPONENTIAL_ATMOSPHERE_H[id] # Compute the density. density = ρ₀ * exp(-(h - hβ‚€) / H) return density end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
1748
## Description ############################################################################# # # Constants for the Jacchia-Bowman 2008 Atmospheric Model. # ############################################################################################ # Constants to compute the `Ξ”Tc` correction. const _JB2008_B = ( -0.457512297e+01, -0.512114909e+01, -0.693003609e+02, 0.203716701e+03, 0.703316291e+03, -0.194349234e+04, 0.110651308e+04, -0.174378996e+03, 0.188594601e+04, -0.709371517e+04, 0.922454523e+04, -0.384508073e+04, -0.645841789e+01, 0.409703319e+02, -0.482006560e+03, 0.181870931e+04, -0.237389204e+04, 0.996703815e+03, 0.361416936e+02, ) const _JB2008_C = ( -0.155986211e+02, -0.512114909e+01, -0.693003609e+02, 0.203716701e+03, 0.703316291e+03, -0.194349234e+04, 0.110651308e+04, -0.220835117e+03, 0.143256989e+04, -0.318481844e+04, 0.328981513e+04, -0.135332119e+04, 0.199956489e+02, -0.127093998e+02, 0.212825156e+02, -0.275555432e+01, 0.110234982e+02, 0.148881951e+03, -0.751640284e+03, 0.637876542e+03, 0.127093998e+02, -0.212825156e+02, 0.275555432e+01 ) # F(z) global model values, 1997 - 2006 fit. const _JB2008_FZM = (0.2689e+00, -0.1176e-01, 0.2782e-01, -0.2782e-01, 0.3470e-03) # G(t) global model values, 1997 - 2006 fit. const _JB2008_GTM = ( -0.3633e+00, 0.8506e-01, 0.2401e+00, -0.1897e+00, -0.2554e+00, -0.1790e-01, 0.5650e-03, -0.6407e-03, -0.3418e-02, -0.1252e-02 ) # Coefficients for high altitude density correction. const _JB2008_CHT = (0.22e0, -0.20e-02, 0.115e-02, -0.211e-05)
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
32337
## Description ############################################################################# # # The Jacchia-Bowman 2008 Atmospheric Model, a product of the Space Environment # Technologies. # # The source code is available at the following git: # # http://sol.spacenvironment.net/jb2008/code.html # # For more information about the model, see: # # http://sol.spacenvironment.net/~JB2008/ # ## References ############################################################################## # # [1] Bowman, B. R., Tobiska, W. K., Marcos, F. A., Huang, C. Y., Lin, C. S., Burke, W. J # (2008). A new empirical thermospheric density model JB2008 using new solar and # geomagnetic indices. AIAA/AAS Astrodynamics Specialist Conference, Honolulu, Hawaii. # # [2] Bowman, B. R., Tobiska, W. K., Marcos, F. A., Valladares, C (2007). The JB2006 # empirical thermospheric density model. Journal of Atmospheric and Solar-Terrestrial # Physics, v. 70, p. 774-793. # # [3] Jacchia, L. G (1970). New static models of the thermosphere and exosphere with # empirical temperature profiles. SAO Special Report #313. # ############################################################################################ export jb2008 """ jb2008(instant::DateTime, Ο•_gd::Number, Ξ»::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΞ”Tc::Number]) -> JB2008Output{Float64} jb2008(jd::Number, Ο•_gd::Number, Ξ»::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΞ”Tc::Number]) -> JB2008Output{Float64} Compute the atmospheric density using the Jacchia-Bowman 2008 (JB2008) model. This model is a product of the **Space Environment Technologies**, please, refer to the following website for more information: http://sol.spacenvironment.net/JB2008/ If we omit all space indices, the system tries to obtain them automatically for the selected day `jd` or `instant`. However, the indices must be already initialized using the function `SpaceIndices.init()`. # Arguments - `jd::Number`: Julian day to compute the model. - `instant::DateTime`: Instant to compute the model represent using `DateTime`. - `Ο•_gd`: Geodetic latitude [rad]. - `Ξ»`: Longitude [rad]. - `h`: Altitude [m]. - `F10`: 10.7-cm solar flux [sfu] obtained 1 day before `jd`. - `F10ₐ`: 10.7-cm averaged solar flux using a 81-day window centered on input time obtained 1 day before `jd`. - `S10`: EUV index (26-34 nm) scaled to F10.7 obtained 1 day before `jd`. - `S10ₐ`: EUV 81-day averaged centered index obtained 1 day before `jd`. - `M10`: MG2 index scaled to F10.7 obtained 2 days before `jd`. - `M10ₐ`: MG2 81-day averaged centered index obtained 2 day before `jd`. - `Y10`: Solar X-ray & Ly-Ξ± index scaled to F10.7 obtained 5 days before `jd`. - `Y10ₐ`: Solar X-ray & Ly-Ξ± 81-day averaged centered index obtained 5 days before `jd`. - `DstΞ”Tc`: Temperature variation related to the Dst. # Returns - `JB2008Output{Float64}`: Structure containing the results obtained from the model. """ function jb2008(instant::DateTime, Ο•_gd::Number, Ξ»::Number, h::Number) return jb2008(datetime2julian(instant), Ο•_gd, Ξ», h) end function jb2008(jd::Number, Ο•_gd::Number, Ξ»::Number, h::Number) # Get the data in the desired Julian Day considering the tabular time of the model. F10 = space_index(Val(:F10obs), jd - 1) F10ₐ = sum((space_index.(Val(:F10obs), k) for k in (jd - 1 - 40):(jd - 1 + 40))) / 81 S10 = space_index(Val(:S10), jd - 1) S10ₐ = space_index(Val(:S81a), jd - 1) M10 = space_index(Val(:M10), jd - 2) M10ₐ = space_index(Val(:M81a), jd - 2) Y10 = space_index(Val(:Y10), jd - 5) Y10ₐ = space_index(Val(:Y81a), jd - 5) DstΞ”Tc = space_index(Val(:DTC), jd) @debug """ JB2008 - Fetched Space Indices Daily F10.7 : $(F10) sfu 81-day averaged F10.7 : $(F10ₐ) sfu Daily S10 : $(S10) 81-day averaged S10 : $(S10ₐ) Daily M10 : $(M10) 81-day averaged M10 : $(M10ₐ) Daily Y10 : $(Y10) 81-day averaged Y10 : $(Y10ₐ) Exo. temp. variation : $(DstΞ”Tc) """ return jb2008(jd, Ο•_gd, Ξ», h, F10, F10ₐ, S10, S10ₐ, M10, M10ₐ, Y10, Y10ₐ, DstΞ”Tc) end function jb2008( instant::DateTime, Ο•_gd::Number, Ξ»::Number, h::Number, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΞ”Tc::Number ) jd = datetime2julian(instant) return jb2008(jd, Ο•_gd, Ξ», h, F10, F10ₐ, S10, S10ₐ, M10, M10ₐ, Y10, Y10ₐ, DstΞ”Tc) end function jb2008( jd::Number, Ο•_gd::Number, Ξ»::Number, h::Number, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΞ”Tc::Number ) ######################################################################################## # Constants # ######################################################################################## T₁ = 183.0 # ............................... Temperature at the lower bound [K] z₁ = 90.0 # ................................. Altitude of the lower bound [km] zx = 125.0 # ............................ Altitude of the inflection point [km] Rstar = 8314.32 # .. Rstar is the universal gas-constant (mks) [joules / (K . kmol)] ρ₁ = 3.46e-6 # ........................................ Density at `z₁` [kg / mΒ³] A = 6.02257e26 # ..................... Avogadro's constant (mks) [molecules / kmol] # Assumed sea-level composition. Mbβ‚€ = 28.960 qβ‚€Nβ‚‚ = 0.78110 qβ‚€Oβ‚‚ = 0.20955 qβ‚€Ar = 9.3400e-3 qβ‚€He = 1.2890e-5 # Molecular weights of each specie [kg / kmol]. MNβ‚‚ = 28.0134 MOβ‚‚ = 31.9988 MO = 15.9994 MAr = 39.9480 MHe = 4.0026 MH = 1.00797 # Thermal diffusion coefficient for each specie. Ξ±_Nβ‚‚ = 0.0 Ξ±_Oβ‚‚ = 0.0 Ξ±_O = 0.0 Ξ±_Ar = 0.0 Ξ±_He = -0.38 Ξ±_Hβ‚‚ = 0.0 # Values used to establish height step sizes in the integration process between 90 km to # 105 km, 105 km to 500 km, and above 500km. R1 = 0.010 R2 = 0.025 R3 = 0.075 ######################################################################################## # Preliminaries # ######################################################################################## # Convert the altitude from [m] to [km]. h /= 1000 # Compute the Sun position represented in the inertial reference frame (MOD). s_i = sun_position_mod(jd) # Compute the Sun declination [rad]. Ξ΄s = atan(s_i[3], √(s_i[1] * s_i[1] + s_i[2] * s_i[2])) # Compute the Sun right ascension [rad]. Ξ©s = atan(s_i[2], s_i[1]) # Compute the right ascension of the selected location w.r.t. the inertial reference # frame. Ξ©p = Ξ» + jd_to_gmst(jd) # Compute the hour angle at the selected location, which is the angle measured at the XY # plane between the right ascension of the selected position and the right ascension of # the Sun. H = Ξ©p - Ξ©s # Compute the local solar time. lst = mod((H + Ο€) * 12 / Ο€, 24) ######################################################################################## # Algorithm # ######################################################################################## # == Eq. 2 [1], Eq. 14 [3] ============================================================= # # Nighttime minimum of the global exospheric temperature distribution when the planetary # geomagnetic index Kp is zero. Ξ”F10 = F10 - F10ₐ Ξ”S10 = S10 - S10ₐ Ξ”M10 = M10 - M10ₐ Ξ”Y10 = Y10 - Y10ₐ Wt = min((F10ₐ / 240)^(1 / 4), 1.0) Fsₐ = F10ₐ * Wt + S10ₐ * (1-Wt) Tc = 392.4 + 3.227Fsₐ + 0.298Ξ”F10 + 2.259Ξ”S10 + 0.312Ξ”M10 + 0.178Ξ”Y10 # == Eq. 15 [3] ======================================================================== Ξ· = abs(Ο•_gd - Ξ΄s) / 2 ΞΈ = abs(Ο•_gd + Ξ΄s) / 2 # == Eq. 16 [3] ======================================================================== Ο„ = H - 0.64577182 + 0.10471976sin(H + 0.75049158) # == Eq. 17 [3] ======================================================================== m = 2.5 n = 3.0 R = 0.31 C = cos(Ξ·)^m S = sin(ΞΈ)^m # NOTE: The original equation in [3] does not have the `abs` as in the source-code of # JB2008. Tl = Tc * (1 + R * (S + (C - S) * abs(cos(Ο„ / 2))^n)) # Compute the correction to `Tc` considering the local solar time and latitude. Ξ”Tc = _jb2008_Ξ”Tc(F10, lst, Ο•_gd, h) # Compute the local exospheric temperature with the geomagnetic storm effect. T_exo = Tl + DstΞ”Tc T∞ = T_exo + Ξ”Tc # == Eq. 9 [3] ========================================================================= # # Temperature at the inflection point `z = 125 km`. a = 444.3807 b = 0.02385 c = -392.8292 k = -0.0021357 Tx = a + b * T∞ + c * exp(k * T∞) # == Eq. 5 [3] ========================================================================= # # From 90 to 105 km, for a given temperature profile `T[k]`, the density ρ is computed # by integrating the barometric equation: # # β”Œ ┐ # β”‚ MΒ΄ β”‚ MΜ„Β΄ g # d ln(ρ´) = d ln β”‚ ─── β”‚ - ────── dz , # β”‚ T β”‚ R⋆ T # β”” β”˜ # # which can be rewritten as: # # β”Œ ┐ # β”‚ ρ´T β”‚ MΜ„Β΄ g # d ln β”‚ ───── β”‚ - ────── dz . # β”‚ MΜ„Β΄ β”‚ R⋆ T # β”” β”˜ # # Here, we will compute the following integral: # # # β•­ zβ‚‚ # β”‚ MΜ„Β΄ g # β”‚ ────── dz # β”‚ T # β•― z₁ # # in which z₁ is the minimum value between `h` and 105 km. The integration will be # computed by Newton-Cotes 4th degree method. zβ‚‚ = min(h, 105.0) int, zβ‚‚ = _jb2008_∫(z₁, zβ‚‚, R1, Tx, T∞, _jb2008_Ξ΄f1) Mb₁ = _jb2008_mean_molecular_mass(z₁) Tl₁ = _jb2008_temperature(z₁, Tx, T∞) Mbβ‚‚ = _jb2008_mean_molecular_mass(zβ‚‚) Tlβ‚‚ = _jb2008_temperature(zβ‚‚, Tx, T∞) # `Mbj` and `Tlj` contains, respectively, the mean molecular mass and local temperature # at the boundary of the integration interval. # # The factor 1000 converts `Rstar` to the appropriate units. ρ = ρ₁ * (Mbβ‚‚ / Mb₁) * (Tl₁ / Tlβ‚‚) * exp(-1000 * int / Rstar) # == Eq. 2 [3] ========================================================================= NM = A * ρ N = NM / Mbβ‚‚ # == Eq. 3 [3] ========================================================================= log_nNβ‚‚ = log(qβ‚€Nβ‚‚ * NM / Mbβ‚€) log_nAr = log(qβ‚€Ar * NM / Mbβ‚€) log_nHe = log(qβ‚€He * NM / Mbβ‚€) # == Eq. 4 [3] ========================================================================= log_nOβ‚‚ = log(NM / Mbβ‚€ * (1 + qβ‚€Oβ‚‚) - N) log_nO = log(2 * (N - NM / Mbβ‚€)) log_nH = 0.0 Tz = 0.0 if h <= 105 Tz = Tlβ‚‚ log_nHβ‚‚ = log_nHe - 25 else # == Eq.6 [3] ====================================================================== # # From 100 km to 500 km, neglecting the thermal diffusion coefficient, # the eq. 6 in [3] can be written as: # # β”Œ ┐ # β”‚ 1 + Ξ±α΅’β”‚ MΜ„Β΄ g # d ln β”‚n . T β”‚ = - ────── dz , # β”‚ β”‚ R* T # β”” β”˜ # # where `n` is number density for the i-th specie. This equations must be integrated # for each specie we are considering. # # Here, we will compute the following integral: # # β•­ z₃ # β”‚ g # β”‚ ─── dz # β”‚ T # β•― zβ‚‚ # # in which z₃ is the minimum value between `h` and 500 km. The integration will be # computed by Newton-Cotes 4th degree method. z₃ = min(h, 500.0) int₁, z₃ = _jb2008_∫(zβ‚‚, z₃, R1, Tx, T∞, _jb2008_Ξ΄f2) Tl₃ = _jb2008_temperature(z₃, Tx, T∞) # If `h` is lower than 500 km, then keep integrating until 500 km due to the # hydrogen. Otherwise, continue the integration until `h`. Hence, we will compute # the following integral: # # β•­ zβ‚„ # β”‚ g # β”‚ ─── dz # β”‚ T # β•― z₃ # # in which zβ‚„ is the maximum value between `h` and 500 km. The integration will be # computed by Newton-Cotes 4th degree method. zβ‚„ = max(h, 500.0) intβ‚‚, zβ‚„ = _jb2008_∫(z₃, zβ‚„, (h <= 500) ? R2 : R3, Tx, T∞, _jb2008_Ξ΄f2) Tlβ‚„ = _jb2008_temperature(zβ‚„, Tx, T∞) if h <= 500 Tz = Tl₃ log_TfoTi = log(Tl₃ / Tlβ‚‚) H_sign = +1 # g # goRT = ───── # R⋆ T goRT = 1000 * int₁ / Rstar else Tz = Tlβ‚„ log_TfoTi = log(Tlβ‚„ / Tlβ‚‚) H_sign = -1 # g # goRT = ───── # R⋆ T goRT = 1000 * (int₁ + intβ‚‚) / Rstar end log_nNβ‚‚ += -(1 + Ξ±_Nβ‚‚) * log_TfoTi - goRT * MNβ‚‚ log_nOβ‚‚ += -(1 + Ξ±_Oβ‚‚) * log_TfoTi - goRT * MOβ‚‚ log_nO += -(1 + Ξ±_O ) * log_TfoTi - goRT * MO log_nAr += -(1 + Ξ±_Ar) * log_TfoTi - goRT * MAr log_nHe += -(1 + Ξ±_He) * log_TfoTi - goRT * MHe # == Eq. 7 [3] ===================================================================== # # The equation of [3] will be converted from `log₁₀` to `log`. Furthermore, the # units will be converted to [1 / cmΒ³] to [1 / mΒ³]. log₁₀_nH_500km = @evalpoly(log10(T∞), 73.13, -39.40, 5.5) log_nH_500km = log(10) * (log₁₀_nH_500km + 6) # ^ # | # This factor converts from [1 / cmΒ³] to [1 / mΒ³]. # Compute the hydrogen density based on the value at 500km. log_nH = log_nH_500km + H_sign * (log(Tlβ‚„ / Tl₃) + 1000 / Rstar * intβ‚‚ * MH) end # == Eq. 24 [3] - Seasonal-latitudinal variation ======================================= # # TODO: The term related to the year in the source-code of JB 2008 is different from # [3]. This must be verified. # | Modified jd | Ξ¦ = mod((jd - 2400000.5 - 36204 ) / 365.2422, 1) Ξ”log₁₀ρ = 0.02 * (h - 90) * sign(Ο•_gd) * exp(-0.045(h - 90)) * sin(Ο•_gd)^2 * sin(2Ο€ * Ξ¦ + 1.72 ) # Convert from `log10` to `log`. Ξ”logρ = log(10) * Ξ”log₁₀ρ # == Eq. 23 [3] - Semiannual variation ================================================= if h < 2000 # Compute the year given the selected Julian Day. year, month, day, = jd_to_date(jd) # Compute the day of the year. doy = jd - date_to_jd(year, 1, 1, 0, 0, 0) + 1 # Use the new semiannual model from [1]. Fz, Gz, Ξ”salog₁₀ρ = _jb2008_semiannual(doy, h, F10ₐ, S10ₐ, M10ₐ) (Fz < 0) && (Ξ”salog₁₀ρ = 0.0) # Convert from `log10` to `log`. Ξ”salogρ = log(10) * Ξ”salog₁₀ρ else Ξ”salogρ = 0.0 end # Compute the total variation. Δρ = Ξ”logρ + Ξ”salogρ # Apply to the number densities. log_nNβ‚‚ += Δρ log_nOβ‚‚ += Δρ log_nO += Δρ log_nAr += Δρ log_nHe += Δρ log_nH += Δρ # Compute the high altitude exospheric density correction factor. # # The source-code computes this correction after computing the mass density and mean # molecular weight. Hence, the correction is applied only to the total density. However, # we will apply the correction to each specie. # # TODO: Verify if this is reasonable. log_FρH = log(_jb2008_high_altitude(h, F10ₐ)) log_nNβ‚‚ += log_FρH log_nOβ‚‚ += log_FρH log_nO += log_FρH log_nAr += log_FρH log_nHe += log_FρH log_nH += log_FρH # Compute the mass density and mean molecular weight and convert number density logs # from natural to common. sum_n = 0.0 sum_mn = 0.0 for (log_n, M) in ( (log_nNβ‚‚, MNβ‚‚), (log_nOβ‚‚, MOβ‚‚), (log_nO, MO), (log_nAr, MAr), (log_nHe, MHe), (log_nH, MH) ) n = exp(log_n) sum_n += n sum_mn += n * M end nNβ‚‚ = exp(log_nNβ‚‚) nOβ‚‚ = exp(log_nOβ‚‚) nO = exp(log_nO) nAr = exp(log_nAr) nHe = exp(log_nHe) nH = exp(log_nH) ρ = sum_mn / A # Create and return the output structure. return JB2008Output{Float64}( ρ, Tz, T_exo, nNβ‚‚, nOβ‚‚, nO, nAr, nHe, nH, ) end ############################################################################################ # Private Functions # ############################################################################################ # _jb2008_gravity(z::Number) -> Float64 # # Compute the gravity [m / s] at altitude `z` [km] according to the model Jacchia 1971 [3]. function _jb2008_gravity(z::Number) # Mean Earth radius [km]. Re = 6356.776 # Gravity at Earth surface [m/sΒ²]. gβ‚€ = 9.80665 # Gravity at desired altitude [m/sΒ²]. return gβ‚€ / (1 + z / Re)^2 end # _jb2008_high_altitude(h::Number, F10ₐ::Number) -> Float64 # # Compute the high altitude exospheric density correction factor in altitude `h` [km] and # the averaged 10.7-cm solar flux `F10ₐ` [sfu], which must be obtained using 81-day centered # on input time. # # This function uses the model in Section 6.2 of [2]. function _jb2008_high_altitude(h::Number, F10ₐ::Number) # Auxiliary variables. C = _JB2008_CHT # Compute the high-altitude density correction. FρH = 1.0 @inbounds if 1000 <= h <= 1500 z = (h - 1000) / 500 # In this case, the `F₁₅₀₀` is the density factor at 1500 km. F₁₅₀₀ = C[1] + C[2] * F10ₐ + 1500 * (C[3] + C[4] * F10ₐ) βˆ‚F₁₅₀₀_βˆ‚z = 500 * (C[3] + C[4] * F10ₐ) # In [2], there is an error when computing this coefficients (eq. 11). The partial # derivative has the `500` factor and the coefficients have other `500` factor that # **is not** present in the source-code. c0 = +1 c1 = +0 c2 = +3F₁₅₀₀ - βˆ‚F₁₅₀₀_βˆ‚z - 3 c3 = -2F₁₅₀₀ + βˆ‚F₁₅₀₀_βˆ‚z + 2 FρH = @evalpoly(z, c0, c1, c2, c3) elseif h > 1500 FρH = C[1] + C[2] * F10ₐ + C[3] * h + C[4] * h * F10ₐ end return FρH end # _jb2008_M(z::R) where R -> Float64 # # Compute the mean molecular mass at altitude `z` [km] using the empirical profile in eq. 1 # [3]. function _jb2008_mean_molecular_mass(z::Number) !(90 <= z < 105.1) && @warn "The empirical model for the mean molecular mass is valid only for 90 <= z <= 105 km." M = @evalpoly( z - 100, +28.15204, -0.085586, +1.2840e-4, -1.0056e-5, -1.0210e-5, +1.5044e-6, +9.9826e-8 ) return M end # _jb2008_temperature(z::Number, Tx::Number, T∞::Number) # # Compute the temperature [K] at height `z` [km] given the temperature `Tx` [K] at the # inflection point, and the exospheric temperature `T∞` [K] according to the theory of the # model Jacchia 1971 [3]. # # The inflection point is considered to by `z = 125 km`. function _jb2008_temperature(z::Number, Tx::Number, T∞::Number) # == Constants ========================================================================= T₁ = 183 # .................................... Temperature at the lower bound [K] z₁ = 90 # ...................................... Altitude of the lower bound [km] zx = 125 # ................................. Altitude of the inflection point [km] Ξ”z₁ = z₁ - zx # == Check the Parameters ============================================================== (z < z₁) && throw(ArgumentError("The altitude must not be lower than $(z₁) km.")) (T∞ < 0) && throw(ArgumentError("The exospheric temperature must be positive.")) # Compute the temperature gradient at the inflection point. Gx = 1.9 * (Tx - T₁) / (zx - z₁) # == Compute the Temperature at the Desire Altitude ==================================== Ξ”z = z - zx if z <= zx c₁ = Gx cβ‚‚ = 0 c₃ =-5.1 / (5.7 * Ξ”z₁^2) * Gx cβ‚„ = 0.8 / (1.9 * Ξ”z₁^3) * Gx T = @evalpoly(Ξ”z, Tx, c₁, cβ‚‚, c₃, cβ‚„) else A = 2 * (T∞ - Tx) / Ο€ T = Tx + A * atan(Gx / A * Ξ”z * (1 + 4.5e-6 * Ξ”z^2.5)) end return T end # _jb2008_Ξ΄f1(z::Number, Tx::Number, T∞::Number) -> Float64 # # Auxiliary function to compute the integrand in `_jb2008_∫`. function _jb2008_Ξ΄f1(z::Number, Tx::Number, T∞::Number) Mb = _jb2008_mean_molecular_mass(z) Tl = _jb2008_temperature(z, Tx, T∞) g = _jb2008_gravity(z) return Mb * g / Tl end # _jb2008_Ξ΄f2(z, Tx, T∞) # # Auxiliary function to compute the integrand in `_jb2008_∫`. function _jb2008_Ξ΄f2(z::Number, Tx::Number, T∞::Number) Tl = _jb2008_temperature(z, Tx, T∞) g = _jb2008_gravity(z) return g / Tl end # _jb2008_∫(zβ‚€::Number, z₁::Number, R::Number, Tx::Number, T∞::Number, Ξ΄f::Function) -> Float64, Float64 # # Compute the integral of the function `Ξ΄f` between `zβ‚€` and `z₁` using the Newton-Cotes 4th # degree method. `R` is a number that defines the step size, `Tx` is the temperature at the # inflection point, and `T∞` is the exospheric temperature. # # The integrand function `Ξ΄f` must be `_jb2008_Ξ΄f1` or `_jb2008_Ξ΄f2`. # # # Returns # # - `Float64`: Value of the integral. # - `Float64`: Last value of `z` used in the numerical algorithm. function _jb2008_∫( zβ‚€::Number, z₁::Number, R::Number, Tx::Number, T∞::Number, Ξ΄f::Function ) # Compute the number of integration steps. # # This is computed so that `zβ‚‚ = z₁*(zr)^n`. Hence, `zr` is the factor that defines the # size of each integration interval. al = log(z₁ / zβ‚€) n = floor(Int64, al / R) + 1 zr = exp(al / n) # Initialize the integration auxiliary variables. zi₁ = zβ‚€ zj = 0.0 Mbj = 0.0 Tlj = 0.0 # Variable to store the integral from `zβ‚€` to `z₁`. int = 0.0 # For each integration step, use the Newton-Cotes 4th degree formula to integrate # (Boole's rule). @inbounds for i in 1:n ziβ‚€ = zi₁ # ............... The beginning of the i-th integration step zi₁ = zr * zi₁ # ..................... The end of the i-th integration step Ξ”z = (zi₁ - ziβ‚€) / 4 # ....................... Step for the i-th integration step # Compute the Newton-Cotes 4th degree sum. zj = ziβ‚€ int_i = 14 // 45 * Ξ΄f(zj, Tx, T∞) zj += Ξ”z int_i += 64 // 45 * Ξ΄f(zj, Tx, T∞) zj += Ξ”z int_i += 24 // 45 * Ξ΄f(zj, Tx, T∞) zj += Ξ”z int_i += 64 // 45 * Ξ΄f(zj, Tx, T∞) zj += Ξ”z int_i += 14 // 45 * Ξ΄f(zj, Tx, T∞) # Accumulate the sum. int += int_i * Ξ”z end return int, zj end # # _jb2008_semiannual(doy::Number, h::Number, F10ₐ::Number, S10ₐ::Number, M10ₐ::Number) # # Compute the semiannual density variation considering the JB2008 model [1]. # # # Arguments # # - `doy::Number`: Day of the year + fraction of the day. # - `h::Number`: Height [km]. # - `F10ₐ::Number`: Averaged 10.7-cm flux, which must use a 81-day window centered on # the input time [10⁻²² W / (MΒ² Hz)]. # - `S10ₐ`: EUV 81-day averaged centered index. # - `M10ₐ`: MG2 81-day averaged centered index. # # # Returns # # - `Float64`: Semiannual F(z) height function. # - `Float64`: Semiannual G(t) yearly periodic function. # - `Float64`: Semiannual variation of the density `Ξ”salog₁₀ρ`. function _jb2008_semiannual( doy::Number, h::Number, F10ₐ::Number, S10ₐ::Number, M10ₐ::Number ) # Auxiliary variables. B = _JB2008_FZM C = _JB2008_GTM z = h / 1000 Ο‰ = 2Ο€ * (doy - 1) / 365 # .............................................. See eq. 4 [2] # Compute the new 81-day centered solar index for F(z) according to eq. 4 [1]. Fsmjₐ = 1F10ₐ - 0.7S10ₐ - 0.04M10ₐ # Compute the semiannual F(z) height function according to eq. 5 [1]. Fz = B[1] + B[2] * Fsmjₐ + B[3] * z * Fsmjₐ + B[4] * z^2 * Fsmjₐ + B[5] * z * Fsmjₐ^2 # Compute the new 81-day centered solar index for G(t) according to eq. 6 [1]. Fsmₐ = 1F10ₐ - 0.75S10ₐ - 0.37M10ₐ # Compute the semiannual G(t) yearly periodic function according to eq. 7 # [1]. sΟ‰, cΟ‰ = sincos(1Ο‰) s2Ο‰, c2Ο‰ = sincos(2Ο‰) Gt = (C[1] + C[2] * sΟ‰ + C[3] * cΟ‰ + C[4] * s2Ο‰ + C[5] * c2Ο‰) + (C[6] + C[7] * sΟ‰ + C[8] * cΟ‰ + C[9] * s2Ο‰ + C[10] * c2Ο‰) * Fsmₐ Fz = max(Fz, 1e-6) Ξ”salog₁₀ρ = Fz * Gt return Fz, Gt, Ξ”salog₁₀ρ end # _jb2008_Ξ”Tc(F10::Number, lst::Number, Ο•_gd::Number, h::Number) # # Compute the correction in the `Tc` for Jacchia-Bowman model. # # This correction is mention in [2]. However, the equations do not seem to match those in # the source-code. The ones implemented here are exactly the same as in the source-code. # # # Arguments # # - `F10::Number`: F10.7 flux. # - `lst::Number`: Local solar time (0 - 24) [hr]. # - `Ο•_gd::Number`: Geodetic latitude [rad]. # - `h::Number`: Altitude [km]. # # # Returns # # - `Float64`: The correction `Ξ”Tc` [K]. function _jb2008_Ξ”Tc(F10::Number, lst::Number, Ο•_gd::Number, h::Number) # Auxiliary variables according to [2, p. 784]. B = _JB2008_B C = _JB2008_C F = (F10 - 100) / 100 ΞΈ = lst / 24 ΞΈΒ² = ΞΈ^2 ΞΈΒ³ = ΞΈ^3 θ⁴ = ΞΈ^4 θ⁡ = ΞΈ^5 cΟ• = cos(Ο•_gd) Ξ”Tc = 0.0 # Compute the temperature variation given the altitude. @inbounds if 120 <= h <= 200 Ξ”Tc200 = C[17] + C[18] * ΞΈ * cΟ• + C[19] * ΞΈΒ² * cΟ• + C[20] * ΞΈΒ³ * cΟ• + C[21] * F * cΟ• + C[22] * ΞΈ * F * cΟ• + C[23] * ΞΈΒ² * F * cΟ• Ξ”Tc200Ξ”z = C[ 1] + B[ 2] * F + C[ 3] * ΞΈ * F + C[ 4] * ΞΈΒ² * F + C[ 5] * ΞΈΒ³ * F + C[ 6] * θ⁴ * F + C[ 7] * θ⁡ * F + C[ 8] * ΞΈ * cΟ• + C[ 9] * ΞΈΒ² * cΟ• + C[10] * ΞΈΒ³ * cΟ• + C[11] * θ⁴ * cΟ• + C[12] * θ⁡ * cΟ• + C[13] * cΟ• + C[14] * F * cΟ• + C[15] * ΞΈ * F * cΟ• + C[16] * ΞΈΒ² * F * cΟ• zp = (h - 120) / 80 Ξ”Tc = (3Ξ”Tc200 - Ξ”Tc200Ξ”z) * zp^2 + (Ξ”Tc200Ξ”z - 2Ξ”Tc200) * zp^3 elseif 200 < h <= 240 H = (h - 200) / 50 Ξ”Tc = C[ 1] * H + B[ 2] * F * H + C[ 3] * ΞΈ * F * H + C[ 4] * ΞΈΒ² * F * H + C[ 5] * ΞΈΒ³ * F * H + C[ 6] * θ⁴ * F * H + C[ 7] * θ⁡ * F * H + C[ 8] * ΞΈ * cΟ• * H + C[ 9] * ΞΈΒ² * cΟ• * H + C[10] * ΞΈΒ³ * cΟ• * H + C[11] * θ⁴ * cΟ• * H + C[12] * θ⁡ * cΟ• * H + C[13] * cΟ• * H + C[14] * F * cΟ• * H + C[15] * ΞΈ * F * cΟ• * H + C[16] * ΞΈΒ² * F * cΟ• * H + C[17] + C[18] * ΞΈ * cΟ• + C[19] * ΞΈΒ² * cΟ• + C[20] * ΞΈΒ³ * cΟ• + C[21] * F * cΟ• + C[22] * ΞΈ * F * cΟ• + C[23] * ΞΈΒ² * F * cΟ• elseif 240 < h <= 300 H = 40 / 50 aux1 = C[ 1] * H + B[ 2] * F * H + C[ 3] * ΞΈ * F * H + C[ 4] * ΞΈΒ² * F * H + C[ 5] * ΞΈΒ³ * F * H + C[ 6] * θ⁴ * F * H + C[ 7] * θ⁡ * F * H + C[ 8] * ΞΈ * cΟ• * H + C[ 9] * ΞΈΒ² * cΟ• * H + C[10] * ΞΈΒ³ * cΟ• * H + C[11] * θ⁴ * cΟ• * H + C[12] * θ⁡ * cΟ• * H + C[13] * cΟ• * H + C[14] * F * cΟ• * H + C[15] * ΞΈ * F * cΟ• * H + C[16] * ΞΈΒ² * F * cΟ• * H + C[17] + C[18] * ΞΈ * cΟ• + C[19] * ΞΈΒ² * cΟ• + C[20] * ΞΈΒ³ * cΟ• + C[21] * F * cΟ• + C[22] * ΞΈ * F * cΟ• + C[23] * ΞΈΒ² * F * cΟ• aux2 = C[ 1] + B[ 2] * F + C[ 3] * ΞΈ * F + C[ 4] * ΞΈΒ² * F + C[ 5] * ΞΈΒ³ * F + C[ 6] * θ⁴ * F + C[ 7] * θ⁡ * F + C[ 8] * ΞΈ * cΟ• + C[ 9] * ΞΈΒ² * cΟ• + C[10] * ΞΈΒ³ * cΟ• + C[11] * θ⁴ * cΟ• + C[12] * θ⁡ * cΟ• + C[13] * cΟ• + C[14] * F * cΟ• + C[15] * ΞΈ * F * cΟ• + C[16] * ΞΈΒ² * F * cΟ• H = 300 / 100 Ξ”Tc300 = B[ 1] + B[ 2] * F + B[ 3] * ΞΈ * F + B[ 4] * ΞΈΒ² * F + B[ 5] * ΞΈΒ³ * F + B[ 6] * θ⁴ * F + B[ 7] * θ⁡ * F + B[ 8] * ΞΈ * cΟ• + B[ 9] * ΞΈΒ² * cΟ• + B[10] * ΞΈΒ³ * cΟ• + B[11] * θ⁴ * cΟ• + B[12] * θ⁡ * cΟ• + B[13] * H * cΟ• + B[14] * ΞΈ * H * cΟ• + B[15] * ΞΈΒ² * H * cΟ• + B[16] * ΞΈΒ³ * H * cΟ• + B[17] * θ⁴ * H * cΟ• + B[18] * θ⁡ * H * cΟ• + B[19] * cΟ• Ξ”Tc300Ξ”z = B[13] * cΟ• + B[14] * ΞΈ * cΟ• + B[15] * ΞΈΒ² * cΟ• + B[16] * ΞΈΒ³ * cΟ• + B[17] * θ⁴ * cΟ• + B[18] * θ⁡ * cΟ• aux3 = 3Ξ”Tc300 - Ξ”Tc300Ξ”z - 3aux1 - 2aux2 aux4 = Ξ”Tc300 - aux1 - aux2 - aux3 zp = (h - 240) / 60 Ξ”Tc = @evalpoly(zp, aux1, aux2, aux3, aux4) elseif 300 < h <= 600 H = h / 100 Ξ”Tc = B[ 1] + B[ 2] * F + B[ 3] * ΞΈ * F + B[ 4] * ΞΈΒ² * F + B[ 5] * ΞΈΒ³ * F + B[ 6] * θ⁴ * F + B[ 7] * θ⁡ * F + B[ 8] * ΞΈ * cΟ• + B[ 9] * ΞΈΒ² * cΟ• + B[10] * ΞΈΒ³ * cΟ• + B[11] * θ⁴ * cΟ• + B[12] * θ⁡ * cΟ• + B[13] * H * cΟ• + B[14] * ΞΈ * H * cΟ• + B[15] * ΞΈΒ² * H * cΟ• + B[16] * ΞΈΒ³ * H * cΟ• + B[17] * θ⁴ * H * cΟ• + B[18] * θ⁡ * H * cΟ• + B[19] * cΟ• elseif 600 < h <= 800 zp = (h - 600) / 100 hp = 600 / 100 aux1 = B[ 1] + B[ 2] * F + B[ 3] * ΞΈ * F + B[ 4] * ΞΈΒ² * F + B[ 5] * ΞΈΒ³ * F + B[ 6] * θ⁴ * F + B[ 7] * θ⁡ * F + B[ 8] * ΞΈ * cΟ• + B[ 9] * ΞΈΒ² * cΟ• + B[10] * ΞΈΒ³ * cΟ• + B[11] * θ⁴ * cΟ• + B[12] * θ⁡ * cΟ• + B[13] * hp * cΟ• + B[14] * ΞΈ * hp * cΟ• + B[15] * ΞΈΒ² * hp * cΟ• + B[16] * ΞΈΒ³ * hp * cΟ• + B[17] * θ⁴ * hp * cΟ• + B[18] * θ⁡ * hp * cΟ• + B[19] * cΟ• aux2 = B[13] * cΟ• + B[14] * ΞΈ * cΟ• + B[15] * ΞΈΒ² * cΟ• + B[16] * ΞΈΒ³ * cΟ• + B[17] * θ⁴ * cΟ• + B[18] * θ⁡ * cΟ• aux3 = -(3aux1 + 4aux2) / 4 aux4 = ( aux1 + aux2) / 4 Ξ”Tc = @evalpoly(zp, aux1, aux2, aux3, aux4) end return Ξ”Tc end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
2155
## Description ############################################################################# # # Function to show the results of the Jacchia-Bowman 2008 atmospheric model. # ############################################################################################ function show(io::IO, out::JB2008Output) # Check for color support in the `io`. color = get(io, :color, false) b = color ? _B : "" d = color ? _D : "" print(io, "$(b)JB2008 output$(d) (ρ = ", @sprintf("%g", out.total_density), " kg / mΒ³)") return nothing end function show(io::IO, mime::MIME"text/plain", out::JB2008Output) # Check for color support in the `io`. color = get(io, :color, false) b = color ? _B : "" d = color ? _D : "" str_total_density = @sprintf("%15g", out.total_density) str_temperature = @sprintf("%15.2f", out.temperature) str_exospheric_temp = @sprintf("%15.2f", out.exospheric_temperature) str_Nβ‚‚_number_den = @sprintf("%15g", out.N2_number_density) str_Oβ‚‚_number_den = @sprintf("%15g", out.O2_number_density) str_O_number_den = @sprintf("%15g", out.O_number_density) str_Ar_number_den = @sprintf("%15g", out.Ar_number_density) str_He_number_den = @sprintf("%15g", out.He_number_density) str_H_number_den = @sprintf("%15g", out.H_number_density) println(io, "Jacchia-Bowman 2008 Atmospheric Model Result:") println(io, "$(b) Total density :$(d)", str_total_density, " kg / mΒ³") println(io, "$(b) Temperature :$(d)", str_temperature, " K") println(io, "$(b) Exospheric Temp. :$(d)", str_exospheric_temp, " K") println(io, "$(b) Nβ‚‚ number density :$(d)", str_Nβ‚‚_number_den, " 1 / mΒ³") println(io, "$(b) Oβ‚‚ number density :$(d)", str_Oβ‚‚_number_den, " 1 / mΒ³") println(io, "$(b) O number density :$(d)", str_O_number_den, " 1 / mΒ³") println(io, "$(b) Ar number density :$(d)", str_Ar_number_den, " 1 / mΒ³") println(io, "$(b) He number density :$(d)", str_He_number_den, " 1 / mΒ³") print(io, "$(b) H number density :$(d)", str_H_number_den, " 1 / mΒ³") return nothing end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
1152
## Description ############################################################################# # # Types related to the Jacchia-Bowman 2008 atmospheric model. # ############################################################################################ export JB2008Output """ struct JB2008Output{T<:Number} Output of the atmospheric model Jacchia-Bowman 2008. # Fields - `total_density::T`: Total atmospheric density [1 / mΒ³]. - `temperature::T`: Temperature at the selected position [K]. - `exospheric_temperature::T`: Exospheric temperature [K]. - `N2_number_density::T`: Number density of Nβ‚‚ [1 / mΒ³]. - `O2_number_density::T`: Number density of Oβ‚‚ [1 / mΒ³]. - `O_number_density::T`: Number density of O [1 / mΒ³]. - `Ar_number_density::T`: Number density of Ar [1 / mΒ³]. - `He_number_density::T`: Number density of He [1 / mΒ³]. - `H_number_density::T`: Number density of H [1 / mΒ³]. """ struct JB2008Output{T<:Number} total_density::T temperature::T exospheric_temperature::T N2_number_density::T O2_number_density::T O_number_density::T Ar_number_density::T He_number_density::T H_number_density::T end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
6959
## Description ############################################################################# # # Constants for the Jacchia-Roberts 1971 Atmospheric Model. # ############################################################################################ """ const _JR1971_CONSTANTS Constants for the Jacchia-Roberts 1971 atmospheric model. """ const _JR1971_CONSTANTS = (; ######################################################################################## # General Constants # ######################################################################################## Rstar = 8.31432, # ........ Rstar is the universal gas-constant [joules / (K . mol)] Av = 6.022045e23, # ..................... Avogadro's constant (mks) [molecules / mol] Ra = 6356.766, # .......................................... Mean Earth radius [km] gβ‚€ = 9.80665, # ................................... Gravity at sea level [m / sΒ²] ######################################################################################## # Values at The Sea Level # ######################################################################################## Mβ‚€ = 28.960, # .............................. Mean molecular mass at sea level [g / mol] ######################################################################################## # Values at Lower Boundary # ######################################################################################## T₁ = 183.0, # .................................... Temperature at the lower bound [K] z₁ = 90.0, # ...................................... Altitude of the lower bound [km] M₁ = 28.82678, # ................................. Mean molecular mass at `z₁` [g / mol] ρ₁ = 3.46e-9, # ............................................. Density at `z₁` [g / cmΒ³] ######################################################################################## # Values at the Second Division # ######################################################################################## zβ‚‚ = 100.0, ######################################################################################## # Values at the Inflection Point # ######################################################################################## zx = 125.0, # .................................... Altitude of the inflection point [km] ######################################################################################## # Molecular Mass [g / mol] # ######################################################################################## Mi = ( Nβ‚‚ = 28.0134, Oβ‚‚ = 31.9988, O = 15.9994, Ar = 39.9480, He = 4.0026, H = 1.00797 ), ######################################################################################## # Thermal Diffusion Coefficient # ######################################################################################## Ξ±i = ( Nβ‚‚ = 0, Oβ‚‚ = 0, O = 0, Ar = 0, He = -0.38, H = 0 ), ######################################################################################## # Constituent density * Mβ‚€ / ρ_₁₀₀ / Av # ######################################################################################## ΞΌi = ( Nβ‚‚ = 0.78110, Oβ‚‚ = 0.161778, O = 0.095544, Ar = 0.0093432, He = 0.61471e-5, H = 0 ), ######################################################################################## # Coefficients for Series Expansion # ######################################################################################## Aa = ( -435093.363387, 28275.5646391, -765.33466108, 11.043387545, -0.08958790995, 0.00038737586, -0.000000697444 ), Ca = ( -89284375.0, 3542400.0, -52687.5, 340.5, -0.8 ), la = ( 0.1031445e+5, 0.2341230e+1, 0.1579202e-2, -0.1252487e-5, 0.2462708e-9 ), Ξ± = ( 3144902516.672729, -123774885.4832917, 1816141.096520398, -11403.31079489267, 24.36498612105595, 0.008957502869707995 ), Ξ² = ( -52864482.17910969, -16632.50847336828, -1.308252378125, 0, 0, 0 ), ΞΆ = ( 0.1985549e-10, -0.1833490e-14, 0.1711735e-17, -0.1021474e-20, 0.3727894e-24, -0.7734110e-28, 0.7026942e-32 ), Ξ΄ij = ( Nβ‚‚ = ( 0.1093155e2, 0.1186783e-2, # (1 / K) -0.1677341e-5, # (1 / K)Β² 0.1420228e-8, # (1 / K)Β³ -0.7139785e-12, # (1 / K)⁴ 0.1969715e-15, # (1 / K)⁡ -0.2296182e-19 # (1 / K)⁢ ), Oβ‚‚ = ( 0.9924237e1, 0.1600311e-2, # (1 / K) -0.2274761e-5, # (1 / K)Β² 0.1938454e-8, # (1 / K)Β³ -0.9782183e-12, # (1 / K)⁴ 0.2698450e-15, # (1 / K)⁡ -0.3131808e-19 # (1 / K)⁢ ), O = ( 0.1097083e2, 0.6118742e-4, # (1 / K) -0.1165003e-6, # (1 / K)Β² 0.9239354e-10, # (1 / K)Β³ -0.3490739e-13, # (1 / K)⁴ 0.5116298e-17, # (1 / K)⁡ 0 # (1 / K)⁢ ), Ar = ( 0.8049405e1, 0.2382822e-2, # (1 / K) -0.3391366e-5, # (1 / K)Β² 0.2909714e-8, # (1 / K)Β³ -0.1481702e-11, # (1 / K)⁴ 0.4127600e-15, # (1 / K)⁡ -0.4837461e-19 # (1 / K)⁢ ), He = ( 0.7646886e1, -0.4383486e-3, # (1 / K) 0.4694319e-6, # (1 / K)Β² -0.2894886e-9, # (1 / K)Β³ 0.9451989e-13, # (1 / K)⁴ -0.1270838e-16, # (1 / K)⁡ 0 # (1 / K)⁢ ), ) ) """ const _JR1971_ROOT_GUESS First guess to compute the roots of a polynomial to find the density below 125 km. """ const _JR1971_ROOT_GUESS = Complex{Float64}[166.10; 61.32; 9.91 + 1.31im; 9.91 - 1.31im]
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
21749
## Description ############################################################################# # # The Jacchia-Roberts 1971 Atmospheric Model. # ## References ############################################################################## # # [1] Roberts, C. R (1971). An analytic model for upper atmosphere densities based upon # Jacchia's 1970 models. # # [2] Jacchia, L. G (1970). New static models of the thermosphere and exosphere with # empirical temperature profiles. SAO Special Report #313. # # [3] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. # Microcosm Press, Hawthorn, CA, USA. # # [4] Long, A. C., Cappellari Jr., J. O., Velez, C. E., Fuchs, A. J (editors) (1989). # Goddard Trajectory Determination System (GTDS) Mathematical Theory (Revision 1). # FDD/552-89/0001 and CSC/TR-89/6001. # ############################################################################################ export jr1971 """ jr1971(instant::DateTime, Ο•_gd::Number, Ξ»::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64} jr1971(jd::Number, Ο•_gd::Number, Ξ»::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64} Compute the atmospheric density using the Jacchia-Roberts 1971 model. If we omit all space indices, the system tries to obtain them automatically for the selected day `jd` or `instant`. However, the indices must be already initialized using the function `SpaceIndices.init()`. # Arguments - `jd::Number`: Julian day to compute the model. - `instant::DateTime`: Instant to compute the model represent using `DateTime`. - `Ο•_gd::Number`: Geodetic latitude [rad]. - `Ξ»::Number`: Longitude [rad]. - `h::Number`: Altitude [m]. - `F10::Number`: 10.7-cm solar flux [sfu]. - `F10ₐ::Number`: 10.7-cm averaged solar flux, 81-day centered on input time [sfu]. - `Kp::Number`: Kp geomagnetic index with a delay of 3 hours. # Returns - `JR1971Output{Float64}`: Structure containing the results obtained from the model. """ function jr1971(instant::DateTime, Ο•_gd::Number, Ξ»::Number, h::Number) return jr1971(datetime2julian(instant), Ο•_gd, Ξ», h) end function jr1971(jd::Number, Ο•_gd::Number, Ξ»::Number, h::Number) # Get the data in the desired Julian Day. F10 = space_index(Val(:F10obs), jd) F10ₐ = sum((space_index.(Val(:F10obs), k) for k in (jd - 40):(jd + 40))) / 81 # For the Kp, we must obtain the index using a 3-hour delay. Thus, we need to obtain the # Kp vector first, containing the Kp values for every 3 hours. instant = julian2datetime(jd) instant_3h_delay = instant - Hour(3) Kp_vect = space_index(Val(:Kp), instant_3h_delay) # Now, we need to obtain the value for the required instant. In this case, we will # consider the Kp constant inside the 3h-interval provided by the space index vector. # Get the number of seconds elapsed since the beginning of the day. day = Date(instant) |> DateTime Ξ”t = Dates.value(instant - day) / 1000 # Get the index and the Kp value. id = round(Int, clamp(div(Ξ”t, 10_800) + 1, 1, 8)) Kp = Kp_vect[id] @debug """ JR1971 - Fetched Space Indices Daily F10.7 : $(F10) sfu 81-day averaged F10.7 : $(F10ₐ) sfu 3-hour delayed Kp : $(Kp) """ return jr1971(jd, Ο•_gd, Ξ», h, F10, F10ₐ, Kp) end function jr1971( instant::DateTime, Ο•_gd::Number, Ξ»::Number, h::Number, F10::Number, F10ₐ::Number, Kp::Number ) return jr1971(datetime2julian(instant), Ο•_gd, Ξ», h, F10, F10ₐ, Kp) end function jr1971( jd::Number, Ο•_gd::Number, Ξ»::Number, h::Number, F10::Number, F10ₐ::Number, Kp::Number ) # == Constants ========================================================================= Rstar = _JR1971_CONSTANTS.Rstar Av = _JR1971_CONSTANTS.Av Ra = _JR1971_CONSTANTS.Ra gβ‚€ = _JR1971_CONSTANTS.gβ‚€ Mβ‚€ = _JR1971_CONSTANTS.Mβ‚€ z₁ = _JR1971_CONSTANTS.z₁ zβ‚‚ = _JR1971_CONSTANTS.zβ‚‚ T₁ = _JR1971_CONSTANTS.T₁ M₁ = _JR1971_CONSTANTS.M₁ ρ₁ = _JR1971_CONSTANTS.ρ₁ zx = _JR1971_CONSTANTS.zx Mi = _JR1971_CONSTANTS.Mi Ξ±i = _JR1971_CONSTANTS.Ξ±i ΞΌi = _JR1971_CONSTANTS.ΞΌi Aa = _JR1971_CONSTANTS.Aa Ca = _JR1971_CONSTANTS.Ca la = _JR1971_CONSTANTS.la Ξ± = _JR1971_CONSTANTS.Ξ± Ξ² = _JR1971_CONSTANTS.Ξ² ΞΆ = _JR1971_CONSTANTS.ΞΆ Ξ΄ij = _JR1971_CONSTANTS.Ξ΄ij # == Auxiliary variables =============================================================== RaΒ² = Ra * Ra # ........................................ Mean Earth radius squared [kmΒ²] # == Preliminaries ===================================================================== # Convert the altitude from [m] to [km]. h /= 1000 # Compute the Sun position represented in the inertial reference frame (MOD). s_i = sun_position_mod(jd) # Compute the Sun declination [rad]. Ξ΄s = atan(s_i[3], √(s_i[1] * s_i[1] + s_i[2] * s_i[2])) # Compute the Sun right ascension [rad]. Ξ©s = atan(s_i[2], s_i[1]) # Compute the right ascension of the selected location w.r.t. the inertial reference # frame. Ξ©p = Ξ» + jd_to_gmst(jd) # Compute the hour angle at the selected location, which is the angle measured at the XY # plane between the right ascension of the selected position and the right ascension of # the Sun. H = Ξ©p - Ξ©s ######################################################################################## # Algorithm # ######################################################################################## # == Exospheric Temperature ============================================================ # -- Diurnal Variation ----------------------------------------------------------------- # Eq. 14 [2], Section B.1.1 [3] # # Nighttime minimum of the global exospheric temperature distribution when the planetary # geomagnetic index Kp is zero. Ξ”F10 = F10 - F10ₐ Tc = 379 + 3.24F10 + 1.3Ξ”F10 # Eq. 15 [2], Section B.1.1 [3] Ξ· = abs(Ο•_gd - Ξ΄s) / 2 ΞΈ = abs(Ο•_gd + Ξ΄s) / 2 # Eq. 16 [2], Section B.1.1 [3] Ο„ = H + deg2rad(-37 + 6sin(H + deg2rad(43))) # Eq. 17 [2], Section B.1.1 [3] C = cos(Ξ·)^2.2 S = sin(ΞΈ)^2.2 Tl = Tc * (1 + 0.3 * (S + (C - S) * cos(Ο„ / 2)^3)) # == Variations with Geomagnetic Activity ============================================== # Eq. 18 or Eq. 20 [2], Section B.1.1 [3] Ξ”T∞ = (h < 200) ? 14Kp + 0.02exp(Kp) : 28Kp + 0.03exp(Kp) # -- Section B.1.1 [3] ----------------------------------------------------------------- # # Compute the local exospheric temperature with the geomagnetic storm effect. T∞ = Tl + Ξ”T∞ # == Temperature at the Desired Altitude =============================================== # -- Section B.1.1 [3] ----------------------------------------------------------------- # # Compute the temperature at inflection point `zx`. # # The values at [1, p. 369] are from an old version of Jacchia 1971 model. We will use # the new values available at [2]. a = 371.6678 b = 0.0518806 c = -294.3505 d = -0.00216222 Tx = a + b * T∞ + c * exp(d * T∞) # Compute the temperature at desired point. Tz = _jr1971_temperature(h, Tx, T∞) # == Corrections to the Density (Eqs. 4-96 to 4-101 [3]) =============================== # -- Geomagnetic Effect, Eq. B-7 [3] --------------------------------------------------- Ξ”log₁₀ρ_g = h < 200 ? 0.012Kp + 1.2e-5exp(Kp) : 0.0 # -- Semi-annual Variation, Section B.1.3 [3] ------------------------------------------ # Number of days since January 1, 1958. Ξ¦ = (jd - 2436204.5) / 365.2422 Ο„_sa = Ξ¦ + 0.09544 * ((1 / 2 * (1 + sin(2Ο€ * Ξ¦ + 6.035)))^(1.65) - 1 / 2) f_z = (5.876e-7h^2.331 + 0.06328) * exp(-0.002868h) g_t = 0.02835 + (0.3817 + 0.17829sin(2Ο€ * Ο„_sa + 4.137)) * sin(4Ο€ * Ο„_sa + 4.259) Ξ”log₁₀ρ_sa = f_z * g_t # -- Seasonal Latitudinal Variation, Section B.1.3 [3] --------------------------------- sin_Ο•_gd = sin(Ο•_gd) abs_sin_Ο•_gd = abs(sin_Ο•_gd) Ξ”log₁₀ρ_lt = 0.014 * (h - 90) * exp(-0.0013 * (h - 90)^2) * sin(2Ο€ * Ξ¦ + 1.72) * sin_Ο•_gd * abs_sin_Ο•_gd # -- Total Correction, Eq. B-10 [4] ---------------------------------------------------- Ξ”log₁₀ρ_c = Ξ”log₁₀ρ_g + Ξ”log₁₀ρ_lt + Ξ”log₁₀ρ_sa Δρ_c = 10^(Ξ”log₁₀ρ_c) # == Density =========================================================================== if h == z₁ # Compute the total density. ρ = ρ₁ * Δρ_c # Convert to SI and return. return JR1971Output( 1000ρ, Tz, T∞, (ρ * ΞΌi.Nβ‚‚) * Av / Mi.Nβ‚‚ * 1e6, (ρ * ΞΌi.Oβ‚‚) * Av / Mi.Oβ‚‚ * 1e6, (ρ * ΞΌi.O) * Av / Mi.O * 1e6, (ρ * ΞΌi.Ar) * Av / Mi.Ar * 1e6, (ρ * ΞΌi.He) * Av / Mi.He * 1e6, (ρ * ΞΌi.H) * Av / Mi.H * 1e6 ) elseif z₁ < h <= zx # First, we need to find the roots of the polynomial: # # P(Z) = cβ‚€ + c₁ β‹… z + cβ‚‚ β‹… zΒ² + c₃ β‹… zΒ³ + cβ‚„ β‹… z⁴ cβ‚€ = (35^4 * Tx / (Tx - T₁) + Ca[1]) / Ca[5] c₁ = Ca[2] / Ca[5] cβ‚‚ = Ca[3] / Ca[5] c₃ = Ca[4] / Ca[5] cβ‚„ = Ca[5] / Ca[5] r₁, rβ‚‚, x, y = _jr1971_roots([cβ‚€, c₁, cβ‚‚, c₃, cβ‚„]) # -- f and k, [1. p. 371] ---------------------------------------------------------- f = 35^4 * RaΒ² / Ca[5] k = -gβ‚€ / (Rstar * (Tx - T₁)) # -- U(Ξ½), V(Ξ½), and W(Ξ½) Functions, [1, p. 372] ----------------------------------- U(Ξ½) = (Ξ½ + Ra)^2 * (Ξ½^2 - 2x * Ξ½ + x^2 + y^2) * (r₁ - rβ‚‚) V(Ξ½) = (Ξ½^2 - 2x * Ξ½ + x^2 + y^2) * (Ξ½ - r₁) * (Ξ½ - rβ‚‚) # The equation for `W(Ξ½)` in [1] was: # # W(Ξ½) = r₁ * rβ‚‚ * RaΒ² * (Ξ½ + Ra) + (x^2 + y^2) * Ra * (Ra * Ξ½ + r₁ * rβ‚‚) # # However, [3,4] mention that this is not correct, and must be replaced by: W(Ξ½) = r₁ * rβ‚‚ * Ra * (Ra + Ξ½) * (Ra + (x^2 + y^2) / Ξ½) # -- X, [1, p. 372] ---------------------------------------------------------------- X = -2r₁ * rβ‚‚ * Ra * (RaΒ² + 2x * Ra + x^2 + y^2) # The original paper [1] divided into two sections: 90 km to 105 km, and 105 km to # 125 km. However, [3] divided into 90 to 100 km, and 100 km to 125 km. if h <= zβ‚‚ # == Altitudes Between 90 km and 100 km ======================================== # -- S(z) Polynomial, [1, p. 371] ---------------------------------------------- Bβ‚€ = Ξ±[1] + Ξ²[1] * Tx / (Tx - T₁) B₁ = Ξ±[2] + Ξ²[2] * Tx / (Tx - T₁) Bβ‚‚ = Ξ±[3] + Ξ²[3] * Tx / (Tx - T₁) B₃ = Ξ±[4] + Ξ²[4] * Tx / (Tx - T₁) Bβ‚„ = Ξ±[5] + Ξ²[5] * Tx / (Tx - T₁) Bβ‚… = Ξ±[6] + Ξ²[6] * Tx / (Tx - T₁) S(z) = @evalpoly(z, Bβ‚€, B₁, Bβ‚‚, B₃, Bβ‚„, Bβ‚…) # -- Auxiliary Variables, [1. p. 372] ------------------------------------------ pβ‚‚ = S(r₁) / U(r₁) p₃ = -S(rβ‚‚) / U(rβ‚‚) pβ‚… = S(-Ra) / V(-Ra) # There is a typo in the fourth term in [1] that was corrected in [3]. pβ‚„ = ( Bβ‚€ - r₁ * rβ‚‚ * RaΒ² * (Bβ‚„ + (2x + r₁ + rβ‚‚ - Ra) * Bβ‚…) - r₁ * rβ‚‚ * Ra * (x^2 + y^2) * Bβ‚… + r₁ * rβ‚‚ * (RaΒ² - (x^2 + y^2)) * pβ‚… + W(r₁) * pβ‚‚ + W(rβ‚‚) * p₃ ) / X p₆ = Bβ‚„ + (2x + r₁ + rβ‚‚ - Ra ) * Bβ‚… - pβ‚… - 2(x + Ra) * pβ‚„ - (rβ‚‚ + Ra) * p₃ - (r₁ + Ra) * pβ‚‚ p₁ = Bβ‚… - 2pβ‚„ - p₃ - pβ‚‚ # -- F₁ and Fβ‚‚, [1, p. 372-373] ------------------------------------------------ log_F₁ = p₁ * log((h + Ra) / (z₁ + Ra)) + pβ‚‚ * log((h - r₁) / (z₁ - r₁)) + p₃ * log((h - rβ‚‚) / (z₁ - rβ‚‚)) + pβ‚„ * log((h^2 - 2x * h + x^2 + y^2 ) / (z₁^2 - 2x * z₁ + x^2 + y^2)) # This equation in [4] is wrong, since `f` is multiplying `A₆`. We will use the # one in [3]. Fβ‚‚ = (h - z₁) * (Aa[7] + pβ‚… / ((h + Ra) * (z₁ + Ra))) + p₆ / y * atan(y * (h - z₁) / (y^2 + (h - x) * (z₁ - x))) # -- Compute the Density, eq. 13 [1] ------------------------------------------- Mz = _jr1971_mean_molecular_mass(h) ρ = ρ₁ * Δρ_c * Mz * T₁ / (M₁ * Tz) * exp(k * (log_F₁ + Fβ‚‚)) # Convert to SI and return. return JR1971Output( 1000ρ, Tz, T∞, (ρ * ΞΌi.Nβ‚‚) * Av / Mi.Nβ‚‚ * 1e6, (ρ * ΞΌi.Oβ‚‚) * Av / Mi.Oβ‚‚ * 1e6, (ρ * ΞΌi.O) * Av / Mi.O * 1e6, (ρ * ΞΌi.Ar) * Av / Mi.Ar * 1e6, (ρ * ΞΌi.He) * Av / Mi.He * 1e6, (ρ * ΞΌi.H) * Av / Mi.H * 1e6, ) else # == Altitudes Between 100 km and 125 km ======================================= # First, we need to compute the temperature and density at 100 km. T₁₀₀ = _jr1971_temperature(zβ‚‚, Tx, T∞) # References [3,4] suggest to compute the density using a polynomial fit, so # that the computational burden can be reduced: # ρ₁₀₀ = @evalpoly(T∞, ΞΆ[1], ΞΆ[2], ΞΆ[3], ΞΆ[4], ΞΆ[5], ΞΆ[6], ΞΆ[7]) * Mβ‚€ # However, it turns out that this approach leads to discontinuity at 100 km. # This was also seen by GMAT [5]. # # TODO: Check if we need to fix this. # Apply the density correction to the density at 100 km. ρ₁₀₀ *= Δρ_c # -- Auxiliary Variables, [1, p. 374] ------------------------------------------ qβ‚‚ = 1 / U(r₁) q₃ = -1 / U(rβ‚‚) qβ‚… = 1 / V(-Ra) qβ‚„ = (1 + r₁ * rβ‚‚ * (RaΒ² - (x^2 + y^2)) * qβ‚… + W(r₁) * qβ‚‚ + W(rβ‚‚) * q₃) / X q₆ = -qβ‚… - 2 * (x + Ra) * qβ‚„ - (rβ‚‚ + Ra) * q₃ - (r₁ + Ra) * qβ‚‚ q₁ = -2qβ‚„ - q₃ - qβ‚‚ # -- F₃ and Fβ‚„, [1, p. 374] ---------------------------------------------------- log_F₃ = q₁ * log((h + Ra) / (zβ‚‚ + Ra)) + qβ‚‚ * log((h - r₁) / (zβ‚‚ - r₁)) + q₃ * log((h - rβ‚‚) / (zβ‚‚ - rβ‚‚)) + qβ‚„ * log((h^2 - 2x*h + x^2 + y^2) / (zβ‚‚^2 - 2x*zβ‚‚ + x^2 + y^2)) Fβ‚„ = qβ‚… * (h - zβ‚‚) / ((h + Ra) * (Ra + zβ‚‚)) + q₆ / y * atan(y * (h - zβ‚‚) / (y^2 + (h - x) * (zβ‚‚ - x))) # -- Compute the Density of Each Specie [3] ------------------------------------ expk = k * f * (log_F₃ + Fβ‚„) ρNβ‚‚ = ρ₁₀₀ * Mi[1] / Mβ‚€ * ΞΌi[1] * (T₁₀₀ / Tz)^(1 + Ξ±i.Nβ‚‚) * exp(Mi[1] * expk) ρOβ‚‚ = ρ₁₀₀ * Mi[2] / Mβ‚€ * ΞΌi[2] * (T₁₀₀ / Tz)^(1 + Ξ±i.Oβ‚‚) * exp(Mi[2] * expk) ρO = ρ₁₀₀ * Mi[3] / Mβ‚€ * ΞΌi[3] * (T₁₀₀ / Tz)^(1 + Ξ±i.O ) * exp(Mi[3] * expk) ρAr = ρ₁₀₀ * Mi[4] / Mβ‚€ * ΞΌi[4] * (T₁₀₀ / Tz)^(1 + Ξ±i.Ar) * exp(Mi[4] * expk) ρHe = ρ₁₀₀ * Mi[5] / Mβ‚€ * ΞΌi[5] * (T₁₀₀ / Tz)^(1 + Ξ±i.He) * exp(Mi[5] * expk) # Compute the total density. ρ = ρNβ‚‚ + ρOβ‚‚ + ρO + ρAr + ρHe # Convert to SI and return. return JR1971Output( 1000ρ, Tz, T∞, ρNβ‚‚ * Av / Mi.Nβ‚‚ * 1e6, ρOβ‚‚ * Av / Mi.Oβ‚‚ * 1e6, ρO * Av / Mi.O * 1e6, ρAr * Av / Mi.Ar * 1e6, ρHe * Av / Mi.He * 1e6, 0.0, ) end else # == Altitudes Higher than 125 km ================================================== # First, we need to compute the density at 125 km with the corrections. # References [3,4] suggest to compute the density using a polynomial fit, so that # the computational burden can be reduced: ρ₁₂₅_Nβ‚‚ = Δρ_c * Mi[1] * 10^(@evalpoly(T∞, Ξ΄ij.Nβ‚‚...)) / Av ρ₁₂₅_Oβ‚‚ = Δρ_c * Mi[2] * 10^(@evalpoly(T∞, Ξ΄ij.Oβ‚‚...)) / Av ρ₁₂₅_O = Δρ_c * Mi[3] * 10^(@evalpoly(T∞, Ξ΄ij.O...)) / Av ρ₁₂₅_Ar = Δρ_c * Mi[4] * 10^(@evalpoly(T∞, Ξ΄ij.Ar...)) / Av ρ₁₂₅_He = Δρ_c * Mi[5] * 10^(@evalpoly(T∞, Ξ΄ij.He...)) / Av # However, it turns out that this approach leads to discontinuity at 100 km. This # was also seen by GMAT [5]. # # TODO: Check if we need to fix this. # -- Compute `l` According to eq. 4-136 [3] ---------------------------------------- l = @evalpoly(T∞, la[1], la[2], la[3], la[4], la[5]) # -- Eq. 25' [1] ------------------------------------------------------------------- Ξ³ = (gβ‚€ * RaΒ² / (Rstar * l * T∞) * (T∞ - Tx) / (Tx - T₁) * (zx - z₁) / (Ra + zx)) Ξ³Nβ‚‚ = Ξ³ * Mi[1] Ξ³Oβ‚‚ = Ξ³ * Mi[2] Ξ³O = Ξ³ * Mi[3] Ξ³Ar = Ξ³ * Mi[4] Ξ³He = Ξ³ * Mi[5] # -- Eq. 25 [1] -------------------------------------------------------------------- ρNβ‚‚ = ρ₁₂₅_Nβ‚‚ * (Tx / Tz)^(1 + Ξ±i.Nβ‚‚ + Ξ³Nβ‚‚) * ((T∞ - Tz) / (T∞ - Tx)) ^ Ξ³Nβ‚‚ ρOβ‚‚ = ρ₁₂₅_Oβ‚‚ * (Tx / Tz)^(1 + Ξ±i.Oβ‚‚ + Ξ³Oβ‚‚) * ((T∞ - Tz) / (T∞ - Tx)) ^ Ξ³Oβ‚‚ ρO = ρ₁₂₅_O * (Tx / Tz)^(1 + Ξ±i.O + Ξ³O ) * ((T∞ - Tz) / (T∞ - Tx)) ^ Ξ³O ρAr = ρ₁₂₅_Ar * (Tx / Tz)^(1 + Ξ±i.Ar + Ξ³Ar) * ((T∞ - Tz) / (T∞ - Tx)) ^ Ξ³Ar ρHe = ρ₁₂₅_He * (Tx / Tz)^(1 + Ξ±i.He + Ξ³He) * ((T∞ - Tz) / (T∞ - Tx)) ^ Ξ³He # -- Correction of Seasonal Variations of Helium by Latitude, Eq. 4-101 [3] -------- Ξ”log₁₀ρ_He = 0.65 / deg2rad(23.439291) * abs(Ξ΄s) * ( sin(Ο€ / 4 - Ο•_gd * Ξ΄s / (2abs(Ξ΄s)))^3 - 0.35355 ) ρHe *= 10^(Ξ”log₁₀ρ_He) # -- For Altitude Higher than 500 km, We Must Account for H ------------------------ ρH = 0.0 if h > 500 # Compute the temperature and the H density at 500 km. Tβ‚…β‚€β‚€ = _jr1971_temperature(500.0, Tx, T∞) log₁₀_Tβ‚…β‚€β‚€ = log10(Tβ‚…β‚€β‚€) ρ₅₀₀_H = Mi.H / Av * 10^(73.13 - (39.4 - 5.5log₁₀_Tβ‚…β‚€β‚€) * log₁₀_Tβ‚…β‚€β‚€) # Compute the H density at desired altitude. Ξ³H = Mi.H * Ξ³ ρH = Δρ_c * ρ₅₀₀_H * (Tβ‚…β‚€β‚€ / Tz)^(1 + Ξ³H) * ((T∞ - Tz) / (T∞ - Tβ‚…β‚€β‚€))^Ξ³H end # Apply the corrections. ρ = ρNβ‚‚ + ρOβ‚‚ + ρO + ρAr + ρHe + ρH # Convert to SI and return. return JR1971Output( 1000ρ, Tz, T∞, ρNβ‚‚ * Av / Mi.Nβ‚‚ * 1e6, ρOβ‚‚ * Av / Mi.Oβ‚‚ * 1e6, ρO * Av / Mi.O * 1e6, ρAr * Av / Mi.Ar * 1e6, ρHe * Av / Mi.He * 1e6, ρH * Av / Mi.H * 1e6, ) end end ############################################################################################ # Private Functions # ############################################################################################ # _jr1971_mean_molecular_mass(z::Number) -> Float64 # # Compute the mean molecular mass at altitude `z` [km] using the empirical profile in eq. 1 # **[3, 4]**. function _jr1971_mean_molecular_mass(z::Number) !(90 <= z <= 100) && @warn("The empirical model for the mean molecular mass is valid only for 90 <= z <= 100 km.") Aa = _JR1971_CONSTANTS.Aa molecular_mass = @evalpoly(z, Aa[1], Aa[2], Aa[3], Aa[4], Aa[5], Aa[6], Aa[7]) return molecular_mass end # _jr1971_roots(p::AbstractVector) where T<:Number -> NTuple{4, Float64} # # Compute the roots of the polynomial `p` necessary to compute the density below 125 km. It # returns `r₁`, `rβ‚‚`, `x`, and `y`. function _jr1971_roots(p::AbstractVector) # Compute the roots with a first guess. r = roots(p, _JR1971_ROOT_GUESS; polish = true) # We expect two real roots and two complex roots. Here, we will perform the following # processing: # # r₁ -> Highest real root. # rβ‚‚ -> Lowest real root. # x -> Real part of the complex root. # y -> Positive imaginary part of the complex root. r₁ = maximum(v -> abs(imag(v)) < 1e-10 ? real(v) : -Inf, r) rβ‚‚ = minimum(v -> abs(imag(v)) < 1e-10 ? real(v) : +Inf, r) c = findfirst(v -> imag(v) >= 1e-10, r) x = real(r[c]) y = abs(imag(r[c])) return r₁, rβ‚‚, x, y end # _jr1971_temperature(z::Number, Tx::Number, T∞::Number) -> Float64 # # Compute the temperature [K] at height `z` [km] according to the theory of the model # Jacchia-Roberts 1971 [1, 3, 4] given the temperature `Tx` [K] at the inflection point and # the exospheric temperature `T∞` [K]. # # The inflection point is considered to by `z = 125 km`. function _jr1971_temperature(z::Number, Tx::Number, T∞::Number) T₁ = _JR1971_CONSTANTS.T₁ z₁ = _JR1971_CONSTANTS.z₁ zx = _JR1971_CONSTANTS.zx # == Check the Parameters ============================================================== (z < z₁) && throw(ArgumentError("The altitude must not be lower than $(z₁) km.")) (T∞ < 0 ) && throw(ArgumentError("The exospheric temperature must be positive.")) # == Compute the Temperature at Desire Altitude ======================================== if z <= zx Ca = _JR1971_CONSTANTS.Ca aux = @evalpoly(z, Ca[1], Ca[2], Ca[3], Ca[4], Ca[5]) T = Tx + (Tx - T₁) / 35^4 * aux else Ra = _JR1971_CONSTANTS.Ra la = _JR1971_CONSTANTS.la l = @evalpoly(T∞, la[1], la[2], la[3], la[4], la[5]) T = T∞ - (T∞ - Tx) * exp( -l * ((Tx - T₁) / (T∞ - Tx)) * ((z - zx) / (zx - z₁)) / (Ra + z) ) end return T end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
2157
## Description ############################################################################# # # Function to show the results of the Jacchia-Roberts 1971 atmospheric model. # ############################################################################################ function show(io::IO, out::JR1971Output) # Check for color support in the `io`. color = get(io, :color, false) b = color ? _B : "" d = color ? _D : "" print(io, "$(b)JR1971 output$(d) (ρ = ", @sprintf("%g", out.total_density), " kg / mΒ³)") return nothing end function show(io::IO, mime::MIME"text/plain", out::JR1971Output) # Check for color support in the `io`. color = get(io, :color, false) b = color ? _B : "" d = color ? _D : "" str_total_density = @sprintf("%15g", out.total_density) str_temperature = @sprintf("%15.2f", out.temperature) str_exospheric_temp = @sprintf("%15.2f", out.exospheric_temperature) str_Nβ‚‚_number_den = @sprintf("%15g", out.N2_number_density) str_Oβ‚‚_number_den = @sprintf("%15g", out.O2_number_density) str_O_number_den = @sprintf("%15g", out.O_number_density) str_Ar_number_den = @sprintf("%15g", out.Ar_number_density) str_He_number_den = @sprintf("%15g", out.He_number_density) str_H_number_den = @sprintf("%15g", out.H_number_density) println(io, "Jacchia-Roberts 1971 Atmospheric Model Result:") println(io, "$(b) Total density :$(d)", str_total_density, " kg / mΒ³") println(io, "$(b) Temperature :$(d)", str_temperature, " K") println(io, "$(b) Exospheric Temp. :$(d)", str_exospheric_temp, " K") println(io, "$(b) Nβ‚‚ number density :$(d)", str_Nβ‚‚_number_den, " 1 / mΒ³") println(io, "$(b) Oβ‚‚ number density :$(d)", str_Oβ‚‚_number_den, " 1 / mΒ³") println(io, "$(b) O number density :$(d)", str_O_number_den, " 1 / mΒ³") println(io, "$(b) Ar number density :$(d)", str_Ar_number_den, " 1 / mΒ³") println(io, "$(b) He number density :$(d)", str_He_number_den, " 1 / mΒ³") print(io, "$(b) H number density :$(d)", str_H_number_den, " 1 / mΒ³") return nothing end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
1154
## Description ############################################################################# # # Types related to the Jacchia-Roberts 1971 atmospheric model. # ############################################################################################ export JR1971Output """ struct JR1971Output{T<:Number} Output of the atmospheric model Jacchia-Roberts 1971. # Fields - `total_density::T`: Total atmospheric density [1 / mΒ³]. - `temperature::T`: Temperature at the selected position [K]. - `exospheric_temperature::T`: Exospheric temperature [K]. - `N2_number_density::T`: Number density of Nβ‚‚ [1 / mΒ³]. - `O2_number_density::T`: Number density of Oβ‚‚ [1 / mΒ³]. - `O_number_density::T`: Number density of O [1 / mΒ³]. - `Ar_number_density::T`: Number density of Ar [1 / mΒ³]. - `He_number_density::T`: Number density of He [1 / mΒ³]. - `H_number_density::T`: Number density of H [1 / mΒ³]. """ struct JR1971Output{T<:Number} total_density::T temperature::T exospheric_temperature::T N2_number_density::T O2_number_density::T O_number_density::T Ar_number_density::T He_number_density::T H_number_density::T end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
4643
## Description ############################################################################# # # Auxiliary private functions for the NRLMSISE-00 model. # ############################################################################################ """ _ccor(h::T, r::T, h₁::T, zh::T) where T<:Number -> T Compute the chemistry / dissociation correction for MSIS models. # Arguments - `h::Number`: Altitude. - `r::Number`: Target ratio. - `h₁::Number`: Transition scale length. - `zh::Number`: Altitude of `1/2 r`. """ function _ccor(h::T, r::T, h₁::T, zh::T) where T<:Number e = (h - zh) / h₁ (e > +70) && return exp(T(0)) (e < -70) && return exp(r) return exp(r / (1 + exp(e))) end """ _ccor2(alt::T, r::T, h₁::T, zh::T, hβ‚‚::T) where T<:Number -> T Compute the O and Oβ‚‚ chemistry / dissociation correction for MSIS models. # Arguments - `h::Number`: Altitude. - `r::Number`: Target ration. - `h₁::Number`: Transition scale length. - `zh::Number`: Altitude of `1/2 r`. - `hβ‚‚::Number`: Transition scale length 2. """ function _ccor2(h::T, r::T, h₁::T, zh::T, hβ‚‚::T) where T<:Number e1 = (h - zh) / h₁ e2 = (h - zh) / hβ‚‚ ((e1 > +70) || (e2 > +70)) && return exp(T(0)) ((e1 < -70) && (e2 < -70)) && return exp(r) return exp(r / (1 + (exp(e1) + exp(e2)) / 2)) end """ _dnet(dd::T, dm::T, zhm::T, xmm::T, xm::T) where T<:Number -> T Compute the turbopause correction for MSIS models, returning the combined density. # Arguments - `dd::T`: Diffusive density. - `dm::T`: Full mixed density. - `zhm::T`: Transition scale length. - `xmm::T`: Full mixed molecular weight. - `xm::T`: Species molecular weight. """ function _dnet(dd::T, dm::T, zhm::T, xmm::T, xm::T) where T<:Number a = zhm / (xmm - xm) if !((dm > 0) && (dd > 0)) if (dd == 0) && (dm == 0) dd = T(1) end (dm == 0) && return dd (dd == 0) && return dm end ylog = a * log(dm / dd) (ylog < -10) && return dd (ylog > +10) && return dm return dd * (1 + exp(ylog))^(1 / a) end """ _gravity_and_effective_radius(Ο•_gd::T) where T<:Number -> T, T Compute the gravity [cm / sΒ²] and effective radius [km] at the geodetic latitude `Ο•_gd` [Β°]. """ function _gravity_and_effective_radius(Ο•_gd::T) where T<:Number # Auxiliary variable to reduce computational burden. c_2Ο• = cos(2 * T(_DEG_TO_RAD) * Ο•_gd) # Compute the gravity at the selected latitude. g_lat = T(_REFERENCE_GRAVITY) * (1 - T(0.0026373) * c_2Ο•) # Compute the effective radius at the selected latitude. r_lat = 2 * g_lat / (T(3.085462e-6) + T(2.27e-9) * c_2Ο•) * T(1e-5) return g_lat, r_lat end """ _scale_height(h::T, xm::T, temp::T, g_lat::T, r_lat::T) where T<:Number -> T Compute the scale height. # Arguments - `h::T`: Altitude [km]. - `xm::T`: Species molecular weight [ ]. - `temp::T`: Temperature [K]. - `g_lat::T`: Reference gravity at desired latitude [cm / sΒ²]. - `r_lat::T`: Reference radius at desired latitude [km]. """ function _scale_height(h::T, xm::T, temp::T, g_lat::T, r_lat::T) where T<:Number # Compute the gravity at the selected altitude. gh = g_lat / (1 + h / r_lat)^2 # Compute the scale height sh = T(_RGAS) * temp / (gh * xm) return sh end ############################################################################################ # 3hr Magnetic Activity Functions # ############################################################################################ """ _g0(a::Number, p::AbstractVector) Compute `gβ‚€` function (see Eq. A24d) using the coefficients `abs_p25 = abs(p[25])` and `p26 = p[26]`. """ function _gβ‚€(a::Number, abs_p25::Number, p26::Number) return (a - 4 + (p26 - 1) * (a - 4 + (exp(-abs_p25 * (a - 4)) - 1) / abs_p25)) end """ _sgβ‚€(ex::Number, ap::AbstractVector, abs_p25::Number, p26::Number) Compute the `sgβ‚€` function (see Eq. A24a) using the `ap` vector and the coefficients `abs_p25` and `p26`. """ function _sgβ‚€(ex::Number, ap::AbstractVector, abs_p25::Number, p26::Number) # Auxiliary variables. gβ‚‚ = _gβ‚€(ap[2], abs_p25, p26) g₃ = _gβ‚€(ap[3], abs_p25, p26) gβ‚„ = _gβ‚€(ap[4], abs_p25, p26) gβ‚… = _gβ‚€(ap[5], abs_p25, p26) g₆ = _gβ‚€(ap[6], abs_p25, p26) g₇ = _gβ‚€(ap[7], abs_p25, p26) exΒ² = ex * ex exΒ³ = exΒ² * ex ex⁴ = exΒ² * exΒ² ex⁸ = ex⁴ * ex⁴ exΒΉΒ² = ex⁸ * ex⁴ ex¹⁹ = exΒΉΒ² * ex⁴ * exΒ³ sumex = 1 + (1 - ex¹⁹) / (1 - ex) * √ex r = gβ‚‚ + g₃ * ex + gβ‚„ * exΒ² + gβ‚… * exΒ³ + (g₆ * ex⁴ + g₇ * exΒΉΒ²) * (1 - ex⁸) / (1 - ex) return r / sumex end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
51101
## Description ############################################################################# # # Constants for the NRLMSISE-00 model. # ############################################################################################ ############################################################################################ # Conversion Constants # ############################################################################################ # Conversion factor from degrees to radians. const _DEG_TO_RAD = 1.74533e-2 # Conversion factor from day to radian. const _DAY_TO_RAD = 1.72142e-2 # Conversion factor from hour to radian. const _HOUR_TO_RAD = 0.2618 # Conversion factor from second to radian. const _SEC_TO_RAD = 7.2722e-5 ############################################################################################ # Chemical Constants # ############################################################################################ # Inverse of gas constant. const _RGAS = 831.4 ############################################################################################ # Earth's Constants # ############################################################################################ # Reference latitude [Β°] const _REFERENCE_LATITUDE = 45 # Gravity on Earth's surface at the reference latitude [cm / sΒ²]. const _REFERENCE_GRAVITY = 980.616 ############################################################################################ # NRLMSISE-00 Constants # ############################################################################################ # Array of altitudes #1. const _ZN1 = (123.435, 110.0, 100.0, 90.0, 72.5) # Array of altitudes #2. const _ZN2 = (72.5, 55.0, 45.0, 32.5) # Array of altitude #3. const _ZN3 = (32.5, 20.0, 15.0, 10.0, 0.0) # Mix altitude [km]. const _ZMIX = 62.5 ############################################################################################ # Temperature # ############################################################################################ const _NRLMSISE00_PT = [ 9.86573e-01, 1.62228e-02, 1.55270e-02,-1.04323e-01,-3.75801e-03, -1.18538e-03,-1.24043e-01, 4.56820e-03, 8.76018e-03,-1.36235e-01, -3.52427e-02, 8.84181e-03,-5.92127e-03,-8.61650e+00, 0.00000e+00, 1.28492e-02, 0.00000e+00, 1.30096e+02, 1.04567e-02, 1.65686e-03, -5.53887e-06, 2.97810e-03, 0.00000e+00, 5.13122e-03, 8.66784e-02, 1.58727e-01, 0.00000e+00, 0.00000e+00, 0.00000e+00,-7.27026e-06, 0.00000e+00, 6.74494e+00, 4.93933e-03, 2.21656e-03, 2.50802e-03, 0.00000e+00, 0.00000e+00,-2.08841e-02,-1.79873e+00, 1.45103e-03, 2.81769e-04,-1.44703e-03,-5.16394e-05, 8.47001e-02, 1.70147e-01, 5.72562e-03, 5.07493e-05, 4.36148e-03, 1.17863e-04, 4.74364e-03, 6.61278e-03, 4.34292e-05, 1.44373e-03, 2.41470e-05, 2.84426e-03, 8.56560e-04, 2.04028e-03, 0.00000e+00,-3.15994e+03,-2.46423e-03, 1.13843e-03, 4.20512e-04, 0.00000e+00,-9.77214e+01, 6.77794e-03, 5.27499e-03, 1.14936e-03, 0.00000e+00,-6.61311e-03,-1.84255e-02, -1.96259e-02, 2.98618e+04, 0.00000e+00, 0.00000e+00, 0.00000e+00, 6.44574e+02, 8.84668e-04, 5.05066e-04, 0.00000e+00, 4.02881e+03, -1.89503e-03, 0.00000e+00, 0.00000e+00, 8.21407e-04, 2.06780e-03, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, -1.20410e-02,-3.63963e-03, 9.92070e-05,-1.15284e-04,-6.33059e-05, -6.05545e-01, 8.34218e-03,-9.13036e+01, 3.71042e-04, 0.00000e+00, 4.19000e-04, 2.70928e-03, 3.31507e-03,-4.44508e-03,-4.96334e-03, -1.60449e-03, 3.95119e-03, 2.48924e-03, 5.09815e-04, 4.05302e-03, 2.24076e-03, 0.00000e+00, 6.84256e-03, 4.66354e-04, 0.00000e+00, -3.68328e-04, 0.00000e+00, 0.00000e+00,-1.46870e+02, 0.00000e+00, 0.00000e+00, 1.09501e-03, 4.65156e-04, 5.62583e-04, 3.21596e+00, 6.43168e-04, 3.14860e-03, 3.40738e-03, 1.78481e-03, 9.62532e-04, 5.58171e-04, 3.43731e+00,-2.33195e-01, 5.10289e-04, 0.00000e+00, 0.00000e+00,-9.25347e+04, 0.00000e+00,-1.99639e-03, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00, 0.00000e+00 ] ############################################################################################ # Density # ############################################################################################ # == He ==================================================================================== const _NRLMSISE00_PD_HE = [ 1.09979E+00,-4.88060E-02,-1.97501E-01,-9.10280E-02,-6.96558E-03, 2.42136E-02, 3.91333E-01,-7.20068E-03,-3.22718E-02, 1.41508E+00, 1.68194E-01, 1.85282E-02, 1.09384E-01,-7.24282E+00, 0.00000E+00, 2.96377E-01,-4.97210E-02, 1.04114E+02,-8.61108E-02,-7.29177E-04, 1.48998E-06, 1.08629E-03, 0.00000E+00, 0.00000E+00, 8.31090E-02, 1.12818E-01,-5.75005E-02,-1.29919E-02,-1.78849E-02,-2.86343E-06, 0.00000E+00,-1.51187E+02,-6.65902E-03, 0.00000E+00,-2.02069E-03, 0.00000E+00, 0.00000E+00, 4.32264E-02,-2.80444E+01,-3.26789E-03, 2.47461E-03, 0.00000E+00, 0.00000E+00, 9.82100E-02, 1.22714E-01, -3.96450E-02, 0.00000E+00,-2.76489E-03, 0.00000E+00, 1.87723E-03, -8.09813E-03, 4.34428E-05,-7.70932E-03, 0.00000E+00,-2.28894E-03, -5.69070E-03,-5.22193E-03, 6.00692E-03,-7.80434E+03,-3.48336E-03, -6.38362E-03,-1.82190E-03, 0.00000E+00,-7.58976E+01,-2.17875E-02, -1.72524E-02,-9.06287E-03, 0.00000E+00, 2.44725E-02, 8.66040E-02, 1.05712E-01, 3.02543E+04, 0.00000E+00, 0.00000E+00, 0.00000E+00, -6.01364E+03,-5.64668E-03,-2.54157E-03, 0.00000E+00, 3.15611E+02, -5.69158E-03, 0.00000E+00, 0.00000E+00,-4.47216E-03,-4.49523E-03, 4.64428E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 4.51236E-02, 2.46520E-02, 6.17794E-03, 0.00000E+00, 0.00000E+00, -3.62944E-01,-4.80022E-02,-7.57230E+01,-1.99656E-03, 0.00000E+00, -5.18780E-03,-1.73990E-02,-9.03485E-03, 7.48465E-03, 1.53267E-02, 1.06296E-02, 1.18655E-02, 2.55569E-03, 1.69020E-03, 3.51936E-02, -1.81242E-02, 0.00000E+00,-1.00529E-01,-5.10574E-03, 0.00000E+00, 2.10228E-03, 0.00000E+00, 0.00000E+00,-1.73255E+02, 5.07833E-01, -2.41408E-01, 8.75414E-03, 2.77527E-03,-8.90353E-05,-5.25148E+00, -5.83899E-03,-2.09122E-02,-9.63530E-03, 9.77164E-03, 4.07051E-03, 2.53555E-04,-5.52875E+00,-3.55993E-01,-2.49231E-03, 0.00000E+00, 0.00000E+00, 2.86026E+01, 0.00000E+00, 3.42722E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] # == O ===================================================================================== const _NRLMSISE00_PD_O = [ 1.02315E+00,-1.59710E-01,-1.06630E-01,-1.77074E-02,-4.42726E-03, 3.44803E-02, 4.45613E-02,-3.33751E-02,-5.73598E-02, 3.50360E-01, 6.33053E-02, 2.16221E-02, 5.42577E-02,-5.74193E+00, 0.00000E+00, 1.90891E-01,-1.39194E-02, 1.01102E+02, 8.16363E-02, 1.33717E-04, 6.54403E-06, 3.10295E-03, 0.00000E+00, 0.00000E+00, 5.38205E-02, 1.23910E-01,-1.39831E-02, 0.00000E+00, 0.00000E+00,-3.95915E-06, 0.00000E+00,-7.14651E-01,-5.01027E-03, 0.00000E+00,-3.24756E-03, 0.00000E+00, 0.00000E+00, 4.42173E-02,-1.31598E+01,-3.15626E-03, 1.24574E-03,-1.47626E-03,-1.55461E-03, 6.40682E-02, 1.34898E-01, -2.42415E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 6.13666E-04, -5.40373E-03, 2.61635E-05,-3.33012E-03, 0.00000E+00,-3.08101E-03, -2.42679E-03,-3.36086E-03, 0.00000E+00,-1.18979E+03,-5.04738E-02, -2.61547E-03,-1.03132E-03, 1.91583E-04,-8.38132E+01,-1.40517E-02, -1.14167E-02,-4.08012E-03, 1.73522E-04,-1.39644E-02,-6.64128E-02, -6.85152E-02,-1.34414E+04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 6.07916E+02,-4.12220E-03,-2.20996E-03, 0.00000E+00, 1.70277E+03, -4.63015E-03, 0.00000E+00, 0.00000E+00,-2.25360E-03,-2.96204E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 3.92786E-02, 1.31186E-02,-1.78086E-03, 0.00000E+00, 0.00000E+00, -3.90083E-01,-2.84741E-02,-7.78400E+01,-1.02601E-03, 0.00000E+00, -7.26485E-04,-5.42181E-03,-5.59305E-03, 1.22825E-02, 1.23868E-02, 6.68835E-03,-1.03303E-02,-9.51903E-03, 2.70021E-04,-2.57084E-02, -1.32430E-02, 0.00000E+00,-3.81000E-02,-3.16810E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-9.05762E-04,-2.14590E-03,-1.17824E-03, 3.66732E+00, -3.79729E-04,-6.13966E-03,-5.09082E-03,-1.96332E-03,-3.08280E-03, -9.75222E-04, 4.03315E+00,-2.52710E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] # == Nβ‚‚ ==================================================================================== const _NRLMSISE00_PD_N2 = [ 1.16112E+00, 0.00000E+00, 0.00000E+00, 3.33725E-02, 0.00000E+00, 3.48637E-02,-5.44368E-03, 0.00000E+00,-6.73940E-02, 1.74754E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.74712E+02, 0.00000E+00, 1.26733E-01, 0.00000E+00, 1.03154E+02, 5.52075E-02, 0.00000E+00, 0.00000E+00, 8.13525E-04, 0.00000E+00, 0.00000E+00, 8.66784E-02, 1.58727E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-2.50482E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-2.48894E-03, 6.16053E-04,-5.79716E-04, 2.95482E-03, 8.47001E-02, 1.70147E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.47425E-05, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] # == TLB =================================================================================== const _NRLMSISE00_PD_TLB = [ 9.44846E-01, 0.00000E+00, 0.00000E+00,-3.08617E-02, 0.00000E+00, -2.44019E-02, 6.48607E-03, 0.00000E+00, 3.08181E-02, 4.59392E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.74712E+02, 0.00000E+00, 2.13260E-02, 0.00000E+00,-3.56958E+02, 0.00000E+00, 1.82278E-04, 0.00000E+00, 3.07472E-04, 0.00000E+00, 0.00000E+00, 8.66784E-02, 1.58727E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 3.83054E-03, 0.00000E+00, 0.00000E+00, -1.93065E-03,-1.45090E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.23493E-03, 1.36736E-03, 8.47001E-02, 1.70147E-01, 3.71469E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 5.10250E-03, 2.47425E-05, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 3.68756E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] # == Oβ‚‚ ==================================================================================== const _NRLMSISE00_PD_O2 = [ 1.35580E+00, 1.44816E-01, 0.00000E+00, 6.07767E-02, 0.00000E+00, 2.94777E-02, 7.46900E-02, 0.00000E+00,-9.23822E-02, 8.57342E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.38636E+01, 0.00000E+00, 7.71653E-02, 0.00000E+00, 8.18751E+01, 1.87736E-02, 0.00000E+00, 0.00000E+00, 1.49667E-02, 0.00000E+00, 0.00000E+00, 8.66784E-02, 1.58727E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-3.67874E+02, 5.48158E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 8.47001E-02, 1.70147E-01, 1.22631E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 8.17187E-03, 3.71617E-05, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-2.10826E-03, -3.13640E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, -7.35742E-02,-5.00266E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.94965E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] # == Ar ==================================================================================== const _NRLMSISE00_PD_AR = [ 1.04761E+00, 2.00165E-01, 2.37697E-01, 3.68552E-02, 0.00000E+00, 3.57202E-02,-2.14075E-01, 0.00000E+00,-1.08018E-01,-3.73981E-01, 0.00000E+00, 3.10022E-02,-1.16305E-03,-2.07596E+01, 0.00000E+00, 8.64502E-02, 0.00000E+00, 9.74908E+01, 5.16707E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 8.66784E-02, 1.58727E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 3.46193E+02, 1.34297E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-3.48509E-03, -1.54689E-04, 0.00000E+00, 0.00000E+00, 8.47001E-02, 1.70147E-01, 1.47753E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.89320E-02, 3.68181E-05, 1.32570E-02, 0.00000E+00, 0.00000E+00, 3.59719E-03, 7.44328E-03,-1.00023E-03,-6.50528E+03, 0.00000E+00, 1.03485E-02,-1.00983E-03,-4.06916E-03,-6.60864E+01,-1.71533E-02, 1.10605E-02, 1.20300E-02,-5.20034E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, -2.62769E+03, 7.13755E-03, 4.17999E-03, 0.00000E+00, 1.25910E+04, 0.00000E+00, 0.00000E+00, 0.00000E+00,-2.23595E-03, 4.60217E-03, 5.71794E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, -3.18353E-02,-2.35526E-02,-1.36189E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.03522E-02,-6.67837E+01,-1.09724E-03, 0.00000E+00, -1.38821E-02, 1.60468E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.51574E-02, -5.44470E-04, 0.00000E+00, 7.28224E-02, 6.59413E-02, 0.00000E+00, -5.15692E-03, 0.00000E+00, 0.00000E+00,-3.70367E+03, 0.00000E+00, 0.00000E+00, 1.36131E-02, 5.38153E-03, 0.00000E+00, 4.76285E+00, -1.75677E-02, 2.26301E-02, 0.00000E+00, 1.76631E-02, 4.77162E-03, 0.00000E+00, 5.39354E+00, 0.00000E+00,-7.51710E-03, 0.00000E+00, 0.00000E+00,-8.82736E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] # == H ===================================================================================== const _NRLMSISE00_PD_H = [ 1.26376E+00,-2.14304E-01,-1.49984E-01, 2.30404E-01, 2.98237E-02, 2.68673E-02, 2.96228E-01, 2.21900E-02,-2.07655E-02, 4.52506E-01, 1.20105E-01, 3.24420E-02, 4.24816E-02,-9.14313E+00, 0.00000E+00, 2.47178E-02,-2.88229E-02, 8.12805E+01, 5.10380E-02,-5.80611E-03, 2.51236E-05,-1.24083E-02, 0.00000E+00, 0.00000E+00, 8.66784E-02, 1.58727E-01,-3.48190E-02, 0.00000E+00, 0.00000E+00, 2.89885E-05, 0.00000E+00, 1.53595E+02,-1.68604E-02, 0.00000E+00, 1.01015E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.84552E-04, -1.22181E-03, 0.00000E+00, 0.00000E+00, 8.47001E-02, 1.70147E-01, -1.04927E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00,-5.91313E-03, -2.30501E-02, 3.14758E-05, 0.00000E+00, 0.00000E+00, 1.26956E-02, 8.35489E-03, 3.10513E-04, 0.00000E+00, 3.42119E+03,-2.45017E-03, -4.27154E-04, 5.45152E-04, 1.89896E-03, 2.89121E+01,-6.49973E-03, -1.93855E-02,-1.48492E-02, 0.00000E+00,-5.10576E-02, 7.87306E-02, 9.51981E-02,-1.49422E+04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.65503E+02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 6.37110E-03, 3.24789E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 6.14274E-02, 1.00376E-02,-8.41083E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.27099E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, -3.94077E-03,-1.28601E-02,-7.97616E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-6.71465E-03,-1.69799E-03, 1.93772E-03, 3.81140E+00, -7.79290E-03,-1.82589E-02,-1.25860E-02,-1.04311E-02,-3.02465E-03, 2.43063E-03, 3.63237E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] # == N ===================================================================================== const _NRLMSISE00_PD_N = [ 7.09557E+01,-3.26740E-01, 0.00000E+00,-5.16829E-01,-1.71664E-03, 9.09310E-02,-6.71500E-01,-1.47771E-01,-9.27471E-02,-2.30862E-01, -1.56410E-01, 1.34455E-02,-1.19717E-01, 2.52151E+00, 0.00000E+00, -2.41582E-01, 5.92939E-02, 4.39756E+00, 9.15280E-02, 4.41292E-03, 0.00000E+00, 8.66807E-03, 0.00000E+00, 0.00000E+00, 8.66784E-02, 1.58727E-01, 9.74701E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 6.70217E+01,-1.31660E-03, 0.00000E+00,-1.65317E-02, 0.00000E+00, 0.00000E+00, 8.50247E-02, 2.77428E+01, 4.98658E-03, 6.15115E-03, 9.50156E-03,-2.12723E-02, 8.47001E-02, 1.70147E-01, -2.38645E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.37380E-03, -8.41918E-03, 2.80145E-05, 7.12383E-03, 0.00000E+00,-1.66209E-02, 1.03533E-04,-1.68898E-02, 0.00000E+00, 3.64526E+03, 0.00000E+00, 6.54077E-03, 3.69130E-04, 9.94419E-04, 8.42803E+01,-1.16124E-02, -7.74414E-03,-1.68844E-03, 1.42809E-03,-1.92955E-03, 1.17225E-01, -2.41512E-02, 1.50521E+04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.60261E+03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-3.54403E-04,-1.87270E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.76439E-02, 6.43207E-03,-3.54300E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00,-2.80221E-02, 8.11228E+01,-6.75255E-04, 0.00000E+00, -1.05162E-02,-3.48292E-03,-6.97321E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.45546E-03,-1.31970E-02,-3.57751E-03,-1.09021E+00, -1.50181E-02,-7.12841E-03,-6.64590E-03,-3.52610E-03,-1.87773E-02, -2.22432E-03,-3.93895E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] # == Hot O ================================================================================= const _NRLMSISE00_PD_HOT_O = [ 6.04050E-02, 1.57034E+00, 2.99387E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.51018E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-8.61650E+00, 1.26454E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 5.50878E-03, 0.00000E+00, 0.00000E+00, 8.66784E-02, 1.58727E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 6.23881E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 8.47001E-02, 1.70147E-01, -9.45934E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] # == S Parameters ========================================================================== const _NRLMSISE00_PS = [ 9.56827E-01, 6.20637E-02, 3.18433E-02, 0.00000E+00, 0.00000E+00, 3.94900E-02, 0.00000E+00, 0.00000E+00,-9.24882E-03,-7.94023E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.74712E+02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.74677E-03, 0.00000E+00, 1.54951E-02, 8.66784E-02, 1.58727E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-6.99007E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.24362E-02,-5.28756E-03, 8.47001E-02, 1.70147E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.47425E-05, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] # == Turbo ================================================================================= const _NRLMSISE00_PDL_1 = [ 1.09930E+00, 3.90631E+00, 3.07165E+00, 9.86161E-01, 1.63536E+01, 4.63830E+00, 1.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.28840E+00, 3.10302E-02, 1.18339E-01 ] const _NRLMSISE00_PDL_2 = [ 1.00000E+00, 7.00000E-01, 1.15020E+00, 3.44689E+00, 1.28840E+00, 1.00000E+00, 1.08738E+00, 1.22947E+00, 1.10016E+00, 7.34129E-01, 1.15241E+00, 2.22784E+00, 7.95046E-01, 4.01612E+00, 4.47749E+00, 1.23435E+02,-7.60535E-02, 1.68986E-06, 7.44294E-01, 1.03604E+00, 1.72783E+02, 1.15020E+00, 3.44689E+00,-7.46230E-01, 9.49154E-01 ] # == Lower Boundary ======================================================================== const _NRLMSISE00_PTM = [ 1.04130E+03, 3.86000E+02, 1.95000E+02, 1.66728E+01, 2.13000E+02, 1.20000E+02, 2.40000E+02, 1.87000E+02,-2.00000E+00, 0.00000E+00 ] const _NRLMSISE00_PDM_1 = [ 2.45600E+07, 6.71072E-06, 1.00000E+02, 0.00000E+00, 1.10000E+02, 1.00000E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] const _NRLMSISE00_PDM_2 = [ 8.59400E+10, 1.00000E+00, 1.05000E+02,-8.00000E+00, 1.10000E+02, 1.00000E+01, 9.00000E+01, 2.00000E+00, 0.00000E+00, 0.00000E+00 ] const _NRLMSISE00_PDM_3 = [ 2.81000E+11, 0.00000E+00, 1.05000E+02, 2.80000E+01, 2.89500E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] const _NRLMSISE00_PDM_4 = [ 3.30000E+10, 2.68270E-01, 1.05000E+02, 1.00000E+00, 1.10000E+02, 1.00000E+01, 1.10000E+02,-1.00000E+01, 0.00000E+00, 0.00000E+00 ] const _NRLMSISE00_PDM_5 = [ 1.33000E+09, 1.19615E-02, 1.05000E+02, 0.00000E+00, 1.10000E+02, 1.00000E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00 ] const _NRLMSISE00_PDM_6 = [ 1.76100E+05, 1.00000E+00, 9.50000E+01,-8.00000E+00, 1.10000E+02, 1.00000E+01, 9.00000E+01, 2.00000E+00, 0.00000E+00, 0.00000E+00, ] const _NRLMSISE00_PDM_7 = [ 1.00000E+07, 1.00000E+00, 1.05000E+02,-8.00000E+00, 1.10000E+02, 1.00000E+01, 9.00000E+01, 2.00000E+00, 0.00000E+00, 0.00000E+00 ] const _NRLMSISE00_PDM_8 = [ 1.00000E+06, 1.00000E+00, 1.05000E+02,-8.00000E+00, 5.50000E+02, 7.60000E+01, 9.00000E+01, 2.00000E+00, 0.00000E+00, 4.00000E+03 ] # == TN1(2) ================================================================================ const _NRLMSISE00_PTL_1 = [ 1.00858E+00, 4.56011E-02,-2.22972E-02,-5.44388E-02, 5.23136E-04, -1.88849E-02, 5.23707E-02,-9.43646E-03, 6.31707E-03,-7.80460E-02, -4.88430E-02, 0.00000E+00, 0.00000E+00,-7.60250E+00, 0.00000E+00, -1.44635E-02,-1.76843E-02,-1.21517E+02, 2.85647E-02, 0.00000E+00, 0.00000E+00, 6.31792E-04, 0.00000E+00, 5.77197E-03, 8.66784E-02, 1.58727E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-8.90272E+03, 3.30611E-03, 3.02172E-03, 0.00000E+00, -2.13673E-03,-3.20910E-04, 0.00000E+00, 0.00000E+00, 2.76034E-03, 2.82487E-03,-2.97592E-04,-4.21534E-03, 8.47001E-02, 1.70147E-01, 8.96456E-03, 0.00000E+00,-1.08596E-02, 0.00000E+00, 0.00000E+00, 5.57917E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 9.65405E-03, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TN1(3) ================================================================================ const _NRLMSISE00_PTL_2 = [ 9.39664E-01, 8.56514E-02,-6.79989E-03, 2.65929E-02,-4.74283E-03, 1.21855E-02,-2.14905E-02, 6.49651E-03,-2.05477E-02,-4.24952E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.19148E+01, 0.00000E+00, 1.18777E-02,-7.28230E-02,-8.15965E+01, 1.73887E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.44691E-02, 2.80259E-04, 8.66784E-02, 1.58727E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.16584E+02, 3.18713E-03, 7.37479E-03, 0.00000E+00, -2.55018E-03,-3.92806E-03, 0.00000E+00, 0.00000E+00,-2.89757E-03, -1.33549E-03, 1.02661E-03, 3.53775E-04, 8.47001E-02, 1.70147E-01, -9.17497E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 3.56082E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.00902E-02, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TN1(4) ================================================================================ const _NRLMSISE00_PTL_3 = [ 9.85982E-01,-4.55435E-02, 1.21106E-02, 2.04127E-02,-2.40836E-03, 1.11383E-02,-4.51926E-02, 1.35074E-02,-6.54139E-03, 1.15275E-01, 1.28247E-01, 0.00000E+00, 0.00000E+00,-5.30705E+00, 0.00000E+00, -3.79332E-02,-6.24741E-02, 7.71062E-01, 2.96315E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 6.81051E-03,-4.34767E-03, 8.66784E-02, 1.58727E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.07003E+01,-2.76907E-03, 4.32474E-04, 0.00000E+00, 1.31497E-03,-6.47517E-04, 0.00000E+00,-2.20621E+01,-1.10804E-03, -8.09338E-04, 4.18184E-04, 4.29650E-03, 8.47001E-02, 1.70147E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, -4.04337E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-9.52550E-04, 8.56253E-04, 4.33114E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.21223E-03, 2.38694E-04, 9.15245E-04, 1.28385E-03, 8.67668E-04,-5.61425E-06, 1.04445E+00, 3.41112E+01, 0.00000E+00,-8.40704E-01,-2.39639E+02, 7.06668E-01,-2.05873E+01,-3.63696E-01, 2.39245E+01, 0.00000E+00, -1.06657E-03,-7.67292E-04, 1.54534E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TN1(5), TN2(1) ======================================================================== const _NRLMSISE00_PTL_4 = [ 1.00320E+00, 3.83501E-02,-2.38983E-03, 2.83950E-03, 4.20956E-03, 5.86619E-04, 2.19054E-02,-1.00946E-02,-3.50259E-03, 4.17392E-02, -8.44404E-03, 0.00000E+00, 0.00000E+00, 4.96949E+00, 0.00000E+00, -7.06478E-03,-1.46494E-02, 3.13258E+01,-1.86493E-03, 0.00000E+00, -1.67499E-02, 0.00000E+00, 0.00000E+00, 5.12686E-04, 8.66784E-02, 1.58727E-01,-4.64167E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 4.37353E-03,-1.99069E+02, 0.00000E+00,-5.34884E-03, 0.00000E+00, 1.62458E-03, 2.93016E-03, 2.67926E-03, 5.90449E+02, 0.00000E+00, 0.00000E+00,-1.17266E-03,-3.58890E-04, 8.47001E-02, 1.70147E-01, 0.00000E+00, 0.00000E+00, 1.38673E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.60571E-03, 6.28078E-04, 5.05469E-05, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.57829E-03, -4.00855E-04, 5.04077E-05,-1.39001E-03,-2.33406E-03,-4.81197E-04, 1.46758E+00, 6.20332E+00, 0.00000E+00, 3.66476E-01,-6.19760E+01, 3.09198E-01,-1.98999E+01, 0.00000E+00,-3.29933E+02, 0.00000E+00, -1.10080E-03,-9.39310E-05, 1.39638E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TN2(2) ================================================================================ const _NRLMSISE00_PMA_1 = [ 9.81637E-01,-1.41317E-03, 3.87323E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-3.58707E-02, -8.63658E-03, 0.00000E+00, 0.00000E+00,-2.02226E+00, 0.00000E+00, -8.69424E-03,-1.91397E-02, 8.76779E+01, 4.52188E-03, 0.00000E+00, 2.23760E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-7.07572E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, -4.11210E-03, 3.50060E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-8.36657E-03, 1.61347E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.45130E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.24152E-03, 6.43365E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.33255E-03, 2.42657E-03, 1.60666E-03,-1.85728E-03,-1.46874E-03,-4.79163E-06, 1.22464E+00, 3.53510E+01, 0.00000E+00, 4.49223E-01,-4.77466E+01, 4.70681E-01, 8.41861E+00,-2.88198E-01, 1.67854E+02, 0.00000E+00, 7.11493E-04, 6.05601E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TN2(3) ================================================================================ const _NRLMSISE00_PMA_2 = [ 1.00422E+00,-7.11212E-03, 5.24480E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-5.28914E-02, -2.41301E-02, 0.00000E+00, 0.00000E+00,-2.12219E+01,-1.03830E-02, -3.28077E-03, 1.65727E-02, 1.68564E+00,-6.68154E-03, 0.00000E+00, 1.45155E-02, 0.00000E+00, 8.42365E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00,-4.34645E-03, 0.00000E+00, 0.00000E+00, 2.16780E-02, 0.00000E+00,-1.38459E+02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 7.04573E-03,-4.73204E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.08767E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-8.08279E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 5.21769E-04, -2.27387E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 3.26769E-03, 3.16901E-03, 4.60316E-04,-1.01431E-04, 1.02131E-03, 9.96601E-04, 1.25707E+00, 2.50114E+01, 0.00000E+00, 4.24472E-01,-2.77655E+01, 3.44625E-01, 2.75412E+01, 0.00000E+00, 7.94251E+02, 0.00000E+00, 2.45835E-03, 1.38871E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TN2(4), TN3(1) ======================================================================== const _NRLMSISE00_PMA_3 = [ 1.01890E+00,-2.46603E-02, 1.00078E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-6.70977E-02, -4.02286E-02, 0.00000E+00, 0.00000E+00,-2.29466E+01,-7.47019E-03, 2.26580E-03, 2.63931E-02, 3.72625E+01,-6.39041E-03, 0.00000E+00, 9.58383E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.85291E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.39717E+02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 9.19771E-03,-3.69121E+02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.57067E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-7.07265E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-2.92953E-03, -2.77739E-03,-4.40092E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.47280E-03, 2.95035E-04,-1.81246E-03, 2.81945E-03, 4.27296E-03, 9.78863E-04, 1.40545E+00,-6.19173E+00, 0.00000E+00, 0.00000E+00,-7.93632E+01, 4.44643E-01,-4.03085E+02, 0.00000E+00, 1.15603E+01, 0.00000E+00, 2.25068E-03, 8.48557E-04,-2.98493E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TN3(2) ================================================================================ const _NRLMSISE00_PMA_4 = [ 9.75801E-01, 3.80680E-02,-3.05198E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 3.85575E-02, 5.04057E-02, 0.00000E+00, 0.00000E+00,-1.76046E+02, 1.44594E-02, -1.48297E-03,-3.68560E-03, 3.02185E+01,-3.23338E-03, 0.00000E+00, 1.53569E-02, 0.00000E+00,-1.15558E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 4.89620E-03, 0.00000E+00, 0.00000E+00,-1.00616E-02, -8.21324E-03,-1.57757E+02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 6.63564E-03, 4.58410E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-2.51280E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 9.91215E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-8.73148E-04, -1.29648E-03,-7.32026E-05, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-4.68110E-03, -4.66003E-03,-1.31567E-03,-7.39390E-04, 6.32499E-04,-4.65588E-04, -1.29785E+00,-1.57139E+02, 0.00000E+00, 2.58350E-01,-3.69453E+01, 4.10672E-01, 9.78196E+00,-1.52064E-01,-3.85084E+03, 0.00000E+00, -8.52706E-04,-1.40945E-03,-7.26786E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TN3(3) ================================================================================ const _NRLMSISE00_PMA_5 = [ 9.60722E-01, 7.03757E-02,-3.00266E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.22671E-02, 4.10423E-02, 0.00000E+00, 0.00000E+00,-1.63070E+02, 1.06073E-02, 5.40747E-04, 7.79481E-03, 1.44908E+02, 1.51484E-04, 0.00000E+00, 1.97547E-02, 0.00000E+00,-1.41844E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 5.77884E-03, 0.00000E+00, 0.00000E+00, 9.74319E-03, 0.00000E+00,-2.88015E+03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-4.44902E-03,-2.92760E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.34419E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 5.36685E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-4.65325E-04, -5.50628E-04, 3.31465E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-2.06179E-03, -3.08575E-03,-7.93589E-04,-1.08629E-04, 5.95511E-04,-9.05050E-04, 1.18997E+00, 4.15924E+01, 0.00000E+00,-4.72064E-01,-9.47150E+02, 3.98723E-01, 1.98304E+01, 0.00000E+00, 3.73219E+03, 0.00000E+00, -1.50040E-03,-1.14933E-03,-1.56769E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TN3(4) ================================================================================ const _NRLMSISE00_PMA_6 = [ 1.03123E+00,-7.05124E-02, 8.71615E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-3.82621E-02, -9.80975E-03, 0.00000E+00, 0.00000E+00, 2.89286E+01, 9.57341E-03, 0.00000E+00, 0.00000E+00, 8.66153E+01, 7.91938E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 4.68917E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 7.86638E-03, 0.00000E+00, 0.00000E+00, 9.90827E-03, 0.00000E+00, 6.55573E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-4.00200E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 7.07457E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 5.72268E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-2.04970E-04, 1.21560E-03,-8.05579E-06, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-2.49941E-03, -4.57256E-04,-1.59311E-04, 2.96481E-04,-1.77318E-03,-6.37918E-04, 1.02395E+00, 1.28172E+01, 0.00000E+00, 1.49903E-01,-2.63818E+01, 0.00000E+00, 4.70628E+01,-2.22139E-01, 4.82292E-02, 0.00000E+00, -8.67075E-04,-5.86479E-04, 5.32462E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TN3(4), Surface Temperature TSL ======================================================= const _NRLMSISE00_PMA_7 = [ 1.00828E+00,-9.10404E-02,-2.26549E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-2.32420E-02, -9.08925E-03, 0.00000E+00, 0.00000E+00, 3.36105E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.24957E+01,-5.87939E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.79765E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.01237E+03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.75553E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 3.29699E-03, 1.26659E-03, 2.68402E-04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.17894E-03, 1.48746E-03, 1.06478E-04, 1.34743E-04,-2.20939E-03,-6.23523E-04, 6.36539E-01, 1.13621E+01, 0.00000E+00,-3.93777E-01, 2.38687E+03, 0.00000E+00, 6.61865E+02,-1.21434E-01, 9.27608E+00, 0.00000E+00, 1.68478E-04, 1.24892E-03, 1.71345E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TGN3(2), Surface Gradient TSLG ======================================================== const _NRLMSISE00_PMA_8 = [ 1.57293E+00,-6.78400E-01, 6.47500E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-7.62974E-02, -3.60423E-01, 0.00000E+00, 0.00000E+00, 1.28358E+02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 4.68038E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.67898E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.90994E+04, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 3.15706E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TGN2(1), TGN1(2) ====================================================================== const _NRLMSISE00_PMA_9 = [ 8.60028E-01, 3.77052E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.17570E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 7.77757E-03, 0.00000E+00, 0.00000E+00, 0.00000E+00, 1.01024E+02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 6.54251E+02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.56959E-02, 1.91001E-02, 3.15971E-02, 1.00982E-02,-6.71565E-03, 2.57693E-03, 1.38692E+00, 2.82132E-01, 0.00000E+00, 0.00000E+00, 3.81511E+02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == TGN3(1), TGN2(2) ====================================================================== const _NRLMSISE00_PMA_10 = [ 1.06029E+00,-5.25231E-02, 3.73034E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 3.31072E-02, -3.88409E-01, 0.00000E+00, 0.00000E+00,-1.65295E+02,-2.13801E-01, -4.38916E-02,-3.22716E-01,-8.82393E+01, 1.18458E-01, 0.00000E+00, -4.35863E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-1.19782E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.62229E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-5.37443E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00,-4.55788E-01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 3.84009E-02, 3.96733E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 5.05494E-02, 7.39617E-02, 1.92200E-02,-8.46151E-03,-1.34244E-02, 1.96338E-02, 1.50421E+00, 1.88368E+01, 0.00000E+00, 0.00000E+00,-5.13114E+01, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 5.11923E-02, 3.61225E-02, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 0.00000E+00, 2.00000E+00 ] # == Middle Atmosphere Averages ============================================================ const _NRLMSISE00_PAVGM = [ 2.61000E+02, 2.64000E+02, 2.29000E+02, 2.17000E+02, 2.17000E+02, 2.23000E+02, 2.86760E+02,-2.93940E+00, 2.50000E+00, 0.00000E+00 ]
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
5222
## Description ############################################################################# # # Mathematical functions used in the NRLMSISE-00 model. # ## References ############################################################################## # # [1] https://www.brodo.de/space/nrlmsise/index.html # ############################################################################################ """ _spline_∫(x::NTuple{N, T}, y::NTuple{N, T}, βˆ‚Β²y::NTuple{N, T}, xf::Number) where {N, T<:Number} -> float(T) Compute the integral of the cubic spline function `y(x)` from `x[1]` to `xf`, where the function second derivatives evaluated at `x` are `βˆ‚Β²y`. # Arguments - `x::NTuple{N, T}`: X components of the tabulated function in ascending order. - `y::NTuple{N, T}`: Y components of the tabulated function evaluated at `x`. - `βˆ‚Β²y::NTuple{N, T}`: Second derivatives of `y(x)` `βˆ‚Β²y/βˆ‚xΒ²` evaluated at `x`. - `xf::Number`: Abscissa endpoint for integration. """ function _spline_∫( x::NTuple{N, T}, y::NTuple{N, T}, βˆ‚Β²y::NTuple{N, T}, xf::T ) where {N, T<:Number} int = T(0) kβ‚€ = 1 k₁ = 2 @inbounds while (xf > x[kβ‚€]) && (k₁ <= N) xα΅’ = ((k₁ <= (N - 1)) && (xf >= x[k₁])) ? x[k₁] : xf h = (x[k₁] - x[kβ‚€]) a = (x[k₁] - xα΅’ ) / h b = (xα΅’ - x[kβ‚€]) / h aΒ² = a^2 bΒ² = b^2 a⁴ = a^4 b⁴ = b^4 hΒ² = h^2 k_a = -(1 + a⁴) / 4 + aΒ² / 2 k_b = b⁴ / 4 - bΒ² / 2 int += h * ((1 - aΒ²) * y[kβ‚€] / 2 + bΒ² * y[k₁] / 2 + (k_a * βˆ‚Β²y[kβ‚€] + k_b * βˆ‚Β²y[k₁]) * hΒ² / 6) kβ‚€ += 1 k₁ += 1 end return int end """ _spline_βˆ‚Β²(x::NTuple{N, T}, y::NTuple{N, T}, βˆ‚Β²y₁::T, βˆ‚Β²yβ‚™::T) where {N, T<:Number} -> NTuple{N, T} Compute the 2nd derivatives of the cubic spline interpolation `y(x)` given the 2nd derivatives at `x[1]` (`βˆ‚Β²y₁`) and at `x[N]` (`βˆ‚Β²yβ‚™`). This functions return a tuple with the evaluated 2nd derivatives at each point in `x`. !!! note This function was adapted from Numerical Recipes. !!! note Values higher than `0.99e30` in the 2nd derivatives at the borders (`βˆ‚Β²y₁` and `βˆ‚Β²yβ‚™`) are interpreted as `0`. # Arguments - `x::NTuple{N, T}`: X components of the tabulated function in ascending order. - `y::NTuple{N, T}`: Y components of the tabulated function evaluated at `x`. - `βˆ‚Β²y₁::T`: Second derivative of `y(x)` `βˆ‚Β²y/βˆ‚xΒ²` evaluated at `x[1]`. - `βˆ‚Β²yβ‚™::T`: Second derivative of `y(x)` `βˆ‚Β²y/βˆ‚xΒ²` evaluated at `x[N]`. """ function _spline_βˆ‚Β²( x::NTuple{N, T}, y::NTuple{N, T}, βˆ‚Β²y₁::T, βˆ‚Β²yβ‚™::T ) where {N, T<:Number} # Initialize the tuples that holds the derivatives. Notice that we do not use vectors to # avoid allocations. This code can be much slower for very large `N`. However, N <= 5 # for the NRLMSISE-00 model. u = ntuple(_ -> T(0), Val(N)) βˆ‚Β²y = ntuple(_ -> T(0), Val(N)) if (βˆ‚Β²y₁ > 0.99e30) @reset βˆ‚Β²y[1] = T(0) @reset u[1] = T(0) else @reset βˆ‚Β²y[1] = -T(1 / 2) @reset u[1] = (3 / (x[2] - x[1])) * ((y[2] - y[1]) / (x[2] - x[1]) - βˆ‚Β²y₁) end @inbounds for i in 2:N-1 Οƒ = (x[i] - x[i-1]) / (x[i+1] - x[i-1]) p = Οƒ * βˆ‚Β²y[i-1] + 2 @reset βˆ‚Β²y[i] = (Οƒ - 1) / p m_a = (y[i+1] - y[i] ) / (x[i+1] - x[i] ) m_b = (y[i] - y[i-1]) / (x[i] - x[i-1]) @reset u[i] = (6 * (m_a - m_b) / (x[i+1] - x[i-1]) - Οƒ * u[i-1]) / p end if βˆ‚Β²yβ‚™ > 0.99e30 qβ‚™ = T(0) uβ‚™ = T(0) else qβ‚™ = T(1 / 2) uβ‚™ = (3 / (x[N] - x[N-1])) * (βˆ‚Β²yβ‚™ - (y[N] - y[N-1]) / (x[N] - x[N-1])) end @reset βˆ‚Β²y[N] = (uβ‚™ - qβ‚™ * u[N-1]) / (qβ‚™ * βˆ‚Β²y[N-1] + 1) @inbounds for k in N-1:-1:1 @reset βˆ‚Β²y[k] = βˆ‚Β²y[k] * βˆ‚Β²y[k+1] + u[k] end return βˆ‚Β²y end """ _spline(x::NTuple{N, T}, y::NTuple{N, T}, βˆ‚Β²y::NTuple{N, T}, xα΅’::T) where {N, T<:Number} -> float(T) Compute the interpolation of the cubic spline `y(x)` with second derivatives `βˆ‚Β²y` at `xα΅’`. !!! note This function was adapted from Numerical Recipes. # Arguments - `x::NTuple{N, T}`: X components of the tabulated function in ascending order. - `y::NTuple{N, T}`: Y components of the tabulated function evaluated at `x`. - `βˆ‚Β²y::NTuple{N, T}`: Second derivatives of `y(x)` `βˆ‚Β²y/βˆ‚xΒ²` evaluated at `x`. - `xα΅’::T`: Point to compute the interpolation. """ function _spline( x::NTuple{N, T}, y::NTuple{N, T}, βˆ‚Β²y::NTuple{N, T}, xα΅’::T ) where {N, T<:Number} kβ‚€ = 1 k₁ = N @inbounds while (k₁ - kβ‚€) > 1 k = div(k₁ + kβ‚€, 2, RoundNearest) if x[k] > xα΅’ k₁ = k else kβ‚€ = k end end h = x[k₁] - x[kβ‚€] (h == 0) && throw(ArgumentError("It is not allowed to have two points with the same abscissa.")) a = (x[k₁] - xα΅’ ) / h b = (xα΅’ - x[kβ‚€]) / h yα΅’ = a * y[kβ‚€] + b * y[k₁] + ((a^3 - a) * βˆ‚Β²y[kβ‚€] + (b^3 - b) * βˆ‚Β²y[k₁]) * h^2 / 6 return yα΅’ end """ _ΞΆ(r_lat::T, zz::T, zl::T) where T<:Number -> float(T) Compute the zeta function. """ function _ΞΆ(r_lat::T, zz::T, zl::T) where T<:Number return (zz - zl) * (r_lat + zl) / (r_lat + zz) end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
63136
## Description ############################################################################# # # The NRLMSISE-00 empirical atmosphere model was developed by Mike Picone, Alan Hedin, and # Doug Drob based on the MSISE90 model. # # The MSISE90 model describes the neutral temperature and densities in Earth's atmosphere # from ground to thermospheric heights. Below 72.5 km the model is primarily based on the # MAP Handbook (Labitzke et al., 1985) tabulation of zonal average temperature and pressure # by Barnett and Corney, which was also used for the CIRA-86. Below 20 km these data were # supplemented with averages from the National Meteorological Center (NMC). In addition, # pitot tube, falling sphere, and grenade sounder rocket measurements from 1947 to 1972 were # taken into consideration. Above 72.5 km MSISE-90 is essentially a revised MSIS-86 model # taking into account data derived from space shuttle flights and newer incoherent scatter # results. For someone interested only in the thermosphere (above 120 km), the author # recommends the MSIS-86 model. MSISE is also not the model of preference for specialized # tropospheric work. It is rather for studies that reach across several atmospheric # boundaries. # # (quoted from http://nssdc.gsfc.nasa.gov/space/model/atmos/nrlmsise00.html) # # This Julia version of NRLMSISE-00 was converted from the C version implemented and # maintained by Dominik Brodowski <[email protected]> and available at # http://www.brodo.de/english/pub/nrlmsise/index.html . # # The source code is available at the following git: # # https://git.linta.de/?p=~brodo/nrlmsise-00.git;a=tree # # The conversion also used information available at the FORTRAN source code available at # # https://ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/msis/nrlmsise00/ # ## References ############################################################################## # # [1] https://www.brodo.de/space/nrlmsise/index.html # [2] https://www.orekit.org/site-orekit-11.0/xref/org/orekit/models/earth/atmosphere/NRLMSISE00.html # ############################################################################################ export nrlmsise00 """ nrlmsise00(instant::DateTime, h::Number, Ο•_gd::Number, Ξ»::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64} nrlmsise00(jd::Number, h::Number, Ο•_gd::Number, Ξ»::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64} Compute the atmospheric density using the NRLMSISE-00 model. If we omit all space indices, the system tries to obtain them automatically for the selected day `jd` or `instant`. However, the indices must be already initialized using the function `SpaceIndices.init()`. # Arguments - `instant::DateTime`: Instant to compute the model represent using `DateTime`. - `jd::Number`: Julian day to compute the model. - `h::Number`: Altitude [m]. - `Ο•_gd::Number`: Geodetic latitude [rad]. - `Ξ»::Number`: Longitude [rad]. - `F10ₐ::Number`: 10.7-cm averaged solar flux, 90-day centered on input time [sfu]. - `F10::Number`: 10.7-cm solar flux [sfu]. - `ap::Union{Number, AbstractVector}`: Magnetic index, see the section **AP** for more information. # Keywords - `flags::Nrlmsise00Flags`: A list of flags to configure the model. For more information, see [`Nrlmsise00Flags`]@(ref). (**Default** = `Nrlmsise00Flags()`) - `include_anomalous_oxygen::Bool`: If `true`, the anomalous oxygen density will be included in the total density computation. (**Default** = `true`) - `P::Union{Nothing, Matrix}`: If the user passes a matrix with dimensions equal to or greater than 8 Γ— 4, it will be used when computing the Legendre associated functions, reducing allocations and improving the performance. If it is `nothing`, the matrix is allocated inside the function. (**Default** `nothing`) # Returns - `Nrlmsise00Output{Float64}`: Structure containing the results obtained from the model. # AP The input variable `ap` contains the magnetic index. It can be a `Number` or an `AbstractVector`. If `ap` is a number, it must contain the daily magnetic index. If `ap` is an `AbstractVector`, it must be a vector with 7 dimensions as described below: | Index | Description | |-------|:------------------------------------------------------------------------------| | 1 | Daily AP. | | 2 | 3 hour AP index for current time. | | 3 | 3 hour AP index for 3 hours before current time. | | 4 | 3 hour AP index for 6 hours before current time. | | 5 | 3 hour AP index for 9 hours before current time. | | 6 | Average of eight 3 hour AP indices from 12 to 33 hours prior to current time. | | 7 | Average of eight 3 hour AP indices from 36 to 57 hours prior to current time. | # Extended Help 1. The densities of `O`, `H`, and `N` are set to `0` below `72.5 km`. 2. The exospheric temperature is set to global average for altitudes below `120 km`. The `120 km` gradient is left at global average value for altitudes below `72.5 km`. 3. Anomalous oxygen is defined as hot atomic oxygen or ionized oxygen that can become appreciable at high altitudes (`> 500 km`) for some ranges of inputs, thereby affection drag on satellites and debris. We group these species under the term **Anomalous Oxygen**, since their individual variations are not presently separable with the drag data used to define this model component. ## Notes on Input Variables `F10` and `F10ₐ` values used to generate the model correspond to the 10.7 cm radio flux at the actual distance of the Earth from the Sun rather than the radio flux at 1 AU. The following site provides both classes of values: ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/ `F10`, `F10ₐ`, and `ap` effects are neither large nor well established below 80 km and these parameters should be set to 150, 150, and 4 respectively. If `include_anomalous_oxygen` is `false`, the `total_density` field in the output is the sum of the mass densities of the species `He`, `O`, `Nβ‚‚`, `Oβ‚‚`, `Ar`, `H`, and `N`, but **does not** include anomalous oxygen. If `include_anomalous_oxygen` is `false`, the `total_density` field in the output is the effective total mass density for drag and is the sum of the mass densities of all species in this model **including** the anomalous oxygen. """ function nrlmsise00( instant::DateTime, h::Number, Ο•_gd::Number, Ξ»::Number; flags::Nrlmsise00Flags = Nrlmsise00Flags(), include_anomalous_oxygen::Bool = true, P::Union{Nothing, Matrix} = nothing ) return nrlmsise00( datetime2julian(instant), h, Ο•_gd, Ξ»; flags = flags, include_anomalous_oxygen = include_anomalous_oxygen, P = P ) end function nrlmsise00( jd::Number, h::Number, Ο•_gd::Number, Ξ»::Number; flags::Nrlmsise00Flags = Nrlmsise00Flags(), include_anomalous_oxygen::Bool = true, P::Union{Nothing, Matrix} = nothing ) # Fetch the space indices. # # NOTE: If the altitude is lower than 80km, set to default according to the instructions # in NRLMSISE-00 source code. if h < 80e3 F10ₐ = 150.0 F10 = 150.0 ap = 4.0 @debug """ NRLMSISE00 - Using default indices since h < 80 km Daily F10.7 : $(F10) sfu 90-day avareged F10.7 : $(F10ₐ) sfu Ap : $(ap) """ else # TODO: The online version of NRLMSISE-00 seems to use 89 days, whereas the # NRLMSISE-00 source code mentions 81 days. F10ₐ = sum((space_index.(Val(:F10adj), k) for k in (jd - 45):(jd + 44))) / 90 F10 = space_index(Val(:F10adj), jd - 1) ap = sum(space_index(Val(:Ap), jd)) / 8 @debug """ NRLMSISE00 - Fetched Space Indices Daily F10.7 : $(F10) sfu 90-day avareged F10.7 : $(F10ₐ) sfu Ap : $(ap) """ end # Call the NRLMSISE-00 model. return nrlmsise00( jd, h, Ο•_gd, Ξ», F10ₐ, F10, ap; flags = flags, include_anomalous_oxygen = include_anomalous_oxygen, P = P ) end function nrlmsise00( instant::DateTime, h::Number, Ο•_gd::Number, Ξ»::Number, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}; flags::Nrlmsise00Flags = Nrlmsise00Flags(), include_anomalous_oxygen::Bool = true, P::Union{Nothing, Matrix} = nothing ) return nrlmsise00( datetime2julian(instant), h, Ο•_gd, Ξ», F10ₐ, F10, ap; flags = flags, include_anomalous_oxygen = include_anomalous_oxygen, P = P ) end function nrlmsise00( jd::Number, h::Number, Ο•_gd::Number, Ξ»::Number, F10ₐ::Number, F10::Number, ap::T_AP; flags::Nrlmsise00Flags = Nrlmsise00Flags(), include_anomalous_oxygen::Bool = true, P::Union{Nothing, Matrix} = nothing ) where T_AP<:Union{Number, AbstractVector} # == Compute Auxiliary Variables ======================================================= # Convert the Julian Day to Date. Y, M, D, hour, min, sec = jd_to_date(jd) # Get the number of days since the beginning of the year. doy = round(Int, date_to_jd(Y, M, D, 0, 0, 0) - date_to_jd(Y, 1, 1, 0, 0, 0)) + 1 # Get the number of seconds since the beginning of the day. Ξ”ds = 3600hour + 60min + sec # Get the local apparent solar time [hours]. # # TODO: To be very precise, I think this should also take into consideration the # Equation of Time. However, the online version of NRLMSISE-00 does not use this. lst = Ξ”ds / 3600 + Ξ» * 12 / Ο€ df = F10 - F10ₐ dfa = F10ₐ - 150 stloc, ctloc = sincos(1 * _HOUR_TO_RAD * lst) s2tloc, c2tloc = sincos(2 * _HOUR_TO_RAD * lst) s3tloc, c3tloc = sincos(3 * _HOUR_TO_RAD * lst) # Compute Legendre polynomials. # # Notice that the original NRLMSISE-00 algorithms considers that the Legendre matrix is # upper triangular, whereas we use the lower triangular representation. Hence, we need # to transpose it. # # Furthermore, the NRLMSISE-00 algorithm only uses terms with maximum degree 7 and # maximum order 3. if isnothing(P) plg = legendre(Val(:unnormalized), Ο€ / 2 - Ο•_gd, 7, 3; ph_term = false)' else rows, cols = size(P) if (rows < 8) || (cols < 4) throw(ArgumentError("The matrix P must have at least 8 Γ— 4 elements.")) end legendre!(Val(:unnormalized), P, Ο€ / 2 - Ο•_gd, 7, 3; ph_term = false) plg = P' end # == Latitude Variation of Gravity ===================================================== # # None for flags.time_independent = false. g_lat, r_lat = _gravity_and_effective_radius( (!flags.time_independent) ? Float64(_REFERENCE_LATITUDE) : Float64(Ο•_gd / _DEG_TO_RAD) ) # == Create the NRLMSISE00 Structure =================================================== nrlmsise00d = Nrlmsise00Structure{Float64, T_AP}( Y, doy, Ξ”ds, h / 1000, Ο•_gd / _DEG_TO_RAD, Ξ» / _DEG_TO_RAD, lst, F10ₐ, F10, ap, flags, r_lat, g_lat, df, dfa, plg, ctloc, stloc, c2tloc, s2tloc, c3tloc, s3tloc, 0, 0, 0, 0, 0 ) # Call the NRLMSISE-00 model. ~, nrlmsise00_out = include_anomalous_oxygen ? _gtd7d(nrlmsise00d) : _gtd7(nrlmsise00d) return nrlmsise00_out end ############################################################################################ # Private Functions # ############################################################################################ """ _densm(h::T, d0::T, xm::T, tz::T, r_lat::T, g_lat::T, tn2::NTuple{N2, T}, tgn2::NTuple{2, T}, tn3::NTuple{N3, T}, tgn3::NTuple{2, T}) where {N2<:Interger, N3<:Integer, T<:Number} -> float(T), float(T) Compute the temperature and density profiles for the lower atmosphere. !!! note This function returns the density if `xm` is not 0, or the temperature otherwise. # Arguments - `h::T`: Altitude [km]. - `dβ‚€::T`: Reference density, returned if `h > _ZN2[1]`. - `xm::T`: Species molecular weight [ ]. - `g_lat::T`: Reference gravity at desired latitude [cm / sΒ²]. - `r_lat::T`: Reference radius at desired latitude [km]. - `tn2::NTuple{N2, T}`: Temperature at the nodes for ZN2 scale [K]. - `tgn2::NTuple{N2, T}`: Temperature gradients at the end nodes for ZN2 scale. - `tn3::NTuple{N3, T}`: Temperature at the nodes for ZN3 scale [K]. - `tgn3::NTuple{N3, T}`: Temperature gradients at the end nodes for ZN3 scale. # Returns - `T`: Density [1 / cmΒ³] is `xm` is not 0, or the temperature [K] otherwise. """ function _densm( h::T, dβ‚€::T, xm::T, g_lat::T, r_lat::T, tn2::NTuple{4, T}, tgn2::NTuple{2, T}, tn3::NTuple{5, T}, tgn3::NTuple{2, T}, ) where T<:Number # == Initialization of Variables ======================================================= density = dβ‚€ (h > _ZN2[begin]) && return density # == Stratosphere / Mesosphere Temperature ============================================= z = (h > _ZN2[end]) ? h : _ZN2[end] z1 = _ZN2[begin] z2 = _ZN2[end] t1 = tn2[begin] t2 = tn2[end] zg = _ΞΆ(r_lat, z, z1) zgdif = _ΞΆ(r_lat, z2, z1) # Set up spline nodes. xs2 = ntuple(_ -> T(0), Val(4)) ys2 = ntuple(_ -> T(0), Val(4)) @inbounds for k in 1:4 @reset xs2[k] = _ΞΆ(r_lat, _ZN2[k], z1) / zgdif @reset ys2[k] = 1 / tn2[k] end βˆ‚Β²y₁ = -tgn2[begin] / (t1 * t1) * zgdif βˆ‚Β²yβ‚™ = -tgn2[end] / (t2 * t2) * zgdif * ((r_lat + z2) / (r_lat + z1))^2 # Calculate spline coefficients. βˆ‚Β²y = _spline_βˆ‚Β²(xs2, ys2, βˆ‚Β²y₁, βˆ‚Β²yβ‚™) # Interpolate at desired point. x = zg / zgdif y = _spline(xs2, ys2, βˆ‚Β²y, x) # Temperature at altitude. tz = 1 / y if xm != 0 # Compute the gravity at `z1`. g_h = g_lat / (1 + z1 / r_lat)^2 # Calculate stratosphere / mesosphere density. Ξ³ = xm * g_h * zgdif / T(_RGAS) # Integrate temperature profile. expl = min(Ξ³ * _spline_∫(xs2, ys2, βˆ‚Β²y, x), T(50)); # Density at altitude. density *= (t1 / tz) * exp(-expl) end if h > _ZN3[1] if xm == 0 return tz else return density end end # == Troposhepre / Stratosphere Temperature ============================================ z = h z1 = T(_ZN3[begin]) z2 = T(_ZN3[end]) t1 = tn3[begin] t2 = tn3[end] zg = _ΞΆ(r_lat, z, z1) zgdif = _ΞΆ(r_lat, z2, z1) # Set up spline nodes. xs3 = ntuple(_ -> T(0), Val(5)) ys3 = ntuple(_ -> T(0), Val(5)) @inbounds for k in 1:5 @reset xs3[k] = _ΞΆ(r_lat, _ZN3[k], z1) / zgdif @reset ys3[k] = 1 / tn3[k] end βˆ‚Β²y₁ = -tgn3[begin] / (t1 * t1) * zgdif βˆ‚Β²yβ‚™ = -tgn3[end] / (t2 * t2) * zgdif * ((r_lat + z2) / (r_lat + z1))^2 # Calculate spline coefficients. βˆ‚Β²y = _spline_βˆ‚Β²(xs3, ys3, βˆ‚Β²y₁, βˆ‚Β²yβ‚™) x = zg / zgdif y = _spline(xs3, ys3, βˆ‚Β²y, x) # Temperature at altitude. tz = 1 / y if xm != 0 # Compute the gravity at `z1`. g_h = g_lat / (1 + z1 / r_lat)^2 # Calculate tropospheric / stratosphere density. Ξ³ = xm * g_h * zgdif / T(_RGAS); # Integrate temperature profile. expl = min(Ξ³ * _spline_∫(xs3, ys3, βˆ‚Β²y, x) , T(50)) # Density at altitude. density *= (t1 / tz) * exp(-expl) return density else return tz end end """ _densu(h::T, dlb::T, tinf::T, tlb::T, xm::T, Ξ±::T, zlb::T, s2::T, g_lat::T, r_lat::T, tn1::NTuple{5, T}, tgn1::NTuple{2, T}) where T<:Number -> T, NTuple{5, T}, NTuple{2, T} Compute the density [1 / cmΒ³] or temperature [K] profiles according to the new lower thermo polynomial. !!! note This function returns the density if `xm` is not 0, or the temperature otherwise. # Arguments - `h::T`: Altitude [km]. - `dlb::T`: Density at lower boundary [1 / cmΒ³]. - `tinf::T`: Exospheric temperature [K]. - `tlb::T`: Temperature at lower boundary [K]. - `xm::T`: Species molecular weight [ ]. - `Ξ±::T`: Thermal diffusion coefficient. - `zlb::T`: Altitude at lower boundary [km]. - `s2::T`: Slope. - `g_lat::T`: Reference gravity at the latitude [cm / sΒ²]. - `r_lat::T`: Reference radius at the latitude [km]. - `tn1::NTuple{5, T}`: Temperature at nodes for ZN1 scale [K]. - `tgn1::NTuple{2, T}`: Temperature gradients at end nodes for ZN1 scale. # Returns - `T`: Density [1 / cmΒ³] is `xm` is not 0, or the temperature [K] otherwise. - `NTuple{5, T}`: Updated `tn1`. - `NTuple{2, T}`: Updated `tgn1`. """ function _densu( h::T, dlb::T, tinf::T, tlb::T, xm::T, Ξ±::T, zlb::T, s2::T, g_lat::T, r_lat::T, tn1::NTuple{5, T}, tgn1::NTuple{2, T} ) where T<:Number x = T(0) z1 = T(0) t1 = T(0) zgdif = T(0) xs = ntuple(_ -> T(0), Val(5)) ys = ntuple(_ -> T(0), Val(5)) βˆ‚Β²y = ntuple(_ -> T(0), Val(5)) # Joining altitudes of Bates and spline. z = max(h, _ZN1[begin]) # Geopotential altitude difference from ZLB. zg2 = _ΞΆ(r_lat, z, zlb) # Bates temperature. tt = tinf - (tinf - tlb) * exp(-s2 * zg2) ta = tt tz = tt @inbounds if h < _ZN1[begin] # Compute the temperature below ZA temperature gradient at ZA from Bates profile. dta = (tinf - ta) * s2 * ((r_lat + zlb) / (r_lat + _ZN1[begin]))^2 @reset tgn1[begin] = dta @reset tn1[begin] = ta z = (h > _ZN1[end]) ? h : _ZN1[end] z1 = _ZN1[begin] z2 = _ZN1[end] t1 = tn1[begin] t2 = tn1[end] # Geopotential difference from z1. zg = _ΞΆ(r_lat, z, z1) zgdif = _ΞΆ(r_lat, z2, z1) # Set up spline nodes. for k in 1:5 @reset xs[k] = _ΞΆ(r_lat, _ZN1[k], z1) / zgdif @reset ys[k] = 1 / tn1[k] end # End node derivatives. βˆ‚Β²y₁ = -tgn1[begin] / (t1 * t1) * zgdif βˆ‚Β²yβ‚™ = -tgn1[end] / (t2 * t2) * zgdif * ((r_lat + z2) / (r_lat + z1))^2 # Compute spline coefficients. @reset βˆ‚Β²y = _spline_βˆ‚Β²(xs, ys, βˆ‚Β²y₁, βˆ‚Β²yβ‚™) # Interpolate at the desired point. x = zg / zgdif y = _spline(xs, ys, βˆ‚Β²y, x) # Temperature at altitude. tz = 1 / y end (xm == 0) && return tz, tn1, tgn1 # Compute the gravity at `zlb`. g_h = g_lat / (1 + zlb / r_lat)^2 # Calculate density above _ZN1[1]. Ξ³ = xm * g_h / (s2 * T(_RGAS) * tinf) expl = exp(-s2 * Ξ³ * zg2) if (expl > 50) || (tt <= 0) expl = T(50) end # Density at altitude. density = dlb * (tlb / tt)^(1 + Ξ± + Ξ³) * expl (h >= _ZN1[1]) && return density, tn1, tgn1 # Compute the gravity at `z1`. g_h = g_lat / (1 + z1 / r_lat)^2 # Compute density below _ZN1[1]. Ξ³ = xm * g_h * zgdif / T(_RGAS) # Integrate spline temperatures. expl = Ξ³ * _spline_∫(xs, ys, βˆ‚Β²y, x) if (expl > 50) || (tz <= 0) expl = T(50) end # Density at altitude. density *= (t1 / tz)^(1 + Ξ±) * exp(-expl) return density, tn1, tgn1 end """ _globe7(nrlmsise00d::Nrlmsise00Structure{T}, p::AbstractVector{T}) where T<:Number -> Nrlmsise00Structure{T}, T Compute the function `G(L)` with upper thermosphere parameters `p` and the NRLMSISE-00 structure `nrlmsise00`. !!! note The variables `apt` and `apdf` inside `nrlmsise00d` can be modified inside this function. # Returns - `Nrlmsise00Structure{T}`: Modified structure `nrlmsise00d`. - `T`: Result of `G(L)`. """ function _globe7(nrlmsise00d::Nrlmsise00Structure{T}, p::AbstractVector{T}) where T<:Number # == Unpack NRLMSISE00 Structure ======================================================= ap = nrlmsise00d.ap apdf = nrlmsise00d.apdf apt = nrlmsise00d.apt c2tloc = nrlmsise00d.c2tloc c3tloc = nrlmsise00d.c3tloc ctloc = nrlmsise00d.ctloc df = nrlmsise00d.df dfa = nrlmsise00d.dfa doy = nrlmsise00d.doy flags = nrlmsise00d.flags lst = nrlmsise00d.lst plg = nrlmsise00d.plg s2tloc = nrlmsise00d.s2tloc s3tloc = nrlmsise00d.s3tloc sec = nrlmsise00d.sec stloc = nrlmsise00d.stloc Ξ» = nrlmsise00d.Ξ» Ο•_gd = nrlmsise00d.Ο•_gd # == Initialization of Variables ======================================================= t₁ = T(0) tβ‚‚ = T(0) t₃ = T(0) tβ‚„ = T(0) tβ‚… = T(0) t₆ = T(0) t₇ = T(0) tβ‚ˆ = T(0) t₉ = T(0) t₁₀ = T(0) t₁₁ = T(0) t₁₂ = T(0) t₁₃ = T(0) t₁₄ = T(0) tloc = lst cd32 = cos(1 * _DAY_TO_RAD * (doy - p[32])) cd18 = cos(2 * _DAY_TO_RAD * (doy - p[18])) cd14 = cos(1 * _DAY_TO_RAD * (doy - p[14])) cd39 = cos(2 * _DAY_TO_RAD * (doy - p[39])) # == F10.7 Effect ====================================================================== t₁ = p[20] * df *(1 + p[60] * dfa) + p[21] * df^2 + p[22] * dfa + p[30] * dfa^2 f1 = 1 + (p[48] * dfa + p[20] * df + p[21] * df^2) * flags.F10_Mean f2 = 1 + (p[50] * dfa + p[20] * df + p[21] * df^2) * flags.F10_Mean # == Time Independent ================================================================== tβ‚‚ = p[2] * plg[1, 3] + p[3] * plg[1, 5] + p[23] * plg[1, 7] + p[27] * plg[1, 2] + p[15] * plg[1, 3] * dfa * flags.F10_Mean # == Symmetrical Annual ================================================================ t₃ = p[19] * cd32 # == Symmetrical Semiannual ============================================================ tβ‚„ = (p[16] + p[17] * plg[1, 3]) * cd18 # == Asymmetrical Annual =============================================================== tβ‚… = f1 * (p[10] * plg[1, 2] + p[11] * plg[1, 4]) * cd14 # == Asymmetrical Semiannual =========================================================== t₆ = p[38] * plg[1, 2] * cd39 # == Diurnal =========================================================================== if flags.diurnal t71 = (p[12] * plg[2, 3]) * cd14 * flags.asym_annual t72 = (p[13] * plg[2, 3]) * cd14 * flags.asym_annual t₇ = f2 * ( (p[4] * plg[2, 2] + p[5] * plg[2, 4] + p[28] * plg[2, 6] + t71) * ctloc + (p[7] * plg[2, 2] + p[8] * plg[2, 4] + p[29] * plg[2, 6] + t72) * stloc ) end # == Semidiurnal ======================================================================= if flags.semidiurnal t81 = (p[24] * plg[3, 4] + p[36] * plg[3, 6]) * cd14 * flags.asym_annual t82 = (p[34] * plg[3, 4] + p[37] * plg[3, 6]) * cd14 * flags.asym_annual tβ‚ˆ = f2 * ( (p[6] * plg[3, 3] + p[42] * plg[3, 5] + t81) * c2tloc + (p[9] * plg[3, 3] + p[43] * plg[3, 5] + t82) * s2tloc ) end # == Terdiurnal ======================================================================== if flags.terdiurnal t91 = (p[94] * plg[4, 5] + p[47] * plg[4, 7]) * cd14 * flags.asym_annual t92 = (p[95] * plg[4, 5] + p[49] * plg[4, 7]) * cd14 * flags.asym_annual t₁₄ = f2 * ((p[40] * plg[4, 4] + t91) * s3tloc + (p[41] * plg[4, 4] + t92) * c3tloc) end # == Magnetic Activity Based on Daily AP =============================================== if ap isa AbstractVector if p[52] != 0 exp1 = min(exp(-10800 * abs(p[52]) / (1 + p[139] * (45 - abs(Ο•_gd)))), 0.99999) if p[25] < 1.0e-4 p[25] = 1.0e-4 end apt = _sgβ‚€(exp1, ap, abs(p[25]), p[26]) aux = cos(_HOUR_TO_RAD * (tloc - p[132])) t₉ = apt * ( (p[51] + p[97] * plg[1, 3] + p[55] * plg[1, 5]) + (p[126] * plg[1, 2] + p[127] * plg[1, 4] + p[128] * plg[1, 6]) * cd14 * flags.asym_annual + (p[129] * plg[2, 2] + p[130] * plg[2, 4] + p[131] * plg[2, 6]) * aux * flags.diurnal ) end else apd = ap - 4 p44 = p[44] p45 = p[45] if p44 < 0 p44 = 1e-5 end apdf = apd + (p45 - 1) * (apd + (exp(-p44 * apd) - 1) / p44) if flags.daily_ap aux = cos(_HOUR_TO_RAD * (tloc - p[125])) t₉ = apdf * ( (p[33] + p[46] * plg[1, 3] + p[35] * plg[1, 5]) + (p[101] * plg[1, 2] + p[102] * plg[1, 4] + p[103] * plg[1, 6]) * cd14 * flags.asym_annual + (p[122] * plg[2, 2] + p[123] * plg[2, 4] + p[124] * plg[2, 6]) * aux * flags.diurnal ) end end if flags.all_ut_long_effects && (Ξ» > - 1000) # == Longitudinal ================================================================== if flags.longitudinal sin_g_long, cos_g_long = sincos(_DEG_TO_RAD * Ξ») k₁ = p[65] * plg[2, 3] + p[66] * plg[2, 5] + p[67] * plg[2, 7] + p[104] * plg[2, 2] + p[105] * plg[2, 4] + p[106] * plg[2, 6] kβ‚‚ = p[110] * plg[2, 2] + p[111] * plg[2, 4] + p[112] * plg[2, 6] k₃ = p[91] * plg[2, 3] + p[92] * plg[2, 5] + p[93] * plg[2, 7] + p[107] * plg[2, 2] + p[108] * plg[2, 4] + p[109] * plg[2, 6] kβ‚„ = p[113] * plg[2, 2] + p[114] * plg[2, 4] + p[115] * plg[2, 6] t₁₁ = (1 + p[81] * dfa * flags.F10_Mean) * ( (k₁ + flags.asym_annual * kβ‚‚ * cd14) * cos_g_long + (k₃ + flags.asym_annual * kβ‚„ * cd14) * sin_g_long ) end # == UT and Mixed UT, Longitude ==================================================== if flags.ut_mixed_ut_long k₁ = (1 + p[96] * plg[1, 2]) * (1 + p[82] * dfa * flags.F10_Mean) kβ‚‚ = 1 + p[120] * plg[1, 2] * flags.asym_annual * cd14 k₃ = p[69] * plg[1, 2] + p[70] * plg[1, 4] + p[71] * plg[1, 6] kβ‚„ = 1 + p[138] * dfa * flags.F10_Mean kβ‚… = p[77] * plg[3, 4] + p[78] * plg[3, 6] + p[79] * plg[3, 8] aux₁ = cos(_SEC_TO_RAD * (sec - p[72])) auxβ‚‚ = cos(_SEC_TO_RAD * (sec - p[80]) + 2 * _DEG_TO_RAD * Ξ») t₁₂ = k₁ * kβ‚‚ * k₃ * aux₁ + flags.longitudinal * kβ‚„ * kβ‚… * auxβ‚‚ end # == UT, Longitude Magnetic Activity =============================================== if flags.mixed_ap_ut_long if ap isa AbstractVector if p[52] != 0 k₁ = p[53] * plg[2, 3] + p[99] * plg[2, 5] + p[68] * plg[2, 7] kβ‚‚ = p[134] * plg[2, 2] + p[135] * plg[2, 4] + p[136] * plg[2, 6] k₃ = p[56] * plg[1, 2] + p[57] * plg[1, 4] + p[58] * plg[1, 6] aux₁ = cos(_DEG_TO_RAD * (Ξ» - p[98])) auxβ‚‚ = cos(_DEG_TO_RAD * (Ξ» - p[137])) aux₃ = cos(_SEC_TO_RAD * (sec - p[59])) t₁₃ = apt * flags.longitudinal * (1 + p[133] * plg[1, 2]) * k₁ * aux₁ + apt * flags.longitudinal * flags.asym_annual * kβ‚‚ * cd14 * auxβ‚‚ + apt * flags.ut_mixed_ut_long * k₃ * aux₃ end else k₁ = p[61] * plg[2, 3] + p[62] * plg[2, 5] + p[63] * plg[2, 7] kβ‚‚ = p[116] * plg[2, 2] + p[117] * plg[2, 4] + p[118] * plg[2, 6] k₃ = p[84] * plg[1, 2] + p[85] * plg[1, 4] + p[86] * plg[1, 6] aux₁ = cos(_DEG_TO_RAD * (Ξ» - p[64])) auxβ‚‚ = cos(_DEG_TO_RAD * (Ξ» - p[119])) aux₃ = cos(_SEC_TO_RAD * (sec - p[76])) t₁₃ = apdf * flags.longitudinal * (1 + p[121] * plg[1,2]) * k₁ * aux₁ + apdf * flags.longitudinal * flags.asym_annual * kβ‚‚ * cd14 * auxβ‚‚ + apdf * flags.ut_mixed_ut_long * k₃ * aux₃ end end end # Update the NRLMSISE-00 structure. @reset nrlmsise00d.apt = apt @reset nrlmsise00d.apdf = apdf # Parameters not used: 82, 89, 99, 139-149. tinf = p[31] + flags.F10_Mean * t₁ + flags.time_independent * tβ‚‚ + flags.sym_annual * t₃ + flags.sym_semiannual * tβ‚„ + flags.asym_annual * tβ‚… + flags.asym_semiannual * t₆ + flags.diurnal * t₇ + flags.semidiurnal * tβ‚ˆ + flags.daily_ap * t₉ + flags.all_ut_long_effects * t₁₀ + flags.longitudinal * t₁₁ + flags.ut_mixed_ut_long * t₁₂ + flags.mixed_ap_ut_long * t₁₃ + flags.terdiurnal * t₁₄ return nrlmsise00d, tinf end """ _glob7s(nrlmsise00d::Nrlmsise00Structure{T}, p::AbstractVector{T}) where T<:Number -> T Compute the function `G(L)` with lower atmosphere parameters `p` and the NRLMSISE-00 structure `nrlmsise00d`. """ function _glob7s(nrlmsise00d::Nrlmsise00Structure{T}, p::AbstractVector{T}) where T<:Number # == Unpack NRLMSISE00 Structure ======================================================= ap = nrlmsise00d.ap apdf = nrlmsise00d.apdf apt = nrlmsise00d.apt c2tloc = nrlmsise00d.c2tloc c3tloc = nrlmsise00d.c3tloc ctloc = nrlmsise00d.ctloc dfa = nrlmsise00d.dfa doy = nrlmsise00d.doy flags = nrlmsise00d.flags plg = nrlmsise00d.plg s2tloc = nrlmsise00d.s2tloc s3tloc = nrlmsise00d.s3tloc stloc = nrlmsise00d.stloc Ξ» = nrlmsise00d.Ξ» # == Initialization of Variables ======================================================= t₁ = T(0) tβ‚‚ = T(0) t₃ = T(0) tβ‚„ = T(0) tβ‚… = T(0) t₆ = T(0) t₇ = T(0) tβ‚ˆ = T(0) t₉ = T(0) t₁₀ = T(0) t₁₁ = T(0) t₁₂ = T(0) t₁₃ = T(0) t₁₄ = T(0) # Confirm parameter set. if p[100] == 0 p[100] = T(2) end (p[100] != 2) && error("Wrong parameter set for `_glob7s!`.") cd32 = cos(1 * _DAY_TO_RAD * (doy - p[32])) cd18 = cos(2 * _DAY_TO_RAD * (doy - p[18])) cd14 = cos(1 * _DAY_TO_RAD * (doy - p[14])) cd39 = cos(2 * _DAY_TO_RAD * (doy - p[39])) # == F10.7 ============================================================================= t₁ = p[22] * dfa # == Time Independent ================================================================== tβ‚‚ = p[2] * plg[1, 3] + p[3] * plg[1, 5] + p[23] * plg[1, 7] + p[27] * plg[1, 2] + p[15] * plg[1, 4] + p[60] * plg[1, 6] # == Symmetrical Annual ================================================================ t₃ = (p[19] + p[48] * plg[1, 3] + p[30] * plg[1, 5]) * cd32 # == Symmetrical Semiannual ============================================================ tβ‚„ = (p[16] + p[17] * plg[1, 3] + p[31] * plg[1, 5]) * cd18 # == Asymmetrical Annual =============================================================== tβ‚… = (p[10] * plg[1, 2] + p[11] * plg[1, 4] + p[21] * plg[1, 6]) * cd14 # == Asymmetrical Semiannual =========================================================== t₆ = p[38] * plg[1, 2] * cd39 # == Diurnal =========================================================================== if flags.diurnal t71 = p[12] * plg[2, 3] * cd14 * flags.asym_annual t72 = p[13] * plg[2, 3] * cd14 * flags.asym_annual t₇ = (p[4] * plg[2, 2] + p[5] * plg[2, 4] + t71) * ctloc + (p[7] * plg[2, 2] + p[8] * plg[2, 4] + t72) * stloc end # == Semidiurnal ======================================================================= if flags.semidiurnal t81 = (p[24] * plg[3, 4] + p[36] * plg[3, 6]) * cd14 * flags.asym_annual t82 = (p[34] * plg[3, 4] + p[37] * plg[3, 6]) * cd14 * flags.asym_annual tβ‚ˆ = (p[6] * plg[3, 3] + p[42] * plg[3, 5] + t81) * c2tloc + (p[9] * plg[3, 3] + p[43] * plg[3, 5] + t82) * s2tloc end # == Terdiurnal ======================================================================== if flags.terdiurnal t₁₄ = p[40] * plg[4, 4] * s3tloc + p[41] * plg[4, 4] * c3tloc end # == Magnetic Activity ================================================================= if flags.daily_ap t₉ = p[51] * apt + p[97] * plg[1, 3] * apt * flags.time_independent if ap isa AbstractVector else t₉ = apdf * (p[33] + p[46] * plg[1, 3] * flags.time_independent) end end # == Longitudinal ====================================================================== if !(!flags.all_ut_long_effects || !flags.longitudinal || (Ξ» <= -1000.0)) sin_g_long, cos_g_long = sincos(_DEG_TO_RAD * Ξ») k₁ = p[65] * plg[2, 3] + p[66] * plg[2, 5] + p[67] * plg[2, 7] + p[75] * plg[2, 2] + p[76] * plg[2, 4] + p[77] * plg[2, 6] kβ‚‚ = p[91] * plg[2, 3] + p[92] * plg[2, 5] + p[93] * plg[2, 7] + p[78] * plg[2, 2] + p[79] * plg[2, 4] + p[80] * plg[2, 6] t₁₁ = (k₁ * cos_g_long + kβ‚‚ * sin_g_long) * ( 1 + plg[1,2] * ( p[81] * cos(1 * _DAY_TO_RAD * (doy - p[82])) * flags.asym_annual + p[86] * cos(2 * _DAY_TO_RAD * (doy - p[87])) * flags.asym_semiannual ) + p[84] * cos(1 * _DAY_TO_RAD * (doy - p[85])) * flags.sym_annual + p[88] * cos(2 * _DAY_TO_RAD * (doy - p[89])) * flags.sym_semiannual ) end tinf = flags.F10_Mean * t₁ + flags.time_independent * tβ‚‚ + flags.sym_annual * t₃ + flags.sym_semiannual * tβ‚„ + flags.asym_annual * tβ‚… + flags.asym_semiannual * t₆ + flags.diurnal * t₇ + flags.semidiurnal * tβ‚ˆ + flags.daily_ap * t₉ + flags.all_ut_long_effects * t₁₀ + flags.longitudinal * t₁₁ + flags.ut_mixed_ut_long * t₁₂ + flags.mixed_ap_ut_long * t₁₃ + flags.terdiurnal * t₁₄ return tinf end """ _gtd7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T} Compute the temperatures and densities using the information inside the structure `nrlmsise00d` without including the anomalous oxygen in the total density. # Returns - `Nrlmsise00Structure{T}`: Modified structure `nrlmsise00d`. - `Nrlmsise00Output{T}`: Structure with the output information. """ function _gtd7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number # == Constants ========================================================================= pdm_1 = _NRLMSISE00_PDM_1 pdm_3 = _NRLMSISE00_PDM_3 pdm_4 = _NRLMSISE00_PDM_4 pdm_5 = _NRLMSISE00_PDM_5 pma_1 = _NRLMSISE00_PMA_1 pma_2 = _NRLMSISE00_PMA_2 pma_3 = _NRLMSISE00_PMA_3 pma_4 = _NRLMSISE00_PMA_4 pma_5 = _NRLMSISE00_PMA_5 pma_6 = _NRLMSISE00_PMA_6 pma_7 = _NRLMSISE00_PMA_7 pma_8 = _NRLMSISE00_PMA_8 pma_10 = _NRLMSISE00_PMA_10 pavgm = _NRLMSISE00_PAVGM # == Unpack NRLMSISE00 Structure ======================================================= flags = nrlmsise00d.flags g_lat = nrlmsise00d.g_lat h = nrlmsise00d.h r_lat = nrlmsise00d.r_lat # == Initialization of Variables ======================================================= meso_tn2 = ntuple(_ -> T(0), 4) meso_tn3 = ntuple(_ -> T(0), 5) meso_tgn2 = ntuple(_ -> T(0), 2) meso_tgn3 = ntuple(_ -> T(0), 2) # == Latitude Variation of Gravity ===================================================== xmm = pdm_3[5] # == Thermosphere / Mesosphere (above _ZN2[1]) ========================================= if h < _ZN2[begin] @reset nrlmsise00d.h = T(_ZN2[begin]) end nrlmsise00d, out_thermo = _gts7(nrlmsise00d) @reset nrlmsise00d.h = h # Unpack the values again because `gts7` may have modified `nrlmsise00d`. meso_tn1_5 = nrlmsise00d.meso_tn1_5 meso_tgn1_2 = nrlmsise00d.meso_tgn1_2 dm28 = nrlmsise00d.dm28 # If we are above `_ZN2[1]`, then we do not need to compute anything else. h >= _ZN2[begin] && return nrlmsise00d, out_thermo # Unpack the output values from the thermospheric portion. total_density = out_thermo.total_density temperature = out_thermo.temperature exospheric_temperature = out_thermo.exospheric_temperature N_number_density = out_thermo.N_number_density N2_number_density = out_thermo.N2_number_density O_number_density = out_thermo.O_number_density aO_number_density = out_thermo.aO_number_density O2_number_density = out_thermo.O2_number_density H_number_density = out_thermo.H_number_density He_number_density = out_thermo.He_number_density Ar_number_density = out_thermo.Ar_number_density # Convert the unit to SI. dm28m = dm28 * T(1e6) # == Lower Mesosphere / Upper Stratosphere (between `_ZN3[1]` and `_ZN2[1]`) =========== @reset meso_tgn2[1] = meso_tgn1_2 @reset meso_tn2[1] = meso_tn1_5 @reset meso_tn2[2] = pma_1[1] * pavgm[1] / (1 - flags.all_tn2_var * _glob7s(nrlmsise00d, pma_1)) @reset meso_tn2[3] = pma_2[1] * pavgm[2] / (1 - flags.all_tn2_var * _glob7s(nrlmsise00d, pma_2)) @reset meso_tn2[4] = pma_3[1] * pavgm[3] / (1 - flags.all_tn2_var * flags.all_tn3_var * _glob7s(nrlmsise00d, pma_3)) @reset meso_tn3[1] = meso_tn2[4] @reset meso_tgn2[2] = pavgm[9] * pma_10[1] * ( 1 + flags.all_tn2_var * flags.all_tn3_var * _glob7s(nrlmsise00d, pma_10) ) * meso_tn2[4]^2 / (pma_3[1] * pavgm[3])^2 # == Lower Stratosphere and Troposphere (below `zn3[1]`) =============================== if h < _ZN3[begin] @reset meso_tgn3[1] = meso_tgn2[2] @reset meso_tn3[2] = pma_4[1] * pavgm[4] / (1 - flags.all_tn3_var * _glob7s(nrlmsise00d, pma_4)) @reset meso_tn3[3] = pma_5[1] * pavgm[5] / (1 - flags.all_tn3_var * _glob7s(nrlmsise00d, pma_5)) @reset meso_tn3[4] = pma_6[1] * pavgm[6] / (1 - flags.all_tn3_var * _glob7s(nrlmsise00d, pma_6)) @reset meso_tn3[5] = pma_7[1] * pavgm[7] / (1 - flags.all_tn3_var * _glob7s(nrlmsise00d, pma_7)) @reset meso_tgn3[2] = pma_8[1] * pavgm[8] * ( 1 + flags.all_tn3_var * _glob7s(nrlmsise00d, pma_8) ) * meso_tn3[5] * meso_tn3[5] / (pma_7[1] * pavgm[7])^2 end # == Linear Transition to Full Mixing Below `_ZN2[1]` ================================== dmc = (h > _ZMIX) ? 1 - (T(_ZN2[begin]) - h) / (T(_ZN2[begin]) - T(_ZMIX)) : T(0) dz28 = N2_number_density # == Nβ‚‚ Density ======================================================================== dmr = N2_number_density / dm28m - 1 N2_number_density = _densm( h, dm28m, xmm, g_lat, r_lat, meso_tn2, meso_tgn2, meso_tn3, meso_tgn3 ) N2_number_density *= 1 + dmr * dmc # == He Density ======================================================================== dmr = He_number_density / (dz28 * pdm_1[2]) - 1 He_number_density = N2_number_density * pdm_1[2] * (1 + dmr * dmc) # == O Density ========================================================================= O_number_density = T(0) aO_number_density = T(0) # == Oβ‚‚ Density ======================================================================== dmr = O2_number_density / (dz28 * pdm_4[2]) - 1 O2_number_density = N2_number_density * pdm_4[2] * (1 + dmr * dmc) # == Ar Density ======================================================================== dmr = Ar_number_density / (dz28 * pdm_5[2]) - 1 Ar_number_density = N2_number_density * pdm_5[2] * (1 + dmr * dmc) # == H Density ========================================================================= H_number_density = T(0) # == N Density ========================================================================= N_number_density = T(0) # == Total Mass Density ================================================================ total_density = 1.66e-24 * ( 4 * He_number_density + 16 * O_number_density + 28 * N2_number_density + 32 * O2_number_density + 40 * Ar_number_density + 1 * H_number_density + 14 * N_number_density ) # Convert the units to SI. total_density /= 1000 # == Temperature at Selected Altitude ================================================== temperature = _densm( h, T(1), T(0), g_lat, r_lat, meso_tn2, meso_tgn2, meso_tn3, meso_tgn3 ) # Create output structure and return. nrlmsise00_out = Nrlmsise00Output{T}( total_density, temperature, exospheric_temperature, N_number_density, N2_number_density, O_number_density, aO_number_density, O2_number_density, H_number_density, He_number_density, Ar_number_density ) return nrlmsise00d, nrlmsise00_out end """ _gtd7d(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T} Compute the temperatures and densities using the information inside the structure `nrlmsise00d` including the anomalous oxygen in the total density. # Returns - `Nrlmsise00Structure{T}`: Modified structure `nrlmsise00d`. - `Nrlmsise00Output{T}`: Structure with the output information. """ function _gtd7d(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number # Call `_gt7d!` to compute the NRLMSISE-00 outputs. nrlmsise00d, out = _gtd7(nrlmsise00d) # Update the computation of the total mass density. total_density = 1.66e-24 * ( 4 * out.He_number_density + 16 * out.O_number_density + 28 * out.N2_number_density + 32 * out.O2_number_density + 40 * out.Ar_number_density + 1 * out.H_number_density + 14 * out.N_number_density + 16 * out.aO_number_density ) # Convert the unit to SI. total_density /= 1000 # Create the new output and return. nrlmsise00_out = Nrlmsise00Output{T}( total_density, out.temperature, out.exospheric_temperature, out.N_number_density, out.N2_number_density, out.O_number_density, out.aO_number_density, out.O2_number_density, out.H_number_density, out.He_number_density, out.Ar_number_density ) return nrlmsise00d, nrlmsise00_out end """ _gts7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number -> Nrlmsise00Structure{T}, Nrlmsise00Output{T} Compute the temperatures and densities using the information inside the structure `nrlmsise00d` and including the anomalous oxygen in the total density for altitudes higher than 72.5 km (thermospheric portion of NRLMSISE-00). # Returns - `Nrlmsise00Structure{T}`: Modified structure `nrlmsise00d`. - `Nrlmsise00Output{T}`: Structure with the output information. """ function _gts7(nrlmsise00d::Nrlmsise00Structure{T}) where T<:Number # == Constants ========================================================================= pdl_1 = _NRLMSISE00_PDL_1 pdl_2 = _NRLMSISE00_PDL_2 ptm = _NRLMSISE00_PTM pdm_1 = _NRLMSISE00_PDM_1 pdm_2 = _NRLMSISE00_PDM_2 pdm_3 = _NRLMSISE00_PDM_3 pdm_4 = _NRLMSISE00_PDM_4 pdm_5 = _NRLMSISE00_PDM_5 pdm_6 = _NRLMSISE00_PDM_6 pdm_7 = _NRLMSISE00_PDM_7 pdm_8 = _NRLMSISE00_PDM_8 pt = _NRLMSISE00_PT ps = _NRLMSISE00_PS pd_TLB = _NRLMSISE00_PD_TLB pd_N2 = _NRLMSISE00_PD_N2 ptl_1 = _NRLMSISE00_PTL_1 ptl_2 = _NRLMSISE00_PTL_2 ptl_3 = _NRLMSISE00_PTL_3 ptl_4 = _NRLMSISE00_PTL_4 pma_9 = _NRLMSISE00_PMA_9 pd_He = _NRLMSISE00_PD_HE pd_O = _NRLMSISE00_PD_O pd_O2 = _NRLMSISE00_PD_O2 pd_Ar = _NRLMSISE00_PD_AR pd_H = _NRLMSISE00_PD_H pd_N = _NRLMSISE00_PD_N pd_hotO = _NRLMSISE00_PD_HOT_O # Thermal diffusion coefficients for the species. Ξ± = (-0.38, 0.0, 0.0, 0.0, 0.17, 0.0, -0.38, 0.0, 0.0) # Net density computation altitude limits for the species. altl = (200.0, 300.0, 160.0, 250.0, 240.0, 450.0, 320.0, 450.0) # == Unpack NRLMSISE00 structure ======================================================= dfa = nrlmsise00d.dfa dm28 = nrlmsise00d.dm28 doy = nrlmsise00d.doy flags = nrlmsise00d.flags g_lat = nrlmsise00d.g_lat h = nrlmsise00d.h r_lat = nrlmsise00d.r_lat Ο•_gd = nrlmsise00d.Ο•_gd # == Initialization of Variables ======================================================= temperature = T(0) meso_tn1 = ntuple(_ -> T(0), 5) meso_tgn1 = ntuple(_ -> T(0), 2) # == Tinf variations not important below `za` or `zn1[1]` ============================== if h > _ZN1[1] nrlmsise00d, G_L = _globe7(nrlmsise00d, pt) tinf = ptm[1] * pt[1] * (1 + flags.all_tinf_var * G_L) else tinf = ptm[1] * pt[1] end exospheric_temperature = tinf # == Gradient variations not important below `zn1[5]` ================================== if h > _ZN1[5] nrlmsise00d, G_L = _globe7(nrlmsise00d, ps) g0 = ptm[4] * ps[1] * (1 + flags.all_s_var * G_L) else g0 = ptm[4] * ps[1] end nrlmsise00d, G_L = _globe7(nrlmsise00d, pd_TLB) tlb = ptm[2] * (1 + flags.all_tlb_var * G_L) * pd_TLB[1] s = g0 / (tinf - tlb) # Lower thermosphere temperature variations not significant for density above 300 km. if h < 300 @reset meso_tn1[2] = ptm[7] * ptl_1[1] / (1 - flags.all_tn1_var * _glob7s(nrlmsise00d, ptl_1)) @reset meso_tn1[3] = ptm[3] * ptl_2[1] / (1 - flags.all_tn1_var * _glob7s(nrlmsise00d, ptl_2)) @reset meso_tn1[4] = ptm[8] * ptl_3[1] / (1 - flags.all_tn1_var * _glob7s(nrlmsise00d, ptl_3)) @reset meso_tn1[5] = ptm[5] * ptl_4[1] / (1 - flags.all_tn1_var * flags.all_tn2_var * _glob7s(nrlmsise00d, ptl_4)) @reset meso_tgn1[2] = ptm[9] * pma_9[1] * ( 1 + flags.all_tn1_var * flags.all_tn2_var * _glob7s(nrlmsise00d, pma_9) ) * meso_tn1[5]^2 / (ptm[5] * ptl_4[1])^2 else @reset meso_tn1[2] = ptm[7] * ptl_1[1] @reset meso_tn1[3] = ptm[3] * ptl_2[1] @reset meso_tn1[4] = ptm[8] * ptl_3[1] @reset meso_tn1[5] = ptm[5] * ptl_4[1] @reset meso_tgn1[2] = ptm[9] * pma_9[1] * meso_tn1[5]^2 / (ptm[5] * ptl_4[1])^2 end # N2 variation factor at Zlb. nrlmsise00d, G_L = _globe7(nrlmsise00d, pd_N2) g28 = flags.all_nlb_var * G_L # == Variation of Turbopause Height ==================================================== zhf = pdl_2[25] * ( 1 + flags.asym_annual * pdl_1[25] * sin(_DEG_TO_RAD * Ο•_gd) * cos(_DAY_TO_RAD * (doy - pt[14])) ) xmm = pdm_3[5] # == Nβ‚‚ Density ======================================================================== # Diffusive density at Zlb. db28 = pdm_3[1] * exp(g28) * pd_N2[1] # Diffusive density at desired altitude. N2_number_density, meso_tn1, meso_tgn1 = _densu( h, db28, tinf, tlb, T(28), Ξ±[3], ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) # Turbopause. zh28 = pdm_3[3] * zhf zhm28 = pdm_3[4] * pdl_2[6] xmd = 28 - xmm # Mixed density at Zlb. b28, meso_tn1, meso_tgn1 = _densu( zh28, db28, tinf, tlb, xmd, Ξ±[3] - 1, ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) if flags.departures_from_eq && (h < altl[3]) # Mixed density at desired altitude. dm28, meso_tn1, meso_tgn1 = _densu( h, b28, tinf, tlb, xmm, Ξ±[3], ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) # Net density at desired altitude. N2_number_density = _dnet(N2_number_density, dm28, zhm28, xmm, T(28)) end # == He Density ======================================================================== # Density variation factor at Zlb. nrlmsise00d, G_L = _globe7(nrlmsise00d, pd_He) g4 = flags.all_nlb_var * G_L # Diffusive density at Zlb. db04 = pdm_1[1] * exp(g4) * pd_He[1] # Diffusive density at desired altitude. He_number_density, meso_tn1, meso_tgn1 = _densu( h, db04, tinf, tlb, T(4), Ξ±[1], ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) if flags.departures_from_eq && (h < altl[3]) # Turbopause. zh04 = pdm_1[3] # Mixed density at Zlb. b04, meso_tn1, meso_tgn1 = _densu( zh04, db04, tinf, tlb, 4 - xmm, Ξ±[1] - 1, ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) # Mixed density at desired altitude. dm04, meso_tn1, meso_tgn1 = _densu( h, b04, tinf, tlb, xmm, T(0), ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) zhm04 = zhm28 # Net density at desired altitude. He_number_density = _dnet(He_number_density, dm04, zhm04, xmm, T(4)) # Correction to specified mixing ration at ground. rl = log(b28 * pdm_1[2] / b04) zc04 = pdm_1[5] * pdl_2[1] hc04 = pdm_1[6] * pdl_2[2] # Net density corrected at desired altitude. He_number_density *= _ccor(h, rl, hc04, zc04) end # == O Density ========================================================================= # Density variation factor at Zlb. nrlmsise00d, G_L = _globe7(nrlmsise00d, pd_O) g16 = flags.all_nlb_var * G_L # Diffusive density at Zlb. db16 = pdm_2[1] * exp(g16) * pd_O[1] # Diffusive density at desired altitude. O_number_density, meso_tn1, meso_tgn1 = _densu( h, db16, tinf, tlb, T(16), Ξ±[2], ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) if flags.departures_from_eq && (h <= altl[2]) # Turbopause. zh16 = pdm_2[3] # Mixed density at Zlb. b16, meso_tn1, meso_tgn1 = _densu( zh16, db16, tinf, tlb, 16 - xmm, Ξ±[2] - 1, ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) # Mixed density at desired altitude. dm16, meso_tn1, meso_tgn1 = _densu( h, b16, tinf, tlb, xmm, T(0), ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) zhm16 = zhm28 # Net density at desired altitude. O_number_density = _dnet(O_number_density, dm16, zhm16, xmm, T(16)) rl = pdm_2[2] * pdl_2[17] * (1 + flags.F10_Mean * pdl_1[24] * dfa) hc16 = pdm_2[6] * pdl_2[4] zc16 = pdm_2[5] * pdl_2[3] hc216 = pdm_2[6] * pdl_2[5] O_number_density *= _ccor2(h, rl, hc16, zc16, hc216) # Chemistry correction. hcc16 = pdm_2[8] * pdl_2[14] zcc16 = pdm_2[7] * pdl_2[13] rc16 = pdm_2[4] * pdl_2[15] # Net density corrected at desired altitude. O_number_density *= _ccor(h, rc16, hcc16, zcc16) end # == Oβ‚‚ Density ======================================================================== # Density variation factor at Zlb. nrlmsise00d, G_L = _globe7(nrlmsise00d, pd_O2) g32 = flags.all_nlb_var * G_L # Diffusive density at Zlb. db32 = pdm_4[1] * exp(g32) * pd_O2[1] # Diffusive density at desired altitude. O2_number_density, meso_tn1, meso_tgn1 = _densu( h, db32, tinf, tlb, T(32), Ξ±[4], ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) if flags.departures_from_eq if h <= altl[4] # Turbopause. zh32 = pdm_4[3] # Mixed density at Zlb. b32, meso_tn1, meso_tgn1 = _densu( zh32, db32, tinf, tlb, 32 - xmm, Ξ±[4] - 1, ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) # Mixed density at desired altitude. dm32, meso_tn1, meso_tgn1 = _densu( h, b32, tinf, tlb, xmm, T(0), ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) zhm32 = zhm28 # Net density at desired altitude. O2_number_density = _dnet(O2_number_density, dm32, zhm32, xmm, T(32)) # Correction to specified mixing ratio at ground. rl = log(b28 * pdm_4[2] / b32) hc32 = pdm_4[6] * pdl_2[8] zc32 = pdm_4[5] * pdl_2[7] O2_number_density *= _ccor(h, rl, hc32, zc32) end # Correction for general departure from diffusive equilibrium above Zlb. hcc32 = pdm_4[8] * pdl_2[23] hcc232 = pdm_4[8] * pdl_1[23] zcc32 = pdm_4[7] * pdl_2[22] rc32 = pdm_4[4] * pdl_2[24] * (1 + flags.F10_Mean * pdl_1[24] * dfa) # Net density corrected at desired altitude. O2_number_density *= _ccor2(h, rc32, hcc32, zcc32, hcc232) end # == Ar Density ======================================================================== # Density variation factor at Zlb. nrlmsise00d, G_L = _globe7(nrlmsise00d, pd_Ar) g40 = flags.all_nlb_var * G_L # Diffusive density at Zlb. db40 = pdm_5[1] * exp(g40) * pd_Ar[1] # Diffusive density at desired altitude. Ar_number_density, meso_tn1, meso_tgn1= _densu( h, db40, tinf, tlb, T(40), Ξ±[5], ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) if flags.departures_from_eq && (h <= altl[5]) # Turbopause. zh40 = pdm_5[3] # Mixed density at Zlb. b40, meso_tn1, meso_tgn1 = _densu( zh40, db40, tinf, tlb, 40 - xmm, Ξ±[5] - 1, ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) # Mixed density at desired altitude. dm40, meso_tn1, meso_tgn1 = _densu( h, b40, tinf, tlb, xmm, T(0), ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) zhm40 = zhm28 # Net density at desired altitude. Ar_number_density = _dnet(Ar_number_density, dm40, zhm40, xmm, T(40)) # Correction to specified mixing ratio at ground. rl = log(b28 * pdm_5[2] / b40) hc40 = pdm_5[6] * pdl_2[10] zc40 = pdm_5[5] * pdl_2[9] # Net density corrected at desired altitude. Ar_number_density *= _ccor(h, rl, hc40, zc40) end # == H Density ========================================================================= # Density variation factor at Zlb. nrlmsise00d, G_L = _globe7(nrlmsise00d, pd_H) g1 = flags.all_nlb_var * G_L # Diffusive density at Zlb. db01 = pdm_6[1] * exp(g1) * pd_H[1] # Diffusive density at desired altitude. H_number_density, meso_tn1, meso_tgn1 = _densu( h, db01, tinf, tlb, T(1), Ξ±[7], ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) if flags.departures_from_eq && (h <= altl[7]) # Turbopause. zh01 = pdm_6[3] # Mixed density at Zlb. b01, meso_tn1, meso_tgn1 = _densu( zh01, db01, tinf, tlb, 1 - xmm, Ξ±[7] - 1, ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) # Mixed density at desired altitude. dm01, meso_tn1, meso_tgn1 = _densu( h, b01, tinf, tlb, xmm, T(0), ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) zhm01 = zhm28 # Net density at desired altitude. H_number_density = _dnet(H_number_density, dm01, zhm01, xmm, T(1)) # Correction to specified mixing ratio at ground. rl = log(b28 * pdm_6[2] * abs(pdl_2[18]) / b01) hc01 = pdm_6[6] * pdl_2[12] zc01 = pdm_6[5] * pdl_2[11] H_number_density *= _ccor(h, rl, hc01, zc01) # Chemistry correction. hcc01 = pdm_6[8] * pdl_2[20] zcc01 = pdm_6[7] * pdl_2[19] rc01 = pdm_6[4] * pdl_2[21] # Net density corrected at desired altitude. H_number_density *= _ccor(h, rc01, hcc01, zcc01) end # == N Density ========================================================================= # Density variation factor at Zlb. nrlmsise00d, G_L = _globe7(nrlmsise00d, pd_N) g14 = flags.all_nlb_var * G_L # Diffusive density at Zlb. db14 = pdm_7[1] * exp(g14) * pd_N[1] # Diffusive density at desired altitude. N_number_density, meso_tn1, meso_tgn1 = _densu( h, db14, tinf, tlb, T(14), Ξ±[8], ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) if flags.departures_from_eq && (h <= altl[8]) # Turbopause. zh14 = pdm_7[3] # Mixed density at Zlb. b14, meso_tn1, meso_tgn1 = _densu( zh14, db14, tinf, tlb, 14 - xmm, Ξ±[8] - 1, ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) # Mixed density at desired altitude. dm14, meso_tn1, meso_tgn1 = _densu( h, b14, tinf, tlb, xmm, T(0), ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) zhm14 = zhm28 # Net density at desired altitude. N_number_density = _dnet(N_number_density, dm14, zhm14, xmm, T(14)) # Correction to specified mixing ratio at ground. rl = log(b28 * pdm_7[2] * abs(pdl_1[3]) / b14) hc14 = pdm_7[6] * pdl_1[2] zc14 = pdm_7[5] * pdl_1[1] N_number_density *= _ccor(h, rl, hc14, zc14) # Chemistry correction. hcc14 = pdm_7[8] * pdl_1[5] zcc14 = pdm_7[7] * pdl_1[4] rc14 = pdm_7[4] * pdl_1[6] # Net density corrected at desired altitude. N_number_density *= _ccor(h, rc14, hcc14, zcc14) end # == Anomalous O Density =============================================================== nrlmsise00d, G_L = _globe7(nrlmsise00d, pd_hotO) g16h = flags.all_nlb_var * G_L db16h = pdm_8[1] * exp(g16h) * pd_hotO[1] tho = pdm_8[10] * pdl_1[7] aO_number_density, meso_tn1, meso_tgn1 = _densu( h, db16h, tho, tho, T(16), Ξ±[9], ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) zsht = pdm_8[6] zmho = pdm_8[5] zsho = _scale_height(zmho, T(16), tho, g_lat, r_lat) aO_number_density *= exp(-zsht / zsho * (exp(-(h - zmho) / zsht) - 1)) # == Total Mass Density ================================================================ total_density = 1.66e-24 * ( 4 * He_number_density + 16 * O_number_density + 28 * N2_number_density + 32 * O2_number_density + 40 * Ar_number_density + 1 * H_number_density + 14 * N_number_density ) # == Temperature at Selected Altitude ================================================== temperature, meso_tn1, meso_tgn1 = _densu( abs(h), T(1), tinf, tlb, T(0), T(0), ptm[6], s, g_lat, r_lat, meso_tn1, meso_tgn1 ) # == Output ============================================================================ # Convert the result to SI. total_density *= T(1e3) N_number_density *= T(1e6) N2_number_density *= T(1e6) O_number_density *= T(1e6) aO_number_density *= T(1e6) O2_number_density *= T(1e6) H_number_density *= T(1e6) He_number_density *= T(1e6) Ar_number_density *= T(1e6) # Repack variables that were modified. @reset nrlmsise00d.meso_tn1_5 = meso_tn1[5] @reset nrlmsise00d.meso_tgn1_2 = meso_tgn1[2] @reset nrlmsise00d.dm28 = dm28 # Create output structure and return. nrlmsise00_out = Nrlmsise00Output{T}( total_density, temperature, exospheric_temperature, N_number_density, N2_number_density, O_number_density, aO_number_density, O2_number_density, H_number_density, He_number_density, Ar_number_density ) return nrlmsise00d, nrlmsise00_out end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
2492
## Description ############################################################################# # # Function to show the results of the NRLMSISE-00 atmospheric model. # ############################################################################################ function show(io::IO, out::Nrlmsise00Output) # Check for color support in the `io`. color = get(io, :color, false) b = color ? _B : "" d = color ? _D : "" print(io, "$(b)NRLMSISE-00 output$(d) (ρ = ", @sprintf("%g", out.total_density), " kg / mΒ³)") return nothing end function show(io::IO, mime::MIME"text/plain", out::Nrlmsise00Output) # Check for color support in the `io`. color = get(io, :color, false) b = color ? _B : "" d = color ? _D : "" str_total_density = @sprintf("%15g", out.total_density) str_temperature = @sprintf("%15.2f", out.temperature) str_exospheric_temp = @sprintf("%15.2f", out.exospheric_temperature) str_N_number_den = @sprintf("%15g", out.N_number_density) str_Nβ‚‚_number_den = @sprintf("%15g", out.N2_number_density) str_O_number_den = @sprintf("%15g", out.O_number_density) str_aO_number_den = @sprintf("%15g", out.aO_number_density) str_Oβ‚‚_number_den = @sprintf("%15g", out.O2_number_density) str_H_number_den = @sprintf("%15g", out.H_number_density) str_He_number_den = @sprintf("%15g", out.He_number_density) str_Ar_number_den = @sprintf("%15g", out.Ar_number_density) println(io, "NRLMSISE-00 Atmospheric Model Result:") println(io, "$(b) Total density :$(d)", str_total_density, " kg / mΒ³") println(io, "$(b) Temperature :$(d)", str_temperature, " K") println(io, "$(b) Exospheric Temp. :$(d)", str_exospheric_temp, " K") println(io, "$(b) N number density :$(d)", str_N_number_den, " 1 / mΒ³") println(io, "$(b) Nβ‚‚ number density :$(d)", str_Nβ‚‚_number_den, " 1 / mΒ³") println(io, "$(b) O number density :$(d)", str_O_number_den, " 1 / mΒ³") println(io, "$(b) Anomalous O num. den. :$(d)", str_aO_number_den, " 1 / mΒ³") println(io, "$(b) Oβ‚‚ number density :$(d)", str_Oβ‚‚_number_den, " 1 / mΒ³") println(io, "$(b) Ar number density :$(d)", str_Ar_number_den, " 1 / mΒ³") println(io, "$(b) He number density :$(d)", str_He_number_den, " 1 / mΒ³") print(io, "$(b) H number density :$(d)", str_H_number_den, " 1 / mΒ³") return nothing end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
4860
## Description ############################################################################# # # Types related to the NRLMSISE-00 atmospheric model. # ############################################################################################ export Nrlmsise00Flags, Nrlmsise00Output """ struct Nrlmsise00Flags Flags to configure NRLMSISE-00. # Fields - `F10_Mean::Bool`: F10.7 effect on mean. - `time_independent::Bool`: Independent of time. - `sym_annual::Bool`: Symmetrical annual. - `sym_semiannual::Bool`: Symmetrical semiannual. - `asym_annual::Bool`: Asymmetrical annual. - `asyn_semiannual::Bool`: Asymmetrical semiannual. - `diurnal::Bool`: Diurnal. - `semidiurnal::Bool`: Semidiurnal. - `daily_ap::Bool`: Daily AP. - `all_ut_long_effects::Bool`: All UT/long effects. - `longitudinal::Bool`: Longitudinal. - `ut_mixed_ut_long::Bool`: UT and mixed UT/long. - `mixed_ap_ut_long::Bool`: Mixed AP/UT/long. - `terdiurnal::Bool`: Terdiurnal. - `departures_from_eq::Bool`: Departures from diffusive equilibrium. - `all_tinf_var::Bool`: All TINF variations. - `all_tlb_var::Bool`: All TLB variations. - `all_tn1_var::Bool`: All TN1 variations. - `all_s_var::Bool`: All S variations. - `all_tn2_var::Bool`: All TN2 variations. - `all_nlb_var::Bool`: All NLB variations. - `all_tn3_var::Bool`: All TN3 variations. - `turbo_scale_height::Bool`: Turbo scale height variations. """ Base.@kwdef struct Nrlmsise00Flags F10_Mean::Bool = true time_independent::Bool = true sym_annual::Bool = true sym_semiannual::Bool = true asym_annual::Bool = true asym_semiannual::Bool = true diurnal::Bool = true semidiurnal::Bool = true daily_ap::Bool = true all_ut_long_effects::Bool = true longitudinal::Bool = true ut_mixed_ut_long::Bool = true mixed_ap_ut_long::Bool = true terdiurnal::Bool = true departures_from_eq::Bool = true all_tinf_var::Bool = true all_tlb_var::Bool = true all_tn1_var::Bool = true all_s_var::Bool = true all_tn2_var::Bool = true all_nlb_var::Bool = true all_tn3_var::Bool = true turbo_scale_height::Bool = true end """ struct Nrlmsise00Structure{T<:Number, T_AP<:Union{Number, AbstractVector}} Structure with the configuration parameters for NRLMSISE-00 model. `T` is the floating-number type and `T_AP` is the type of the AP information, which can be a `Number` or `AbstractVector`. """ struct Nrlmsise00Structure{T<:Number, T_AP<:Union{Number, AbstractVector}} # == Inputs ============================================================================ year::Int doy::Int sec::T h::T Ο•_gd::T Ξ»::T lst::T F10ₐ::T F10::T ap::T_AP flags::Nrlmsise00Flags # == Auxiliary Variables to Improve Code Performance =================================== r_lat::T g_lat::T df::T dfa::T plg::Adjoint{T, Matrix{T}} ctloc::T stloc::T c2tloc::T s2tloc::T c3tloc::T s3tloc::T # In the original source code, it has 4 components, but only 1 is used. apt::T apdf::T dm28::T # The original code declared all the `meso_*` vectors as global variables. However, # only two values really need to be shared between the functions `gts7` and `gtd7`. meso_tn1_5::T meso_tgn1_2::T end """ struct Nrlmsise00Output{T<:Number} Output structure for NRLMSISE00 model. # Fields - `total_density::T`: Total mass density [kg / mΒ³]. - `temperature`: Temperature at the selected altitude [K]. - `exospheric_temperature`: Exospheric temperature [K]. - `N_number_density`: Nitrogen number density [1 / mΒ³]. - `N2_number_density`: Nβ‚‚ number density [1 / mΒ³]. - `O_number_density`: Oxygen number density [1 / mΒ³]. - `aO_number_density`: Anomalous Oxygen number density [1 / mΒ³]. - `O2_number_density`: Oβ‚‚ number density [1 / mΒ³]. - `H_number_density`: Hydrogen number density [1 / mΒ³]. - `He_number_density`: Helium number density [1 / mΒ³]. - `Ar_number_density`: Argon number density [1 / mΒ³]. # Remarks Anomalous oxygen is defined as hot atomic oxygen or ionized oxygen that can become appreciable at high altitudes (`> 500 km`) for some ranges of inputs, thereby affection drag on satellites and debris. We group these species under the term **Anomalous Oxygen**, since their individual variations are not presently separable with the drag data used to define this model component. """ struct Nrlmsise00Output{T<:Number} total_density::T temperature::T exospheric_temperature::T N_number_density::T N2_number_density::T O_number_density::T aO_number_density::T O2_number_density::T H_number_density::T He_number_density::T Ar_number_density::T end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
2653
## Description ############################################################################# # # Tests related to the exponential atmospheric model. # ## References ############################################################################## # # [1] Vallado, D. A (2013). Fundamentals of Astrodynamics and Applications. 4th ed. # Microcosm Press, Hawthorn, CA, USA. # ############################################################################################ # == Functions: exponential ================================================================ ############################################################################################ # Test Results # ############################################################################################ # # == Scenario 01 =========================================================================== # # Example 8-4 [1, p. 567] # # Using the exponential atmospheric model, one gets: # # ρ(747.2119 km) = 2.1219854 β‹… 10⁻⁴ kg / mΒ³ # # == Scenario 02 =========================================================================== # # By definition, one gets `ρ(hβ‚€) = ρ₀(hβ‚€)` for all tabulated values. # # == Scenario 03 =========================================================================== # # Inside every interval, the atmospheric density must be monotonically # decreasing. # ############################################################################################ @testset "Default Tests" begin # == Scenario 01 ======================================================================= @test AtmosphericModels.exponential(747211.9) β‰ˆ 2.1219854e-14 rtol = 1e-8 # == Scenario 02 ======================================================================= for i in 1:length(AtmosphericModels._EXPONENTIAL_ATMOSPHERE_Hβ‚€) h = 1000 * AtmosphericModels._EXPONENTIAL_ATMOSPHERE_Hβ‚€[i] @test AtmosphericModels.exponential(h) == AtmosphericModels._EXPONENTIAL_ATMOSPHERE_ρ₀[i] end # == Scenario 03 ======================================================================= for i in 2:length(AtmosphericModels._EXPONENTIAL_ATMOSPHERE_Hβ‚€) hβ‚€i = 1000 * AtmosphericModels._EXPONENTIAL_ATMOSPHERE_Hβ‚€[i - 1] hβ‚€f = 1000 * AtmosphericModels._EXPONENTIAL_ATMOSPHERE_Hβ‚€[i] Ξ” = 100 Ξ”hβ‚€ = (hβ‚€f - hβ‚€i)/Ξ” ρk = AtmosphericModels.exponential(hβ‚€i) for k in 2:Ξ” ρk₋₁ = ρk h = hβ‚€i + Ξ”hβ‚€ * (k - 1) ρk = AtmosphericModels.exponential(h) @test ρk < ρk₋₁ end end end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
8217
## Description ############################################################################# # # Tests related to the Jacchia-Robert 1971 model. # ############################################################################################ # == Functions: jr1971 ===================================================================== ############################################################################################ # Test Results # ############################################################################################ # # == Scenario 01 =========================================================================== # # Values obtained from GMAT R2018a using the following inputs: # # Date: 2017-01-01 00:00:00 UTC # Latitude: 45 deg # Longitude: 0 deg # F10.7: 100 # F10.7ₐ: 100 # Kp: 4 # # Result: # # | Altitude [km] | Density [g/cmΒ³] | # |----------------|------------------| # | 92 | 3.87506e-09 | # | 100 | 3.96585e-09 | # | 100.1 | 6.8354e-10 | # | 110.5 | 1.2124e-10 | # | 125 | 1.60849e-11 | # | 125.1 | 1.58997e-11 | # | 300 | 1.30609e-14 | # | 700 | 1.34785e-17 | # | 1500 | 4.00464e-19 | # # == Scenario 02 =========================================================================== # # Values obtained from GMAT R2018a using the following inputs: # # Date: 2017-01-01 00:00:00 UTC # Latitude: 45 deg # Longitude: 0 deg # F10.7: 100 # F10.7ₐ: 100 # Kp: 1 # # Result: # # | Altitude [km] | Density [g/cmΒ³] | # |----------------|------------------| # | 92 | 3.56187e-09 | # | 100 | 3.65299e-09 | # | 100.1 | 6.28941e-10 | # | 110.5 | 1.11456e-10 | # | 125 | 1.46126e-11 | # | 125.1 | 1.44428e-11 | # | 300 | 9.08858e-15 | # | 700 | 8.51674e-18 | # | 1500 | 2.86915e-19 | # # == Scenario 03 =========================================================================== # # Values obtained from GMAT R2018a using the following inputs: # # Date: 2017-01-01 00:00:00 UTC # Latitude: 45 deg # Longitude: 0 deg # F10.7: 100 # F10.7ₐ: 100 # Kp: 9 # # Result: # # | Altitude [km] | Density [g/cmΒ³] | # |----------------|------------------| # | 92 | 5.55597e-09 | # | 100 | 5.63386e-09 | # | 100.1 | 9.75634e-10 | # | 110.5 | 1.73699e-10 | # | 125 | 2.41828e-11 | # | 125.1 | 2.39097e-11 | # | 300 | 3.52129e-14 | # | 700 | 1.28622e-16 | # | 1500 | 1.97775e-18 | # ############################################################################################ @testset "Providing All Space Indices" begin # Common inputs to all scenarios. jd = date_to_jd(2017,1,1,0,0,0) instant = julian2datetime(jd) Ο•_gd = 45 |> deg2rad Ξ» = 0.0 F10 = 100.0 F10ₐ = 100.0 h = [92, 100, 100.1, 110.5, 125, 125.1, 300, 700, 1500] * 1000 # == Scenario 01 ======================================================================= Kp = 4 # Results in [kg/mΒ³]. results = [ 3.87506e-09 3.96585e-09 6.83540e-10 1.21240e-10 1.60849e-11 1.58997e-11 1.30609e-14 1.34785e-17 4.00464e-19 ] * 1000 for i in 1:length(h) ret = AtmosphericModels.jr1971(instant, Ο•_gd, Ξ», h[i - 1 + begin], F10, F10ₐ, Kp) @test ret.total_density β‰ˆ results[i - 1 + begin] rtol = 5e-4 end # == Scenario 02 ======================================================================= Kp = 1 # Results in [kg/mΒ³]. results = [ 3.56187e-09 3.65299e-09 6.28941e-10 1.11456e-10 1.46126e-11 1.44428e-11 9.08858e-15 8.51674e-18 2.86915e-19 ] * 1000 for i in 1:length(h) ret = AtmosphericModels.jr1971(instant, Ο•_gd, Ξ», h[i - 1 + begin], F10, F10ₐ, Kp) @test ret.total_density β‰ˆ results[i - 1 + begin] rtol = 5e-4 end # == Scenario 03 ======================================================================= Kp = 9 # Results in [kg/mΒ³]. results = [ 5.55597e-09 5.63386e-09 9.75634e-10 1.73699e-10 2.41828e-11 2.39097e-11 3.52129e-14 1.28622e-16 1.97775e-18 ] * 1000 for i in 1:length(h) ret = AtmosphericModels.jr1971(instant, Ο•_gd, Ξ», h[i - 1 + begin], F10, F10ₐ, Kp) @test ret.total_density β‰ˆ results[i - 1 + begin] rtol = 5e-4 end end ############################################################################################ # Test Results # ############################################################################################ # # In this case, we already tested the function `AtmosphericModel.jr1971`. Hence, we will # select a day and run this function with and without passing the space indices. The result # must be the same. # # We have the following space indices for the instant 2023-01-01T10:00:00.000: # # F10 = 152.6 sfu # F10ₐ = 159.12345679012347 sfu # Kp = 2.667 # ############################################################################################ @testset "Fetching All Space Indices" begin SpaceIndices.init() # Expected result. instant = DateTime("2023-01-01T10:00:00") h = collect(90:50:1000) .* 1000 Ο•_gd = -23 |> deg2rad Ξ» = -45 |> deg2rad F10 = 152.6 F10ₐ = 159.12345679012347 Kp = 2.667 expected = AtmosphericModels.jr1971.(instant, Ο•_gd, Ξ», h, F10, F10ₐ, Kp) for k in 1:length(h) result = AtmosphericModels.jr1971(instant, Ο•_gd, Ξ», h[k - 1 + begin]) @test result.total_density β‰ˆ expected[k - 1 + begin].total_density @test result.temperature β‰ˆ expected[k - 1 + begin].temperature @test result.exospheric_temperature β‰ˆ expected[k - 1 + begin].exospheric_temperature @test result.N2_number_density β‰ˆ expected[k - 1 + begin].N2_number_density @test result.O2_number_density β‰ˆ expected[k - 1 + begin].O2_number_density @test result.O_number_density β‰ˆ expected[k - 1 + begin].O_number_density @test result.Ar_number_density β‰ˆ expected[k - 1 + begin].Ar_number_density @test result.He_number_density β‰ˆ expected[k - 1 + begin].He_number_density @test result.H_number_density β‰ˆ expected[k - 1 + begin].H_number_density end end @testset "Show" begin result = AtmosphericModels.jr1971( DateTime("2023-01-01T10:00:00"), 0, 0, 500e3, 100, 100, 3 ) expected = "JR1971 output (ρ = 5.51927e-14 kg / mΒ³)" str = sprint(show, result) expected = """ Jacchia-Roberts 1971 Atmospheric Model Result: Total density : 5.15927e-14 kg / mΒ³ Temperature : 679.39 K Exospheric Temp. : 679.44 K Nβ‚‚ number density : 1.47999e+09 1 / mΒ³ Oβ‚‚ number density : 1.50981e+07 1 / mΒ³ O number density : 1.58322e+12 1 / mΒ³ Ar number density : 2149.38 1 / mΒ³ He number density : 1.42329e+12 1 / mΒ³ H number density : 0 1 / mΒ³""" str = sprint(show, MIME("text/plain"), result) @test str == expected end @testset "Errors" begin @test_throws ArgumentError AtmosphericModels.jr1971(now(), 0, 0, 89.9e3, 100, 100, 3) end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
36029
## Description ############################################################################# # # Tests related to the NRLMSISE-00 Atmospheric Model. # ## References ############################################################################## # # [1] https://ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/msis/nrlmsise00/nrlmsise00_output.txt # [2] https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php # ############################################################################################ # == Function: nrlmsise00 ================================================================== ############################################################################################ # Test Results # ############################################################################################ # # == Scenario 01 =========================================================================== # # Simulation using only the daily AP. # # Data obtained from the online version of NRLMSISE-00 [2]: # # Input parameters # # year= 1986, month= 6, day= 19, hour=21.50, # Time_type = Universal # Coordinate_type = Geographic # latitude= -16.00, longitude= 312.00, height= 100.00 # Prof. parameters: start= 0.00 stop= 1000.00 step= 100.00 # # Optional parametes: F10.7(daily) =121.; F10.7(3-month avg) =80.; ap(daily) = 7. # # Selected parameters are: # 1 Height, km # 2 O, cm-3 # 3 N2, cm-3 # 4 O2, cm-3 # 5 Mass_density, g/cm-3 # 6 Temperature_neutral, K # 7 Temperature_exospheric, K # 8 He, cm-3 # 9 Ar, cm-3 # 10 H, cm-3 # 11 N, cm-3 # 12 Anomalous_Oxygen, cm-3 # # 1 2 3 4 5 6 7 8 9 10 11 12 # 0.0 0.000E+00 1.918E+19 5.145E+18 1.180E-03 297.7 1027 1.287E+14 2.294E+17 0.000E+00 0.000E+00 0.000E+00 # 100.0 4.244E+11 9.498E+12 2.240E+12 5.783E-10 165.9 1027 1.061E+08 9.883E+10 2.209E+07 3.670E+05 0.000E+00 # 200.0 2.636E+09 2.248E+09 1.590E+08 1.838E-13 829.3 909 5.491E+06 1.829E+06 2.365E+05 3.125E+07 1.802E-09 # 300.0 3.321E+08 6.393E+07 2.881E+06 1.212E-14 900.6 909 3.173E+06 1.156E+04 1.717E+05 6.708E+06 4.938E+00 # 400.0 5.088E+07 2.414E+06 6.838E+04 1.510E-15 907.7 909 1.979E+06 1.074E+02 1.518E+05 1.274E+06 1.237E+03 # 500.0 8.340E+06 1.020E+05 1.839E+03 2.410E-16 908.5 909 1.259E+06 1.170E+00 1.355E+05 2.608E+05 4.047E+03 # 600.0 1.442E+06 4.729E+03 5.500E+01 4.543E-17 908.6 909 8.119E+05 1.455E-02 1.214E+05 5.617E+04 4.167E+03 # 700.0 2.622E+05 2.394E+02 1.817E+00 1.097E-17 908.6 909 5.301E+05 2.050E-04 1.092E+05 1.264E+04 3.173E+03 # 800.0 4.999E+04 1.317E+01 6.608E-02 3.887E-18 908.6 909 3.503E+05 3.254E-06 9.843E+04 2.964E+03 2.246E+03 # 900.0 9.980E+03 7.852E-01 2.633E-03 1.984E-18 908.6 909 2.342E+05 5.794E-08 8.900E+04 7.237E+02 1.571E+03 # 1000.0 2.082E+03 5.055E-02 1.146E-04 1.244E-18 908.6 909 1.582E+05 1.151E-09 8.069E+04 1.836E+02 1.103E+03 # # == Scenario 02 =========================================================================== # # Simulation using the AP vector. # # Data obtained from the online version of NRLMSISE-00 [2]: # # Input parameters # year= 2016, month= 6, day= 1, hour=11.00, # Time_type = Universal # Coordinate_type = Geographic # latitude= -23.00, longitude= 315.00, height= 100.00 # Prof. parameters: start= 0.00 stop= 1000.00 step= 100.00 # # Optional parametes: F10.7(daily) =not specified; F10.7(3-month avg) =not specified; ap(daily) = not specified # # Selected parameters are: # 1 Height, km # 2 O, cm-3 # 3 N2, cm-3 # 4 O2, cm-3 # 5 Mass_density, g/cm-3 # 6 Temperature_neutral, K # 7 Temperature_exospheric, K # 8 He, cm-3 # 9 Ar, cm-3 # 10 H, cm-3 # 11 N, cm-3 # 12 Anomalous_Oxygen, cm-3 # 13 F10_7_daily # 14 F10_7_3_month_avg # 15 ap_daily # 16 ap_00_03_hr_prior # 17 ap_03_06_hr_prior # 18 ap_06_09_hr_prior # 19 ap_09_12_hr_prior # 20 ap_12_33_hr_prior # 21 ap_33_59_hr_prior # # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 # 0.0 0.000E+00 1.919E+19 5.149E+18 1.181E-03 296.0 1027 1.288E+14 2.296E+17 0.000E+00 0.000E+00 0.000E+00 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 # 100.0 6.009E+11 9.392E+12 2.213E+12 5.764E-10 165.2 1027 1.339E+08 9.580E+10 2.654E+07 2.737E+05 0.000E+00 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 # 200.0 3.882E+09 1.978E+09 1.341E+08 2.028E-13 687.5 706 2.048E+07 9.719E+05 5.172E+05 1.632E+07 1.399E-09 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 # 300.0 3.140E+08 2.481E+07 9.340E+05 9.666E-15 705.5 706 1.082E+07 1.879E+03 3.860E+05 2.205E+06 3.876E+00 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 # 400.0 2.855E+07 3.737E+05 7.743E+03 8.221E-16 706.0 706 5.938E+06 4.688E+00 3.317E+05 2.633E+05 9.738E+02 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 # 500.0 2.787E+06 6.372E+03 7.382E+01 9.764E-17 706.0 706 3.319E+06 1.397E-02 2.868E+05 3.424E+04 3.186E+03 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 # 600.0 2.910E+05 1.222E+02 8.047E-01 2.079E-17 706.0 706 1.887E+06 4.919E-05 2.490E+05 4.742E+03 3.281E+03 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 # 700.0 3.240E+04 2.622E+00 9.973E-03 8.474E-18 706.0 706 1.090E+06 2.034E-07 2.171E+05 6.946E+02 2.498E+03 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 # 800.0 3.835E+03 6.264E-02 1.398E-04 4.665E-18 706.0 706 6.393E+05 9.809E-10 1.900E+05 1.074E+02 1.768E+03 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 # 900.0 4.816E+02 1.659E-03 2.204E-06 2.817E-18 706.0 706 3.806E+05 5.481E-12 1.669E+05 1.747E+01 1.236E+03 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 # 1000.0 6.400E+01 4.853E-05 3.891E-08 1.772E-18 706.0 706 2.298E+05 3.528E-14 1.471E+05 2.988E+00 8.675E+02 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 # ############################################################################################ @testset "Providing All Space Indices" begin # == Scenario 01 ======================================================================= # Test outputs. expected = [ 0.0 0.000E+00 1.918E+19 5.145E+18 1.180E-03 297.7 1027 1.287E+14 2.294E+17 0.000E+00 0.000E+00 0.000E+00 100.0 4.244E+11 9.498E+12 2.240E+12 5.783E-10 165.9 1027 1.061E+08 9.883E+10 2.209E+07 3.670E+05 0.000E+00 200.0 2.636E+09 2.248E+09 1.590E+08 1.838E-13 829.3 909 5.491E+06 1.829E+06 2.365E+05 3.125E+07 1.802E-09 300.0 3.321E+08 6.393E+07 2.881E+06 1.212E-14 900.6 909 3.173E+06 1.156E+04 1.717E+05 6.708E+06 4.938E+00 400.0 5.088E+07 2.414E+06 6.838E+04 1.510E-15 907.7 909 1.979E+06 1.074E+02 1.518E+05 1.274E+06 1.237E+03 500.0 8.340E+06 1.020E+05 1.839E+03 2.410E-16 908.5 909 1.259E+06 1.170E+00 1.355E+05 2.608E+05 4.047E+03 600.0 1.442E+06 4.729E+03 5.500E+01 4.543E-17 908.6 909 8.119E+05 1.455E-02 1.214E+05 5.617E+04 4.167E+03 700.0 2.622E+05 2.394E+02 1.817E+00 1.097E-17 908.6 909 5.301E+05 2.050E-04 1.092E+05 1.264E+04 3.173E+03 800.0 4.999E+04 1.317E+01 6.608E-02 3.887E-18 908.6 909 3.503E+05 3.254E-06 9.843E+04 2.964E+03 2.246E+03 900.0 9.980E+03 7.852E-01 2.633E-03 1.984E-18 908.6 909 2.342E+05 5.794E-08 8.900E+04 7.237E+02 1.571E+03 1000.0 2.082E+03 5.055E-02 1.146E-04 1.244E-18 908.6 909 1.582E+05 1.151E-09 8.069E+04 1.836E+02 1.103E+03 ] # Constant input parameters. year = 1986 month = 6 day = 19 hour = 21 minute = 30 second = 00 Ο•_gd = -16 * Ο€ / 180 Ξ» = 312 * Ο€ / 180 F10 = 121 F10ₐ = 80 ap = 7 instant = date_to_jd(year, month, day, hour, minute, second) |> julian2datetime for i in axes(expected, 1) # Run the NRLMSISE-00 model wih the input parameters. out = AtmosphericModels.nrlmsise00( instant, expected[i, 1] * 1000, Ο•_gd, Ξ», F10ₐ, F10, ap; include_anomalous_oxygen = false ) @test out.total_density β‰ˆ (expected[i, 5] * 1e3) rtol = 1e-3 @test out.temperature β‰ˆ (expected[i, 6] ) rtol = 1e-1 atol = 1e-9 @test out.exospheric_temperature β‰ˆ (expected[i, 7] ) rtol = 1e-1 atol = 1e-9 @test out.O_number_density β‰ˆ (expected[i, 2] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.N2_number_density β‰ˆ (expected[i, 3] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.O2_number_density β‰ˆ (expected[i, 4] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.He_number_density β‰ˆ (expected[i, 8] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.Ar_number_density β‰ˆ (expected[i, 9] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.H_number_density β‰ˆ (expected[i, 10] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.N_number_density β‰ˆ (expected[i, 11] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.aO_number_density β‰ˆ (expected[i, 12] * 1e6) rtol = 1e-3 atol = 1e-9 # Test the version that calls `gtd7d` instead of `gtd7`. out = AtmosphericModels.nrlmsise00( instant, expected[i, 1] * 1000, Ο•_gd, Ξ», F10ₐ, F10, ap; include_anomalous_oxygen = true ) @test out.temperature β‰ˆ (expected[i, 6] ) rtol = 1e-1 atol = 1e-9 @test out.exospheric_temperature β‰ˆ (expected[i, 7] ) rtol = 1e-1 atol = 1e-9 @test out.O_number_density β‰ˆ (expected[i, 2] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.N2_number_density β‰ˆ (expected[i, 3] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.O2_number_density β‰ˆ (expected[i, 4] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.He_number_density β‰ˆ (expected[i, 8] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.Ar_number_density β‰ˆ (expected[i, 9] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.H_number_density β‰ˆ (expected[i, 10] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.N_number_density β‰ˆ (expected[i, 11] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.aO_number_density β‰ˆ (expected[i, 12] * 1e6) rtol = 1e-3 atol = 1e-9 expected_total_density = expected[i, 5] + 1.66e-24 * 16 * expected[i, 12] @test out.total_density β‰ˆ (expected_total_density * 1e3) rtol = 1e-3 end # == Scenario 02 ======================================================================= # Test outputs. expected = [ 0.0 0.000E+00 1.919E+19 5.149E+18 1.181E-03 296.0 1027 1.288E+14 2.296E+17 0.000E+00 0.000E+00 0.000E+00 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 100.0 6.009E+11 9.392E+12 2.213E+12 5.764E-10 165.2 1027 1.339E+08 9.580E+10 2.654E+07 2.737E+05 0.000E+00 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 200.0 3.882E+09 1.978E+09 1.341E+08 2.028E-13 687.5 706 2.048E+07 9.719E+05 5.172E+05 1.632E+07 1.399E-09 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 300.0 3.140E+08 2.481E+07 9.340E+05 9.666E-15 705.5 706 1.082E+07 1.879E+03 3.860E+05 2.205E+06 3.876E+00 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 400.0 2.855E+07 3.737E+05 7.743E+03 8.221E-16 706.0 706 5.938E+06 4.688E+00 3.317E+05 2.633E+05 9.738E+02 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 500.0 2.787E+06 6.372E+03 7.382E+01 9.764E-17 706.0 706 3.319E+06 1.397E-02 2.868E+05 3.424E+04 3.186E+03 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 600.0 2.910E+05 1.222E+02 8.047E-01 2.079E-17 706.0 706 1.887E+06 4.919E-05 2.490E+05 4.742E+03 3.281E+03 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 700.0 3.240E+04 2.622E+00 9.973E-03 8.474E-18 706.0 706 1.090E+06 2.034E-07 2.171E+05 6.946E+02 2.498E+03 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 800.0 3.835E+03 6.264E-02 1.398E-04 4.665E-18 706.0 706 6.393E+05 9.809E-10 1.900E+05 1.074E+02 1.768E+03 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 900.0 4.816E+02 1.659E-03 2.204E-06 2.817E-18 706.0 706 3.806E+05 5.481E-12 1.669E+05 1.747E+01 1.236E+03 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 1000.0 6.400E+01 4.853E-05 3.891E-08 1.772E-18 706.0 706 2.298E+05 3.528E-14 1.471E+05 2.988E+00 8.675E+02 89.0 89.4 4.9 3.0 4.0 4.0 6.0 9.9 10.6 ] # Constant input parameters. year = 2016 month = 6 day = 1 hour = 11 minute = 00 second = 00 Ο•_gd = -23 * Ο€ / 180 Ξ» = -45 * Ο€ / 180 instant = date_to_jd(year, month, day, hour, minute, second) |> julian2datetime # TODO: The tolerances here are much higher than in the previous test with the daily AP # only. This must be analyzed. However, it was observed that in the NRLMSISE-00 version, # the last component of the AP array is the "Average of eight 3 hour AP indices from 36 # to 57 hours prior to current time." Whereas the label from the online version is # "ap_33_59_hr_prior", which seems to be different. On the other hand, the MSISE90 # describe the last vector of AP array as "Average of eight 3 hr AP indicies [sic] from # 36 to 59 hrs prior to current time." Hence, it seems that the online version is using # the old algorithm related to the AP array. We must change the algorithm in our # implementation to the old one and see if the result is more similar to the online # version. # # The information can be obtained at: # # https://ccmc.gsfc.nasa.gov/modelweb/ # https://ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/msis/msise90/ # for i in axes(expected, 1) F10 = expected[i, 13] F10ₐ = expected[i, 14] ap_a = expected[i, 15:21] # Run the NRLMSISE-00 model wih the input parameters. out = AtmosphericModels.nrlmsise00( instant, expected[i, 1] * 1000, Ο•_gd, Ξ», F10ₐ, F10, ap_a; include_anomalous_oxygen = false ) @test out.total_density β‰ˆ (expected[i, 5] * 1e3) rtol = 5e-2 @test out.temperature β‰ˆ (expected[i, 6] ) rtol = 1e-1 atol = 1e-9 @test out.exospheric_temperature β‰ˆ (expected[i, 7] ) rtol = 1e-1 atol = 1e-9 @test out.O_number_density β‰ˆ (expected[i, 2] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.N2_number_density β‰ˆ (expected[i, 3] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.O2_number_density β‰ˆ (expected[i, 4] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.He_number_density β‰ˆ (expected[i, 8] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.Ar_number_density β‰ˆ (expected[i, 9] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.H_number_density β‰ˆ (expected[i, 10] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.N_number_density β‰ˆ (expected[i, 11] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.aO_number_density β‰ˆ (expected[i, 12] * 1e6) rtol = 9e-2 atol = 1e-9 # Test the version that calls `gtd7d` instead of `gtd7`. out = AtmosphericModels.nrlmsise00( instant, expected[i, 1] * 1000, Ο•_gd, Ξ», F10ₐ, F10, ap_a; include_anomalous_oxygen = true ) @test out.temperature β‰ˆ (expected[i, 6] ) rtol = 1e-1 atol = 1e-9 @test out.exospheric_temperature β‰ˆ (expected[i, 7] ) rtol = 1e-1 atol = 1e-9 @test out.O_number_density β‰ˆ (expected[i, 2] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.N2_number_density β‰ˆ (expected[i, 3] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.O2_number_density β‰ˆ (expected[i, 4] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.He_number_density β‰ˆ (expected[i, 8] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.Ar_number_density β‰ˆ (expected[i, 9] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.H_number_density β‰ˆ (expected[i, 10] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.N_number_density β‰ˆ (expected[i, 11] * 1e6) rtol = 5e-2 atol = 1e-9 @test out.aO_number_density β‰ˆ (expected[i, 12] * 1e6) rtol = 9e-2 atol = 1e-9 expected_total_density = expected[i, 5] + 1.66e-24 * 16 * expected[i, 12] @test out.total_density β‰ˆ (expected_total_density * 1e3) rtol = 5e-2 end end ############################################################################################ # Test Results # ############################################################################################ # # == Scenario 01 =========================================================================== # # Data obtained for the instant 2023-01-01T10:00:00.000 using the online version of # NRLMSISE-00 [2]. # # Input parameters # year= 2023, month= 1, day= 1, hour=10.00, # Time_type = Universal # Coordinate_type = Geographic # latitude= -23.00, longitude= 315.00, height= 100.00 # Prof. parameters: start= 0.00 stop= 1000.00 step= 50.00 # Optional parametes: F10.7(daily) =not specified; F10.7(3-month avg) =not specified; ap(daily) = not specified # # Selected parameters are: # 1 Height, km # 2 O, cm-3 # 3 N2, cm-3 # 4 O2, cm-3 # 5 Mass_density, g/cm-3 # 6 Temperature_neutral, K # 7 Temperature_exospheric, K # 8 He, cm-3 # 9 Ar, cm-3 # 10 H, cm-3 # 11 N, cm-3 # 12 Anomalous_Oxygen, cm-3 # 13 F10_7_daily # 14 F10_7_3_month_avg # 15 ap_daily # 16 ap_00_03_hr_prior # 17 ap_03_06_hr_prior # 18 ap_06_09_hr_prior # 19 ap_09_12_hr_prior # 20 ap_12_33_hr_prior # 21 ap_33_59_hr_prior # # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 # 0.0 0.000E+00 1.909E+19 5.122E+18 1.175E-03 297.5 1027 1.281E+14 2.284E+17 0.000E+00 0.000E+00 0.000E+00 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 50.0 0.000E+00 1.777E+16 4.766E+15 1.093E-06 269.0 1027 1.192E+11 2.125E+14 0.000E+00 0.000E+00 0.000E+00 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 100.0 3.854E+11 7.463E+12 1.511E+12 4.423E-10 188.3 1027 8.858E+07 7.379E+10 1.467E+07 2.513E+05 0.000E+00 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 150.0 1.703E+10 3.261E+10 1.970E+09 2.077E-12 688.5 1037 1.166E+07 6.061E+07 3.954E+05 1.246E+07 6.083E-21 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 200.0 4.318E+09 3.615E+09 1.381E+08 2.909E-13 911.5 1037 7.397E+06 2.827E+06 1.103E+05 2.694E+07 8.673E-09 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 250.0 1.584E+09 6.673E+08 1.955E+07 7.452E-14 991.0 1037 5.578E+06 2.589E+05 8.532E+04 1.422E+07 1.542E-02 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 300.0 6.521E+08 1.443E+08 3.382E+06 2.439E-14 1019.9 1037 4.421E+06 2.926E+04 7.816E+04 6.497E+06 2.402E+01 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 350.0 2.812E+08 3.338E+07 6.343E+05 9.150E-15 1030.5 1037 3.569E+06 3.624E+03 7.359E+04 3.058E+06 9.777E+02 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 400.0 1.243E+08 8.016E+06 1.243E+05 3.733E-15 1034.4 1037 2.906E+06 4.726E+02 6.977E+04 1.485E+06 6.035E+03 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 450.0 5.580E+07 1.977E+06 2.509E+04 1.608E-15 1035.9 1037 2.377E+06 6.401E+01 6.631E+04 7.348E+05 1.404E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 500.0 2.540E+07 4.988E+05 5.200E+03 7.196E-16 1036.5 1037 1.952E+06 8.950E+00 6.311E+04 3.685E+05 1.975E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 550.0 1.170E+07 1.285E+05 1.104E+03 3.319E-16 1036.7 1037 1.608E+06 1.289E+00 6.012E+04 1.870E+05 2.142E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 600.0 5.450E+06 3.376E+04 2.396E+02 1.575E-16 1036.8 1037 1.329E+06 1.911E-01 5.731E+04 9.586E+04 2.034E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 650.0 2.567E+06 9.044E+03 5.317E+01 7.717E-17 1036.9 1037 1.101E+06 2.910E-02 5.468E+04 4.961E+04 1.805E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 700.0 1.222E+06 2.468E+03 1.205E+01 3.934E-17 1036.9 1037 9.143E+05 4.553E-03 5.220E+04 2.592E+04 1.548E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 750.0 5.882E+05 6.862E+02 2.791E+00 2.111E-17 1036.9 1037 7.615E+05 7.311E-04 4.987E+04 1.367E+04 1.307E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 800.0 2.859E+05 1.942E+02 6.595E-01 1.207E-17 1036.9 1037 6.358E+05 1.205E-04 4.767E+04 7.270E+03 1.096E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 850.0 1.404E+05 5.593E+01 1.590E-01 7.432E-18 1036.9 1037 5.323E+05 2.035E-05 4.560E+04 3.902E+03 9.162E+03 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 900.0 6.962E+04 1.639E+01 3.910E-02 4.937E-18 1036.9 1037 4.467E+05 3.524E-06 4.364E+04 2.112E+03 7.661E+03 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 950.0 3.486E+04 4.884E+00 9.801E-03 3.517E-18 1036.9 1037 3.757E+05 6.250E-07 4.179E+04 1.153E+03 6.412E+03 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # 1000.0 1.762E+04 1.480E+00 2.504E-03 2.653E-18 1036.9 1037 3.168E+05 1.135E-07 4.005E+04 6.346E+02 5.377E+03 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 # ############################################################################################ @testset "Fetching Space Indices Automatically" begin SpaceIndices.init() expected = [ 0.0 0.000E+00 1.909E+19 5.122E+18 1.175E-03 297.5 1027 1.281E+14 2.284E+17 0.000E+00 0.000E+00 0.000E+00 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 50.0 0.000E+00 1.777E+16 4.766E+15 1.093E-06 269.0 1027 1.192E+11 2.125E+14 0.000E+00 0.000E+00 0.000E+00 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 100.0 3.854E+11 7.463E+12 1.511E+12 4.423E-10 188.3 1027 8.858E+07 7.379E+10 1.467E+07 2.513E+05 0.000E+00 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 150.0 1.703E+10 3.261E+10 1.970E+09 2.077E-12 688.5 1037 1.166E+07 6.061E+07 3.954E+05 1.246E+07 6.083E-21 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 200.0 4.318E+09 3.615E+09 1.381E+08 2.909E-13 911.5 1037 7.397E+06 2.827E+06 1.103E+05 2.694E+07 8.673E-09 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 250.0 1.584E+09 6.673E+08 1.955E+07 7.452E-14 991.0 1037 5.578E+06 2.589E+05 8.532E+04 1.422E+07 1.542E-02 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 300.0 6.521E+08 1.443E+08 3.382E+06 2.439E-14 1019.9 1037 4.421E+06 2.926E+04 7.816E+04 6.497E+06 2.402E+01 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 350.0 2.812E+08 3.338E+07 6.343E+05 9.150E-15 1030.5 1037 3.569E+06 3.624E+03 7.359E+04 3.058E+06 9.777E+02 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 400.0 1.243E+08 8.016E+06 1.243E+05 3.733E-15 1034.4 1037 2.906E+06 4.726E+02 6.977E+04 1.485E+06 6.035E+03 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 450.0 5.580E+07 1.977E+06 2.509E+04 1.608E-15 1035.9 1037 2.377E+06 6.401E+01 6.631E+04 7.348E+05 1.404E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 500.0 2.540E+07 4.988E+05 5.200E+03 7.196E-16 1036.5 1037 1.952E+06 8.950E+00 6.311E+04 3.685E+05 1.975E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 550.0 1.170E+07 1.285E+05 1.104E+03 3.319E-16 1036.7 1037 1.608E+06 1.289E+00 6.012E+04 1.870E+05 2.142E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 600.0 5.450E+06 3.376E+04 2.396E+02 1.575E-16 1036.8 1037 1.329E+06 1.911E-01 5.731E+04 9.586E+04 2.034E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 650.0 2.567E+06 9.044E+03 5.317E+01 7.717E-17 1036.9 1037 1.101E+06 2.910E-02 5.468E+04 4.961E+04 1.805E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 700.0 1.222E+06 2.468E+03 1.205E+01 3.934E-17 1036.9 1037 9.143E+05 4.553E-03 5.220E+04 2.592E+04 1.548E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 750.0 5.882E+05 6.862E+02 2.791E+00 2.111E-17 1036.9 1037 7.615E+05 7.311E-04 4.987E+04 1.367E+04 1.307E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 800.0 2.859E+05 1.942E+02 6.595E-01 1.207E-17 1036.9 1037 6.358E+05 1.205E-04 4.767E+04 7.270E+03 1.096E+04 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 850.0 1.404E+05 5.593E+01 1.590E-01 7.432E-18 1036.9 1037 5.323E+05 2.035E-05 4.560E+04 3.902E+03 9.162E+03 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 900.0 6.962E+04 1.639E+01 3.910E-02 4.937E-18 1036.9 1037 4.467E+05 3.524E-06 4.364E+04 2.112E+03 7.661E+03 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 950.0 3.486E+04 4.884E+00 9.801E-03 3.517E-18 1036.9 1037 3.757E+05 6.250E-07 4.179E+04 1.153E+03 6.412E+03 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 1000.0 1.762E+04 1.480E+00 2.504E-03 2.653E-18 1036.9 1037 3.168E+05 1.135E-07 4.005E+04 6.346E+02 5.377E+03 159.5 153.6 13.8 12.0 7.0 15.0 9.0 15.9 28.6 ] for i in axes(expected, 1) # Run the NRLMSISE-00 model wih the input parameters. out = AtmosphericModels.nrlmsise00( DateTime("2023-01-01T10:00:00"), expected[i, 1] * 1000, -23 |> deg2rad, -45 |> deg2rad; include_anomalous_oxygen = false ) @test out.total_density β‰ˆ (expected[i, 5] * 1e3) rtol = 3e-3 @test out.temperature β‰ˆ (expected[i, 6] ) rtol = 1e-1 atol = 1e-9 @test out.exospheric_temperature β‰ˆ (expected[i, 7] ) rtol = 1e-1 atol = 1e-9 @test out.O_number_density β‰ˆ (expected[i, 2] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.N2_number_density β‰ˆ (expected[i, 3] * 1e6) rtol = 3e-3 atol = 1e-9 @test out.O2_number_density β‰ˆ (expected[i, 4] * 1e6) rtol = 3e-3 atol = 1e-9 @test out.He_number_density β‰ˆ (expected[i, 8] * 1e6) rtol = 2e-3 atol = 1e-9 @test out.Ar_number_density β‰ˆ (expected[i, 9] * 1e6) rtol = 3e-3 atol = 1e-9 @test out.H_number_density β‰ˆ (expected[i, 10] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.N_number_density β‰ˆ (expected[i, 11] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.aO_number_density β‰ˆ (expected[i, 12] * 1e6) rtol = 1e-3 atol = 1e-9 end # For altitudes lower than 80 km, we use default space indices. expected = AtmosphericModels.nrlmsise00( DateTime("2023-01-01T10:00:00"), 79e3, -23 |> deg2rad, -45 |> deg2rad, 150, 150, 4 ) result = AtmosphericModels.nrlmsise00( DateTime("2023-01-01T10:00:00"), 79e3, -23 |> deg2rad, -45 |> deg2rad ) @test result.total_density β‰ˆ expected.total_density @test result.temperature β‰ˆ expected.temperature @test result.exospheric_temperature β‰ˆ expected.exospheric_temperature @test result.O_number_density β‰ˆ expected.O_number_density @test result.N2_number_density β‰ˆ expected.N2_number_density @test result.O2_number_density β‰ˆ expected.O2_number_density @test result.He_number_density β‰ˆ expected.He_number_density @test result.Ar_number_density β‰ˆ expected.Ar_number_density @test result.H_number_density β‰ˆ expected.H_number_density @test result.N_number_density β‰ˆ expected.N_number_density @test result.aO_number_density β‰ˆ expected.aO_number_density end @testset "Pre-allocating the Legendre Matrix" begin # We will use the scenario 1 of the first test. # Test outputs. expected = [ 0.0 0.000E+00 1.918E+19 5.145E+18 1.180E-03 297.7 1027 1.287E+14 2.294E+17 0.000E+00 0.000E+00 0.000E+00 100.0 4.244E+11 9.498E+12 2.240E+12 5.783E-10 165.9 1027 1.061E+08 9.883E+10 2.209E+07 3.670E+05 0.000E+00 200.0 2.636E+09 2.248E+09 1.590E+08 1.838E-13 829.3 909 5.491E+06 1.829E+06 2.365E+05 3.125E+07 1.802E-09 300.0 3.321E+08 6.393E+07 2.881E+06 1.212E-14 900.6 909 3.173E+06 1.156E+04 1.717E+05 6.708E+06 4.938E+00 400.0 5.088E+07 2.414E+06 6.838E+04 1.510E-15 907.7 909 1.979E+06 1.074E+02 1.518E+05 1.274E+06 1.237E+03 500.0 8.340E+06 1.020E+05 1.839E+03 2.410E-16 908.5 909 1.259E+06 1.170E+00 1.355E+05 2.608E+05 4.047E+03 600.0 1.442E+06 4.729E+03 5.500E+01 4.543E-17 908.6 909 8.119E+05 1.455E-02 1.214E+05 5.617E+04 4.167E+03 700.0 2.622E+05 2.394E+02 1.817E+00 1.097E-17 908.6 909 5.301E+05 2.050E-04 1.092E+05 1.264E+04 3.173E+03 800.0 4.999E+04 1.317E+01 6.608E-02 3.887E-18 908.6 909 3.503E+05 3.254E-06 9.843E+04 2.964E+03 2.246E+03 900.0 9.980E+03 7.852E-01 2.633E-03 1.984E-18 908.6 909 2.342E+05 5.794E-08 8.900E+04 7.237E+02 1.571E+03 1000.0 2.082E+03 5.055E-02 1.146E-04 1.244E-18 908.6 909 1.582E+05 1.151E-09 8.069E+04 1.836E+02 1.103E+03 ] # Constant input parameters. year = 1986 month = 6 day = 19 hour = 21 minute = 30 second = 00 Ο•_gd = -16 * Ο€ / 180 Ξ» = 312 * Ο€ / 180 F10 = 121 F10ₐ = 80 ap = 7 instant = date_to_jd(year, month, day, hour, minute, second) |> julian2datetime P = zeros(8, 4) for i in axes(expected, 1) # Initialize `P` to check if it is used inside `nrlmsise00`. P .= 0.0 # Run the NRLMSISE-00 model wih the input parameters. out = AtmosphericModels.nrlmsise00( instant, expected[i, 1] * 1000, Ο•_gd, Ξ», F10ₐ, F10, ap; include_anomalous_oxygen = false, P = P ) @test out.total_density β‰ˆ (expected[i, 5] * 1e3) rtol = 1e-3 @test out.temperature β‰ˆ (expected[i, 6] ) rtol = 1e-1 atol = 1e-9 @test out.exospheric_temperature β‰ˆ (expected[i, 7] ) rtol = 1e-1 atol = 1e-9 @test out.O_number_density β‰ˆ (expected[i, 2] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.N2_number_density β‰ˆ (expected[i, 3] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.O2_number_density β‰ˆ (expected[i, 4] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.He_number_density β‰ˆ (expected[i, 8] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.Ar_number_density β‰ˆ (expected[i, 9] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.H_number_density β‰ˆ (expected[i, 10] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.N_number_density β‰ˆ (expected[i, 11] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.aO_number_density β‰ˆ (expected[i, 12] * 1e6) rtol = 1e-3 atol = 1e-9 # Check that P was used. @test abs(sum(P)) > 0 # Initialize `P` to check if it is used inside `nrlmsise00`. P .= 0.0 # Test the version that calls `gtd7d` instead of `gtd7`. out = AtmosphericModels.nrlmsise00( instant, expected[i, 1] * 1000, Ο•_gd, Ξ», F10ₐ, F10, ap; include_anomalous_oxygen = true, P = P ) @test out.temperature β‰ˆ (expected[i, 6] ) rtol = 1e-1 atol = 1e-9 @test out.exospheric_temperature β‰ˆ (expected[i, 7] ) rtol = 1e-1 atol = 1e-9 @test out.O_number_density β‰ˆ (expected[i, 2] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.N2_number_density β‰ˆ (expected[i, 3] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.O2_number_density β‰ˆ (expected[i, 4] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.He_number_density β‰ˆ (expected[i, 8] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.Ar_number_density β‰ˆ (expected[i, 9] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.H_number_density β‰ˆ (expected[i, 10] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.N_number_density β‰ˆ (expected[i, 11] * 1e6) rtol = 1e-3 atol = 1e-9 @test out.aO_number_density β‰ˆ (expected[i, 12] * 1e6) rtol = 1e-3 atol = 1e-9 expected_total_density = expected[i, 5] + 1.66e-24 * 16 * expected[i, 12] @test out.total_density β‰ˆ (expected_total_density * 1e3) rtol = 1e-3 # Check that P was used. @test abs(sum(P)) > 0 end end @testset "Errors" begin # == Wrong Size in Matrix `P` ========================================================== P = zeros(8, 3) @test_throws ArgumentError AtmosphericModels.nrlmsise00( now() |> datetime2julian, 100e3, 0, 0, 100, 100, 20; P = P ) P = zeros(7, 4) @test_throws ArgumentError AtmosphericModels.nrlmsise00( now() |> datetime2julian, 100e3, 0, 0, 100, 100, 20; P = P ) P = zeros(7, 3) @test_throws ArgumentError AtmosphericModels.nrlmsise00( now() |> datetime2julian, 100e3, 0, 0, 100, 100, 20; P = P ) end @testset "Show" begin result = AtmosphericModels.nrlmsise00( DateTime("2023-01-01T10:00:00"), 500e3, 0, 0, 100, 100, 3 ) expected = "NRLMSISE-00 output (ρ = 2.5893e-13 kg / mΒ³)" str = sprint(show, result) expected = """ NRLMSISE-00 Atmospheric Model Result: Total density : 2.5893e-13 kg / mΒ³ Temperature : 875.50 K Exospheric Temp. : 875.56 K N number density : 2.02467e+11 1 / mΒ³ Nβ‚‚ number density : 7.80367e+10 1 / mΒ³ O number density : 8.908e+12 1 / mΒ³ Anomalous O num. den. : 3.84174e+09 1 / mΒ³ Oβ‚‚ number density : 1.05499e+09 1 / mΒ³ Ar number density : 619170 1 / mΒ³ He number density : 2.04514e+12 1 / mΒ³ H number density : 1.58356e+11 1 / mΒ³""" str = sprint(show, MIME("text/plain"), result) @test str == expected end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
541
using Test using DelimitedFiles using SatelliteToolboxAtmosphericModels using SatelliteToolboxBase @testset "Atmospheric Model Jacchia-Roberts 1971" verbose = true begin include("./jr1971.jl") end @testset "Atmospheric Model Jacchia-Bowman 2008" verbose = true begin cd("./jb2008") include("./jb2008/jb2008.jl") cd("..") end @testset "Atmospheric Model NRLMSISE-00" verbose = true begin include("./nrlmsise00.jl") end @testset "Exponential Atmospheric Model" verbose = true begin include("./exponential.jl") end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
code
4915
## Description ############################################################################# # # Tests related to the Jacchia-Bowman 2008 model. # ## References ############################################################################## # # [1] http://sol.spacenvironment.net/~JB2008/ # [2] https://github.com/JuliaSpace/JB2008_Test # ############################################################################################ # == Functions: jb2008 ===================================================================== ############################################################################################ # Test Results # ############################################################################################ # # == Scenario 01 =========================================================================== # # Compare the results with the tests in files: # # JB_AUTO_OUTPUT_01.DAT # JB_AUTO_OUTPUT_02.DAT # # which were created using JuliaSpace/JB2008_Test@ac41221. The other two files are ignored # due to the lack of data in the space indices. # ############################################################################################ @testset "Fetching All Space Indices" begin SpaceIndices.init() # == Scenario 01 ======================================================================= # Files with the test results. test_list = [ "JB2008_AUTO_OUTPUT_01.DAT", "JB2008_AUTO_OUTPUT_02.DAT", ] # Execute the tests. for filename in test_list open(filename) do file line_num = 0 year = 0 doy = 0 hour = 0 min = 0 sec = 0.0 for line in eachline(file) line_num += 1 # Ignore 5 lines to skip the header. (line_num <= 5) && continue # Ignore others non important lines. (line_num in [7, 8, 9]) && continue if line_num == 6 # Read the next line to obtain the input data related to the # time. tokens = split(line) year = parse(Int, tokens[1]) doy = parse(Int, tokens[2]) hour = parse(Int, tokens[3]) min = parse(Int, tokens[4]) sec = parse(Float64, tokens[5]) else tokens = split(line) # Read the information about the location. h = parse(Float64, tokens[1]) * 1000 Ξ» = parse(Float64, tokens[2]) |> deg2rad Ο•_gd = parse(Float64, tokens[3]) |> deg2rad # Read the model output. exospheric_temperature = parse(Float64, tokens[4]) temperature = parse(Float64, tokens[5]) total_density = parse(Float64, tokens[6]) # Run the model. jd = date_to_jd(year, 1, 1, hour, min, sec) - 1 + doy instant = julian2datetime(jd) result = AtmosphericModels.jb2008(instant, Ο•_gd, Ξ», h) # Compare the results. @test result.exospheric_temperature β‰ˆ exospheric_temperature atol = 0.6 rtol = 0.0 @test result.temperature β‰ˆ temperature atol = 0.6 rtol = 0.0 @test result.total_density β‰ˆ total_density atol = 0.0 rtol = 5e-3 end end end end end @testset "Show" begin result = AtmosphericModels.jb2008( DateTime("2023-01-01T10:00:00"), 0, 0, 500e3, 100, 100, 100, 100, 100, 100, 100, 100, 85 ) expected = "JB2008 output (ρ = 3.52089e-13 kg / mΒ³)" str = sprint(show, result) expected = """ Jacchia-Bowman 2008 Atmospheric Model Result: Total density : 3.52089e-13 kg / mΒ³ Temperature : 923.19 K Exospheric Temp. : 924.79 K Nβ‚‚ number density : 1.38441e+11 1 / mΒ³ Oβ‚‚ number density : 3.20415e+09 1 / mΒ³ O number density : 1.23957e+13 1 / mΒ³ Ar number density : 2.20193e+06 1 / mΒ³ He number density : 2.4238e+12 1 / mΒ³ H number density : 4.13032e+10 1 / mΒ³""" str = sprint(show, MIME("text/plain"), result) @test str == expected end @testset "Errors" begin @test_throws ArgumentError AtmosphericModels.jb2008( now(), 0, 0, 89.9e3, 100, 100, 100, 100, 100, 100, 100, 100, 85 ) end
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
docs
1620
SatelliteToolboxAtmosphericModels.jl Changelog ============================================== Version 0.1.3 ------------- - ![Enhancement][badge-enhancement] Minor source-code updates. - ![Enhancement][badge-enhancement] Documentation updates. Version 0.1.2 ------------- - ![Bugfix][badge-bugfix] In certain conditions, the JR1971 model would generate an array index that was not an integer. This bug is now fixed. - ![Feature][badge-feature] NRLMSISE-00 can receive a matrix to call the in-place function that computes the Legendre associated functions, reducing the allocations. - ![Enhancement][badge-enhancement] The internal structure of NRLMSISE-00 model was changed to have a type parameter to indicate whether the AP is a vector or number. This approach slightly increased the compile time, but reduced one allocation. - ![Enhancement][badge-enhancement] The user can now call NRLMSISE-00 model without any allocations, which increases the performance by roughly 20%. Version 0.1.1 ------------- - ![Enhancement][badge-enhancement] We updated the dependency compatibility bounds. Version 0.1.0 ------------- - Initial version. - This version was based on the functions in **SatelliteToolbox.jl**. [badge-breaking]: https://img.shields.io/badge/BREAKING-red.svg [badge-deprecation]: https://img.shields.io/badge/Deprecation-orange.svg [badge-feature]: https://img.shields.io/badge/Feature-green.svg [badge-enhancement]: https://img.shields.io/badge/Enhancement-blue.svg [badge-bugfix]: https://img.shields.io/badge/Bugfix-purple.svg [badge-info]: https://img.shields.io/badge/Info-gray.svg
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
docs
1792
<p align="center"> <img src="./docs/src/assets/logo.png" width="150" title="SatelliteToolboxTransformations.jl"><br> <small><i>This package is part of the <a href="https://github.com/JuliaSpace/SatelliteToolbox.jl">SatelliteToolbox.jl</a> ecosystem.</i></small> </p> # SatelliteToolboxAtmosphericModels.jl [![CI](https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl/actions/workflows/ci.yml/badge.svg)](https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl/actions/workflows/ci.yml) [![codecov](https://codecov.io/gh/JuliaSpace/SatelliteToolboxAtmosphericModels.jl/branch/main/graph/badge.svg?token=oQOhGnQmdG)](https://codecov.io/gh/JuliaSpace/SatelliteToolboxAtmosphericModels.jl) [![docs-stable](https://img.shields.io/badge/docs-stable-blue.svg)][docs-stable-url] [![docs-dev](https://img.shields.io/badge/docs-dev-blue.svg)][docs-dev-url] [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![DOI](https://zenodo.org/badge/653723337.svg)](https://zenodo.org/doi/10.5281/zenodo.10644917) This package implements atmospheric models for the **SatelliteToolbox.jl** ecosystem. Currently, the following models are available: - Exponential atmospheric model; - Jacchia-Roberts 1971; - [Jacchia-Bowman 2008](http://sol.spacenvironment.net/jb2008/); and - [NRLMSISE-00](https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php). ## Installation ```julia julia> using Pkg julia> Pkg.add("SatelliteToolboxAtmosphericModels") ``` ## Documentation For more information, see the [documentation][docs-stable-url]. [docs-dev-url]: https://juliaspace.github.io/SatelliteToolboxAtmosphericModels.jl/dev [docs-stable-url]: https://juliaspace.github.io/SatelliteToolboxAtmosphericModels.jl/stable
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
docs
649
# SatelliteToolboxAtmosphericModels.jl This package implements atmospheric models for the **SatelliteToolbox.jl** ecosystem. Currently, the following models are available: - Exponential atmospheric model according to [1]; - Jacchia-Roberts 1971; - [Jacchia-Bowman 2008](http://sol.spacenvironment.net/jb2008/); and - [NRLMSISE-00](https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php). ## Installation ```julia julia> using Pkg julia> Pkg.install("SatelliteToolboxAtmosphericModels") ``` ## References - **[1]** **Vallado, D. A** (2013). *Fundamentals of Astrodynamics and Applications*. 4th ed. **Microcosm Press**, Hawthorn, CA, USA.
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
docs
173
Library ======= Documentation for `SatelliteToolboxAtmosphericModels.jl`. ```@autodocs Modules = [SatelliteToolboxAtmosphericModels, AtmosphericModels] Private = true ```
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
docs
1284
# Exponential Atmospheric Model ```@meta CurrentModule = SatelliteToolboxAtmosphericModels DocTestSetup = quote using SatelliteToolboxAtmosphericModels end ``` ```@setup exp using SatelliteToolboxAtmosphericModels ``` This model assumes we can compute the atmospheric density by: ```math \rho(h) = \rho_0 \cdot exp \left\lbrace - \frac{h - h_0}{H} \right\rbrace~, ``` where ``\rho_0``, ``h_0``, and ``H`` are parameters obtained from tables. Reference [1] provides a discretization of those parameters based on the selected height ``h`` that was obtained after evaluation of some accurate models. In this package, we can compute the model using the following function: ```julia AtmosphericModels.exponential(h::T) where T<:Number -> Float64 ``` where `h` is the desired height [m]. !!! warning Notice that this model does not consider important effects such as the Sun activity, the geomagnetic activity, the local time at the desired location, and others. Hence, although this can be used for fast evaluations, the accuracy is not good. ## Examples ```@repl exp AtmosphericModels.exponential(700e3) ``` ## References - **[1]** **Vallado, D. A** (2013). *Fundamentals of Astrodynamics and Applications*. 4th ed. **Microcosm Press**, Hawthorn, CA, USA.
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
docs
3703
# Jacchia-Bowman 2008 ```@meta CurrentModule = SatelliteToolboxAtmosphericModels ``` ```@setup jb2008 using SatelliteToolboxAtmosphericModels ``` This is an empirical thermospheric density model based on the Jacchia theory. It was published in: > **Bowman, B. R., Tobiska, W. K., Marcos, F. A., Huang, C. Y., Lin, C. S., Burke, W. J > (2008)**. *A new empirical thermospheric density model JB2008 using new solar and > geomagnetic indices.* **In the proeceeding of the AIAA/AAS Astrodynamics Specialist > Conference**, Honolulu, Hawaii. For more information, visit [http://sol.spacenvironment.net/jb2008](http://sol.spacenvironment.net/jb2008). In this package, we can evaluate the model using the following functions: ```julia AtmosphericModels.jb2008(instant::DateTime, Ο•_gd::Number, Ξ»::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΞ”Tc::Number]) -> JB2008Output{Float64} AtmosphericModels.jb2008(jd::Number, Ο•_gd::Number, Ξ»::Number, h::Number[, F10::Number, F10ₐ::Number, S10::Number, S10ₐ::Number, M10::Number, M10ₐ::Number, Y10::Number, Y10ₐ::Number, DstΞ”Tc::Number]) -> JB2008Output{Float64} ``` where: - `jd::Number`: Julian day to compute the model. - `instant::DateTime`: Instant to compute the model represent using `DateTime`. - `Ο•_gd`: Geodetic latitude [rad]. - `Ξ»`: Longitude [rad]. - `h`: Altitude [m]. - `F10`: 10.7-cm solar flux [sfu] obtained 1 day before `jd`. - `F10ₐ`: 10.7-cm averaged solar flux using a 81-day window centered on input time obtained 1 day before `jd`. - `S10`: EUV index (26-34 nm) scaled to F10.7 obtained 1 day before `jd`. - `S10ₐ`: EUV 81-day averaged centered index obtained 1 day before `jd`. - `M10`: MG2 index scaled to F10.7 obtained 2 days before `jd`. - `M10ₐ`: MG2 81-day averaged centered index obtained 2 day before `jd`. - `Y10`: Solar X-ray & Ly-Ξ± index scaled to F10.7 obtained 5 days before `jd`. - `Y10ₐ`: Solar X-ray & Ly-Ξ± 81-day averaged centered index obtained 5 days before `jd`. - `DstΞ”Tc`: Temperature variation related to the Dst. If we omit all space indices, the system tries to obtain them automatically for the selected day `jd` or `instant`. However, the indices must be already initialized using the function `SpaceIndices.init()`. These functions return an object of type `JB2008Output{Float64}` that contains the following fields: - `total_density::T`: Total atmospheric density [1 / mΒ³]. - `temperature::T`: Temperature at the selected position [K]. - `exospheric_temperature::T`: Exospheric temperature [K]. - `N2_number_density::T`: Number density of Nβ‚‚ [1 / mΒ³]. - `O2_number_density::T`: Number density of Oβ‚‚ [1 / mΒ³]. - `O_number_density::T`: Number density of O [1 / mΒ³]. - `Ar_number_density::T`: Number density of Ar [1 / mΒ³]. - `He_number_density::T`: Number density of He [1 / mΒ³]. - `H_number_density::T`: Number density of H [1 / mΒ³]. ## Examples ```@repl jb2008 AtmosphericModels.jb2008( DateTime("2022-06-19T18:35:00"), deg2rad(-22), deg2rad(-45), 700e3, 79, 73.5, 55.1, 53.8, 78.9, 73.3, 80.2, 71.7, 50 ) ``` ```@repl jb2008 SpaceIndices.init() AtmosphericModels.jb2008(DateTime("2022-06-19T18:35:00"), deg2rad(-22), deg2rad(-45), 700e3) ``` If we use the automatic space index fetching mechanism, it is possible to obtain the fetched values by turning on the debugging logs according to the [Julia documentation](https://docs.julialang.org/en/v1/stdlib/Logging/): ```@repl jb2008 using Logging with_logger(ConsoleLogger(stderr, Logging.Debug)) do AtmosphericModels.jb2008(DateTime("2022-06-19T18:35:00"), deg2rad(-22), deg2rad(-45), 700e3) end ```
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
docs
2937
# Jacchia-Roberts 1971 ```@meta CurrentModule = SatelliteToolboxAtmosphericModels ``` ```@setup jr1971 using SatelliteToolboxAtmosphericModels ``` This is an analytic atmospheric model based on the Jacchia's 1970 model. It was published in: > **Roberts, C. E (1971)**. *An analytic model for upper atmosphere densities based upon > Jacchia's 1970 models*. **Celestial mechanics**, Vol. 4 (3-4), p. 368-377, DOI: > 10.1007/BF01231398. Although it is old, this model is still used for some applications, like computing the estimated reentry time for an object on low Earth orbits. In this package, we can evaluate the model using the following functions: ```julia AtmosphericModels.jr1971(instant::DateTime, Ο•_gd::Number, Ξ»::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64} AtmosphericModels.jr1971(jd::Number, Ο•_gd::Number, Ξ»::Number, h::Number[, F10::Number, F10ₐ::Number, Kp::Number]) -> JR1971Output{Float64} ``` where: - `jd::Number`: Julian day to compute the model. - `instant::DateTime`: Instant to compute the model represent using `DateTime`. - `Ο•_gd::Number`: Geodetic latitude [rad]. - `Ξ»::Number`: Longitude [rad]. - `h::Number`: Altitude [m]. - `F10::Number`: 10.7-cm solar flux [sfu]. - `F10ₐ::Number`: 10.7-cm averaged solar flux, 81-day centered on input time [sfu]. - `Kp::Number`: Kp geomagnetic index with a delay of 3 hours. If we omit all space indices, the system tries to obtain them automatically for the selected day `jd` or `instant`. However, the indices must be already initialized using the function `SpaceIndices.init()`. This function return an object of type `JR1971Output{Float64}` that contains the following fields: - `total_density::T`: Total atmospheric density [1 / mΒ³]. - `temperature::T`: Temperature at the selected position [K]. - `exospheric_temperature::T`: Exospheric temperature [K]. - `N2_number_density::T`: Number density of Nβ‚‚ [1 / mΒ³]. - `O2_number_density::T`: Number density of Oβ‚‚ [1 / mΒ³]. - `O_number_density::T`: Number density of O [1 / mΒ³]. - `Ar_number_density::T`: Number density of Ar [1 / mΒ³]. - `He_number_density::T`: Number density of He [1 / mΒ³]. - `H_number_density::T`: Number density of H [1 / mΒ³]. ## Examples ```@repl jr1971 AtmosphericModels.jr1971( DateTime("2018-06-19T18:35:00"), deg2rad(-22), deg2rad(-45), 700e3, 79, 73.5, 1.34 ) ``` ```@repl jr1971 SpaceIndices.init() AtmosphericModels.jr1971(DateTime("2022-06-19T18:35:00"), deg2rad(-22), deg2rad(-45), 700e3) ``` If we use the automatic space index fetching mechanism, it is possible to obtain the fetched values by turning on the debugging logs according to the [Julia documentation](https://docs.julialang.org/en/v1/stdlib/Logging/): ```@repl jr1971 using Logging with_logger(ConsoleLogger(stderr, Logging.Debug)) do AtmosphericModels.jr1971(DateTime("2022-06-19T18:35:00"), deg2rad(-22), deg2rad(-45), 700e3) end ```
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.1.3
8e14a70da3f421ab55cbed464393c94806d1d866
docs
4952
# NRLMSISE-00 ```@meta CurrentModule = SatelliteToolboxAtmosphericModels ``` ```@setup nrlmsise00 using SatelliteToolboxAtmosphericModels ``` The NRLMSISE-00 empirical atmosphere model was developed by Mike Picone, Alan Hedin, and Doug Drob based on the MSISE90 model: > **Picone, J. M., Hedin, A. E., Drob, D. P., Aikin, A. C (2002)**. *NRLMSISE-00 empirical > model of the atmosphere: Statistical comparisons and scientific issues*. **Journal of > Geophysical Research: Space Physics**, Vol. 107 (A12), p. SIA 15-1 -- SIA 15-16, DOI: > 10.1029/2002JA009430. In this package, we can compute this model using the following functions: ```julia AtmosphericModels.nrlmsise00(instant::DateTime, h::Number, Ο•_gd::Number, Ξ»::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64} AtmosphericModels.nrlmsise00(jd::Number, h::Number, Ο•_gd::Number, Ξ»::Number[, F10ₐ::Number, F10::Number, ap::Union{Number, AbstractVector}]; kwargs...) -> Nrlmsise00Output{Float64} ``` where - `instant::DateTime`: Instant to compute the model represent using `DateTime`. - `jd::Number`: Julian day to compute the model. - `h::Number`: Altitude [m]. - `Ο•_gd::Number`: Geodetic latitude [rad]. - `Ξ»::Number`: Longitude [rad]. - `F10ₐ::Number`: 10.7-cm averaged solar flux, 90-day centered on input time [sfu]. - `F10::Number`: 10.7-cm solar flux [sfu]. - `ap::Union{Number, AbstractVector}`: Magnetic index, see the section [AP](@ref) for more information. The following keywords are available: - `flags::Nrlmsise00Flags`: A list of flags to configure the model. For more information, see [`AtmosphericModels.Nrlmsise00Flags`](@ref). (**Default** = `Nrlmsise00Flags()`) - `include_anomalous_oxygen::Bool`: If `true`, the anomalous oxygen density will be included in the total density computation. (**Default** = `true`) - `P::Union{Nothing, Matrix}`: If the user passes a matrix with dimensions equal to or greater than 8 Γ— 4, it will be used when computing the Legendre associated functions, reducing allocations and improving the performance. If it is `nothing`, the matrix is allocated inside the function. (**Default** `nothing`) If we omit all space indices, the system tries to obtain them automatically for the selected day `jd` or `instant`. However, the indices must be already initialized using the function `SpaceIndices.init()`. These functions return an object of type `Nrlmsise00Output{Float64}` that contains the following fields: - `total_density::T`: Total mass density [kg / mΒ³]. - `temperature`: Temperature at the selected altitude [K]. - `exospheric_temperature`: Exospheric temperature [K]. - `N_number_density`: Nitrogen number density [1 / mΒ³]. - `N2_number_density`: Nβ‚‚ number density [1 / mΒ³]. - `O_number_density`: Oxygen number density [1 / mΒ³]. - `aO_number_density`: Anomalous Oxygen number density [1 / mΒ³]. - `O2_number_density`: Oβ‚‚ number density [1 / mΒ³]. - `H_number_density`: Hydrogen number density [1 / mΒ³]. - `He_number_density`: Helium number density [1 / mΒ³]. - `Ar_number_density`: Argon number density [1 / mΒ³]. ## AP The input variable `ap` contains the magnetic index. It can be a `Number` or an `AbstractVector`. If `ap` is a number, it must contain the daily magnetic index. If `ap` is an `AbstractVector`, it must be a vector with 7 dimensions as described below: | Index | Description | |-------|:------------------------------------------------------------------------------| | 1 | Daily AP. | | 2 | 3 hour AP index for current time. | | 3 | 3 hour AP index for 3 hours before current time. | | 4 | 3 hour AP index for 6 hours before current time. | | 5 | 3 hour AP index for 9 hours before current time. | | 6 | Average of eight 3 hour AP indices from 12 to 33 hours prior to current time. | | 7 | Average of eight 3 hour AP indices from 36 to 57 hours prior to current time. | ## Examples ```@repl nrlmsise00 AtmosphericModels.nrlmsise00( DateTime("2018-06-19T18:35:00"), 700e3, deg2rad(-22), deg2rad(-45), 73.5, 79, 5.13 ) ``` ```@repl nrlmsise00 SpaceIndices.init() AtmosphericModels.nrlmsise00(DateTime("2018-06-19T18:35:00"), 700e3, deg2rad(-22), deg2rad(-45)) ``` If we use the automatic space index fetching mechanism, it is possible to obtain the fetched values by turning on the debugging logs according to the [Julia documentation](https://docs.julialang.org/en/v1/stdlib/Logging/): ```@repl nrlmsise00 using Logging with_logger(ConsoleLogger(stderr, Logging.Debug)) do AtmosphericModels.nrlmsise00(DateTime("2018-06-19T18:35:00"), 700e3, deg2rad(-22), deg2rad(-45)) end ```
SatelliteToolboxAtmosphericModels
https://github.com/JuliaSpace/SatelliteToolboxAtmosphericModels.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
6355
#= setindex.jl Provide setindex!() capabilities like A[i,j] = s for LinearMapAM objects. The setindex! function here is (necessarily) quite inefficient. It is provided solely so that a LinearMapAM conforms to the AbstractMatrix requirement that a setindex! method exists. Use of this function is strongly discouraged, other than for testing. 2018-01-19, Jeff Fessler, University of Michigan =# using LinearMaps #: LinearMaps.FunctionMap #Indexer = AbstractVector{Int} """ `A[i,j] = X` Mathematically, if B = copy(A) and then we say `B[i,j] = s`, for scalar `s`, then `B = A + (s - A[i,j]) e_i e_j'` where `e_i` and `e_j` are the appropriate unit vectors. Using this basic math, we can perform `B*x` using `A*x` and `A[i,j]`. This idea generalizes to `B[ii,jj] = X` where `ii` and `jj` are vectors. This method works because LinearMapAM is a *mutable* struct. """ function Base.setindex!(A::LinearMapAM, X::AbstractMatrix, ii::Indexer, jj::Indexer, ) # todo: handle WrappedMap differently L = A._lmap Aij = A[ii,jj] # must extract this outside of forw() to avoid recursion! Aij = reshape(Aij, size(X)) # needed for [i,:] case if true forw = (x) -> begin tmp = L * x tmp[ii] += (X - Aij) * x[jj] return tmp end end has_adj = !(typeof(L) <: LinearMaps.FunctionMap) || (L.fc !== nothing) if has_adj back = (y) -> begin tmp = L' * y tmp[jj] += (X - Aij)' * y[ii] return tmp end end #= # for future reference, some of this could be implemented A.issymmetric = false # could check if i==j A.ishermitian = false # could check if i==j and v=v' A.posdef = false # could check if i==j and v > A[i,j] =# if has_adj A._lmap = LinearMap(forw, back, size(L)...) else A._lmap = LinearMap(forw, size(L)...) end nothing end # [i,j] = s Base.setindex!(A::LinearMapAM, s::Number, i::Int, j::Int) = setindex!(A, fill(s,1,1), [i], [j]) # [ii,jj] = X Base.setindex!(A::LinearMapAM, X::AbstractMatrix, ii::AbstractVector{Bool}, jj::AbstractVector{Bool}) = setindex!(A, X, findall(ii), findall(jj)) # [:,jj] = X Base.setindex!(A::LinearMapAM, X::AbstractMatrix, ::Colon, jj::AbstractVector{Bool}) = setindex!(A, X, :, findall(jj)) Base.setindex!(A::LinearMapAM, X::AbstractMatrix, ::Colon, jj::Indexer) = setindex!(A, X, 1:size(A,1), jj) # [ii,:] = X Base.setindex!(A::LinearMapAM, X::AbstractMatrix, ii::AbstractVector{Bool}, ::Colon) = setindex!(A, X, findall(ii), :) Base.setindex!(A::LinearMapAM, X::AbstractMatrix, ii::Indexer, ::Colon) = setindex!(A, X, ii, 1:size(A,2)) # [:,j] = v Base.setindex!(A::LinearMapAM, v::AbstractVector, ::Colon, j::Int) = setindex!(A, reshape(v,:,1), :, [j]) # [ii,j] = v Base.setindex!(A::LinearMapAM, v::AbstractVector, ii::Indexer, j::Int) = setindex!(A, reshape(v,:,1), ii, [j]) # [i,:] = v Base.setindex!(A::LinearMapAM, v::AbstractVector, i::Int, ::Colon) = setindex!(A, reshape(v,1,:), [i], :) # [i,jj] = v Base.setindex!(A::LinearMapAM, v::AbstractVector, i::Int, jj::Indexer) = setindex!(A, reshape(v,1,:), [i], jj) # [ii,jj] = s Base.setindex!(A::LinearMapAM, s::Number, ii::AbstractVector{Bool}, jj::Indexer) = setindex!(A, s, findall(ii), jj) Base.setindex!(A::LinearMapAM, s::Number, ii::Indexer, jj::AbstractVector{Bool}) = setindex!(A, s, ii, findall(jj)) Base.setindex!(A::LinearMapAM, s::Number, ii::AbstractVector{Bool}, jj::AbstractVector{Bool}) = setindex!(A, s, findall(ii), findall(jj)) Base.setindex!(A::LinearMapAM, s::Number, ii::Indexer, jj::Indexer) = setindex!(A, fill(s,length(ii),length(jj)), ii, jj) # [:,j] = s Base.setindex!(A::LinearMapAM, s::Number, ::Colon, j::Int) = setindex!(A, s, 1:size(A,1), [j]) # [ii,:] = s Base.setindex!(A::LinearMapAM, s::Number, ii::AbstractVector{Bool}, ::Colon) = setindex!(A, s, findall(ii), :) Base.setindex!(A::LinearMapAM, s::Number, ii::Indexer, ::Colon) = setindex!(A, s, ii, 1:size(A,2)) # [ii,j] = s Base.setindex!(A::LinearMapAM, s::Number, ii::AbstractVector{Bool}, j::Int) = setindex!(A, s, findall(ii), [j]) Base.setindex!(A::LinearMapAM, s::Number, ii::Indexer, j::Int) = setindex!(A, fill(s, length(ii), 1), ii, [j]) # [i,:] = s Base.setindex!(A::LinearMapAM, s::Number, i::Int, ::Colon) = setindex!(A, fill(s, 1, size(A,2)), [i], :) # [i,jj] = s Base.setindex!(A::LinearMapAM, s::Number, i::Int, jj::AbstractVector{Bool}) = setindex!(A, s, i, findall(jj)) Base.setindex!(A::LinearMapAM, s::Number, i::Int, jj::Indexer) = setindex!(A, fill(s, 1, length(jj)), [i], jj) # [:,jj] = s Base.setindex!(A::LinearMapAM, s::Number, ::Colon, jj::AbstractVector{Bool}) = setindex!(A, s, :, findall(jj)) Base.setindex!(A::LinearMapAM, s::Number, ::Colon, jj::Indexer) = setindex!(A, s, 1:size(A,1), jj) # [kk] #= too much work, so unsupported Base.setindex!(A::LinearMapAM, v::AbstractVector, kk::Indexer) = =# # [:] = v Base.setindex!(A::LinearMapAM, v::AbstractVector, ::Colon) = setindex!(A, reshape(v,size(A)), :, :) # [:] = s function Base.setindex!(A::LinearMapAM, s::Number, ::Colon) (M,N) = size(A) forw = x -> fill(s, M) * (ones(1,N) * x)[1] back = y -> fill(conj(s), N) * (ones(1, M) * y)[1] A._lmap = LinearMap(forw, back, M, N) end # [:,:] = s Base.setindex!(A::LinearMapAM, s::Number, ::Colon, ::Colon) = setindex!(A, s, :) # [:,:] = X function Base.setindex!(A::LinearMapAM, X::AbstractMatrix, ::Colon, ::Colon) A._lmap = LinearMap(X) end # [k] = s """ `setindex!(A::LinearMapAM, s::Number, k::Int)` Provide the single index version to meet the `AbstractArray` spec: https://docs.julialang.org/en/latest/manual/interfaces/#Indexing-1 """ Base.setindex!(A::LinearMapAM, s::Number, k::Int) = setindex!(A, s, Tuple(CartesianIndices(size(A))[k])...) # any better way? #= """ `setindex!(A::LinearMapAM, v::Number, k::Int)` Provide the single index version to meet the `AbstractArray` spec: https://docs.julialang.org/en/latest/manual/interfaces/#Indexing-1 """ function Base.setindex!(A::LinearMapAM, v::Number, k::Int) c = CartesianIndices(size(A))[k] # is there a more elegant way? setindex!(A, v::Number, c[1], c[2]) end =#
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
2952
execute = isempty(ARGS) || ARGS[1] == "run" org, reps = :JeffFessler, :LinearMapsAA eval(:(using $reps)) import Documenter import Literate # https://juliadocs.github.io/Documenter.jl/stable/man/syntax/#@example-block ENV["GKSwstype"] = "100" ENV["GKS_ENCODING"] = "utf-8" # generate examples using Literate lit = joinpath(@__DIR__, "lit") src = joinpath(@__DIR__, "src") gen = joinpath(@__DIR__, "src/generated") base = "$org/$reps.jl" repo_root_url = "https://github.com/$base/blob/main" nbviewer_root_url = "https://nbviewer.org/github/$base/tree/gh-pages/dev/generated" binder_root_url = "https://mybinder.org/v2/gh/$base/gh-pages?filepath=dev/generated" repo = eval(:($reps)) Documenter.DocMeta.setdocmeta!(repo, :DocTestSetup, :(using $reps); recursive=true) # preprocessing inc1 = "include(\"../../../inc/reproduce.jl\")" function prep_markdown(str, root, file) inc_read(file) = read(joinpath("docs/inc", file), String) repro = inc_read("reproduce.jl") str = replace(str, inc1 => repro) urls = inc_read("urls.jl") file = joinpath(splitpath(root)[end], splitext(file)[1]) tmp = splitpath(root)[end-2:end] # docs lit examples urls = replace(urls, "xxxrepo" => joinpath(repo_root_url, tmp...), "xxxnb" => joinpath(nbviewer_root_url, tmp[end]), "xxxbinder" => joinpath(binder_root_url, tmp[end]), ) str = replace(str, "#srcURL" => urls) end function prep_notebook(str) str = replace(str, inc1 => "", "#srcURL" => "") end for (root, _, files) in walkdir(lit), file in files splitext(file)[2] == ".jl" || continue # process .jl files only ipath = joinpath(root, file) opath = splitdir(replace(ipath, lit => gen))[1] Literate.markdown(ipath, opath; repo_root_url, preprocess = str -> prep_markdown(str, root, file), documenter = execute, # run examples ) Literate.notebook(ipath, opath; preprocess = prep_notebook, execute = false, # no-run notebooks ) end # Documentation structure ismd(f) = splitext(f)[2] == ".md" pages(folder) = [joinpath("generated/", folder, f) for f in readdir(joinpath(gen, folder)) if ismd(f)] isci = get(ENV, "CI", nothing) == "true" format = Documenter.HTML(; prettyurls = isci, edit_link = "main", canonical = "https://$org.github.io/$repo.jl/stable/", assets = ["assets/custom.css"], ) Documenter.makedocs(; modules = [repo], authors = "Jeff Fessler and contributors", sitename = "$repo.jl", format, pages = [ "Home" => "index.md", "Methods" => "methods.md", "Examples" => pages("examples") ], ) if isci Documenter.deploydocs(; repo = "github.com/$base", devbranch = "main", devurl = "dev", versions = ["stable" => "v^", "dev" => "dev"], forcepush = true, push_preview = true, # see https://$org.github.io/$repo.jl/previews/PR## ) end
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
256
# ### Reproducibility # This page was generated with the following version of Julia: using InteractiveUtils: versioninfo io = IOBuffer(); versioninfo(io); split(String(take!(io)), '\n') # And with the following package versions import Pkg; Pkg.status()
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
427
#= This page comes from a single Julia file: [`@__NAME__.jl`](xxxrepo/@__NAME__.jl). You can access the source code for such Julia documentation using the 'Edit on GitHub' link in the top right. You can view the corresponding notebook in [nbviewer](https://nbviewer.org/) here: [`@__NAME__.ipynb`](xxxnb/@__NAME__.ipynb), or open it in [binder](https://mybinder.org/) here: [`@__NAME__.ipynb`](xxxbinder/@__NAME__.ipynb). =#
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
5812
#= # [LinearMapsAA overview](@id 01-overview) This page illustrates the Julia package [`LinearMapsAA`](https://github.com/JeffFessler/LinearMapsAA.jl). =# #srcURL # ### Setup # Packages needed here. using LinearMapsAA using ImagePhantoms: shepp_logan, SheppLoganToft using MIRTjim: jim, prompt using InteractiveUtils: versioninfo # The following line is helpful when running this file as a script; # this way it will prompt user to hit a key after each figure is displayed. isinteractive() ? jim(:prompt, true) : prompt(:draw); #= ## Overview Many computational imaging methods use system models that are too large to store explicitly as dense matrices, but nevertheless are represented mathematically by a linear mapping `A`. Often that linear map is thought of as a matrix, but in imaging problems it often is more convenient to think of it as a more general linear operator. The `LinearMapsAA` package can represent both "matrix" versions and "operator" versions of linear mappings. This page illustrates both versions in the context of single-image [super-resolution](https://en.wikipedia.org/wiki/Super-resolution_imaging) imaging, where the operator `A` maps a `M Γ— N` image into a coarser sampled image of size `MΓ·2 Γ— NΓ·2`. Here the operator `A` is akin to down-sampling, except, rather than simple decimation, each coarse-resolution pixel is the average of a 2 Γ— 2 block of pixels in the fine-resolution image. =# # ## System operator (linear mapping) for down-sampling # Here is the "forward" function needed to model 2Γ— down-sampling: down1 = (x) -> (x[1:2:end,:] + x[2:2:end,:])/2 # 1D down-sampling by 2Γ— down2 = (x) -> down1(down1(x)')'; # 2D down-sampling by factor of 2Γ— # The `down2` function is a (bounded) linear operator # and here is its adjoint: down2_adj(y::AbstractMatrix{<:Number}) = kron(y, fill(0.25, (2,2))); #= Mathematically, and adjoint is a generalization of the (Hermitian) transpose of a matrix. For a (bounded) linear mapping `A` between inner product space X with inner product <.,.>_X and inner product space Y with inner product <.,.>_Y, the adjoint of `A`, denoted `A'`, is the unique bound linear mapping that satisfies <A x, y>_Y = <x, A' y>_X for all x ∈ X and y ∈ Y. One can verify that the `down2_adj` function satisfies that equality for the usual inner product on the space of `M Γ— N` images. =# #= ## LinearMap as an operator for super-resolution We now pick a specific image size and define the linear mapping using the two functions above: =# nx, ny = 200, 256 A = LinearMapAA(down2, down2_adj, ((nxΓ·2)*(nyΓ·2), nx*ny); idim = (nx,ny), odim = (nx,ny) .Γ· 2) #= The `idim` argument specifies that the input image is of size `nx Γ— ny` and the `odim` argument specifies that the output image is of size `nxΓ·2 Γ— nyΓ·2`. This means that when we invoke `y = A * x` the input `x` must be a 2D array of size `nx Γ— ny` (not a 1D vector!) and the output `y` will have size `nxΓ·2 Γ— nyΓ·2`. This behavior is a generalization of what one might expect from a conventional matrix-vector expression, but is quite appropriate and convenient for imaging problems. Here is an illustration. We start with a 2D test image. =# image = shepp_logan(ny, SheppLoganToft())[(ny-nx)Γ·2 .+ (1:nx),:] jim(image, "SheppLogan") # Apply the operator `A` to this image to down-sample it: down = A * image jim(down, title="Down-sampled image") # Apply the adjoint of `A` to that result to "up-sample" it: up = A' * down jim(up, title="Adjoint: A' * y") # That up-sampled image does not have the same range of values # as the original image because `A'` is an adjoint, not an inverse! #= ## AbstractMatrix version Some users may prefer that the operator `A` behave more like a matrix. We can implement approach from the same ingredients by using `vec` and `reshape` judiciously. The code is less elegant, but similarly efficient because `vec` and `reshape` are non-allocating operations. =# B = LinearMapAA( x -> vec(down2(reshape(x,nx,ny))), y -> vec(down2_adj(reshape(y,Int(nx/2),Int(ny/2)))), ((nxΓ·2)*(nyΓ·2), nx*ny), ) #= To apply this version to our `image` we must first vectorize it because the expected input is a vector in this case. And then we have to reshape the vector output as a 2D array to look at it. (This is why the operator version with `idim` and `odim` is preferable.) =# y = B * vec(image) # This would fail here without the `vec`! jim(reshape(y, nxΓ·2, nyΓ·2)) # Annoying reshape needed here! #= Even though we write `y = A * x` above, one must remember that internally `A` is not stored as a dense matrix. It is simply a special variable type that stores the forward function `down2` and the adjoint function `down2_adj`, along with a few other values like `nx,ny`, and applies those functions when needed. Nevertheless, we can examine elements of `A` and `B` just like one would with any matrix, at least for small enough examples to fit in memory. =# # Examine `A` and `A'` nx, ny = 8,6 idim = (nx,ny) odim = (nx,ny) .Γ· 2 A = LinearMapAA(down2, down2_adj, ((nxΓ·2)*(nyΓ·2), nx*ny); idim, odim) # Here is `A` shown as a Matrix: jim(Matrix(A)', "A") # Here is `A'` shown as a Matrix: jim(Matrix(A')', "A'") #= When defining the adjoint function of a linear mapping, it is very important to verify that it is correct (truly the adjoint). For a small problem we simply use the following test: =# @assert Matrix(A)' == Matrix(A') # For some applications we must check approximate equality like this: @assert Matrix(A)' β‰ˆ Matrix(A') # Here is a statistical test that is suitable for large operators. # Often one would repeat this test several times: T = eltype(A) x = randn(T, idim) y = randn(T, odim) @assert sum((A*x) .* y) β‰ˆ sum(x .* (A'*y)) # <Ax,y> = <x,A'y> include("../../../inc/reproduce.jl")
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
4286
#= # [Operator example: trace](@id 02-trace) This page illustrates the "linear operator" feature of the Julia package [`LinearMapsAA`](https://github.com/JeffFessler/LinearMapsAA.jl). =# #srcURL # ### Setup # Packages needed here. using LinearMapsAA using LinearAlgebra: tr, I using InteractiveUtils: versioninfo #= ## Overview The "operator" aspect of this package may seem unfamiliar to some readers who are used to thinking in terms of matrices and vectors, so this page describes a simple example: the matrix [trace](https://en.wikipedia.org/wiki/Trace_(linear_algebra)) operation. The trace of a ``N Γ— N`` matrix is the sum of its ``N`` diagonal elements. We tend to think of this a function, and indeed it is the `tr` function in the `LinearAlgebra` package. But it is a *linear* function so we can represent it as a linear operator ``π’œ`` that maps a ``N Γ— N`` matrix into its trace. In other words, ``π’œ : \mathbb{C}^{N Γ— N} \mapsto \mathbb{C}`` is defined by ``π’œ X = \mathrm{tr}(X)``. Note that the product ``π’œ X`` is *not* a "matrix vector" product; it is a linear operator acting on the matrix ``X``. (Note that we use a fancy [unicode character](https://en.wikipedia.org/wiki/Mathematical_Alphanumeric_Symbols#Chart_for_the_Mathematical_Alphanumeric_Symbols_block) ``π’œ`` here just as a reminder that it is an operator; in practical code we usually just use `A`.) The `LinearMapsAA` package can represent such an operator easily. Here is the definition for ``N = 5``: =# N = 5 forw(X) = [tr(X)] # forward mapping function π’œ = LinearMapAA(forw, (1, N*N); idim = (N,N), odim = (1,)) #src B = LinearMapAA(X -> tr(X), (1, N*N); idim = (N,N), odim = ()) # fails #= The `idim` argument specifies that the input is a matrix of size `N Γ— N` and the `odim` argument specifies that the output is vector of size `(1,)`. =# #= One subtlety with this particular didactic example is that the ordinary trace yields a scalar, but [`LinearMaps.jl`](https://github.com/JuliaLinearAlgebra/LinearMaps.jl) is (understandably) designed exclusively for mapping vectors to vectors, so we use `[tr(X)]` above so that the output is a 1-element `Vector`. This behavior is consistent with what happens when one multiplies a `1 Γ— N` matrix with a vector in ``\mathbb{C}^N``. =# #= Here is a verification that applying this operator to a matrix produces the correct result: =# X = ones(5)*(1:5)' π’œ * X, tr(X), (N*(N+1))Γ·2 #= Although ``π’œ`` here is *not* a matrix, we can convert it to a matrix (at least when ``N`` is sufficiently small) to perhaps understand it better: =# A = Matrix(π’œ) A = Int8.(A) # just for nicer display #= The pattern of 0 and 1 elements is more obvious when reshaped: =# reshape(A, N, N) #= ## Adjoint Although this is largely a didactic example, there are optimization problems with [trace constraints](https://www.optimization-online.org/DB_HTML/2018/08/6765.html) of the form ``π’œ X = b``. To solve such problems, often one would also need the [adjoint](https://en.wikipedia.org/wiki/Adjoint) of the operator ``π’œ``. Mathematically, and adjoint is a generalization of the (Hermitian) transpose of a matrix. For a (bounded) linear mapping ``π’œ`` between inner product space ``𝒳`` with inner product ``⟨ \cdot, \cdot \rangle_𝒳`` and inner product space ``𝒴`` with inner product ``⟨ \cdot, \cdot \rangle_𝒴,`` the adjoint of ``π’œ``, denoted ``π’œ'``, is the unique bound linear mapping that satisfies ``⟨ π’œ x, y \rangle_𝒴 = ⟨ x, π’œ' y \rangle_𝒳`` for all ``x ∈ 𝒳`` and ``y ∈ 𝒴``. Here, let ``𝒳`` denote the vector space of ``N Γ— N`` matrices with the Frobenius inner product for matrices: ``⟨ A, B \rangle_𝒳 = \mathrm{tr}(A'B)``. Let ``𝒴`` simply be ``\mathbb{C}^1`` with the usual inner product ``⟨ x, y \rangle_𝒴 = x_1^* y_1``. With those definitions, one can verify that the adjoint of ``π’œ`` is the mapping ``π’œ' c = c_1 \mathbf{I}_N``, for ``c ∈ \mathbb{C}^1``, where ``\mathbf{I}_N`` denotes the ``N Γ— N`` identity matrix. Here is the `LinearMapAO` that includes the adjoint: =# back(y) = y[1] * I(N) # remember `y` is a 1-vector π’œ = LinearMapAA(forw, back, (1, N*N); idim = (N,N), odim = (1,)) # Here is a verification that the adjoint is correct (very important!): @assert Matrix(π’œ)' == Matrix(π’œ') Int8.(Matrix(π’œ')) include("../../../inc/reproduce.jl")
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
3691
#= # [Operator example: FFT](@id 03-fft) This page illustrates the "linear operator" feature of the Julia package [`LinearMapsAA`](https://github.com/JeffFessler/LinearMapsAA.jl) for the case of a multi-dimensional FFT operation. =# #srcURL # ### Setup # Packages needed here. using LinearMapsAA using FFTW: fft, bfft, fft!, bfft! using MIRTjim: jim, prompt using LazyGrids: btime using BenchmarkTools: @benchmark using InteractiveUtils: versioninfo # The following line is helpful when running this file as a script; # this way it will prompt user to hit a key after each figure is displayed. isinteractive() ? jim(:prompt, true) : prompt(:draw); #= ## Overview A 1D N-point discrete Fourier transform (DFT) is a linear operation that is naturally represented as a `N Γ— N` matrix. The multi-dimensional DFT is a linear mapping that could be represented as a matrix, using the `vec(β‹…)` of its arguments, but it is more naturally represented as a linear operator ``A``. For 2D images of size ``M Γ— N``, we can think the DFT as an operator ``A`` that maps a ``M Γ— N`` matrix into a ``M Γ— N`` matrix of DFT coefficients. In other words, ``A : \mathbb{C}^{M Γ— N} \mapsto \mathbb{C}^{M Γ— N}``. The `LinearMapsAA` package can represent such an operator easily. =# #= We first define appropriate forward and adjoint functions. We use `fft!` and `bfft!` to avoid unnecessary memory allocations. =# forw!(y, x) = fft!(copyto!(y, x)) # forward mapping function back!(x, y) = bfft!(copyto!(x, y)) # adjoint mapping function #= Below is the operator definition for ``(M,N) = (8,16)``. Because FFT returns complex numbers, we must use `T=ComplexF32` here for `LinearMaps` to work properly. =# M,N = 16,8 T = ComplexF32 A = LinearMapAA(forw!, back!, (M*N, M*N); idim = (M,N), odim = (M,N), T) #= The `idim` argument specifies that the input is a matrix of size `M Γ— N` and the `odim` argument specifies that the output is a matrix of size `(M,N)`. =# #= Here is some verification that applying this operator to a matrix produces a correct result: =# X = ones(M,N) @assert A * X β‰ˆ M*N * ((1:M) .== 1)*((1:N) .== 1)' # Kronecker impulse X = rand(T, M, N) @assert A * X β‰ˆ fft(X) #= Although ``A`` here is *not* a matrix, we can convert it to a matrix (at least when ``M N`` is sufficiently small) to perhaps understand it better: =# Amat = Matrix(A) using MIRTjim: jim jim( jim(real(Amat)', "Real(A)"; prompt=false), jim(imag(Amat)', "Imag(A)"; prompt=false), ) #= ## Adjoint Here is a verification that the [adjoint](https://en.wikipedia.org/wiki/Adjoint) of the operator ``A`` is working correctly. =# @assert Matrix(A)' β‰ˆ Matrix(A') #= Some users might wonder if there is "overhead" in using the overloaded linear mapping `A * x` or `mul!(y, A, x)` compared to directly calling `fft!(copyto!(y), x)`. Here are some timing tests that confirm that `LinearMapsAA` does not incur overhead. We deliberately choose very small `M,N`, because any overhead will be most apparent when the `fft` computation itself is fast. =# x = rand(ComplexF32, M, N) y1 = similar(x) y2 = similar(x) mul!(y1, A, x) forw!(y2, x) @assert y1 == y2 mul!(y1, A', x) back!(y2, x) @assert y1 == y2 # time forward fft: timer(t) = btime(t; unit=:ΞΌs) t = @benchmark forw!($y2, $x) # 19.1 us (31 alloc, 2K) timer(t) # compare to `LinearMapsAA` version: t = @benchmark mul!($y1, $A, $x) # 18.1 us (44 alloc, 4K) timer(t) # time backward fft: t = @benchmark back!($y2, $x) # 19.443 ΞΌs (31 allocations: 2.12 KiB) timer(t) # compare to `LinearMapsAA` version: t = @benchmark mul!($y1, $(A'), $x) # 17.855 ΞΌs (44 allocations: 4.00 KiB) timer(t) include("../../../inc/reproduce.jl")
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
1008
#= example/cuda.jl Verify that this package works with CUDA arrays. (This code can run only on a system with a NVidia GPU.) =# using CUDA: cu import CUDA: allowscalar using FFTW: fft, bfft, fft!, bfft! using LinearMapsAA: LinearMapAA using LinearAlgebra: mul! allowscalar(false) # ensure no scalar operations N = 8 T = ComplexF32 A = LinearMapAA(fft, bfft, (N, N), (name="fft",); T) @assert Matrix(A') == Matrix(A)' # test the adjoint x = randn(T, N) y = A * x xc = cu(x) yc = A * xc @assert Array(yc) β‰ˆ y bc = A' * yc b = A' * y @assert Array(bc) β‰ˆ b M,N = 16,8 T = ComplexF32 forw!(y,x) = fft!(copyto!(y,x)) back!(x,y) = bfft!(copyto!(x,y)) B = LinearMapAA(forw!, back!, (N*M, N*M), (name="fft",); idim = (M,N), odim = (M,N), T) @assert Matrix(B') == Matrix(B)' # test fft x = randn(T, M, N) y = similar(x) mul!(y, B, x) xc = cu(x) yc = similar(xc) mul!(yc, B, xc) @assert Array(yc) β‰ˆ y # test bfft b = similar(x) mul!(b, B', y) bc = similar(yc) mul!(bc, B', yc) @assert Array(bc) β‰ˆ b
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
1168
# LinearMapsAA_LinearOperators.jl # Wrap a LinearMapAA around a LinearOperator or vice-versa module LinearMapsAA_LinearOperators # extended here import LinearMapsAA: LinearMapAA, LinearOperator_from_AA using LinearMapsAA: LinearMapAX, mul! using LinearOperators: LinearOperator """ A = LinearMapAA(L::LinearOperator ; kwargs...) Wrap a `LinearOperator` in a `LinearMapAX`. Options are passed to `LinearMapAA` constructor. """ function LinearMapAA(L::LinearOperator ; kwargs...) forw!(y, x) = mul!(y, L, x) back!(x, y) = mul!(x, L', y) return LinearMapAA(forw!, back!, size(L); kwargs...) end """ L = LinearOperator_from_AA(A::LinearMapAX; symmetric, Hermitian) Wrap a `LinearOperator` around a `LinearMapAX`. The options `symmetric` and `hermitian` are `false` by default. """ function LinearOperator_from_AA( A::LinearMapAX; symmetric::Bool = false, hermitian::Bool = false, ) forw!(y, x) = mul!(y, A, x) back!(x, y) = mul!(x, A', y) return LinearOperator( eltype(A), size(A)..., symmetric, hermitian, forw!, nothing, # transpose mul! back!, ) end end # module
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
493
""" `module LinearMapsAA` Provides `AbstractArray` (actually `AbstractMatrix`) or "Ann Arbor" version of `LinearMap` objects """ module LinearMapsAA export LinearMapAA, LinearMapAM, LinearMapAO, LinearMapAX Indexer = AbstractVector{Int} include("types.jl") include("multiply.jl") include("ambiguity.jl") include("kron.jl") include("cat.jl") include("getindex.jl") #include("setindex.jl") include("block_diag.jl") include("lm-aa.jl") include("identity.jl") include("exts.jl") end # module
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
1219
#= ambiguity.jl Avoiding method ambiguities This may be a bit of a whack-a-moleβ„’ exercise... =# import LinearAlgebra const Trans = LinearAlgebra.Transpose{<: Any, <: LinearAlgebra.RealHermSymComplexSym} const Adjoi = LinearAlgebra.Adjoint{<: Any, <: LinearAlgebra.RealHermSymComplexHerm} Base.:(*)(A::LinearMapAM, D::LinearAlgebra.Diagonal) = AM_M(A, D) Base.:(*)(D::LinearAlgebra.Diagonal, B::LinearMapAM,) = M_AM(D, B) Base.:(*)(A::LinearMapAM, B::LinearAlgebra.AbstractTriangular) = AM_M(A, B) Base.:(*)(A::LinearAlgebra.AbstractTriangular, B::LinearMapAM) = M_AM(A, B) Base.:(*)(A::LinearMapAM, B::Trans) = AM_M(A, B) Base.:(*)(A::Trans, B::LinearMapAM) = M_AM(A, B) Base.:(*)(A::LinearMapAM, B::Adjoi) = AM_M(A, B) Base.:(*)(A::Adjoi, B::LinearMapAM) = M_AM(A, B) # see https://github.com/Jutho/LinearMaps.jl/issues/118 Base.:(*)(A::LinearMapAM, B::LinearAlgebra.Adjoint{<: Any, <: LinearAlgebra.AbstractRotation}) = throw("AbstractRotation lacks size so * is unsupported") #Base.:(*)(A::Given, B::LinearMapAM) = M_AM(A, B) Base.:(*)(x::LinearAlgebra.AdjointAbsVec, A::LinearMapAM) = (A' * x')' Base.:(*)(x::LinearAlgebra.TransposeAbsVec, A::LinearMapAM) = transpose(transpose(A) * transpose(x))
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
1379
#= block_diag.jl Like SparseArrays:blockdiag but slightly different name, just to be safe, because SparseArrays are also an AbstractArray type. Motivated by compressed sensing dynamic MRI where each frame has different k-space sampling 2020-06-08 Jeff Fessler =# export block_diag import LinearMaps # BlockDiagonalMap using SparseArrays: blockdiag, sparse same_idim(As::LinearMapAX...) = all(map(A -> A._idim == As[1]._idim, As)) same_odim(As::LinearMapAX...) = all(map(A -> A._odim == As[1]._odim, As)) """ B = block_diag(As::LinearMapAX... ; tryop::Bool) Make block diagonal `LinearMapAX` object from blocks. Return a `LinearMapAM` unless `tryop` and all blocks have same `idim` and `odim`. Default for `tryop` is `true` if all blocks are type `LinearMapAO`. """ block_diag(As::LinearMapAO... ; tryop::Bool = true) = block_diag(tryop, As...) block_diag(As::LinearMapAX... ; tryop::Bool = false) = block_diag(tryop, As...) function block_diag(tryop::Bool, As::LinearMapAX...) B = LinearMaps.BlockDiagonalMap(map(A -> A._lmap, As)...) nblock = length(As) prop = (nblock = nblock,) if (tryop && nblock > 1 && same_idim(As...) && same_odim(As...)) # operator version return LinearMapAA(B ; prop=prop, idim = (As[1]._idim..., nblock), odim = (As[1]._odim..., nblock), ) end return LinearMapAA(B, prop) end
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
4364
#= cat.jl Concatenation support for LinearMapAX 2018-01-19, Jeff Fessler, University of Michigan =# export lmaa_hcat, lmaa_vcat, lmaa_hvcat using LinearAlgebra: UniformScaling, I #= function warndim(A::LinearMapAX) ((length(A._idim) > 1) || (length(A._odim) > 1)) && @warn("dim ignored") nothing end =# # cat (hcat, vcat, hvcat) are tricky for avoiding type piracy # It is especially hard to handle AbstractMatrix, # so typically force the user to wrap it in LinearMap(AX) first. #LMcat{T} = Union{LinearMapAM{T}, LinearMap{T}, UniformScaling{T},AbstractMatrix{T}} LMcat{T} = Union{LinearMapAX{T}, LinearMap{T}, UniformScaling{T}} # settle #LMelse{T} = Union{LinearMap{T},UniformScaling{T},AbstractMatrix{T}} # non AM # convert to something suitable for LinearMap.*cat function lm_promote(A::LMcat) # @show typeof(A) A isa LinearMapAX ? A._lmap : A isa UniformScaling ? A : # leave unchanged - ok for LinearMaps.*cat A # otherwise it is this # throw("bug") # should only be only of LMcat types # A isa AbstractMatrix ? LinearMap(A) : # A isa LinearMap ? end # single-letter codes for cat objects, e.g., [A I A] becomes "AIA" lm_code(::LinearMapAM) = "A" lm_code(::LinearMapAO) = "O" lm_code(::UniformScaling) = "I" lm_code(::LinearMap) = "L" #lm_code(::AbstractMatrix) = "M" #lm_code(::Any) = "?" # concatenate the single-letter codes, e.g., [A I A] becomes "AIA" lm_name = As -> *(lm_code.(As)...) # lm_name = As -> nothing # these rely on LinearMap.*cat methods "`B = lmaa_hcat(A1, A2, ...)` `hcat` of multiple objects" lmaa_hcat(As::LMcat...) = LinearMapAA(hcat(lm_promote.(As)...), (hcat=lm_name(As),)) "`B = lmaa_vcat(A1, A2, ...)` `vcat` of multiple objects" lmaa_vcat(As::LMcat...) = LinearMapAA(vcat(lm_promote.(As)...), (vcat=lm_name(As),)) "`B = lmaa_hvcat(rows, A1, A2, ...)` `hvcat` of multiple objects" lmaa_hvcat(rows::NTuple{nr,Int} where {nr}, As::LMcat...) = LinearMapAA(hvcat(rows, lm_promote.(As)...), (hvcat=lm_name(As),)) # a single leading LinearMapAM followed by others is clear Base.hcat(A1::LinearMapAX, As::LMcat...) = lmaa_hcat(A1, As...) Base.vcat(A1::LinearMapAX, As::LMcat...) = lmaa_vcat(A1, As...) Base.hvcat(rows::NTuple{nr,Int} where {nr}, A1::LinearMapAX, As::LMcat...) = lmaa_hvcat(rows, A1, As...) # or in 2nd position, beyond that, user can use lmaa_* #Base.hcat(A1::LMelse, A2::LinearMapAM, As::LMcat...) = # fails!? Base.hcat(A1::UniformScaling, A2::LinearMapAX, As::LMcat...) = lmaa_hcat(A1, A2, As...) Base.vcat(A1::UniformScaling, A2::LinearMapAX, As::LMcat...) = lmaa_vcat(A1, A2, As...) Base.hvcat(rows::NTuple{nr,Int} where nr, A1::UniformScaling, A2::LinearMapAX, As::LMcat...) = lmaa_hvcat(rows, A1, A2, As...) # special handling for solely AO collections function _hcat(tryop::Bool, As::LinearMapAO...) B = LinearMaps.hcat(map(A -> A._lmap, As)...) nblock = length(As) prop = (nblock = nblock,) if (tryop && nblock > 1 && same_idim(As...) && same_odim(As...)) # operator version return LinearMapAA(B ; prop=prop, idim = (As[1]._idim..., nblock), odim = As[1]._odim, ) end return LinearMapAA(B ; prop=prop) end function _vcat(tryop::Bool, As::LinearMapAO...) B = LinearMaps.vcat(map(A -> A._lmap, As)...) nblock = length(As) prop = (nblock = nblock,) if (tryop && nblock > 1 && same_idim(As...) && same_odim(As...)) # operator version return LinearMapAA(B ; prop=prop, idim = As[1]._idim, odim = (As[1]._odim..., nblock), ) end return LinearMapAA(B ; prop=prop) end """ hcat(As::LinearMapAO... ; tryop::Bool=true) `hcat` with (by default) attempt to append `nblock` to `idim` if consistent blocks. """ Base.hcat(A1::LinearMapAO, As::LinearMapAO... ; tryop::Bool=true) = _hcat(tryop, A1, As...) """ vcat(As::LinearMapAO... ; tryop::Bool=true) `vcat` with (by default) attempt to append `nblock` to `odim` if consistent blocks. """ Base.vcat(A1::LinearMapAO, As::LinearMapAO... ; tryop::Bool=true) = _vcat(tryop, A1, As...) """ hvcat(rows, As::LinearMapAO...) `hvcat` that discards special `idim` and `odim` information (too hard!) # todo? """ Base.hvcat(rows::NTuple{nr,Int} where nr, A1::LinearMapAO, As::LinearMapAO...) = lmaa_hvcat(rows, undim(A1), undim.(As)...)
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
150
# exts.jl # methods defined in the extension(s) export LinearOperator_from_AA LinearOperator_from_AA() = throw("First run `using LinearOperators`")
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
2296
#= getindex.jl Indexing support for LinearMapAX 2018-01-19, Jeff Fessler, University of Michigan =# # As of v0.11, rely on getindex of LM, including its restrictions to slicing Base.getindex(A::LinearMapAX, args...) = Base.getindex(A._lmap, args...) #= # [end] function Base.lastindex(A::LinearMapAX) return prod(size(A._lmap)) end # [?,end] and [end,?] function Base.lastindex(A::LinearMapAX, d::Int) return size(A._lmap, d) end # A[i,j] function Base.getindex(A::LinearMapAX, i::Int, j::Int) T = eltype(A) e = zeros(T, size(A._lmap,2)); e[j] = one(T) tmp = A._lmap * e return tmp[i] end # A[:,j] # it is crucial to provide this function rather than to inherit from # Base.getindex(A::AbstractArray, ::Colon, ::Int) # because Base.getindex does this by iterating (I think). function Base.getindex(A::LinearMapAX, ::Colon, j::Int) T = eltype(A) e = zeros(T, size(A,2)); e[j] = one(T) return A._lmap * e end # A[ii,j] Base.getindex(A::LinearMapAX, ii::Indexer, j::Int) = A[:,j][ii] # A[i,jj] Base.getindex(A::LinearMapAX, i::Int, jj::Indexer) = A[i,:][jj] # A[:,jj] # this one is also important for efficiency Base.getindex(A::LinearMapAX, ::Colon, jj::AbstractVector{Bool}) = A[:,findall(jj)] Base.getindex(A::LinearMapAX, ::Colon, jj::Indexer) = hcat([A[:,j] for j in jj]...) # A[ii,:] # trick: cannot use A' for a FunctionMap with no fc function Base.getindex(A::LinearMapAX, ii::Indexer, ::Colon) if (:fc in propertynames(A._lmap)) && isnothing(A._lmap.fc) return hcat([A[ii,j] for j in 1:size(A,2)]...) # very slow! else return A'[:,ii]' end end # A[ii,jj] Base.getindex(A::LinearMapAX, ii::Indexer, jj::Indexer) = A[:,jj][ii,:] # A[k] function Base.getindex(A::LinearMapAX, k::Int) c = CartesianIndices(size(A._lmap))[k] # is there a more elegant way? return A[c[1], c[2]] end # A[kk] Base.getindex(A::LinearMapAX, kk::AbstractVector{Bool}) = A[findall(kk)] Base.getindex(A::LinearMapAX, kk::Indexer) = [A[k] for k in kk] # A[i,:] # trick: one row slice returns a 1D ("column") vector Base.getindex(A::LinearMapAX, i::Int, ::Colon) = A[[i],:][:] # A[:,:] = Matrix(A) Base.getindex(A::LinearMapAX, ::Colon, ::Colon) = Matrix(A._lmap) # A[:] Base.getindex(A::LinearMapAX, ::Colon) = A[:,:][:] =#
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
327
# identity.jl import LinearAlgebra: UniformScaling """ *(I, X) = X *(J, X) = J.Ξ» * X Extends the effect of `I::UniformScaling` and scaled versions thereof to also apply to `X::AbstractArray` instead of just to `Vector` and `Matrix` types. """ Base.:(*)(J::UniformScaling, X::AbstractArray) = J.Ξ» == 1 ? X : J.Ξ» * X
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
1596
#= kron.jl Kronecker product 2018-01-19, Jeff Fessler, University of Michigan =# # export LinearMapAA_test_kron # testing using LinearAlgebra: I, Diagonal # kron (requires LM 2.6.0) """ kron(A::LinearMapAX, M::AbstractMatrix) kron(M::AbstractMatrix, A::LinearMapAX) kron(A::LinearMapAX, B::LinearMapAX) Kronecker products Returns a `LinearMapAO` with appropriate `idim` and `odim` if either argument is a `LinearMapAO` else returns a `LinearMapAM` """ Base.kron(A::LinearMapAM, M::AbstractMatrix) = LinearMapAA(kron(A._lmap, M), A._prop) Base.kron(M::AbstractMatrix, A::LinearMapAM) = LinearMapAA(kron(M, A._lmap), A._prop) Base.kron(A::LinearMapAM, D::Diagonal{<: Number}) = LinearMapAA(kron(A._lmap, D), A._prop) Base.kron(D::Diagonal{<: Number}, A::LinearMapAM) = LinearMapAA(kron(D, A._lmap), A._prop) Base.kron(A::LinearMapAM, B::LinearMapAM) = LinearMapAA(kron(A._lmap, B._lmap) ; prop = (kron=nothing, props=(A._prop, B._prop)), ) Base.kron(A::LinearMapAO, B::LinearMapAO) = LinearMapAA(kron(A._lmap, B._lmap) ; prop = (kron=nothing, props=(A._prop, B._prop)), odim = (B._odim..., A._odim...), idim = (B._idim..., A._idim...), ) Base.kron(M::AbstractMatrix, A::LinearMapAO) = LinearMapAA(kron(M, A._lmap) ; prop = A._prop, odim = (A._odim..., size(M,1)), idim = (A._idim..., size(M,2)), ) Base.kron(A::LinearMapAO, M::AbstractMatrix) = LinearMapAA(kron(A._lmap, M) ; prop = A._prop, odim = (size(M,1), A._odim...), idim = (size(M,2), A._idim...), )
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
4198
#= lm-aa Core methods for LinearMapAA objects. 2019-08-07 Jeff Fessler, University of Michigan =# using LinearMaps: LinearMap using LinearAlgebra: UniformScaling, I import LinearAlgebra: issymmetric, ishermitian, isposdef #import LinearAlgebra: mul! #, lmul!, rmul! import SparseArrays: sparse export redim, undim # Matrix Base.Matrix(A::LinearMapAX) = Matrix(A._lmap) # ndims # Base.ndims(A::LinearMapAX) = ndims(A._lmap) # 2 for AbstractMatrix Base.ndims(A::LinearMapAO) = ndims(A._lmap) # 2 """ show(io::IO, A::LinearMapAX) show(io::IO, ::MIME"text/plain", A::LinearMapAX) Pretty printing for `display` """ function Base.show(io::IO, A::LinearMapAX) # short version print(io, isa(A, LinearMapAM) ? "LinearMapAM" : "LinearMapAO", ": $(size(A,1)) Γ— $(size(A,2))") end # multi-line version: function Base.show(io::IO, ::MIME"text/plain", A::LinearMapAX{T,Do,Di}) where {T,Do,Di} show(io, A) print(io, " odim=$(A._odim) idim=$(A._idim) T=$T Do=$Do Di=$Di") (A._prop != NamedTuple()) && (print(io, "\nprop = "); show(io, A._prop)) print(io, "\nmap = $(A._lmap)\n") end # size Base.size(A::LinearMapAX) = size(A._lmap) Base.size(A::LinearMapAX, d::Int) = size(A._lmap, d) """ redim(A::LinearMapAX ; idim::Dims=A._idim, odim::Dims=A._odim) "Reinterpret" the `idim` and `odim` of `A` """ function redim(A::LinearMapAX{T} ; idim::Dims=A._idim, odim::Dims=A._odim) where {T} prod(idim) == prod(A._idim) || throw("incompatible idim") prod(odim) == prod(A._odim) || throw("incompatible odim") return LinearMapAA(A._lmap ; prop=A._prop, T=T, idim=idim, odim=odim) end """ undim(A::LinearMapAX) "Reinterpret" the `idim` and `odim` of `A` to be of AM type """ undim(A::LinearMapAX{T}) where {T} = LinearMapAA(A._lmap ; prop=A._prop, T=T) # adjoint Base.adjoint(A::LinearMapAX) = LinearMapAA(adjoint(A._lmap) ; prop=A._prop, idim=A._odim, odim=A._idim, operator=isa(A,LinearMapAO)) # transpose Base.transpose(A::LinearMapAX) = LinearMapAA(transpose(A._lmap) ; prop=A._prop, idim=A._odim, odim=A._idim, operator=isa(A,LinearMapAO)) # eltype Base.eltype(A::LinearMapAX) = eltype(A._lmap) # LinearMap algebraic properties issymmetric(A::LinearMapAX) = issymmetric(A._lmap) #ishermitian(A::LinearMapAX{<:Real}) = issymmetric(A._lmap) ishermitian(A::LinearMapAX) = ishermitian(A._lmap) isposdef(A::LinearMapAX) = isposdef(A._lmap) # comparison of LinearMapAX objects, sufficient but not necessary Base.:(==)(A::LinearMapAX, B::LinearMapAX) = eltype(A) == eltype(B) && A._lmap == B._lmap && A._prop == B._prop && A._idim == B._idim && A._odim == B._odim # convert to sparse sparse(A::LinearMapAX) = sparse(A._lmap) # add or subtract objects (with compatible idim,odim) function Base.:(+)(A::LinearMapAX, B::LinearMapAX) (A._idim != B._idim) && throw("idim mismatch in +") (A._odim != B._odim) && throw("odim mismatch in +") LinearMapAA(A._lmap + B._lmap ; idim=A._idim, odim=A._odim, prop = (sum=nothing,props=(A._prop,B._prop)), operator = isa(A, LinearMapAO) & isa(B, LinearMapAO), ) end # Allow LMAA + AM only if Do=Di=1 function Base.:(+)(A::LinearMapAX, B::AbstractMatrix) (length(A._idim) != 1 || length(A._odim) != 1) && throw("use redim") LinearMapAA(A._lmap + LinearMap(B) ; prop=A._prop, operator = isa(A, LinearMapAO), ) end # But allow LMAA + I for any Do,Di Base.:(+)(A::LinearMapAX, B::UniformScaling) = # A + I -> A + I(N) LinearMapAA(A._lmap + B(size(A,2)) ; prop = (Aprop=A._prop, Iscale=B(size(A,2))[1]), idim = A._idim, odim = A._odim, operator = isa(A, LinearMapAO), ) Base.:(+)(A::AbstractMatrix, B::LinearMapAX) = B + A Base.:(-)(A::LinearMapAX, B::LinearMapAX) = A + (-1)*B Base.:(-)(A::LinearMapAX, B::AbstractMatrix) = A + (-1)*B Base.:(-)(A::AbstractMatrix, B::LinearMapAX) = A + (-1)*B # A.? Base.getproperty(A::LinearMapAX, s::Symbol) = (s in LMAAkeys) ? getfield(A, s) : # s == :m ? size(A._lmap, 1) : haskey(A._prop, s) ? getfield(A._prop, s) : throw("unknown key $s") Base.propertynames(A::LinearMapAX) = (propertynames(A._prop)..., LMAAkeys...)
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
7884
#= multiply.jl Multiplication of a LinearMapAX object with other things 2020-06-16 add 5-arg mul! 2020-06-27 Jeff Fessler =# export mul! using LinearMaps using LinearAlgebra: UniformScaling, I import LinearAlgebra: mul! #, lmul!, rmul! #import LinearAlgebra # AdjointAbsVec # multiply with I or s*I (identity or scaled identity) Base.:(*)(A::LinearMapAX, B::UniformScaling{Bool}) = B.Ξ» ? A : (A * B.Ξ») Base.:(*)(A::LinearMapAX, B::UniformScaling) = (B.Ξ» == 1) ? A : (A * B.Ξ») Base.:(*)(B::UniformScaling{Bool}, A::LinearMapAX) = B.Ξ» ? A : (B.Ξ» * A) Base.:(*)(B::UniformScaling, A::LinearMapAX) = (B.Ξ» == 1) ? A : (B.Ξ» * A) # multiply with scalars Base.:(*)(s::Number, A::LinearMapAX) = LinearMapAA((s*I) * A._lmap ; prop=A._prop, idim=A._idim, odim=A._odim, operator = isa(A, LinearMapAO)) Base.:(*)(A::LinearMapAX, s::Number) = LinearMapAA(A._lmap * (s*I) ; prop=A._prop, idim=A._idim, odim=A._odim, operator = isa(A, LinearMapAO)) # multiply LMAX objects, if compatible Base.:(*)(A::LinearMapAO{Ta,Do,D}, B::LinearMapAO{Tb,D,Di}) where {Ta,Tb,Do,D,Di} = lm_obj_mul(A, B) Base.:(*)(A::LinearMapAO{T,Do,1}, B::LinearMapAM) where {T,Do} = lm_obj_mul(A, B) Base.:(*)(A::LinearMapAM, B::LinearMapAO{T,1,Di}) where {T,Di} = lm_obj_mul(A, B) Base.:(*)(A::LinearMapAM, B::LinearMapAM) = lm_obj_mul(A, B) function lm_obj_mul(A::LinearMapAX, B::LinearMapAX) (A._idim != B._odim) && throw("dim mismatch") LinearMapAA(A._lmap * B._lmap ; prop = (prod=(A._prop,B._prop),), idim = B._idim, odim = A._odim, operator = isa(A, LinearMapAO) | isa(B, LinearMapAO), ) end # multiply with a matrix # subtle: AM * Matrix and Matrix * AM yield a new AM # whereas AO * M and M * AO yield a matrix of numbers! function AM_M(A::LinearMapAM, B::AbstractMatrix{<:Number}) (A._idim == (size(B,1),)) || throw("$(A._idim) * $(size(B,1)) mismatch") LinearMapAA(A._lmap * LinearMap(B) ; prop=A._prop, odim=A._odim) end function M_AM(A::AbstractMatrix{<:Number}, B::LinearMapAM) (B._odim == (size(A,2),)) || throw("$(B._odim) * $(size(A,1)) mismatch") LinearMapAA(LinearMap(A) * B._lmap ; prop=B._prop, idim=B._idim) end Base.:(*)(A::LinearMapAM, B::AbstractMatrix{<:Number}) = AM_M(A, B) Base.:(*)(A::AbstractMatrix{<:Number}, B::LinearMapAM) = M_AM(A, B) # LMAM case is easy! # multiply with vectors (in-place) # pass to lmam_mul! to handle composite maps (products) effectively # 5-arg mul! requires julia 1.3 or later # mul!(y, A, x, Ξ±, Ξ²) ≑ y .= A*(Ξ±*x) + Ξ²*y mul!(y::AbstractVector, A::LinearMapAM, x::AbstractVector) = lm_mul!(y, A._lmap, x, 1, 0) # mul!(y, A._lmap, x) mul!(y::AbstractVector, A::LinearMapAM, x::AbstractVector, Ξ±::Number, Ξ²::Number) = lm_mul!(y, A._lmap, x, Ξ±, Ξ²) # mul!(y, A._lmap, x, Ξ±, Ξ²) # treat LinearMaps.CompositeMap as special case for in-place operations function lm_mul!(y::AbstractVector{<:Number}, Lm::LinearMaps.CompositeMap, x::AbstractVector{<:Number}, Ξ±::Number, Ξ²::Number) LinearMaps.mul!(y, Lm, x, Ξ±, Ξ²) # todo: composite buffer end # 5-arg mul! for any other type lm_mul!(y::AbstractVector{<:Number}, Lm::LinearMap, x::AbstractVector{<:Number}, Ξ±::Number, Ξ²::Number) = LinearMaps.mul!(y, Lm, x, Ξ±, Ξ²) # with array #= these are unused because AM * array becomes a new AM mul!(Y::AbstractArray, A::LinearMapAM, X::AbstractArray, Ξ±::Number, Ξ²::Number) = lmao_mul!(Y, A._lmap, X, Ξ±, Ξ² ; idim=A._idim, odim=A._odim) mul!(Y::AbstractArray, A::LinearMapAM, X::AbstractArray) = LinearMapsAA.mul!(Y, A, X, 1, 0) =# # LMAO case # 3-arg O*X mul!(Y::AbstractArray, A::LinearMapAO, X::AbstractArray) = mul!(Y, A, X, 1, 0) # 3-arg X*O mul!(Y::AbstractArray, X::AbstractArray, A::LinearMapAO) = mul!(Y, X, A, 1, 0) # 5-arg O*X mul!(Y::AbstractArray, A::LinearMapAO, X::AbstractArray, Ξ±::Number, Ξ²::Number) = lmao_mul!(Y, A._lmap, X, Ξ±, Ξ² ; idim=A._idim, odim=A._odim) # 5-arg X*O (todo: test complex case) mul!(Y::AbstractArray, X::AbstractArray, A::LinearMapAO, Ξ±::Number, Ξ²::Number) = lmao_mul!(Y, A._lmap', X, Ξ±, Ξ² ; idim=A._odim, odim=A._idim) # note! """ lmao_mul!(Y, A, X, Ξ±, Ξ² ; idim, odim) Core routine for 5-arg multiply. If `A._idim = (2,3,4)` and `A._odim = (5,6)` and if input `X` has size `(2,3,4, 7,8)` then output `Y` will have size `(5,6, 7,8)` """ function lmao_mul!(Y::AbstractArray, Lm::LinearMap, X::AbstractArray, Ξ±::Number, Ξ²::Number ; idim = (size(Lm,2),), odim = (size(Lm,1),), ) Di = length(idim) Do = length(odim) (Di > ndims(X) || (idim != size(X)[1:Di])) && throw("idim=$(idim) vs size(RHS)=$(size(X))") (Do > ndims(Y) || (odim != size(Y)[1:Do])) && throw("odim=$(odim) vs size(LHS)=$(size(Y))") size(X)[(Di+1):end] == size(Y)[(Do+1):end] || throw("size(LHS)=$(size(Y)) vs size(RHS)=$(size(X))") x = reshape(X, prod(idim), :) y = reshape(Y, prod(odim), :) K = size(x,2) size(y,2) == K || throw("mismatch $(size(y,2)) K=$K") for k=1:K xk = selectdim(x,2,k) yk = selectdim(y,2,k) lm_mul!(yk, Lm, xk, Ξ±, Ξ²) end return Y end """ mul!(yv, AO::LinearMapAO, xv, Ξ±, Ξ²) Fancy 5-arg multiply when `yv` and `xv` are each a `Vector` of AbstractArrays. Basically does `mul!(yv[i], A, xv[i], Ξ±, Ξ²)` for `i in 1:length(xv)`. """ Base.@propagate_inbounds function mul!( yv::AbstractVector{<:AbstractArray}, A::LinearMapAO, xv::AbstractVector{<:AbstractArray}, Ξ±::Number, Ξ²::Number ) @boundscheck (length(xv) == length(yv) || throw("vector length mismatch $(length(xv)) $(length(yv))")) for i in 1:length(xv) @inbounds mul!(yv[i], A, xv[i], Ξ±, Ξ²) end return yv end """ *(A::LinearMapAO, xv::AbstractVector{<:AbstractArray}) = [A * x for x in xv] Fancy multiply when `xv` is a `Vector` of `AbstractArray`s of appropriate size. """ Base.:(*)(A::LinearMapAO, xv::AbstractVector{<:AbstractArray}) = [A * x for x in xv] # multiply by array, with allocation Base.:(*)(A::LinearMapAO, X::AbstractArray) = lmax_mul(A, X) Base.:(*)(X::AbstractArray, A::LinearMapAO) = lmax_mul(A', X) # note! #= # this next line caused ambiguous method errors: # Base.:(*)(A::LinearMapAM, X::AbstractArray) = lmax_mul(A, X) # so i resort to this awful kludge: Base.:(*)(A::LinearMapAM, X::AbstractArray{T,4}) where {T} = lmax_mul(A, X) nah, too difficult, so revert to the AM*M returning an object, per above =# function lmax_mul(A::LinearMapAX{T}, X::AbstractArray{<:Number}) where {T} Di = length(A._idim) Do = length(A._odim) (Di > ndims(X) || (A._idim != size(X)[1:Di])) && throw("idim=$(A._idim) vs size(RHS)=$(size(X))") extra = size(X)[(Di+1):end] Ty = promote_type(T, eltype(X)) Y = similar(X, Ty, A._odim..., extra...) # allocate lmao_mul!(Y, A._lmap, X, 1, 0; idim=A._idim, odim=A._odim) end # multiply with vector # O*v Base.:(*)(A::LinearMapAO{T,Do,1}, v::AbstractVector{<:Number}) where {T,Do} = reshape(A._lmap * v, A._odim) # u'*O (no, use general X*O above because unclear what this would mean) #Base.:(*)(u::LinearAlgebra.AdjointAbsVec, A::LinearMapAO) = # reshape(A._lmap' * u', A._idim) # A*v Base.:(*)(A::LinearMapAM, v::AbstractVector{<:Number}) = A._lmap * v # u'*A (nah, not worth it) #Base.:(*)(u::LinearAlgebra.AdjointAbsVec, A::LinearMapAM) = # (A._lmap' * u')' #= bad kludge LMAAmanyFromOne = Union{ LinearMapAA{T,2,1}, LinearMapAA{T,3,1}, LinearMapAA{T,4,1}, } where {T} Base.:(*)(A::LMAAmanyFromOne, v::AbstractVector{<:Number}) where {T} = reshape(A._lmap * v, A._odim) Base.:(*)(A::LinearMapAA, v::AbstractVector{<:Number}) where {T} = reshape(A._lmap * v, A._odim) =# #= these are pointless; see multiplication with scalars above lmul!(s::Number, A::LinearMapAA) = lmul!(s, A._lmap) rmul!(A::LinearMapAA, s::Number) = rmul!(A._lmap, s) =#
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
5035
#= types.jl Types and constructors for LinearMapAA objects. 2026-06-27 Jeff Fessler, University of Michigan =# using LinearMaps: LinearMap LMAAkeys = (:_lmap, :_prop, :_idim, :_odim) # reserved """ struct LinearMapAM{T,Do,Di,LM,P} <: AbstractMatrix{T} "matrix" version that is quite akin to a matrix in its behavior """ struct LinearMapAM{T,Do,Di,LM,P} <: AbstractMatrix{T} _lmap::LM # "L" _prop::P # user-defined "named properties" accessible via A.name _idim::Dims{Di} # "input" dimensions, always (size(L,2),) _odim::Dims{Do} # "output" dimensions, always (size(L,1),) end """ struct LinearMapAO{T,Do,Di,LM,P} "Tensor" version that can map from arrays to arrays. (It is not a subtype of `AbstractArray`.) """ struct LinearMapAO{T,Do,Di,LM,P} # LM <: LinearMap, P <: NamedTuple _lmap::LM # "L" _prop::P # user-defined "named properties" accessible via A.name _idim::Dims{Di} # "input" dimensions, often (size(L,2),) _odim::Dims{Do} # "output" dimensions, often (size(L,1),) end """ struct LinearMapAX{T,Do,Di,LM,P} Union of `LinearMapAM` and `LinearMapAO` because most operations apply to both AM and AO types. * `T` : `eltype` * `Do` : output dimensionality * `Di` : input dimensionality * `LM` : `LinearMap` type * `P` : `NamedTuple` type """ LinearMapAX{T,Do,Di,LM,P} = Union{ LinearMapAM{T,Do,Di,LM,P}, LinearMapAO{T,Do,Di,LM,P}, } where {T,Do,Di,LM,P} # constructors """ B = LinearMapAO(A::LinearMapAX) Make an AO from an AM, despite `idim` and `odim` being 1D, for expert users who want `B*X` to be an `Array`. Somewhat an opposite of `undim`. """ LinearMapAO(A::LinearMapAX{T,Do,Di,LM,P}) where {T,Do,Di,LM,P} = LinearMapAO{T,Do,Di,LM,P}(A._lmap, A._prop, A._idim, A._odim) """ A = LinearMapAA(L::LinearMap ; ...) Constructor for `LinearMapAM` or `LinearMapAO` given a `LinearMap`. # Options - `prop::NamedTuple = NamedTuple()`; cannot include the fields `_lmap`, `_prop`, `_idim`, `_odim` - `T::Type = eltype(L)` - `idim::Dims = (size(L,2),)` - `odim::Dims = (size(L,1),)` - `operator::Bool` by default: `false` if both `idim` & `odim` are 1D. Output `A` is `LinearMapAO` if `operator` is `true`, else `LinearMapAM`. """ function LinearMapAA( L::LM ; prop::P = NamedTuple(), T::Type{<:Number} = eltype(L), idim::Dims{Di} = (size(L,2),), odim::Dims{Do} = (size(L,1),), operator::Bool = length(idim) > 1 || length(odim) > 1, ) where {Di, Do, LM <: LinearMap, P <: NamedTuple} size(L,2) == prod(idim) || throw(DimensionMismatch("size2=$(size(L,2)) vs idim=$idim")) size(L,1) == prod(odim) || throw(DimensionMismatch("size1=$(size(L,1)) vs odim=$odim")) length(intersect(propertynames(prop), LMAAkeys)) > 0 && throw("invalid property field among $(propertynames(prop))") return operator ? LinearMapAO{T,Do,Di,LM,P}(L, prop, idim, odim) : LinearMapAM{T,Do,Di,LM,P}(L, prop, idim, odim) end # for backwards compatibility: LinearMapAA(L, prop::NamedTuple ; kwargs...) = LinearMapAA(L::LinearMap ; prop, kwargs...) """ A = LinearMapAA(L::AbstractMatrix ; ...) Constructor given an `AbstractMatrix`. """ LinearMapAA(L::AbstractMatrix ; kwargs...) = LinearMapAA(LinearMap(L) ; kwargs...) _ismutating(f) = first(methods(f)).nargs == 3 """ A = LinearMapAA(f::Function, fc::Function, D::Dims{2} [, prop::NamedTuple)] ; T::Type = Float32, idim::Dims, odim::Dims) Constructor given forward `f` and adjoint function `fc`. """ function LinearMapAA( f::Function, fc::Function, D::Dims{2} ; T::Type{<:Number} = Float32, idim::Dims = (D[2],), odim::Dims = (D[1],), kwargs..., ) if idim == (D[2],) && odim == (D[1],) fnew = f fcnew = fc else fnew = _ismutating(f) ? (y,x) -> f(reshape(y,odim), reshape(x,idim)) : x -> reshape(f(reshape(x,idim)), odim) fcnew = _ismutating(fc) ? (x,y) -> fc(reshape(x,idim), reshape(y,odim)) : y -> reshape(fc(reshape(y,odim)), idim) end LinearMapAA(LinearMap{T}(fnew, fcnew, D[1], D[2]) ; idim=idim, odim=odim, kwargs...) end LinearMapAA(f::Function, fc::Function, D::Dims{2}, prop::NamedTuple ; kwargs...) = LinearMapAA(f, fc, D ; prop=prop, kwargs...) """ A = LinearMapAA(f::Function, D::Dims{2} [, prop::NamedTuple]; kwargs...) Constructor given just forward function `f`. """ function LinearMapAA(f::Function, D::Dims{2} ; T::Type{<:Number} = Float32, idim::Dims = (D[2],), odim::Dims = (D[1],), kwargs..., ) if idim == (D[2],) && odim == (D[1],) fnew = f else fnew = _ismutating(f) ? (y,x) -> f(reshape(y,odim), reshape(x,idim)) : x -> reshape(f(reshape(x,idim)), odim) end LinearMapAA(LinearMap{T}(fnew, D[1], D[2]) ; idim=idim, odim=odim, kwargs...) end LinearMapAA(f::Function, D::Dims{2}, prop::NamedTuple ; kwargs...) = LinearMapAA(f, D ; prop=prop, kwargs...)
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
1841
# ambiguity.jl # tests needed only because of code added to resolve method ambiguities using LinearAlgebra: Diagonal, UpperTriangular using LinearAlgebra: Adjoint, Transpose, Symmetric using LinearAlgebra: TransposeAbsVec, AdjointAbsVec using LinearAlgebra: givens import LinearAlgebra using LinearMapsAA: LinearMapAA using Test: @test, @testset, @test_throws M = rand(2,2) A = LinearMapAA(M) @testset "Diagonal" begin D = Diagonal(1:2) @test Matrix(A * D) == M * D @test Matrix(D * A) == D * M end @testset "UpperTri" begin U = UpperTriangular(M) @test Matrix(A * U) β‰ˆ M * U @test Matrix(U * A) β‰ˆ U * M end @testset "TransposeVec" begin xt = Transpose(1:2) @test xt isa TransposeAbsVec @test xt * M β‰ˆ xt * A end @testset "AdjointVec" begin r = Adjoint(1:2) @test r isa AdjointAbsVec @test r * M β‰ˆ r * A end @testset "Transpose" begin # work-around per # https://github.com/Jutho/LinearMaps.jl/issues/147 LinearAlgebra.isposdef(A::Transpose) = LinearAlgebra.isposdef(parent(A)) S = LinearAlgebra.Symmetric(M) T = LinearAlgebra.Transpose(S) @test Matrix(A * T) β‰ˆ M * T # failed prior to isposdef overload @test Matrix(T * A) β‰ˆ T * M end @testset "Adjoint" begin C = rand(ComplexF32, 2, 2) H = LinearAlgebra.Hermitian(C) J = Adjoint(H) LinearAlgebra.isposdef(A::Adjoint) = LinearAlgebra.isposdef(parent(A)) @test Matrix(A * J) β‰ˆ M * J @test Matrix(J * A) β‰ˆ J * M end @testset "AbsRot" begin G, _ = givens(1., 2., 3, 4) R = LinearAlgebra.Rotation([G, G]) AR = adjoint(R); # semicolon needed, otherwise "show" error! # size(AR) # fails because AR is size-less and not an AbstractMatrix AR isa Adjoint{<:Any,<:LinearAlgebra.AbstractRotation} # true # ones(4,4) * AR # works @test_throws DimensionMismatch A * AR end
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
957
# block_diag.jl # test using LinearMapsAA: LinearMapAA, LinearMapAM, LinearMapAO, block_diag using SparseArrays: blockdiag, sparse using Test: @test, @testset M1 = rand(3,2) M2 = rand(5,4) M = [M1 zeros(size(M1,1),size(M2,2)); zeros(size(M2,1),size(M1,2)) M2] A1 = LinearMapAA(M1) # WrappedMap A2 = LinearMapAA(x -> M2*x, y -> M2'y, size(M2), T=eltype(M2)) # FunctionMap B = block_diag(A1, A2) @testset "block_diag for AM" begin @test Matrix(B) == M @test Matrix(B)' == Matrix(B') end # test LMAO @testset "block_diag for AO" begin Ao = LinearMapAA(M2 ; odim=(1,5)) @test block_diag(A1, A1) isa LinearMapAM @test block_diag(A1, A1 ; tryop=true) isa LinearMapAO @test block_diag(A1, Ao) isa LinearMapAM Bo = block_diag(Ao, Ao) @test Bo isa LinearMapAO Md = blockdiag(sparse(M2), sparse(M2)) X = rand(4,2) Yo = Bo * X Yd = Md * vec(X) @test vec(Yo) β‰ˆ Yd @test Matrix(Bo)' == Matrix(Bo') end
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
5189
# cat.jl # test using LinearMaps: LinearMap using LinearMapsAA: LinearMapAA, LinearMapAM, LinearMapAO, LinearMapAX using LinearMapsAA: redim, undim using LinearAlgebra: I using Test: @test, @testset # test #= this approach using eval() works only in the global scope! N = 6 forw = x -> [cumsum(x); 0] # non-square to stress test back = y -> reverse(cumsum(reverse(y[1:N]))) prop = (name="cumsum", extra=1) A = LinearMapAA(forw, back, (N+1, N), prop) list1 = [ :([A I]), :([I A]), :([2*A 3*A]), :([A; I]), :([I; A]), :([2*A; 3*A]), :([A A I]), :([A I A]), :([2*A 3*A 4*A]), :([A; A; I]), :([A; I; A]), :([2*A; 3*A; 4*A]), :([I A I]), :([I A A]), :([I; A; I]), :([I; A; A]), # :([I I A]), :([I; I; A]), # unsupported :([A A; A A]), :([A I; 2A 3I]), :([I A; 2I 3A]), # :([I A; A I]), :([A I; I A]), # weird sizes :([A I A; 2A 3I 4A]), :([I A I; 2I 3A 4I]), # :([A I A; I A A]), :([I A 2A; 3A 4I 5A]), # weird # :([I I A; I A I]), # unsupported :([A A I; 2A 3A 4I]), :([A I I; 2A 3I 4I]), ] M = Matrix(A) list2 = [ :([M I]), :([I M]), :([2*M 3*M]), :([M; I]), :([I; M]), :([2*M; 3*M]), :([M M I]), :([M I M]), :([2*M 3*M 4*M]), :([M; M; I]), :([M; I; M]), :([2*M; 3*M; 4*M]), :([I M I]), :([I M M]), :([I; M; I]), :([I; M; M]), # :([I I M]), :([I; I; M]), # unsupported :([M M; M M]), :([M I; 2M 3I]), :([I M; 2I 3M]), # :([I M; M I]), :([M I; I M]), # weird sizes :([M I M; 2M 3I 4M]), :([I M I; 2I 3M 4I]), # :([M I M; I M M]), :([I M 2M; 3M 4I 5M]), # weird # :([I I M; I M I]), # unsupported :([M M I; 2M 3M 4I]), :([M I I; 2M 3I 4I]), ] length(list1) != length(list2) && throw("bug") for ii in 1:length(list1) e1 = list1[ii] b1 = eval(e1) e2 = list2[ii] b2 = eval(e2) @test b1 isa LinearMapAX end =# """ LinearMapAA_test_cat(A::LinearMapAM) test hcat vcat hvcat """ function LinearMapAA_test_cat(A::LinearMapAM) Lm = LinearMap{eltype(A)}(x -> A*x, y -> A'*y, size(A,1), size(A,2)) M = Matrix(A) # LinearMaps supports *cat of LM and UniformScaling only in v2.6.1 # but see: https://github.com/Jutho/LinearMaps.jl/pull/71 # B0 = [M Lm] # fails! #= # cannot get cat with AbstractMatrix to work M1 = reshape(1:35, N+1, N-1) H2 = [A M1] @test H2 isa LinearMapAX @test Matrix(H2) == [Matrix(A) H2] H1 = [M1 A] @test H1 isa LinearMapAX @test Matrix(H1) == [M1 Matrix(A)] M2 = reshape(1:(3*N), 3, N) V1 = [M2; A] @test V1 isa LinearMapAX @test Matrix(V1) == [M2; Matrix(A)] V2 = [A; M2] @test V2 isa LinearMapAX @test Matrix(V2) == [Matrix(A); M2] =# fun0 = A -> [ [A I], [I A], [2A 3A], [A; I], [I; A], [2A; 3A], [A A I], [A I A], [2A 3A 4A], [A; A; I], [A; I; A], [2A; 3A; 4A], [I A I], [I A A], [I; A; I], [I; A; A], # [I I A], [I; I; A], # unsupported [A A; A A], [A I; 2A 3I], [I A; 2I 3A], # [I A; A I], [A I; I A], # weird sizes [A I A; 2A 3I 4A], [I A I; 2I 3A 4I], # [A I A; I A A], [I A 2A; 3A 4I 5A], # weird # [I I A; I A I], # unsupported [A A I; 2A 3A 4I], [A I I; 2A 3I 4I], # [A Lm], # need one LinearMap test for codecov (see below) ] list1 = fun0(A) list2 = fun0(M) if true # need one LinearMap test for codecov push!(list1, [A Lm]) push!(list2, [M M]) # trick because [M Lm] fails end for ii in 1:length(list1) b1 = list1[ii] b2 = list2[ii] @test b1 isa LinearMapAX @test b2 isa AbstractMatrix @test Matrix(b1) == b2 @test Matrix(b1') == Matrix(b1)' end true end """ LinearMapAA_test_cat(A::LinearMapAO) test hcat vcat hvcat for AO """ function LinearMapAA_test_cat(A::LinearMapAO) M = Matrix(A) @testset "cat AO" begin H = [A A] V = [A; A] B = [A 2A; 3A 4A] @test H isa LinearMapAO @test V isa LinearMapAO @test B isa LinearMapAM # !! @test Matrix(H) == [M M] @test Matrix(V) == [M; M] @test Matrix(B) == [M 2M; 3M 4M] end @testset "cat OI" begin @test [A I] isa LinearMapAM @test [A; I] isa LinearMapAM @test [A A; I I] isa LinearMapAM end @testset "cat AO mixed" begin B = redim(A, idim=(1,A._idim...)) # force incompatible dim @test [A B] isa LinearMapAM @test [A; B] isa LinearMapAM Z = [A undim(A) I A._lmap] # Matrix(B)] @test Z isa LinearMapAM @test Z.hcat == "OAIL" end true end N = 6; M = 8 # non-square to stress test forw = x -> [cumsum(x); 0; 0] back = y -> reverse(cumsum(reverse(y[1:N]))) A = LinearMapAA(forw, back, (M, N)) @test LinearMapAA_test_cat(A) forw = x -> [cumsum(x ; dims=2) [0] [0]] back = y -> reverse(cumsum(reverse(y[[1],1:N] ; dims=2) ; dims=2) ; dims=2) O = LinearMapAA(forw, back, (M, N) ; idim=(1,N), odim=(1,M)) @test LinearMapAA_test_cat(O)
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
1362
# cuda.jl # Test that CUDA arrays work properly. using LinearMaps: LinearMap using LinearMapsAA: LinearMapAA using CUDA: CuArray import CUDA using Test: @test if CUDA.functional() @info "testing CUDA" CUDA.allowscalar(false) nx, ny, nz = 5, 7, 6 idim = (nx, ny, nz) odim = (nx, ny, nz, 2) x = rand(Float32, idim) forw1 = x -> cat(x, x, dims=4) back1 = y -> y[:,:,:,1] + y[:,:,:,2] forwv = x -> vec(forw1(reshape(x,idim))) backv = y -> vec(back1(reshape(y,odim))) O = LinearMapAA(forw1, back1, (prod(odim), prod(idim)); odim, idim) L = LinearMap(forwv, backv, prod(odim), prod(idim)) A = LinearMapAA(forwv, backv, (prod(odim), prod(idim))) # check adjoint @test Matrix(O') == Matrix(O)' @test Matrix(A') == Matrix(A)' @test Matrix(L') == Matrix(L)' # check forward @test L * vec(x) == vec(O * x) @test A * vec(x) == vec(O * x) # check back y = O * x @test L' * vec(y) β‰ˆ vec(O' * y) @test A' * vec(y) β‰ˆ vec(O' * y) # finally with CUDA arrays xg = CuArray(x) yo = O * xg yl = L * vec(xg) ya = A * vec(xg) @test yl == vec(yo) @test ya == vec(yo) xo = O' * yo xl = L' * vec(yo) xa = A' * vec(yo) @test xl == vec(xo) @test xa == vec(xo) else @warn "no CUDA test" @info "One must test CUDA separately" end
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
1965
# getindex.jl # test using LinearMapsAA: LinearMapAA, LinearMapAX using Test: @test, @test_throws, @testset _slice(a, b) = (a == :) || (b == :) # only slicing supported as of LM 3.7 ! """ LinearMapAA_test_getindex(A::LinearMapAX) tests for `getindex` """ function LinearMapAA_test_getindex(A::LinearMapAX) B = Matrix(A) @test all(size(A) .>= (4,4)) # required by tests tf1 = [false; trues(size(A,1)-1)] tf2 = [false; trues(size(A,2)-2); false] ii1 = (3, 2:4, [2,4], :, tf1) ii2 = (2, 3:4, [1,4], :, tf2) for i2 in ii2, i1 in ii1 if _slice(i1, i2) @test B[i1,i2] == A[i1,i2] else @test_throws ErrorException B[i1,i2] == A[i1,i2] end end L = A._lmap test_adj = !((:fc in propertynames(L)) && isnothing(L.fc)) if test_adj for i1 in ii2, i2 in ii1 if _slice(i1, i2) @test B'[i1,i2] == A'[i1,i2] else @test_throws ErrorException B'[i1,i2] == A'[i1,i2] end end end true end function LinearMapAA_test_getindex_scalar(A::LinearMapAX) # "end" @test B[3,end-1] == A[3,end-1] @test B[end-2,3] == A[end-2,3] if test_adj @test B'[3,end-1] == A'[3,end-1] end # [?] @test B[1] == A[1] @test B[7] == A[7] if test_adj @test B'[3] == A'[3] end @test B[end] == A[end] # lastindex kk = [k in [3,5] for k = 1:length(A)] # Bool @test B[kk] == A[kk] # Some tests could rely on the fact that LinearMapAM <: AbstractMatrix, # by inheriting from general Base.getindex, but all are provided here. @test B[[1, 3, 4]] == A[[1, 3, 4]] @test B[4:7] == A[4:7] true end N = 6; M = 8 # non-square to stress test forw = x -> [cumsum(x); 0; 0] back = y -> reverse(cumsum(reverse(y[1:N]))) A = LinearMapAA(forw, back, (M, N)) @test LinearMapAA_test_getindex(A) # @test LinearMapAA_test_getindex_scalar(A) # no!
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
188
# identity.jl # test using Test: @test, @testset using LinearAlgebra: I @testset "identity" begin X = rand(2,3,4) # AbstractArray @test I * X === X @test (5I) * X == 5*X end
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
1422
# kron.jl # test using LinearMapsAA: LinearMapAA, LinearMapAM, LinearMapAO using LinearAlgebra: I, Diagonal using Test: @test, @testset M1 = rand(ComplexF64, 3, 3) M2 = rand(ComplexF64, 2, 2) M12 = kron(M1, M2) A1 = LinearMapAA(M1) A2 = LinearMapAA(M2) @testset "kron basics" begin @test kron(A1, A1) isa LinearMapAM for pair in ((A1,A2), (A1,M2), (M1,A2)) # all combinations AAk = kron(pair[1], pair[2]) @test AAk isa LinearMapAM @test Matrix(AAk) == M12 @test Matrix(AAk)' == Matrix(AAk') end end A3 = LinearMapAA(M1 ; odim=(1,size(M1,1))) A4 = LinearMapAA(M2 ; idim=(size(M2,2),1)) @testset "kron(I,A)" begin K = kron(I(2), A4) M = kron(I(2), M2) @test K isa LinearMapAO @test Matrix(K) == M @test Matrix(K') == Matrix(K)' end @testset "kron(A,I)" begin K = kron(A4, I(2)) M = kron(M2, I(2)) @test K isa LinearMapAO @test Matrix(K) == M @test Matrix(K') == Matrix(K)' end @testset "kron(Ao,M)" begin @test kron(A3, M2) isa LinearMapAO @test kron(M1, A4) isa LinearMapAO end @testset "kron(Ao,Bo)" begin K = kron(A3, A4) M = kron(M1, M2) @test K isa LinearMapAO @test Matrix(K) == M @test Matrix(K') == Matrix(K)' end @testset "kron(A,D)" begin D = Diagonal(1:3) K = kron(A1, D) @test Matrix(K) == kron(M1, D) K = kron(D, A1) @test Matrix(K) == kron(D, M1) end
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
5147
# multiply.jl #export LinearMapAA_test_vmul # testing #export LinearMapAA_test_mul # testing using LinearMapsAA: LinearMapAA, LinearMapAM, LinearMapAO, mul! using Test: @test, @testset """ LinearMapAA_test_vmul(A::LinearMapAX) Tests for multiply by vector, scalar, and Matrix """ LinearMapAA_test_vmul function LinearMapAA_test_vmul(A::LinearMapAM) B = Matrix(A) (M,N) = size(A) u = rand(M) v = rand(N) @testset "A*v" begin Bv = B * v Bpu = B' * u y = A * v x = A' * u @test isapprox(Bv, y) @test isapprox(Bpu, x) mul!(y, A, v) mul!(x, A', u) @test isapprox(Bv, y) @test isapprox(Bpu, x) end #= nah @testset "u'*A" begin uB = u' * B x = u' * A @test isapprox(uB, x) mul!(x, u', A) @test isapprox(uB, x) end =# @testset "A*X" begin X = rand(N,2) BX = B * X Y = A * X @test Y isa LinearMapAM Y = Matrix(Y) @test isapprox(BX, Y) Y .= 0 # mul!(Y, A, X) # doesn't work because A*X is AM # @test isapprox(BX, Y) end @testset "X*A" begin X = rand(2,M) XB = X * B Y = X * A @test Y isa LinearMapAM Y = Matrix(Y) @test isapprox(XB, Y) Y .= 0 # mul!(Y, X, A) # doesn't work because X*A is AM # @test isapprox(XB, Y) end @testset "5-arg" begin y1 = randn(M) y2 = copy(y1) mul!(y1, A, v, 2, 3) mul!(y2, B, v, 2, 3) @test isapprox(y1, y2) x1 = randn(N) x2 = copy(x1) mul!(x1, A', u, 4, 3) mul!(x2, B', u, 4, 3) @test isapprox(x1, x2) end @testset "*s" begin s = 4.2 C = s * A @test isapprox(Matrix(C), s * B) C = A * s @test isapprox(Matrix(C), B * s) end #= s = 4.2 C = deepcopy(A) lmul!(s, C) @test isapprox(s * B * v, C * v) C = deepcopy(A) rmul!(C, s) @test isapprox(s * B * v, C * v) =# true end function LinearMapAA_test_vmul(A::LinearMapAO) B = Matrix(A) (M,N) = size(A) u = rand(M) v = rand(N) u = reshape(u, A._odim) v = reshape(v, A._idim) @testset "A*v" begin Bv = reshape(B * v[:], A._odim) Bpu = reshape(B' * u[:], A._idim) y = A * v x = A' * u @test isapprox(Bv, y) @test isapprox(Bpu, x) mul!(y, A, v) mul!(x, A', u) @test isapprox(Bv, y) @test isapprox(Bpu, x) A1 = redim(A ; idim = (N,)) y1 = A1 * vec(v) @test y1 β‰ˆ y end #= nah @testset "u'*A" begin uB = reshape(u[:]' * B, A._idim) x = u' * A @test isapprox(uB, x) mul!(x, u', A) @test isapprox(uB, x) end =# @testset "A*X" begin K = 2 X = rand(A._idim..., K) BX = reshape(B * reshape(X, :, K), A._odim..., K) Y = A * X @test Y isa AbstractArray @test isapprox(BX, Y) Y .= 0 mul!(Y, A, X) @test isapprox(BX, Y) # 5-arg Y1 = copy(Y) Y2 = copy(Y) mul!(Y1, A, X, 2, 3) mul!(reshape(Y2,:,K), B, reshape(X,:,K), 2, 3) Y2 = reshape(Y2, A._odim..., K) @test isapprox(Y1, Y2) end # todo: should eventually test complex X*A as well @testset "X*A" begin K = 2 X = rand(A._odim..., K) XB = reshape(X, :, K)' * B XB = reshape(XB', A._idim..., K) Y = X * A @test Y isa AbstractArray @test isapprox(XB, Y) Y .= 0 mul!(Y, X, A) @test isapprox(XB, Y) # 5-arg Y1 = copy(Y) Y2 = copy(Y) mul!(Y1, X, A, 2, 3) mul!(reshape(Y2,:,K), B', reshape(X,:,K), 2, 3) Y2 = reshape(Y2, A._idim..., K) @test isapprox(Y1, Y2) end @testset "*s" begin s = 4.2 C = s * A @test isapprox(Matrix(C), s * B) C = A * s @test isapprox(Matrix(C), B * s) end true end # object multiplication function LinearMapAA_test_mul( ; A::LinearMapAO = LinearMapAA(rand(6,4) ; odim=(2,3), idim=(1,4)), ) (M,N) = size(A) @testset "O*O" begin @test A'*A isa LinearMapAO end @testset "O*M" begin B = LinearMapAA(rand(N,3)) # AM O = redim(A ; idim=(N,)) @test O*B isa LinearMapAO end @testset "M*O" begin B = LinearMapAA(rand(3,M)) # AM O = redim(A ; odim=(M,)) @test B*O isa LinearMapAO end true end # Test multiplication of an AO by a Vector of Arrays (v0.9.0) @testset "mul! Vector{Array}" begin M = randn(6,4) O = LinearMapAA(M ; odim=(2,3), idim=(1,4)) x1 = randn(O._idim) x2 = randn(O._idim) x3 = cat(dims=3, x1, x2) xv = [x1, x3] yv1 = map(x -> O * x, xv) yv2 = [O * x1, cat(dims=3, O*x1, O*x2)] @test yv1 == yv2 mul!(yv2, O, xv, 1, 0) @test yv1 == yv2 mul!(yv2, O, xv) @test yv1 == yv2 yv2 = O * xv @test yv1 == yv2 end
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
801
# test/runtests.jl using LinearMapsAA: LinearMapsAA using Test: @test, @testset, @test_broken, detect_ambiguities function test_ambig(str::String) @testset "ambiguities-$str" begin tmp = detect_ambiguities(LinearMapsAA) # @show tmp @test length(tmp) == 0 end end include("multiply.jl") list = [ "ambiguity" "identity" "kron" "cat" "getindex" #"setindex" "block_diag" "tests" "wrap-linop" ] for file in list @testset "$file" begin include("$file.jl") end end test_ambig("before cuda") #= using CUDA causes an import of StaticArrays that leads to a method ambiguity =# @testset "cuda" begin include("cuda.jl") end @testset "ambiguities" begin tmp = detect_ambiguities(LinearMapsAA) @show tmp # todo @test_broken length(tmp) == 0 end
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
2174
# setindex.jl # test setindex! (deprecated) using LinearMapsAA: LinearMapAA, LinearMapAM using Test: @test """ `LinearMapAA_test_setindex(A::LinearMapAM)` """ function LinearMapAA_test_setindex(A::LinearMapAM) @test all(size(A) .>= (4,4)) # required by tests tf1 = [false; trues(size(A,1)-1)] tf2 = [false; trues(size(A,2)-2); false] ii1 = (3, 2:4, [2,4], :, tf1) ii2 = (2, 3:4, [1,4], :, tf2) # test all [?,?] combinations with array "X" for i2 in ii2 for i1 in ii1 B = deepcopy(A) X = 2 .+ A[i1,i2].^2 # values must differ from A[ii,jj] B[i1,i2] = X Am = Matrix(A) Bm = Matrix(B) Am[i1,i2] = X @test isapprox(Am, Bm) end end # test all [?,?] combinations with scalar "s" for i2 in ii2 for i1 in ii1 B = deepcopy(A) s = maximum(abs.(A[:])) + 2 B[i1,i2] = s Am = Matrix(A) Bm = Matrix(B) if (i1 == Colon() || ndims(i1) > 0) || (i2 == Colon() || ndims(i2) > 0) Am[i1,i2] .= s else Am[i1,i2] = s end @test isapprox(Am, Bm) end end # others not supported for now set1 = (3, ) # [3], [2,4], 2:4, (1:length(A)) .== 2), end for s1 in set1 B = deepcopy(A) X = 2 .+ A[s1].^2 # values must differ from A[ii,jj] B[s1] = X Am = Matrix(A) Bm = Matrix(B) Am[s1] = X @test isapprox(Am, Bm) end # insanity below here # A[:] = s B = deepcopy(A) B[:] = 5 Am = Matrix(A) Am[:] .= 5 Bm = Matrix(B) @test Bm == Am # A[:] = v B = deepcopy(A) v = 1:length(A) B[:] = v Am = Matrix(A) Am[:] .= v Bm = Matrix(B) @test Bm == Am # A[:,:] B = deepcopy(A) B[:,:] = 6 Am = Matrix(A) Am[:,:] .= 6 Bm = Matrix(B) @test Bm == Am true end N = 6; M = 8 # non-square to stress test forw = x -> [cumsum(x); 0; 0] back = y -> reverse(cumsum(reverse(y[1:N]))) A = LinearMapAA(forw, back, (M, N)) @test LinearMapAA_test_setindex(A)
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
5480
# tests using LinearMaps: LinearMap using LinearMapsAA: LinearMapAA, LinearMapAM, LinearMapAO, LinearMapAX using LinearAlgebra: issymmetric, ishermitian, isposdef, I using SparseArrays: sparse using Test: @test, @testset, @test_throws #B = 1:6 #L = LinearMap(x -> B*x, y -> B'*y, 6, 1) B = reshape(1:6, 6, 1) @test Matrix(LinearMapAA(B)) == B # ensure that "show" is concise even for big `prop` L = LinearMapAA(LinearMap(ones(3,4)), (a=1:3, b=ones(99,99))) show(isinteractive() ? stdout : devnull, L) N = 6; M = N+1 # non-square to stress test forw = x -> [cumsum(x); 0] back = y -> reverse(cumsum(reverse(y[1:N]))) prop = (name="cumsum", extra=1) @test LinearMapAA(forw, (M, N)) isa LinearMapAX @test LinearMapAA(forw, (M, N), prop ; T=Float64) isa LinearMapAX L = LinearMap{Float32}(forw, back, M, N) A = LinearMapAA(L, prop) Lm = Matrix(L) show(isinteractive() ? stdout : devnull, "text/plain", A) @testset "basics" begin @test A._lmap == LinearMapAA(L)._lmap # @test A == LinearMapAA(forw, back, M, N, prop) @test A._prop == LinearMapAA(forw, back, (M, N), prop)._prop @test A._lmap == LinearMapAA(forw, back, (M, N), prop)._lmap @test A == LinearMapAA(forw, back, (M, N), prop) @test A._lmap == LinearMapAA(forw, back, (M, N))._lmap @test LinearMapAA(forw, back, (M, N)) isa LinearMapAX end @testset "symmetry" begin @test issymmetric(A) == false @test ishermitian(A) == false @test ishermitian(im * A) == false @test isposdef(A) == false @test issymmetric(A' * A) == true end @testset "convert" begin @test Matrix(LinearMapAA(L, prop)) == Lm @test Matrix(LinearMapAA(L)) == Lm @test Matrix(sparse(A)) == Lm end @testset "getproperty" begin @test :name ∈ propertynames(A) @test A._prop == prop @test A.name == prop.name @test eltype(A) == eltype(L) @test Base.eltype(A) == eltype(L) # codecov @test ndims(A) == 2 @test size(A) == size(L) @test redim(A) isa LinearMapAX end @testset "deepcopy" begin B = deepcopy(A) @test B == A # @test !(B === A) # irrelevant now that struct is immutable end @testset "throw" begin @test_throws String A.bug @test_throws DimensionMismatch LinearMapAA(L ; idim=(0,0)) @test_throws String LinearMapAA(L, (_prop=0,)) end @testset "transpose" begin @test Matrix(A)' == Matrix(A') @test Matrix(A)' == Matrix(transpose(A)) end @testset "wrap" begin # WrappedMap vs FunctionMap M1 = rand(3,2) A1w = LinearMapAA(M1) A1f = LinearMapAA(x -> M1*x, y -> M1'y, size(M1), T=eltype(M1)) @test Matrix(A1w) == M1 @test Matrix(A1f) == M1 end Ao = LinearMapAA(A._lmap ; odim=(1,size(A,1)), idim=(size(A,2),1)) @testset "vmul" begin @test LinearMapAA_test_vmul(A) @test LinearMapAA_test_vmul(A*A'*A) # CompositeMap @test LinearMapAA_test_vmul(Ao) # AO type @test ndims(Ao) == 2 end # add / subtract @testset "add" begin @test 2A + 6A isa LinearMapAX @test 7A - 2A isa LinearMapAX @test Matrix(2A + 6A) == 8 * Matrix(A) @test Matrix(7A - 2A) == 5 * Matrix(A) @test Matrix(7A - 2*ones(size(A))) == 7 * Matrix(A) - 2*ones(size(A)) @test Matrix(3*ones(size(A)) - 5A) == 3*ones(size(A)) - 5 * Matrix(A) @test_throws String @show A + redim(A ; idim=(3,2)) # mismatch dim end # add identity @testset "+I" begin @test Matrix(A'A - 7I) == Matrix(A'A) - 7I end # multiply with identity @testset "*I" begin @test Matrix(A * 6I) == 6 * Matrix(A) @test Matrix(7I * A) == 7 * Matrix(A) @test Matrix((false*I) * A) == zeros(size(A)) @test Matrix(A * (false*I)) == zeros(size(A)) @test 1.0I * A === A @test A * 1.0I === A @test I * A === A @test A * I === A end # multiply @testset "*" begin D = A * A' @test D isa LinearMapAX @test Matrix(D) == Lm * Lm' @test issymmetric(D) == true E = A * Lm' @test E isa LinearMapAX @test Matrix(E) == Lm * Lm' F = Lm' * A @test F isa LinearMapAX @test Matrix(F) == Lm' * Lm @test LinearMapAA_test_getindex(F) @test LinearMapAA_test_mul() end # AO FunctionMap complex @testset "AO FM C" begin T = ComplexF16 c = T(2im) forw! = (y,x) -> copyto!(y,x) .*= c back! = (x,y) -> copyto!(x,y) .*= conj(c) dims = (2,3) O = LinearMapAA(forw!, back!, (1,1).*prod(dims) ; T=T, idim=dims, odim=dims) x = rand(T, dims) @test O*x == c*x @test O'*x == conj(c)*x @test Matrix(O') == Matrix(O)' end # non-adjoint version #= no longer supported, for consistency with LM @testset "non-adjoint" begin Af = LinearMapAA(forw, (M, N)) @test Matrix(Af) == Lm @test LinearMapAA_test_getindex(Af) # @test LinearMapAA_test_setindex(Af) end =# @testset "AO for 1D" begin B = LinearMapAO(A) @test B isa LinearMapAO X = rand(N,2) Y = B * X @test Y isa AbstractArray @test Y β‰ˆ Lm * X Z = B' * Y @test Z isa AbstractArray @test Z β‰ˆ Lm' * Y end # FunctionMap for multi-dimensional AO @testset "AO FM 2D" begin forw = x -> [cumsum(x; dims=2); zeros(2,size(x,2))] back = y -> reverse(cumsum(reverse(y[1:(end-2),:]; dims=2); dims=2); dims=2) A = LinearMapAA(forw, (4*3, 2*3) ; idim=(2,3), odim=(4,3)) @test A isa LinearMapAO A = LinearMapAA(forw, back, (4*3, 2*3) ; idim=(2,3), odim=(4,3)) @test A isa LinearMapAO @test Matrix(A') == Matrix(A)' A = undim(A) # ensure that undim works @test A isa LinearMapAM @test Matrix(A') == Matrix(A)' end
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
code
788
# wrap-linop.jl # test wrapping of a LinearMapAX in a LinearOperator and vice-versa using LinearMapsAA: LinearMapAA, LinearMapAM, LinearOperator_from_AA using LinearOperators: LinearOperator using Test: @test, @testset forw! = cumsum! back! = (x, y) -> reverse!(cumsum!(x, reverse!(copyto!(x, y)))) N = 9 T = Float32 L = LinearOperator( T, N, N, false, false, forw!, nothing, # transpose mul! back!, ) x = rand(N) y = L * x @test y == cumsum(x) @test Matrix(L)' == Matrix(L') A = LinearMapAA(L) # wrap LinearOperator @test A isa LinearMapAM @test Matrix(A)' == Matrix(A') @test A * x == cumsum(x) B = LinearMapAA(forw!, back!, (N, N); T) L = LinearOperator_from_AA(B) # wrap LinearMapAM @test L isa LinearOperator @test Matrix(L)' == Matrix(L') @test L * x == cumsum(x)
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
docs
14906
# LinearMapsAA.jl https://github.com/JeffFessler/LinearMapsAA.jl [![action status][action-img]][action-url] [![build status][build-img]][build-url] [![pkgeval status][pkgeval-img]][pkgeval-url] [![codecov.io][codecov-img]][codecov-url] [![license][license-img]][license-url] [![docs stable][docs-stable-img]][docs-stable-url] [![docs dev][docs-dev-img]][docs-dev-url] This package is an overlay for the package [`LinearMaps.jl`](https://github.com/Jutho/LinearMaps.jl) that allows one to represent linear operations (like the FFT) as a object that appears to the user like a matrix but internally uses user-defined fast computations for operations, especially multiplication. With this package, you can write and debug code (especially for iterative algorithms) using a small matrix `A`, and then later replace it with a `LinearMapAX` object. The extra `AA` in the package name here has two meanings. - `LinearMapAM` is a subtype of `AbstractArray{T,2}`, i.e., [conforms to (some of) the requirements of an `AbstractMatrix`](https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-array) type. - The package was developed in Ann Arbor, Michigan :) As of `v0.6`, the package produces objects of two types: * `LinearMapAM` (think "Matrix") that is a subtype of `AbstractMatrix`. * `LinearMapAO` (think "Operator") that is not a subtype of `AbstractMatrix`. * The general type `LinearMapAX` is a `Union` of both. * To convert a `LinearMapAM` to a `LinearMapAO`, use `redim` or `LinearMapAO(A)` * To convert a `LinearMapAO` to a `LinearMapAM`, use `undim`. ## Examples ```julia N = 6 L = LinearMap(cumsum, y -> reverse(cumsum(reverse(y))), N) A = LinearMapAA(L) # version with no properties A = LinearMapAA(L, (name="cumsum",))) # version with a NamedTuple of properties Matrix(L), Matrix(A) # both the same 6 x 6 lower triangular matrix A.name # returns "cumsum" here ``` Here is a more interesting example for signal processing. ```julia using LinearMapsAA using FFTW: fft, bfft N = 8 A = LinearMapAA(fft, bfft, (N, N), (name="fft",), T=ComplexF32) @show A[:,2] ``` For more details see the examples in the [documentation](https://jefffessler.github.io/LinearMapsAA.jl/dev/). ## Features shared with `LinearMap` objects #### Object combinations A `LinearMapAX` object supports all of the features of a `LinearMap`. In particular, if `A` and `B` are both `LinearMapAX` objects of appropriate sizes, then the following each make new `LinearMapAX` objects: - Multiplication: `A * B` - Linear combination: `A + B`, `A - B`, `3A - 7B` - Kronecker products: `kron(A, B)` - Concatenation: `[A B]` `[A; B]` `[I A I]` `[A B; 2A 3I]` etc. Caution: currently some shorthand concatenations are unsupported, like `[I I A]`, though one can accomplish that one using `lmaa_hcat(I, I, A)` #### Conversions Conversion to other data types (may require lots of memory if `A` is big): - Convert to sparse: `sparse(A)` - Convert to dense matrix: `Matrix(A)`. #### Avoiding memory allocations Like `LinearMap` objects, both types of `LinearMapAX` objects support `mul!` for storing the results in a previously allocated output array, to avoid new memory allocations. The basic syntax is to replace `y = A * x` with `mul!(y, A, x)`. To make the code look more like the math, use the `InplaceOps` package: ```julia using InplaceOps @! y = A * x # shorthand for mul!(y, A, x) ``` ## Features unique to `LinearMapsAA` A bonus feature provided by `LinearMapsAA` is that a user can include a `NamedTuple` of properties with it, and then retrieve those later using the `A.key` syntax like one would do with a struct (composite type). The nice folks over at `LinearMaps.jl` [helped get me started](https://github.com/Jutho/LinearMaps.jl/issues/53) with this feature. Often linear operators are associated with some properties, e.g., a wavelet transform arises from some mother wavelet, and it can be convenient to carry those properties with the object itself. Currently the properties are lost when one combines two or more `LinearMapAA` objects by adding, multiplying, concatenating, etc. The following features are provided by a `LinearMapAX` object due to its `getindex` support: - Columns or rows slicing: `A[:,5]`, `A[end,:]`etc. return a 1D vector - Elements: `A[4,5]` (returns a scalar) - Portions: `A[4:6,5:8]` (returns a dense matrix) - Linear indexing: `A[2:9]` (returns a 1D vector) - Convert to matrix: `A[:,:]` (if memory permits) - Convert to vector: `A[:]` (if memory permits). ## Operator support A `LinearMapAO` object represents a linear mapping from some input array size into some output array size specified by the `idim` and `odim` options. Here is a (simplified) example for 2D MRI, where the operator maps a 2D input array into a 1D output vector: ```julia using FFTW: fft, bfft using LinearMapsAA embed = (v, samp) -> setindex!(fill(zero(eltype(v)),size(samp)), v, samp) N = (128,64) # image size samp = rand(N...) .< 0.8 # random sampling pattern K = sum(samp) # number of k-space samples A = LinearMapAA(x -> fft(x)[samp], y -> bfft(embed(y,samp)), (K, prod(N)) ; prop = (name="fft",), T=ComplexF32, idim=N, odim=(K,)) x = rand(N...) z = A' * (A * x) # result is a 2D array! typeof(A) # LinearMapAO{ComplexF32, 1, 2} ``` For more details see FFT example in the [documentation](https://jefffessler.github.io/LinearMapsAA.jl/dev/). The adjoint of this `LinearMapAO` object maps a 1D vector of k-space samples into a 2D image array. Multiplying a `M Γ— N` matrix times a `N Γ— K` matrix can be thought of as multiplying the matrix by each of the `K` columns, yielding a `M Γ— K` result. Generalizing this to higher dimensional arrays, if `A::LinearMapAO` has "input dimensions" `idim=(2,3)` and "output dimensions" `odim=(4,5,6)` and you do `A*X` where `X::AbstractArray` has dimension `(2,3,7,8)`, then the output will be an `Array` of dimension `(4,5,6,7,8)`. In other words, it works block-wise. (If you really want a new `LinearMapAO`, rather than an `Array`, then you must first wrap `X` in a `LinearMapAO`.) This behavior deliberately departs from the non-`Matrix` like behavior in `LinearMaps` where `A*X` produces a new `LinearMap`. Here is a corresponding example (not useful; just for illustration). ```julia using LinearMapsAA idim = (2,3) odim = (4,5,6) forward = x -> repeat(reshape(x, (idim[1],1,idim[2])) ; outer=(2,5,2)) A = LinearMapAA(forward, (prod(odim), prod(idim)) ; prop = (name="test",), idim, odim) x = rand(idim..., 7, 8) y = A * x ``` In the spirit of such generality, this package overloads `*` for `LinearAlgebra.I` (and for `UniformScaling` objects more generally) such that `I * X == X` even when `X` is an array of more than two dimensions. (The original `LinearAlgebra.I` can only multiply vectors and matrices, which suffices for matrix algebra, but not for general linear algebra.) Caution: The `LinearMapAM` type should be quite stable now, whereas `LinearMapAO` is new in `v0.6`. The conversions `redim` and `undim` are probably not thoroughly tested. The safe bet is to use all `LinearMapAM` objects or all `LinearMapAO` objects rather than trying to mix and match. ## Historical note about `getindex` An `AbstractArray` must support a `getindex` operation. The maintainers of the `LinearMaps.jl` package [originally did not wish to add `getindex` there](https://github.com/Jutho/LinearMaps.jl/issues/38), so this package added that feature (while avoiding "type piracy"). Eventually, partial `getindex` support, [specifically slicing](https://github.com/JuliaLinearAlgebra/LinearMaps.jl/pull/165), was added in [v3.7](https://github.com/JuliaLinearAlgebra/LinearMaps.jl/releases/tag/v3.7.0) there. As of v0.11, this package uses that `getindex` implementation and also supports only slicing. This is a breaking change that could be easily reverted, so please submit an issue if you have a use case for more general use of `getindex`. ## Historical note about `setindex!` The [Julia manual section on the `AbstractArray` interface](https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-array) implies that an `AbstractArray` should support a `setindex!` operation. Versions of this package prior to v0.8.0 provided that capability, mainly for completeness and as a proof of principle, solely for the `LinearMapAM` type. However, the reality is that many sub-types of `AbstractArray` in the Julia ecosystem, such as `LinearAlgebra.Diagonal`, understandably do *not* support `setindex!`, and it there seems to be no use for it here either. Supporting `setindex!` seems impossible with a concrete type for a function map, so it is no longer supported. The key code is relegated to the `archive` directory. ## Related packages [`LinearOperators.jl`](https://github.com/JuliaSmoothOptimizers/LinearOperators.jl) also provides `getindex`-like features, but slicing there always returns another operator, unlike with a matrix. In contrast, a `LinearMapAM` object is designed to behave akin to a matrix, except for operations like `svd` and `pinv` that are unsuitable for large-scale problems. However, one can try [`Arpack.svds(A)`](https://julialinearalgebra.github.io/Arpack.jl/latest/index.html#Arpack.svds) to compute a few SVD components. [`LazyArrays.jl`](https://github.com/JuliaArrays/LazyArrays.jl) and [`BlockArrays.jl`](https://github.com/JuliaArrays/BlockArrays.jl) also have some related features, but only for arrays, not linear operators defined by functions, so `LinearMaps` is more comprehensive. [`LazyAlgebra.jl`](https://github.com/emmt/LazyAlgebra.jl) also has many related features, and supports nonlinear mappings. [`SciML/SciMLOperators.jl`](https://github.com/SciML/SciMLOperators.jl) seems to be designed for "matrix-free" operators that are functions of some possibly changing parameters. This package provides similar functionality as the `Fatrix` / `fatrix` object in the [Matlab version of MIRT](https://github.com/JeffFessler/mirt). In particular, the `odim` and `idim` features of those objects are similar to those here. [`FunctionOperators.jl`](https://github.com/hakkelt/FunctionOperators.jl) supports `inDims` and `outDims` features. [`JOLI.jl`](https://github.com/slimgroup/JOLI.jl) Being a sub-type of `AbstractArray` can be useful for other purposes, such as using the nice [Kronecker.jl](https://github.com/MichielStock/Kronecker.jl) package. Will this list keep growing, or will the community settle on some common `AbstractLinearMap` base? ## Inter-operability To promote inter-operability of different linear mapping packages, this package provides methods for wrapping other operator types into `LinearMapAX` types. The syntax is simply `LinearMapAA(L; kwargs...)` where `L` can be any of the following types currently: * `AbstractMatrix` (including `Matrix`, `SparseMatrixCSC`, `Diagonal`, among many others) * `LinearMap` from [`LinearMaps.jl`](https://github.com/Jutho/LinearMaps.jl) * `LinearOperator` from [`LinearOperators.jl`](https://github.com/JuliaSmoothOptimizers/LinearOperators.jl). Submit an issue or make a PR if there are other operator types that one would like to have supported. To minimize package dependencies, the wrapping code for a `LinearOperator` uses [package extensions](https://docs.julialang.org/en/v1/manual/code-loading/#man-extensions). ## Multiplication properties It can help developers and users to know how multiplication operations should behave. | Type | Shorthand | | :--- | :---: | | `LinearMapAO` | `O` | | `LinearMapAM` | `M` | | `LinearMap` | `L` | | `AbstractVector` | `v` | | `AbstractMatrix` | `X` | | `AbstractArray` | `A` | | `LinearAlgebra.I` | `I` | For `left * right` multiplication the results are as follows. | Left | Right | Result | | :---: | :---: | :---: | | `M` | `v` | `v` | | `v'` | `M` | `v'` | | `M` | `X` | `X` | | `X` | `M` | `X` | | `M` | `M` | `M` | | `M` | `L` | `M` | | `L` | `M` | `M` | | `O` | `A` | `A` | | `A` | `O` | `A` | | `O` | `O` | `O` | | `I` | `A` | `A` | The following subset of the above operations also work for the in-place version `mul!(result, left, right)`: | Left | Right | Result | | :---: | :---: | :---: | | `M` | `v` | `v` | | `v'` | `M` | `v'` | | `M` | `X` | `X` | | `X` | `M` | `X` | | `O` | `A` | `A` | | `A` | `O` | `A` | There is one more special multiplication property. If `O` is a `LinearMapAO` and `xv` is `Vector` of `AbstractArrays`, then `O * xv` is equivalent to `[O * x for x in xv]`. This is useful, for example, in dynamic imaging where one might store a video sequence as a vector of 2D images, rather than as a 3D array. There is also a corresponding [5-argument `mul!`](https://docs.julialang.org/en/v1/stdlib/LinearAlgebra/#LinearAlgebra.mul!). Each array in the `Vector` `xv` must be compatible with multiplication on the left by `O`. ## Credits This software was developed at the [University of Michigan](https://umich.edu/) by [Jeff Fessler](https://web.eecs.umich.edu/~fessler) and his [group](https://web.eecs.umich.edu/~fessler/group), with substantial inspiration drawn from the `LinearMaps` package. ## Compatibility * Version 0.2.0 tested with Julia 1.1 and 1.2 * Version 0.3.0 requires Julia 1.3 * Version 0.6.0 assumes Julia 1.4 * Version 0.7.0 assumes Julia 1.6 * Version 0.11.0 assumes Julia 1.9 ## Getting started This package is registered in the [`General`](https://github.com/JuliaRegistries/General) registry, so you can install it at the REPL with `] add LinearMapAA`. Here are [detailed installation instructions](https://github.com/JeffFessler/MIRT.jl/blob/main/doc/start.md). This package is included in the Michigan Image Reconstruction Toolbox [`MIRT.jl`](https://github.com/JeffFessler/MIRT.jl) and is exported there so that MIRT users can use it without "separate" installation. <!-- URLs --> [action-img]: https://github.com/JeffFessler/LinearMapsAA.jl/workflows/Unit%20test/badge.svg [action-url]: https://github.com/JeffFessler/LinearMapsAA.jl/actions [build-img]: https://github.com/JeffFessler/LinearMapsAA.jl/workflows/CI/badge.svg?branch=main [build-url]: https://github.com/JeffFessler/LinearMapsAA.jl/actions?query=workflow%3ACI+branch%3Amain [pkgeval-img]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/L/LinearMapsAA.svg [pkgeval-url]: https://juliaci.github.io/NanosoldierReports/pkgeval_badges/L/LinearMapsAA.html [codecov-img]: https://codecov.io/github/JeffFessler/LinearMapsAA.jl/coverage.svg?branch=main [codecov-url]: https://codecov.io/github/JeffFessler/LinearMapsAA.jl?branch=main [docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg [docs-stable-url]: https://JeffFessler.github.io/LinearMapsAA.jl/stable [docs-dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [docs-dev-url]: https://JeffFessler.github.io/LinearMapsAA.jl/dev [license-img]: https://img.shields.io/badge/license-MIT-brightgreen.svg [license-url]: LICENSE
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
docs
417
```@meta CurrentModule = LinearMapsAA ``` # LinearMapsAA.jl Documentation ## Contents ```@contents ``` ## Overview Currently the main documentation for [(LinearMapsAA)](https://github.com/JeffFessler/LinearMapsAA.jl) is in the README file therein. See also the documentation for the underlying [(LinearMaps)](https://github.com/Jutho/LinearMaps.jl) package. See the Example(s) tab for one non-trivial example.
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.12.0
3540b82a4228ab6352b41d713c876ff08c059ee5
docs
92
## Methods list ```@index ``` ## Methods usage ```@autodocs Modules = [LinearMapsAA] ```
LinearMapsAA
https://github.com/JeffFessler/LinearMapsAA.jl.git
[ "MIT" ]
0.4.6
4693424929b4ec7ad703d68912a6ad6eff103cfe
code
191
module FreqTables using CategoricalArrays using Tables using NamedArrays using Missings include("freqtable.jl") export freqtable, proptable, prop, Name end # module
FreqTables
https://github.com/nalimilan/FreqTables.jl.git
[ "MIT" ]
0.4.6
4693424929b4ec7ad703d68912a6ad6eff103cfe
code
11890
import Base.ht_keyindex # Cf. https://github.com/JuliaStats/StatsBase.jl/issues/135 struct UnitWeights <: AbstractVector{Int} end Base.getindex(w::UnitWeights, ::Integer...) = 1 Base.getindex(w::UnitWeights, ::AbstractVector) = w # About the type inference limitation which prompts this workaround, see # https://github.com/JuliaLang/julia/issues/10880 Base.@pure eltypes(T) = Tuple{map(eltype, T.parameters)...} Base.@pure vectypes(T) = Tuple{map(U -> Vector{U}, T.parameters)...} # Internal function needed for now so that n is inferred function _freqtable(x::Tuple, skipmissing::Bool = false, weights::AbstractVector{<:Real} = UnitWeights(), subset::Union{Nothing, AbstractVector{Int}, AbstractVector{Bool}} = nothing) n = length(x) n == 0 && throw(ArgumentError("at least one argument must be provided")) if !isa(subset, Nothing) x = map(y -> y[subset], x) weights = weights[subset] end l = map(length, x) vtypes = eltypes(typeof(x)) for i in 1:n if l[1] != l[i] error("arguments are not of the same length: $l") end end if !isa(weights, UnitWeights) && length(weights) != l[1] error("'weights' (length $(length(weights))) must be of the same length as vectors (length $(l[1]))") end d = Dict{vtypes, eltype(weights)}() for (i, el) in enumerate(zip(x...)) index = ht_keyindex(d, el) if index > 0 @inbounds d.vals[index] += weights[i] else @inbounds d[el] = weights[i] end end if skipmissing filter!(p -> !any(ismissing, p[1]), d) end keyvec = collect(keys(d)) dimnames = Vector{Vector}(undef, n) for i in 1:n s = Set{vtypes.parameters[i]}() for j in 1:length(keyvec) push!(s, keyvec[j][i]) end # convert() is needed for Union{T, Missing}, which currently gives a Vector{Any} # which breaks inference of the return type dimnames[i] = convert(Vector{vtypes.parameters[i]}, unique(s)) try sort!(dimnames[i]) catch err err isa MethodError || rethrow(err) end end a = zeros(eltype(weights), map(length, dimnames)...)::Array{eltype(weights), n} na = NamedArray(a, tuple(dimnames...)::vectypes(vtypes), ntuple(i -> "Dim$i", n)) for (k, v) in d na[Name.(k)...] = v end na end """ freqtable(x::AbstractVector...; skipmissing::Bool = false, weights::AbstractVector{<:Real} = UnitWeights(), subset::Union{Nothing, AbstractVector{Int}, AbstractVector{Bool}} = nothing]) freqtable(t, cols::Union{Symbol, AbstractString}...; skipmissing::Bool = false, weights::AbstractVector{<:Real} = UnitWeights(), subset::Union{Nothing, AbstractVector{Int}, AbstractVector{Bool}} = nothing]) Create frequency table from vectors or table columns. `t` can be any type of table supported by the [Tables.jl](https://github.com/JuliaData/Tables.jl) interface. **Examples** ```jldoctest julia> freqtable([1, 2, 2, 3, 4, 3]) 4-element Named Array{Int64,1} Dim1 β”‚ ──────┼── 1 β”‚ 1 2 β”‚ 2 3 β”‚ 2 4 β”‚ 1 julia> df = DataFrame(x=[1, 2, 2, 2], y=[1, 2, 1, 2]); julia> freqtable(df, :x, :y) 2Γ—2 Named Array{Int64,2} x β•² y β”‚ 1 2 ──────┼───── 1 β”‚ 1 0 2 β”‚ 1 2 julia> freqtable(df, :x, :y, subset=df.x .> 1) 1Γ—2 Named Array{Int64,2} x β•² y β”‚ 1 2 ──────┼───── 2 β”‚ 1 2 ``` """ freqtable(x::AbstractVector...; skipmissing::Bool = false, weights::AbstractVector{<:Real} = UnitWeights(), subset::Union{Nothing, AbstractVector{Int}, AbstractVector{Bool}} = nothing) = _freqtable(x, skipmissing, weights, subset) # Internal function needed for now so that n is inferred function _freqtable(x::NTuple{n, AbstractCategoricalVector}, skipmissing::Bool = false, weights::AbstractVector{<:Real} = UnitWeights(), subset::Union{Nothing, AbstractVector{Int}, AbstractVector{Bool}} = nothing) where n n == 0 && throw(ArgumentError("at least one argument must be provided")) if !isa(subset, Nothing) x = map(y -> y[subset], x) weights = weights[subset] end len = map(length, x) allowsmissing = map(v -> eltype(v) >: Missing, x) lev = map(x) do v l = eltype(v) >: Missing && !skipmissing ? [levels(v); missing] : levels(v) CategoricalArray{eltype(v)}(l) end dims = map(length, lev) for i in 1:n if len[1] != len[i] error(string("arguments are not of the same length: ", tuple(len...))) end end if !isa(weights, UnitWeights) && length(weights) != len[1] error("'weights' (length $(length(weights))) must be of the same length as vectors (length $(len[1]))") end sizes = cumprod([dims...]) a = zeros(eltype(weights), dims) missingpossible = any(allowsmissing) @inbounds for i in 1:len[1] ref = Int(x[1].refs[i]) miss = missingpossible & (ref <= 0) el = ifelse(miss, dims[1], ref) anymiss = miss for j in 2:n ref = Int(x[j].refs[i]) miss = missingpossible & (ref <= 0) el += (ifelse(miss, dims[j], ref) - 1) * sizes[j - 1] anymiss |= miss end if !(missingpossible && skipmissing && anymiss) a[el] += weights[i] end end NamedArray(a, lev, ntuple(i -> "Dim$i", n)) end freqtable(x::AbstractCategoricalVector...; skipmissing::Bool = false, weights::AbstractVector{<:Real} = UnitWeights(), subset::Union{Nothing, AbstractVector{Int}, AbstractVector{Bool}} = nothing) = _freqtable(x, skipmissing, weights, subset) function freqtable(t, cols::Union{Symbol, AbstractString}...; args...) all_cols = Tables.columns(t) a = freqtable((Tables.getcolumn(all_cols, Symbol(y)) for y in cols)...; args...) colsβ€² = all(x -> x isa AbstractString, cols) ? cols : Symbol.(cols) setdimnames!(a, colsβ€²) a end """ prop(tbl::AbstractArray{<:Number}; margins = nothing) Create a table of proportions from an array `tbl`. If `margins` is `nothing` (the default), proportions over the whole `tbl` are computed. If `margins` is an `Integer`, or an iterable of `Integer`s, proportions sum to `1` over dimensions specified by `margins`. In particular for a two-dimensional array, when `margins` is `1` row proportions are calculated, and when `margins` is `2` column proportions are calculated. This function does not check that `tbl` contains only non-negative values. Calculating `sum(proptable(..., margins=margins), dims=dims)` with `dims` equal to the complement of `margins` produces an array containing only `1.0` (see last example below). **Examples** ```jldoctest julia> prop([1 2; 3 4]) 2Γ—2 Array{Float64,2}: 0.1 0.2 0.3 0.4 julia> prop([1 2; 3 4], margins=1) 2Γ—2 Array{Float64,2}: 0.333333 0.666667 0.428571 0.571429 julia> prop([1 2; 3 4], margins=2) 2Γ—2 Array{Float64,2}: 0.25 0.333333 0.75 0.666667 julia> prop([1 2; 3 4], margins=(1, 2)) 2Γ—2 Array{Float64,2}: 1.0 1.0 1.0 1.0 julia> pt = prop(reshape(1:12, (2, 2, 3)), margins=3) 2Γ—2Γ—3 Array{Float64,3}: [:, :, 1] = 0.1 0.3 0.2 0.4 [:, :, 2] = 0.192308 0.269231 0.230769 0.307692 [:, :, 3] = 0.214286 0.261905 0.238095 0.285714 julia> sum(pt, dims=(1, 2)) 1Γ—1Γ—3 Array{Float64,3}: [:, :, 1] = 1.0 [:, :, 2] = 1.0 [:, :, 3] = 1.0 ``` """ function prop(tbl::AbstractArray{<:Number,N}; margins=nothing) where N if margins === nothing return tbl / sum(tbl) else lo, hi = extrema(margins) (lo < 1 || hi > N) && throw(ArgumentError("margins must be a valid dimension")) return tbl ./ sum(tbl, dims=tuple(setdiff(1:N, margins)...)::NTuple{N-length(margins),Int}) end end """ proptable(x::AbstractVector...; margins = nothing, skipmissing::Bool = false, weights::AbstractVector{<:Real} = UnitWeights(), subset::Union{Nothing, AbstractVector{Int}, AbstractVector{Bool}} = nothing]) proptable(t, cols::Union{Symbol, AbstractString}...; margins = nothing, skipmissing::Bool = false, weights::AbstractVector{<:Real} = UnitWeights(), subset::Union{Nothing, AbstractVector{Int}, AbstractVector{Bool}} = nothing]) Create a frequency table of proportions from vectors or table columns. This is equivalent to calling `prop(freqtable(...), margins=margins)`. `t` can be any type of table supported by the [Tables.jl](https://github.com/JuliaData/Tables.jl) interface. If `margins` is `nothing` (the default), proportions over the whole table are computed. If `margins` is an `Integer`, or an iterable of `Integer`s, proportions sum to `1` over dimensions specified by `margins`. In particular for a two-dimensional array, when `margins` is `1` row proportions are calculated, and when `margins` is `2` column proportions are calculated. Calculating `sum(proptable(..., margins=margins), dims=dims)` with `dims` equal to the complement of `margins` produces an array containing only `1.0` (see last example below). **Examples** ```jldoctest julia> proptable([1, 2, 2, 3, 4, 3]) 4-element Named Array{Float64,1} Dim1 β”‚ ──────┼───────── 1 β”‚ 0.166667 2 β”‚ 0.333333 3 β”‚ 0.333333 4 β”‚ 0.166667 julia> df = DataFrame(x=[1, 2, 2, 2, 1, 1], y=[1, 2, 1, 2, 2, 2], z=[1, 1, 1, 2, 2, 1]); julia> proptable(df, :x, :y) 2Γ—2 Named Array{Float64,2} x β•² y β”‚ 1 2 ──────┼─────────────────── 1 β”‚ 0.166667 0.333333 2 β”‚ 0.166667 0.333333 julia> proptable(df, :x, :y, subset=df.x .> 1) 1Γ—2 Named Array{Float64,2} x β•² y β”‚ 1 2 ──────┼─────────────────── 2 β”‚ 0.333333 0.666667 julia> proptable([1, 2, 2, 2], [1, 1, 1, 2], margins=1) 2Γ—2 Named Array{Float64,2} Dim1 β•² Dim2 β”‚ 1 2 ────────────┼─────────────────── 1 β”‚ 1.0 0.0 2 β”‚ 0.666667 0.333333 julia> proptable([1, 2, 2, 2], [1, 1, 1, 2], margins=2) 2Γ—2 Named Array{Float64,2} Dim1 β•² Dim2 β”‚ 1 2 ────────────┼─────────────────── 1 β”‚ 0.333333 0.0 2 β”‚ 0.666667 1.0 julia> proptable([1, 2, 2, 2], [1, 1, 1, 2], margins=(1,2)) 2Γ—2 Named Array{Float64,2} Dim1 β•² Dim2 β”‚ 1 2 ────────────┼───────── 1 β”‚ 1.0 NaN 2 β”‚ 1.0 1.0 julia> proptable(df.x, df.y, df.z) 2Γ—2Γ—2 Named Array{Float64,3} [:, :, Dim3=1] = Dim1 β•² Dim2 β”‚ 1 2 ────────────┼─────────────────── 1 β”‚ 0.166667 0.166667 2 β”‚ 0.166667 0.166667 [:, :, Dim3=2] = Dim1 β•² Dim2 β”‚ 1 2 ────────────┼─────────────────── 1 β”‚ 0.0 0.166667 2 β”‚ 0.0 0.166667 julia> pt = proptable(df.x, df.y, df.z, margins=(1,2)) 2Γ—2Γ—2 Named Array{Float64,3} [:, :, Dim3=1] = Dim1 β•² Dim2 β”‚ 1 2 ────────────┼───────── 1 β”‚ 1.0 0.5 2 β”‚ 1.0 0.5 [:, :, Dim3=2] = Dim1 β•² Dim2 β”‚ 1 2 ────────────┼───────── 1 β”‚ 0.0 0.5 2 β”‚ 0.0 0.5 julia> sum(pt, dims=3) 2Γ—2Γ—1 Named Array{Float64,3} [:, :, Dim3=sum(Dim3)] = Dim1 β•² Dim2 β”‚ 1 2 ────────────┼───────── 1 β”‚ 1.0 1.0 2 β”‚ 1.0 1.0 ``` """ proptable(x::AbstractVector...; margins = nothing, skipmissing::Bool = false, weights::AbstractVector{<:Real} = UnitWeights(), subset::Union{Nothing, AbstractVector{Int}, AbstractVector{Bool}} = nothing) = prop(freqtable(x..., skipmissing=skipmissing, weights=weights, subset=subset), margins=margins) proptable(t, cols::Union{Symbol, AbstractString}...; margins=nothing, kwargs...) = prop(freqtable(t, cols...; kwargs...), margins=margins)
FreqTables
https://github.com/nalimilan/FreqTables.jl.git
[ "MIT" ]
0.4.6
4693424929b4ec7ad703d68912a6ad6eff103cfe
code
8233
using FreqTables using Test using NamedArrays x = repeat(["a", "b", "c", "d"], outer=[100]); # Values not in order to test discrepancy between index and levels with CategoricalArray y = repeat(["D", "C", "A", "B"], inner=[10], outer=[10]); tab = @inferred freqtable(x) @test tab == [100, 100, 100, 100] @test names(tab) == [["a", "b", "c", "d"]] @test @inferred prop(tab) == [0.25, 0.25, 0.25, 0.25] tab = @inferred freqtable(y) @test tab == [100, 100, 100, 100] @test names(tab) == [["A", "B", "C", "D"]] tab = @inferred freqtable(x, y) @test tab == [30 20 20 30; 30 20 20 30; 20 30 30 20; 20 30 30 20] @test names(tab) == [["a", "b", "c", "d"], ["A", "B", "C", "D"]] pt = @inferred prop(tab) @test pt == [0.075 0.05 0.05 0.075; 0.075 0.05 0.05 0.075; 0.05 0.075 0.075 0.05; 0.05 0.075 0.075 0.05] pt = @inferred prop(tab, margins=2) @test pt == [0.3 0.2 0.2 0.3; 0.3 0.2 0.2 0.3; 0.2 0.3 0.3 0.2; 0.2 0.3 0.3 0.2] pt = @inferred prop(tab, margins=1) @test pt == [0.3 0.2 0.2 0.3; 0.3 0.2 0.2 0.3; 0.2 0.3 0.3 0.2; 0.2 0.3 0.3 0.2] pt = @inferred prop(tab, margins=(1, 2)) @test pt == [1.0 1.0 1.0 1.0; 1.0 1.0 1.0 1.0; 1.0 1.0 1.0 1.0; 1.0 1.0 1.0 1.0] tbl = @inferred prop(rand(5, 5, 5, 5), margins=(1, 2)) sumtbl = sum(tbl, dims=(3,4)) @test all(x -> x β‰ˆ 1.0, sumtbl) @test_throws MethodError prop() @test_throws MethodError prop(("a","b")) @test_throws MethodError prop((1, 2)) @test_throws MethodError prop([1,2,3], "a") @test_throws MethodError prop([1,2,3], 1, 2) @test_throws ArgumentError prop([1,2,3], margins=2) @test_throws ArgumentError prop([1,2,3], margins=0) tab = @inferred freqtable(x, y, subset=1:20, weights=repeat([1, .5], outer=[10])) @test tab == [2.0 3.0 1.0 1.5 3.0 2.0 1.5 1.0] @test names(tab) == [["a", "b", "c", "d"], ["C", "D"]] pt = @inferred prop(tab) @test pt == [4 6; 2 3; 6 4; 3 2] / 30.0 pt = @inferred prop(tab, margins=2) @test pt == [8 12; 4 6; 12 8; 6 4] / 30.0 pt = @inferred prop(tab, margins=1) @test pt == [6 9; 6 9; 9 6; 9 6] / 15.0 pt = @inferred prop(tab, margins=(1, 2)) @test pt == [1.0 1.0; 1.0 1.0; 1.0 1.0; 1.0 1.0] using CategoricalArrays cx = CategoricalArray(x) cy = CategoricalArray(y) tab = @inferred freqtable(cx) @test tab == [100, 100, 100, 100] @test names(tab) == [["a", "b", "c", "d"]] tab = @inferred freqtable(cy) @test tab == [100, 100, 100, 100] @test names(tab) == [["A", "B", "C", "D"]] tab = @inferred freqtable(cx, cy) @test tab == [30 20 20 30; 30 20 20 30; 20 30 30 20; 20 30 30 20] @test names(tab) == [["a", "b", "c", "d"], ["A", "B", "C", "D"]] tab = @inferred freqtable(cx, cy, subset=1:20, weights=repeat([1, .5], outer=[10])) @test tab == [0.0 0.0 2.0 3.0 0.0 0.0 1.0 1.5 0.0 0.0 3.0 2.0 0.0 0.0 1.5 1.0] @test names(tab) == [["a", "b", "c", "d"], ["A", "B", "C", "D"]] const β‰… = isequal mx = Array{Union{String, Missing}}(x) my = Array{Union{String, Missing}}(y) mx[1] = missing my[[1, 10, 20, 400]] .= missing mcx = categorical(mx) mcy = categorical(my) tab = @inferred freqtable(mx) tabc = @inferred freqtable(mcx) @test tab == tabc == [99, 100, 100, 100, 1] @test names(tab) β‰… names(tabc) β‰… [["a", "b", "c", "d", missing]] tab = @inferred freqtable(my) tabc = @inferred freqtable(mcy) @test tab == tabc == [100, 99, 99, 98, 4] @test names(tab) β‰… names(tabc) β‰… [["A", "B", "C", "D", missing]] tab = @inferred freqtable(mx, my) tabc = @inferred freqtable(mcx, mcy) @test tab == tabc == [30 20 20 29 0; 30 20 20 29 1; 20 30 30 20 0; 20 29 29 20 2; 0 0 0 0 1] @test names(tab) β‰… names(tabc) β‰… [["a", "b", "c", "d", missing], ["A", "B", "C", "D", missing]] tab = @inferred freqtable(mx, skipmissing=true) tabc = @inferred freqtable(mcx, skipmissing=true) @test tab == tabc == [99, 100, 100, 100] @test names(tab) β‰… names(tabc) β‰… [["a", "b", "c", "d"]] tab = @inferred freqtable(my, skipmissing=true) tabc = @inferred freqtable(mcy, skipmissing=true) @test names(tab) β‰… names(tabc) β‰… [["A", "B", "C", "D"]] @test tab == tabc == [100, 99, 99, 98] tab = @inferred freqtable(mx, my, skipmissing=true) tabc = @inferred freqtable(mcx, mcy, skipmissing=true) @test tab == tabc == [30 20 20 29; 30 20 20 29; 20 30 30 20; 20 29 29 20] using DataFrames for docat in [false, true] iris = DataFrame(SepalLength=[4.8, 4.3, 5.8, 5.7, 5.4, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9], SepalWidth=[3, 3, 4, 4.4, 3.9, 3, 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3, 2.9, 3, 3, 2.5], Species=["Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-setosa", "Iris-versicolor", "Iris-versicolor", "Iris-versicolor", "Iris-versicolor", "Iris-versicolor", "Iris-virginica", "Iris-virginica", "Iris-virginica", "Iris-virginica", "Iris-virginica", "Iris-virginica", "Iris-virginica"]) if docat iris.LongSepal = categorical(iris.SepalLength .> 5.0) else iris.LongSepal = iris.SepalLength .> 5.0 end for cols in ((:Species, :LongSepal), ("Species", "LongSepal"), ("Species", :LongSepal), (:Species, "LongSepal")) tab = freqtable(iris, cols...) @test tab == [2 3 0 5 1 6] if all(x -> x isa AbstractString, cols) @test dimnames(tab) == ["Species", "LongSepal"] else @test dimnames(tab) == [:Species, :LongSepal] end @test names(tab) == [["Iris-setosa", "Iris-versicolor", "Iris-virginica"], [false, true]] @test (names(tab, 2) isa CategoricalArray) == docat end tab = freqtable(iris, :Species, :LongSepal, subset=iris.SepalWidth .< 3.8) @test tab == [2 0 0 5 1 6] @test names(tab[1:2, :]) == [["Iris-setosa", "Iris-versicolor"], [false, true]] @test (names(tab, 2) isa CategoricalArray) == docat iris_nt = (Species = iris.Species, LongSepal = iris.LongSepal) @test freqtable(iris, :Species, :LongSepal) == freqtable(iris_nt, :Species, :LongSepal) @test_throws ArgumentError freqtable(iris) @test_throws ArgumentError freqtable(nothing, :Species, :LongSepal) end # Issue #5 @test @inferred freqtable([Set(1), Set(2)]) == [1, 1] @test @inferred freqtable([Set(1), Set(2)], [Set(1), Set(2)]) == [1 0; 0 1] @test_throws ArgumentError freqtable() @test_throws ArgumentError freqtable(DataFrame()) # Integer dimension using NamedArrays df = DataFrame(A = 101:103, B = ["x","y","y"]); intft = freqtable(df, :A, :B) @test names(intft) == [[101,102,103],["x","y"]] @test intft == [1 0; 0 1; 0 1] @test_throws BoundsError intft[101,"x"] @test intft[Name(101),"x"] == 1 # proptable df = DataFrame(x = [1, 2, 1, 2], y = [1, 1, 2, 2], z = ["a", "a", "c", "d"]) for cols in ((:x, :z), ("x", "z"), ("x", :z), (:x, "z")) tab = proptable(df, cols...) if all(x -> x isa AbstractString, cols) @test dimnames(tab) == ["x", "z"] else @test dimnames(tab) == [:x, :z] end @test tab == [0.25 0.25 0.0 0.25 0.0 0.25] @test names(tab) == [[1, 2], ["a", "c", "d"]] end tab = proptable(df, :x, :z, margins=1) @test tab == [0.5 0.5 0.0 0.5 0.0 0.5] tab = proptable(df, :x, :y, margins=(1,2)) @test tab == [1.0 1.0 1.0 1.0] @test names(tab) == [[1, 2], [1, 2]] @test_throws ArgumentError proptable(df) @test_throws ArgumentError proptable(nothing, :x, :y) @test_throws MethodError proptable(df, :x, :y, 1, 2)
FreqTables
https://github.com/nalimilan/FreqTables.jl.git
[ "MIT" ]
0.4.6
4693424929b4ec7ad703d68912a6ad6eff103cfe
docs
3380
# FreqTables [![Build status](https://github.com/nalimilan/FreqTables.jl/workflows/CI/badge.svg)](https://github.com/nalimilan/FreqTables.jl/actions?query=workflow%3ACI+branch%3Amaster) [![Coverage Status](https://coveralls.io/repos/nalimilan/FreqTables.jl/badge.svg?branch=master&service=github)](https://coveralls.io/github/nalimilan/FreqTables.jl?branch=master) This package allows computing one- or multi-way frequency tables (a.k.a. contingency or pivot tables) from any type of vector or array. It includes support for [`CategoricalArray`](https://github.com/JuliaData/CategoricalArrays.jl) and [`Tables.jl`](https://github.com/JuliaData/Tables.jl) compliant objects, as well as for weighted counts. Tables are represented as [`NamedArray`](https://github.com/davidavdav/NamedArrays.jl/) objects. ```julia julia> using FreqTables julia> x = repeat(["a", "b", "c", "d"], outer=[100]); julia> y = repeat(["A", "B", "C", "D"], inner=[10], outer=[10]); julia> tbl = freqtable(x) 4-element Named Array{Int64,1} Dim1 β”‚ ──────┼──── a β”‚ 100 b β”‚ 100 c β”‚ 100 d β”‚ 100 julia> prop(tbl) 4-element Named Array{Float64,1} Dim1 β”‚ ──────┼───── a β”‚ 0.25 b β”‚ 0.25 c β”‚ 0.25 d β”‚ 0.25 julia> freqtable(x, y) 4Γ—4 Named Array{Int64,2} Dim1 β•² Dim2 β”‚ A B C D ────────────┼─────────────── a β”‚ 30 20 30 20 b β”‚ 30 20 30 20 c β”‚ 20 30 20 30 d β”‚ 20 30 20 30 julia> tbl2 = freqtable(x, y, subset=1:20) 4Γ—2 Named Array{Int64,2} Dim1 β•² Dim2 β”‚ A B ────────────┼───── a β”‚ 3 2 b β”‚ 3 2 c β”‚ 2 3 d β”‚ 2 3 julia> prop(tbl2, margins=2) 4Γ—2 Named Array{Float64,2} Dim1 β•² Dim2 β”‚ A B ────────────┼───────── a β”‚ 0.3 0.2 b β”‚ 0.3 0.2 c β”‚ 0.2 0.3 d β”‚ 0.2 0.3 julia> freqtable(x, y, subset=1:20, weights=repeat([1, .5], outer=[10])) 4Γ—2 Named Array{Float64,2} Dim1 β•² Dim2 β”‚ A B ────────────┼───────── a β”‚ 3.0 2.0 b β”‚ 1.5 1.0 c β”‚ 2.0 3.0 d β”‚ 1.0 1.5 ``` For convenience, when working with tables (like e.g. a `DataFrame`) one can pass a table object and columns as symbols: ```julia julia> using DataFrames, CSV julia> iris = DataFrame(CSV.File(joinpath(dirname(pathof(DataFrames)), "../docs/src/assets/iris.csv"))); julia> iris.LongSepal = iris.SepalLength .> 5.0; julia> freqtable(iris, :Species, :LongSepal) 3Γ—2 Named Array{Int64,2} Species β•² LongSepal β”‚ false true ────────────────────┼───────────── setosa β”‚ 28 22 versicolor β”‚ 3 47 virginica β”‚ 1 49 julia> freqtable(iris, :Species, :LongSepal, subset=iris.PetalLength .< 4.0) 2Γ—2 Named Array{Int64,2} Species β•² LongSepal β”‚ false true ────────────────────┼───────────── setosa β”‚ 28 22 versicolor β”‚ 3 8 ``` Note that when one of the input variables contains integers, `Name(i)` has to be used when indexing into the table to prevent `i` to be interpreted as a numeric index: ```julia julia> df = DataFrame(A = 101:103, B = ["x","y","y"]); julia> ft = freqtable(df, :A, :B) 3Γ—2 Named Array{Int64,2} Dim1 β•² Dim2 β”‚ x y ────────────┼───── 101 β”‚ 1 0 102 β”‚ 0 1 103 β”‚ 0 1 julia> ft[Name(101), "x"] 1 julia> ft[101,"x"] ERROR: BoundsError: attempt to access 10Γ—2 Array{Int64,2} at index [101, 1] ```
FreqTables
https://github.com/nalimilan/FreqTables.jl.git
[ "MIT" ]
0.3.0
e7f8a3e4bafabc4154558c1f3cd6f3e5915a534f
code
404
using Documenter, ImageGather, DocumenterCitations bib = CitationBibliography(joinpath(@__DIR__, "cig-refs.bib"); style = :authoryear) makedocs(;sitename="Image gather tools", doctest=false, clean=true, authors="Mathias Louboutin", pages = Any["Home" => "index.md"], plugins=[bib]) deploydocs(repo="github.com/slimgroup/ImageGather.jl", devbranch="main")
ImageGather
https://github.com/slimgroup/ImageGather.jl.git
[ "MIT" ]
0.3.0
e7f8a3e4bafabc4154558c1f3cd6f3e5915a534f
code
3531
# Author: Mathias Louboutin # Date: June 2021 # using JUDI, LinearAlgebra, Images, PyPlot, DSP, ImageGather, SlimPlotting # Set up model structure n = (601, 333) # (x,y,z) or (x,z) d = (15., 15.) o = (0., 0.) # Velocity [km/s] v = ones(Float32,n) .+ 0.5f0 for i=1:12 v[:,25*i+1:end] .= 1.5f0 + i*.25f0 end v0 = imfilter(v, Kernel.gaussian(5)) v0_low = .95f0 .* imfilter(v, Kernel.gaussian(5)) v0_high = 1.05f0 .* imfilter(v, Kernel.gaussian(5)) # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 m0 = (1f0 ./ v0).^2 m0_low = (1f0 ./ v0_low).^2 m0_high = (1f0 ./ v0_high).^2 dm = vec(m - m0) # Setup info and model structure nsrc = 51 # number of sources model = Model(n, d, o, m; nb=40) model0 = Model(n, d, o, m0; nb=40) model0_low = Model(n, d, o, m0_low; nb=40) model0_high = Model(n, d, o, m0_high; nb=40) # Set up receiver geometry nxrec = 401 xrec = range(0f0, stop=(n[1] -1)*d[1], length=nxrec) yrec = 0f0 zrec = range(20f0, stop=20f0, length=nxrec) # receiver sampling and recording time timeR = 4000f0 # receiver recording time [ms] dtR = 4f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtR, t=timeR, nsrc=nsrc) # Set up source geometry (cell array with source locations for each shot) xsrc = convertToCell(range(0f0, stop=(n[1] -1)*d[1], length=nsrc)) ysrc = convertToCell(range(0f0, stop=0f0, length=nsrc)) zsrc = convertToCell(range(20f0, stop=20f0, length=nsrc)) # source sampling and number of time steps timeS = 4000f0 # ms dtS = 4f0 # ms # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtS, t=timeS) # setup wavelet f0 = 0.015f0 # kHz wavelet = ricker_wavelet(timeS, dtS, f0) q = judiVector(srcGeometry, wavelet) ################################################################################################### opt = Options(space_order=16) # Setup operators F = judiModeling(model, srcGeometry, recGeometry; options=opt) # Nonlinear modeling dD = F*q # Common surface offset image gather offsets = 0f0:150f0:8000f0 CIG = surface_gather(model0, q, dD; offsets=offsets, options=opt) CIG_low = surface_gather(model0_low, q, dD; offsets=offsets, options=opt); CIG_high = surface_gather(model0_high, q, dD; offsets=offsets, options=opt); cc = 1e-1 figure(figsize=(20, 10)) subplot(231) plot_simage(CIG[301, :, :], d; cmap="Greys", new_fig=false) title("Good velocity (CDP=4.5km)") subplot(232) plot_simage(CIG_low[301, :, :], d; cmap="Greys", new_fig=false) title("Low velocity (CDP=4.5km)") subplot(233) plot_simage(CIG_high[301, :, :], d; cmap="Greys", new_fig=false) title("High velocity (CDP=4.5km)") subplot(234) plot_simage(CIG[101, :, :], d; cmap="Greys", new_fig=false) subplot(235) plot_simage(CIG_low[101, :, :], d; cmap="Greys", new_fig=false) subplot(236) plot_simage(CIG_high[101, :, :], d; cmap="Greys", new_fig=false) savefig("./docs/img/cig_cdp.png", bbox_inches="tight") # Plot gathers as a pseudo rtm image cig_rtm_good = hcat([CIG[i, :, 1:25] for i=1:20:n[1]]...) cig_rtm_low = hcat([CIG_low[i, :, 1:25] for i=1:20:n[1]]...) cig_rtm_high = hcat([CIG_high[i, :, 1:25] for i=1:20:n[1]]...) figure(figsize=(20, 10)) subplot(131) plot_simage(cig_rtm_good, d; cmap="Greys", new_fig=false) xticks([]) title("Good velocity") subplot(132) plot_simage(cig_rtm_low, d; cmap="Greys", new_fig=false) xticks([]) title("Low velocity") subplot(133) plot_simage(cig_rtm_high, d; cmap="Greys", new_fig=false) xticks([]) title("High velocity") savefig("./docs/img/cig_line.png", bbox_inches="tight")
ImageGather
https://github.com/slimgroup/ImageGather.jl.git
[ "MIT" ]
0.3.0
e7f8a3e4bafabc4154558c1f3cd6f3e5915a534f
code
2267
# Author: Mathias Louboutin # Date: June 2021 # using JUDI, LinearAlgebra, Images, PyPlot, DSP, ImageGather, Printf # Set up model structure n = (301, 151) # (x,y,z) or (x,z) d = (10., 10.) o = (0., 0.) # Velocity [km/s] v = 1.5f0 .* ones(Float32,n) v[:, 76:end] .= 2.5f0 v0 = imfilter(v, Kernel.gaussian(5)) # Slowness squared [s^2/km^2] m = (1f0 ./ v).^2 m0 = (1f0 ./ v0).^2 # Setup info and model structure nsrc = 1 # number of sources model = Model(n, d, o, m; nb=40) model0 = Model(n, d, o, m0; nb=40) dm = model.m - model0.m # Set up receiver geometry nxrec = 151 xrec = range(0f0, stop=(n[1] -1)*d[1], length=nxrec) yrec = 0f0 zrec = range(20f0, stop=20f0, length=nxrec) # receiver sampling and recording time timeD = 2000f0 # receiver recording time [ms] dtD = 4f0 # receiver sampling interval [ms] # Set up receiver structure recGeometry = Geometry(xrec, yrec, zrec; dt=dtD, t=timeD, nsrc=nsrc) # Set up source geometry (cell array with source locations for each shot) xsrc = 1500f0 ysrc = 0f0 zsrc = 20f0 # Set up source structure srcGeometry = Geometry(xsrc, ysrc, zsrc; dt=dtD, t=timeD) # setup wavelet f0 = 0.015f0 # kHz wavelet = ricker_wavelet(timeD, dtD, f0) q = diff(judiVector(srcGeometry, wavelet)) ################################################################################################### opt = Options(space_order=4, isic=false, sum_padding=true) # Setup operators F = judiModeling(model, srcGeometry, recGeometry; options=opt) J0 = judiJacobian(F(model0), q) # Nonlinear modeling dD = J0*dm rtm = J0'*dD # Common surface offset image gather offsets = -40f0:model.d[1]:40f0 # offsets = [0f0] J = judiExtendedJacobian(F(model0), q, offsets) Jz = judiExtendedJacobian(F(model0), q, offsets, dims=:z) ssodm = J'*dD ssodmz = Jz'*dD ssor = zeros(Float32, size(ssodm)...) for h=1:size(ssor, 1) ssor[h, :, :] .= dm.data end dDe = J*ssor dDez= Jz*ssor # @show norm(dDe - dD), norm(ssor[:] - dm[:]) a, b = dot(dD, dDe), dot(ssodm[:], ssor[:]) @printf(" <F x, y> : %2.5e, <x, F' y> : %2.5e, rel-error : %2.5e, ratio : %2.5e \n", a, b, (a - b)/(a + b), a/b) a, b = dot(dD, dDez), dot(ssodmz[:], ssor[:]) @printf(" <F x, y> : %2.5e, <x, F' y> : %2.5e, rel-error : %2.5e, ratio : %2.5e \n", a, b, (a - b)/(a + b), a/b)
ImageGather
https://github.com/slimgroup/ImageGather.jl.git