code
stringlengths 2.5k
150k
| kind
stringclasses 1
value |
---|---|
# Building Simple Neural Networks
In this section you will:
* Import the MNIST dataset from Keras.
* Format the data so it can be used by a Sequential model with Dense layers.
* Split the dataset into training and test sections data.
* Build a simple neural network using Keras Sequential model and Dense layers.
* Train that model.
* Evaluate the performance of that model.
While we are accomplishing these tasks, we will also stop to discuss important concepts:
* Splitting data into test and training sets.
* Training rounds, batch size, and epochs.
* Validation data vs test data.
* Examining results.
## Importing and Formatting the Data
Keras has several built-in datasets that are already well formatted and properly cleaned. These datasets are an invaluable learning resource. Collecting and processing datasets is a serious undertaking, and deep learning tactics perform poorly without large high quality datasets. We will be leveraging the [Keras built in datasets](https://keras.io/datasets/) extensively, and you may wish to explore them further on your own.
In this exercise, we will be focused on the MNIST dataset, which is a set of 70,000 images of handwritten digits each labeled with the value of the written digit. Additionally, the images have been split into training and test sets.
```
# For drawing the MNIST digits as well as plots to help us evaluate performance we
# will make extensive use of matplotlib
from matplotlib import pyplot as plt
# All of the Keras datasets are in keras.datasets
from keras.datasets import mnist
# Keras has already split the data into training and test data
(training_images, training_labels), (test_images, test_labels) = mnist.load_data()
# Training images is a list of 60,000 2D lists.
# Each 2D list is 28 by 28—the size of the MNIST pixel data.
# Each item in the 2D array is an integer from 0 to 255 representing its grayscale
# intensity where 0 means white, 255 means black.
print(len(training_images), training_images[0].shape)
# training_labels are a value between 0 and 9 indicating which digit is represented.
# The first item in the training data is a 5
print(len(training_labels), training_labels[0])
# Lets visualize the first 100 images from the dataset
for i in range(100):
ax = plt.subplot(10, 10, i+1)
ax.axis('off')
plt.imshow(training_images[i], cmap='Greys')
```
## Problems With This Data
There are (at least) two problems with this data as it is currently formatted, what do you think they are?
1. The input data is formatted as a 2D array, but our deep neural network needs to data as a 1D vector.
* This is because of how deep neural networks are constructed, it is simply not possible to send anything but a vector as input.
* These vectors can be/represent anything, but from the computer's perspective they must be a 1D vector.
2. Our labels are numbers, but we're not performing regression. We need to use a 1-hot vector encoding for our labels.
* This is important because if we use the number values we would be training our network to think of these values as continuous.
* If the digit is supposed to be a 2, guessing 1 and guessing 9 are both equally wrong.
* Training the network with numbers would imply that a prediction of 1 would be "less wrong" than a prediction of 9, when in fact both are equally wrong.
### Fixing the data format
Luckily, this is a common problem and we can use two methods to fix the data: `numpy.reshape` and `keras.utils.to_categorical`. This is nessesary because of how deep neural networks process data, there is no way to send 2D data to a `Sequential` model made of `Dense` layers.
```
from keras.utils import to_categorical
# Preparing the dataset
# Setup train and test splits
(training_images, training_labels), (test_images, test_labels) = mnist.load_data()
# 28 x 28 = 784, because that's the dimensions of the MNIST data.
image_size = 784
# Reshaping the training_images and test_images to lists of vectors with length 784
# instead of lists of 2D arrays. Same for the test_images
training_data = training_images.reshape(training_images.shape[0], image_size)
test_data = test_images.reshape(test_images.shape[0], image_size)
# [
# [1,2,3]
# [4,5,6]
# ]
# => [1,2,3,4,5,6]
# Just showing the changes...
print("training data: ", training_images.shape, " ==> ", training_data.shape)
print("test data: ", test_images.shape, " ==> ", test_data.shape)
# Create 1-hot encoded vectors using to_categorical
num_classes = 10 # Because it's how many digits we have (0-9)
# to_categorical takes a list of integers (our labels) and makes them into 1-hot vectors
training_labels = to_categorical(training_labels, num_classes)
test_labels = to_categorical(test_labels, num_classes)
# Recall that before this transformation, training_labels[0] was the value 5. Look now:
print(training_labels[0])
```
## Building a Deep Neural Network
Now that we've prepared our data, it's time to build a simple neural network. To start we'll make a deep network with 3 layers—the input layer, a single hidden layer, and the output layer. In a deep neural network all the layers are 1 dimensional. The input layer has to be the shape of our input data, meaning it must have 784 nodes. Similarly, the output layer must match our labels, meaning it must have 10 nodes. We can choose the number of nodes in our hidden layer, I've chosen 32 arbitrarally.
```
from keras.models import Sequential
from keras.layers import Dense
# Sequential models are a series of layers applied linearly.
model = Sequential()
# The first layer must specify it's input_shape.
# This is how the first two layers are added, the input layer and the hidden layer.
model.add(Dense(units=32, activation='sigmoid', input_shape=(image_size,)))
# This is how the output layer gets added, the 'softmax' activation function ensures
# that the sum of the values in the output nodes is 1. Softmax is very
# common in classification networks.
model.add(Dense(units=num_classes, activation='softmax'))
# This function provides useful text data for our network
model.summary()
```
## Compiling and Training a Model
Our model must be compiled and trained before it can make useful predictions. Models are trainined with the training data and training labels. During this process Keras will use an optimizer, loss function, metrics of our chosing to repeatedly make predictions and recieve corrections. The loss function is used to train the model, the metrics are only used for human evaluation of the model during and after training.
Training happens in a series of epochs which are divided into a series of rounds. Each round the network will recieve `batch_size` samples from the training data, make predictions, and recieve one correction based on the errors in those predictions. In a single epoch, the model will look at every item in the training set __exactly once__, which means individual data points are sampled from the training data without replacement during each round of each epoch.
During training, the training data itself will be broken into two parts according to the `validation_split` parameter. The proportion that you specify will be left out of the training process, and used to evaluate the accuracy of the model. This is done to preserve the test data, while still having a set of data left out in order to test against — and hopefully prevent — overfitting. At the end of each epoch, predictions will be made for all the items in the validation set, but those predictions won't adjust the weights in the model. Instead, if the accuracy of the predictions in the validation set stops improving then training will stop early, even if accuracy in the training set is improving.
```
# sgd stands for stochastic gradient descent.
# categorical_crossentropy is a common loss function used for categorical classification.
# accuracy is the percent of predictions that were correct.
model.compile(optimizer="sgd", loss='categorical_crossentropy', metrics=['accuracy'])
# The network will make predictions for 128 flattened images per correction.
# It will make a prediction on each item in the training set 5 times (5 epochs)
# And 10% of the data will be used as validation data.
history = model.fit(training_data, training_labels, batch_size=128, epochs=5, verbose=True, validation_split=.1)
```
## Evaluating Our Model
Now that we've trained our model, we want to evaluate its performance. We're using the "test data" here although in a serious experiment, we would likely not have done nearly enough work to warrent the application of the test data. Instead, we would rely on the validation metrics as a proxy for our test results until we had models that we believe would perform well.
Once we evaluate our model on the test data, any subsequent changes we make would be based on what we learned from the test data. Meaning, we would have functionally incorporated information from the test set into our training procedure which could bias and even invalidate the results of our research. In a non-research setting the real test might be more like putting this feature into production.
Nevertheless, it is always wise to create a test set that is not used as an evaluative measure until the very end of an experimental lifecycle. That is, once you have a model that you believe __should__ generalize well to unseen data you should test it on the test data to test that hypothosis. If your model performs poorly on the test data, you'll have to reevaluate your model, training data, and procedure.
```
loss, accuracy = model.evaluate(test_data, test_labels, verbose=True)
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['training', 'validation'], loc='best')
plt.show()
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['training', 'validation'], loc='best')
plt.show()
print(f'Test loss: {loss:.3}')
print(f'Test accuracy: {accuracy:.3}')
```
## How Did Our Network Do?
* Why do we only have one value for test loss and test accuracy, but a chart over time for training and validation loss and accuracy?
* Our model was more accurate on the validation data than it was on the training data.
* Is this okay? Why or why not?
* What if our model had been more accurate on the training data than the validation data?
* Did our model get better during each epoch?
* If not: why might that be the case?
* If so: should we always expect this, where each epoch strictly improves training/validation accuracy/loss?
### Answers:
* Why do we only have one value for test loss and test accuracy, but a chart over time for training and validation loss and accuracy?
* __Because we only evaluate the test data once at the very end, but we evaluate training and validation scores once per epoch.__
* Our model was more accurate on the validation data than it was on the training data.
* Is this okay? Why or why not?
* __Yes, this is okay, and even good. When our validation scores are better than our training scores, it's a sign that we are probably not overfitting__
* What if our model had been more accurate on the training data than the validation data?
* __This would concern us, because it would suggest we are probably overfitting.__
* Did our model get better during each epoch?
* If not: why might that be the case?
* __Optimizers rely on the gradient to update our weights, but the 'function' we are optimizing (our neural network) is not a ground truth. A single batch, and even a complete epoch, may very well result in an adjustment that hurts overall performance.__
* If so: should we always expect this, where each epoch strictly improves training/validation accuracy/loss?
* __Not at all, see the above answer.__
## Look at Specific Results
Often, it can be illuminating to view specific results, both when the model is correct and when the model is wrong. Lets look at the images and our model's predictions for the first 16 samples in the test set.
```
from numpy import argmax
# Predicting once, then we can use these repeatedly in the next cell without recomputing the predictions.
predictions = model.predict(test_data)
# For pagination & style in second cell
page = 0
fontdict = {'color': 'black'}
# Repeatedly running this cell will page through the predictions
for i in range(16):
ax = plt.subplot(4, 4, i+1)
ax.axis('off')
plt.imshow(test_images[i + page], cmap='Greys')
prediction = argmax(predictions[i + page])
true_value = argmax(test_labels[i + page])
fontdict['color'] = 'black' if prediction == true_value else 'red'
plt.title("{}, {}".format(prediction, true_value), fontdict=fontdict)
page += 16
plt.tight_layout()
plt.show()
```
## Will A Different Network Perform Better?
Given what you know so far, use Keras to build and train another sequential model that you think will perform __better__ than the network we just built and trained. Then evaluate that model and compare its performance to our model. Remember to look at accuracy and loss for training and validation data over time, as well as test accuracy and loss.
```
# Your code here...
```
## Bonus questions: Go Further
Here are some questions to help you further explore the concepts in this lab.
* Does the original model, or your model, fail more often on a particular digit?
* Write some code that charts the accuracy of our model's predictions on the test data by digit.
* Is there a clear pattern? If so, speculate about why that could be...
* Training for longer typically improves performance, up to a point.
* For a simple model, try training it for 20 epochs, and 50 epochs.
* Look at the charts of accuracy and loss over time, have you reached diminishing returns after 20 epochs? after 50?
* More complex networks require more training time, but can outperform simpler networks.
* Build a more complex model, with at least 3 hidden layers.
* Like before, train it for 5, 20, and 50 epochs.
* Evaluate the performance of the model against the simple model, and compare the total amount of time it took to train.
* Was the extra complexity worth the additional training time?
* Do you think your complex model would get even better with more time?
* A little perspective on this last point: Some models train for [__weeks to months__](https://openai.com/blog/ai-and-compute/).
| github_jupyter |
```
# default_exp ratio
```
> The email portion of this campaign was actually run as an A/B test. Half the emails sent out were generic upsells to your product while the other half contained personalized messaging around the users’ usage of the site.
这是 AB Test 的实验内容。
```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
# export
'''Calculate conversion rates and related metrics.'''
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
def conversion_rate(dataframe, column_names, converted = 'converted', id_name = 'user_id'):
'''Calculate conversion rate.
Cite https://www.datacamp.com/courses/analyzing-marketing-campaigns-with-pandas
Parmaters
---------
dataframe: pandas.DataFrame
column_names: str
The conlumn(s) chosen to partition groups to
calculate conversion rate.
converted: str
The column with True and False to determine
whether users are converted.
id_name: str
The column saved user_id.
Returns
-------
conversion_rate: conversion rate'''
# Total number of converted users
column_conv = dataframe[dataframe[converted] == True] \
.groupby(column_names)[id_name] \
.nunique()
# Total number users
column_total = dataframe \
.groupby(column_names)[id_name] \
.nunique()
# Conversion rate
conversion_rate = column_conv/column_total
# Fill missing values with 0
conversion_rate = conversion_rate.fillna(0)
return conversion_rate
marketing = pd.read_csv("data/marketing.csv",
parse_dates = ['date_served', 'date_subscribed', 'date_canceled'])
# Subset the DataFrame
email = marketing[marketing.marketing_channel == 'Email']
# Group the email DataFrame by variant
alloc = email.groupby(['variant']).user_id.nunique()
# Plot a bar chart of the test allocation
alloc.plot(kind = 'bar')
plt.title('Personalization test allocation')
plt.ylabel('# participants')
plt.show()
```
差异不大。
```
# Group marketing by user_id and variant
subscribers = email.groupby(['user_id',
'variant'])['converted'].max()
subscribers_df = pd.DataFrame(subscribers.unstack(level=1))
# Drop missing values from the control column
control = subscribers_df['control'].dropna()
# Drop missing values from the personalization column
personalization = subscribers_df['personalization'].dropna()
print('Control conversion rate:', np.mean(control))
print('Personalization conversion rate:', np.mean(personalization))
```
这种 Python 写法我觉得有点复杂。
$$\begin{array}{l}{\text { Calculating lift: }} \\ {\qquad \frac{\text { Treatment conversion rate - Control conversion rate }}{\text { Control conversion rate }}}\end{array}$$
注意这里的 lift 是转化率的比较,因此是可以超过 100 %
```
# export
def lift(a,b, sig = 2):
'''Calculate lift statistic for an AB test.
Cite https://www.datacamp.com/courses/analyzing-marketing-campaigns-with-pandas
Parmaters
---------
a: float.
control group.
b: float.
test group.
sig: integer.
default 2.
Returns
-------
lift: lift statistic'''
# Calcuate the mean of a and b
a_mean = np.mean(a)
b_mean = np.mean(b)
# Calculate the lift using a_mean and b_mean
lift = b_mean/a_mean - 1
return str(round(lift*100, sig)) + '%'
lift(control, personalization, sig = 3)
```
## 查看是否统计显著
```
# export
from scipy import stats
def lift_sig(a,b):
'''Calculate lift statistical significance for an AB test.
Cite https://www.datacamp.com/courses/analyzing-marketing-campaigns-with-pandas
Parmaters
---------
a: float.
control group.
b: float.
test group.
sig: integer.
default 2.
Returns
-------
lift: lift statistic'''
output = stats.ttest_ind(a,b)
t_value, p_value = output.statistic,output.pvalue
print('The t value of the two variables is %.3f with p value %.3f' % (t_value, p_value))
return (t_value, p_value)
t_value, p_value = lift_sig(control,personalization )
```
> In the next lesson, you will explore whether that holds up across all demographics.
这真是做 AB test 一个成熟的思维,不代表每一个 group 都很好。
```
# export
def ab_test(df, segment, id_name = 'user_id', test_column = 'variant', converted = 'converted'):
'''Calculate lift statistic by segmentation.
Cite https://www.datacamp.com/courses/analyzing-marketing-campaigns-with-pandas
Parmaters
---------
df: pandas.DataFrame.
segment: str.
group column.
id_name: user_id
test_column: str
The column indentify test or ctrl groups.
converted: logical.
Whether converted or not.
Returns
-------
lift: lift statistic'''
# Build a for loop for each segment in marketing
for subsegment in np.unique(marketing[segment].values):
print('Group - %s: ' % subsegment)
df1 = df[df[segment] == subsegment]
df2 = df1.groupby([id_name, test_column])[converted].max()
df2 = pd.DataFrame(df2.unstack(level=1))
ctrl = df2.iloc[:,0].dropna()
test = df2.iloc[:,1].dropna()
# information
print('lift:', lift(ctrl, test))
lift_sig(ctrl, test)
df = marketing[marketing['marketing_channel'] == 'Email']
ab_test(df, segment='language_displayed', id_name='user_id', test_column='variant', converted='converted')
df.head()
```
> Often treatment will not affect all people uniformly. Some people will love a particular marketing campaign while others hate it. As a marketing data scientist, it's your responsibility to enable your marketing stakeholders to target users according to their preferences.
| github_jupyter |
```
import os
import glob
import zipfile
import pathlib
import cv2
import math
import random
import shutil
import skimage as sk
import pandas as pd
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
from sklearn.utils import shuffle
from keras.models import Sequential
from keras.activations import softmax, relu
from keras.layers import Activation, Dense, Dropout, Flatten, Lambda, Cropping2D, LSTM
from keras.layers import Conv2D, MaxPooling2D, BatchNormalization
from keras.optimizers import Adam
from keras.regularizers import l2
from keras.callbacks import EarlyStopping, ModelCheckpoint
```
## Ran the new few blocks for my colab configuration, can be ignored.
```
from google.colab import drive
drive.mount('/content/gdrive')
!wget https://d17h27t6h515a5.cloudfront.net/topher/2016/December/584f6edd_data/data.zip
import shutil
shutil.move("/content/data.zip", "/content/gdrive/My Drive/udacity-behavioural-cloning/")
os.chdir('/content/gdrive/My Drive/udacity-behavioural-cloning/')
with zipfile.ZipFile('data.zip') as f:
f.extractall()
os.chdir('/content/gdrive/My Drive/udacity-behavioural-cloning/data/')
```
## Training code starts here
```
df = pd.read_csv('driving_log.csv')
# Visualizing original distribution
plt.figure(figsize=(15, 3))
hist, bins = np.histogram(df.steering.values, bins=50)
plt.hist(df.steering.values, bins=bins)
plt.title('Steering Distribution Plot')
plt.xlabel('Steering')
plt.ylabel('Count')
plt.show()
# create grayscale image
def grayscale(img):
return cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# normalize image to zero mean
def normalize(img):
mean = np.mean(img)
std = np.std(img)
return (img-mean)/std
# preprocess with grayscale and normalization
def preprocess(img):
return normalize(grayscale(img))
# augment image, left right flip for now
def augment(image, randn):
return np.flip(image, axis=randn%2).astype(np.uint8)
# yeo-johnson bias
def yeo_johnson_bias(steering):
if steering >= 0:
return np.log(steering + 1)
elif steering < 0:
return -np.log(-steering + 1)
# To separate center, left and right
df_center = pd.concat([df.center, df.steering], axis=1).rename(index=str, columns={'center': 'img'})
df_left = pd.concat([df.left, df.steering], axis=1).rename(index=str, columns={'left': 'img'})
df_right = pd.concat([df.right, df.steering], axis=1).rename(index=str, columns={'right': 'img'})
df_center.head()
# Adjusting the steering value 0 for left and right
for k, v in df_left.iterrows():
if v.steering == 0:
df_left.loc[k, 'steering'] = df_left.loc[k, 'steering'] + random.uniform(0.2, 0.5)
for k, v in df_right.iterrows():
if v.steering == 0:
df_right.loc[k, 'steering'] = df_right.loc[k, 'steering'] + random.uniform(-0.2, -0.5)
new_df = pd.concat([df_center, df_left, df_right], axis=0, ignore_index=True, sort=False)
new_df.tail()
new_df.to_csv('adjusted_log.csv', index=False, encoding='utf-8')
df = pd.read_csv('adjusted_log.csv')
# Visualizing adjusted distribution
plt.figure(figsize=(15, 3))
hist, bins = np.histogram(df.steering.values, bins=50)
plt.hist(df.steering.values, bins=bins)
plt.title('Steering Distribution Plot')
plt.xlabel('Steering')
plt.ylabel('Count')
plt.show()
df.plot(figsize=(15, 3))
df.shape
# Grouping all images and steering together, to do a train test splitting
images = df.img.tolist()
steering = df.steering.tolist()
img_list = []
for img, angle in zip(images, steering):
row = [img, angle]
img_list.append(row)
train_samples, validation_samples = train_test_split(img_list, test_size=0.2)
# Data generator
def generator(samples, batch_size=32):
cwd = os.getcwd()
num_samples = len(samples)
while True: # Loop forever so the generator never terminates
shuffle(samples)
for offset in range(0, num_samples, batch_size):
batch_samples = samples[offset:offset+batch_size]
images = []
angles = []
for batch_sample in batch_samples:
name = os.path.join(cwd, batch_sample[0].strip())
try:
# normalizing image
image = normalize(mpimg.imread(name))
# reshaping image into its rgb form
image = np.reshape(image, (image.shape[0], image.shape[1], 3))
steering = float(batch_sample[1])
images.append(image)
angles.append(steering)
# if image not found, skip the image
except FileNotFoundError as msg:
print(msg)
continue
# trim image to only see section with road|
X_train = np.array(images)
y_train = np.array(angles)
yield shuffle(X_train, y_train)
# Set our batch size
batch_size = 32
# compile and train the model using the generator function
train_generator = generator(train_samples, batch_size=batch_size)
validation_generator = generator(validation_samples, batch_size=batch_size)
### PART 3: TRAINING ###
# Training Architecture: inspired by NVIDIA architecture #
INPUT_SHAPE = (160, 320, 3)
model = Sequential()
model.add(Cropping2D(cropping=((70,25), (0, 0)), input_shape=INPUT_SHAPE))
model.add(Conv2D(filters=24, kernel_size=5, strides=(2, 2), activation='relu'))
model.add(BatchNormalization())
model.add(Conv2D(filters=36, kernel_size=5, strides=(2, 2), activation='relu'))
#model.add(BatchNormalization())
model.add(Conv2D(filters=48, kernel_size=5, strides=(2, 2), activation='relu'))
#model.add(BatchNormalization())
model.add(Conv2D(filters=64, kernel_size=3, strides=(1, 1), activation='relu'))
#model.add(BatchNormalization())
model.add(Conv2D(filters=64, kernel_size=3, strides=(1, 1), activation='relu'))
model.add(Flatten())
model.add(Dense(1164, activation='relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(100, activation='relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(50, activation='relu'))
model.add(Dropout(rate=0.5))
model.add(Dense(10, activation='relu'))
model.add(Dense(1))
adam = Adam(lr = 0.0001)
model.compile(optimizer= adam, loss='mse', metrics=['accuracy'])
model.summary()
history = model.fit_generator(generator=train_generator, steps_per_epoch=math.ceil(len(train_samples)/ batch_size), \
epochs=15, verbose=1, validation_data=validation_generator, \
validation_steps=math.ceil(len(validation_samples)/ batch_size), use_multiprocessing=False)
print('Done Training')
###Saving Model and Weights###
model_json = model.to_json()
with open("model5.json", "w") as json_file:
json_file.write(model_json)
model.save('model5.h5')
model.save_weights("model_weights5.h5")
print("Saved model to disk")
### print the keys contained in the history object
print(history.history.keys())
### plot the training and validation loss for each epoch
plt.figure(figsize=(15, 3))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model mean squared error loss')
plt.ylabel('mean squared error loss')
plt.xlabel('epoch')
plt.legend(['training set', 'validation set'], loc='upper right')
plt.show()
```
| github_jupyter |
```
from google.colab import drive
drive.mount('/content/gdrive')
import pandas as pd
import numpy as np
import csv
#DATA_FOLDER = '/content/gdrive/My Drive/101/results/logreg/'
subfolders = []
for a in range(1,7):
for b in range(6,0,-1):
subfolders.append('+1e-0'+str(a)+'_+1e-0'+str(b))
classifiers = ['logreg', 'mlp', 'better_cnn']
all_results = []
for clf in classifiers:
print(clf)
DATA_FOLDER = '/content/gdrive/My Drive/101/results/' + clf + '/'
results = []
matrix = np.zeros(36)
methods = ['sgd', 'sgdn', 'adam', 'sgd_hd', 'sgdn_hd', 'adam_hd']
for m in methods:
for i, s in enumerate(subfolders):
file = DATA_FOLDER + s + '/' + m + '.csv'
with open(file, 'r') as f:
loss = list(csv.reader(f))[-1][4] #training loss
matrix[i] = np.round(float(loss),3)
results.append(matrix.reshape(6,-1))
matrix = np.zeros(36)
all_results.append(results)
import seaborn as sns
import matplotlib.pyplot as plt
f, ax = plt.subplots(2,3, figsize=(14,7))
k=0
f.suptitle(r'Gridsearch for every ${\alpha}_{0}$ and $\beta$ with Logistic Regression on MNIST')
for i in range(2):
for j in range(3):
ax[i,j].set_title(methods[k])
f = sns.heatmap(all_results[0][k], annot=True ,cmap="YlGnBu",cbar=True, ax=ax[i,j])
if k > 2:
f = sns.heatmap(all_results[0][k], annot=True ,cmap="YlGnBu",cbar=False, ax=ax[i,j],
mask=np.round(all_results[0][k],2) <= np.round(all_results[0][k-3],2) , annot_kws={"color": "red"})
k+=1
f.set_xticklabels([1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1],fontsize='small')
f.set_yticklabels([1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6],fontsize='small')
if i==1:
f.set_xlabel(r'$\beta_0$')
f.set_ylabel(r'$\alpha_0$')
plt.show()
import seaborn as sns
import matplotlib.pyplot as plt
f, ax = plt.subplots(2,3, figsize=(14,7))
k=0
f.suptitle(r'Gridsearch for every ${\alpha}_{0}$ and $\beta$ with MLP on MNIST')
for i in range(2):
for j in range(3):
ax[i,j].set_title(methods[k])
f = sns.heatmap(all_results[1][k], annot=True ,cmap="YlGnBu",cbar=True, ax=ax[i,j])
if k > 2:
f = sns.heatmap(all_results[1][k], annot=True ,cmap="YlGnBu",cbar=False, ax=ax[i,j],
mask=np.round(all_results[1][k],2) <= np.round(all_results[1][k-3],2) , annot_kws={"color": "red"})
k+=1
f.set_xticklabels([1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1],fontsize='small')
f.set_yticklabels([1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6],fontsize='small')
if i==1:
f.set_xlabel(r'$\beta_0$')
f.set_ylabel(r'$\alpha_0$')
plt.show()
import seaborn
import matplotlib.pyplot as plt
f, ax = plt.subplots(2,3, figsize=(14,7))
k=0
f.suptitle(r'Gridsearch for every ${\alpha}_{0}$ and $\beta$ with ""Better CNN"" on MNIST')
for i in range(2):
for j in range(3):
ax[i,j].set_title(methods[k])
f = sns.heatmap(all_results[2][k], annot=True ,cmap="YlGnBu",cbar=True, ax=ax[i,j])
if k > 2:
f = sns.heatmap(all_results[2][k], annot=True ,cmap="YlGnBu",cbar=False, ax=ax[i,j],
mask=np.round(all_results[2][k],2) <= np.round(all_results[2][k-3],2) , annot_kws={"color": "red"})
k+=1
f.set_xticklabels([1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1],fontsize='small')
f.set_yticklabels([1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6],fontsize='small')
f.set_xlabel(r'$\beta_0$')
f.set_ylabel(r'$\alpha_0$')
plt.show()
```
| github_jupyter |
By now basically everyone ([here](http://datacolada.org/2014/06/04/23-ceiling-effects-and-replications/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+DataColada+%28Data+Colada+Feed%29), [here](http://yorl.tumblr.com/post/87428392426/ceiling-effects), [here](http://www.talyarkoni.org/blog/2014/06/01/there-is-no-ceiling-effect-in-johnson-cheung-donnellan-2014/), [here](http://pigee.wordpress.com/2014/05/24/additional-reflections-on-ceiling-effects-in-recent-replication-research/) and [here](http://www.nicebread.de/reanalyzing-the-schnalljohnson-cleanliness-data-sets-new-insights-from-bayesian-and-robust-approaches/), and there is likely even more out there) who writes a blog and knows how to do a statistical analysis has analysed data from a recent replication study and from the original study (data repository is here).
The study of two experiments. Let's focus on Experiment 1 here. The experiment consists of a treatment and control group. The performance is measured by six likert-scale items. The scale has 9 levels. All responses are averaged together and we obtain a single composite score for each group. We are interested whether the treatment works, which would show up as a positive difference between the score of the treatment and the control group. Replication study did the same with more subjects.
Let's perform the original analysis to see the results and why this dataset is so "popular".
```
%pylab inline
import pystan
from matustools.matusplotlib import *
from scipy import stats
il=['dog','trolley','wallet','plane','resume','kitten','mean score','median score']
D=np.loadtxt('schnallstudy1.csv',delimiter=',')
D[:,1]=1-D[:,1]
Dtemp=np.zeros((D.shape[0],D.shape[1]+1))
Dtemp[:,:-1]=D
Dtemp[:,-1]=np.median(D[:,2:-2],axis=1)
D=Dtemp
DS=D[D[:,0]==0,1:]
DR=D[D[:,0]==1,1:]
DS.shape
def plotCIttest1(y,x=0,alpha=0.05):
m=y.mean();df=y.size-1
se=y.std()/y.size**0.5
cil=stats.t.ppf(alpha/2.,df)*se
cii=stats.t.ppf(0.25,df)*se
out=[m,m-cil,m+cil,m-cii,m+cii]
_errorbar(out,x=x,clr='k')
return out
def plotCIttest2(y1,y2,x=0,alpha=0.05):
n1=float(y1.size);n2=float(y2.size);
v1=y1.var();v2=y2.var()
m=y2.mean()-y1.mean()
s12=(((n1-1)*v1+(n2-1)*v2)/(n1+n2-2))**0.5
se=s12*(1/n1+1/n2)**0.5
df= (v1/n1+v2/n2)**2 / ( (v1/n1)**2/(n1-1)+(v2/n2)**2/(n2-1))
cil=stats.t.ppf(alpha/2.,df)*se
cii=stats.t.ppf(0.25,df)*se
out=[m,m-cil,m+cil,m-cii,m+cii]
_errorbar(out,x=x)
return out
plt.figure(figsize=(4,3))
dts=[DS[DS[:,0]==0,-2],DS[DS[:,0]==1,-2],
DR[DR[:,0]==0,-2],DR[DR[:,0]==1,-2]]
for k in range(len(dts)):
plotCIttest1(dts[k],x=k)
plt.grid(False,axis='x')
ax=plt.gca()
ax.set_xticks(range(len(dts)))
ax.set_xticklabels(['OC','OT','RC','RT'])
plt.xlim([-0.5,len(dts)-0.5])
plt.figure(figsize=(4,3))
plotCIttest2(dts[0],dts[1],x=0,alpha=0.1)
plotCIttest2(dts[2],dts[3],x=1,alpha=0.1)
ax=plt.gca()
ax.set_xticks([0,1])
ax.set_xticklabels(['OT-OC','RT-RC'])
plt.grid(False,axis='x')
plt.xlim([-0.5,1.5]);
```
Legend: OC - original study, control group; OT - original study, treatment group; RC - replication study, control group; RT - replication study, treatment group;
In the original study the difference between the treatment and control is significantly greater than zero. In the replication, it is not. However the ratings in the replication are higher overall. The author of the original study therefore raised a concern that no difference was obtained in replication because of ceiling effects.
How do we show that there are ceiling efects in the replication? The authors and bloggers presented various arguments that support some conclusion (mostly that there are no ceiling effects). Ultimately ceiling effects are a matter of degree and since no one knows how to quantify them the whole discussion of the replication's validity is heading into an inferential limbo.
My point here is that if the analysis computed the proper effect size - the causal effect size, we would avoid these kinds of arguments and discussions.
```
def plotComparison(A,B,stan=False):
plt.figure(figsize=(8,16))
cl=['control','treatment']
x=np.arange(11)-0.5
if not stan:assert A.shape[1]==B.shape[1]
for i in range(A.shape[1]-1):
for cond in range(2):
plt.subplot(A.shape[1]-1,2,2*i+cond+1)
a=np.histogram(A[A[:,0]==cond,1+i],bins=x, normed=True)
plt.barh(x[:-1],-a[0],ec='w',height=1)
if stan: a=[B[:,i,cond]]
else: a=np.histogram(B[B[:,0]==cond,1+i],bins=x, normed=True)
plt.barh(x[:-1],a[0],ec='w',fc='g',height=1)
#plt.hist(DS[:,2+i],bins=np.arange(11)-0.5,normed=True,rwidth=0.5)
plt.xlim([-0.7,0.7]);plt.gca().set_yticks(range(10))
plt.ylim([-1,10]);#plt.grid(b=False,axis='y')
if not i: plt.title('condition: '+cl[cond])
if not cond: plt.ylabel(il[i],size=12)
if not i and not cond: plt.legend(['original','replication'],loc=4);
plotComparison(DS,DR)
model='''
data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> M;
int<lower=1,upper=K> y[N,M];
int x[N];
}
parameters {
real beta[M];
ordered[K-1] c[M];
}
transformed parameters{
real pt[M,K-1]; real pc[M,K-1];
for (m in 1:M){
for (k in 1:(K-1)){
pt[m,k] <- inv_logit(beta[m]-c[m][k]);
pc[m,k] <- inv_logit(-c[m][k]);
}}}
model {
for (m in 1:M){
for (k in 1:(K-1)) c[m][k]~ uniform(-100,100);
for (n in 1:N) y[n,m] ~ ordered_logistic(x[n] * beta[m], c[m]);
}}
'''
sm1=pystan.StanModel(model_code=model)
dat = {'y':np.int32(DS[:,1:7])+1,'x':np.int32(DS[:,0]),'N':DS.shape[0] ,'K':10,'M':6}
fit = sm1.sampling(data=dat,iter=1000, chains=4,thin=2,warmup=500,njobs=2,seed=4)
print fit
pt=fit.extract()['pt']
pc=fit.extract()['pc']
DP=np.zeros((pt.shape[2]+2,pt.shape[1],2))
DP[0,:,:]=1
DP[1:-1,:,:]=np.array([pc,pt]).T.mean(2)
DP=-np.diff(DP,axis=0)
plotComparison(DS[:,:7],DP,stan=True)
model='''
data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> M;
int<lower=1,upper=K> y[N,M];
int x[N];
}
parameters {
real beta;
ordered[K-1] c[M];
}
transformed parameters{
real pt[M,K-1]; real pc[M,K-1];
for (m in 1:M){
for (k in 1:(K-1)){
pt[m,k] <- inv_logit(beta-c[m][k]);
pc[m,k] <- inv_logit(-c[m][k]);
}}}
model {
for (m in 1:M){
for (k in 1:(K-1)) c[m][k]~ uniform(-100,100);
for (n in 1:N) y[n,m] ~ ordered_logistic(x[n] * beta, c[m]);
}}
'''
sm2=pystan.StanModel(model_code=model)
dat = {'y':np.int32(DS[:,1:7])+1,'x':np.int32(DS[:,0]),'N':DS.shape[0] ,'K':10,'M':6}
fit2 = sm2.sampling(data=dat,iter=1000, chains=4,thin=2,warmup=500,njobs=2,seed=4)
print fit2
saveStanFit(fit2,'fit2')
w=loadStanFit('fit2')
pt=w['pt']
pc=w['pc']
DP=np.zeros((pt.shape[2]+2,pt.shape[1],2))
DP[0,:,:]=1
DP[1:-1,:,:]=np.array([pc,pt]).T.mean(2)
DP=-np.diff(DP,axis=0)
plotComparison(DS[:,:7],DP,stan=True)
model='''
data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> M;
int<lower=1,upper=K> y[N,M];
int x[N];
}
parameters {
// real mb; real<lower=0,upper=100> sb[2];
vector[2*M-1] bbeta;
ordered[K-1] c;
}
transformed parameters{
real pt[M,K-1]; real pc[M,K-1];
vector[M] beta[2];
for (m in 1:M){
if (m==1){beta[1][m]<-0.0; beta[2][m]<-bbeta[2*M-1];}
else{beta[1][m]<-bbeta[2*(m-1)-1]; beta[2][m]<-bbeta[2*(m-1)];}
for (k in 1:(K-1)){
pt[m,k] <- inv_logit(beta[2][m]-c[k]);
pc[m,k] <- inv_logit(beta[1][m]-c[k]);
}}}
model {
for (k in 1:(K-1)) c[k]~ uniform(-100,100);
//beta[1]~normal(0.0,sb[1]);
//beta[2]~normal(mb,sb[2]);
for (m in 1:M){
for (n in 1:N) y[n,m] ~ ordered_logistic(beta[x[n]+1][m], c);
}}
'''
sm3=pystan.StanModel(model_code=model)
dat = {'y':np.int32(DS[:,1:7])+1,'x':np.int32(DS[:,0]),'N':DS.shape[0] ,'K':10,'M':6}
fit3 = sm3.sampling(data=dat,iter=1000, chains=4,thin=2,warmup=500,njobs=2,seed=4)
#print fit3
saveStanFit(fit3,'fit3')
w=loadStanFit('fit3')
pt=w['pt']
pc=w['pc']
DP=np.zeros((pt.shape[2]+2,pt.shape[1],2))
DP[0,:,:]=1
DP[1:-1,:,:]=np.array([pc,pt]).T.mean(2)
DP=-np.diff(DP,axis=0)
plotComparison(DS[:,:7],DP,stan=True)
model='''
data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> M;
int<lower=1,upper=K> y[N,M];
int x[N];
}
parameters {
// real mb; real<lower=0,upper=100> sb[2];
vector[M-1] bbeta;
real delt;
ordered[K-1] c;
}
transformed parameters{
real pt[M,K-1]; real pc[M,K-1];
vector[M] beta;
for (m in 1:M){
if (m==1) beta[m]<-0.0;
else beta[m]<-bbeta[m-1];
for (k in 1:(K-1)){
pt[m,k] <- inv_logit(beta[m]+delt-c[k]);
pc[m,k] <- inv_logit(beta[m]-c[k]);
}}}
model {
for (k in 1:(K-1)) c[k]~ uniform(-100,100);
for (m in 1:M){
for (n in 1:N) y[n,m] ~ ordered_logistic(beta[m]+delt*x[n], c);
}}
'''
sm4=pystan.StanModel(model_code=model)
dat = {'y':np.int32(DS[:,1:7])+1,'x':np.int32(DS[:,0]),'N':DS.shape[0] ,'K':10,'M':6}
fit4 = sm4.sampling(data=dat,iter=1000, chains=4,thin=2,warmup=500,njobs=2,seed=4)
print pystan.misc._print_stanfit(fit4,pars=['delt','bbeta','c'],digits_summary=2)
saveStanFit(fit4,'fit4')
w=loadStanFit('fit4')
pt=w['pt']
pc=w['pc']
DP=np.zeros((pt.shape[2]+2,pt.shape[1],2))
DP[0,:,:]=1
DP[1:-1,:,:]=np.array([pc,pt]).T.mean(2)
DP=-np.diff(DP,axis=0)
plotComparison(DS[:,:7],DP,stan=True)
pystanErrorbar(w,keys=['beta','c','delt'])
dat = {'y':np.int32(DR[:,1:7])+1,'x':np.int32(DR[:,0]),'N':DR.shape[0] ,'K':10,'M':6}
fit5 = sm4.sampling(data=dat,iter=1000, chains=4,thin=2,warmup=500,njobs=2,seed=4)
print pystan.misc._print_stanfit(fit4,pars=['delt','bbeta','c'],digits_summary=2)
saveStanFit(fit5,'fit5')
w=loadStanFit('fit5')
pt=w['pt']
pc=w['pc']
DP=np.zeros((pt.shape[2]+2,pt.shape[1],2))
DP[0,:,:]=1
DP[1:-1,:,:]=np.array([pc,pt]).T.mean(2)
DP=-np.diff(DP,axis=0)
plotComparison(DR[:,:7],DP,stan=True)
pystanErrorbar(w,keys=['beta','c','delt'])
model='''
data {
int<lower=2> K;
int<lower=0> N;
int<lower=1> M;
int<lower=1,upper=K> y[N,M];
int x[N,2];
}
parameters {
// real mb; real<lower=0,upper=100> sb[2];
vector[M-1] bbeta;
real dd[3];
ordered[K-1] c;
}
transformed parameters{
//real pt[M,K-1]; real pc[M,K-1];
vector[M] beta;
for (m in 1:M){
if (m==1) beta[m]<-0.0;
else beta[m]<-bbeta[m-1];
//for (k in 1:(K-1)){
// pt[m,k] <- inv_logit(beta[m]+delt-c[k]);
// pc[m,k] <- inv_logit(beta[m]-c[k]);}
}}
model {
for (k in 1:(K-1)) c[k]~ uniform(-100,100);
for (m in 1:M){
for (n in 1:N) y[n,m] ~ ordered_logistic(beta[m]
+dd[2]*x[n,1]*(1-x[n,2]) // rep + control
+dd[1]*x[n,2]*(1-x[n,1]) // orig + treat
+dd[3]*x[n,1]*x[n,2], c); // rep + treat
}}
'''
sm5=pystan.StanModel(model_code=model)
dat = {'y':np.int32(D[:,2:8])+1,'x':np.int32(D[:,[0,1]]),'N':D.shape[0] ,'K':10,'M':6}
fit6 = sm5.sampling(data=dat,iter=1000, chains=4,thin=2,warmup=500,njobs=2,seed=4)
print pystan.misc._print_stanfit(fit6,pars=['dd','bbeta','c'],digits_summary=2)
saveStanFit(fit6,'fit6')
w=loadStanFit('fit6')
pystanErrorbar(w,keys=['beta','c','dd'])
plt.figure(figsize=(10,4))
c=w['c']
b=w['beta']
d=w['dd']
errorbar(c,x=np.linspace(6.5,8,9))
ax=plt.gca()
plt.plot([-1,100],[0,0],'k',lw=2)
ax.set_yticks(np.median(c,axis=0))
ax.set_yticklabels(np.arange(1,10)+0.5)
plt.grid(b=False,axis='x')
errorbar(b[:,::-1],x=np.arange(9,15),clr='g')
errorbar(d,x=np.arange(15,18),clr='r')
plt.xlim([6,17.5])
ax.set_xticks(range(9,18))
ax.set_xticklabels(il[:6][::-1]+['OT','RC','RT'])
for i in range(d.shape[1]): printCI(d[:,i])
printCI(d[:,2]-d[:,1])
c
def ordinalLogitRvs(beta, c,n,size=1):
assert np.all(np.diff(c)>0) # c must be strictly increasing
def invLogit(x): return 1/(1+np.exp(-x))
p=[1]+list(invLogit(beta-c))+[0]
p=-np.diff(p)
#return np.random.multinomial(n,p,size)
return np.int32(np.round(p*n))
def reformatData(dat):
out=[]
for k in range(dat.size):
out.extend([k]*dat[k])
return np.array(out)
b=np.linspace(-10,7,21)
d=np.median(w['dd'][:,0])
c=np.median(w['c'],axis=0)
S=[];P=[]
for bb in b:
S.append([np.squeeze(ordinalLogitRvs(bb,c,100)),
np.squeeze(ordinalLogitRvs(bb+d,c,100))])
P.append([reformatData(S[-1][0]),reformatData(S[-1][1])])
model='''
data {
int<lower=2> K;
int<lower=0> y1[K];
int<lower=0> y2[K];
}
parameters {
real<lower=-1000,upper=1000> d;
ordered[K-1] c;
}
model {
for (k in 1:(K-1)) c[k]~ uniform(-200,200);
for (k in 1:K){
for (n in 1:y1[k]) k~ ordered_logistic(0.0,c);
for (n in 1:y2[k]) k~ ordered_logistic(d ,c);
}}
'''
sm9=pystan.StanModel(model_code=model)
#(S[k][0]!=0).sum()+1
for k in range(21):
i1=np.nonzero(S[k][0]!=0)[0]
i2=np.nonzero(S[k][1]!=0)[0]
if max((S[k][0]!=0).sum(),(S[k][1]!=0).sum())<9:
s= max(min(i1[0],i2[0])-1,0)
e= min(max(i1[-1],i2[-1])+1,10)
S[k][0]=S[k][0][s:e+1]
S[k][1]=S[k][1][s:e+1]
S[0][0].size
ds=[];cs=[]
for k in range(len(S)):
dat = {'y1':S[k][0],'y2':S[k][1],'K':S[k][0].size}
fit = sm9.sampling(data=dat,iter=1000, chains=4,thin=2,warmup=500,njobs=2,seed=4)
print fit
saveStanFit(fit,'dc%d'%k)
for k in range(21):
i1=np.nonzero(S[k][0]!=0)[0]
i2=np.nonzero(S[k][1]!=0)[0]
if max((S[k][0]!=0).sum(),(S[k][1]!=0).sum())<9:
s= min(i1[0],i2[0])
e= max(i1[-1],i2[-1])
S[k][0]=S[k][0][s:e+1]
S[k][1]=S[k][1][s:e+1]
ds=[];cs=[]
for k in range(len(S)):
if S[k][0].size==1: continue
dat = {'y1':S[k][0],'y2':S[k][1],'K':S[k][0].size}
fit = sm9.sampling(data=dat,iter=1000, chains=4,thin=2,warmup=500,njobs=2,seed=4)
#print fit
saveStanFit(fit,'dd%d'%k)
ds=[];xs=[]
for k in range(b.size):
try:
f=loadStanFit('dd%d'%k)['d']
xs.append(b[k])
ds.append(f)
except:pass
ds=np.array(ds);xs=np.array(xs)
ds.shape
d1=np.median(w['dd'][:,0])
d2=DS[DS[:,0]==1,-2].mean()-DS[DS[:,0]==0,-2].mean()
plt.figure(figsize=(8,4))
plt.plot([-10,5],[d1,d1],'r',alpha=0.5)
res1=errorbar(ds.T,x=xs-0.1)
ax1=plt.gca()
plt.ylim([-2,2])
plt.xlim([-10,5])
plt.grid(b=False,axis='x')
ax2 = ax1.twinx()
res2=np.zeros((b.size,5))
for k in range(b.size):
res2[k,:]=plotCIttest2(y1=P[k][0],y2=P[k][1],x=b[k]+0.1)
plt.ylim([-2/d1*d2,2/d1*d2])
plt.xlim([-10,5])
plt.grid(b=False,axis='y')
plt.plot(np.median(w['beta'],axis=0),[-0.9]*6,'ob')
plt.plot(np.median(w['beta']+np.atleast_2d(w['dd'][:,1]).T,axis=0),[-1.1]*6,'og')
d1=np.median(w['dd'][:,0])
d2=DS[DS[:,0]==1,-2].mean()-DS[DS[:,0]==0,-2].mean()
plt.figure(figsize=(8,4))
ax1=plt.gca()
plt.plot([-10,5],[d1,d1],'r',alpha=0.5)
temp=[list(xs)+list(xs)[::-1],list(res1[:,1])+list(res1[:,2])[::-1]]
ax1.add_patch(plt.Polygon(xy=np.array(temp).T,alpha=0.2,fc='k',ec='k'))
plt.plot(xs,res1[:,0],'k')
plt.ylim([-1.5,2])
plt.xlim([-10,5])
plt.grid(b=False,axis='x')
plt.legend(['True ES','Estimate Ordinal Logit'],loc=8)
plt.ylabel('Estimate Ordinal Logit')
ax2 = ax1.twinx()
temp=[list(b)+list(b)[::-1],list(res2[:,1])+list(res2[:,2])[::-1]]
for t in range(len(temp[0]))[::-1]:
if np.isnan(temp[1][t]):
temp[0].pop(t);temp[1].pop(t)
ax2.add_patch(plt.Polygon(xy=np.array(temp).T,alpha=0.2,fc='m',ec='m'))
plt.plot(b,res2[:,0],'m')
plt.ylim([-1.5/d1*d2,2/d1*d2])
plt.xlim([-10,5])
plt.grid(b=False,axis='y')
plt.plot(np.median(w['beta'],axis=0),[-0.3]*6,'ob')
plt.plot(np.median(w['beta']+np.atleast_2d(w['dd'][:,1]).T,axis=0),[-0.5]*6,'og')
plt.legend(['Estimate T-C','Item Difficulty Orignal Study','Item Difficulty Replication'],loc=4)
plt.ylabel('Estimate T - C',color='m')
for tl in ax2.get_yticklabels():tl.set_color('m')
```
| github_jupyter |
<a href="https://colab.research.google.com/github/chiranjeet14/ML_Journey/blob/master/Hackerearth-Predict_condition_and_insurance_amount/train_models.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
```
!pip3 install xgboost > /dev/null
import pandas as pd
import numpy as np
import io
import gc
import time
from pprint import pprint
# import PIL.Image as Image
# import matplotlib.pylab as plt
from datetime import date
# import tensorflow as tf
# import tensorflow_hub as hub
# settings
import warnings
warnings.filterwarnings("ignore")
gc.enable()
# Calculating Precision, Recall and f1-score
def model_score(actual_value,predicted_values):
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
from sklearn.metrics import recall_score
actual = actual_value
predicted = predicted_values
results = confusion_matrix(actual, predicted)
print('Confusion Matrix :')
print(results)
print('Accuracy Score :',accuracy_score(actual, predicted))
print('Report : ')
print(classification_report(actual, predicted))
print('Recall Score : ')
print(recall_score(actual, predicted))
# connect to google drive
from google.colab import drive
drive.mount('/content/drive')
gDrivePath = '/content/drive/MyDrive/Datasets/Hackerearth_vehicle_insurance_claim/dataset/'
gDriveTrainFinal = gDrivePath + 'final_datasets/train_final.csv'
gDriveTestFinal = gDrivePath + 'final_datasets/test_final.csv'
df_train = pd.read_csv(gDriveTrainFinal)
df_test = pd.read_csv(gDriveTestFinal)
df_train.head()
df_train.sample(n = 10)
df_train.drop(['image_name'], axis=1, inplace=True)
df_test.drop(['image_name'], axis=1, inplace=True)
df_train[['Insurance_company', 'Cost_of_vehicle', 'Min_coverage', 'Max_coverage', 'Condition', 'Amount']].isna().any()
```
### Removing NaN in target variable
```
# select rows where amount is not NaN
df_train = df_train[df_train['Amount'].notna()]
df_train[df_train['Amount'].isna()].shape
# delete rows where Amount < 0
df_train = df_train[df_train['Amount'] >= 0]
df_train[['Cost_of_vehicle', 'Min_coverage', 'Max_coverage', 'Amount']].describe()
selected_columns = ['Cost_of_vehicle', 'Min_coverage', 'Max_coverage']
# replacing nan values with median
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values = np.nan, strategy ='median')
imputer = imputer.fit(df_train[selected_columns])
# Imputing the data
df_train[selected_columns] = imputer.transform(df_train[selected_columns])
df_test[selected_columns] = imputer.transform(df_test[selected_columns])
df_train[['Insurance_company', 'Cost_of_vehicle', 'Min_coverage', 'Max_coverage', 'Condition', 'Amount']].isna().any()
```
### Checking if the dataset is balanced/imbalanced - Condition
```
# python check if dataset is imbalanced : https://www.kaggle.com/rafjaa/resampling-strategies-for-imbalanced-datasets
target_count = df_train['Condition'].value_counts()
print('Class 0 (No):', target_count[0])
print('Class 1 (Yes):', target_count[1])
print('Proportion:', round(target_count[0] / target_count[1], 2), ': 1')
target_count.plot(kind='bar', title='Condition')
```
### Splitting Data into train-cv
```
classification_labels = df_train['Condition'].values
# for regresion delete rows where Condition = 0
df_train_regression = df_train[df_train['Condition'] == 1]
regression_labels = df_train_regression['Amount'].values
######
df_train_regression.drop(['Condition','Amount'], axis=1, inplace=True)
df_train.drop(['Condition','Amount'], axis=1, inplace=True)
df_test.drop(['Condition','Amount'], axis=1, inplace=True, errors='ignore')
# classification split
from sklearn.model_selection import train_test_split
X_train, X_cv, y_train, y_cv = train_test_split(df_train, classification_labels, test_size=0.1)
```
### Over Sampling using SMOTE
```
# https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
from imblearn.over_sampling import SMOTE
smote_overSampling = SMOTE()
X_train,y_train = smote_overSampling.fit_resample(X_train,y_train)
unique, counts = np.unique(y_train, return_counts=True)
dict(zip(unique, counts))
```
### Scaling data
```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_cv_scaled = scaler.transform(X_cv)
X_test_scaled = scaler.transform(df_test)
X_train_scaled
```
## Modelling & Cross-Validation
### Classification
```
%%time
# Train multiple models : https://www.kaggle.com/tflare/testing-multiple-models-with-scikit-learn-0-79425
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.linear_model import LogisticRegressionCV
from xgboost import XGBClassifier
from sklearn.model_selection import cross_val_score
models = []
LogisticRegression = LogisticRegression(n_jobs=-1)
LinearSVC = LinearSVC()
KNeighbors = KNeighborsClassifier(n_jobs=-1)
DecisionTree = DecisionTreeClassifier()
RandomForest = RandomForestClassifier()
AdaBoost = AdaBoostClassifier()
Bagging = BaggingClassifier()
ExtraTrees = ExtraTreesClassifier()
GradientBoosting = GradientBoostingClassifier()
LogisticRegressionCV = LogisticRegressionCV(n_jobs=-1)
XGBClassifier = XGBClassifier(nthread=-1)
# models.append(("LogisticRegression",LogisticRegression))
# models.append(("LinearSVC", LinearSVC))
# models.append(("KNeighbors", KNeighbors))
# models.append(("DecisionTree", DecisionTree))
# models.append(("RandomForest", RandomForest))
models.append(("AdaBoost", AdaBoost))
# models.append(("Bagging", Bagging))
# models.append(("ExtraTrees", ExtraTrees))
# models.append(("GradientBoosting", GradientBoosting))
# models.append(("LogisticRegressionCV", LogisticRegressionCV))
# models.append(("XGBClassifier", XGBClassifier))
# metric_names = ['f1', 'average_precision', 'accuracy', 'precision', 'recall']
metric_names = ['f1']
results = []
names = []
nested_dict = {}
for name,model in models:
nested_dict[name] = {}
for metric in metric_names:
print("\nRunning : {}, with metric : {}".format(name, metric))
score = cross_val_score(model, X_train_scaled, y_train, n_jobs=-1, scoring=metric, cv=5)
nested_dict[name][metric] = score.mean()
import json
print(json.dumps(nested_dict, sort_keys=True, indent=4))
```
### Regression
```
X_train_regression, X_cv_regression, y_train_regression, y_cv_regression = train_test_split(df_train_regression, regression_labels, test_size=0.1)
scaler = StandardScaler()
X_train_scaled_regression = scaler.fit_transform(X_train_regression)
X_cv_scaled_regression = scaler.transform(X_cv_regression)
X_test_scaled_regression = scaler.transform(df_test)
X_train_scaled_regression
%%time
from sklearn.linear_model import LinearRegression, SGDRegressor
from sklearn.svm import SVR, LinearSVR
from sklearn.neighbors import KNeighborsRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import AdaBoostRegressor
from sklearn.ensemble import BaggingRegressor
from sklearn.ensemble import ExtraTreesRegressor
from sklearn.ensemble import GradientBoostingRegressor
from xgboost import XGBClassifier
from sklearn.model_selection import cross_val_score
models = []
LinearReg = LinearRegression(n_jobs=-1)
SGDReg = SGDRegressor()
SVReg = SVR()
LinearSVReg = LinearSVR()
KNeighborsReg = KNeighborsRegressor(n_jobs=-1)
DecisionTreeReg = DecisionTreeRegressor()
RandomForestReg = RandomForestRegressor(n_jobs=-1)
AdaBoostReg = AdaBoostRegressor()
BaggingReg = BaggingRegressor(n_jobs=-1)
ExtraTreesReg = ExtraTreesRegressor(n_jobs=-1)
GradientBoostingReg = GradientBoostingRegressor()
# XGBReg = XGBRegressor(nthread=-1)
# models.append(("LinearRegression",LinearReg))
# models.append(("SGDRegressor",SGDReg))
# models.append(("SVR", SVReg))
# models.append(("LinearSVR", LinearSVReg))
# models.append(("KNeighborsRegressor", KNeighborsReg))
# models.append(("DecisionTreeRegressor", DecisionTreeReg))
# models.append(("RandomForestRegressor", RandomForestReg))
# models.append(("AdaBoostRegressor", AdaBoostReg))
# models.append(("BaggingRegressor", BaggingReg))
models.append(("ExtraTreesRegressor", ExtraTreesReg))
# models.append(("GradientBoostingRegressor", GradientBoostingReg))
# models.append(("XGBReg", XGBRegressor))
# metric_names = ['f1', 'average_precision', 'accuracy', 'precision', 'recall']
metric_names = ['r2']
results = []
names = []
nested_dict = {}
# for name,model in models:
# nested_dict[name] = {}
# for metric in metric_names:
# print("\nRunning : {}, with metric : {}".format(name, metric))
# score = cross_val_score(model, X_train_scaled_regression, y_train_regression, n_jobs=-1, scoring=metric, cv=5)
# nested_dict[name][metric] = score.mean()
# import json
# print(json.dumps(nested_dict, sort_keys=True, indent=4))
# # Hyperparameter tuning ExtraTreesRegressor
# # ExtraTreesRegressor(bootstrap=True, criterion='mae',n_estimators=100, warm_start=True,
# # max_depth=None, max_features='auto', max_leaf_nodes=None,
# # max_samples=None, min_impurity_decrease=0.0,
# # min_impurity_split=None, min_samples_leaf=1,
# # min_samples_split=2, min_weight_fraction_leaf=0.0,
# # n_jobs=-1, oob_score=False,
# # random_state=None, verbose=0)
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
model = ExtraTreesRegressor(n_jobs=-1, bootstrap=True, criterion='mae', warm_start=True, max_depth=9, max_features='auto')
param_grid = {
# 'n_estimators': np.arange(100, 3000, 100, dtype=int),
# 'criterion': ['mse', 'mae'],
# 'max_depth': np.arange(5, 16, 1, dtype=int),
# 'bootstrap': [True, False],
# 'max_features': ['auto', 'sqrt', 'log2'],
# 'max_features': np.arange(100, 1540, 20, dtype=int),
# 'warm_start': [True, False],
}
gsc = GridSearchCV(estimator=model, param_grid=param_grid, scoring='r2', cv=5, n_jobs=-1, verbose=1000)
grid_result = gsc.fit(X_train_scaled_regression, y_train_regression)
# n_iter_search = 100
# random_search = RandomizedSearchCV(estimator=model, param_distributions=param_grid, n_iter=n_iter_search, scoring='r2', cv=3, n_jobs=-1, verbose=500)
# random_search.fit(X_train, y_train)
print("Best: %f using %s" % (grid_result.best_score_, grid_result.best_params_))
```
### Predicting on CV data
```
classification_alg = AdaBoost
# regression_alg = ExtraTreesReg
# hypertuned model
regression_alg = gsc
classification_alg.fit(X_train_scaled, y_train)
regression_alg.fit(X_train_scaled_regression, y_train_regression)
# predictions_class = classification_alg.predict(X_cv)
# pprint(classification_alg.get_params())
# model_score(y_cv,predictions)
```
### Predicting on test Data
```
trained_classifier = classification_alg
trained_regressor = regression_alg
predictions_trained_classifier_test = trained_classifier.predict(X_test_scaled)
predictions_trained_regressor_test = trained_regressor.predict(X_test_scaled_regression)
read = pd.read_csv(gDrivePath + 'test.csv')
submission = pd.DataFrame({
"Image_path": read["Image_path"],
"Condition": predictions_trained_classifier_test,
"Amount": predictions_trained_regressor_test
})
submission.head()
submission['Amount'][submission.Condition == 0] = 0
submission[submission['Condition'] == 0].sample(n = 10)
submission.Amount = submission.Amount.round()
submission.head()
submission.to_csv('./submission.csv', index=False)
```
| github_jupyter |
# Build a Traffic Sign Recognition Classifier Deep Learning
Some improvements are taken :
- [x] Adding of convolution networks at the same size of previous layer, to get 1x1 layer
- [x] Activation function use 'ReLU' instead of 'tanh'
- [x] Adaptative learning rate, so learning rate is decayed along to training phase
- [x] Enhanced training dataset
## Load and Visualize the Enhanced training dataset
From the original standard German Traffic Signs dataset, we add some 'generalized' sign to cover cases that the classifier can not well interpret small figures inside.
`Also`, in our Enhanced training dataset, each figure is taken from standard library - not from road images, so they are very clear and in high-definition.
*Enhanced traffic signs ↓*
<img src="figures/enhanced_training_dataset_text.png" alt="Drawing" style="width: 600px;"/>
```
# load enhanced traffic signs
import os
import cv2
import matplotlib.pyplot as plot
import numpy
dir_enhancedsign = 'figures\enhanced_training_dataset2'
files_enhancedsign = [os.path.join(dir_enhancedsign, f) for f in os.listdir(dir_enhancedsign)]
# read & resize (32,32) images in enhanced dataset
images_enhancedsign = numpy.array([cv2.cvtColor(cv2.resize(cv2.imread(f), (32,32), interpolation = cv2.INTER_AREA), cv2.COLOR_BGR2RGB) for f in files_enhancedsign])
# plot new test images
fig, axes = plot.subplots(7, 8)
plot.suptitle('Enhanced training dataset')
for i, ax in enumerate(axes.ravel()):
if i < 50:
ax.imshow(images_enhancedsign[i])
# ax.set_title('{}'.format(i))
plot.setp(ax.get_xticklabels(), visible=False)
plot.setp(ax.get_yticklabels(), visible=False)
ax.set_xticks([]), ax.set_yticks([])
ax.axis('off')
plot.draw()
fig.savefig('figures/' + 'enhancedsign' + '.jpg', dpi=700)
print("Image Shape : {}".format(images_enhancedsign[0].shape))
print()
print("Enhanced Training Dataset : {} samples".format(len(images_enhancedsign)))
# classes of enhanced dataset are taken from their filenames
import re
regex = re.compile(r'\d+')
y_enhancedsign = [int(regex.findall(f)[0]) for f in os.listdir(dir_enhancedsign)]
print(y_enhancedsign)
```
*Enhanced German traffic signs dataset ↓*
<img src="figures/enhanced_training_dataset.png" alt="Drawing" style="width: 600px;"/>
**We would have 50 classes in total with new enhanced training dataset :**
```
n_classes_enhanced = len(numpy.unique(y_enhancedsign))
print('n_classes enhanced : {}'.format(n_classes_enhanced))
```
## Load and Visualize the standard German Traffic Signs Dataset
```
# Load pickled data
import pickle
import numpy
# TODO: Fill this in based on where you saved the training and testing data
training_file = 'traffic-signs-data/train.p'
validation_file = 'traffic-signs-data/valid.p'
testing_file = 'traffic-signs-data/test.p'
with open(training_file, mode='rb') as f:
train = pickle.load(f)
with open(validation_file, mode='rb') as f:
valid = pickle.load(f)
with open(testing_file, mode='rb') as f:
test = pickle.load(f)
X_train, y_train = train['features'], train['labels'] # training dataset
X_valid, y_valid = valid['features'], valid['labels'] # validation dataset used in training phase
X_test, y_test = test['features'], test['labels'] # test dataset
n_classes_standard = len(numpy.unique(y_train))
assert(len(X_train) == len(y_train))
assert(len(X_valid) == len(y_valid))
assert(len(X_test) == len(y_test))
print("Image Shape : {}".format(X_train[0].shape))
print()
print("Training Set : {} samples".format(len(X_train)))
print("Validation Set : {} samples".format(len(X_valid)))
print("Test Set : {} samples".format(len(X_test)))
print('n_classes standard : {}'.format(n_classes_standard))
n_classes = n_classes_enhanced
```
## Implementation of LeNet
>http://yann.lecun.com/exdb/publis/pdf/sermanet-ijcnn-11.pdf
Above is the original article of Pierre Sermanet and Yann LeCun in 1998 that we can follow to create LeNet convolutional networks with a good accuracy even for very-beginners in deep-learning.
It's really excited to see that many years of works now could be implemented in just 9 lines of code thank to Keras high-level API !
(low-level API implementation with Tensorflow 1 is roughly 20 lines of code)
>Here is also an interesting medium article :
https://medium.com/@mgazar/lenet-5-in-9-lines-of-code-using-keras-ac99294c8086
```
### Import tensorflow and keras
import tensorflow as tf
from tensorflow import keras
print ("TensorFlow version: " + tf.__version__)
```
### 2-stage ConvNet architecture by Pierre Sermanet and Yann LeCun
We will try to implement the 2-stage ConvNet architecture by Pierre Sermanet and Yann LeCun which is not sequential.
Keras disposes keras.Sequential() API for sequential architectures but it can not handle models with non-linear topology, shared layers or multi-in/output. So the choose of the 2-stage ConvNet architecture by `Pierre Sermanet` and `Yann LeCun` is to challenge us also.
<img src="figures/lenet_2.png" alt="Drawing" style="width: 550px;"/>
>Source: "Traffic Sign Recognition with Multi-Scale Convolutional Networks" by `Pierre Sermanet` and `Yann LeCun`
Here in this architecture, the 1st stage's ouput is feed-forward to the classifier (could be considered as a 3rd stage).
```
#LeNet model
inputs = keras.Input(shape=(32,32,3), name='image_in')
#0 stage :conversion from normalized RGB [0..1] to HSV
layer_HSV = tf.image.rgb_to_hsv(inputs)
#1st stage ___________________________________________________________
#Convolution with ReLU activation
layer1_conv = keras.layers.Conv2D(256, kernel_size=(5,5), strides=1, activation='relu', padding='valid')(layer_HSV)
#Average Pooling
layer1_maxpool = keras.layers.MaxPooling2D(pool_size=(2,2), strides=2, padding='valid')(layer1_conv)
#Conv 1x1
layer1_conv1x1 = keras.layers.Conv2D(256, kernel_size=(14,14), strides=1, activation='relu', padding='valid')(layer1_maxpool)
#2nd stage ___________________________________________________________
#Convolution with ReLU activation
layer2_conv = keras.layers.Conv2D(64, kernel_size=(5,5), strides=1, activation='relu', padding='valid')(layer1_maxpool)
#MaxPooling 2D
layer2_maxpool = keras.layers.MaxPooling2D(pool_size=(2,2), strides=2, padding='valid')(layer2_conv)
#Conv 1x1
layer2_conv1x1 = keras.layers.Conv2D(512, kernel_size=(5,5), strides=1, activation='relu', padding='valid')(layer2_maxpool)
#3rd stage | Classifier ______________________________________________
#Concate
layer3_flatten_1 = keras.layers.Flatten()(layer1_conv1x1)
layer3_flatten_2 = keras.layers.Flatten()(layer2_conv1x1)
layer3_concat = keras.layers.Concatenate()([layer3_flatten_1, layer3_flatten_2])
#Dense (fully-connected)
layer3_dense_1 = keras.layers.Dense(units=129, activation='relu', kernel_initializer="he_normal")(layer3_concat)
# layer3_dense_2 = keras.layers.Dense(units=129, activation='relu', kernel_initializer="he_normal")(layer3_dense_1)
#Dense (fully-connected) | logits for 43 categories (n_classes)
outputs = keras.layers.Dense(units=n_classes)(layer3_dense_1)
LeNet_Model = keras.Model(inputs, outputs, name="LeNet_Model_improved")
#Plot model architecture
LeNet_Model.summary()
keras.utils.plot_model(LeNet_Model, "figures/LeNet_improved_HLS.png", show_shapes=True)
```
### Input preprocessing
#### Color-Space
Pierre Sermanet and Yann LeCun used YUV color space with almost of processings on Y-channel (Y stands for brightness, U and V stand for Chrominance).
#### Normalization
Each channel of an image is in uint8 scale (0-255), we will normalize each channel to 0-1.
Generally, we normalize data to get them center around -1 and 1, to prevent numrical errors due to many steps of matrix operation. Imagine that we have 255x255x255x255xk operation, it could give a huge numerical error if we just have a small error in k.
```
import cv2
def input_normalization(X_in):
X = numpy.float32(X_in/255.0)
return X
# normalization of dataset
# enhanced training dataset is added
X_train_norm = input_normalization(X_train)
X_valid_norm = input_normalization(X_valid)
X_enhancedtrain_norm = input_normalization(images_enhancedsign)
# one-hot matrix
y_train_onehot = keras.utils.to_categorical(y_train, n_classes)
y_valid_onehot = keras.utils.to_categorical(y_valid, n_classes)
y_enhanced_onehot = keras.utils.to_categorical(y_enhancedsign, n_classes)
print(X_train_norm.shape)
print('{0:.4g}'.format(numpy.max(X_train_norm)))
print('{0:.3g}'.format(numpy.min(X_train_norm)))
print(X_enhancedtrain_norm.shape)
print('{0:.4g}'.format(numpy.max(X_enhancedtrain_norm)))
print('{0:.3g}'.format(numpy.min(X_enhancedtrain_norm)))
```
### Training Pipeline
_Optimizer : we use Adam optimizer, better than SDG (Stochastic Gradient Descent)
_Loss function : Cross Entropy by category
_Metrics : accuracy
*learning rate 0.001 work well with our network, it's better to try with small laerning rate in the begining.
```
rate = 0.001
LeNet_Model.compile(
optimizer=keras.optimizers.Nadam(learning_rate = rate, beta_1=0.9, beta_2=0.999, epsilon=1e-07),
loss=keras.losses.CategoricalCrossentropy(from_logits=True),
metrics=["accuracy"])
```
### Real-time data augmentation
```
from tensorflow.keras.preprocessing.image import ImageDataGenerator
datagen_enhanced = ImageDataGenerator(
rotation_range=30.0,
zoom_range=0.5,
width_shift_range=0.5,
height_shift_range=0.5,
featurewise_center=True,
featurewise_std_normalization=True,
horizontal_flip=False)
datagen_enhanced.fit(X_enhancedtrain_norm)
from tensorflow.keras.preprocessing.image import ImageDataGenerator
datagen = ImageDataGenerator(
rotation_range=15.0,
zoom_range=0.2,
width_shift_range=0.1,
height_shift_range=0.1,
featurewise_center=False,
featurewise_std_normalization=False,
horizontal_flip=False)
datagen.fit(X_train_norm)
```
### Train the Model
###### on standard training dataset
```
EPOCHS = 30
BATCH_SIZE = 32
STEPS_PER_EPOCH = int(len(X_train_norm)/BATCH_SIZE)
history_standard_HLS = LeNet_Model.fit(
datagen.flow(X_train_norm, y_train_onehot, batch_size=BATCH_SIZE,shuffle=True),
validation_data=(X_valid_norm, y_valid_onehot),
shuffle=True,
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS)
```
###### on enhanced training dataset
```
EPOCHS = 30
BATCH_SIZE = 1
STEPS_PER_EPOCH = int(len(X_enhancedtrain_norm)/BATCH_SIZE)
history_enhanced_HLS = LeNet_Model.fit(
datagen_enhanced.flow(X_enhancedtrain_norm, y_enhanced_onehot, batch_size=BATCH_SIZE,shuffle=True),
shuffle=True, #validation_data=(X_valid_norm, y_valid_onehot),
steps_per_epoch=STEPS_PER_EPOCH,
epochs=EPOCHS)
LeNet_Model.save("LeNet_enhanced_trainingdataset_HLS.h5")
```
### Evaluate the Model
We will use the test dataset to evaluate classification accuracy.
```
#Normalize test dataset
X_test_norm = input_normalization(X_test)
#One-hot matrix
y_test_onehot = keras.utils.to_categorical(y_test, n_classes)
#Load saved model
reconstructed_LeNet_Model = keras.models.load_model("LeNet_enhanced_trainingdataset_HLS.h5")
#Evaluate and display the prediction
result = reconstructed_LeNet_Model.evaluate(X_test_norm,y_test_onehot)
dict(zip(reconstructed_LeNet_Model.metrics_names, result))
pickle.dump(history_enhanced_HLS.history, open( "history_LeNet_enhanced_trainingdataset_enhanced_HLS.p", "wb" ))
pickle.dump(history_standard_HLS.history, open( "history_LeNet_enhanced_trainingdataset_standard_HLS.p", "wb" ))
with open("history_LeNet_enhanced_trainingdataset_standard_HLS.p", mode='rb') as f:
history_ = pickle.load(f)
import matplotlib.pyplot as plt
# Plot training error.
print('\nPlot of training error over 30 epochs:')
fig = plt.figure()
plt.title('Training error')
plt.ylabel('Cost')
plt.xlabel('epoch')
plt.plot(history_['loss'])
plt.plot(history_['val_loss'])
# plt.plot(history.history['loss'])
# plt.plot(history.history['val_loss'])
plt.legend(['train loss', 'val loss'], loc='upper right')
plt.grid()
plt.show()
fig.savefig('figures/Training_loss_LeNet_enhanced_trainingdataset_standard_HLS.png', dpi=500)
# Plot training error.
print('\nPlot of training accuracy over 30 epochs:')
fig = plt.figure()
plt.title('Training accuracy')
plt.ylabel('Accuracy')
plt.ylim([0.4, 1])
plt.xlabel('epoch')
plt.plot(history_['accuracy'])
plt.plot(history_['val_accuracy'])
plt.legend(['training_accuracy', 'validation_accuracy'], loc='lower right')
plt.grid()
plt.show()
fig.savefig('figures/Training_accuracy_LeNet_enhanced_trainingdataset_HLS.png', dpi=500)
```
### Prediction of test dataset with trained model
We will use the test dataset to test trained model's prediction of instances that it has never seen during training.
```
print("Test Set : {} samples".format(len(X_test)))
print('n_classes : {}'.format(n_classes))
X_test.shape
#Normalize test dataset
X_test_norm = input_normalization(X_test)
#One-hot matrix
y_test_onehot = keras.utils.to_categorical(y_test, n_classes)
#Load saved model
reconstructed = keras.models.load_model("LeNet_enhanced_trainingdataset_HLS.h5")
#Evaluate and display the prediction
prediction_performance = reconstructed.evaluate(X_test_norm,y_test_onehot)
dict(zip(reconstructed.metrics_names, prediction_performance))
import matplotlib.pyplot as plot
%matplotlib inline
rows, cols = 4, 12
fig, axes = plot.subplots(rows, cols)
for idx, ax in enumerate(axes.ravel()):
if idx < n_classes_standard :
X_test_of_class = X_test[y_test == idx]
#X_train_0 = X_train_of_class[numpy.random.randint(len(X_train_of_class))]
X_test_0 = X_test_of_class[0]
ax.imshow(X_test_0)
ax.axis('off')
ax.set_title('{:02d}'.format(idx))
plot.setp(ax.get_xticklabels(), visible=False)
plot.setp(ax.get_yticklabels(), visible=False)
else:
ax.axis('off')
#
plot.draw()
fig.savefig('figures/' + 'test_representative' + '.jpg', dpi=700)
#### Prediction for all instances inside the test dataset
y_pred_proba = reconstructed.predict(X_test_norm)
y_pred_class = y_pred_proba.argmax(axis=-1)
### Showing prediction results for 10 first instances
for i, pred in enumerate(y_pred_class):
if i <= 10:
print('Image {} - Target = {}, Predicted = {}'.format(i, y_test[i], pred))
else:
break
```
We will display a confusion matrix on test dataset to figure out our error-rate.
`X_test_norm` : test dataset
`y_test` : test dataset ground truth labels
`y_pred_class` : prediction labels on test dataset
```
confusion_matrix = numpy.zeros([n_classes, n_classes])
```
#### confusion_matrix
`column` : test dataset ground truth labels
`row` : prediction labels on test dataset
`diagonal` : incremented when prediction matches ground truth label
```
for ij in range(len(X_test_norm)):
if y_test[ij] == y_pred_class[ij]:
confusion_matrix[y_test[ij],y_test[ij]] += 1
else:
confusion_matrix[y_pred_class[ij],y_test[ij]] -= 1
column_label = [' L % d' % x for x in range(n_classes)]
row_label = [' P % d' % x for x in range(n_classes)]
# Plot classe representatives
import matplotlib.pyplot as plot
%matplotlib inline
rows, cols = 1, 43
fig, axes = plot.subplots(rows, cols)
for idx, ax in enumerate(axes.ravel()):
if idx < n_classes :
X_test_of_class = X_test[y_test == idx]
X_test_0 = X_test_of_class[0]
ax.imshow(X_test_0)
plot.setp(ax.get_xticklabels(), visible=False)
plot.setp(ax.get_yticklabels(), visible=False)
# plot.tick_params(axis='both', which='both', bottom='off', top='off',
# labelbottom='off', right='off', left='off', labelleft='off')
ax.axis('off')
plot.draw()
fig.savefig('figures/' + 'label_groundtruth' + '.jpg', dpi=3500)
numpy.savetxt("confusion_matrix_LeNet_enhanced_trainingdataset_HLS.csv", confusion_matrix, delimiter=";")
```
#### Thank to confusion matrix, we could identify where to enhance
-[x] training dataset
-[x] real-time data augmentation
-[x] preprocessing
*Extract of confusion matrix of classification on test dataset ↓*
<img src="figures/confusion_matrix_LeNet_enhanced_trainingdataset_HLS.png" alt="Drawing" style="width: 750px;"/>
### Prediction of new instances with trained model
We will use the test dataset to test trained model's prediction of instances that it has never seen during training.
I didn't 'softmax' activation in the last layer of LeNet architecture, so the output prediction is logits. To have prediction confidence level, we can apply softmax function to output logits.
```
# load french traffic signs
import os
import cv2
import matplotlib.pyplot as plot
import numpy
dir_frenchsign = 'french_traffic-signs-data'
images_frenchsign = [os.path.join(dir_frenchsign, f) for f in os.listdir(dir_frenchsign)]
images_frenchsign = numpy.array([cv2.cvtColor(cv2.imread(f), cv2.COLOR_BGR2RGB) for f in images_frenchsign])
# plot new test images
fig, axes = plot.subplots(3, int(len(images_frenchsign)/3))
plot.title('French traffic signs')
for i, ax in enumerate(axes.ravel()):
ax.imshow(images_frenchsign[i])
ax.set_title('{}'.format(i))
plot.setp(ax.get_xticklabels(), visible=False)
plot.setp(ax.get_yticklabels(), visible=False)
ax.set_xticks([]), ax.set_yticks([])
ax.axis('off')
plot.draw()
fig.savefig('figures/' + 'french_sign' + '.jpg', dpi=700)
```
*Enhanced German traffic signs dataset ↓*
<img src="figures/enhanced_training_dataset.png" alt="Drawing" style="width: 700px;"/>
```
# manually label for these new images
y_frenchsign = [13, 31, 29, 24, 26, 27, 33, 17, 15, 34, 12, 2, 2, 4, 2]
n_classes = n_classes_enhanced
# when a sign doesn't present in our training dataset, we'll try to find a enough 'similar' sign to label it.
# image 2 : class 29 differed
# image 3 : class 24, double-sens not existed
# image 5 : class 27 differed
# image 6 : class 33 not existed
# image 7 : class 17, halte-péage not existed
# image 8 : class 15, 3.5t limit not existed
# image 9 : class 15, turn-left inhibition not existed
# image 12 : class 2, ending of 50kmh speed-limit not existed
# image 14 : class 2, 90kmh speed-limit not existed
```
#### it's really intersting that somes common french traffic signs are not present in INI German traffic signs dataset or differed
Whatever our input - evenif it's not present in the training dataset, by using softmax activation our classififer can not say that 'this is a new traffic sign that it doesn't recognize' (sum of probability across all classes is 1), it's just try to find class that probably suit for the input.
```
#Normalize the dataset
X_frenchsign_norm = input_normalization(images_frenchsign)
#One-hot matrix
y_frenchsign_onehot = keras.utils.to_categorical(y_frenchsign, n_classes)
#Load saved model
reconstructed = keras.models.load_model("LeNet_enhanced_trainingdataset_HLS.h5")
#Evaluate and display the prediction performance
prediction_performance = reconstructed.evaluate(X_frenchsign_norm, y_frenchsign_onehot)
dict(zip(reconstructed.metrics_names, prediction_performance))
#### Prediction for all instances inside the test dataset
y_pred_logits = reconstructed.predict(X_frenchsign_norm)
y_pred_proba = tf.nn.softmax(y_pred_logits).numpy()
y_pred_class = y_pred_proba.argmax(axis=-1)
### Showing prediction results
for i, pred in enumerate(y_pred_class):
print('Image {} - Target = {}, Predicted = {}'.format(i, y_frenchsign[i], pred))
```
*French traffic signs to classsify ↓*
<img src="figures/french_sign_compare_german_INI_enhanced.jpg" alt="Drawing" style="width: 750px;"/>
```
#### plot softmax probs along with traffic sign examples
n_img = X_frenchsign_norm.shape[0]
fig, axarray = plot.subplots(n_img, 2)
plot.suptitle('Visualization of softmax probabilities', fontweight='bold')
for r in range(0, n_img):
axarray[r, 0].imshow(numpy.squeeze(images_frenchsign[r]))
axarray[r, 0].set_xticks([]), axarray[r, 0].set_yticks([])
plot.setp(axarray[r, 0].get_xticklabels(), visible=False)
plot.setp(axarray[r, 0].get_yticklabels(), visible=False)
axarray[r, 1].bar(numpy.arange(n_classes), y_pred_proba[r])
axarray[r, 1].set_ylim([0, 1])
plot.setp(axarray[r, 1].get_yticklabels(), visible=False)
plot.draw()
fig.savefig('figures/' + 'french_sign_softmax_visuali_LeNet_enhanced_trainingdataset_HLS' + '.jpg', dpi=700)
K = 3
#### print top K predictions of the model for each example, along with confidence (softmax score)
for i in range(len(images_frenchsign)):
print('Top {} model predictions for image {} (Target is {:02d})'.format(K, i, y_frenchsign[i]))
top_3_idx = numpy.argsort(y_pred_proba[i])[-3:]
top_3_values = y_pred_proba[i][top_3_idx]
top_3_logits = y_pred_logits[i][top_3_idx]
for k in range(K):
print(' Prediction = {:02d} with probability {:.4f} (logit is {:.4f})'.format(top_3_idx[k], top_3_values[k], top_3_logits[k]))
```
*Visualization of softmax probabilities ↓*
<img src="figures/french_sign_softmax_visuali_LeNet_enhanced_trainingdataset_HLS.jpg" alt="Drawing" style="width: 750px;"/>
## Visualization of layers
```
### Import tensorflow and keras
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import Model
import matplotlib.pyplot as plot
print ("TensorFlow version: " + tf.__version__)
# Load pickled data
import pickle
import numpy
training_file = 'traffic-signs-data/train.p'
with open(training_file, mode='rb') as f:
train = pickle.load(f)
X_train, y_train = train['features'], train['labels'] # training dataset
n_classes = len(numpy.unique(y_train))
import cv2
def input_normalization(X_in):
X = numpy.float32(X_in/255.0)
return X
# normalization of dataset
X_train_norm = input_normalization(X_train)
# one-hot matrix
y_train_onehot = keras.utils.to_categorical(y_train, n_classes)
#Load saved model
reconstructed = keras.models.load_model("LeNet_enhanced_trainingdataset_HLS.h5")
#Build model for layer display
layers_output = [layer.output for layer in reconstructed.layers]
outputs_model = Model(inputs=reconstructed.input, outputs=layers_output)
outputs_history = outputs_model.predict(X_train_norm[900].reshape(1,32,32,3))
```
#### Display analized input
```
plot.imshow(X_train[900])
def display_layer(outputs_history, col_size, row_size, layer_index):
activation = outputs_history[layer_index]
activation_index = 0
fig, ax = plot.subplots(row_size, col_size, figsize=(row_size*2.5,col_size*1.5))
for row in range(0,row_size):
for col in range(0,col_size):
ax[row][col].axis('off')
if activation_index < activation.shape[3]:
ax[row][col].imshow(activation[0, :, :, activation_index]) # , cmap='gray'
activation_index += 1
display_layer(outputs_history, 3, 2, 1)
display_layer(outputs_history, 8, 8, 2)
display_layer(outputs_history, 8, 8, 3)
display_layer(outputs_history, 8, 8, 4)
```
| github_jupyter |
```
import escher
import escher.urls
import cobra
import cobra.test
import json
import os
from IPython.display import HTML
from copy import deepcopy
d = escher.urls.root_directory
print('Escher directory: %s' % d)
```
### Embed an Escher map in an IPython notebook
```
escher.list_available_maps()
b = escher.Builder(map_name='e_coli_core.Core metabolism')
b.display_in_notebook()
```
### Plot FBA solutions in Escher
```
model = cobra.io.load_json_model( "iECW_1372.json") # E coli metabolic model
FBA_Solution = model.optimize() # FBA of the original model
print('Original Growth rate: %.9f' % FBA_Solution.f)
b = escher.Builder(map_name='e_coli_core.Core metabolism',
reaction_data=FBA_Solution.x_dict,
# color and size according to the absolute value
reaction_styles=['color', 'size', 'abs', 'text'],
# change the default colors
reaction_scale=[{'type': 'min', 'color': '#cccccc', 'size': 4},
{'type': 'mean', 'color': '#0000dd', 'size': 20},
{'type': 'max', 'color': '#ff0000', 'size': 40}],
# only show the primary metabolites
hide_secondary_metabolites=True,
highlight_missing = True)
b.display_in_notebook()
#b.display_in_browser()
# MAP EDITION
model_knockout = model.copy()
cobra.manipulation.delete_model_genes(model_knockout, ["ECW_m3223"]) #ODC
cobra.manipulation.delete_model_genes(model_knockout, ["ECW_m0743"]) #ODC
cobra.manipulation.delete_model_genes(model_knockout, ["ECW_m3196"]) #Agmatinase.
knockout_FBA_solution = model_knockout.optimize() # FBA of the knockout
print('Knockout Growth rate: %.9f' % knockout_FBA_solution.f)
#PASS THE MODEL TO A NEW BUILDER
b = escher.Builder(map_name='e_coli_core.Core metabolism',
reaction_data=knockout_FBA_solution.x_dict,
# color and size according to the absolute value
reaction_styles=['color', 'size', 'abs', 'text'],
# change the default colors
reaction_scale=[{'type': 'min', 'color': '#cccccc', 'size': 4},
{'type': 'mean', 'color': '#0000dd', 'size': 20},
{'type': 'max', 'color': '#ff0000', 'size': 40}],
# only show the primary metabolites
hide_secondary_metabolites=True,
highlight_missing = True)
b.display_in_notebook()
#b.display_in_browser()
```
| github_jupyter |
```
x =2
r = lambda x:x**2
r(x)
r1 = lambda x:x**2 if x>3 else None
r1(x)
r1(5)
#object
#using class keyword
#creating the attributes
#creating the methods in class
#learning about inheritence in python
#learning about polymorphism
lt = [1,2,3,4]
lt.count(4)
print(type(1))
print(type([]))
print(type(()))
print(type({}))
#Create a new Object type ca;;ed test_sample
class TestSample:
pass
#Instance of the object
x = TestSample()
print(type(x))
class Dog:
def __init__(self,breed):
self.breed = breed
tuku = Dog(breed="Dalmi")
tuku.breed
#Init Method is constructor
#Self is keyword used for like this keyword
```
# Methods
```
class ourCircle:
pi = 3.14
def __init__(self,radius=1):
self.radius = radius
self.area = self.getArea(radius)
def setRadius(self,new_radius):
self.radius = new_radius
self = new_radius * new_radius * self.pi
def getCircumference(self):
return self.radius * self.pi * 2
def getArea(self,radius):
return radius * radius * self.pi
cir = ourCircle()
cir.getCircumference()
cir.getArea(2)
```
# Inheritance
```
class Animal:
def __init__(self):
print("Animal Object Cost Created")
def whoAmI(self):
print("I am Animal Class")
def eat(self):
print("I am eating")
a = Animal()
a.eat()
class Man(Animal):
def __init__(self):
Animal.__init__(self)
m = Man()
m.eat()
#Polymorphism
#Exception Handling
try:
f =open('test','w')
# f.write("rams")
f.read()
except IOError:
print('geting error')
else:
print("Print CONETENT SUCCESS")
f.close()
print("Error Handle by try and catch")
try:
a='ram'
b=10
print(a+b)
except Exception as e:
print(e.args)
try:
a='ram'
b=10
print(a+b)
except Exception as e:
print(e.args)
finally:
print("i'm getting error")
while False:
print("rams")
else:
print("vijay")
#pip install pylint
%%writefile simple.py
a=10
print(a)
! pylint simple.py
%%writefile simple.py
'''
A very simple script
'''
def fun():
first = 1
second = 2
print(first)
print(second)
fun()
!pylint simple.py
#UnitTest
%%writefile capitalize_text.py
def capitalize_test(text):
return text.capitalize_t()
%%writefile test_file.py
import unittest
import capitalize_text
class TestCap(unittest.TestCase):
def test_one_word(self):
test = "python"
result = capitalize_text.capitalize_test(text)
self.assertEqual(result,'python')
def test_multiple_words(self):
text = "my python"
result = capitalize_text.capitalize_test(text)
self.assertEqual(result,'my python')
if __name__ == '__main__':
unittest.main()
! python test_file.py
! pylint capitalize_text.py
```
| github_jupyter |
# Simulating Grover's Search Algorithm with 2 Qubits
```
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
```
Define the zero and one vectors
Define the initial state $\psi$
```
zero = np.matrix([[1],[0]]);
one = np.matrix([[0],[1]]);
psi = np.kron(zero,zero);
print(psi)
```
Define the gates we will use:
$
\text{Id} = \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix},
\quad
X = \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix},
\quad
Z = \begin{pmatrix}
1 & 0 \\
0 & -1
\end{pmatrix},
\quad
H = \frac{1}{\sqrt{2}}\begin{pmatrix}
1 & 1 \\
1 & -1
\end{pmatrix},
\quad
\text{CNOT} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix},
\quad
CZ = (\text{Id} \otimes H) \text{ CNOT } (\text{Id} \otimes H)
$
```
Id = np.matrix([[1,0],[0,1]]);
X = np.matrix([[0,1],[1,0]]);
Z = np.matrix([[1,0],[0,-1]]);
H = np.sqrt(0.5) * np.matrix([[1,1],[1,-1]]);
CNOT = np.matrix([[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]]);
CZ = np.kron(Id,H).dot(CNOT).dot(np.kron(Id,H));
print(CZ)
```
Define the oracle for Grover's algorithm (take search answer to be "10")
$
\text{oracle} = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
= (Z \otimes \text{Id}) CZ
$
Use different combinations of $Z \otimes \text{Id}$ to change where search answer is.
```
oracle = np.kron(Z,Id).dot(CZ);
print(oracle)
```
Act the H gates on the input vector and apply the oracle
```
psi0 = np.kron(H,H).dot(psi);
psi1 = oracle.dot(psi0);
print(psi1)
```
Remember that when we measure the result ("00", "01", "10", "11") is chosen randomly with probabilities given by the vector elements squared.
```
print(np.multiply(psi1,psi1))
```
There is no difference between any of the probabilities. It's still just a 25% chance of getting the right answer.
We need some of gates after the oracle before measuring to converge on the right answer.
These gates do the operation $W = \frac{1}{2}\begin{pmatrix}
-1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1
\end{pmatrix}
=
(H \otimes H)(Z \otimes Z) CZ (H \otimes H)
$
Notice that if the matrix W is multiplied by the vector after the oracle, W $\frac{1}{2}\begin{pmatrix}
1 \\
1 \\
-1 \\
1
\end{pmatrix}
= \begin{pmatrix}
0 \\
0 \\
1 \\
0
\end{pmatrix} $,
every vector element decreases, except the correct answer element which increases. This would be true if if we chose a different place for the search result originally.
```
W = np.kron(H,H).dot(np.kron(Z,Z)).dot(CZ).dot(np.kron(H,H));
print(W)
psif = W.dot(psi1);
print(np.multiply(psif,psif))
x = [0,1,2,3];
xb = [0.25,1.25,2.25,3.25];
labels=['00', '01', '10', '11'];
plt.axis([-0.5,3.5,-1.25,1.25]);
plt.xticks(x,labels);
plt.bar(x, np.ravel(psi0), 1/1.5, color="red");
plt.bar(xb, np.ravel(np.multiply(psi0,psi0)), 1/2., color="blue");
labels=['00', '01', '10', '11'];
plt.axis([-0.5,3.5,-1.25,1.25]);
plt.xticks(x,labels);
plt.bar(x, np.ravel(psi1), 1/1.5, color="red");
plt.bar(xb, np.ravel(np.multiply(psi1,psi1)), 1/2., color="blue");
labels=['00', '01', '10', '11'];
plt.axis([-0.5,3.5,-1.25,1.25]);
plt.xticks(x,labels);
plt.bar(x, np.ravel(psif), 1/1.5, color="red");
plt.bar(xb, np.ravel(np.multiply(psif,psif)), 1/2., color="blue");
```
| github_jupyter |
<table class="ee-notebook-buttons" align="left">
<td><a target="_blank" href="https://github.com/giswqs/earthengine-py-notebooks/tree/master/Visualization/image_color_ramp.ipynb"><img width=32px src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" /> View source on GitHub</a></td>
<td><a target="_blank" href="https://nbviewer.jupyter.org/github/giswqs/earthengine-py-notebooks/blob/master/Visualization/image_color_ramp.ipynb"><img width=26px src="https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/883px-Jupyter_logo.svg.png" />Notebook Viewer</a></td>
<td><a target="_blank" href="https://mybinder.org/v2/gh/giswqs/earthengine-py-notebooks/master?filepath=Visualization/image_color_ramp.ipynb"><img width=58px src="https://mybinder.org/static/images/logo_social.png" />Run in binder</a></td>
<td><a target="_blank" href="https://colab.research.google.com/github/giswqs/earthengine-py-notebooks/blob/master/Visualization/image_color_ramp.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" /> Run in Google Colab</a></td>
</table>
## Install Earth Engine API
Install the [Earth Engine Python API](https://developers.google.com/earth-engine/python_install) and [geehydro](https://github.com/giswqs/geehydro). The **geehydro** Python package builds on the [folium](https://github.com/python-visualization/folium) package and implements several methods for displaying Earth Engine data layers, such as `Map.addLayer()`, `Map.setCenter()`, `Map.centerObject()`, and `Map.setOptions()`.
The following script checks if the geehydro package has been installed. If not, it will install geehydro, which automatically install its dependencies, including earthengine-api and folium.
```
import subprocess
try:
import geehydro
except ImportError:
print('geehydro package not installed. Installing ...')
subprocess.check_call(["python", '-m', 'pip', 'install', 'geehydro'])
```
Import libraries
```
import ee
import folium
import geehydro
```
Authenticate and initialize Earth Engine API. You only need to authenticate the Earth Engine API once.
```
try:
ee.Initialize()
except Exception as e:
ee.Authenticate()
ee.Initialize()
```
## Create an interactive map
This step creates an interactive map using [folium](https://github.com/python-visualization/folium). The default basemap is the OpenStreetMap. Additional basemaps can be added using the `Map.setOptions()` function.
The optional basemaps can be `ROADMAP`, `SATELLITE`, `HYBRID`, `TERRAIN`, or `ESRI`.
```
Map = folium.Map(location=[40, -100], zoom_start=4)
Map.setOptions('HYBRID')
```
## Add Earth Engine Python script
```
# Load SRTM Digital Elevation Model data.
image = ee.Image('CGIAR/SRTM90_V4');
# Define an SLD style of discrete intervals to apply to the image.
sld_intervals = \
'<RasterSymbolizer>' + \
'<ColorMap type="intervals" extended="false" >' + \
'<ColorMapEntry color="#0000ff" quantity="0" label="0"/>' + \
'<ColorMapEntry color="#00ff00" quantity="100" label="1-100" />' + \
'<ColorMapEntry color="#007f30" quantity="200" label="110-200" />' + \
'<ColorMapEntry color="#30b855" quantity="300" label="210-300" />' + \
'<ColorMapEntry color="#ff0000" quantity="400" label="310-400" />' + \
'<ColorMapEntry color="#ffff00" quantity="1000" label="410-1000" />' + \
'</ColorMap>' + \
'</RasterSymbolizer>';
# Define an sld style color ramp to apply to the image.
sld_ramp = \
'<RasterSymbolizer>' + \
'<ColorMap type="ramp" extended="false" >' + \
'<ColorMapEntry color="#0000ff" quantity="0" label="0"/>' + \
'<ColorMapEntry color="#00ff00" quantity="100" label="100" />' + \
'<ColorMapEntry color="#007f30" quantity="200" label="200" />' + \
'<ColorMapEntry color="#30b855" quantity="300" label="300" />' + \
'<ColorMapEntry color="#ff0000" quantity="400" label="400" />' + \
'<ColorMapEntry color="#ffff00" quantity="500" label="500" />' + \
'</ColorMap>' + \
'</RasterSymbolizer>';
# Add the image to the map using both the color ramp and interval schemes.
Map.setCenter(-76.8054, 42.0289, 8);
Map.addLayer(image.sldStyle(sld_intervals), {}, 'SLD intervals');
Map.addLayer(image.sldStyle(sld_ramp), {}, 'SLD ramp');
```
## Display Earth Engine data layers
```
Map.setControlVisibility(layerControl=True, fullscreenControl=True, latLngPopup=True)
Map
```
| github_jupyter |
# Ingeniería de Características
En las clases previas vimos las ideas fundamentales de machine learning, pero todos los ejemplos asumían que ya teníamos los datos numéricos en un formato ordenado de tamaño ``[n_samples, n_features]``.
En la realidad son raras las ocasiones en que los datos vienen así, _llegar y llevar_.
Con esto en mente, uno de los pasos más importantes en la práctica de machine learging es la _ingeniería de características_ (_feature engineering_), que es tomar cualquier información que tengas sobre tu problema y convertirla en números con los que construirás tu matriz de características.
En esta sección veremos dos ejemplos comunes de _tareas_ de ingeniería de características: cómo representar _datos categóricos_ y cómo representar _texto_.
Otras características más avanzandas, como el procesamiento de imágenes, quedarán para el fin del curso.
Adicionalmente, discutiremos _características derivadas_ para incrementar la complejidad del modelo y la _imputación_ de datos perdidos.
En ocasiones este proceso se conoce como _vectorización_, ya que se refiere a convertir datos arbitrarios en vectores bien definidos.
## Características Categóricas
Un tipo común de datos no numéricos son los datos _categóricos_.
Por ejemplo, imagina que estás explorando datos de precios de propiedad, y junto a variables numéricas como precio (_price_) y número de habitaciones (_rooms_), también tienes información del barrio (_neighborhood_) de cada propiedad.
Por ejemplo, los datos podrían verse así:
```
data = [
{'price': 850000, 'rooms': 4, 'neighborhood': 'Queen Anne'},
{'price': 700000, 'rooms': 3, 'neighborhood': 'Fremont'},
{'price': 650000, 'rooms': 3, 'neighborhood': 'Wallingford'},
{'price': 600000, 'rooms': 2, 'neighborhood': 'Fremont'}
]
```
Podrías estar tentade a codificar estos datos directamente con un mapeo numérico:
```
{'Queen Anne': 1, 'Fremont': 2, 'Wallingford': 3};
```
Resulta que esto no es una buena idea. En Scikit-Learn, y en general, los modelos asumen que los datos numéricos reflejan cantidades algebraicas.
Usar un mapeo así implica, por ejemplo, que *Queen Anne < Fremont < Wallingford*, o incluso que *Wallingford - Queen Anne = Fremont*, lo que no tiene mucho sentido.
Una técnica que funciona en estas situaciones es _codificación caliente_ (_one-hot encoding_), que crea columnas numéricas que indican la presencia o ausencia de la categoría correspondiente, con un valor de 1 o 0 respectivamente.
Cuando tus datos son una lista de diccionarios, la clase ``DictVectorizer`` se encarga de la codificación por ti:
```
from sklearn.feature_extraction import DictVectorizer
vec = DictVectorizer(sparse=False, dtype=int)
vec.fit_transform(data)
```
Nota que la característica `neighborhood` se ha expandido en tres columnas separadas, representando las tres etiquetas de barrio, y que cada fila tiene un 1 en la columna asociada al barrio respectivo.
Teniendo los datos codificados de esa manera, se puede proceder a ajustar un modelo en Scikit-Learn.
Para ver el significado de cada columna se puede hacer lo siguiente:
```
vec.get_feature_names()
```
Hay una clara desventaja en este enfoque: si las categorías tienen muchos valores posibles, el dataset puede crecer demasiado.
Sin embargo, como los datos codificados contienen principalmente ceros, una matriz dispersa puede ser una solucion eficiente:
```
vec = DictVectorizer(sparse=True, dtype=int)
vec.fit_transform(data)
```
Varios (pero no todos) de los estimadores en Scikit-Learn aceptan entradas dispersas. ``sklearn.preprocessing.OneHotEncoder`` y ``sklearn.feature_extraction.FeatureHasher`` son dos herramientas adicionales que permiten trabajar con este tipo de características.
## Texto
Otra necesidad común es convertir texto en una serie de números que representen su contenido.
Por ejemplo, mucho del análisis automático del contenido generado en redes sociales depende de alguna manera de codificar texto como números.
Uno de los métodos más simples es a través de _conteo de palabras_ (_word counts_): tomas cada pedazo del texto, cuentas las veces que aparece cada palabra en él, y pones los resultados en una table.
Por ejemplo, considera las siguientes tres frases:
```
sample = ['problem of evil',
'evil queen',
'horizon problem']
```
Para vectorizar estos datos construiríamos una columna para las palabras "problem," "evil,", "horizon," etc.
Hacer esto a mano es posible, pero nos podemos ahorrar el tedio utilizando el ``CountVectorizer`` de Scikit-Learn:
```
from sklearn.feature_extraction.text import CountVectorizer
vec = CountVectorizer()
X = vec.fit_transform(sample)
X
```
El resultado es una matriz dispersa que contiene cada vez que aparece cada palabra en los textos. Para inspeccionarlo fácilmente podemos convertir esto en un ``DataFrame``:
```
import pandas as pd
pd.DataFrame(X.toarray(), columns=vec.get_feature_names())
```
Todavía falta algo. Este enfoque puede tener problemas: el conteo de palabras puede hacer que algunas características pesen más que otras debido a la frecuencia con la que utilizamos las palabras, y esto puede ser sub-óptimo en algunos algoritmos de clasificación.
Una manera de considerar esto es utilizar el modelo _frecuencia de términos-frecuencia inversa de documents_ (_TF-IDF_), que da peso a las palabras de acuerdo a qué tan frecuentemente aparecen en los documentos, pero también qué tan únicas son para cada documento.
La sintaxis para aplicar TF-IDF es similar a la que hemos visto antes:
```
from sklearn.feature_extraction.text import TfidfVectorizer
vec = TfidfVectorizer()
X = vec.fit_transform(sample)
pd.DataFrame(X.toarray(), columns=vec.get_feature_names())
```
Esto lo veremos en más detalle en la clase de Naive Bayes.
## Características Derivadas
Otro tipo útil de característica es aquella derivada matemáticamente desde otras características en los datos de entrada.
Vimos un ejemplo en la clase de Hiperparámetros cuando construimos características polinomiales desde los datos.
Vimos que se puede convertir una regresión lineal en una polinomial sin usar un modelo distinto, sino que transformando los datos de entrada.
Esto es conocido como _función de regresión base_ (_basis function regression_), y lo exploraremos en la clase de Regresión Lineal.
Por ejemplo, es claro que los siguientes datos no se pueden describir por una línea recta:
```
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
x = np.array([1, 2, 3, 4, 5])
y = np.array([4, 2, 1, 3, 7])
plt.scatter(x, y);
```
Si ajustamos una recta a los datos usando ``LinearRegression`` obtendremos un resultado óptimo:
```
from sklearn.linear_model import LinearRegression
X = x[:, np.newaxis]
model = LinearRegression().fit(X, y)
yfit = model.predict(X)
plt.scatter(x, y)
plt.plot(x, yfit);
```
Es óptimo, pero también queda claro que necesitamos un modelo más sofisticado para describir la relació entre $x$ e $y$.
Una manera de lograrlo es transformando los datos, agregando columnas o características adicionales que le den más flexibilidad al modelo. Por ejemplo, podemos agregar características polinomiales de la siguiente forma:
```
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree=3, include_bias=False)
X2 = poly.fit_transform(X)
print(X2)
```
Esta matriz de características _derivada_ tiene una columna que representa a $x$, una segunda columna que representa $x^2$, y una tercera que representa $x^3$.
Calcular una regresión lineal en esta entrada da un ajuste más cercano a nuestros datos:
```
model = LinearRegression().fit(X2, y)
yfit = model.predict(X2)
plt.scatter(x, y)
plt.plot(x, yfit);
```
La idea de mejorar un modelo sin cambiarlo, sino que transformando la entrada que recibe, es fundamental para muchas de las técnicas de machine learning más poderosas.
Exploraremos más esta idea en la clase de Regresión Lineal.
Este camino es motivante y se puede generalizar con las técnicas conocidas como _métodos de kernel_, que exploraremos en la clase de _Support Vector Machines_ (SVM).
## Imputación de Datos Faltantes
Una necesidad común en la ingeniería de características es la manipulación de datos faltantes.
En clases anteriores es posible que hayan visto el valor `NaN` en un `DataFrame`, utilizado para marcar valores que no existen.
Por ejemplo, podríamos tener un dataset que se vea así:
```
from numpy import nan
X = np.array([[ nan, 0, 3 ],
[ 3, 7, 9 ],
[ 3, 5, 2 ],
[ 4, nan, 6 ],
[ 8, 8, 1 ]])
y = np.array([14, 16, -1, 8, -5])
```
Antes de aplicar un modelo a estos datos necesitamos reemplazar esos datos faltantes con algún valor apropiado de relleno.
Esto es conocido como _imputación_ de valores faltantes, y las estrategias para hacerlo varían desde las más simples (como rellenar con el promedio de cada columna) hasta las más sofisticadas (como completar la matrix con un modelo robusto para esos casos). Estos últimos enfoques suelen ser específicos para cada aplicación, así que no los veremos en el curso.
La clase `Imputer` de Scikit-Learn provee en enfoque base de imputación que calcula el promedio, la media, o el valor más frecuente:
```
from sklearn.preprocessing import Imputer
imp = Imputer(strategy='mean')
X2 = imp.fit_transform(X)
X2
```
Como vemos, al aplicar el imputador los dos valores que faltaban fueron reemplazados por el promedio de los valores presentes en las columnas respectivas.
Ahora que tenemos una matriz sin valores faltantes, podemos usarla con la instancia de un modelo, en este caso, una regresión lineal:
```
model = LinearRegression().fit(X2, y)
model.predict(X2)
```
## Cadena de Procesamiento (_Pipeline_)
Considerando los ejemplos que hemos visto, es posible que sea tedioso hacer cada una de estas transformaciones a mano. En ocasiones querremos automatizar la cadena de procesamiento para un modelo. Imagina una secuencia como la siguiente:
1. Imputar valores usando el promedio.
2. Transformar las características incluyendo un factor cuadrático.
3. Ajustar una regresión lineal.
Para encadenar estas etapas Scikit-Learn provee una clase ``Pipeline``, que se usa como sigue:
```
from sklearn.pipeline import make_pipeline
model = make_pipeline(Imputer(strategy='mean'),
PolynomialFeatures(degree=2),
LinearRegression())
```
Esta cadena o _pipeline_ se ve y actúa como un objeto estándar de Scikit-Learn, por lo que podemos utilizarla en todo lo que hemos visto hasta ahora que siga la receta de uso de Scikit-Learn.
```
model.fit(X, y) # X con valores faltantes
print(y)
print(model.predict(X))
```
Todos los pasos del modelo se aplican de manera automática.
¡Ojo! Por simplicidad hemos aplicado el modelo a los mismos datos con los que lo hemos entrenado, por eso el resultado es perfecto (vean el material de la clase pasada para recordar por qué esto no es un buen criterio para evaluar el modelo).
En las próximas clases seguiremos utilizando _Pipelines_ para estructurar nuestro análisis.
![](figures/PDSH-cover.png)
Este notebook contiene un extracto del libro [Python Data Science Handbook](http://shop.oreilly.com/product/0636920034919.do) por Jake VanderPlas; el contenido también está disponible en [GitHub](https://github.com/jakevdp/PythonDataScienceHandbook).
El texto se distribuye bajo una licencia [CC-BY-NC-ND](https://creativecommons.org/licenses/by-nc-nd/3.0/us/legalcode), y el código se distribuye bajo la licencia [MIT](https://opensource.org/licenses/MIT). Si te parece que este contenido es útil, por favor considera apoyar el trabajo [comprando el libro](http://shop.oreilly.com/product/0636920034919.do).
Traducción al castellano por [Eduardo Graells-Garrido](http://datagramas.cl), liberada bajo las mismas condiciones.
| github_jupyter |
# Pre-training VGG16 for Distillation
```
import torch
import torch.nn as nn
from src.data.dataset import get_dataloader
import torchvision.transforms as transforms
import numpy as np
import matplotlib.pyplot as plt
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(DEVICE)
SEED = 0
BATCH_SIZE = 32
LR = 5e-4
NUM_EPOCHES = 25
np.random.seed(SEED)
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
```
## Preprocessing
```
transform = transforms.Compose([
transforms.RandomHorizontalFlip(),
#transforms.RandomVerticalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
train_loader, val_loader, test_loader = get_dataloader("./data/CIFAR10/", BATCH_SIZE)
```
## Model
```
from src.models.model import VGG16_classifier
classes = 10
hidden_size = 512
dropout = 0.3
model = VGG16_classifier(classes, hidden_size, preprocess_flag=False, dropout=dropout).to(DEVICE)
model
for img, label in train_loader:
img = img.to(DEVICE)
label = label.to(DEVICE)
print("Input Image Dimensions: {}".format(img.size()))
print("Label Dimensions: {}".format(label.size()))
print("-"*100)
out = model(img)
print("Output Dimensions: {}".format(out.size()))
break
```
## Training
```
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(params=model.parameters(), lr=LR)
loss_hist = {"train accuracy": [], "train loss": [], "val accuracy": []}
for epoch in range(1, NUM_EPOCHES+1):
model.train()
epoch_train_loss = 0
y_true_train = []
y_pred_train = []
for batch_idx, (img, labels) in enumerate(train_loader):
img = img.to(DEVICE)
labels = labels.to(DEVICE)
preds = model(img)
loss = criterion(preds, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
y_pred_train.extend(preds.detach().argmax(dim=-1).tolist())
y_true_train.extend(labels.detach().tolist())
epoch_train_loss += loss.item()
with torch.no_grad():
model.eval()
y_true_test = []
y_pred_test = []
for batch_idx, (img, labels) in enumerate(val_loader):
img = img.to(DEVICE)
label = label.to(DEVICE)
preds = model(img)
y_pred_test.extend(preds.detach().argmax(dim=-1).tolist())
y_true_test.extend(labels.detach().tolist())
test_total_correct = len([True for x, y in zip(y_pred_test, y_true_test) if x==y])
test_total = len(y_pred_test)
test_accuracy = test_total_correct * 100 / test_total
loss_hist["train loss"].append(epoch_train_loss)
total_correct = len([True for x, y in zip(y_pred_train, y_true_train) if x==y])
total = len(y_pred_train)
accuracy = total_correct * 100 / total
loss_hist["train accuracy"].append(accuracy)
loss_hist["val accuracy"].append(test_accuracy)
print("-------------------------------------------------")
print("Epoch: {} Train mean loss: {:.8f}".format(epoch, epoch_train_loss))
print(" Train Accuracy%: ", accuracy, "==", total_correct, "/", total)
print(" Validation Accuracy%: ", test_accuracy, "==", test_total_correct, "/", test_total)
print("-------------------------------------------------")
plt.plot(loss_hist["train accuracy"])
plt.plot(loss_hist["val accuracy"])
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()
plt.plot(loss_hist["train loss"])
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()
```
## Testing
```
with torch.no_grad():
model.eval()
y_true_test = []
y_pred_test = []
for batch_idx, (img, labels) in enumerate(test_loader):
img = img.to(DEVICE)
label = label.to(DEVICE)
preds = model(img)
y_pred_test.extend(preds.detach().argmax(dim=-1).tolist())
y_true_test.extend(labels.detach().tolist())
total_correct = len([True for x, y in zip(y_pred_test, y_true_test) if x==y])
total = len(y_pred_test)
accuracy = total_correct * 100 / total
print("Test Accuracy%: ", accuracy, "==", total_correct, "/", total)
```
## Saving Model Weights
```
torch.save(model.state_dict(), "./trained_models/vgg16_cifar10.pt")
```
| github_jupyter |
# _Mini Program - Working with SQLLite DB using Python_
### <font color=green>Objective -</font>
<font color=blue>1. This program gives an idea how to connect with SQLLite DB using Python and perform data manipulation </font><br>
<font color=blue>2. There are 2 ways in which tables are create below to help you understand the robustness of this language</font>
### <font color=green>Step 1 - Import required libraries</font>
#### <font color=blue>In this program we make used of 3 libraries</font>
#### <font color=blue>1. sqlite3 - This module help to work with sql interface. It helps in performing db operations in sqllite database</font>
#### <font color=blue>2. pandas - This module provides high performance and easy to use data manipulation and data analysis functionalities</font>
#### <font color=blue>3. os - This module provides function to interact with operating system with easy use</font>
```
#Importing the required modules
import sqlite3
import pandas as pd
import os
```
### <font color=green>Step 2 - Creating a function to drop the table</font>
#### <font color=blue>Function helps to re-create a reusable component that can be used conviniently and easily in other part of the code</font>
#### <font color=blue>In Line 1 - We state the function name and specify the parameter being passed. In this case, the parameter is the table name</font>
#### <font color=blue>In Line 2 - We write the sql query to be executed</font>
#### <font color=blue>In Line 3 - We execute the query using the cursor object</font>
```
#Creating a function to drop the table if it exists
def dropTbl(tablename):
dropTblStmt = "DROP TABLE IF EXISTS " + tablename
c.execute(dropTblStmt)
```
### <font color=green>Step 3 - We create the database in which our table will reside</font>
#### <font color=blue>In Line 1 - We are removing the already existing database file</font>
#### <font color=blue>In Line 2 - We use connect function from the sqlite3 module to create a database studentGrades.db and establish a connection</font>
#### <font color=blue>In Line 3 - We create a context of the database connection. This help to run all the database queries</font>
```
#Removing the database file
os.remove('studentGrades.db')
#Creating a new database - studentGrades.db
conn = sqlite3.connect("studentGrades.db")
c = conn.cursor()
```
### <font color=green>Step 4 - We create a table in sqllite DB using data defined in the excel file</font>
#### <font color=blue>This is the first method in which you can create a table. You can use to_sql function directly to read a dataframe and dump all it's content to the table</font>
#### <font color=blue>In Line 1 - We are making use of dropTbl function created above to drop the table</font>
#### <font color=blue>In Line 2 - We are creating a dataframe from the data read from the csv</font>
#### <font color=blue>In Line 3 - We use to_sql function to push the data into the table. The first row of the file becomes the column name of the tables</font>
#### <font color=blue>We repeat the above steps for all the 3 files to create 3 tables - STUDENT, GRADES and SUBJECTS</font>
```
#Reading data from csv file - student details, grades and subject
dropTbl('STUDENT')
student_details = pd.read_csv("Datafiles/studentDetails.csv")
student_details.to_sql('STUDENT',conn,index = False)
dropTbl('GRADES')
student_grades = pd.read_csv('Datafiles/studentGrades.csv')
student_grades.to_sql('GRADES',conn,index = False)
dropTbl('SUBJECTS')
subjects = pd.read_csv("Datafiles/subjects.csv")
subjects.to_sql('SUBJECTS',conn,index = False)
```
### <font color=green>Step 5 - We create a master table STUDENT_GRADE_MASTER where we can colate the data from the individual tables by performing the joining operations</font>
#### <font color=blue>In Line 1 - We are making use of dropTbl function created above to drop the table</font>
#### <font color=blue>In Line 2 - We are writing sql query for table creation</font>
#### <font color=blue>In Line 3 - We are using the cursor created above to execute the sql statement</font>
#### <font color=blue>In Line 4 - We are using the second method of inserting data into the table. We are writing a query to insert the data after joining the data from all the tables</font>
#### <font color=blue>In Line 5 - We are using the cursor created above to execute the sql statement</font>
#### <font color=blue>In Line 6 - We are doing a commit operation. Since INSERT operation is a ddl, we have to perform a commit operation to register it into the database</font>
```
#Creating a table to store student master data
dropTbl('STUDENT_GRADE_MASTER')
createTblStmt = '''CREATE TABLE STUDENT_GRADE_MASTER
([Roll_number] INTEGER,
[Student_Name] TEXT,
[Stream] TEXT,
[Subject] TEXT,
[Marks] INTEGER
)'''
c.execute(createTblStmt)
#Inserting data into the master table by joining the tables mentioned above
queryMaster = '''INSERT INTO STUDENT_GRADE_MASTER(Roll_number,Student_Name,Stream,Subject,Marks)
SELECT g.roll_number, s.student_name, stream, sub.subject, marks from GRADES g
LEFT OUTER JOIN STUDENT s on g.roll_number = s.roll_number
LEFT OUTER JOIN SUBJECTS sub on g.subject_code = sub.subject_code'''
c.execute(queryMaster)
c.execute("COMMIT")
```
### <font color=green>Step 6 - We can perform data fetch like we do in sqls using this sqlite3 module</font>
#### <font color=blue>In Line 1 - We are writing a query to find the number of records in the master table</font>
#### <font color=blue>In Line 2 - We are executing the above created query</font>
#### <font color=blue>In Line 3 - fetchall function is used to get the result returned by the query. The result will be in the form of a list of tuples</font>
#### <font color=blue>In Line 4 - We are writing another query to find the maximum marks recorded for each subject</font>
#### <font color=blue>In Line 5 - We are executing the above created query</font>
#### <font color=blue>In Line 6 - fetchall function is used to get the result returned by the query. The result will be in the form of a list of tuples</font>
#### <font color=blue>In Line 7 - We are writing another query to find the percentage of marks obtained by each student in the class</font>
#### <font color=blue>In Line 8 - We are executing the above created query</font>
#### <font color=blue>In Line 9 - fetchall function is used to get the result returned by the query. The result will be in the form of a list of tuples</font>
```
#Finding the key data from the master table
#1. Find the number of records in the master table
query_count = '''SELECT COUNT(*) FROM STUDENT_GRADE_MASTER'''
c.execute(query_count)
number_of_records = c.fetchall()
print(number_of_records)
#2. Maximum marks for each subject
query_max_marks = '''SELECT Subject,max(Marks) as 'Max_Marks' from STUDENT_GRADE_MASTER GROUP BY Subject'''
c.execute(query_max_marks)
max_marks_data = c.fetchall()
print(max_marks_data)
#3. Percenatge of marks scored by each student
query_percentage = '''SELECT Student_Name, avg(Marks) as 'Percentage' from STUDENT_GRADE_MASTER GROUP BY Student_Name'''
c.execute(query_percentage)
percentage_data = c.fetchall()
print(percentage_data)
```
### <font color=green>Step 7 - We are closing the database connection</font>
#### <font color=blue>It is always a good practice to close the database connection after all the operations are completed</font>
```
#Closing the connection
conn.close()
```
| github_jupyter |
<a href="https://colab.research.google.com/github/AngieCat26/MujeresDigitales/blob/main/TALLER1.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
**PUNTO 2 **
```
premio1 = "Viaje todo incluído para dos personas a San Andrés"
premio2 = "una pasadía a los termales de San Vicente incluyendo almuerzo"
premio3 = "Viaje todo incluido para dos personas a Santa Marta"
premio4 = "Pasadía al desierto de Tatacoa (Sin incluír alimentación)"
rosada = premio1
verde = premio2
azul = premio3
gris = premio4
roja = "No hay premio"
cliente = input("por favor digite el nombre del concursante ")
balota = input("Digite el color de la balota ")
valorVariable = int(input("Digite un valor variable "))
antiguedad = int(input("Digite los años de antiguedad del cliente "))
referidos = int(input("Digite los referidos del cliente "))
liderazgo = input("¿El cliente tiene liderazgo en los programas de cooperación de viajes internos? ")
if balota == "rosada":
print("La empresa VIVAFLY se complace en anunciar que La participante ",cliente," ganó un ", rosada, " en nuestro sorteo de viajes de AMOR y AMISTAD")
valorVariable1 = valorVariable * 0.15
if valorVariable < 120000:
print("El cliente ",cliente," también recibirá dos boletas de cine 4D con un combo de palomitas")
else :
print("El cliente ", cliente, " también recibirá un bono de $",valorVariable1)
elif balota == "verde":
print("La empresa VIVAFLY se complace en anunciar que La participante ",cliente," ganó ", verde, " en nuestro sorteo de viajes de AMOR y AMISTAD")
valorVariable2 = valorVariable * 0.20
if valorVariable < 120000:
print("El cliente ",cliente," también recibirá dos boletas de cine 4D con un combo de palomitas")
else :
print("El cliente ", cliente, " también recibirá un bono de $",valorVariable2)
elif balota == "azul":
print("La empresa VIVAFLY se complace en anunciar que La participante ",cliente," ganó ", azul, " en nuestro sorteo de viajes de AMOR y AMISTAD")
valorVariable3 = valorVariable * 0.05
if valorVariable < 120000:
print("El cliente ",cliente," también recibirá dos boletas de cine 4D con un combo de palomitas")
else :
print("El cliente ", cliente, " también recibirá un bono de $",valorVariable3)
elif balota == "gris":
print("La empresa VIVAFLY se complace en anunciar que La participante ",cliente," ganó ", gris, " en nuestro sorteo de viajes de AMOR y AMISTAD")
valorVariable4 = valorVariable * 0.20
if valorVariable < 120000:
print("El cliente ",cliente," también recibirá dos boletas de cine 4D con un combo de palomitas")
else :
print("El cliente ", cliente, " también recibirá un bono de $",valorVariable4)
else :
print("La empresa VIVAFLY se complace en anunciar que La participante ",cliente," ganó $120.000")
#si se cumple los 3:
if antiguedad > 10 and referidos > 10 and liderazgo == "si" :
puntos = valorVariable * 0.50
print("Adicionalmente:")
if puntos > 600000 :
puntos = 500 * 0.20
print("Se le otorga ",puntos, " puntos para redimir en un premio a futuro")
else :
puntos = 250 * 0.20
print("Se le otorga ", puntos, " puntos para redimir en un premio a futuro")
#Si se cumple solo dos requisitos:
elif antiguedad > 10 and referidos > 10 :
puntos = valorVariable * 0.50
print("Adicionalmente: ")
if puntos > 250000 :
puntos = 200 * 0.20
print("Se le otorga ", puntos, " puntos para redimir en un premio a futuro")
else :
puntos = 50 * 0.20
print("Se le otorga ", puntos, " puntos para redimir en un premio a futuro")
elif antiguedad > 10 and liderazgo == "si" :
puntos = valorVariable * 0.50
print("Adicionalmente: ")
if puntos > 250000 :
puntos = 200 * 0.20
print("Se le otorga ", puntos, " puntos para redimir en un premio a futuro")
else :
puntos = 50 * 0.20
print("Se le otorga ", puntos, "puntos para redimir en un premio a futuro")
elif referidos > 10 and liderazgo =="si" :
puntos = valorVariable * 0.30
print("Adicionalmente: ")
if puntos > 250000 :
puntos = 200 * 0.20
print("Se le otorga 200 puntos para redimir en un premio a futuro")
else :
puntos = 50 * 0.20
print("Se le otorga 50 puntos para redimir en un premio a futuro")
#Solo si se cumple uno
else :
puntos = valorVariable * 0.10
puntos = puntos * 0.10
print("Adicionalmente se se le otorga", puntos, "puntos para redimir en un premio a futuro")
```
| github_jupyter |
# Tutorial
#### This tutorial will introduce you to the *fifa_preprocessing*'s functionality!
In general, the following functions will alow you to preprocess your data to be able to perform machine learning or statistical data analysis by reformatting, casting or deleting certain values.
The data used in these examples comes from https://www.kaggle.com/karangadiya/fifa19, a webpage this package was inspired by. The module's functions work best with this data set, however, they will work with any data structured in a similar manner.
## Prerequisites
First, import the fifa_preprocessing, pandas and math modules:
```
import fifa_preprocessing as fp
import pandas as pd
import math
```
Load your data:
```
data = pd.read_csv('data.csv')
data
```
## Exclude goalkeepers
Before any preprocessing, the data contains all the players.
```
data[['Name', 'Position']]
```
This command will exclude goalkeepers from your data set (i.e. delete all the rows where column 'Position' is equal to 'GK'):
```
data = fp.exclude_goalkeepers(data)
```
As you may notice, the row number 3 was deleted.
```
data[['Name', 'Position']]
```
## Format currencies
To remove unnecessary characters form a monetary value use:
```
money = '€23.4M'
fp.money_format(money)
```
The value will be expressed in thousands of euros:
```
money = '€7K'
fp.money_format(money)
```
## Format players' rating
In FIFA players get a ranking on they skills on the pitch. The ranking is represented as a sum of two integers.
The following function lets you take in a string containing two numbers separated by a '+' and get the actual sum:
```
rating = '81+3'
fp.rating_format(rating)
```
## Format players' work rate
The next function takes in a qualitative parameter that could be expressed as a quantitive value.
If you have a data set where one category is expressed as 'High', 'Medium' or 'Low', this function will assign numbers to these values (2, 1 and 0 respectively):
```
fp.work_format('High')
fp.work_format('Medium')
fp.work_format('Low')
```
In fact, the function returns 0 in every case where the passed in parameter id different than 'High' and 'Medium':
```
fp.work_format('Mediocre')
```
## Cast to int
This simple function casts a float to int, but also adds extra flexibility and returns 0 when it encounters a NaN (Not a Number):
```
fp.to_int(3.24)
import numpy
nan = numpy.nan
fp.to_int(nan)
```
## Apply format of choice
This generic function lets you choose what format to apply to every value in the columns of the data frame you specify.
```
data[['Name', 'Jersey Number', 'Skill Moves', 'Weak Foot']]
```
By format, is meant a function that operates on the values in the specified columns:
```
columns = ['Jersey Number', 'Skill Moves', 'Weak Foot']
format_fun = fp.to_int
data = fp.apply_format(data, columns, format_fun)
data[['Name', 'Jersey Number', 'Skill Moves', 'Weak Foot']]
```
## Dummy variables
If we intend to build machine learning models to explore our data, we usually are not able to extract any information from qualitative data. Here 'Club' and 'Preferred Foot' are categories that could bring interesting information. To be able to use it in our machine learning algorithms we can get dummy variables.
```
data[['Name', 'Preferred Foot']]
```
If we choose 'Preferred Foot', new columns will be aded, their titles will be the same as the values in 'Preferred Foot' column: 'Left' and 'Right'. So now instead of seeing 'Left' in the column 'Preferred Foot' we will see 1 in 'Left' column (and 0 in 'Right').
```
data = fp.to_dummy(data, ['Preferred Foot'])
data[['Name', 'Left', 'Right']]
```
Learn more about [dummy variables](https://en.wikiversity.org/wiki/Dummy_variable_(statistics)).
The data frame will no longer contain the columns we transformed:
```
'Preferred Foot' in data
```
We can get dummy variables for multiple columns at once.
```
data[['Name', 'Club', 'Position']]
data = fp.to_dummy(data, ['Club', 'Nationality'])
data[['Name', 'Paris Saint-Germain', 'Manchester City', 'Brazil', 'Portugal']]
```
## Split work rate column
In FIFA the players' work rate is saved in a special way, two qualiative values are split with a slash:
```
data[['Name', 'Work Rate']]
```
This next function allows you to split column 'Work Rate' into 'Defensive Work Rate' and 'Offensive Work Rate':
```
data = fp.split_work_rate(data)
data[['Name', 'Defensive Work Rate', 'Offensive Work Rate']]
```
## Default preprocessing
To perform all the basic preprocessing (optimized for the FIFA 19 data set) on your data, simply go:
```
data = pd.read_csv('data.csv')
fp.preprocess(data)
```
## Let's get coding
Now it is your turn to try out our functions and preprocess your data!
| github_jupyter |
# Bias
### Goals
In this notebook, you're going to explore a way to identify some biases of a GAN using a classifier, in a way that's well-suited for attempting to make a model independent of an input. Note that not all biases are as obvious as the ones you will see here.
### Learning Objectives
1. Be able to distinguish a few different kinds of bias in terms of demographic parity, equality of odds, and equality of opportunity (as proposed [here](http://m-mitchell.com/papers/Adversarial_Bias_Mitigation.pdf)).
2. Be able to use a classifier to try and detect biases in a GAN by analyzing the generator's implicit associations.
## Challenges
One major challenge in assessing bias in GANs is that you still want your generator to be able to generate examples of different values of a protected class—the class you would like to mitigate bias against. While a classifier can be optimized to have its output be independent of a protected class, a generator which generates faces should be able to generate examples of various protected class values.
When you generate examples with various values of a protected class, you don’t want those examples to correspond to any properties that aren’t strictly a function of that protected class. This is made especially difficult since many protected classes (e.g. gender or ethnicity) are social constructs, and what properties count as “a function of that protected class” will vary depending on who you ask. It’s certainly a hard balance to strike.
Moreover, a protected class is rarely used to condition a GAN explicitly, so it is often necessary to resort to somewhat post-hoc methods (e.g. using a classifier trained on relevant features, which might be biased itself).
In this assignment, you will learn one approach to detect potential bias, by analyzing correlations in feature classifications on the generated images.
## Getting Started
As you have done previously, you will start by importing some useful libraries and defining a visualization function for your images. You will also use the same generator and basic classifier from previous weeks.
#### Packages and Visualization
```
import torch
import numpy as np
from torch import nn
from tqdm.auto import tqdm
from torchvision import transforms
from torchvision.utils import make_grid
from torchvision.datasets import CelebA
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
torch.manual_seed(0) # Set for our testing purposes, please do not change!
def show_tensor_images(image_tensor, num_images=16, size=(3, 64, 64), nrow=3):
'''
Function for visualizing images: Given a tensor of images, number of images,
size per image, and images per row, plots and prints the images in an uniform grid.
'''
image_tensor = (image_tensor + 1) / 2
image_unflat = image_tensor.detach().cpu()
image_grid = make_grid(image_unflat[:num_images], nrow=nrow)
plt.imshow(image_grid.permute(1, 2, 0).squeeze())
plt.show()
```
#### Generator and Noise
```
class Generator(nn.Module):
'''
Generator Class
Values:
z_dim: the dimension of the noise vector, a scalar
im_chan: the number of channels in the images, fitted for the dataset used, a scalar
(CelebA is rgb, so 3 is your default)
hidden_dim: the inner dimension, a scalar
'''
def __init__(self, z_dim=10, im_chan=3, hidden_dim=64):
super(Generator, self).__init__()
self.z_dim = z_dim
# Build the neural network
self.gen = nn.Sequential(
self.make_gen_block(z_dim, hidden_dim * 8),
self.make_gen_block(hidden_dim * 8, hidden_dim * 4),
self.make_gen_block(hidden_dim * 4, hidden_dim * 2),
self.make_gen_block(hidden_dim * 2, hidden_dim),
self.make_gen_block(hidden_dim, im_chan, kernel_size=4, final_layer=True),
)
def make_gen_block(self, input_channels, output_channels, kernel_size=3, stride=2, final_layer=False):
'''
Function to return a sequence of operations corresponding to a generator block of DCGAN;
a transposed convolution, a batchnorm (except in the final layer), and an activation.
Parameters:
input_channels: how many channels the input feature representation has
output_channels: how many channels the output feature representation should have
kernel_size: the size of each convolutional filter, equivalent to (kernel_size, kernel_size)
stride: the stride of the convolution
final_layer: a boolean, true if it is the final layer and false otherwise
(affects activation and batchnorm)
'''
if not final_layer:
return nn.Sequential(
nn.ConvTranspose2d(input_channels, output_channels, kernel_size, stride),
nn.BatchNorm2d(output_channels),
nn.ReLU(inplace=True),
)
else:
return nn.Sequential(
nn.ConvTranspose2d(input_channels, output_channels, kernel_size, stride),
nn.Tanh(),
)
def forward(self, noise):
'''
Function for completing a forward pass of the generator: Given a noise tensor,
returns generated images.
Parameters:
noise: a noise tensor with dimensions (n_samples, z_dim)
'''
x = noise.view(len(noise), self.z_dim, 1, 1)
return self.gen(x)
def get_noise(n_samples, z_dim, device='cpu'):
'''
Function for creating noise vectors: Given the dimensions (n_samples, z_dim)
creates a tensor of that shape filled with random numbers from the normal distribution.
Parameters:
n_samples: the number of samples to generate, a scalar
z_dim: the dimension of the noise vector, a scalar
device: the device type
'''
return torch.randn(n_samples, z_dim, device=device)
```
#### Classifier
```
class Classifier(nn.Module):
'''
Classifier Class
Values:
im_chan: the number of channels in the images, fitted for the dataset used, a scalar
(CelebA is rgb, so 3 is your default)
n_classes: the total number of classes in the dataset, an integer scalar
hidden_dim: the inner dimension, a scalar
'''
def __init__(self, im_chan=3, n_classes=2, hidden_dim=64):
super(Classifier, self).__init__()
self.classifier = nn.Sequential(
self.make_classifier_block(im_chan, hidden_dim),
self.make_classifier_block(hidden_dim, hidden_dim * 2),
self.make_classifier_block(hidden_dim * 2, hidden_dim * 4, stride=3),
self.make_classifier_block(hidden_dim * 4, n_classes, final_layer=True),
)
def make_classifier_block(self, input_channels, output_channels, kernel_size=4, stride=2, final_layer=False):
'''
Function to return a sequence of operations corresponding to a classifier block;
a convolution, a batchnorm (except in the final layer), and an activation (except in the final layer).
Parameters:
input_channels: how many channels the input feature representation has
output_channels: how many channels the output feature representation should have
kernel_size: the size of each convolutional filter, equivalent to (kernel_size, kernel_size)
stride: the stride of the convolution
final_layer: a boolean, true if it is the final layer and false otherwise
(affects activation and batchnorm)
'''
if not final_layer:
return nn.Sequential(
nn.Conv2d(input_channels, output_channels, kernel_size, stride),
nn.BatchNorm2d(output_channels),
nn.LeakyReLU(0.2, inplace=True),
)
else:
return nn.Sequential(
nn.Conv2d(input_channels, output_channels, kernel_size, stride),
)
def forward(self, image):
'''
Function for completing a forward pass of the classifier: Given an image tensor,
returns an n_classes-dimension tensor representing classes.
Parameters:
image: a flattened image tensor with im_chan channels
'''
class_pred = self.classifier(image)
return class_pred.view(len(class_pred), -1)
```
## Specifying Parameters
You will also need to specify a few parameters before you begin training:
* z_dim: the dimension of the noise vector
* batch_size: the number of images per forward/backward pass
* device: the device type
```
z_dim = 64
batch_size = 128
device = 'cuda'
```
## Train a Classifier (Optional)
You're welcome to train your own classifier with this code, but you are provide a pre-trained one based on this architecture here which you can load and use in the next section.
```
# You can run this code to train your own classifier, but there is a provided pre-trained one
# If you'd like to use this, just run "train_classifier(filename)"
# To train and save a classifier on the label indices to that filename
def train_classifier(filename):
import seaborn as sns
import matplotlib.pyplot as plt
# You're going to target all the classes, so that's how many the classifier will learn
label_indices = range(40)
n_epochs = 3
display_step = 500
lr = 0.001
beta_1 = 0.5
beta_2 = 0.999
image_size = 64
transform = transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
dataloader = DataLoader(
CelebA(".", split='train', download=True, transform=transform),
batch_size=batch_size,
shuffle=True)
classifier = Classifier(n_classes=len(label_indices)).to(device)
class_opt = torch.optim.Adam(classifier.parameters(), lr=lr, betas=(beta_1, beta_2))
criterion = nn.BCEWithLogitsLoss()
cur_step = 0
classifier_losses = []
# classifier_val_losses = []
for epoch in range(n_epochs):
# Dataloader returns the batches
for real, labels in tqdm(dataloader):
real = real.to(device)
labels = labels[:, label_indices].to(device).float()
class_opt.zero_grad()
class_pred = classifier(real)
class_loss = criterion(class_pred, labels)
class_loss.backward() # Calculate the gradients
class_opt.step() # Update the weights
classifier_losses += [class_loss.item()] # Keep track of the average classifier loss
### Visualization code ###
if cur_step % display_step == 0 and cur_step > 0:
class_mean = sum(classifier_losses[-display_step:]) / display_step
print(f"Step {cur_step}: Classifier loss: {class_mean}")
step_bins = 20
x_axis = sorted([i * step_bins for i in range(len(classifier_losses) // step_bins)] * step_bins)
sns.lineplot(x_axis, classifier_losses[:len(x_axis)], label="Classifier Loss")
plt.legend()
plt.show()
torch.save({"classifier": classifier.state_dict()}, filename)
cur_step += 1
# Uncomment the last line to train your own classfier - this line will not work in Coursera.
# If you'd like to do this, you'll have to download it and run it, ideally using a GPU.
# train_classifier("filename")
```
## Loading the Pre-trained Models
You can now load the pre-trained generator (trained on CelebA) and classifier using the following code. If you trained your own classifier, you can load that one here instead. However, it is suggested that you first go through the assignment using the pre-trained one.
```
import torch
gen = Generator(z_dim).to(device)
gen_dict = torch.load("pretrained_celeba.pth", map_location=torch.device(device))["gen"]
gen.load_state_dict(gen_dict)
gen.eval()
n_classes = 40
classifier = Classifier(n_classes=n_classes).to(device)
class_dict = torch.load("pretrained_classifier.pth", map_location=torch.device(device))["classifier"]
classifier.load_state_dict(class_dict)
classifier.eval()
print("Loaded the models!")
opt = torch.optim.Adam(classifier.parameters(), lr=0.01)
```
## Feature Correlation
Now you can generate images using the generator. By also using the classifier, you will be generating images with different amounts of the "male" feature.
You are welcome to experiment with other features as the target feature, but it is encouraged that you initially go through the notebook as is before exploring.
```
# First you generate a bunch of fake images with the generator
n_images = 256
fake_image_history = []
classification_history = []
grad_steps = 30 # How many gradient steps to take
skip = 2 # How many gradient steps to skip in the visualization
feature_names = ["5oClockShadow", "ArchedEyebrows", "Attractive", "BagsUnderEyes", "Bald", "Bangs",
"BigLips", "BigNose", "BlackHair", "BlondHair", "Blurry", "BrownHair", "BushyEyebrows", "Chubby",
"DoubleChin", "Eyeglasses", "Goatee", "GrayHair", "HeavyMakeup", "HighCheekbones", "Male",
"MouthSlightlyOpen", "Mustache", "NarrowEyes", "NoBeard", "OvalFace", "PaleSkin", "PointyNose",
"RecedingHairline", "RosyCheeks", "Sideburn", "Smiling", "StraightHair", "WavyHair", "WearingEarrings",
"WearingHat", "WearingLipstick", "WearingNecklace", "WearingNecktie", "Young"]
n_features = len(feature_names)
# Set the target feature
target_feature = "Male"
target_indices = feature_names.index(target_feature)
noise = get_noise(n_images, z_dim).to(device)
new_noise = noise.clone().requires_grad_()
starting_classifications = classifier(gen(new_noise)).cpu().detach()
# Additive direction (more of a feature)
for i in range(grad_steps):
opt.zero_grad()
fake = gen(new_noise)
fake_image_history += [fake]
classifications = classifier(fake)
classification_history += [classifications.cpu().detach()]
fake_classes = classifications[:, target_indices].mean()
fake_classes.backward()
new_noise.data += new_noise.grad / grad_steps
# Subtractive direction (less of a feature)
new_noise = noise.clone().requires_grad_()
for i in range(grad_steps):
opt.zero_grad()
fake = gen(new_noise)
fake_image_history += [fake]
classifications = classifier(fake)
classification_history += [classifications.cpu().detach()]
fake_classes = classifications[:, target_indices].mean()
fake_classes.backward()
new_noise.data -= new_noise.grad / grad_steps
classification_history = torch.stack(classification_history)
print(classification_history.shape)
print(starting_classifications[None, :, :].shape)
```
You've now generated image samples, which have increasing or decreasing amounts of the target feature. You can visualize the way in which that affects other classified features. The x-axis will show you the amount of change in your target feature and the y-axis shows how much the other features change, as detected in those images by the classifier. Together, you will be able to see the covariance of "male-ness" and other features.
You are started off with a set of features that have interesting associations with "male-ness", but you are welcome to change the features in `other_features` with others from `feature_names`.
```
import seaborn as sns
# Set the other features
other_features = ["Smiling", "Bald", "Young", "HeavyMakeup", "Attractive"]
classification_changes = (classification_history - starting_classifications[None, :, :]).numpy()
for other_feature in other_features:
other_indices = feature_names.index(other_feature)
with sns.axes_style("darkgrid"):
sns.regplot(
classification_changes[:, :, target_indices].reshape(-1),
classification_changes[:, :, other_indices].reshape(-1),
fit_reg=True,
truncate=True,
ci=99,
x_ci=99,
x_bins=len(classification_history),
label=other_feature
)
plt.xlabel(target_feature)
plt.ylabel("Other Feature")
plt.title(f"Generator Biases: Features vs {target_feature}-ness")
plt.legend(loc=1)
plt.show()
```
This correlation detection can be used to reduce bias by penalizing this type of correlation in the loss during the training of the generator. However, currently there is no rigorous and accepted solution for debiasing GANs. A first step that you can take in the right direction comes before training the model: make sure that your dataset is inclusive and representative, and consider how you can mitigate the biases resulting from whatever data collection method you used—for example, getting a representative labelers for your task.
It is important to note that, as highlighted in the lecture and by many researchers including [Timnit Gebru and Emily Denton](https://sites.google.com/view/fatecv-tutorial/schedule), a diverse dataset alone is not enough to eliminate bias. Even diverse datasets can reinforce existing structural biases by simply capturing common social biases. Mitigating these biases is an important and active area of research.
#### Note on CelebA
You may have noticed that there are obvious correlations between the feature you are using, "male", and other seemingly unrelates features, "smiling" and "young" for example. This is because the CelebA dataset labels had no serious consideration for diversity. The data represents the biases their labelers, the dataset creators, the social biases as a result of using a dataset based on American celebrities, and many others. Equipped with knowledge about bias, we trust that you will do better in the future datasets you create.
## Quantification
Finally, you can also quantitatively evaluate the degree to which these factors covary. Given a target index, for example corresponding to "male," you'll want to return the other features that covary with that target feature the most. You'll want to account for both large negative and positive covariances, and you'll want to avoid returning the target feature in your list of covarying features (since a feature will often have a high covariance with itself).
<details>
<summary>
<font size="3" color="green">
<b>Optional hints for <code><font size="4">get_top_covariances</font></code></b>
</font>
</summary>
1. You will likely find the following function useful: [np.cov](https://numpy.org/doc/stable/reference/generated/numpy.cov.html).
2. You will probably find it useful to [reshape](https://numpy.org/doc/stable/reference/generated/numpy.reshape.html) the input.
3. The target feature should not be included in the outputs.
4. Feel free to use any reasonable method to get the top-n elements.
5. It may be easiest to solve this if you find the `relevant_indices` first.
6. You want to sort by absolute value but return the actual values.
</details>
```
# UNQ_C1 (UNIQUE CELL IDENTIFIER, DO NOT EDIT)
# GRADED CELL: get_top_covariances
def get_top_covariances(classification_changes, target_index, top_n=10):
'''
Function for getting the top n covariances: Given a list of classification changes
and the index of the target feature, returns (1) a list or tensor (numpy or torch) of the indices
corresponding to the n features that covary most with the target in terms of absolute covariance
and (2) a list or tensor (numpy or torch) of the degrees to which they covary.
Parameters:
classification_changes: relative changes in classifications of each generated image
resulting from optimizing the target feature (see above for a visualization)
target_index: the index of the target feature, a scalar
top_n: the top most number of elements to return, default is 10
'''
# Hint: Don't forget you also care about negative covariances!
# Note that classification_changes has a shape of (2 * grad_steps, n_images, n_features)
# where n_features is the number of features measured by the classifier, and you are looking
# for the covariance of the features based on the (2 * grad_steps * n_images) samples
#### START CODE HERE ####
relevant_indices = None
highest_covariances = None
#### END CODE HERE ####
return relevant_indices, highest_covariances
# UNIT TEST
from torch.distributions import MultivariateNormal
mean = torch.Tensor([0, 0, 0, 0])
covariance = torch.Tensor(
[[10, 2, -0.5, -5],
[2, 11, 5, 4],
[-0.5, 5, 10, 2],
[-5, 4, 2, 11]]
)
independent_dist = MultivariateNormal(mean, covariance)
samples = independent_dist.sample((60 * 128,))
foo = samples.reshape(60, 128, samples.shape[-1])
relevant_indices, highest_covariances = get_top_covariances(foo, 1, top_n=3)
assert (tuple(relevant_indices) == (2, 3, 0)), "Make sure you're getting the greatest, not the least covariances"
assert np.all(np.abs(highest_covariances - [5, 4, 2]) < 0.5 )
relevant_indices, highest_covariances = get_top_covariances(foo, 0, top_n=3)
assert (tuple(relevant_indices) == (3, 1, 2)), "Make sure to consider the magnitude of negative covariances"
assert np.all(np.abs(highest_covariances - [-5, 2, -0.5]) < 0.5 )
relevant_indices, highest_covariances = get_top_covariances(foo, 2, top_n=2)
assert (tuple(relevant_indices) == (1, 3))
assert np.all(np.abs(highest_covariances - [5, 2]) < 0.5 )
relevant_indices, highest_covariances = get_top_covariances(foo, 3, top_n=2)
assert (tuple(relevant_indices) == (0, 1))
assert np.all(np.abs(highest_covariances - [-5, 4]) < 0.5 )
print("All tests passed")
relevant_indices, highest_covariances = get_top_covariances(classification_changes, target_indices, top_n=10)
print(relevant_indices)
assert relevant_indices[9] == 34
assert len(relevant_indices) == 10
assert highest_covariances[8] - (-1.2418) < 1e-3
for index, covariance in zip(relevant_indices, highest_covariances):
print(f"{feature_names[index]} {covariance:f}")
```
One of the major sources of difficulty with identifying bias and fairness, as discussed in the lectures, is that there are many ways you might reasonably define these terms. Here are three ways that are computationally useful and [widely referenced](http://m-mitchell.com/papers/Adversarial_Bias_Mitigation.pdf). They are, by no means, the only definitions of fairness (see more details [here](https://developers.google.com/machine-learning/glossary/fairness)):
1. Demographic parity: the overall distribution of the predictions made by a predictor is the same for different values of a protected class.
2. Equality of odds: all else being equal, the probability that you predict correctly or incorrectly is the same for different values of a protected class.
2. Equality of opportunity: all else being equal, the probability that you predict correctly is the same for different valus of a protected class (weaker than equality of odds).
With GANs also being used to help downstream classifiers (you will see this firsthand in future assignments), these definitions of fairness will impact, as well as depend on, your downstream task. It is important to work towards creating a fair GAN according to the definition you choose. Pursuing any of them is virtually always better than blindly labelling data, creating a GAN, and sampling its generations.
| github_jupyter |
# Neural network hybrid recommendation system on Google Analytics data model and training
This notebook demonstrates how to implement a hybrid recommendation system using a neural network to combine content-based and collaborative filtering recommendation models using Google Analytics data. We are going to use the learned user embeddings from [wals.ipynb](../wals.ipynb) and combine that with our previous content-based features from [content_based_using_neural_networks.ipynb](../content_based_using_neural_networks.ipynb)
Now that we have our data preprocessed from BigQuery and Cloud Dataflow, we can build our neural network hybrid recommendation model to our preprocessed data. Then we can train locally to make sure everything works and then use the power of Google Cloud ML Engine to scale it out.
We're going to use TensorFlow Hub to use trained text embeddings, so let's first pip install that and reset our session.
```
!pip install tensorflow_hub
```
Now reset the notebook's session kernel! Since we're no longer using Cloud Dataflow, we'll be using the python3 kernel from here on out so don't forget to change the kernel if it's still python2.
```
# Import helpful libraries and setup our project, bucket, and region
import os
import tensorflow as tf
import tensorflow_hub as hub
PROJECT = 'cloud-training-demos' # REPLACE WITH YOUR PROJECT ID
BUCKET = 'cloud-training-demos-ml' # REPLACE WITH YOUR BUCKET NAME
REGION = 'us-central1' # REPLACE WITH YOUR BUCKET REGION e.g. us-central1
# do not change these
os.environ['PROJECT'] = PROJECT
os.environ['BUCKET'] = BUCKET
os.environ['REGION'] = REGION
os.environ['TFVERSION'] = '1.8'
%%bash
gcloud config set project $PROJECT
gcloud config set compute/region $REGION
%%bash
if ! gsutil ls | grep -q gs://${BUCKET}/hybrid_recommendation/preproc; then
gsutil mb -l ${REGION} gs://${BUCKET}
# copy canonical set of preprocessed files if you didn't do preprocessing notebook
gsutil -m cp -R gs://cloud-training-demos/courses/machine_learning/deepdive/10_recommendation/hybrid_recommendation gs://${BUCKET}
fi
```
<h2> Create hybrid recommendation system model using TensorFlow </h2>
Now that we've created our training and evaluation input files as well as our categorical feature vocabulary files, we can create our TensorFlow hybrid recommendation system model.
Let's first get some of our aggregate information that we will use in the model from some of our preprocessed files we saved in Google Cloud Storage.
```
from tensorflow.python.lib.io import file_io
# Get number of content ids from text file in Google Cloud Storage
with file_io.FileIO(tf.gfile.Glob(filename = "gs://{}/hybrid_recommendation/preproc/vocab_counts/content_id_vocab_count.txt*".format(BUCKET))[0], mode = 'r') as ifp:
number_of_content_ids = int([x for x in ifp][0])
print("number_of_content_ids = {}".format(number_of_content_ids))
# Get number of categories from text file in Google Cloud Storage
with file_io.FileIO(tf.gfile.Glob(filename = "gs://{}/hybrid_recommendation/preproc/vocab_counts/category_vocab_count.txt*".format(BUCKET))[0], mode = 'r') as ifp:
number_of_categories = int([x for x in ifp][0])
print("number_of_categories = {}".format(number_of_categories))
# Get number of authors from text file in Google Cloud Storage
with file_io.FileIO(tf.gfile.Glob(filename = "gs://{}/hybrid_recommendation/preproc/vocab_counts/author_vocab_count.txt*".format(BUCKET))[0], mode = 'r') as ifp:
number_of_authors = int([x for x in ifp][0])
print("number_of_authors = {}".format(number_of_authors))
# Get mean months since epoch from text file in Google Cloud Storage
with file_io.FileIO(tf.gfile.Glob(filename = "gs://{}/hybrid_recommendation/preproc/vocab_counts/months_since_epoch_mean.txt*".format(BUCKET))[0], mode = 'r') as ifp:
mean_months_since_epoch = float([x for x in ifp][0])
print("mean_months_since_epoch = {}".format(mean_months_since_epoch))
# Determine CSV and label columns
NON_FACTOR_COLUMNS = 'next_content_id,visitor_id,content_id,category,title,author,months_since_epoch'.split(',')
FACTOR_COLUMNS = ["user_factor_{}".format(i) for i in range(10)] + ["item_factor_{}".format(i) for i in range(10)]
CSV_COLUMNS = NON_FACTOR_COLUMNS + FACTOR_COLUMNS
LABEL_COLUMN = 'next_content_id'
# Set default values for each CSV column
NON_FACTOR_DEFAULTS = [["Unknown"],["Unknown"],["Unknown"],["Unknown"],["Unknown"],["Unknown"],[mean_months_since_epoch]]
FACTOR_DEFAULTS = [[0.0] for i in range(10)] + [[0.0] for i in range(10)] # user and item
DEFAULTS = NON_FACTOR_DEFAULTS + FACTOR_DEFAULTS
```
Create input function for training and evaluation to read from our preprocessed CSV files.
```
# Create input function for train and eval
def read_dataset(filename, mode, batch_size = 512):
def _input_fn():
def decode_csv(value_column):
columns = tf.decode_csv(records = value_column, record_defaults = DEFAULTS)
features = dict(zip(CSV_COLUMNS, columns))
label = features.pop(LABEL_COLUMN)
return features, label
# Create list of files that match pattern
file_list = tf.gfile.Glob(filename = filename)
# Create dataset from file list
dataset = tf.data.TextLineDataset(filenames = file_list).map(map_func = decode_csv)
if mode == tf.estimator.ModeKeys.TRAIN:
num_epochs = None # indefinitely
dataset = dataset.shuffle(buffer_size = 10 * batch_size)
else:
num_epochs = 1 # end-of-input after this
dataset = dataset.repeat(count = num_epochs).batch(batch_size = batch_size)
return dataset.make_one_shot_iterator().get_next()
return _input_fn
```
Next, we will create our feature columns using our read in features.
```
# Create feature columns to be used in model
def create_feature_columns(args):
# Create content_id feature column
content_id_column = tf.feature_column.categorical_column_with_hash_bucket(
key = "content_id",
hash_bucket_size = number_of_content_ids)
# Embed content id into a lower dimensional representation
embedded_content_column = tf.feature_column.embedding_column(
categorical_column = content_id_column,
dimension = args['content_id_embedding_dimensions'])
# Create category feature column
categorical_category_column = tf.feature_column.categorical_column_with_vocabulary_file(
key = "category",
vocabulary_file = tf.gfile.Glob(filename = "gs://{}/hybrid_recommendation/preproc/vocabs/category_vocab.txt*".format(args['bucket']))[0],
num_oov_buckets = 1)
# Convert categorical category column into indicator column so that it can be used in a DNN
indicator_category_column = tf.feature_column.indicator_column(categorical_column = categorical_category_column)
# Create title feature column using TF Hub
embedded_title_column = hub.text_embedding_column(
key = "title",
module_spec = "https://tfhub.dev/google/nnlm-de-dim50-with-normalization/1",
trainable = False)
# Create author feature column
author_column = tf.feature_column.categorical_column_with_hash_bucket(
key = "author",
hash_bucket_size = number_of_authors + 1)
# Embed author into a lower dimensional representation
embedded_author_column = tf.feature_column.embedding_column(
categorical_column = author_column,
dimension = args['author_embedding_dimensions'])
# Create months since epoch boundaries list for our binning
months_since_epoch_boundaries = list(range(400, 700, 20))
# Create months_since_epoch feature column using raw data
months_since_epoch_column = tf.feature_column.numeric_column(
key = "months_since_epoch")
# Create bucketized months_since_epoch feature column using our boundaries
months_since_epoch_bucketized = tf.feature_column.bucketized_column(
source_column = months_since_epoch_column,
boundaries = months_since_epoch_boundaries)
# Cross our categorical category column and bucketized months since epoch column
crossed_months_since_category_column = tf.feature_column.crossed_column(
keys = [categorical_category_column, months_since_epoch_bucketized],
hash_bucket_size = len(months_since_epoch_boundaries) * (number_of_categories + 1))
# Convert crossed categorical category and bucketized months since epoch column into indicator column so that it can be used in a DNN
indicator_crossed_months_since_category_column = tf.feature_column.indicator_column(categorical_column = crossed_months_since_category_column)
# Create user and item factor feature columns from our trained WALS model
user_factors = [tf.feature_column.numeric_column(key = "user_factor_" + str(i)) for i in range(10)]
item_factors = [tf.feature_column.numeric_column(key = "item_factor_" + str(i)) for i in range(10)]
# Create list of feature columns
feature_columns = [embedded_content_column,
embedded_author_column,
indicator_category_column,
embedded_title_column,
indicator_crossed_months_since_category_column] + user_factors + item_factors
return feature_columns
```
Now we'll create our model function
```
# Create custom model function for our custom estimator
def model_fn(features, labels, mode, params):
# TODO: Create neural network input layer using our feature columns defined above
# TODO: Create hidden layers by looping through hidden unit list
# TODO: Compute logits (1 per class) using the output of our last hidden layer
# TODO: Find the predicted class indices based on the highest logit (which will result in the highest probability)
predicted_classes =
# Read in the content id vocabulary so we can tie the predicted class indices to their respective content ids
with file_io.FileIO(tf.gfile.Glob(filename = "gs://{}/hybrid_recommendation/preproc/vocabs/content_id_vocab.txt*".format(BUCKET))[0], mode = 'r') as ifp:
content_id_names = tf.constant(value = [x.rstrip() for x in ifp])
# Gather predicted class names based predicted class indices
predicted_class_names = tf.gather(params = content_id_names, indices = predicted_classes)
# If the mode is prediction
if mode == tf.estimator.ModeKeys.PREDICT:
# Create predictions dict
predictions_dict = {
'class_ids': tf.expand_dims(input = predicted_classes, axis = -1),
'class_names' : tf.expand_dims(input = predicted_class_names, axis = -1),
'probabilities': tf.nn.softmax(logits = logits),
'logits': logits
}
# Create export outputs
export_outputs = {"predict_export_outputs": tf.estimator.export.PredictOutput(outputs = predictions_dict)}
return tf.estimator.EstimatorSpec( # return early since we're done with what we need for prediction mode
mode = mode,
predictions = predictions_dict,
loss = None,
train_op = None,
eval_metric_ops = None,
export_outputs = export_outputs)
# Continue on with training and evaluation modes
# Create lookup table using our content id vocabulary
table = tf.contrib.lookup.index_table_from_file(
vocabulary_file = tf.gfile.Glob(filename = "gs://{}/hybrid_recommendation/preproc/vocabs/content_id_vocab.txt*".format(BUCKET))[0])
# Look up labels from vocabulary table
labels = table.lookup(keys = labels)
# TODO: Compute loss using the correct type of softmax cross entropy since this is classification and our labels (content id indices) and probabilities are mutually exclusive
loss =
# Compute evaluation metrics of total accuracy and the accuracy of the top k classes
accuracy = tf.metrics.accuracy(labels = labels, predictions = predicted_classes, name = 'acc_op')
top_k_accuracy = tf.metrics.mean(values = tf.nn.in_top_k(predictions = logits, targets = labels, k = params['top_k']))
map_at_k = tf.metrics.average_precision_at_k(labels = labels, predictions = predicted_classes, k = params['top_k'])
# Put eval metrics into a dictionary
eval_metrics = {
'accuracy': accuracy,
'top_k_accuracy': top_k_accuracy,
'map_at_k': map_at_k}
# Create scalar summaries to see in TensorBoard
tf.summary.scalar(name = 'accuracy', tensor = accuracy[1])
tf.summary.scalar(name = 'top_k_accuracy', tensor = top_k_accuracy[1])
tf.summary.scalar(name = 'map_at_k', tensor = map_at_k[1])
# Create scalar summaries to see in TensorBoard
tf.summary.scalar(name = 'accuracy', tensor = accuracy[1])
tf.summary.scalar(name = 'top_k_accuracy', tensor = top_k_accuracy[1])
# If the mode is evaluation
if mode == tf.estimator.ModeKeys.EVAL:
return tf.estimator.EstimatorSpec( # return early since we're done with what we need for evaluation mode
mode = mode,
predictions = None,
loss = loss,
train_op = None,
eval_metric_ops = eval_metrics,
export_outputs = None)
# Continue on with training mode
# If the mode is training
assert mode == tf.estimator.ModeKeys.TRAIN
# Create a custom optimizer
optimizer = tf.train.AdagradOptimizer(learning_rate = params['learning_rate'])
# Create train op
train_op = optimizer.minimize(loss = loss, global_step = tf.train.get_global_step())
return tf.estimator.EstimatorSpec( # final return since we're done with what we need for training mode
mode = mode,
predictions = None,
loss = loss,
train_op = train_op,
eval_metric_ops = None,
export_outputs = None)
```
Now create a serving input function
```
# Create serving input function
def serving_input_fn():
feature_placeholders = {
colname : tf.placeholder(dtype = tf.string, shape = [None]) \
for colname in NON_FACTOR_COLUMNS[1:-1]
}
feature_placeholders['months_since_epoch'] = tf.placeholder(dtype = tf.float32, shape = [None])
for colname in FACTOR_COLUMNS:
feature_placeholders[colname] = tf.placeholder(dtype = tf.float32, shape = [None])
features = {
key: tf.expand_dims(tensor, -1) \
for key, tensor in feature_placeholders.items()
}
return tf.estimator.export.ServingInputReceiver(features, feature_placeholders)
```
Now that all of the pieces are assembled let's create and run our train and evaluate loop
```
# Create train and evaluate loop to combine all of the pieces together.
tf.logging.set_verbosity(tf.logging.INFO)
def train_and_evaluate(args):
estimator = tf.estimator.Estimator(
model_fn = model_fn,
model_dir = args['output_dir'],
params={
'feature_columns': create_feature_columns(args),
'hidden_units': args['hidden_units'],
'n_classes': number_of_content_ids,
'learning_rate': args['learning_rate'],
'top_k': args['top_k'],
'bucket': args['bucket']
})
train_spec = tf.estimator.TrainSpec(
input_fn = read_dataset(filename = args['train_data_paths'], mode = tf.estimator.ModeKeys.TRAIN, batch_size = args['batch_size']),
max_steps = args['train_steps'])
exporter = tf.estimator.LatestExporter('exporter', serving_input_fn)
eval_spec = tf.estimator.EvalSpec(
input_fn = read_dataset(filename = args['eval_data_paths'], mode = tf.estimator.ModeKeys.EVAL, batch_size = args['batch_size']),
steps = None,
start_delay_secs = args['start_delay_secs'],
throttle_secs = args['throttle_secs'],
exporters = exporter)
tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
```
Run train_and_evaluate!
```
# Call train and evaluate loop
import shutil
outdir = 'hybrid_recommendation_trained'
shutil.rmtree(outdir, ignore_errors = True) # start fresh each time
arguments = {
'bucket': BUCKET,
'train_data_paths': "gs://{}/hybrid_recommendation/preproc/features/train.csv*".format(BUCKET),
'eval_data_paths': "gs://{}/hybrid_recommendation/preproc/features/eval.csv*".format(BUCKET),
'output_dir': outdir,
'batch_size': 128,
'learning_rate': 0.1,
'hidden_units': [256, 128, 64],
'content_id_embedding_dimensions': 10,
'author_embedding_dimensions': 10,
'top_k': 10,
'train_steps': 1000,
'start_delay_secs': 30,
'throttle_secs': 30
}
train_and_evaluate(arguments)
```
## Run on module locally
Now let's place our code into a python module with model.py and task.py files so that we can train using Google Cloud's ML Engine! First, let's test our module locally.
```
%writefile requirements.txt
tensorflow_hub
%%bash
echo "bucket=${BUCKET}"
rm -rf hybrid_recommendation_trained
export PYTHONPATH=${PYTHONPATH}:${PWD}/hybrid_recommendations_module
python -m trainer.task \
--bucket=${BUCKET} \
--train_data_paths=gs://${BUCKET}/hybrid_recommendation/preproc/features/train.csv* \
--eval_data_paths=gs://${BUCKET}/hybrid_recommendation/preproc/features/eval.csv* \
--output_dir=${OUTDIR} \
--batch_size=128 \
--learning_rate=0.1 \
--hidden_units="256 128 64" \
--content_id_embedding_dimensions=10 \
--author_embedding_dimensions=10 \
--top_k=10 \
--train_steps=1000 \
--start_delay_secs=30 \
--throttle_secs=60
```
# Run on Google Cloud ML Engine
If our module locally trained fine, let's now use of the power of ML Engine to scale it out on Google Cloud.
```
%%bash
OUTDIR=gs://${BUCKET}/hybrid_recommendation/small_trained_model
JOBNAME=hybrid_recommendation_$(date -u +%y%m%d_%H%M%S)
echo $OUTDIR $REGION $JOBNAME
gsutil -m rm -rf $OUTDIR
gcloud ml-engine jobs submit training $JOBNAME \
--region=$REGION \
--module-name=trainer.task \
--package-path=$(pwd)/hybrid_recommendations_module/trainer \
--job-dir=$OUTDIR \
--staging-bucket=gs://$BUCKET \
--scale-tier=STANDARD_1 \
--runtime-version=$TFVERSION \
-- \
--bucket=${BUCKET} \
--train_data_paths=gs://${BUCKET}/hybrid_recommendation/preproc/features/train.csv* \
--eval_data_paths=gs://${BUCKET}/hybrid_recommendation/preproc/features/eval.csv* \
--output_dir=${OUTDIR} \
--batch_size=128 \
--learning_rate=0.1 \
--hidden_units="256 128 64" \
--content_id_embedding_dimensions=10 \
--author_embedding_dimensions=10 \
--top_k=10 \
--train_steps=1000 \
--start_delay_secs=30 \
--throttle_secs=30
```
Let's add some hyperparameter tuning!
```
%%writefile hyperparam.yaml
trainingInput:
hyperparameters:
goal: MAXIMIZE
maxTrials: 5
maxParallelTrials: 1
hyperparameterMetricTag: accuracy
params:
- parameterName: batch_size
type: INTEGER
minValue: 8
maxValue: 64
scaleType: UNIT_LINEAR_SCALE
- parameterName: learning_rate
type: DOUBLE
minValue: 0.01
maxValue: 0.1
scaleType: UNIT_LINEAR_SCALE
- parameterName: hidden_units
type: CATEGORICAL
categoricalValues: ['1024 512 256', '1024 512 128', '1024 256 128', '512 256 128', '1024 512 64', '1024 256 64', '512 256 64', '1024 128 64', '512 128 64', '256 128 64', '1024 512 32', '1024 256 32', '512 256 32', '1024 128 32', '512 128 32', '256 128 32', '1024 64 32', '512 64 32', '256 64 32', '128 64 32']
- parameterName: content_id_embedding_dimensions
type: INTEGER
minValue: 5
maxValue: 250
scaleType: UNIT_LOG_SCALE
- parameterName: author_embedding_dimensions
type: INTEGER
minValue: 5
maxValue: 30
scaleType: UNIT_LINEAR_SCALE
%%bash
OUTDIR=gs://${BUCKET}/hybrid_recommendation/hypertuning
JOBNAME=hybrid_recommendation_$(date -u +%y%m%d_%H%M%S)
echo $OUTDIR $REGION $JOBNAME
gsutil -m rm -rf $OUTDIR
gcloud ml-engine jobs submit training $JOBNAME \
--region=$REGION \
--module-name=trainer.task \
--package-path=$(pwd)/hybrid_recommendations_module/trainer \
--job-dir=$OUTDIR \
--staging-bucket=gs://$BUCKET \
--scale-tier=STANDARD_1 \
--runtime-version=$TFVERSION \
--config=hyperparam.yaml \
-- \
--bucket=${BUCKET} \
--train_data_paths=gs://${BUCKET}/hybrid_recommendation/preproc/features/train.csv* \
--eval_data_paths=gs://${BUCKET}/hybrid_recommendation/preproc/features/eval.csv* \
--output_dir=${OUTDIR} \
--batch_size=128 \
--learning_rate=0.1 \
--hidden_units="256 128 64" \
--content_id_embedding_dimensions=10 \
--author_embedding_dimensions=10 \
--top_k=10 \
--train_steps=1000 \
--start_delay_secs=30 \
--throttle_secs=30
```
Now that we know the best hyperparameters, run a big training job!
```
%%bash
OUTDIR=gs://${BUCKET}/hybrid_recommendation/big_trained_model
JOBNAME=hybrid_recommendation_$(date -u +%y%m%d_%H%M%S)
echo $OUTDIR $REGION $JOBNAME
gsutil -m rm -rf $OUTDIR
gcloud ml-engine jobs submit training $JOBNAME \
--region=$REGION \
--module-name=trainer.task \
--package-path=$(pwd)/hybrid_recommendations_module/trainer \
--job-dir=$OUTDIR \
--staging-bucket=gs://$BUCKET \
--scale-tier=STANDARD_1 \
--runtime-version=$TFVERSION \
-- \
--bucket=${BUCKET} \
--train_data_paths=gs://${BUCKET}/hybrid_recommendation/preproc/features/train.csv* \
--eval_data_paths=gs://${BUCKET}/hybrid_recommendation/preproc/features/eval.csv* \
--output_dir=${OUTDIR} \
--batch_size=128 \
--learning_rate=0.1 \
--hidden_units="256 128 64" \
--content_id_embedding_dimensions=10 \
--author_embedding_dimensions=10 \
--top_k=10 \
--train_steps=10000 \
--start_delay_secs=30 \
--throttle_secs=30
```
| github_jupyter |
```
from fastai import *
from fastai.vision import *
from fastai.metrics import error_rate
import matplotlib.pyplot as plt
from fastai.utils.mem import *
%matplotlib inline
```
###### Setting the path
```
path = Path("C:/Users/shahi/.fastai/data/lgg-mri-segmentation/kaggle_3m")
path
getMask = lambda x: x.parents[0] / (x.stem + '_mask' + x.suffix)
tempImgFile = path/"TCGA_CS_4941_19960909/TCGA_CS_4941_19960909_1.tif"
tempMaskFile = getMask(tempImgFile)
image = open_image(tempImgFile)
image
image.shape
mask = open_mask(getMask(tempImgFile),div=True)
mask
class SegmentationLabelListWithDiv(SegmentationLabelList):
def open(self, fn): return open_mask(fn, div=True)
class SegmentationItemListWithDiv(SegmentationItemList):
_label_cls = SegmentationLabelListWithDiv
codes = [0,1]
np.random.seed(42)
src = (SegmentationItemListWithDiv.from_folder(path)
.filter_by_func(lambda x:not x.name.endswith('_mask.tif'))
.split_by_rand_pct(0.2)
.label_from_func(getMask, classes=codes))
data = (src.transform(get_transforms(),size=256,tfm_y=True)
.databunch(bs=8,num_workers=0)
.normalize(imagenet_stats))
data.train_ds
data.valid_ds
data.show_batch(2)
```
##### Building the model
#### Pretrained resnet 34 used for downsampling
```
learn = unet_learner(data,models.resnet34,metrics=[dice])
learn.lr_find()
learn.recorder.plot()
learn.fit_one_cycle(4,1e-4)
learn.unfreeze()
learn.fit_one_cycle(4,1e-4,wd=1e-2)
```
#### Resnet 34 without pretrained weights with dialation
```
learn.save('ResnetWithPrettrained')
learn.summary()
def conv(ni,nf):
return nn.Conv2d(ni, nf, kernel_size=3, stride=2, padding=1,dilation=2)
def conv2(ni,nf): return conv_layer(ni,nf)
models.resnet34
model = nn.Sequential(
conv2(3,8),
res_block(8),
conv2(8,16),
res_block(16),
conv2(16,32),
res_block(32),
)
act_fn = nn.ReLU(inplace=True)
def presnet(block, n_layers, name, pre=False, **kwargs):
model = PResNet(block, n_layers, **kwargs)
#if pre: model.load_state_dict(model_zoo.load_url(model_urls[name]))
if pre: model.load_state_dict(torch.load(model_urls[name]))
return model
def presnet18(pretrained=False, **kwargs):
return presnet(BasicBlock, [2, 2, 2, 2], 'presnet18', pre=pretrained, **kwargs)
class ResBlock(nn.Module):
def __init__(self, nf):
super().__init__()
self.conv1 = conv_layer(nf,nf)
self.conv2 = conv_layer(nf,nf)
def forward(self, x): return x + self.conv2(self.conv1(x))
model3 = nn.Sequential(
conv2(3, 8),
res_block(8),
conv2(8, 16),
res_block(16),
conv2(16, 32),
res_block(32),
conv2(32, 16),
res_block(16),
conv2(16, 10),
)
model3
class ResBlock(nn.Module):
def __init__(self, nf):
super().__init__()
self.conv1 = conv_layer(nf,nf)
self.conv2 = conv_layer(nf,nf)
def forward(self, x): return x + self.conv2(self.conv1(x))
learn3 = unet_learner(data,drn_d_38,metrics=[dice],pretrained=True)
learn3.lr_find()
learn3.recorder.plot()
learn3.fit_one_cycle(4,1e-4,wd=1e-1)
learn3.unfreeze()
learn3.fit_one_cycle(4,1e-4,wd=1e-2)
learn3.save('ResnetWithPretrainedDilation')
learn3.summary()
import pdb
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
BatchNorm = nn.BatchNorm2d
# __all__ = ['DRN', 'drn26', 'drn42', 'drn58']
webroot = 'http://dl.yf.io/drn/'
model_urls = {
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'drn-c-26': webroot + 'drn_c_26-ddedf421.pth',
'drn-c-42': webroot + 'drn_c_42-9d336e8c.pth',
'drn-c-58': webroot + 'drn_c_58-0a53a92c.pth',
'drn-d-22': webroot + 'drn_d_22-4bd2f8ea.pth',
'drn-d-38': webroot + 'drn_d_38-eebb45f0.pth',
'drn-d-54': webroot + 'drn_d_54-0e0534ff.pth',
'drn-d-105': webroot + 'drn_d_105-12b40979.pth'
}
def conv3x3(in_planes, out_planes, stride=1, padding=1, dilation=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=padding, bias=False, dilation=dilation)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None,
dilation=(1, 1), residual=True):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride,
padding=dilation[0], dilation=dilation[0])
self.bn1 = BatchNorm(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes,
padding=dilation[1], dilation=dilation[1])
self.bn2 = BatchNorm(planes)
self.downsample = downsample
self.stride = stride
self.residual = residual
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
if self.residual:
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None,
dilation=(1, 1), residual=True):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = BatchNorm(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=dilation[1], bias=False,
dilation=dilation[1])
self.bn2 = BatchNorm(planes)
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = BatchNorm(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class DRN(nn.Module):
def __init__(self, block, layers, num_classes=1000,
channels=(16, 32, 64, 128, 256, 512, 512, 512),
out_map=False, out_middle=False, pool_size=28, arch='D'):
super(DRN, self).__init__()
self.inplanes = channels[0]
self.out_map = out_map
self.out_dim = channels[-1]
self.out_middle = out_middle
self.arch = arch
if arch == 'C':
self.conv1 = nn.Conv2d(3, channels[0], kernel_size=7, stride=1,
padding=3, bias=False)
self.bn1 = BatchNorm(channels[0])
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(
BasicBlock, channels[0], layers[0], stride=1)
self.layer2 = self._make_layer(
BasicBlock, channels[1], layers[1], stride=2)
elif arch == 'D':
self.layer0 = nn.Sequential(
nn.Conv2d(3, channels[0], kernel_size=7, stride=1, padding=3,
bias=False),
BatchNorm(channels[0]),
nn.ReLU(inplace=True)
)
self.layer1 = self._make_conv_layers(
channels[0], layers[0], stride=1)
self.layer2 = self._make_conv_layers(
channels[1], layers[1], stride=2)
self.layer3 = self._make_layer(block, channels[2], layers[2], stride=2)
self.layer4 = self._make_layer(block, channels[3], layers[3], stride=2)
self.layer5 = self._make_layer(block, channels[4], layers[4],
dilation=2, new_level=False)
self.layer6 = None if layers[5] == 0 else \
self._make_layer(block, channels[5], layers[5], dilation=4,
new_level=False)
if arch == 'C':
self.layer7 = None if layers[6] == 0 else \
self._make_layer(BasicBlock, channels[6], layers[6], dilation=2,
new_level=False, residual=False)
self.layer8 = None if layers[7] == 0 else \
self._make_layer(BasicBlock, channels[7], layers[7], dilation=1,
new_level=False, residual=False)
elif arch == 'D':
self.layer7 = None if layers[6] == 0 else \
self._make_conv_layers(channels[6], layers[6], dilation=2)
self.layer8 = None if layers[7] == 0 else \
self._make_conv_layers(channels[7], layers[7], dilation=1)
if num_classes > 0:
self.avgpool = nn.AvgPool2d(pool_size)
self.fc = nn.Conv2d(self.out_dim, num_classes, kernel_size=1,
stride=1, padding=0, bias=True)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, BatchNorm):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, stride=1, dilation=1,
new_level=True, residual=True):
assert dilation == 1 or dilation % 2 == 0
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
BatchNorm(planes * block.expansion),
)
layers = list()
layers.append(block(
self.inplanes, planes, stride, downsample,
dilation=(1, 1) if dilation == 1 else (
dilation // 2 if new_level else dilation, dilation),
residual=residual))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes, residual=residual,
dilation=(dilation, dilation)))
return nn.Sequential(*layers)
def _make_conv_layers(self, channels, convs, stride=1, dilation=1):
modules = []
for i in range(convs):
modules.extend([
nn.Conv2d(self.inplanes, channels, kernel_size=3,
stride=stride if i == 0 else 1,
padding=dilation, bias=False, dilation=dilation),
BatchNorm(channels),
nn.ReLU(inplace=True)])
self.inplanes = channels
return nn.Sequential(*modules)
def forward(self, x):
y = list()
if self.arch == 'C':
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
elif self.arch == 'D':
x = self.layer0(x)
x = self.layer1(x)
y.append(x)
x = self.layer2(x)
y.append(x)
x = self.layer3(x)
y.append(x)
x = self.layer4(x)
y.append(x)
x = self.layer5(x)
y.append(x)
if self.layer6 is not None:
x = self.layer6(x)
y.append(x)
if self.layer7 is not None:
x = self.layer7(x)
y.append(x)
if self.layer8 is not None:
x = self.layer8(x)
y.append(x)
if self.out_map:
x = self.fc(x)
else:
x = self.avgpool(x)
x = self.fc(x)
x = x.view(x.size(0), -1)
if self.out_middle:
return x, y
else:
return x
class DRN_A(nn.Module):
def __init__(self, block, layers, num_classes=1000):
self.inplanes = 64
super(DRN_A, self).__init__()
self.out_dim = 512 * block.expansion
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=1,
dilation=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=1,
dilation=4)
self.avgpool = nn.AvgPool2d(28, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, BatchNorm):
m.weight.data.fill_(1)
m.bias.data.zero_()
# for m in self.modules():
# if isinstance(m, nn.Conv2d):
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
# elif isinstance(m, nn.BatchNorm2d):
# nn.init.constant_(m.weight, 1)
# nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilation=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes,
dilation=(dilation, dilation)))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def drn_a_50(pretrained=False, **kwargs):
model = DRN_A(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def drn_c_26(pretrained=False, **kwargs):
model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 1, 1], arch='C', **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['drn-c-26']))
return model
def drn_c_42(pretrained=False, **kwargs):
model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 1, 1], arch='C', **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['drn-c-42']))
return model
def drn_c_58(pretrained=False, **kwargs):
model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 1, 1], arch='C', **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['drn-c-58']))
return model
def drn_d_22(pretrained=False, **kwargs):
model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 1, 1], arch='D', **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['drn-d-22']))
return model
def drn_d_24(pretrained=False, **kwargs):
model = DRN(BasicBlock, [1, 1, 2, 2, 2, 2, 2, 2], arch='D', **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['drn-d-24']))
return model
def drn_d_38(pretrained=False, **kwargs):
model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 1, 1], arch='D', **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['drn-d-38']))
return model
def drn_d_40(pretrained=False, **kwargs):
model = DRN(BasicBlock, [1, 1, 3, 4, 6, 3, 2, 2], arch='D', **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['drn-d-40']))
return model
def drn_d_54(pretrained=False, **kwargs):
model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 1, 1], arch='D', **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['drn-d-54']))
return model
def drn_d_56(pretrained=False, **kwargs):
model = DRN(Bottleneck, [1, 1, 3, 4, 6, 3, 2, 2], arch='D', **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['drn-d-56']))
return model
def drn_d_105(pretrained=False, **kwargs):
model = DRN(Bottleneck, [1, 1, 3, 4, 23, 3, 1, 1], arch='D', **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['drn-d-105']))
return model
def drn_d_107(pretrained=False, **kwargs):
model = DRN(Bottleneck, [1, 1, 3, 4, 23, 3, 2, 2], arch='D', **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['drn-d-107']))
return model
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1,padding=1,dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False,dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None,dilation=(1,1)):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride,padding=dilation[0],dilation=dilation[1])
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes,padding=dilation[1],dilation=dilation[1])
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None,dilation=(1,1)):
super(Bottleneck, self).__init__()
self.conv1 = conv1x1(inplanes, planes)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = conv3x3(planes, planes, stride)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = conv1x1(planes, planes * self.expansion)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False):
super(ResNet, self).__init__()
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, Bottleneck):
nn.init.constant_(m.bn3.weight, 0)
elif isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
return model
def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
return model
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
return model
```
| github_jupyter |
# Supervised Learning: Finding Donors for *CharityML*
> Udacity Machine Learning Engineer Nanodegree: _Project 2_
>
> Author: _Ke Zhang_
>
> Submission Date: _2017-04-30_ (Revision 3)
## Content
- [Getting Started](#Getting-Started)
- [Exploring the Data](#Exploring-the-Data)
- [Preparing the Data](#Preparing-the-Data)
- [Evaluating Model Performance](#Evaluating-Model-Performance)
- [Improving Results](#Improving-Results)
- [Feature Importance](#Feature-Importance)
- [References](#References)
- [Reproduction Environment](#Reproduction-Environment)
## Getting Started
In this project, you will employ several supervised algorithms of your choice to accurately model individuals' income using data collected from the 1994 U.S. Census. You will then choose the best candidate algorithm from preliminary results and further optimize this algorithm to best model the data. Your goal with this implementation is to construct a model that accurately predicts whether an individual makes more than $50,000. This sort of task can arise in a non-profit setting, where organizations survive on donations. Understanding an individual's income can help a non-profit better understand how large of a donation to request, or whether or not they should reach out to begin with. While it can be difficult to determine an individual's general income bracket directly from public sources, we can (as we will see) infer this value from other publically available features.
The dataset for this project originates from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/Census+Income). The datset was donated by Ron Kohavi and Barry Becker, after being published in the article _"Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-Tree Hybrid"_. You can find the article by Ron Kohavi [online](https://www.aaai.org/Papers/KDD/1996/KDD96-033.pdf). The data we investigate here consists of small changes to the original dataset, such as removing the `'fnlwgt'` feature and records with missing or ill-formatted entries.
----
## Exploring the Data
Run the code cell below to load necessary Python libraries and load the census data. Note that the last column from this dataset, `'income'`, will be our target label (whether an individual makes more than, or at most, $50,000 annually). All other columns are features about each individual in the census database.
```
# Import libraries necessary for this project
import numpy as np
import pandas as pd
from time import time
from IPython.display import display # Allows the use of display() for DataFrames
import matplotlib.pyplot as plt
import seaborn as sns
# Import supplementary visualization code visuals.py
import visuals as vs
#sklearn makes lots of deprecation warnings...
import warnings
warnings.filterwarnings("ignore", category=DeprecationWarning)
# Pretty display for notebooks
%matplotlib inline
sns.set(style='white', palette='muted', color_codes=True)
sns.set_context('notebook', font_scale=1.2, rc={'lines.linewidth': 1.2})
# Load the Census dataset
data = pd.read_csv("census.csv")
# Success - Display the first record
display(data.head(n=1))
```
### Implementation: Data Exploration
A cursory investigation of the dataset will determine how many individuals fit into either group, and will tell us about the percentage of these individuals making more than \$50,000. In the code cell below, you will need to compute the following:
- The total number of records, `'n_records'`
- The number of individuals making more than \$50,000 annually, `'n_greater_50k'`.
- The number of individuals making at most \$50,000 annually, `'n_at_most_50k'`.
- The percentage of individuals making more than \$50,000 annually, `'greater_percent'`.
**Hint:** You may need to look at the table above to understand how the `'income'` entries are formatted.
```
# Total number of records
n_records = data.shape[0]
# Number of records where individual's income is more than $50,000
n_greater_50k = data[data['income'] == '>50K'].shape[0]
# Number of records where individual's income is at most $50,000
n_at_most_50k = data[data['income'] == '<=50K'].shape[0]
# Percentage of individuals whose income is more than $50,000
greater_percent = n_greater_50k / (n_records / 100.0)
# Print the results
print "Total number of records: {}".format(n_records)
print "Individuals making more than $50,000: {}".format(n_greater_50k)
print "Individuals making at most $50,000: {}".format(n_at_most_50k)
print "Percentage of individuals making more than $50,000: {:.2f}%".format(greater_percent)
```
----
## Preparing the Data
Before data can be used as input for machine learning algorithms, it often must be cleaned, formatted, and restructured — this is typically known as **preprocessing**. Fortunately, for this dataset, there are no invalid or missing entries we must deal with, however, there are some qualities about certain features that must be adjusted. This preprocessing can help tremendously with the outcome and predictive power of nearly all learning algorithms.
### Transforming Skewed Continuous Features
A dataset may sometimes contain at least one feature whose values tend to lie near a single number, but will also have a non-trivial number of vastly larger or smaller values than that single number. Algorithms can be sensitive to such distributions of values and can underperform if the range is not properly normalized. With the census dataset two features fit this description: '`capital-gain'` and `'capital-loss'`.
Run the code cell below to plot a histogram of these two features. Note the range of the values present and how they are distributed.
```
# Split the data into features and target label
income_raw = data['income']
features_raw = data.drop('income', axis = 1)
# Visualize skewed continuous features of original data
vs.distribution(data)
```
For highly-skewed feature distributions such as `'capital-gain'` and `'capital-loss'`, it is common practice to apply a <a href="https://en.wikipedia.org/wiki/Data_transformation_(statistics)">logarithmic transformation</a> on the data so that the very large and very small values do not negatively affect the performance of a learning algorithm. Using a logarithmic transformation significantly reduces the range of values caused by outliers. Care must be taken when applying this transformation however: The logarithm of `0` is undefined, so we must translate the values by a small amount above `0` to apply the the logarithm successfully.
Run the code cell below to perform a transformation on the data and visualize the results. Again, note the range of values and how they are distributed.
```
# Log-transform the skewed features
skewed = ['capital-gain', 'capital-loss']
features_raw[skewed] = data[skewed].apply(lambda x: np.log(x + 1))
# Visualize the new log distributions
vs.distribution(features_raw, transformed = True)
```
### Normalizing Numerical Features
In addition to performing transformations on features that are highly skewed, it is often good practice to perform some type of scaling on numerical features. Applying a scaling to the data does not change the shape of each feature's distribution (such as `'capital-gain'` or `'capital-loss'` above); however, normalization ensures that each feature is treated equally when applying supervised learners. Note that once scaling is applied, observing the data in its raw form will no longer have the same original meaning, as exampled below.
Run the code cell below to normalize each numerical feature. We will use [`sklearn.preprocessing.MinMaxScaler`](http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html) for this.
```
# Import sklearn.preprocessing.StandardScaler
from sklearn.preprocessing import MinMaxScaler
# Initialize a scaler, then apply it to the features
scaler = MinMaxScaler()
numerical = ['age', 'education-num', 'capital-gain', 'capital-loss', 'hours-per-week']
features_raw[numerical] = scaler.fit_transform(data[numerical])
# Show an example of a record with scaling applied
display(features_raw.head(n = 1))
```
### Implementation: Data Preprocessing
From the table in **Exploring the Data** above, we can see there are several features for each record that are non-numeric. Typically, learning algorithms expect input to be numeric, which requires that non-numeric features (called *categorical variables*) be converted. One popular way to convert categorical variables is by using the **one-hot encoding** scheme. One-hot encoding creates a _"dummy"_ variable for each possible category of each non-numeric feature. For example, assume `someFeature` has three possible entries: `A`, `B`, or `C`. We then encode this feature into `someFeature_A`, `someFeature_B` and `someFeature_C`.
| | someFeature | | someFeature_A | someFeature_B | someFeature_C |
| :-: | :-: | | :-: | :-: | :-: |
| 0 | B | | 0 | 1 | 0 |
| 1 | C | ----> one-hot encode ----> | 0 | 0 | 1 |
| 2 | A | | 1 | 0 | 0 |
Additionally, as with the non-numeric features, we need to convert the non-numeric target label, `'income'` to numerical values for the learning algorithm to work. Since there are only two possible categories for this label ("<=50K" and ">50K"), we can avoid using one-hot encoding and simply encode these two categories as `0` and `1`, respectively. In code cell below, you will need to implement the following:
- Use [`pandas.get_dummies()`](http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html?highlight=get_dummies#pandas.get_dummies) to perform one-hot encoding on the `'features_raw'` data.
- Convert the target label `'income_raw'` to numerical entries.
- Set records with "<=50K" to `0` and records with ">50K" to `1`.
```
# One-hot encode the 'features_raw' data using pandas.get_dummies()
features = pd.get_dummies(features_raw)
# Encode the 'income_raw' data to numerical values
income = income_raw.apply(lambda x: 1 if x == '>50K' else 0)
# Print the number of features after one-hot encoding
encoded = list(features.columns)
print "{} total features after one-hot encoding.".format(len(encoded))
# Uncomment the following line to see the encoded feature names
print encoded
```
### Shuffle and Split Data
Now all _categorical variables_ have been converted into numerical features, and all numerical features have been normalized. As always, we will now split the data (both features and their labels) into training and test sets. 80% of the data will be used for training and 20% for testing.
Run the code cell below to perform this split.
```
# Import train_test_split
from sklearn.cross_validation import train_test_split
# Split the 'features' and 'income' data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(features, income, test_size = 0.2, random_state = 0)
# Show the results of the split
print "Training set has {} samples.".format(X_train.shape[0])
print "Testing set has {} samples.".format(X_test.shape[0])
```
----
## Evaluating Model Performance
In this section, we will investigate four different algorithms, and determine which is best at modeling the data. Three of these algorithms will be supervised learners of your choice, and the fourth algorithm is known as a *naive predictor*.
### Metrics and the Naive Predictor
*CharityML*, equipped with their research, knows individuals that make more than \$50,000 are most likely to donate to their charity. Because of this, *CharityML* is particularly interested in predicting who makes more than \$50,000 accurately. It would seem that using **accuracy** as a metric for evaluating a particular model's performace would be appropriate. Additionally, identifying someone that *does not* make more than \$50,000 as someone who does would be detrimental to *CharityML*, since they are looking to find individuals willing to donate. Therefore, a model's ability to precisely predict those that make more than \$50,000 is *more important* than the model's ability to **recall** those individuals. We can use **F-beta score** as a metric that considers both precision and recall:
$$ F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{\left( \beta^2 \cdot precision \right) + recall} $$
In particular, when $\beta = 0.5$, more emphasis is placed on precision. This is called the **F$_{0.5}$ score** (or F-score for simplicity).
Looking at the distribution of classes (those who make at most \$50,000, and those who make more), it's clear most individuals do not make more than \$50,000. This can greatly affect **accuracy**, since we could simply say *"this person does not make more than \$50,000"* and generally be right, without ever looking at the data! Making such a statement would be called **naive**, since we have not considered any information to substantiate the claim. It is always important to consider the *naive prediction* for your data, to help establish a benchmark for whether a model is performing well. That been said, using that prediction would be pointless: If we predicted all people made less than \$50,000, *CharityML* would identify no one as donors.
### Question 1 - Naive Predictor Performace
*If we chose a model that always predicted an individual made more than \$50,000, what would that model's accuracy and F-score be on this dataset?*
**Note:** You must use the code cell below and assign your results to `'accuracy'` and `'fscore'` to be used later.
```
# Calculate accuracy
accuracy = 1.0 * n_greater_50k / n_records
# Calculate F-score using the formula above for beta = 0.5
recall = 1.0
fscore = (
(1 + 0.5**2) * accuracy * recall
) / (
0.5**2 * accuracy + recall
)
# Print the results
print "Naive Predictor: [Accuracy score: {:.4f}, F-score: {:.4f}]".format(accuracy, fscore)
```
### Supervised Learning Models
**The following supervised learning models are currently available in** [`scikit-learn`](http://scikit-learn.org/stable/supervised_learning.html) **that you may choose from:**
- Gaussian Naive Bayes (GaussianNB)
- Decision Trees
- Ensemble Methods (Bagging, AdaBoost, Random Forest, Gradient Boosting)
- K-Nearest Neighbors (KNeighbors)
- Stochastic Gradient Descent Classifier (SGDC)
- Support Vector Machines (SVM)
- Logistic Regression
### Question 2 - Model Application
List three of the supervised learning models above that are appropriate for this problem that you will test on the census data. For each model chosen
- *Describe one real-world application in industry where the model can be applied.* (You may need to do research for this — give references!)
- *What are the strengths of the model; when does it perform well?*
- *What are the weaknesses of the model; when does it perform poorly?*
- *What makes this model a good candidate for the problem, given what you know about the data?*
**Answer: **
Total number of records: 45222
The algorithms we're searching here is for a supervised classification problem predicting a category using labeled data with less than 100K samples.
* **Support Vector Machine** (SVM):
* Real-world application: classifying proteins, protein-protein interaction
* References: [Bioinformatics - Semi-Supervised Multi-Task Learning for Predicting Interactions between HIV-1 and Human Proteins](https://static.googleusercontent.com/media/research.google.com/de//pubs/archive/35765.pdf)
* Strengths of the model:
* effective in high dimensional spaces and with nonlinear relationships
* robust to noise (because margins maximized and theoretical bounds on overfitting)
* Weaknesses of the model:
* requires to select a good kernel function and a number of hyperparameters such as the regularization parameter and the number of iterations
* sensitive to feature scaling
* model parameters are difficult to interpret
* requires significant memory and processing power
* tuning the regularization parameters required to avoid overfitting
* Reasoning: *Linear SVC* is the optimal estimator following the [Scikit-Learn - Choosing the right estimator](http://scikit-learn.org/stable/tutorial/machine_learning_map/) when using less than 100K samples to solve to classification problem.
* **Logistic Regression**:
* Real-world application: media and advertising campaigns optimization and decision making
* References: [Evaluating Online Ad Campaigns in a Pipeline: Causal Models At Scale](https://static.googleusercontent.com/media/research.google.com/de//pubs/archive/36552.pdf)
* Strengths of the model:
* simple, no user-defined parameters to experiment with unless you regularize, β is intuitive
* fast to train and to predict
* easy to interpret: output can be interpreted as a probability
* pretty robust to noise with low variance and less prone to over-fitting
* lots of ways to regularize the model
* Weaknesses of the model:
* unstable when one predictor could almost explain the response variable
* often less accurate than the newer methods
* Interpreting θ isn't straightforward
* Reasoning: It's similar to *linear SVC*, is widely used and can be easyly implemented.
* **K-Nearest Neighbors (KNeighbors)**:
* Real-world application: image and video content classification
* References: [Clustering billions of images with large scale nearest neighbor search](https://static.googleusercontent.com/media/research.google.com/de//pubs/archive/32616.pdf)
* Strengths of the model:
* simple and powerful
* easy to explain
* no training involved ("lazy")
* naturally handles multiclass classification and regression
* learns nonlinear boundaries
* Weaknesses of the model:
* expensive and slow to predict new instances ("lazy")
* must define a meaningful distance function (preference bias)
* need to decide on a good distance metric
* performs poorly on high-dimensionality datasets (curse of high dimensionality)
* Reasoning: *KNeighbors* classifier is the next option suggested on the machine learning map when *linear SVC* does work poor. Since our dataset is low-dimensional and it should generate reasonable results.
### Implementation - Creating a Training and Predicting Pipeline
To properly evaluate the performance of each model you've chosen, it's important that you create a training and predicting pipeline that allows you to quickly and effectively train models using various sizes of training data and perform predictions on the testing data. Your implementation here will be used in the following section.
In the code block below, you will need to implement the following:
- Import `fbeta_score` and `accuracy_score` from [`sklearn.metrics`](http://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics).
- Fit the learner to the sampled training data and record the training time.
- Perform predictions on the test data `X_test`, and also on the first 300 training points `X_train[:300]`.
- Record the total prediction time.
- Calculate the accuracy score for both the training subset and testing set.
- Calculate the F-score for both the training subset and testing set.
- Make sure that you set the `beta` parameter!
```
# Import two metrics from sklearn - fbeta_score and accuracy_score
from sklearn.metrics import fbeta_score, accuracy_score
def train_predict(learner, sample_size, X_train, y_train, X_test, y_test):
'''
inputs:
- learner: the learning algorithm to be trained and predicted on
- sample_size: the size of samples (number) to be drawn from training set
- X_train: features training set
- y_train: income training set
- X_test: features testing set
- y_test: income testing set
'''
results = {}
# Fit the learner to the training data using slicing with 'sample_size'
start = time() # Get start time
learner = learner.fit(X_train[:sample_size], y_train[:sample_size])
end = time() # Get end time
# Calculate the training time
results['train_time'] = end - start
# Get the predictions on the test set,
# then get predictions on the first 300 training samples
start = time() # Get start time
predictions_test = learner.predict(X_test)
predictions_train = learner.predict(X_train[:300])
end = time() # Get end time
# Calculate the total prediction time
results['pred_time'] = end - start
# Compute accuracy on the first 300 training samples
results['acc_train'] = accuracy_score(y_train[:300], predictions_train)
# Compute accuracy on test set
results['acc_test'] = accuracy_score(y_test, predictions_test)
# Compute F-score on the the first 300 training samples
results['f_train'] = fbeta_score(y_train[:300], predictions_train, beta=.5)
# Compute F-score on the test set
results['f_test'] = fbeta_score(y_test, predictions_test, beta=.5)
# Success
print "{} trained on {} samples.".format(learner.__class__.__name__, sample_size)
# Return the results
return results
```
### Implementation: Initial Model Evaluation
In the code cell, you will need to implement the following:
- Import the three supervised learning models you've discussed in the previous section.
- Initialize the three models and store them in `'clf_A'`, `'clf_B'`, and `'clf_C'`.
- Use a `'random_state'` for each model you use, if provided.
- **Note:** Use the default settings for each model — you will tune one specific model in a later section.
- Calculate the number of records equal to 1%, 10%, and 100% of the training data.
- Store those values in `'samples_1'`, `'samples_10'`, and `'samples_100'` respectively.
**Note:** Depending on which algorithms you chose, the following implementation may take some time to run!
```
# Import the three supervised learning models from sklearn
from sklearn.svm import LinearSVC
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
# Initialize the three models
clf_A = LinearSVC(random_state=42)
clf_B = LogisticRegression(random_state=42)
clf_C = KNeighborsClassifier()
# Calculate the number of samples for 1%, 10%, and 100% of the training data
n = len(y_train)
samples_1 = int(round(n / 100.0))
samples_10 = int(round(n / 10.0))
samples_100 = n
# Collect results on the learners
results = {}
for clf in [clf_A, clf_B, clf_C]:
clf_name = clf.__class__.__name__
results[clf_name] = {}
for i, samples in enumerate([samples_1, samples_10, samples_100]):
results[clf_name][i] = \
train_predict(clf, samples, X_train, y_train, X_test, y_test)
# Run metrics visualization for the three supervised learning models chosen
vs.evaluate(results, accuracy, fscore)
```
----
## Improving Results
In this final section, you will choose from the three supervised learning models the *best* model to use on the student data. You will then perform a grid search optimization for the model over the entire training set (`X_train` and `y_train`) by tuning at least one parameter to improve upon the untuned model's F-score.
### Question 3 - Choosing the Best Model
*Based on the evaluation you performed earlier, in one to two paragraphs, explain to *CharityML* which of the three models you believe to be most appropriate for the task of identifying individuals that make more than \$50,000.*
**Hint:** Your answer should include discussion of the metrics, prediction/training time, and the algorithm's suitability for the data.
**Answer: **
| | training time | predicting time | training set scores | testing set scores |
|----------------------|----------------------------|-----------------|----------------|
| **LinearSVC** | ++ | +++ | +++ | **+++** |
| LogisticRegression | +++ | +++ | ++ | ++ |
| KNeighborsClassifier | + | --- | +++ | + |
Based on the evaluation the *linear SVC* model is the most appropriate for the task. Compared to the other two models in testing, it's both fast and has the highest scores. While *linear SVC* and *logistic regression* have almost the same accuracy, its *f-score* is slightly higher indicating that *linear SVC* has more correct positive predictions on actual positive observations.
Although *logistic regression* has a shorter training time, it has worse *f-score* when applied to the testing set. In a real-world setting the testing scores are the metrics that do matter. The moderate longer training time can be ignored. *K-neighbors* outperforms the other two only when predicting the training scores. But with an even poorer testing score it actually shows that the model has an overfitting problem.
### Question 4 - Describing the Model in Layman's Terms
*In one to two paragraphs, explain to *CharityML*, in layman's terms, how the final model chosen is supposed to work. Be sure that you are describing the major qualities of the model, such as how the model is trained and how the model makes a prediction. Avoid using advanced mathematical or technical jargon, such as describing equations or discussing the algorithm implementation.*
**Answer: **
As the final model we used a classifier called *linear SVC* which assumes that the underlying data are linearly separable. In a simplified 2-dimensional space this technique attemps to find the best line that separates the two classes of points with the largest margin. In higher dimensional space, the algorithm searches for the best hyperplane following the same principle by maximizing the margin (e.g. a plane in 3-dimensional space).
In our case, in the training phase the algorithm calculates the best model to separate the different classes in the training data by a maximum margin. And with the trained model the algorithm is able to predict the unseen examples.
### Implementation: Model Tuning
Fine tune the chosen model. Use grid search (`GridSearchCV`) with at least one important parameter tuned with at least 3 different values. You will need to use the entire training set for this. In the code cell below, you will need to implement the following:
- Import [`sklearn.grid_search.GridSearchCV`](http://scikit-learn.org/0.17/modules/generated/sklearn.grid_search.GridSearchCV.html) and [`sklearn.metrics.make_scorer`](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.make_scorer.html).
- Initialize the classifier you've chosen and store it in `clf`.
- Set a `random_state` if one is available to the same state you set before.
- Create a dictionary of parameters you wish to tune for the chosen model.
- Example: `parameters = {'parameter' : [list of values]}`.
- **Note:** Avoid tuning the `max_features` parameter of your learner if that parameter is available!
- Use `make_scorer` to create an `fbeta_score` scoring object (with $\beta = 0.5$).
- Perform grid search on the classifier `clf` using the `'scorer'`, and store it in `grid_obj`.
- Fit the grid search object to the training data (`X_train`, `y_train`), and store it in `grid_fit`.
**Note:** Depending on the algorithm chosen and the parameter list, the following implementation may take some time to run!
```
# Import 'GridSearchCV', 'make_scorer', and any other necessary libraries
from sklearn.grid_search import GridSearchCV
from sklearn.metrics import make_scorer
# Initialize the classifier
clf = LinearSVC(random_state=42)
# Create the parameters list you wish to tune
parameters = {
'C': [.1, .5, 1.0, 5.0, 10.0],
'loss': ['hinge', 'squared_hinge'],
'tol': [1e-3, 1e-4, 1e-5],
'random_state': [0, 42, 10000]
}
# Make an fbeta_score scoring object
scorer = make_scorer(fbeta_score, beta=.5)
# Perform grid search on the classifier using 'scorer' as the scoring method
grid_obj = GridSearchCV(clf, parameters, scoring=scorer)
# Fit the grid search object to the training data and find the optimal parameters
grid_fit = grid_obj.fit(X_train, y_train)
# Get the estimator
best_clf = grid_fit.best_estimator_
# Make predictions using the unoptimized and model
predictions = (clf.fit(X_train, y_train)).predict(X_test)
best_predictions = best_clf.predict(X_test)
# Report the before-and-afterscores
print "Unoptimized model\n------"
print "Accuracy score on testing data: {:.4f}".format(accuracy_score(y_test, predictions))
print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, predictions, beta = 0.5))
print "\nOptimized Model\n------"
print "Final accuracy score on the testing data: {:.4f}".format(accuracy_score(y_test, best_predictions))
print "Final F-score on the testing data: {:.4f}".format(fbeta_score(y_test, best_predictions, beta = 0.5))
# print optimized parameters
print("Optimized params for Linear SVM: {}".format(
grid_fit.best_params_
))
```
### Question 5 - Final Model Evaluation
_What is your optimized model's accuracy and F-score on the testing data? Are these scores better or worse than the unoptimized model? How do the results from your optimized model compare to the naive predictor benchmarks you found earlier in **Question 1**?_
**Note:** Fill in the table below with your results, and then provide discussion in the **Answer** box.
#### Results:
| Metric | Benchmark Predictor | Unoptimized Model | Optimized Model |
| :------------: | :-----------------: | :---------------: | :-------------: |
| Accuracy Score | .2478 | .8507 | .8514 |
| F-score | .2917 | .7054 | .7063 |
**Answer: **
The scores of the *optimized model* are a bit better than the *unoptimized model* showing that the defaults were actually very good in the first place. Compared to the *benchmark predictor*, the optimized model is by manifold better with larger accuracy and f-scores.
----
## Feature Importance
An important task when performing supervised learning on a dataset like the census data we study here is determining which features provide the most predictive power. By focusing on the relationship between only a few crucial features and the target label we simplify our understanding of the phenomenon, which is most always a useful thing to do. In the case of this project, that means we wish to identify a small number of features that most strongly predict whether an individual makes at most or more than \$50,000.
Choose a scikit-learn classifier (e.g., adaboost, random forests) that has a `feature_importance_` attribute, which is a function that ranks the importance of features according to the chosen classifier. In the next python cell fit this classifier to training set and use this attribute to determine the top 5 most important features for the census dataset.
### Question 6 - Feature Relevance Observation
When **Exploring the Data**, it was shown there are thirteen available features for each individual on record in the census data.
_Of these thirteen records, which five features do you believe to be most important for prediction, and in what order would you rank them and why?_
**Answer:**
Of the thirteen available features we believe that the following five features are the most important for prediction and ordered them by their importance with the most important at top. From looking at the data and following the rules of our society:
* *occupation*: different occupations have usually different salary ranges
* *capital-gain*: the rich get richer. Capital gain is an indicator of the personal wealth.
* *education-level*: when employed, people with higher education gets better paid
* *hours-per-week*: part time jobs are often less paid
* *age*: older people tends to earn more
### Implementation - Extracting Feature Importance
Choose a `scikit-learn` supervised learning algorithm that has a `feature_importance_` attribute availble for it. This attribute is a function that ranks the importance of each feature when making predictions based on the chosen algorithm.
In the code cell below, you will need to implement the following:
- Import a supervised learning model from sklearn if it is different from the three used earlier.
- Train the supervised model on the entire training set.
- Extract the feature importances using `'.feature_importances_'`.
```
# Import a supervised learning model that has 'feature_importances_'
from sklearn.ensemble import AdaBoostClassifier
# Train the supervised model on the training set
model = AdaBoostClassifier(random_state=42).fit(X_train, y_train)
# Extract the feature importances
importances = model.feature_importances_
# Plot
vs.feature_plot(importances, X_train, y_train)
```
### Question 7 - Extracting Feature Importance
Observe the visualization created above which displays the five most relevant features for predicting if an individual makes at most or above \$50,000.
_How do these five features compare to the five features you discussed in **Question 6**? If you were close to the same answer, how does this visualization confirm your thoughts? If you were not close, why do you think these features are more relevant?_
```
# print top 10 features importances
def rank_features(features, scores, descending=True, n=10):
"""
sorts and cuts features by scores.
:return: array of [feature name, score] tuples
"""
return sorted(
[[f, s] for f, s in zip(features, scores) if s],
key=lambda x: x[1],
reverse=descending
)[:n]
rank_features(
features.columns,
importances
)
# capital-loss and income have a positive correlation
features['capital-loss'].corr(income)
```
**Answer:**
From the top 5 features selected by *AdaBoostClassifier* we got 4 hits (*age*, *capital-gain*, *hours-per-week* and *education-level*). That *capital-loss* has a such big influence is really surprising and by looking at the cell above, *income* and *capital-loss* are even positively correlated. Our top one guess *occupation* hasn't made into top 10 in the feature importances.
The visualization of the feature importances confirms our guess that our observation in the society is actually true that older and higher educated people with money (big *capital-loss* or *capital-gain*) would have higher salaries. These thoughts are now quantified and explained by the classfier.
### Feature Selection
How does a model perform if we only use a subset of all the available features in the data? With less features required to train, the expectation is that training and prediction time is much lower — at the cost of performance metrics. From the visualization above, we see that the top five most important features contribute more than half of the importance of **all** features present in the data. This hints that we can attempt to *reduce the feature space* and simplify the information required for the model to learn. The code cell below will use the same optimized model you found earlier, and train it on the same training set *with only the top five important features*.
```
# Import functionality for cloning a model
from sklearn.base import clone
# Reduce the feature space
X_train_reduced = X_train[X_train.columns.values[(np.argsort(importances)[::-1])[:5]]]
X_test_reduced = X_test[X_test.columns.values[(np.argsort(importances)[::-1])[:5]]]
# Train on the "best" model found from grid search earlier
start = time()
clf = (clone(best_clf)).fit(X_train_reduced, y_train)
training_time_reduced = time() - start
# Make new predictions
reduced_predictions = clf.predict(X_test_reduced)
# Report scores from the final model using both versions of data
print "Final Model trained on full data\n------"
print "Accuracy on testing data: {:.4f}".format(accuracy_score(y_test, best_predictions))
print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, best_predictions, beta = 0.5))
print "\nFinal Model trained on reduced data\n------"
print "Accuracy on testing data: {:.4f}".format(accuracy_score(y_test, reduced_predictions))
print "F-score on testing data: {:.4f}".format(fbeta_score(y_test, reduced_predictions, beta = 0.5))
# compare scores
def relative_diff_pct(x, y):
"""
returns the relative difference between x and y in percent.
"""
return 100 * ((y - x) / x)
print('Relative Diff. of accuracy-scores: {0:.2f}%'.format(
relative_diff_pct(.8514, .8096)
))
print('Relative Diff. of f-scores: {0:.2f}%'.format(
relative_diff_pct(.7063, .5983)
))
# Train with full data
start = time()
clf = (clone(best_clf)).fit(X_train, y_train)
training_time_full = time() - start
print('Relative Diff. of training times: {0:.2f}%'.format(
relative_diff_pct(training_time_reduced, training_time_full)
))
```
### Question 8 - Effects of Feature Selection
*How does the final model's F-score and accuracy score on the reduced data using only five features compare to those same scores when all features are used?*
*If training time was a factor, would you consider using the reduced data as your training set?*
**Answer:**
Both the accuracy and f-scores dropped down when using only the top 5 features. The f-scores have an **over 15% difference**, while the difference between the accuracy scores is at about 5%.
The training time with reduced data was more than **2 times faster** than the training time of the full data set. In some other scenarios when the training time or the computation power if of high priority, we would consider to use the reduced data. But since the difference between the f-scores are considerably large we would use the full training set for this problem.
## References
* [Udacity - Machine Learning](https://classroom.udacity.com/courses/ud262)
* [Laurad Hamilton - ML Cheat Sheet](http://www.lauradhamilton.com/machine-learning-algorithm-cheat-sheet)
* [Scikit-Learn - ML Modules](http://scikit-learn.org/stable/modules/sgd.html)
* [Scikit-Learn - AdaBoostClassifier](http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html)
* [rcompton - Supervised Learning Superstitions](https://github.com/rcompton/ml_cheat_sheet)
* [Wikipedia - Support Vector Machine](https://en.wikipedia.org/wiki/Support_vector_machine#Definition)
* [Quora - SVM in layman's terms](https://www.quora.com/What-does-support-vector-machine-SVM-mean-in-laymans-terms)
## Reproduction Environment
```
import IPython
print IPython.sys_info()
!pip freeze
```
| github_jupyter |
# Structural Transformation Notes
Below some brief notes on general equilibrium modeling of structural transformation. Some of the presentation illustrates and expands upon this short useful survey:
> Matsuyama, K., 2008. Structural change. in Durlauf and Blume eds. *The new Palgrave dictionary of economics* 2, pp.
The note is organized around the following sections:
- Market Clearing Neo-Classical Models
- Push out of agriculture vs. Pull into Manufacturing
- Pull in an Open Economy Model
- Push in Closed Economy with Non-homothetic preferences
- Productivity growth caused by structural change
- Impediments to structural change
- Spillovers, Complementarities, and Multiple Equilibria
---
## Market Clearing Neo-Classical Models
Here we seek to explain structural transformation and the accompanying movement of labor out of agriculture and into other sectors in a market-clearing neo-classical model with no market failures. In these model the marginal value product of labor is the same in both agriculture and manufacturing, hence there is no 'dualism' due to market frictions of one kind or another.
Matsuyama builds a very simple neo-classical model with two sectors (in effect a specific factors model).
**Production**
Sector $j \in (1,2)$ is given by $Y_j = A_j \cdot F_j(n_j)$. Let $j=1$ be the primary (agricultural) sector and $j=2$ the secondary (manufacturing) sector, where $A_j$ represents Total Factor Productivity (TFP) in each sector. We normalize the size of the population to 1. Then, if $n$ is the share (and total) labor used in sector 1 then $1-n$ is the amount left to be in sector two.
Matsuyama refers to $F$ only as a generic increasing concave function, but for purposes of the graph examples, let's specify:
$$
A_1 F_1(n) = A_1 n^\alpha \\
A_2 F_2(1-n) = A_2 (1-n)^\nu
$$
Competitive markets will insure that labor is efficiently allocated across sectors such that the marginal value product of labor be equalized in each sector:
$$
A_1 F_1^\prime (n) = p A_2 F_2^\prime (1-n)
$$
where $p=P_2/P_1$ is the relative price of sector 2 goods.
We can trace out a production possibility frontier (PPF) by simply plotting $\left( A_1 F_1(n), A F_2(1-n) \right)$ as we vary $n$ from 0 to 1. Below we draw two PPFs. One with $A_1=A_2=1$ and another afteragricultural TFP has improved to $A_1=1.2$ (we are setting $\alpha=\nu=1/2$)
```
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import fsolve
def F(n, a):
return n ** a
def Fprime(n, a):
return a* n ** (a-1)
def PPF(A1=1, A2=1, a1=0.5, a2=0.5, ax=None):
if ax is None:
ax = plt.gca()
n = np.linspace(0,1,50)
plt.plot( A1*F(n, a1), A2*F(1-n, a2) )
plt.xlabel(r'$Y_1$'), plt.ylabel(r'$Y_2$')
fig, ax = plt.subplots(1)
PPF(A1=1, A2=1, ax=ax)
PPF(A1=1.3, A2=1, ax=ax)
ax.set_xlim(left=0), ax.set_ylim(bottom=0)
ax.set_aspect('equal')
```
### Push and/or Pull
The large literature on structural transformation often distinguishes between forces that 'Push' or 'Pull' labor out of agriculture.
'Pull' could come about, for example, via an increase over time of the relative price of manufactures $p$, or an increase in relative TFP $A_2/A_1$. These have the effect of shifting out the demand for labor (the marginal value product or labor curve $p A_2 F_2^\prime (1-n)$ relative to that in agriculture, leading to an incipient rise in the manufacturing wage that transforms the economy by attracting labor to that sector.
As demonstrated below, it's easy to illustrate Pull effects in this economy with standard homothetic preferences in either the open or closed economy.
The 'Push' argument is associated the idea that rises in agricultural productivity $A_1$ will mean that more food can be produced with fewer workers and therefore that labor can be 'released' from agriculture to other sectors. A related prevalent view is than an 'agricultural revolution' is often a prior and necessary condition for an industrial revolution.
It turns out one has to be a bit harder to get this effect to emerge in this standard neo-classical model because, as we've just argued, raising the relative productivity in a sector tends *increase* demand for labor unless the relative price of the good happens to simultaneously fall by enough to reverse that effect. As we'll show one way to engineer such an effect is to assume non-homothetic preferences to rise to a form of Engel's law or that manufactures have a higher income elasticity of demand, such that the agricultural terms of trade deteriorate against agriculture as incomes expand.
### The Open Economy with Homothetic Preferences
In the open-economy version of this model, the relative price of manufactured goods $p$ is set and fixed on world markets and hence does not change during the period of analysis. We can focus on the optimum production allocation without worrying about preferences, because agents first maximize the value of income at world prices and then choose optimum consumption baskets.
We can plot labor demand in each sector and solve for the equilibrium labor allocation $n^*$ that solves:
$$
A_1 F_1^\prime (n) = p A_2 F_2^\prime (1-n)
$$
```
def weq(A1=1, A2=1, a1=0.5, a2=0.5, p=1):
def foc(n):
return p * A2 * Fprime(1-n, a2) - A1 * Fprime(n, a1)
n = 0.75 # guess
ne = fsolve(foc, n)[0]
we = A1 * Fprime(ne, a1)
return ne, we
def sfm(A1=1, A2=1, a1=0.5, a2=0.5, p=1, ax=None):
if ax is None:
ax = plt.gca()
nn = np.linspace(0.01, 0.99, 100)
ax.plot(nn, A1 * Fprime(nn, a1))
ax.plot(nn, p * A2 * Fprime(1-nn, a2))
ne, we = weq(A1, A2, a1, a2, p)
ax.scatter(ne, we)
ax.axhline(we, linestyle =':')
ax.vlines(x = ne, ymin=0, ymax=we, linestyle =':')
ax.set_ylim(0,2)
ax.set_xlim(0,1)
ax.set_xlabel(r'$n$')
ax.text(0.8, 0.9*A1 *Fprime(1,a1), r'$L_1^d$')
ax.text(0.1, 0.9*p*A2 *Fprime(0.999, a2), r'$L_2^d$')
```
**Pull: Impact of increase in relative price of manufactures in open Economy**
Exactly like a specific factors model diagram. A very similar diagram would depict effect of increase in sector 2 relative TFP $A_2/A_1$
```
sfm(p=1)
sfm(p=1.5)
```
Exogenously driven increases in the relative productivity of manufactures drives this 'pull' effect. As Matsuyama explains, this is the sort of mechanism envisioned by Lewis (1954) although the Lewis model also has a form of dualism not captured here. In particular, we can see (from the diagram above) that in these models the expansion of one sector can be choked off by a rising wage. Lewis' assumption of "unlimited supplies of labor" in agriculture amounts to saying that there will be a very elastic supply of labor aso wages will not be fast to rise.
### Non-homothetic preferences
In a closed economy the relative price $p$ is determined endogenously by a tangency between the PPF and the representative indifference curve. As mentioned above, we'll need non-homothetic preferences in order to get the kind of 'Push' effect used in Gollin et al (2002):
The consumer has Stone-Geary preferences of the form:
$$
U(C_1, C_2) = \beta \cdot \log(C_1 - \gamma) + \log(C_2)
$$
If $\gamma=0$ these would be standard homothetic preferences with linear income expansion paths (i.e. consumers maintain consumption ratio $C_2/C_1$ as income expands). When $\gamma>0$ preferences are non-homothetic. We interpret $\gamma$ as a minimum agricultural (food) consumption requirement. At low levels of income, all income is devoted to satisfying the requirement, but once that level is reached, remaining income will be spent in constant expenditure shares:
$$
C_1 - \gamma = \frac{\beta}{1+\beta} \frac{Y}{P_1} \\
C_2 = \frac{1}{1+\beta} \frac{Y}{P_2}
$$
Define $p=P_2/P_1$ as the relative price of good 2, then $C_1$ and $C_2$ will be consumed proportional to each other following:
$$
C_1 =\gamma + (\beta p) C_2
$$
Below is a plot of the optimum $C_2/C_1$ ratio for homothetic (blue, $\gamma=0$) and non-homothetic (orange, $\gamma=1$) preferences. In the latter case, after income reaches the level at which subsistence food needs are satisfied, the $C_2/C_1$ ratio (think of a ray from origin to a point on orange line) increases as incomes expand.
```
c1 = np.linspace(0,4,100)
def c2(c1, gam, beta, p):
return (c1 - gam)/(beta * p)
plt.plot(c1, c2(c1, 0, 0.5, 1))
plt.plot(c1, c2(c1, 1, 0.5, 1))
plt.ylim(0, 4), plt.xlim(0, 4)
plt.xlabel(r'$C_1$'), plt.ylabel(r'$C_2$')
plt.grid()
plt.gca().set_aspect('equal')
```
### Closed Economy
We're looking for a tangency between the PPF and the representative agent's indifference curve, equal to the common price ratio. This $MRS = p= MPT$ condition can be written:
$$
\frac{1}{\beta} \frac{C_1 - \gamma}{C_2} = p = \frac{A_1 F_1^\prime (n)}{A_2 F_2^\prime (1-n)}
$$
Using the fact that a closed economy must produce what it consumes we can substitute $C_1 = A_1 F_1(n)$ and $C_2 = A_2 F_2(1-n)$ and manipulate to obtain condition (2) in Matsuyama:
$$
F_1(n) - \frac{\beta F_2(1-n) F_1 ^\prime (n)}{F_2 ^\prime (1-n)} = \frac{\gamma}{A_1}
$$
This implicitly defines $n$ as a decreasing function of $A_1$. Two things are striking here (both partly consequences of the Cobb-Douglas):
1) $A_2$ plays no role. As $A_2$ rises $p$ falls by just enough to offset, leaving relative demand for labor unchanged.
2) At any $\gamma >0$ the agricultural labor share $n$ will fall with $A_1$. This is the Push effect.
In the plot below we plot this left hand side in red. The dashed line represents a value of $\frac{\gamma}{A_1}$. We can see that if $A_1$ rises (the dashed line moves down) the new equilibrium will involve less agricultural labor $n$.
```
def lhs(n, a1, a2, beta):
F1 = F(n, a1)
dF1 = Fprime(n, a1)
F2 = F(1-n, a2)
dF2 = Fprime(1-n, a2)
return F1 - (beta*F2*dF1)/dF2
n = np.linspace(0.2,0.7,50)
plt.plot(n, lhs(n, 0.5, 0.5, 0.5), color='r')
plt.axhline(0);
plt.axhline(0.5, linestyle='--')
plt.xlabel(r'$n$');
```
We can solve for the closed economy equilibrium and plot things on a PPF diagram.
```
def neq(A1=1, a1=0.5, a2=0.5, beta=0.5, gamma= 0.5):
'''Closed economy eqn from MRS=MPT'''
def foc(n):
return lhs(n, a1, a2, beta) - gamma/A1
n = 0.7 # guess
ne = fsolve(foc, n)[0]
return ne
def plot_opt(A1, A2, a1, a2, beta, gamma):
ne = neq(A1, a1, a2, beta, gamma)
Y1 = A1 * F(ne, a1)
Y2 = A2 * F(1-ne, a2)
p = (1/beta) * (Y1-gamma)/Y2
print(f'A1={A1}, n={ne:0.2f}, p={p:0.2f}')
plt.scatter(Y1, Y2)
ax =plt.gca()
PPF(A1=A1, A2=A2, a1=a1, a2=a2, ax=ax)
```
Here we see structural transformation and a rise in the relative price of manufactures as TFP in agriculture increases:
```
plot_opt(1, 1, 0.5, 0.75, 1, 0.4)
plot_opt(2, 1, 0.5, 0.75, 1, 0.4)
plt.xlim(left=0)
plt.ylim(bottom=0);
```
### Productivity growth caused by Structural Change
Matsuyama adds dynamics to the sort of model described above by assuming that TFP growth in manufacturing might respond to "the stock of experience accumulated [in that sector]... through learning-by-doing." He captures this by positing that TFP in the sector in period $t$ is given by:
$$
A_{2t} = A(Q_t)
$$
where $Q_t$ is the stock of experience which follows this law of motion:
$$
\frac{dQ_t}{dt} = H(1-n_t)
$$
where $H(\cdot)$ is an increasing function. He assumes a critical level of manufacturing employment $(1-n_c)$ at which H(1-n_c)=0 (and negative at values below). With these assumptions and if $n<n_c$ so the critical threshold is surpassed, this plus the earlier closed economy model leads to a version of the **'Staple Theory of Growth'** whereby growth in the agricultural sector releases labor to manufacturing which over time generates productivity growth there.
The **Staples Thesis** of Growth (Innis, Watkins, others) emphasizes the role of the expansion of frontiers and the growth of traditional 'staple' products such as wheat in a resource-rich economies. This has been used to explain growth and development in regions of the world including Canada, northern United States, and to some extent Australia, New Zealand and Argentina. These countries benefited from an extraordinary rise in commodity prices in the late 19th century which, by many accounts led to the growth of supporting manufacturing industries, in a manner similar to that captured by this account.
Matsuyama points out however that a variation on the same model can explain a version of the **resource curse**. For example in the small open economy the equilibrium condition is as above:
$$
A_1 F_1^\prime (n_t) = p A(Q_t) F_2^\prime (1-n_t)
$$
As discussed before, raising $A_1$ implies higher $n_t$ for any level of $Q_t$. If the economy is already passed the threshold $H(1-n_t)>0$ which leads to growth in manufacturing and hence pull out of agriculture, and the effect is self-reinforcing.
However if below the threshold (i.e. $n_t>n_c$) and hence $H(1-n_t)<0$ anything that stimulates agriculture, be it productivity growth or a rise in the relative price of agricultural products, will lead to productivity *decline* in industry and a steady increase in agricultural employment $n_t$.
This is a version of the so called *staple-trap,* *resource curse,* or *dutch disease*. Matsuyama (1992) models this type of possibility in richer detail.
### Impediments to structural change
Many studies have modeled impediments to the re-allocation of labor across sectors.
The most famous of these is the Lewis model which assumes workers in the agricultural sector earn an average product of labor there, leading to overemployment in the sector. We'll see several models that try to make sense of this, for example models that attribute this to land property rights insecurity.
Hayashi and Prescott (2008) argue that agricultural employment in Japan remained virtually constant at 14 million persons from 1885 to WWII (see image below) despite significant expansion in industrial technology capacity in that period. They argue that labor could not easily leave agriculture due to patriarchal customs and norms that made it hard for children of agricultural households to leave the parental household). Using a calibrated general equilibrium model, the authors argue that the lifting of that barrier in the post-war era (due to various factors including legislation surrounding deep land reforms) explains a good part of the post-war Japanese miracle.
<img src="../media/Japan_agemp.png" alt="Japan Ag employment" class="bg-primary" width="600px">
There are many other models with barriers or frictions in the structural transformation. One famous model that received a lot of attentiun is the Harris and Todaro (1970) model. See the separate notebook on this model.
### Spillovers, Complementarities, and Multiple Equilibria
Coming soon.
## References Cited
Harris, J.R., Todaro, M.P., 1970. Migration, unemployment and development: a two-sector analysis. *The American economic review* 126–142.
Hayashi, F., Prescott, E.C., 2008. The depressing effect of agricultural institutions on the prewar Japanese economy. *Journal of political Economy* 116, 573–632.
Lewis, W.A., 1954. Economic development with unlimited supplies of labour. *The Manchester School* 22, 139–191.
Matsuyama, K., 2008. Structural change. *The new Palgrave dictionary of economics* 2.
Matsuyama, K., 1992. Agricultural productivity, comparative advantage, and economic growth. *Journal of economic theory* 58, 317–334.
| github_jupyter |
# Feature Extraction
In machine learning, feature extraction aims to compute values (features) from images, intended to be informative and non-redundant, facilitating the subsequent learning and generalization steps, and in some cases leading to better human interpretations. These features may be handcrafted (manually computed features based on a-priori information ) or convolutional features (detect patterns within the data without the prior definition of features or characteristics):
## Handcrafted:
- Histogram features: Statistical moments extracted from the histogram describe image characteristics and provide a quantitative analysis of the image intensity distribution (entropy, intensity mean, standard deviation, skewness, kurtosis, and values at 0, 10, 50 (median) and 90 percentiles).
<img src="../Figures/histogram_sample.jpg" alt="Drawing" style="width: 500px;"/>
- The gradient examines directional changes in the image gray level, and can extract relevant information (such as edges) within an image. Moments extracted from the image gradient are more robust to acquisition conditions, such as contrast variation, and properties of the acquisition equipment . Ten features were extracted from the gray level and morphological gradients (five from each): intensity mean, standard deviation, skewness, kurtosis and percentage of non-zero values.
<img src="../Figures/gradient.png" alt="Drawing" style="width: 300px;"/>
- Local binary pattern (LBP) is a texture spectrum model that may be used to identify patterns in an image. The LBP histogram comprises the frequency of occurrence of different patterns within an image. Ten features were extracted from the LBP by using a 10-bin LBP histogram.
<img src="../Figures/lbp.png" alt="Drawing" style="width: 400px;"/>
- The Haar wavelet is a multi-resolution technique that transforms images into a domain where both spatial and frequency information is present. Features separately extracted from each sub-image present desired scale-dependent properties. When considering two decomposition levels, eight sub-images are generated. The mean value within each sub-image were computed and used as features (total of eight features). <img src="../Figures/wavelet-haar.png" alt="Drawing" style="width: 400px;"/>
## Convolutional features
Computed by using a very deep convolutional network (VGG16) with pre-trained imagenet weights. For each MR volume, the convolutional features were computed in the central 2D axial, sagittal and coronal slices. For each of these three views, 25,088 convolutional features were computed and combined.
<img src="../Figures/viz_initial_layers.png" alt="Drawing" style="width: 700px;"/>
Besides the image and patient information (MR vendor, magnetic field, age, gender), a total of 75,300 features were extracted and combined for each image: 8 features from the image histogram, 10 features from the image gradient, 10 features from the LBP histogra, 8 features from the Haar wavelet subimages and 75,264 convolutional features.
<img src="../Figures/data.png" alt="Drawing" style="width: 800px;"/>
## Reading the data file containing patients information and features
```
## data: vendor; magnetic field; age; gender; feats (65300)
# vendor: ge -> 10; philips -> 11; siemens -> 12
# gender: female -> 10; male -> 11
# feats: fs1 - histogram (8); fs2 - gradient (10); fs3 - lbp (10); fs4 - haar (8); fs5 - convolutional (75264)
import numpy as np
data = np.load('../Data/feats_cc359.npy.zip')['feats_cc359']
print '#samples, #info: ',data.shape
print 'patients age:', data[:,2]
```
## Activities List
- Print the vendor for all the images
- Identify images acquired from patients with age > 30
- Identify images acquired using GE vendor scanner
- Access this simple demo of a convnet trained on MNIST dataset: https://transcranial.github.io/keras-js/#/mnist-cnn
- draw a number (between 0-9)
- Visualize classification and intermediate outputs at each layer
## References
- Histogram basics: https://docs.opencv.org/3.1.0/d1/db7/tutorial_py_histogram_begins.html
- Local binary patterns: http://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html
- Wavelet haar to MRI: https://www.researchgate.net/figure/The-procedures-of-3-level-2D-DWT-a-normal-brain-MRI-b-level-3-wavelet-coefficients_258104202
- Extracting convolutional features using Vgg16: https://keras.io/applications/
| github_jupyter |
# Imports
```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import ensemble
from sklearn import metrics
from io import StringIO
from csv import writer
```
# Read in csv files
```
matches = pd.read_csv('../csv/matches.csv')
players = pd.read_csv('../csv/players.csv')
hero_names = pd.read_json('../json/heroes.json')
cluster_regions = pd.read_csv('./Data/cluster_regions.csv')
matches
players.head()
hero_names.head()
```
# Data info
## Hero Info
Most and least popular heroes
```
num_heroes = len(hero_names)
plt.hist(players['hero_id'], num_heroes)
plt.show()
hero_counts = players['hero_id'].value_counts().rename_axis('hero_id').reset_index(name='num_matches')
pd.merge(hero_counts, hero_names, left_on='hero_id', right_on='id')
```
## Server Info
Where the most and least games are played
```
plt.hist(matches['cluster'], bins=np.arange(matches['cluster'].min(), matches['cluster'].max()+1))
plt.show()
cluster_counts = matches['cluster'].value_counts().rename_axis('cluster').reset_index(name='num_matches')
pd.merge(cluster_counts, cluster_regions, on='cluster')
short_players = players.iloc[:, :11]
short_players.insert(short_players.shape[1], 'win', value=False)
short_players
# short_matches = matches.iloc[:1000]
for index, row in matches.iterrows():
offset = 10 * index
short_players.at[0 + offset, 'win'] = row.radiant_win
short_players.at[1 + offset, 'win'] = row.radiant_win
short_players.at[2 + offset, 'win'] = row.radiant_win
short_players.at[3 + offset, 'win'] = row.radiant_win
short_players.at[4 + offset, 'win'] = row.radiant_win
short_players.at[5 + offset, 'win'] = not row.radiant_win
short_players.at[6 + offset, 'win'] = not row.radiant_win
short_players.at[7 + offset, 'win'] = not row.radiant_win
short_players.at[8 + offset, 'win'] = not row.radiant_win
short_players.at[9 + offset, 'win'] = not row.radiant_win
# print(index)
short_players.head(20)
short_players.tail()
hero_match_wins = short_players.groupby(by='hero_id').sum()['win']
hero_match_count = players['hero_id'].value_counts().rename_axis('hero_id').reset_index(name='total_matches')
hero_match_count = hero_match_count.merge(hero_match_wins, on='hero_id')
hero_match_count
hero_match_count['win_percent'] = hero_match_count['win'] / hero_match_count['total_matches'] * 100
hero_match_count
hero_match_count = pd.merge(hero_match_count, hero_names, left_on='hero_id', right_on='id')
hero_match_count
fig_size = plt.rcParams["figure.figsize"]
fig_size[0] = 10
fig_size[1] = 8
plt.rcParams["figure.figsize"] = fig_size
x = hero_match_count['total_matches']
y = hero_match_count['win_percent']
labels = hero_match_count['localized_name']
plt.scatter(x, y)
plt.title('Win Percent vs Number of Games Played', fontsize=18)
plt.xlabel('Number of Games Played', fontsize=18)
plt.ylabel('Percent Won', fontsize=18)
for i, label in enumerate(labels):
plt.annotate(label, (x[i], y[i]))
```
# Data cleaning
We start with an empty list of DataFrams and add to it as we create DataFrames of bad match ids. In the end we combine all the DataFrames and remove their match ids from the Matches DataFrame.
```
dfs_bad_matches = []
```
## Abandons
remove games were a player has abandoned the match
```
abandoned_matches = players[players.leaver_status > 1][['match_id']]
abandoned_matches = abandoned_matches.drop_duplicates().reset_index(drop=True)
dfs_bad_matches.append(abandoned_matches)
abandoned_matches
```
## Missing Hero id
remove games where a player is not assigned a hero id, but didnt get flaged for an abandon
```
player_no_hero = players[players.hero_id == 0][['match_id']].reset_index(drop=True)
dfs_bad_matches.append(player_no_hero)
player_no_hero
```
## Wrong Game Mode
remove games not played in "Ranked All Pick" (22)
```
wrong_mode = matches[matches.game_mode != 22].reset_index()[['match_id']]
dfs_bad_matches.append(wrong_mode)
wrong_mode
```
## Game length (short)
remove games we deem too short (< 15 min)
```
short_length = 15 * 60
short_matches = matches[matches.duration < short_length].reset_index()[['match_id']]
dfs_bad_matches.append(short_matches)
short_matches
```
## Game length (long)
Next we want to get matches with a too long duration (>90 min)
```
long_length = 90 * 60
long_matches = matches[matches.duration > long_length].reset_index()[['match_id']]
dfs_bad_matches.append(long_matches)
long_matches
```
## Combine all our lists of bad matches
combine matches and create a filtered match dataframe with only good matches
```
bad_match_ids = pd.concat(dfs_bad_matches, ignore_index=True).drop_duplicates()
bad_match_ids
```
## Remove bad matches
```
filtered_matches = matches[~matches['match_id'].isin(bad_match_ids['match_id'])]
filtered_matches.info()
```
## Remove duplicate matches
```
filtered_matches = filtered_matches.drop_duplicates(subset=['match_id'])
filtered_matches.info()
filtered_players = players[~players['match_id'].isin(bad_match_ids['match_id'])]
filtered_players.info()
filtered_players = filtered_players.drop_duplicates(subset=['match_id', 'player_slot'])
filtered_players.info()
filtered_players.to_csv('../csv/players_filtered.csv', index=False)
filtered_matches.to_csv('../csv/matches_filtered.csv', index=False)
```
# Convert our match list
Convert our match list to the form of :
r_1, r_2, r_3, r_4, r_5, d_1, d_2, d_3, d_4, d_5, r_win
```
r_names = []
d_names = []
for slot in range(1, 6):
r_name = 'r_' + str(slot)
d_name = 'd_' + str(slot)
r_names.append(r_name)
d_names.append(d_name)
columns = (r_names + d_names + ['r_win'])
new_row = [-1] * (5 + 5 + 1)
# test_players = players.iloc[:500, :]
# test_matches = matches.iloc[:50, :]
columns = (r_names + d_names + ['r_win'])
new_match_list = pd.DataFrame(data=None, columns=columns)
output = StringIO()
csv_writer = writer(output)
for index, row in filtered_matches.iterrows():
match_players = players.loc[players['match_id'] == row['match_id']]
if match_players.shape[0] == 10:
new_row[0] = match_players[match_players['player_slot'] == 0].iloc[0]['hero_id']
new_row[1] = match_players[match_players['player_slot'] == 1].iloc[0]['hero_id']
new_row[2] = match_players[match_players['player_slot'] == 2].iloc[0]['hero_id']
new_row[3] = match_players[match_players['player_slot'] == 3].iloc[0]['hero_id']
new_row[4] = match_players[match_players['player_slot'] == 4].iloc[0]['hero_id']
new_row[5] = match_players[match_players['player_slot'] == 128].iloc[0]['hero_id']
new_row[6] = match_players[match_players['player_slot'] == 129].iloc[0]['hero_id']
new_row[7] = match_players[match_players['player_slot'] == 130].iloc[0]['hero_id']
new_row[8] = match_players[match_players['player_slot'] == 131].iloc[0]['hero_id']
new_row[9] = match_players[match_players['player_slot'] == 132].iloc[0]['hero_id']
# add if radiant win
new_row[10] = row['radiant_win']
# append new row onto match list
csv_writer.writerow(new_row)
# gives us some idea about how far into the data we are
if index % 1000 == 0:
print(index / 1000)
output.seek(0)
new_match_list = pd.read_csv(output, names=columns)
new_match_list.to_csv('./Data_new/new_match_list_filtered_ids.csv', index=False)
```
# Stats
```
players
player_stats = players.drop(columns=['account_id', 'match_id', 'leaver_status'])
player_stats_short = player_stats.drop(columns=['item_0','item_1','item_2','item_3','item_4','item_5','backpack_0','backpack_1','backpack_2','item_neutral', 'player_slot']).groupby(['hero_id']).mean()
player_stats_short
player_stats_short.reset_index().to_json('../json/hero_stats.json', orient='records', indent=4)
player_items = player_stats.melt(id_vars=['hero_id'], value_vars=['item_0', 'item_1', 'item_2', 'item_3', 'item_4', 'item_5'], var_name='item_slot', value_name='item_id')
player_items
item_counts = player_items.groupby(['hero_id']).item_id.value_counts().reset_index(name="count")
item_counts
j = (item_counts.groupby(['hero_id'], as_index=True)
.apply(lambda x: x[['item_id','count']].to_dict('r'))
.reset_index()
.rename(columns={0:'item_data'})
.to_json('../json/item_stats.json', orient='records', indent=4))
```
| github_jupyter |
```
data = pd.read_csv("/Users/kimjeongseob/Desktop/Study/0.Project/3. Machine Learning Practice/2. Football/dataset_football.csv")
data = data.drop(columns = 'Unnamed: 0')
data_origin = data.copy()
data
data.follower = data.follower + 10
data.follower = np.log(data.follower)
# data = data.drop(columns='player_name')
col_name = list(data.columns)
col_name.remove('player_name')
# from patsy import *
# col_names = ["scale({})".format(name) for name in col_name]
# col_names
# data_scaled = dmatrix("0+"+"+".join(col_names),data=data)
# data_scaled = pd.DataFrame(data_scaled,columns = [col_name])
# data_scaled
# from sklearn.preprocessing import MinMaxScaler
# scaler = MinMaxScaler()
# scaler.fit(data)
# scaled = scaler.transform(data)
# from sklearn.preprocessing import StandardScaler
# scaler = StandardScaler()
# scaler.fit(data)
# data_scaled = scaler.transform(data)
from sklearn.neighbors import KNeighborsClassifier
classifier = KNeighborsClassifier(n_neighbors = 100)
data_X = data.drop(columns='value')
data_y = data.value
data_y = map(int,data_y)
data_y = list(data_y)
# data_y
data_X
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(data_X, data_y, test_size=0.4, random_state=0)
X_train.shape
X_test.shape
len(y_train)
len(y_test)
classifier.fit(X_train.drop(columns='player_name'), y_train)
X_train
len(y_train)
print(classifier.score(X_test.drop(columns='player_name'),y_test))
import matplotlib.pyplot as plt
k_list = range(1,101)
accuracies = []
for k in k_list:
classifier = KNeighborsClassifier(n_neighbors = k)
classifier.fit(X_train.drop(columns='player_name'), y_train)
accuracies.append(classifier.score(X_test.drop(columns='player_name'), y_test))
plt.plot(k_list, accuracies)
plt.xlabel("k")
plt.ylabel("Validation Accuracy")
plt.title("Breast Cancer Classifier Accuracy")
plt.show()
```
# K-NN regression 알고리즘
```
from sklearn.neighbors import KNeighborsRegressor
regressor = KNeighborsRegressor(n_neighbors = 10, weights = "distance")
regressor.fit(X_train.drop(columns='player_name'), y_train)
y_pred = regressor.predict(X_test.drop(columns='player_name'))
y_pred_train = regressor.predict(X_train.drop(columns='player_name'))
result = []
for i in range(len(y_pred)):
if y_test[i] < y_pred[i]:
result.append("overpaid")
else:
result.append("underpaid")
result
len(y_pred)
# X_train = X_train.reset_index().drop(columns='index')
X_test = X_test.reset_index().drop(columns='index')
X_train
X_test
X_test.loc[1]['player_name']
underpaid = []
for i in range(len(y_pred)):
if result[i] == 'underpaid':
underpaid.append(X_test.loc[i]['player_name'])
len(underpaid)
underpaid
```
# K-NN regression 알고리즘 -> 전체를 다 학습시킴..
```
from sklearn.neighbors import KNeighborsRegressor
regressor = KNeighborsRegressor(n_neighbors = 10, weights = "distance")
regressor.fit(data.drop(columns=['player_name','value']), data.value)
y_pred = regressor.predict(data.drop(columns=['player_name','value']))
result = []
for i in range(len(y_pred)):
if data.value[i] < y_pred[i]:
result.append("underpaid")
else:
result.append("overpaid")
data.value[1]
y_pred[1]
result
len(y_pred)
# X_train = X_train.reset_index().drop(columns='index')
X_test = X_test.reset_index().drop(columns='index')
X_train
X_test
X_test.loc[1]['player_name']
underpaid = []
for i in range(len(y_pred)):
if result[i] == 'underpaid':
underpaid.append(X_test.loc[i]['player_name'])
len(underpaid)
X_test
```
| github_jupyter |
<a href="https://colab.research.google.com/github/Skantastico/DS-Unit-2-Applied-Modeling/blob/master/LS_DSPT3_231_Updated_assignment_applied_modeling_1.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
Lambda School Data Science
*Unit 2, Sprint 3, Module 1*
---
# Define ML problems
You will use your portfolio project dataset for all assignments this sprint.
## Assignment
Complete these tasks for your project, and document your decisions.
- [x] Choose your target. Which column in your tabular dataset will you predict?
- [x] Is your problem regression or classification?
- [x] How is your target distributed?
- Classification: How many classes? Are the classes imbalanced?
- Regression: Is the target right-skewed? If so, you may want to log transform the target.
- [x] Choose which observations you will use to train, validate, and test your model.
- Are some observations outliers? Will you exclude them?
- Will you do a random split or a time-based split?
- [x] Choose your evaluation metric(s).
- Classification: Is your majority class frequency > 50% and < 70% ? If so, you can just use accuracy if you want. Outside that range, accuracy could be misleading. What evaluation metric will you choose, in addition to or instead of accuracy?
- [ ] Begin to clean and explore your data.
- [ ] Begin to choose which features, if any, to exclude. Would some features "leak" future information?
```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
url = 'https://raw.githubusercontent.com/Skantastico/DS-Unit-2-Applied-Modeling/master/data/Anime.csv'
df = pd.read_csv(url)
```
# My Dataset
Anime Ratings from the 'iMDB" of Anime, called myanimelist.net
```
df.head(7)
```
## Summary of numeric and non-numeric columns at a glance
```
df.describe().T
df.describe(exclude='number').T
col_list = df.columns.values.tolist()
col_list
```
## I was running into trouble during data exploration, there seems to be a space after every column
```
## I found this piece of code on medium that seems like a catch-all for fixing columns
df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_').str.replace('(', '').str.replace(')', '')
df
col_list = df.columns.values.tolist()
col_list
df.columns
df.columns.map(lambda x: x.strip())
df.columns
df.genre.value_counts()
```
## Ok that seems to have fixed it.
There seem to be at least around 900 'adult themed' anime which I will probably remove from the dataset, or at least from any public portions just to be safe.
If it affects the model accuracy at all or is relevant, I will include it for calculations and just make a note.
# Choose Your Target
```
# My Target will be involving the 'score' column
df.score.value_counts(ascending=False)
```
## As I will be using the entire spectrum of score, this will be a regression.
# How is my target distributed?
```
# The mean seems to be around 6.3, with only 25% of the dataset above a 7.05
df.score.describe()
df['mean'] = df['score'] >= 6.2845
df['mean'].value_counts(normalize=True)
```
### So there are about 51% anime that are above average (before cleaning)
## Which Observations will I use to train?
### There's lots of options, but at the very least these look interesting:
Numeric:
* Episodes
* Airing
*Aired
*Duration
*Score
*Popularity
*Rank
Non-numeric:
* Type
*Source
*Producer
*Genre
*Studio
*Rating
## On my old dataset, it was a lot less complete than this one, and I was already thinking of making my own features similar to "popularity" and "# of episodes".
## I was also going to try and figure out how to scrape and match air dates, but someone other magical person already has! Hooray.
## I will continue to clean the dataset on a new notebook
```
```
| github_jupyter |
## Day 5: Optimal Mind Control
Welcome to Day 6! Now that we can simulate a model network of conductance-based neurons, we discuss the limitations of our approach and attempts to work around these issues.
### Memory Management
Using Python and TensorFlow allowed us to write code that is readable, parallizable and scalable across a variety of computational devices. However, our implementation is very memory intensive. The iterators in TensorFlow do not follow the normal process of memory allocation and garbage collection. Since, TensorFlow is designed to work on diverse hardware like GPUs, TPUs and distributed platforms, memory allocation is done adaptively during the TensorFlow session and not cleared until the Python kernel has stopped execution. The memory used increases linearly with time as the state matrix is computed recursively by the tf.scan function. The maximum memory used by the computational graph is 2 times the total state matrix size at the point when the computation finishes and copies the final data into the memory. The larger the network and longer the simulation, the larger the solution matrix. Each run is limited by the total available memory. For a system with a limited memory of K bytes, The length of a given simulation (L timesteps) of a given network (N differential equations) with 64-bit floating-point precision will follow:
$$2\times64\times L\times N=K$$
That is, for any given network, our maximum simulation length is limited. One way to improve our maximum length is to divide the simulation into smaller batches. There will be a small queuing time between batches, which will slow down our code by a small amount but we will be able to simulate longer times. Thus, if we split the simulation into K sequential batches, the maximum memory for the simulation becomes $(1+\frac{1}{K})$ times the total matrix size. Thus the memory relation becomes:
$$\Big(1+\frac{1}{K}\Big)\times64\times L\times N=K$$
This way, we can maximize the length of out simulation that we can run in a single python kernel.
Let us implement this batch system for our 3 neuron feed-forward model.
### Implementing the Model
To improve the readability of our code we separate the integrator into a independent import module. The integrator code was placed in a file called tf integrator.py. The file must be present in the same directory as the implementation of the model.
Note: If you are using Jupyter Notebook, remember to remove the %matplotlib inline command as it is specific to jupyter.
#### Importing tf_integrator and other requirements
Once the Integrator is saved in tf_integrator.py in the same directory as the Notebook, we can start importing the essentials including the integrator.
```
import numpy as np
import tf_integrator as tf_int
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
## OR ##
# import tensorflow.compat.v1 as tf
# tf.disable_v2_behavior()
```
### Recall the Model
For implementing a Batch system, we do not need to change how we construct our model only how we execute it.
#### Step 1: Initialize Parameters and Dynamical Equations; Define Input
```
n_n = 3 # number of simultaneous neurons to simulate
sim_res = 0.01 # Time Resolution of the Simulation
sim_time = 700 # Length of the Simulation
t = np.arange(0,sim_time,sim_res)
# Acetylcholine
ach_mat = np.zeros((n_n,n_n)) # Ach Synapse Connectivity Matrix
ach_mat[1,0]=1
## PARAMETERS FOR ACETYLCHLOLINE SYNAPSES ##
n_ach = int(np.sum(ach_mat)) # Number of Acetylcholine (Ach) Synapses
alp_ach = [10.0]*n_ach # Alpha for Ach Synapse
bet_ach = [0.2]*n_ach # Beta for Ach Synapse
t_max = 0.3 # Maximum Time for Synapse
t_delay = 0 # Axonal Transmission Delay
A = [0.5]*n_n # Synaptic Response Strength
g_ach = [0.35]*n_n # Ach Conductance
E_ach = [0.0]*n_n # Ach Potential
# GABAa
gaba_mat = np.zeros((n_n,n_n)) # GABAa Synapse Connectivity Matrix
gaba_mat[2,1] = 1
## PARAMETERS FOR GABAa SYNAPSES ##
n_gaba = int(np.sum(gaba_mat)) # Number of GABAa Synapses
alp_gaba = [10.0]*n_gaba # Alpha for GABAa Synapse
bet_gaba = [0.16]*n_gaba # Beta for GABAa Synapse
V0 = [-20.0]*n_n # Decay Potential
sigma = [1.5]*n_n # Decay Time Constant
g_gaba = [0.8]*n_n # fGABA Conductance
E_gaba = [-70.0]*n_n # fGABA Potential
## Storing Firing Thresholds ##
F_b = [0.0]*n_n # Fire threshold
def I_inj_t(t):
return tf.constant(current_input.T,dtype=tf.float64)[tf.to_int32(t/sim_res)] # Turn indices to integer and extract from matrix
## Acetylcholine Synaptic Current ##
def I_ach(o,V):
o_ = tf.Variable([0.0]*n_n**2,dtype=tf.float64)
ind = tf.boolean_mask(tf.range(n_n**2),ach_mat.reshape(-1) == 1)
o_ = tf.scatter_update(o_,ind,o)
o_ = tf.transpose(tf.reshape(o_,(n_n,n_n)))
return tf.reduce_sum(tf.transpose((o_*(V-E_ach))*g_ach),1)
## GABAa Synaptic Current ##
def I_gaba(o,V):
o_ = tf.Variable([0.0]*n_n**2,dtype=tf.float64)
ind = tf.boolean_mask(tf.range(n_n**2),gaba_mat.reshape(-1) == 1)
o_ = tf.scatter_update(o_,ind,o)
o_ = tf.transpose(tf.reshape(o_,(n_n,n_n)))
return tf.reduce_sum(tf.transpose((o_*(V-E_gaba))*g_gaba),1)
## Other Currents ##
def I_K(V, n):
return g_K * n**4 * (V - E_K)
def I_Na(V, m, h):
return g_Na * m**3 * h * (V - E_Na)
def I_L(V):
return g_L * (V - E_L)
def dXdt(X, t):
V = X[:1*n_n] # First n_n values are Membrane Voltage
m = X[1*n_n:2*n_n] # Next n_n values are Sodium Activation Gating Variables
h = X[2*n_n:3*n_n] # Next n_n values are Sodium Inactivation Gating Variables
n = X[3*n_n:4*n_n] # Next n_n values are Potassium Gating Variables
o_ach = X[4*n_n : 4*n_n + n_ach] # Next n_ach values are Acetylcholine Synapse Open Fractions
o_gaba = X[4*n_n + n_ach : 4*n_n + n_ach + n_gaba] # Next n_ach values are GABAa Synapse Open Fractions
fire_t = X[-n_n:] # Last n_n values are the last fire times as updated by the modified integrator
dVdt = (I_inj_t(t) - I_Na(V, m, h) - I_K(V, n) - I_L(V) - I_ach(o_ach,V) - I_gaba(o_gaba,V)) / C_m
## Updation for gating variables ##
m0,tm,h0,th = Na_prop(V)
n0,tn = K_prop(V)
dmdt = - (1.0/tm)*(m-m0)
dhdt = - (1.0/th)*(h-h0)
dndt = - (1.0/tn)*(n-n0)
## Updation for o_ach ##
A_ = tf.constant(A,dtype=tf.float64)
Z_ = tf.zeros(tf.shape(A_),dtype=tf.float64)
T_ach = tf.where(tf.logical_and(tf.greater(t,fire_t+t_delay),tf.less(t,fire_t+t_max+t_delay)),A_,Z_)
T_ach = tf.multiply(tf.constant(ach_mat,dtype=tf.float64),T_ach)
T_ach = tf.boolean_mask(tf.reshape(T_ach,(-1,)),ach_mat.reshape(-1) == 1)
do_achdt = alp_ach*(1.0-o_ach)*T_ach - bet_ach*o_ach
## Updation for o_gaba ##
T_gaba = 1.0/(1.0+tf.exp(-(V-V0)/sigma))
T_gaba = tf.multiply(tf.constant(gaba_mat,dtype=tf.float64),T_gaba)
T_gaba = tf.boolean_mask(tf.reshape(T_gaba,(-1,)),gaba_mat.reshape(-1) == 1)
do_gabadt = alp_gaba*(1.0-o_gaba)*T_gaba - bet_gaba*o_gaba
## Updation for fire times ##
dfdt = tf.zeros(tf.shape(fire_t),dtype=fire_t.dtype) # zero change in fire_t
out = tf.concat([dVdt,dmdt,dhdt,dndt,do_achdt,do_gabadt,dfdt],0)
return out
def K_prop(V):
T = 22
phi = 3.0**((T-36.0)/10)
V_ = V-(-50)
alpha_n = 0.02*(15.0 - V_)/(tf.exp((15.0 - V_)/5.0) - 1.0)
beta_n = 0.5*tf.exp((10.0 - V_)/40.0)
t_n = 1.0/((alpha_n+beta_n)*phi)
n_0 = alpha_n/(alpha_n+beta_n)
return n_0, t_n
def Na_prop(V):
T = 22
phi = 3.0**((T-36)/10)
V_ = V-(-50)
alpha_m = 0.32*(13.0 - V_)/(tf.exp((13.0 - V_)/4.0) - 1.0)
beta_m = 0.28*(V_ - 40.0)/(tf.exp((V_ - 40.0)/5.0) - 1.0)
alpha_h = 0.128*tf.exp((17.0 - V_)/18.0)
beta_h = 4.0/(tf.exp((40.0 - V_)/5.0) + 1.0)
t_m = 1.0/((alpha_m+beta_m)*phi)
t_h = 1.0/((alpha_h+beta_h)*phi)
m_0 = alpha_m/(alpha_m+beta_m)
h_0 = alpha_h/(alpha_h+beta_h)
return m_0, t_m, h_0, t_h
# Initializing the Parameters
C_m = [1.0]*n_n
g_K = [10.0]*n_n
E_K = [-95.0]*n_n
g_Na = [100]*n_n
E_Na = [50]*n_n
g_L = [0.15]*n_n
E_L = [-55.0]*n_n
# Creating the Current Input
current_input= np.zeros((n_n,t.shape[0]))
current_input[0,int(100/sim_res):int(200/sim_res)] = 2.5
current_input[0,int(300/sim_res):int(400/sim_res)] = 5.0
current_input[0,int(500/sim_res):int(600/sim_res)] = 7.5
```
#### Step 2: Define the Initial Condition of the Network and Add some Noise to the initial conditions
```
# Initializing the State Vector and adding 1% noise
state_vector = [-71]*n_n+[0,0,0]*n_n+[0]*n_ach+[0]*n_gaba+[-9999999]*n_n
state_vector = np.array(state_vector)
state_vector = state_vector + 0.01*state_vector*np.random.normal(size=state_vector.shape)
```
#### Step 3: Splitting Time Series into independent batches and Run Each Batch Sequentially
Since we will be dividing the computation into batches, we have to split the time array such that for each new call, the final state vector of the last batch will be the initial condition for the current batch. The function $np.array\_split()$ splits the array into non-overlapping vectors. Therefore, we append the last time of the previous batch to the beginning of the current time array batch.
```
# Define the Number of Batches
n_batch = 2
# Split t array into batches using numpy
t_batch = np.array_split(t,n_batch)
# Iterate over the batches of time array
for n,i in enumerate(t_batch):
# Inform start of Batch Computation
print("Batch",(n+1),"Running...",end="")
# In np.array_split(), the split edges are present in only one array and since
# our initial vector to successive calls is corresposnding to the last output
# our first element in the later time array should be the last element of the
# previous output series, Thus, we append the last time to the beginning of
# the current time array batch.
if n>0:
i = np.append(i[0]-sim_res,i)
# Set state_vector as the initial condition
init_state = tf.constant(state_vector, dtype=tf.float64)
# Create the Integrator computation graph over the current batch of t array
tensor_state = tf_int.odeint(dXdt, init_state, i, n_n, F_b)
# Initialize variables and run session
with tf.Session() as sess:
tf.global_variables_initializer().run()
state = sess.run(tensor_state)
sess.close()
# Reset state_vector as the last element of output
state_vector = state[-1,:]
# Save the output of the simulation to a binary file
np.save("part_"+str(n+1),state)
# Clear output
state=None
print("Finished")
```
#### Putting the Output Together
The output from our batch implementation is a set of binary files that store parts of our total simulation. To get the overall output we have to stitch them back together.
```
overall_state = []
# Iterate over the generated output files
for n,i in enumerate(["part_"+str(n+1)+".npy" for n in range(n_batch)]):
# Since the first element in the series was the last output, we remove them
if n>0:
overall_state.append(np.load(i)[1:,:])
else:
overall_state.append(np.load(i))
# Concatenate all the matrix to get a single state matrix
overall_state = np.concatenate(overall_state)
```
#### Visualizing the Overall Data
Finally, we plot the voltage traces of the 3 neurons as a Voltage vs Time heatmap.
```
plt.figure(figsize=(12,6))
sns.heatmap(overall_state[::100,:3].T,xticklabels=100,yticklabels=5,cmap='RdBu_r')
plt.xlabel("Time (in ms)")
plt.ylabel("Neuron Number")
plt.title("Voltage vs Time Heatmap for Projection Neurons (PNs)")
plt.tight_layout()
plt.show()
```
By this method, we have maximized the usage of our available memory but we can go further and develop a method to allow indefinitely long simulation. The issue behind this entire algorithm is that the memory is not cleared until the python kernel finishes. One way to overcome this is to save the parameters of the model (such as connectivity matrix) and the state vector in a file, and start a new python kernel from a python script to compute successive batches. This way after each large batch, the memory gets cleaned. By combining the previous batch implementation and this system, we can maximize our computability.
### Implementing a Runner and a Caller
Firstly, we have to create an implementation of the model that takes in previous input as current parameters. Thus, we create a file, which we call "run.py" that takes an argument ie. the current batch number. The implementation for "run.py" is mostly same as the above model but there is a small difference.
When the batch number is 0, we initialize all variable parameters and save them, but otherwise we use the saved values. The parameters we save include: Acetylcholine Matrix, GABAa Matrix and Final/Initial State Vector. It will also save the files with both batch number and sub-batch number listed.
The time series will be created and split initially by the caller, which we call "call.py", and stored in a file. Each execution of the Runner will extract its relevant time series and compute on it.
#### Implementing the Caller code
The caller will create the time series, split it and use python subprocess module to call "run.py" with appropriate arguments. The code for "call.py" is given below.
```
from subprocess import call
import numpy as np
total_time = 700
n_splits = 2
time = np.split(np.arange(0,total_time,0.01),n_splits)
# Append the last time point to the beginning of the next batch
for n,i in enumerate(time):
if n>0:
time[n] = np.append(i[0]-0.01,i)
np.save("time",time)
# call successive batches with a new python subprocess and pass the batch number
for i in range(n_splits):
call(['python','run.py',str(i)])
print("Simulation Completed.")
```
#### Implementing the Runner code
"run.py" is essentially identical to the batch-implemented model we developed above with the changes described below:
```
# Additional Imports #
import sys
# Duration of Simulation #
# t = np.arange(0,sim_time,sim_res)
t = np.load("time.npy")[int(sys.argv[1])] # get first argument to run.py
# Connectivity Matrix Definitions #
if sys.argv[1] == '0':
ach_mat = np.zeros((n_n,n_n)) # Ach Synapse Connectivity Matrix
ach_mat[1,0]=1 # If connectivity is random, once initialized it will be the same.
np.save("ach_mat",ach_mat)
else:
ach_mat = np.load("ach_mat.npy")
if sys.argv[1] == '0':
gaba_mat = np.zeros((n_n,n_n)) # GABAa Synapse Connectivity Matrix
gaba_mat[2,1] = 1 # If connectivity is random, once initialized it will be the same.
np.save("gaba_mat",gaba_mat)
else:
gaba_mat = np.load("gaba_mat.npy")
# Current Input Definition #
if sys.argv[1] == '0':
current_input= np.zeros((n_n,int(sim_time/sim_res)))
current_input[0,int(100/sim_res):int(200/sim_res)] = 2.5
current_input[0,int(300/sim_res):int(400/sim_res)] = 5.0
current_input[0,int(500/sim_res):int(600/sim_res)] = 7.5
np.save("current_input",current_input)
else:
current_input = np.load("current_input.npy")
# State Vector Definition #
if sys.argv[1] == '0':
sstate_vector = [-71]*n_n+[0,0,0]*n_n+[0]*n_ach+[0]*n_gaba+[-9999999]*n_n
state_vector = np.array(state_vector)
state_vector = state_vector + 0.01*state_vector*np.random.normal(size=state_vector.shape)
np.save("state_vector",state_vector)
else:
state_vector = np.load("state_vector.npy")
# Saving of Output #
# np.save("part_"+str(n+1),state)
np.save("batch"+str(int(sys.argv[1])+1)+"_part_"+str(n+1),state)
```
#### Combining all Data
Just like we merged all the batches, we merge all the sub-batches and batches.
```
overall_state = []
# Iterate over the generated output files
for n,i in enumerate(["batch"+str(x+1) for x in range(n_splits)]):
for m,j in enumerate(["_part_"+str(x+1)+".npy" for x in range(n_batch)]):
# Since the first element in the series was the last output, we remove them
if n>0 and m>0:
overall_state.append(np.load(i+j)[1:,:])
else:
overall_state.append(np.load(i+j))
# Concatenate all the matrix to get a single state matrix
overall_state = np.concatenate(overall_state)
plt.figure(figsize=(12,6))
sns.heatmap(overall_state[::100,:3].T,xticklabels=100,yticklabels=5,cmap='RdBu_r')
plt.xlabel("Time (in ms)")
plt.ylabel("Neuron Number")
plt.title("Voltage vs Time Heatmap for Projection Neurons (PNs)")
plt.tight_layout()
plt.show()
```
| github_jupyter |
```
%matplotlib inline
```
Using $L_0$ regularization in predicting genetic risk
====================================
The main aim of this document is to outline the code and theory of using the $L_0$ norm in a regularized regression with the objective to predict disease risk from genetic data.
This document contains my thought process and understanding of the implementation of $L_0$.
I will aim to integrate the code into existing tools so it can be easily used.
Ideally I will also compare the performance again $L_1$ as well as $L_2$ norm (aka Lasso and Ridge regression) in predicting simulated data.
## Literature used
I made use of the following papers:
- Learning Sparse Neural Networks through $L_0$ Regularization [link](http://arxiv.org/abs/1712.01312)
- The Variational Garrote [link](http://link.springer.com/10.1007/s10994-013-5427-7)
# Introduction
Let $\mathcal{D}$ the dataset consisting of $N$ input-output pairs $\{(x_1, y_1), \ldots, (x_N, y_N)\}$ and consider the regularized minimization procedure with $L_p$ regularization of the parameters $\omega$
$$
\mathcal{R}(\theta) = \frac{1}{N} ( \sum^N_{i=1} \mathcal{L}(h(x_i; \theta), y_i)) + \lambda ||\theta||_p
$$
with $\theta^* = arg \min_{\theta}\{\mathcal{R}(\theta)\}$.
While $L_1$ and $L_2$ are well defined the definition of $L_0$ varies.
Hence I will define it as:
$$
||\theta||_0 = \sum^{|\theta|}_{j=1} I[\theta_j \neq 0]
$$
Here it is important that, in contrast to $L_1$ and $L_2$, the $L_0$ norm does not shrink the parameters value but sets it wither to 0 or not 0.
This effect might be desirable in genetic data due to high correlations among SNPs.
```
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
def l0(x):
return(np.sum(x!=0))
def l1(x):
return(np.sum(np.abs(x)))
def l2(x):
return(np.sum(np.power(x, 2)))
x = np.linspace(-2, 2, 50)
x = np.append(x, 0)
x = np.sort(x)
fig, (axs0, axs1, axs2) = plt.subplots(1, 3, sharex='all', sharey='all')
fig.set_size_inches((10, 3))
axs0.set_title('L0 norm')
axs1.set_title('L1 norm')
axs2.set_title('L2 norm')
[k.set_xlabel(r'$\theta$') for k in [axs0, axs1, axs2]]
[k.set_ylabel('Penalty') for k in [axs0, axs1, axs2]]
axs0.plot(x, [l0(k) for k in x])
axs1.plot(x, [l1(k) for k in x])
axs2.plot(x, [l2(k) for k in x])
```
The plot above demonstrates nicely the penalty for different norms.
As one can see both $p=1$ and $p=2$ allow shrinkage for large values of $\theta$, while $p=0$ the penalty is constant.
## Minimizing $L_0$ norm for parametric models
Optimization under the $L_0$ penalty is computational difficult due to the non-differentiability as well as the comninatorial nature of $2^{|\theta|}$ (the number of possible states of the $L_0$ penalty function).
Hence @Author relaxed the discrete nature of $L_0$ to allow for efficient computations.
Here I will outline their approach first in order to understand it better.
The first step is to reformulate the $L_0$ norm under the parameters $\theta$.
Hence let,
$$
\begin{matrix}
\theta_j = \tilde{\theta_j}z_j, & z_j \in \{0, 1\}, & \tilde{\theta}_j \neq 0, & ||\theta||_0 = \sum^{|\theta|}_{j=1} z_j
\end{matrix}
$$
Therefore $z_j$ can be considered as binary gates, and the $L_0$ norm can be seen as the amount of gates being turned on.
Then we can reformulate the minimization from Eq. 1 by letting $q(z_j|\pi_j) = Bern(\pi_j)$
$$
\mathcal{R}(\tilde{\theta}, \pi) = \mathbb{E}_{q(z|\pi)} [\frac{1}{N} ( \sum^N_{i=1} \mathcal{L}(h(x_i; \tilde{\theta} \otimes z), y_i)] + \lambda \sum^{|\theta|}_{j=1} \pi_j \\
\quad \textrm{with} \quad
\theta^*, \pi^* = arg \min_{\tilde{\theta}, \pi} \{\mathcal{R}(\tilde{\theta}, \pi)\}
$$
Here we encounter the problem of non-differentiability of the left hand side of the previous equation size z is discrete (the penalty term is straight forward to minimize).
It seems there are methods to optimize this functions but they are supposed to suffer from high variance and biased gradients.
Therefore @Author used an alternative to smooth the objective function for efficient gradient based optimization.
Let $s$ be a continuous random variable with distribution $q(s)$ that has the parameter $\phi$ we can then let $z$ be given a hard sigmoid function:
$$
s \sim q(s|\phi) \\
z = min(1, max(0, s))
$$
This allows the gate to still be $0$ as well as the computation of the probability of non-zero parameters (number of active gates) with a simple cdf ($Q(\cdot)$ of s:
$$
q(z\neq 0 | \phi) = 1 - Q(s \leq 0 | \phi)
$$
Then we can reformulate the previous equation as
$$
\mathcal{R}(\tilde{\theta}, \phi) = \mathbb{E}_{q(s|\phi)} [\frac{1}{N} ( \sum^N_{i=1} \mathcal{L}(h(x_i; \tilde{\theta} \otimes g(s)), y_i)] + \lambda \sum^{|\theta|}_{j=1} (1 - Q(s_j \leq 0 | \phi_j)) \\
\quad \textrm{with} \quad
\theta^*, \phi^* = arg \min_{\tilde{\theta}, \phi} \{\mathcal{R}(\tilde{\theta}, \phi)\},
\quad
g(\cdot) = min(1, max(0, \cdot))
$$
However, it is still necessary to define the distribution for $s$.
Here it is suggested to use a hard concrete distribution.
### The hard concrete distribution
Lets assume that $s$ is a random variable distributed in the (0, 1) interval with probability density $q_s(s|\phi)$ and cdf $Q_s(s|\phi)$.
The parameters of the distribution are $\phi = (\log \alpha, \beta)$, where $\log\alpha$ is the mean and $\beta$ the temperature (???).
We can then stretch this distribution to the $(\gamma, \delta$) interval with $\gamma < 0$ and $\delta > 1$:
$$
u\sim U(0, 1),
\quad
s = Sigmoid((\log u - \log(1 - u) + \log\alpha) / \beta), \quad
\bar{s} = s(\delta - \gamma) + \gamma, \quad
z = \min(1, \max(0, \bar{s})
$$
Since these formulas are a bit difficult to visualize I have plotted them below to gain a better understanding of that they are doing and how these functions behave.
```
def hard_sigmoid(x):
return np.min([1, np.max([0, x])])
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def hard_concrete_dist(loc, temp, gamma, zeta):
u = np.random.random()
s = sigmoid((np.log(u) - np.log(1 - u) + np.log(loc)) / temp)
shat = s*(zeta - gamma) + gamma
return hard_sigmoid(shat)
def plot_hard_concreate(loc, temp, gamma, zeta, num=10000, bins=100, **kwargs):
plt.hist([hard_concrete_dist(loc, temp, gamma, zeta) for _ in range(num)], bins=bins, density=True, **kwargs)
x = np.arange(-6, 6, 0.1)
y1 = sigmoid(x)
y2 = [hard_sigmoid(k) for k in x]
fig, axs = plt.subplots(1, 2)
fig.set_size_inches((10, 3))
axs[0].set_title('Comparision of Sigmoids')
axs[1].set_title('Hard Concreate Distribution')
axs[0].plot(x, y1, label='Sigmoid')
axs[0].plot(x, y2, label='Hard-Sigmoid')
handles, labels = axs[0].get_legend_handles_labels()
axs[0].legend(handles, labels)
values = [hard_concrete_dist(loc=1, temp=0.5, gamma=-0.1, zeta=1.1) for _ in range(1000)]
n, bins, patches = axs[1].hist(values, bins=100, density=True)
#fig.show()
fig, axs = plt.subplots()
fig.set_size_inches((10, 8))
axs.set_title('Comparision of Sigmoids')
axs.plot(x, y1, label='Sigmoid')
axs.plot(x, y2, label='Hard-Sigmoid')
handles, labels = axs.get_legend_handles_labels()
axs.legend(handles, labels)
fig, axs = plt.subplots()
fig.set_size_inches((10, 5))
axs.set_title('Hard Concreate Distribution')
values = [hard_concrete_dist(loc=1, temp=0.5, gamma=-0.1, zeta=1.1) for _ in range(5000)]
n, bins, patches = axs.hist(values, bins=100, density=True)
```
# Implementation of the $L_0$ norm
The next step is to implement the theory into practice.
I will therefore make use of Google's tensorflow to implement the $L_0$ norm.
Here its good to know that this has been implemented before in PyTorch.
I will compare my and their implementation to assure I have done it correctly.
The reason why I am not directly using PyTorch is that I don't want to learn yet again another library.
Furthermore, implementing $L_0$ into tensorflow gives me hopefully a better understanding of the library itself as well as the $L_0$ norm.
In addition, tensorflow can compute the derivatives for me, so I don't have to take care of this.
The data I am going to use was simulated by Tim.
This includes non-linear effects, binary and continous phenotypes.
I will first compute only penalized linear models (that is $L_0$ to $L_2$ norm) with tensorflow and validate the results (of $L_1$ and $L_2$ with already implemented libraries (sklearn).
The main objective is to improve prediction accuracy.
```
import tensorflow as tf
from sklearn.model_selection import train_test_split
from pyplink import PyPlink
import sys
import os
DATAFOLDER = os.path.realpath(filename='../data')
PLINKDATA = '1kgb'
FILEPATH = os.path.join(DATAFOLDER, PLINKDATA)
def count_lines(filepath, header=False):
"""Count the number of rows in a file"""
with open(filepath, 'r') as f:
count = sum(1 for line in f)
if header:
count -= 1
return count
print('Number of subjects:', count_lines(os.path.join(FILEPATH, '.fam'), True))
print('Number of SNPs:', count_lines(os.path.join(FILEPATH, '.bim'), False))
def get_matrix(pfile, max_block):
"""Extract a genotype matrix from plink file."""
with PyPlink(pfile) as bed:
bim = bed.get_bim()
fam = bed.get_fam()
n = fam.shape[0]
p = bim.shape[0]
assert(max_block <= p)
genotypemat = np.zeros((n, max_block), dtype=np.int64)
u = 0
for loci_name, genotypes in bed:
genotypemat[:, u] = np.array(genotypes)
u += 1
if u >= max_block:
break
return genotypemat
# define size of training, validation and testing data
sample_fractions = (0.8, 0.15, 0.05)
assert sum(sample_fractions) == 1.0
training_size, validation_size, testing_size = sample_fractions
data_training, data_testing, label_training, label_testing = train_test_split(pheno, genotypemat, train_size=training_size)
data_validataion, data_testing, label_validation, label_testing = train_test_split(data_testing, label_testing, train_size=2/3)
print("Samples in training:", len(label_training))
print("Samples in validation:", len(label_validation))
print("Samples in testing:", len(label_testing))
```
| github_jupyter |
### Regular Expressions
Regular expressions are `text matching patterns` described with a formal syntax. You'll often hear regular expressions referred to as 'regex' or 'regexp' in conversation. Regular expressions can include a variety of rules, for finding repetition, to text-matching, and much more. As you advance in Python you'll see that a lot of your parsing problems can be solved with regular expressions (they're also a common interview question!).
## Searching for Patterns in Text
One of the most common uses for the re module is for finding patterns in text. Let's do a quick example of using the search method in the re module to find some text:
```
import re
# List of patterns to search for
patterns = [ 'term1', 'term2' ]
# Text to parse
text = 'This is a string with term1, but it does not have the other term.'
for p in patterns:
print ('Searching for "%s" in Sentence: \n"%s"' % (p, text))
#Check for match
if re.search(p, text):
print ('Match was found. \n')
else:
print ('No Match was found. \n')
```
Now we've seen that re.search() will take the pattern, scan the text, and then returns a **Match** object. If no pattern is found, a **None** is returned. To give a clearer picture of this match object, check out the cell below:
```
# List of patterns to search for
pattern = 'term1'
# Text to parse
text = 'This is a string with term1, but it does not have the other term.'
match = re.search(pattern, text)
type(match)
match
```
This **Match** object returned by the search() method is more than just a Boolean or None, it contains information about the match, including the original input string, the regular expression that was used, and the location of the match. Let's see the methods we can use on the match object:
```
# Show start of match
match.start()
# Show end
match.end()
s = "abassabacdReddyceaabadjfvababaReddy"
r = re.compile("Reddy")
r
l = re.findall(r,s)
print(l)
import re
s = "abcdefg1234"
r = re.compile("^[a-z][0-9]$")
l = re.findall(r,s)
print(l)
s = "ABCDE1234a"
r = re.compile(r"^[A-Z]{5}[0-9]{4}[a-z]$")
l = re.findall(r,s)
print(l)
s = "+917123456789"
s1 = "07123456789"
s2 = "7123456789"
r = re.compile(r"[6-9][0-9]{9}")
l = re.findall(r,s)
print(l)
l = re.findall(r,s1)
print(l)
l = re.findall(r,s2)
print(l)
s = "+917234567891"
s1 = "07123456789"
s2 = "7123456789"
r = re.compile(r"^(\+91)?[0]?([6-9][0-9]{9})$")
m = re.search(r,s1)
if m:
print(m.group())
else:
print("Invalid string")
for _ in range(int(input("No of Test Cases:"))):
line = input("Mobile Number")
if re.match(r"^[789]{1}\d{9}$", line):
print("YES")
else:
print("NO")
#Named groups
s = "12-02-2017" # DD-MM-YYYY
# dd-mm-yyyy
r = re.compile(r"^(?P<day>\d{2})-(?P<month>[0-9]{2})-(?P<year>[0-9]{4})")
m = re.search(r,s)
if m:
print(m.group('year'))
print(m.group('month'))
print(m.group('day'))
```
## Split with regular expressions
Let's see how we can split with the re syntax. This should look similar to how you used the split() method with strings.
```
# Term to split on
split_term = '@'
phrase = 'What is the domain name of someone with the email: [email protected]'
# Split the phrase
re.split(split_term,phrase)
```
Note how re.split() returns a list with the term to spit on removed and the terms in the list are a split up version of the string. Create a couple of more examples for yourself to make sure you understand!
## Finding all instances of a pattern
You can use re.findall() to find all the instances of a pattern in a string. For example:
```
# Returns a list of all matches
re.findall('is','test phrase match is in middle')
a = " a list with the term to spit on removed and the terms in the list are a split up version of the string. Create a couple of more examples for yourself to make sure you understand!"
copy = re.findall("to",a)
copy
len(copy)
```
## Pattern re Syntax
This will be the bulk of this lecture on using re with Python. Regular expressions supports a huge variety of patterns the just simply finding where a single string occurred.
We can use *metacharacters* along with re to find specific types of patterns.
Since we will be testing multiple re syntax forms, let's create a function that will print out results given a list of various regular expressions and a phrase to parse:
```
def multi_re_find(patterns,phrase):
'''
Takes in a list of regex patterns
Prints a list of all matches
'''
for pattern in patterns:
print ('Searching the phrase using the re check: %r' %pattern)
print (re.findall(pattern,phrase))
```
### Repetition Syntax
There are five ways to express repetition in a pattern:
1.) A pattern followed by the meta-character * is repeated zero or more times.
2.) Replace the * with + and the pattern must appear at least once.
3.) Using ? means the pattern appears zero or one time.
4.) For a specific number of occurrences, use {m} after the pattern, where m is replaced with the number of times the pattern should repeat.
5.) Use {m,n} where m is the minimum number of repetitions and n is the maximum. Leaving out n ({m,}) means the value appears at least m times, with no maximum.
Now we will see an example of each of these using our multi_re_find function:
```
test_phrase = 'sdsd..sssddd...sdddsddd...dsds...dsssss...sdddd'
test_patterns = [ 'sd*', # s followed by zero or more d's
'sd+', # s followed by one or more d's
'sd?', # s followed by zero or one d's
'sd{3}', # s followed by three d's
'sd{2,3}', # s followed by two to three d's
]
multi_re_find(test_patterns,test_phrase)
```
## Character Sets
Character sets are used when you wish to match any one of a group of characters at a point in the input. Brackets are used to construct character set inputs. For example: the input [ab] searches for occurrences of either a or b.
Let's see some examples:
```
test_phrase = 'sdsd..sssddd...sdddsddd...dsds...dsssss...sdddd'
test_patterns = [ '[sd]', # either s or d
's[sd]+'] # s followed by one or more s or d
multi_re_find(test_patterns,test_phrase)
```
It makes sense that the first [sd] returns every instance. Also the second input will just return any thing starting with an s in this particular case of the test phrase input.
## Exclusion
We can use ^ to exclude terms by incorporating it into the bracket syntax notation. For example: [^...] will match any single character not in the brackets. Let's see some examples:
```
test_phrase = 'This is a string! But it has punctuation. How can we remove it?'
```
Use [^!.? ] to check for matches that are not a !,.,?, or space. Add the + to check that the match appears at least once, this basically translate into finding the words.
```
re.findall('[^!.? ]+',test_phrase)
```
## Character Ranges
As character sets grow larger, typing every character that should (or should not) match could become very tedious. A more compact format using character ranges lets you define a character set to include all of the contiguous characters between a start and stop point. The format used is [start-end].
Common use cases are to search for a specific range of letters in the alphabet, such [a-f] would return matches with any instance of letters between a and f.
Let's walk through some examples:
```
test_phrase = 'This is an example sentence. Lets see if we can find some letters.'
test_patterns=[ '[a-z]+', # sequences of lower case letters
'[A-Z]+', # sequences of upper case letters
'[a-zA-Z]+', # sequences of lower or upper case letters
'[A-Z][a-z]+'] # one upper case letter followed by lower case letters
multi_re_find(test_patterns,test_phrase)
```
## Escape Codes
You can use special escape codes to find specific types of patterns in your data, such as digits, non-digits,whitespace, and more. For example:
<table border="1" class="docutils">
<colgroup>
<col width="14%" />
<col width="86%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">Code</th>
<th class="head">Meaning</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td><tt class="docutils literal"><span class="pre">\d</span></tt></td>
<td>a digit</td>
</tr>
<tr class="row-odd"><td><tt class="docutils literal"><span class="pre">\D</span></tt></td>
<td>a non-digit</td>
</tr>
<tr class="row-even"><td><tt class="docutils literal"><span class="pre">\s</span></tt></td>
<td>whitespace (tab, space, newline, etc.)</td>
</tr>
<tr class="row-odd"><td><tt class="docutils literal"><span class="pre">\S</span></tt></td>
<td>non-whitespace</td>
</tr>
<tr class="row-even"><td><tt class="docutils literal"><span class="pre">\w</span></tt></td>
<td>alphanumeric</td>
</tr>
<tr class="row-odd"><td><tt class="docutils literal"><span class="pre">\W</span></tt></td>
<td>non-alphanumeric</td>
</tr>
</tbody>
</table>
Escapes are indicated by prefixing the character with a backslash (\). Unfortunately, a backslash must itself be escaped in normal Python strings, and that results in expressions that are difficult to read. Using raw strings, created by prefixing the literal value with r, for creating regular expressions eliminates this problem and maintains readability.
Personally, I think this use of r to escape a backslash is probably one of the things that block someone who is not familiar with regex in Python from being able to read regex code at first. Hopefully after seeing these examples this syntax will become clear.
```
test_phrase = 'This is a string with some numbers 1233 and a symbol #hashtag'
test_patterns=[ r'\d+', # sequence of digits
r'\D+', # sequence of non-digits
r'\s+', # sequence of whitespace
r'\S+', # sequence of non-whitespace
r'\w+', # alphanumeric characters
r'\W+', # non-alphanumeric
]
multi_re_find(test_patterns,test_phrase)
```
## Conclusion
You should now have a solid understanding of how to use the regular expression module in Python. There are a ton of more special character instances, but it would be unreasonable to go through every single use case. Instead take a look at the full [documentation](https://docs.python.org/2.4/lib/re-syntax.html) if you ever need to look up a particular case.
You can also check out the nice summary tables at this [source](http://www.tutorialspoint.com/python/python_reg_expressions.htm).
Good job!
| github_jupyter |
You will scrape this <a href="https://sandeepmj.github.io/scrape-example-page/homework-site.html">mockup site</a> that lists a few data points for addiction centers.
```
pip install icecream
## import library(ies)
import requests
from bs4 import BeautifulSoup
import pandas as pd
from icecream import ic
## capture the contents of the site in a response object
url = "https://sandeepmj.github.io/scrape-example-page/homework-site.html"
response = requests.get(url)
ic(response.status_code)
## generate and print soup
soup = BeautifulSoup(response.text, 'html.parser')
soup
## check data type of soup
type(soup)
### Return the name of the first center (including the html)
soup.find("a")
## if there were another a tag that did not have our target, we coud be more specific.
soup.find("div", class_="wrap").find("h4").find("a")
### Return only the name of the first center (remove all the html)
soup.find("a").get_text()
### Return only the URL of the first center
soup.find("a").get("href")
### Find first instance of ALL a center's data
### Think of this as the first group of data associated with a company
soup.find("div", class_="wrap")
#### Find all the instances of every centers' data points.
soup.find_all("div", class_="wrap")
### Find all the registration data
soup.find_all("p", class_="registration")
```
### Place all the registration data into a list with only the numbers in the format.
It should look like this:
```['4235', '4234', '4231']```
```
## for loop
regs = soup.find_all("p", class_="registration")
reg_list_fl = []
for item in regs:
reg_list_fl.append(item.get_text().replace("Registration# ", ""))
reg_list_fl
## do it here (create more cells if you need them)
## via list comprehension
regs = soup.find_all("p", class_="registration")
reg_list_lc = [item.get_text().replace("Registration# ", "") for item in regs]
reg_list_lc
```
### Place all the company names into a list.
It should look like this:
```['Recovery Foundation','New Horizons','Renewable Light']```
```
## do it here (create more cells if you need them)
cos = soup.find_all("a")
cos
### lc
co_names_list = [item.get_text() for item in cos]
co_names_list
```
### Place all the URLS into a list.
```
## do it here (create more cells if you need them)
co_urls = [item.get("href") for item in cos]
co_urls
```
### Place all the status into a list.
It should look like this:
```['Passed', 'Failed', 'Passed']```
```
## do it here (create more cells if you need them)
center_status = soup.find_all("p", class_="status")
center_status
status_list = [status.get_text().replace("Inspection: ", "") for status in center_status ]
status_list
```
### Turn these lists into dataframes and export to a csv
```
### use pandas DataFrame method to zip files into a dataframe
df = pd.DataFrame(list(zip(co_names_list, reg_list, status_list, co_urls)),
columns =['center_name', "registration_number",'status', 'link'])
df
## export to csv
filename = "recovery_center_list.csv"
df.to_csv(filename, encoding='utf-8', index=False) ## export to csv as utf-8 coding (it just has to be this)
```
| github_jupyter |
---
_You are currently looking at **version 1.1** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the [Jupyter Notebook FAQ](https://www.coursera.org/learn/python-data-analysis/resources/0dhYG) course resource._
---
# Assignment 2 - Pandas Introduction
All questions are weighted the same in this assignment.
## Part 1
The following code loads the olympics dataset (olympics.csv), which was derrived from the Wikipedia entry on [All Time Olympic Games Medals](https://en.wikipedia.org/wiki/All-time_Olympic_Games_medal_table), and does some basic data cleaning.
The columns are organized as # of Summer games, Summer medals, # of Winter games, Winter medals, total # number of games, total # of medals. Use this dataset to answer the questions below.
```
import pandas as pd
df = pd.read_csv('olympics.csv', index_col=0, skiprows=1)
for col in df.columns:
if col[:2]=='01':
df.rename(columns={col:'Gold'+col[4:]}, inplace=True)
if col[:2]=='02':
df.rename(columns={col:'Silver'+col[4:]}, inplace=True)
if col[:2]=='03':
df.rename(columns={col:'Bronze'+col[4:]}, inplace=True)
if col[:1]=='№':
df.rename(columns={col:'#'+col[1:]}, inplace=True)
names_ids = df.index.str.split('\s\(') # split the index by '('
df.index = names_ids.str[0] # the [0] element is the country name (new index)
df['ID'] = names_ids.str[1].str[:3] # the [1] element is the abbreviation or ID (take first 3 characters from that)
df = df.drop('Totals')
df.head()
```
### Question 0 (Example)
What is the first country in df?
*This function should return a Series.*
```
# You should write your whole answer within the function provided. The autograder will call
# this function and compare the return value against the correct solution value
def answer_zero():
# This function returns the row for Afghanistan, which is a Series object. The assignment
# question description will tell you the general format the autograder is expecting
return df.iloc[0]
# You can examine what your function returns by calling it in the cell. If you have questions
# about the assignment formats, check out the discussion forums for any FAQs
answer_zero()
```
### Question 1
Which country has won the most gold medals in summer games?
*This function should return a single string value.*
```
def answer_one():
return "YOUR ANSWER HERE"
```
### Question 2
Which country had the biggest difference between their summer and winter gold medal counts?
*This function should return a single string value.*
```
def answer_two():
return "YOUR ANSWER HERE"
```
### Question 3
Which country has the biggest difference between their summer gold medal counts and winter gold medal counts relative to their total gold medal count?
$$\frac{Summer~Gold - Winter~Gold}{Total~Gold}$$
Only include countries that have won at least 1 gold in both summer and winter.
*This function should return a single string value.*
```
def answer_three():
return "YOUR ANSWER HERE"
```
### Question 4
Write a function to update the dataframe to include a new column called "Points" which is a weighted value where each gold medal counts for 3 points, silver medals for 2 points, and bronze mdeals for 1 point. The function should return only the column (a Series object) which you created.
*This function should return a Series named `Points` of length 146*
```
def answer_four():
return "YOUR ANSWER HERE"
```
## Part 2
For the next set of questions, we will be using census data from the [United States Census Bureau](http://www.census.gov/popest/data/counties/totals/2015/CO-EST2015-alldata.html). Counties are political and geographic subdivisions of states in the United States. This dataset contains population data for counties and states in the US from 2010 to 2015. [See this document](http://www.census.gov/popest/data/counties/totals/2015/files/CO-EST2015-alldata.pdf) for a description of the variable names.
The census dataset (census.csv) should be loaded as census_df. Answer questions using this as appropriate.
### Question 5
Which state has the most counties in it? (hint: consider the sumlevel key carefully! You'll need this for future questions too...)
*This function should return a single string value.*
```
census_df = pd.read_csv('census.csv')
census_df.head()
def answer_five():
return "YOUR ANSWER HERE"
```
### Question 6
Only looking at the three most populous counties for each state, what are the three most populous states (in order of highest population to lowest population)?
*This function should return a list of string values.*
```
def answer_six():
return "YOUR ANSWER HERE"
```
### Question 7
Which county has had the largest absolute change in population within the period 2010-2015? (Hint: population values are stored in columns POPESTIMATE2010 through POPESTIMATE2015, you need to consider all six columns.)
e.g. If County Population in the 5 year period is 100, 120, 80, 105, 100, 130, then its largest change in the period would be |130-80| = 50.
*This function should return a single string value.*
```
def answer_seven():
return "YOUR ANSWER HERE"
```
### Question 8
In this datafile, the United States is broken up into four regions using the "REGION" column.
Create a query that finds the counties that belong to regions 1 or 2, whose name starts with 'Washington', and whose POPESTIMATE2015 was greater than their POPESTIMATE 2014.
*This function should return a 5x2 DataFrame with the columns = ['STNAME', 'CTYNAME'] and the same index ID as the census_df (sorted ascending by index).*
```
def answer_eight():
return "YOUR ANSWER HERE"
```
| github_jupyter |
```
car="car1.jpeg"
import cv2
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
car1=mpimg.imread('car1.jpeg')
car1.shape
type(car1)
plt.imshow(car1)
#plt.imshow(car)
car1_cv2=cv2.imread('car1.jpeg')
color_car_cv2=cv2.cvtColor(car1_cv2, cv2.COLOR_BGR2RGB)
plt.imshow(color_car_cv2)
car1_cv2_BGR_Gray=cv2.cvtColor(car1,cv2.COLOR_BGR2GRAY)
plt.imshow(car1_cv2_BGR_Gray, cmap="gray")
car1_cv2_BGR_Gray.shape
car1_cv2_BGR_Gray.min(), car1_cv2_BGR_Gray.max()
car1_cv2_BGR_Gray[0][0]
cv2.imwrite("car_gray.jpeg",car1_cv2_BGR_Gray)
car1_cv2_BGR_Gray[0][200]
```
# Visualize all the RGB channel
```
def visualize_RGB_Channels(imgArray=None, fig_size=(10,7)):
# spliting the RGB components
B,G,R=cv2.split(imgArray)
#zero matrix
Z=np.zeros(B.shape,dtype=B.dtype)
#initilize subplot
fig,ax=plt.subplots(2,2, figsize=fig_size)
[axi.set_axis_off() for axi in ax.ravel()]
ax[0,0].set_title("Original image")
ax[0,0].imshow(cv2.merge((R,G,B)))
ax[0,1].set_title("Red Chanel")
ax[0,1].imshow(cv2.merge((R,Z,Z)))
ax[1,0].set_title("Green Chanel")
ax[1,0].imshow(cv2.merge((Z,G,Z)))
ax[1,1].set_title("Blue Chanel")
ax[1,1].imshow(cv2.merge((Z,Z,B)))
visualize_RGB_Channels(imgArray=car1_cv2)
random_colored_image=np.random.randint(0,255,(6,6,3))
random_colored_image.shape
visualize_RGB_Channels(imgArray=random_colored_image)
random_colored_image[0,0:]
random_colored_image[0,0,:]
random_colored_image[-1,-1,:]
```
# Filters
```
sobel=np.array([[1,0,-1],[2,0,-2],[1,0,-1]])
print(sobel)
sobel.T
example1=[[0,0,0,255,255,255],
[0,0,0,255,255,255],
[0,0,0,255,255,255],
[0,0,0,255,255,255],
[0,0,0,255,255,255],
[0,0,0,255,255,255]]
example1=np.array(example1)
plt.imshow(example1, cmap="gray")
```
# Apply filter on this image
```
def find_edges(imgFilter=None, picture=None):
# extract row and column of an input picture
p_row,p_col=picture.shape
k=imgFilter.shape[0]
temp=list()
strides=1
#resultant rows and columns
final_columns=(p_col -k)//strides +1
final_rows=(p_row -k)//strides +1
#take vertically down sr´tride accross row by row
for v_stride in range(final_rows):
for h_stride in range(final_columns):
target_area_of_pic=picture[v_stride:v_stride +k, h_stride:h_stride+k]
temp.append(sum(sum(imgFilter* target_area_of_pic)))
#print(temp)
return np.array(temp).reshape(final_rows,final_columns)
result=find_edges(sobel, example1)
result
sum(sum(result))
example1
sum(example1)
sum(sum(example1))
plt.imshow(result, cmap="gray")
sobel.T
result_T=find_edges(sobel.T, example1)
result_T
plt.imshow(result_T, cmap="gray")
example1
example_T=example1.T
plt.imshow(example_T,cmap="gray")
result_T1=find_edges(sobel.T, example_T)
result_T1
plt.imshow(result_T1, cmap="gray")
result_car=find_edges(sobel,car1_cv2_BGR_Gray)
result_car
plt.imshow(result_car, cmap="gray")
```
# lets now apply horizontal edges
```
result_car_hor=find_edges(sobel.T, car1_cv2_BGR_Gray)
plt.imshow(result_car, cmap="gray")
example1
example1=[[255,0,0,0,255,255,255,255,0,0,0,255],
[0,0,0,0,255,255,255,255,0,0,0,0],
[0,0,0,0,255,255,255,255,255,255,255,255],
[0,0,0,0,255,255,255,255,255,255,255,255],
[0,0,0,0,255,255,255,255,255,255,255,255],
[0,0,0,0,255,255,255,255,255,255,255,255],
[0,0,0,0,255,255,255,255,255,255,255,255],
[0,0,0,0,255,255,255,255,0,0,0,0],
[0,0,0,0,255,255,255,255,0,0,0,0],
[255,0,0,0,255,255,255,255,0,0,0,255]]
example1=np.array(example1)
plt.imshow(example1, cmap="gray")
result=find_edges(sobel.T, example1)
plt.imshow(result, cmap="gray")
result.shape
```
| github_jupyter |
```
pip install nltk
import nltk
import string
import re
texto_original = """Algoritmos inteligentes de aprendizados correndo supervisionados utilizam dados coletados. A partir dos dados coletados, um conjunto de característica é extraído. As características podem ser estruturais ou estatísticas. Correr correste corrida inteligente. As característica estruturais estabelecem relações entre os dados, inteligência enquanto que as estatísticas são características quantitativas. A partir das corrido características, os modelos de aprendizado de máquina corremos são construídos para o reconhecimento de atividades humanas."""
texto_original
#texto_original = re.sub(r'\s+', '', texto_original)
#texto_original
def converte_para_minusculas(texto):
texto_formatado = texto.lower()
return texto_formatado
texto_formatado = converte_para_minusculas(texto_original)
texto_formatado
nltk.download('stopwords')
stopwords = nltk.corpus.stopwords.words('portuguese')
print(stopwords)
len(stopwords)
stopwords.append('ola')
print(stopwords)
stopwords.remove('ola')
print(stopwords)
def remove_stopwords(texto):
texto_formatado = converte_para_minusculas(texto)
tokens = [] # Lista de tokens
for token in nltk.word_tokenize(texto_formatado): # token é cada uma das palavras
tokens.append(token) # Insere na lista de tokens
# Pega apenas os tokens que não estão nas stopwords
tokens = [cada_token for cada_token in tokens if cada_token not in stopwords and cada_token not in string.punctuation]
texto_formatado = ' '.join([str(cada_token) for cada_token in tokens if not cada_token.isdigit()])
return texto_formatado
texto_formatado = remove_stopwords(texto_original)
string.punctuation
frequencia_palavras = nltk.FreqDist(nltk.word_tokenize(texto_formatado))
frequencia_palavras
frequencia_palavras.keys()
frequencia_maxima = max(frequencia_palavras.values())
frequencia_maxima
for cada_palavra in frequencia_palavras.keys():
frequencia_palavras[cada_palavra] = frequencia_palavras[cada_palavra]/frequencia_maxima
frequencia_palavras
sentencas = nltk.sent_tokenize(texto_original)
sentencas
notas_das_sentencas = {}
for cada_sentenca in sentencas:
# print(cada_sentenca)
for cada_palavra in nltk.word_tokenize(cada_sentenca.lower()):
# print(cada_palavra)
if cada_palavra in frequencia_palavras.keys():
if cada_sentenca not in notas_das_sentencas:
notas_das_sentencas[cada_sentenca] = frequencia_palavras[cada_palavra]
else:
notas_das_sentencas[cada_sentenca] += frequencia_palavras[cada_palavra]
notas_das_sentencas
import heapq
melhores_sentencas = heapq.nlargest(3, notas_das_sentencas, key = notas_das_sentencas.get)
melhores_sentencas
resumo = ''.join(melhores_sentencas)
resumo
from IPython.core.display import HTML
texto_final = ''
display(HTML(f'<h1> RESUMO GERADO AUTOMATICAMENTE </h1>'))
for cada_sentenca in sentencas:
#texto_final = ''
#texto_final += cada_sentenca
if cada_sentenca in melhores_sentencas:
texto_final += str(cada_sentenca).replace(cada_sentenca, f"<mark>{cada_sentenca}</mark>")
else:
texto_final += str(cada_sentenca)
texto_final += ' '
display(HTML(f"""{texto_final}"""))
pip install goose3
```
# Tarefa 1
## 1. Stemizacao
```
from nltk.stem.snowball import SnowballStemmer
# É importante definir a lingua
stemizador = SnowballStemmer('portuguese')
palavras_stemizadas = []
for palavra in nltk.word_tokenize(texto_formatado):
print(palavra, ' = ', stemizador.stem(palavra))
palavras_stemizadas.append(stemizador.stem(palavra))
print(palavras_stemizadas)
resultado = ' '.join([str(cada_token) for cada_token in palavras_stemizadas if not cada_token.isdigit()])
print(resultado)
frequencia_palavras = nltk.FreqDist(nltk.word_tokenize(resultado))
frequencia_palavras
frequencia_maxima = max(frequencia_palavras.values())
frequencia_maxima
for cada_palavra in frequencia_palavras.keys():
frequencia_palavras[cada_palavra] = frequencia_palavras[cada_palavra]/frequencia_maxima
frequencia_palavras
notas_das_sentencas = {}
for cada_sentenca in sentencas:
# print(cada_sentenca)
for cada_palavra in nltk.word_tokenize(cada_sentenca.lower()):
# print(cada_palavra)
aux = stemizador.stem(cada_palavra)
if aux in frequencia_palavras.keys():
if cada_sentenca not in notas_das_sentencas:
notas_das_sentencas[cada_sentenca] = frequencia_palavras[aux]
else:
notas_das_sentencas[cada_sentenca] += frequencia_palavras[aux]
notas_das_sentencas
melhores_sentencas = heapq.nlargest(3, notas_das_sentencas, key = notas_das_sentencas.get)
melhores_sentencas
resumo = ''.join(melhores_sentencas)
resumo
texto_final = ''
display(HTML(f'<h1> RESUMO GERADO AUTOMATICAMENTE (Stemizadas)</h1>'))
for cada_sentenca in sentencas:
#texto_final = ''
#texto_final += cada_sentenca
if cada_sentenca in melhores_sentencas:
texto_final += str(cada_sentenca).replace(cada_sentenca, f"<mark>{cada_sentenca}</mark>")
else:
texto_final += str(cada_sentenca)
texto_final += ' '
display(HTML(f"""{texto_final}"""))
```
## 2. Lematizacao
```
import spacy
!python -m spacy download pt_core_news_sm
pln = spacy.load('pt_core_news_sm')
pln
palavras = pln(texto_formatado)
# Spacy já separa as palavras em tokens
palavras_lematizadas = []
for palavra in palavras:
#print(palavra.text, ' = ', palavra.lemma_)
palavras_lematizadas.append(palavra.lemma_)
print(palavras_lematizadas)
resultado = ' '.join([str(cada_token) for cada_token in palavras_lematizadas if not cada_token.isdigit()])
print(resultado)
frequencia_palavras = nltk.FreqDist(nltk.word_tokenize(resultado))
frequencia_palavras
frequencia_maxima = max(frequencia_palavras.values())
frequencia_maxima
for cada_palavra in frequencia_palavras.keys():
frequencia_palavras[cada_palavra] = frequencia_palavras[cada_palavra]/frequencia_maxima
frequencia_palavras
notas_das_sentencas = {}
for cada_sentenca in sentencas:
# print(cada_sentenca)
for cada_palavra in pln(cada_sentenca):
# print(cada_palavra)
aux = cada_palavra.lemma_
if aux in frequencia_palavras.keys():
if cada_sentenca not in notas_das_sentencas:
notas_das_sentencas[cada_sentenca] = frequencia_palavras[aux]
else:
notas_das_sentencas[cada_sentenca] += frequencia_palavras[aux]
notas_das_sentencas
melhores_sentencas = heapq.nlargest(3, notas_das_sentencas, key = notas_das_sentencas.get)
melhores_sentencas
resumo = ''.join(melhores_sentencas)
resumo
texto_final = ''
display(HTML(f'<h1> RESUMO GERADO AUTOMATICAMENTE (Lematizacao)</h1>'))
for cada_sentenca in sentencas:
#texto_final = ''
#texto_final += cada_sentenca
if cada_sentenca in melhores_sentencas:
texto_final += str(cada_sentenca).replace(cada_sentenca, f"<mark>{cada_sentenca}</mark>")
else:
texto_final += str(cada_sentenca)
texto_final += ' '
display(HTML(f"""{texto_final}"""))
```
# Fim da Tarefa 1
## Uso da lib Goose3
```
from goose3 import Goose
g = Goose()
url = 'https://www.techtudo.com.br/noticias/2017/08/o-que-e-replika-app-usa-inteligencia-artificial-para-criar-um-clone-seu.ghtml'
materia = g.extract(url)
materia.title
materia.tags
materia.infos
materia.cleaned_text
```
# Tarefa 2
```
frequencia_palavras.keys()
frequencia_palavras
frase = """Algoritmos de aprendizados supervisionados utilizam dados coletados""".split(' ')
frequencia_palavras_frase = []
for palavra in frase:
for freq_palavra in frequencia_palavras:
if palavra in freq_palavra:
frequencia_palavras_frase.append([palavra, 1])
frequencia_palavras_frase
for x in frequencia_palavras:
print(x)
```
| github_jupyter |
# Was Air Quality Affected in Countries or Regions Where COVID-19 was Most Prevalent?
**By: Arpit Jain, Maria Stella Vardanega, Tingting Cao, Christopher Chang, Mona Ma, Fusu Luo**
---
## Outline
#### I. Problem Definition & Data Source Description
1. Project Objectives
2. Data Source
3. Dataset Preview
#### II. What are the most prevalent pollutants?
#### III. What were the pollutant levels in 2019 and 2020 globally, and their averages?
1. Selecting Data from 2019 and 2020 with air pollutant information
2. Monthly Air Pollutant Data from 2019
3. Monthly Air Pollutant Data from 2020
#### IV: What cities had the highest changes in pollutant air quality index during COVID-19?
1. 10 cities with most air quality index reduction for each pollutant
2. Cities with more than 50 percent AQI decrease and 50 AQI decrease for each air pollutants
#### V: Regression analysis on COVID-19 cases and pollutant Air Quality Index Globally
#### VI: When were lockdowns implemented for each country?
#### VII: How did Air Quality change in countries with low COVID-19 cases (NZ, AUS, TW) and high COVID-19 cases (US, IT,CN)?
1. Countries with high COVID cases
2. Countries with low COVID cases
#### VIII: Conclusion
#### IX: Public Tableau Dashboards
---
## I. Problem Definition & Data Source Description
#### 1. Project Objectives
Air pollution, as one of the most serious environmental problems confronting our civilization, is the presence of toxic gases and particles in the air at levels that pose adverse effects on global climate and lead to public health risk and disease. Exposure to elevated levels of air pollutants has been implicated in a diverse set of medical conditions including cardiovascular and respiratory mortality, lung cancer and autism.
Air pollutants come from natural sources such as wildfires and volcanoes, as well as are highly related to human activities from mobile sources (such as cars, buses and planes) or stationary sources (such as industrial factories, power plants and wood burning fireplaces). However, in the past year, the COVID-19 pandemic has caused unprecedented changes to the our work, study and daily activities, subsequently led to major reductions in air pollutant emissions. And our team would like take this opportunity to examine the air quality in the past two years and look on how the air quality was impacted in countries and cities where the corona-virus was prevalent.
#### 2. Data Source
**Data Source Description:** In this project, we downloaded worldwide air quality data for Year 2019 and 2020 from the Air Quality Open Data Platform (https://aqicn.org/data-platform/covid19/), which provides historical air quality index and meteorological data for more than 380 major cities across the world. We used air quality index data in 2019 as baseline to find the air quality changes during COVID in 2020. In addition we joined the data with geographic location information from https://aqicn.org/data-platform/covid19/airquality-covid19-cities.json to get air quality index for each pollutant at city-level. According to the data source provider, the data for each major cities is based on the average (median) of several stations. The data set provides min, max, median and standard deviation for each of the air pollutant species in the form of Air Quality Index (AQI) that are converted from raw concentration based on the US Environmental Protection Agency (EPA) standard.
The United States EPA list the following as the criteria at this website (https://www.epa.gov/criteria-air-pollutants/naaqs-table): Carbon Monoxide (CO), Nitrogen Dioxide (NO2), Ozone (O3), Particle Pollution (PM2.5) + (PM10), and finally Sulfur Dioxide (SO2). For the particle pollution the numbers stand for the size of the particles. PM2.5 means particles that are 2.5 micrometers and smaller, while PM10 means particles that are 10 micrometers and smaller. https://www.epa.gov/pm-pollution/particulate-matter-pm-basics. Particle Pollution typically includes Dust, Dirt, and Smoke. Our dataset covers most of the criteria pollutants (PM2.5, PM10, Ozone, SO2, NO2 and CO), and meteorological parameters such as temperature, wind speed, dew point, relative humidity. Air quality index basics are shown in the figure below.
<img src="https://github.com/ttcao63/775team_project_b2_t2/blob/main/AQI%20basics.PNG?raw=true" align="center"/>
(source: https://www.airnow.gov/aqi/aqi-basics/)
#### 3. Preview of the Dataset
```
%%bigquery
SELECT * FROM `ba775-team2-b2.AQICN.air_quality_data` LIMIT 10
```
---
### II. What are the most prevalent pollutants?
This question focuses on the prevalence of the pollutants. From the dataset, the prevalence can be defined geographically from the cities and countries that had recorded the parameters detected times.
To find the prevalence, our team selected the parameters from situations in how many distinct cities and countries detected the parameter appeared.
```
%%bigquery
SELECT
Parameter,COUNT(distinct(City)) AS number_of_city,
COUNT(distinct(Country)) AS number_of_country,string_agg(distinct(Country)) AS list_country
FROM `ba775-team2-b2.AQICN.air_quality_data`
GROUP BY Parameter
ORDER BY number_of_city DESC
```
From the result, top 6 parameters are meteorological parameters. And the first air pollutants (which can be harmful to the public health and environment) is PM2.5, followed by NO2 and PM10.
PM2.5 has been detected in 548 cities and 92 countries.
NO2 has been detected in 528 cities and 64 countries.
PM10 has been detected in 527 cities and 71 countries.
We conclude PM2.5, NO2 and PM10 are the most prevalent criteria pollutants from the dataset. All of them are considered criteria pollutants set by EPA.
---
### III. What were the pollutant levels in 2019 and 2020 globally, and their averages?
The purpose of this question is to determine the air pollutant levels in 2019 and 2020. The air pollutant levels in 2019 serve as a baseline for the air pollutant levels in 2020. In the previous question we observe the distinct parameters that are within the Air Quality Database. Since the meteorological parameters are not needed for the project, we can exclude them, and only focus on the air pollutants.
The first step is create a table where the parameters are only air pollutants and from the years 2019 and 2020. The next step was to select all the rows from each year, that had a certain parameter, and to union them all. This process was done for all six parameters for both years.
#### 1. Selecting Data from 2019 and 2020 with air pollutant information
```
%%bigquery
SELECT Date, Country, City, lat as Latitude, lon as Longitude, pop as Population, Parameter as Pollutant, median as Pollutant_level
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE (extract(year from date) = 2019 OR extract(year from date) = 2020) AND parameter IN ('co', 'o3','no2','so2','pm10',
'pm25')
ORDER BY Country, Date;
```
As we can see after filtering the tables for only the air pollutants we have 1.9 million rows. From here we split the data into 2019 data and 2020 data.
#### 2. Monthly Air Pollutant Data from 2019
```
%%bigquery
SELECT extract(month from date) Month, Parameter as Pollutant,Round(avg(median),2) as Avg_Pollutant_Level_2019
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2019 AND parameter IN ('co')
GROUP BY Month, Parameter
UNION ALL
SELECT extract(month from date) Month, Parameter ,Round(avg(median),2)
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2019 AND parameter IN ('o3')
GROUP BY Month, Parameter
UNION ALL
SELECT extract(month from date) Month, Parameter ,Round(avg(median),2)
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2019 AND parameter IN ('no2')
GROUP BY Month, Parameter
UNION ALL
SELECT extract(month from date) Month, Parameter ,Round(avg(median),2)
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2019 AND parameter IN ('so2')
GROUP BY Month, Parameter
UNION ALL
SELECT extract(month from date) Month, Parameter ,Round(avg(median),2)
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2019 AND parameter IN ('pm10')
GROUP BY Month, Parameter
UNION ALL
SELECT extract(month from date) Month, Parameter ,Round(avg(median),2)
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2019 AND parameter IN ('pm25')
GROUP BY Month, Parameter
ORDER BY Month;
```
This query represents the average pollutant level for each air pollutant globally for each month. We do this again for the 2020 data.
#### 3. Monthly Air Pollutant Data from 2020
```
%%bigquery
SELECT extract(month from date) Month, Parameter as Pollutant,Round(avg(median),2) as Avg_Pollutant_Level_2020
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2020 AND parameter IN ('co')
GROUP BY Month, Parameter
UNION ALL
SELECT extract(month from date) Month, Parameter ,Round(avg(median),2)
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2020 AND parameter IN ('o3')
GROUP BY Month, Parameter
UNION ALL
SELECT extract(month from date) Month, Parameter ,Round(avg(median),2)
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2020 AND parameter IN ('no2')
GROUP BY Month, Parameter
UNION ALL
SELECT extract(month from date) Month, Parameter ,Round(avg(median),2)
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2020 AND parameter IN ('so2')
GROUP BY Month, Parameter
UNION ALL
SELECT extract(month from date) Month, Parameter ,Round(avg(median),2)
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2020 AND parameter IN ('pm10')
GROUP BY Month, Parameter
UNION ALL
SELECT extract(month from date) Month, Parameter ,Round(avg(median),2)
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE extract(year from date) = 2020 AND parameter IN ('pm25')
GROUP BY Month, Parameter
ORDER BY Month;
```
When comparing the data there isn't a noticeable difference in global pollutant levels from 2019 to 2020, which leads to the hypothesis of pollutant levels being regional rather than global. This might also mean that whatever effects might be occurring from COVID-19 cases, and lockdowns are short-term enough that the average monthly air pollutant is not capturing small intricacies in the data. We can further narrow down the data by analyzing data from when lockdowns were occurring in different countries, regions, and even cities.
---
### IV: What cities had the highest changes in pollutant air quality index during COVID-19?
In this question, we are trying to find cities with most air quality improvement during COVID, and cities with longest time of certain level AQI reduction.
#### 1. 10 cities with most air quality index reduction for each pollutant
Making queries and creating tables to find monthly average air quality index (AQI) for all pollutants at city level
We are using data in 2019 as a baseline and computing AQI differences and percent differences. Negative difference values indicates air quality index decrease, corresponding to an air quality improvement, and positive difference values indicate air quality index increases, corresponding to an air quality deterioration.
```
%%bigquery
CREATE OR REPLACE TABLE AQICN.pollutant_diff_daily_aqi_less_than_500
AS
(
SELECT A.Date AS Date_2020,B.Date AS Date_2019,A.Country,A.City,A.lat,A.lon,A.Parameter,A.pop,A.median AS aqi_2020,B.median AS aqi_2019,(A.median-B.median) AS aqi_diff, ROUND((A.median-B.median)/B.median*100,2) AS aqi_percent_diff
FROM
(SELECT * FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE Parameter in ('pm25','pm10','o3','no2','co','so2') AND EXTRACT(Year FROM Date) = 2020 AND median > 0 AND median < 500) AS A
INNER JOIN
(SELECT * FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE Parameter in ('pm25','pm10','o3','no2','co','so2') AND EXTRACT(Year FROM Date) = 2019 AND median > 0 AND median < 500) AS B
ON A.City = B.City
WHERE EXTRACT(MONTH FROM A.Date) = EXTRACT(MONTH FROM B.Date) AND EXTRACT(DAY FROM A.Date) = EXTRACT(DAY FROM B.Date) AND A.Parameter = B.Parameter
ORDER BY City,Date_2020
)
%%bigquery
CREATE OR REPLACE TABLE AQICN.pollutant_diff_monthly_aqi
AS
SELECT EXTRACT(month FROM Date_2020) AS month_2020,EXTRACT(month FROM Date_2019) AS month_2019,
Country,City,lat,lon,Parameter,ROUND(AVG(aqi_2020),1) AS monthly_avg_aqi_2020,
ROUND(AVG(aqi_2019),1) AS monthly_avg_aqi_2019,(ROUND(AVG(aqi_2020),1)-ROUND(AVG(aqi_2019),1)) AS aqi_diff_monthly,
ROUND((AVG(aqi_2020)-AVG(aqi_2019))/AVG(aqi_2019)*100,2) AS aqi_percent_diff_monthly
FROM AQICN.pollutant_diff_daily_aqi_less_than_500
GROUP BY month_2020,month_2019,Country,City,lat,lon,Parameter
%%bigquery
SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
ORDER BY Parameter,month_2020,Country
LIMIT 10
```
Order by monthly average AQI difference to find cities having top 10 air quality index reduction for each pollutant
```
%%bigquery
CREATE OR REPLACE TABLE AQICN.top_10_cites_most_pollutant_percent_diff_monthly
AS
(SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
WHERE Parameter = 'co'
ORDER BY aqi_percent_diff_monthly
LIMIT 10)
UNION ALL
(SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
WHERE Parameter = 'o3'
ORDER BY aqi_percent_diff_monthly
LIMIT 10)
UNION ALL
(SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
WHERE Parameter = 'no2'
ORDER BY aqi_percent_diff_monthly
LIMIT 10)
UNION ALL
(SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
WHERE Parameter = 'pm25'
ORDER BY aqi_percent_diff_monthly
LIMIT 10)
UNION ALL
(SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
WHERE Parameter = 'pm10'
ORDER BY aqi_percent_diff_monthly
LIMIT 10)
%%bigquery
SELECT *
FROM AQICN.top_10_cites_most_pollutant_percent_diff_monthly
ORDER BY Parameter,aqi_percent_diff_monthly
LIMIT 10
```
Order by monthly average percent AQI difference to find cities having top 10 most air quality index reduction for each pollutant
```
%%bigquery
CREATE OR REPLACE TABLE AQICN.top_10_cites_most_pollutant_diff_monthly
AS
(SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
WHERE Parameter = 'pm25'
ORDER BY aqi_diff_monthly
LIMIT 10)
UNION ALL
(SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
WHERE Parameter = 'o3'
ORDER BY aqi_diff_monthly
LIMIT 10)
UNION ALL
(SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
WHERE Parameter = 'pm10'
ORDER BY aqi_diff_monthly
LIMIT 10)
UNION ALL
(SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
WHERE Parameter = 'no2'
ORDER BY aqi_diff_monthly
LIMIT 10)
UNION ALL
(SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
WHERE Parameter = 'so2'
ORDER BY aqi_diff_monthly
LIMIT 10)
UNION ALL
(SELECT *
FROM AQICN.pollutant_diff_monthly_aqi
WHERE Parameter = 'co'
ORDER BY aqi_diff_monthly
LIMIT 10)
%%bigquery
SELECT *
FROM AQICN.top_10_cites_most_pollutant_diff_monthly
ORDER BY Parameter,aqi_diff_monthly
LIMIT 10
```
#### 2. Cities with more than 50 percent AQI decrease and 50 AQI decrease for each air pollutants
Reason: the higher the AQI, the unhealthier the air will be, especially for sensitive groups such as people with heart and lung disease, elders and children. A major reduction or percent reduction in AQI for long period of time implies a high air quality impact from the COIVD pandemic.
```
%%bigquery
SELECT City,Country,Parameter,COUNT(*) AS num_month_mt_50_per_decrease FROM AQICN.pollutant_diff_monthly_aqi
WHERE aqi_percent_diff_monthly < -50 AND aqi_diff_monthly < -50
GROUP BY City,Country,Parameter
ORDER BY Parameter,COUNT(*) DESC
LIMIT 10
```
---
Results
During the pandemic, cities getting most air qualities improvements in terms of percent AQI differences for each pollutant are:
CO: United States Portland, Chile Talca and Mexico Aguascalientes;
NO2: Iran Qom, South Africa Middelburg and Philippines Butuan;
SO2: Greece Athens, Mexico Mérida and Mexico San Luis Potosí;
Ozone: Mexico Aguascalientes, United States Queens and United States The Bronx;
PM 10: India Gandhinagar, China Hohhot and Israel Tel Aviv;
PM 2.5: Mexico Mérida, Tajikistan Dushanbe, Bosnia and Herzegovina Sarajevo, Turkey Erzurum, China Qiqihar and India Gandhinagar;
Cities getting at least 50% and 50 AQI reduction with longest time:
CO: United States Portland, 3 out of 12 months;
NO2: Iran Qom, 5 out of 12 months;
O3: Mexico Aguascalientes, 5 out of 12 months;
PM25: several cities including Iran Kermanshah, Singapore Singapore, AU Sydney and Canberra, 1 out of 12 months;
PM10: India Gandhinagar and Bhopal, 2 out of 12 months;
SO2: Mexico Mérida 5 out of 12 months.
---
### V: Regression analysis on COVID-19 cases and pollutant Air Quality Index Globally
The purpose of this part is to find the differences in AQI between 2019 and 2020, also the percentage changes for four parameters which include (NO,NO2,PM2.5 and O3), then join with the COVID confirmed table to find the regression between the AQI and the new confirmed case for each air pollutant.
```
%%bigquery
select A.month,A.month_n, A.country,A.parameter,round((B.avg_median_month- A.avg_median_month),2) as diff_avg,
(B.avg_median_month - A.avg_median_month)/A.avg_median_month as diff_perc
from
(SELECT FORMAT_DATETIME("%B", date) month,EXTRACT(year FROM date) year, EXTRACT(month FROM date) month_n, country,parameter,round(avg(median),2) as avg_median_month
FROM `AQICN.Arpit_Cleaned_Data2`
WHERE Parameter IN ('co','no2','o3','pm25') AND EXTRACT(year FROM date) = 2019
GROUP by 1,2,3,4,5
ORDER BY country, parameter) A
left join
(SELECT FORMAT_DATETIME("%B", date) month,EXTRACT(year FROM date) year, EXTRACT(month FROM date) month_n, country,parameter,round(avg(median),2) as avg_median_month
FROM `AQICN.Arpit_Cleaned_Data2`
WHERE Parameter IN ('co','no2','o3','pm25') AND EXTRACT(year FROM date) = 2020
GROUP by 1,2,3,4,5
ORDER BY country, parameter) B
using (month,country,parameter,month_n)
where A.avg_median_month >0
%%bigquery
select A.*,confirmed,B.country as country_name
from `all_para_20_19.all_para_20_19_diff` as A
inner join `covid_population.covid _pop` as B
on A.country = B.country_code2 and A.month = B.month and A.month_n = B.month_n
where B.year = 2020
order by A.country,A.month_n
```
Using Bigquery ML to find liner regression between diff_avg for each parameter and confirmed cases
(Example showing below is that parameter = co; x = confirmed; y=diff_avg --AQI changes)
```
%%bigquery
CREATE OR REPLACE MODEL `all_para_20_19.all_para_20_19_diff_covid_model`
# Specify options
OPTIONS
(model_type='linear_reg',
input_label_cols=['diff_avg']) AS
# Provide training data
SELECT
confirmed,
diff_avg
FROM
`all_para_20_19.all_para_20_19_diff_covid`
WHERE
parameter = 'co'
and diff_avg is not null
```
Evaluating the model to find out r2_score for each monthly average air pollutant AQI changes vs monthly confirmed new cases linear regression model.
Example showing below is Evaluation for country level monthly average CO AQI vs monthly new confirmed COVID cases model:
```
%%bigquery
SELECT * FROM
ML.EVALUATE(
MODEL `all_para_20_19.all_para_20_19_diff_covid_model`, # Model name
# Table to evaluate against
(SELECT
confirmed,
diff_avg
FROM
`all_para_20_19.all_para_20_19_diff_covid`
WHERE
parameter = 'co'
and diff_avg is not null
)
)
```
Evaluation for country level monthly average PM2.5 AQI changes vs monthly new confirmed COVID cases model:
<img src="https://github.com/ttcao63/775team_project_b2_t2/blob/main/pm25_aqi_confirmed_case.png?raw=true" align="center" width="800"/>
Evaluation for country level monthly average NO2 AQI changes vs monthly new confirmed COVID cases model:
<img src="https://github.com/ttcao63/775team_project_b2_t2/blob/main/no2_aqi_confirmed_case.png?raw=true" align="center" width="800"/>
Evaluation for country level monthly average O3 AQI changes vs monthly new confirmed COVID cases model:
<img src="https://github.com/ttcao63/775team_project_b2_t2/blob/main/o3_aqi_confirmed_case.png?raw=true" align="center" width="800"/>
We have also conducted log transformation of x-variables for linear regression, the most correlated data is PM 2.5 AQI changes vs LOG(confirmed case). Visualization is shown below.
<img src="https://github.com/ttcao63/775team_project_b2_t2/blob/main/Viz_PM25_Regression.png?raw=true" align="center" width="800"/>
We can see an overall AQI changes from 2019 to 2020. However, after running regression for four air pollutants, model R-squares are less than 0.02, indicating a weak linear relationship between the air quality index changes and the numbers of new confirmed COVID cases. The result makes sense because there are complicated physical and chemical process involved in formation and transportation of air pollution, thus factors such as the weather, energy source, and terrain could also impact the AQI changes. Also, the dramatic increase of new COVID cases might not affect people's response in a way reducing outdoor activities, especially when "stay at home order" is partially lifted.
In this case, we decide to specifically study some countries during their lockdown period and examine the AQI changes.
---
### VI: When were lockdowns implemented for each country?
Lockdown Dates per Country
China: Jan 23 - April 8, 2020 (Wuhan 76 day lockdown)
USA: March 19 - April 7, 2020
Italy: March 9 - May 18, 2020
Taiwan: No lockdowns in 2020. Lockdown started in July 2021.
Australia: March 18 - May/June 2020
New Zealand: March 25 - May/June 2020
From the previous regression model we can see that the there was very little correlation between AQI and confirmed cases, and one of the main reasons is that confirmed cases could not accurately capture human activity. To compensate for this, we narrowed down the dates of our pollutant data in order to compare the pollutant levels only during lockdown periods in 2019 and 2020 for the countries where COVID-19 was most prevalent: China, USA, Italy, and those that COVID-19 wasn't as prevalent: Taiwan, Australia, and New Zealand. We came to a conclusion that most lockdown periods started from mid March to April, May, or June, except for China, which started their lockdown late January until April of 2020. To generalize the lockdown dates for countries other than China, the SQL query included dates from the beginning of March to the end of June. As for China, the query included specific dates from January 23 to April 8th of 2020, which is the Wuhan 76 day lockdown.
```
%%bigquery
SELECT country, date, parameter, AVG(count) AS air_quality
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE date BETWEEN '2020-03-01' AND '2020-06-30'
AND country in ('US','IT','AU','NZ','TW')
GROUP BY country, parameter, date
ORDER BY date
%%bigquery
SELECT country, date, parameter, AVG(count) AS air_quality
FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE date BETWEEN '2020-01-23' AND '2020-04-08'
AND country = 'CN'
GROUP BY country, parameter, date
ORDER BY date
```
---
### VII: How did Air Quality change in countries with low COVID-19 cases (NZ, AUS, TW) and high COVID-19 cases (US, IT,CN)?
This question was answered by creating separate tables that encompassed the equivalent lockdown periods per country for 2019. Then, the two tables were joined using the parameter and grouped according to country and parameter to create a subsequent table illustrating the percentage change in average pollution from 2019 to 2020 (during the respective lockdown periods).
#### 1. Countries with high COVID cases
```
%%bigquery
CREATE OR REPLACE TABLE AQICN.air_quality2019_Italy AS
SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE date BETWEEN '2019-03-09' AND '2019-05-18'
AND country = 'IT'
%%bigquery
SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019,
(AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change
FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020
LEFT JOIN AQICN.air_quality2019_Italy AS a2019
USING(parameter)
WHERE a2020.date BETWEEN '2020-03-09' AND '2020-05-18'
AND a2020.country = 'IT'
AND Parameter in ('pm25','pm10','o3','no2','co','so2')
GROUP BY a2020.country, a2020.parameter
ORDER BY percentage_change
```
Here we can see that the only pollutant that decreased during the 2020 lockdown in Italy, compared to the respective time period in 2019, was NO2, which decreased by 35.74%.
```
%%bigquery
CREATE OR REPLACE TABLE AQICN.air_quality2019_US AS
SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE date BETWEEN '2019-03-19' AND '2019-04-07'
AND country = 'US'
%%bigquery
SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019,
(AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change
FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020
LEFT JOIN AQICN.air_quality2019_US AS a2019
USING(parameter)
WHERE a2020.date BETWEEN '2020-03-19' AND '2020-04-07'
AND a2020.country = 'US'
AND Parameter in ('pm25','pm10','o3','no2','co','so2')
GROUP BY a2020.country, a2020.parameter
ORDER BY percentage_change
```
In the United States, all the pollutants decreased in 2020 compared to 2019. The largest changes occurred in O3, NO2 and SO2, which decreased by 36.69%, 30.22%, and 27.10% respectively. This indicates that the lockdowns during the COVID-19 pandemic may have positively affected the emission of pollutants in the United States.
```
%%bigquery
CREATE OR REPLACE TABLE AQICN.air_quality2019_China AS
SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE date BETWEEN '2019-01-23' AND '2019-04-08'
AND country = 'CN'
%%bigquery
SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019,
(AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change
FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020
LEFT JOIN AQICN.air_quality2019_China AS a2019
USING(parameter)
WHERE a2020.date BETWEEN '2020-01-23' AND '2020-04-08'
AND a2020.country = 'CN'
AND Parameter in ('pm25','pm10','o3','no2','co','so2')
GROUP BY a2020.country, a2020.parameter
ORDER BY percentage_change
```
In China, most pollutants decreased in 2020 compared to the same period in 2019. The largest change was in NO2 which decreased by 30.88% compared to the previous year.
#### 2. Countries with low COVID cases
```
%%bigquery
CREATE OR REPLACE TABLE AQICN.air_quality2019_Taiwan AS
SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE EXTRACT(month FROM date) = 07
AND EXTRACT(year FROM date) = 2019
AND country = 'TW'
%%bigquery
SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019,
(AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change
FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020
LEFT JOIN AQICN.air_quality2019_Taiwan AS a2019
USING(parameter)
WHERE EXTRACT(month FROM a2020.date) = 07
AND EXTRACT(year FROM a2020.date) = 2020
AND a2020.country = 'TW'
AND Parameter in ('pm25','pm10','o3','no2','co','so2')
GROUP BY a2020.country, a2020.parameter
ORDER BY percentage_change
```
Taiwan, which did not experience lockdowns due to COVID-19, also shows a decrease in all pollutant levels. This contradicts our initially hypothesis that countries who experienced more COVID-19 and therefore more lockdowns would have better air quality.
```
%%bigquery
CREATE OR REPLACE TABLE AQICN.air_quality2019_AUS AS
SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE date BETWEEN '2019-03-25' AND '2019-05-31'
AND country = 'NZ'
%%bigquery
SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019,
(AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change
FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020
LEFT JOIN AQICN.air_quality2019_NZ AS a2019
USING(parameter)
WHERE a2020.date BETWEEN '2020-03-25' AND '2020-05-31'
AND Parameter in ('pm25','pm10','o3','no2','co','so2')
AND a2020.country = 'NZ'
GROUP BY a2020.country, a2020.parameter
ORDER BY percentage_change
```
New Zealand also shows a decrease in all pollutant levels. Nevertheless, New Zealand did go into lockdown for a period and these numbers may reflect the lessened activity due to COVID-19 during that time compared to the equivalent in 2019.
```
%%bigquery
CREATE OR REPLACE TABLE AQICN.air_quality2019_AUS AS
SELECT country, parameter, median AS air_quality2019 FROM `ba775-team2-b2.AQICN.air_quality_data`
WHERE date BETWEEN '2019-03-18' AND '2019-05-31'
AND country = 'AU'
%%bigquery
SELECT a2020.country, a2020.parameter, AVG(a2020.median) AS air_quality2020, AVG(air_quality2019) AS air_quality2019,
(AVG(a2020.median)-AVG(air_quality2019))/AVG(air_quality2019) AS percentage_change
FROM `ba775-team2-b2.AQICN.air_quality_data` AS a2020
LEFT JOIN AQICN.air_quality2019_AUS AS a2019
USING(parameter)
WHERE a2020.date BETWEEN '2020-03-18' AND '2020-05-31'
AND Parameter in ('pm25','pm10','o3','no2','co','so2')
AND a2020.country = 'AU'
GROUP BY a2020.country, a2020.parameter
ORDER BY percentage_change
```
Australia shows decreases in most pollutant parameter levels in 2020 compared to respective periods in 2019.
The fact that all tables illustrate decrease in most pollutant parameter levels, except for Italy, seems to contradict our initial hypothesis. Initially, we hypothesized that in countries where COVID-19 was more prevalent, and therefore where there were more lockdowns and less human activity, there would be better pollutant levels. However, when looking at the results of the analysis, one can see that the extent to which COVID-19 was prevalent does not seem to largely affect the pollutant parameter levels considering that regardless of the country they seem to have decreased in 2020 compared to 2019. This may be due to various governmental and public policies regarding climate change that have pushed countries to improve the air quality as well as the general decrease in human activity worldwide due to the pandemic.
---
### VIII: Conclusion
In this project, we used air quality index (AQI) dataset among 380 major cities across the world from 2019 to 2020 to study criteria air pollutant level changes during the COVID pandemic. According to the result, we conclude that the COVID impacts air quality more at regional-level than at global-level, more in a relative short period of time than in a relative long-term. Even though we don't see a strong relationship between air quality changes versus numbers of confirmed COIVD case, we find that lockdowns during the pandemic do make effects on air pollutant levels in different countries due to reduced outdoor human activities.
---
### IX: Public Tableau Dashboards
To interact with our public Tableau dashboards please visit: https://public.tableau.com/app/profile/arpit.jain7335/viz/AnalyzingAirQualityDuringCOVID19Pandemic/AirQualityGlobalLevel?publish=yes
<img src="https://github.com/arp-jain/BA775-team2-b2/blob/main/Air%20Quality%20Global%20Level.png?raw=true" align="center"/>
<img src="https://github.com/arp-jain/BA775-team2-b2/blob/main/Air%20Quality%20City%20Level.png?raw=true" align="center"/>
| github_jupyter |
```
import numpy as np
import pandas as pd
import seaborn as sns
```
## Basics
- All values of a categorical valiable are either in `categories` or `np.nan`.
- Order is defined by the order of `categories`, not the lexical order of the values.
- Internally, the data structure consists of a `categories` array and an integer arrays of `codes`, which point to the values in the `categories` array.
- The memory usage of a categorical variable is proportional to the number of categories plus the length of the data, while that for an object dtype is a constant times the length of the data. As the number of categories approaches the length of the data, memory usage approaches that of object type.
- Categories can be useful in the following scenarios:
- To save memory (if number of categories small relative to number of rows)
- If logical order differs from lexical order (e.g. 'small', 'medium', 'large')
- To signal to libraries that column should be treated as a category (e.g. for plotting)
## General best practices
Based on [this](https://towardsdatascience.com/staying-sane-while-adopting-pandas-categorical-datatypes-78dbd19dcd8a) useful article.
- Operate on category values rather than column elements. E.g. to rename categories use `df.catvar.cat.rename_rategories(*args, **kwargs)`, if there is no `cat` method available,
consider operating on categories directly with `df.catvar.cat.categories`.
- Merging on categories: the two key things to remember are that 1) Pandas treats categorical variables with different categories as different data types, and 2) category merge keys will only be categories in the merged dataframe if they are of the same data types (i.e. have the same categories), otherwise they will be converted back to objects.
- Grouping on categories: remember that by default we group on all categories, not just those present in the data. More often than not, you'll want to use `df.groupby(catvar, observed=True)` to only use categories observed in the data.
```
titanic = sns.load_dataset("titanic")
titanic.head(2)
```
## Operations I frequently use
### Renaming categories
```
titanic["class"].cat.rename_categories(str.upper)[:2]
```
### Appending new categories
```
titanic["class"].cat.add_categories(["Fourth"]).cat.categories
```
### Removing categories
```
titanic["class"].cat.remove_categories(["Third"]).cat.categories
```
### Remove unused categories
```
titanic_small = titanic.iloc[:2]
titanic_small
titanic_small["class"].cat.remove_unused_categories().cat.categories
```
### Remove and add categories simultaneously
```
titanic["class"].value_counts(dropna=False)
titanic["class"].cat.set_categories(["First", "Third", "Fourth"]).value_counts(
dropna=False
)
```
### Using string and datetime accessors
This works as expected, and if the number of distinct categories is small relative to the number of rows, then operating on the categories is faster (because under the hood, pandas applies the change to `categories` and constructs a new series (see [here](https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html#string-and-datetime-accessors)) so no need to do this manually as I was inclined to).
```
cat_class = titanic["class"]
%timeit cat_class.str.contains('d')
str_class = titanic["class"].astype("object")
%timeit str_class.str.contains('d')
```
## Object creation
Convert *sex* and *class* to the same categorical type, with categories being the union of all unique values of both columns.
```
cols = ["sex", "who"]
unique_values = np.unique(titanic[cols].to_numpy().ravel())
categories = pd.CategoricalDtype(categories=unique_values)
titanic[cols] = titanic[cols].astype(categories)
print(titanic.sex.cat.categories)
print(titanic.who.cat.categories)
# restore sex and who to object types
titanic[cols] = titanic[cols].astype("object")
```
## Custom order
```
df = pd.DataFrame({"quality": ["good", "excellent", "very good"]})
df.sort_values("quality")
ordered_quality = pd.CategoricalDtype(["good", "very good", "excellent"], ordered=True)
df.quality = df.quality.astype(ordered_quality)
df.sort_values("quality")
```
## Unique values
```
small_titanic = titanic.iloc[:2]
small_titanic
```
`Series.unique` returns values in order appearance, and only returns values that are present in the data.
```
small_titanic["class"].unique()
```
`Series.cat.categories` returns all category values.
```
small_titanic["class"].cat.categories
```
## References
- [Docs](https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html#object-creation)
- [Useful Medium article](https://towardsdatascience.com/staying-sane-while-adopting-pandas-categorical-datatypes-78dbd19dcd8a)
| github_jupyter |
# Tensorflow Timeline Analysis on Model Zoo Benchmark between Intel optimized and stock Tensorflow
This jupyter notebook will help you evaluate performance benefits from Intel-optimized Tensorflow on the level of Tensorflow operations via several pre-trained models from Intel Model Zoo. The notebook will show users a bar chart like the picture below for the Tensorflow operation level performance comparison. The red horizontal line represents the performance of Tensorflow operations from Stock Tensorflow, and the blue bars represent the speedup of Intel Tensorflow operations. The operations marked as "mkl-True" are accelerated by MKL-DNN a.k.a oneDNN, and users should be able to see a good speedup for those operations accelerated by MKL-DNN.
> NOTE : Users need to get Tensorflow timeline json files from other Jupyter notebooks like benchmark_perf_comparison
first to proceed this Jupyter notebook.
<img src="images\compared_tf_op_duration_ratio_bar.png" width="700">
The notebook will also show users two pie charts like the picture below for elapsed time percentage among different Tensorflow operations.
Users can easily find the Tensorflow operation hotspots in these pie charts among Stock and Intel Tensorflow.
<img src="images\compared_tf_op_duration_pie.png" width="700">
# Get Platform Information
```
from profiling.profile_utils import PlatformUtils
plat_utils = PlatformUtils()
plat_utils.dump_platform_info()
```
# Section 1: TensorFlow Timeline Analysis
## Prerequisites
```
!pip install cxxfilt
%matplotlib inline
import matplotlib.pyplot as plt
import tensorflow as tf
import pandas as pd
pd.set_option('display.max_rows', 500)
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1500)
```
## List out the Timeline folders
First, list out all Timeline folders from previous runs.
```
import os
filenames= os.listdir (".")
result = []
keyword = "Timeline"
for filename in filenames:
if os.path.isdir(os.path.join(os.path.abspath("."), filename)):
if filename.find(keyword) != -1:
result.append(filename)
result.sort()
index =0
for folder in result:
print(" %d : %s " %(index, folder))
index+=1
```
## Select a Timeline folder from previous runs
#### ACTION: Please select one Timeline folder and change FdIndex accordingly
```
FdIndex = 3
```
List out all Timeline json files inside Timeline folder.
```
import os
TimelineFd = result[FdIndex]
print(TimelineFd)
datafiles = [TimelineFd +os.sep+ x for x in os.listdir(TimelineFd) if '.json' == x[-5:]]
print(datafiles)
if len(datafiles) is 0:
print("ERROR! No json file in the selected folder. Please select other folder.")
elif len(datafiles) is 1:
print("WARNING! There is only 1 json file in the selected folder. Please select other folder to proceed Section 1.2.")
```
> **Users can bypass below Section 1.1 and analyze performance among Stock and Intel TF by clicking the link : [Section 1_2](#section_1_2).**
<a id='section_1_1'></a>
## Section 1.1: Performance Analysis for one TF Timeline result
### Step 1: Pick one of the Timeline files
#### List out all the Timeline files first
```
index = 0
for file in datafiles:
print(" %d : %s " %(index, file))
index+=1
```
#### ACTION: Please select one timeline json file and change file_index accordingly
```
## USER INPUT
file_index=0
fn = datafiles[file_index]
tfile_prefix = fn.split('_')[0]
tfile_postfix = fn.strip(tfile_prefix)[1:]
fn
```
### Step 2: Parse timeline into pandas format
```
from profiling.profile_utils import TFTimelinePresenter
tfp = TFTimelinePresenter(True)
timeline_pd = tfp.postprocess_timeline(tfp.read_timeline(fn))
timeline_pd = timeline_pd[timeline_pd['ph'] == 'X']
```
### Step 3: Sum up the elapsed time of each TF operation
```
tfp.get_tf_ops_time(timeline_pd,fn,tfile_prefix)
```
### Step 4: Draw a bar chart for elapsed time of TF ops
```
filename= tfile_prefix +'_tf_op_duration_bar.png'
title_=tfile_prefix +'TF : op duration bar chart'
ax=tfp.summarize_barh(timeline_pd, 'arg_op', title=title_, topk=50, logx=True, figsize=(10,10))
tfp.show(ax,'bar')
```
### Step 5: Draw a pie chart for total time percentage of TF ops
```
filename= tfile_prefix +'_tf_op_duration_pie.png'
title_=tfile_prefix +'TF : op duration pie chart'
timeline_pd_known = timeline_pd[ ~timeline_pd['arg_op'].str.contains('unknown') ]
ax=tfp.summarize_pie(timeline_pd_known, 'arg_op', title=title_, topk=50, logx=True, figsize=(10,10))
tfp.show(ax,'pie')
ax.figure.savefig(filename,bbox_inches='tight')
```
<a id='section_1_2'></a>
## Section 1.2: Analyze TF Timeline results between Stock and Intel Tensorflow
### Speedup from MKL-DNN among different TF operations
### Step 1: Select one Intel and one Stock TF timeline files for analysis
#### List out all timeline files in the selected folder
```
if len(datafiles) is 1:
print("ERROR! There is only 1 json file in the selected folder.")
print("Please select other Timeline folder from beginnning to proceed Section 1.2.")
for i in range(len(datafiles)):
print(" %d : %s " %(i, datafiles[i]))
```
#### ACTION: Please select one timeline file as a perfomance baseline and the other as a comparison target
put the related index for your selected timeline file.
In general, please put stock_timeline_xxxxx as the baseline.
```
# perfomance baseline
Baseline_Index=1
# comparison target
Comparison_Index=0
```
#### List out two selected timeline files
```
selected_datafiles = []
selected_datafiles.append(datafiles[Baseline_Index])
selected_datafiles.append(datafiles[Comparison_Index])
print(selected_datafiles)
```
### Step 2: Parsing timeline results into CSV files
```
%matplotlib agg
from profiling.profile_utils import TFTimelinePresenter
csvfiles=[]
tfp = TFTimelinePresenter(True)
for fn in selected_datafiles:
if fn.find('/'):
fn_nofd=fn.split('/')[1]
else:
fn_nofd=fn
tfile_name= fn_nofd.split('.')[0]
tfile_prefix = fn_nofd.split('_')[0]
tfile_postfix = fn_nofd.strip(tfile_prefix)[1:]
csvpath = TimelineFd +os.sep+tfile_name+'.csv'
print(csvpath)
csvfiles.append(csvpath)
timeline_pd = tfp.postprocess_timeline(tfp.read_timeline(fn))
timeline_pd = timeline_pd[timeline_pd['ph'] == 'X']
tfp.get_tf_ops_time(timeline_pd,fn,tfile_prefix)
```
### Step 3: Pre-processing for the two CSV files
```
import os
import pandas as pd
csvarray=[]
for csvf in csvfiles:
print("read into pandas :",csvf)
a = pd.read_csv(csvf)
csvarray.append(a)
a = csvarray[0]
b = csvarray[1]
```
### Step 4: Merge two CSV files and caculate the speedup accordingly
```
import os
import pandas as pd
fdir='merged'
if not os.path.exists(fdir):
os.mkdir(fdir)
fpath=fdir+os.sep+'merged.csv'
merged=tfp.merge_two_csv_files(fpath,a,b)
merged
```
### Step 5: Draw a bar chart for elapsed time of TF ops among stock TF and Intel TF
```
%matplotlib inline
print(fpath)
tfp.plot_compare_bar_charts(fpath)
tfp.plot_compare_ratio_bar_charts(fpath, tags=['','oneDNN ops'])
```
### Step 6: Draw pie charts for elapsed time of TF ops among stock TF and Intel TF
```
tfp.plot_compare_pie_charts(fpath)
```
| github_jupyter |
The data is from a number of patients. The 12 first columns (age, an, ..., time) are features that should be used to predict the outcome in the last column (DEATH_EVENT).
```
# Loading some functionality you might find useful. You might want other than this...
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import metrics
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV
from pandas.plotting import scatter_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier, plot_tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
# Downloading data
url = 'https://raw.githubusercontent.com/BoBernhardsson/frtn65_exam2022/main/data.csv'
data = pd.read_csv(url)
data.head()
# Picking out features and labels
X = data.iloc[:,:-1].values
y = data.iloc[:,-1].values
(X.shape,y.shape)
# select which features to use
X = data.drop(columns=['DEATH_EVENT'])
y = data.loc[:,'DEATH_EVENT'].values
# Creating some initial KNN models and evaluating accuracy
Ndata = data.shape[0]
for nr in range(1,10):
knnmodel = KNeighborsClassifier(n_neighbors = nr)
knnmodel.fit(X=X,y=y)
predictions = knnmodel.predict(X=X)
print('neighbors = {0}: accuracy = {1:.3f}'.format(nr,1-sum(abs(predictions-y))/Ndata))
features = ['age', 'cr', 'ej', 'pl', 'se1', 'se2', 'time']
features_categ = ['an','di', 'hi', 'sex', 'sm']
#scale the dataset
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
numerical_preprocessor = StandardScaler()
#do one-hot encoding for categorical features
categorical_preprocessor = OneHotEncoder(handle_unknown="ignore")
preprocessor = ColumnTransformer([
('one-hot-encoder', categorical_preprocessor, features_categ),
('standard-scaler', numerical_preprocessor, features)])
from sklearn.pipeline import Pipeline
#try Random Forest
clf = Pipeline(steps = [('preprocessor', preprocessor), ('classifier', RandomForestClassifier(n_estimators=100,max_depth=3))])
#split the dataset into trainig and testing
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
clf.fit(x_train, np.ravel(y_train))
print(clf.score(x_train,np.ravel(y_train)))
print('model score: %.3f' % clf.score(x_test,np.ravel(y_test)))
#evaluate the model using cross-validation
score = cross_val_score(clf, X, np.ravel(y), cv=25)
print("%0.2f accuracy with a standard deviation of %0.2f" % (score.mean()*100, score.std()))
score_test = clf.score(x_test, np.ravel(y_test))
print('Test score: ', '{0:.4f}'.format(score_test*100))
clf = RandomForestClassifier()
#find the best model using GridSearch
param_grid = {
'n_estimators': [100, 1000],
'max_depth': [3, 4, 5],
}
search = GridSearchCV(clf, param_grid, cv=4, verbose=1,n_jobs=-1)
search.fit(x_train, np.ravel(y_train))
score = search.score(x_test, np.ravel(y_test))
print("Best CV score: {} using {}".format(search.best_score_, search.best_params_))
print("Test accuracy: {}".format(score))
randomForestModel = RandomForestClassifier(n_estimators=100,max_depth=5)
#evaluate using cross-validation
score=cross_val_score(randomForestModel, X, y, cv=20)
randomForestModel.fit(x_train,np.ravel(y_train))
print('Training score: ', randomForestModel.score(x_train,np.ravel(y_train)))
print('Test score: ', randomForestModel.score(x_test,np.ravel(y_test)))
#make a prediction and evaluate the performance
y_pred = randomForestModel.predict(x_test)
score_new = randomForestModel.score(x_test, y_test)
print('Test score: ', score_new)
import seaborn as sns
from sklearn import metrics
#confusion matrix
cm = metrics.confusion_matrix(y_test, y_pred)
plt.figure(figsize=(10,10))
sns.heatmap(cm, annot=True, fmt=".0f", linewidths=1, square = True);
plt.ylabel('Actual label');
plt.xlabel('Predicted label');
plt.title('Accuracy Score: {0}'.format(score.mean()), size = 15);
from sklearn import metrics
#AUC
metrics.plot_roc_curve(randomForestModel, x_test, y_test)
from sklearn.metrics import classification_report
print(classification_report(y_test, randomForestModel.predict(x_test)))
from pandas import DataFrame
feature_df = DataFrame(data.columns.delete(0))
feature_df.columns = ['Features']
feature_df["Feature Importance"] = pd.Series(randomForestModel.feature_importances_)
#view feature importance according to Random Forest model
feature_df
#KNN model
clf = Pipeline(steps = [('preprocessor', preprocessor), ('classifier', KNeighborsClassifier(n_neighbors=3))])
clf.fit(x_train,np.ravel(y_train))
#evaluate the model using cross-validation
score = cross_val_score(clf, X, np.ravel(y), cv=25)
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean()*100, scores.std()))
score_test = clf.score(x_test, np.ravel(y_test))
print('Test score: ', '{0:.4f}'.format(score_test*100))
#make a prediction and evaluate the performance
y_pred = clf.predict(x_test)
score_new = clf.score(x_test, y_test)
print('Test score: ', score_new)
import seaborn as sns
from sklearn import metrics
#confusion matrix
cm = metrics.confusion_matrix(y_test, y_pred)
plt.figure(figsize=(10,10))
sns.heatmap(cm, annot=True, fmt=".0f", linewidths=1, square = True);
plt.ylabel('Actual label');
plt.xlabel('Predicted label');
plt.title('Accuracy Score: {0}'.format(score.mean()), size = 15);
from sklearn import metrics
#AUC
metrics.plot_roc_curve(clf, x_test, y_test)
from sklearn.metrics import classification_report
print(classification_report(y_test, clf.predict(x_test)))
#Boosting model
from sklearn.ensemble import GradientBoostingClassifier
#find the best learning rate
learning_rates = [0.05, 0.1, 0.25, 0.5, 0.75, 1]
for learning_rate in learning_rates:
gb = Pipeline(steps = [('preprocessor', preprocessor), ('Classifier', GradientBoostingClassifier(n_estimators=30, learning_rate = learning_rate, max_features=13, max_depth = 3, random_state = 0))])
gb.fit(x_train, y_train)
print("Learning rate: ", learning_rate)
print("Accuracy score (training): {0:.3f}".format(gb.score(x_train, y_train)))
print("Accuracy score (validation): {0:.3f}".format(gb.score(x_test, y_test)))
clf = Pipeline(steps = [('preprocessor', preprocessor), ('Classifier', GradientBoostingClassifier(n_estimators= 30, learning_rate = 0.25, max_features=13, max_depth = 3, random_state = 0))])
clf.fit(x_train,np.ravel(y_train))
#evaluate the models using cross-validation
from sklearn.model_selection import cross_val_score
scores = cross_val_score(clf, X, np.ravel(y), cv=25)
print("%0.2f accuracy with a standard deviation of %0.2f" % (scores.mean()*100, scores.std()))
score = clf.score(x_test, np.ravel(y_test))
print('Test score (Validation): ', '{0:.4f}'.format(score*100))
#make a prediction and evaluate the performance
y_pred = clf.predict(x_test)
score_test = clf.score(x_test, y_test)
print('Test score: ', score_test )
import seaborn as sns
from sklearn import metrics
#confusion matrix
cm = metrics.confusion_matrix(y_test, y_pred)
plt.figure(figsize=(10,10))
sns.heatmap(cm, annot=True, fmt=".0f", linewidths=1, square = True);
plt.ylabel('Actual label');
plt.xlabel('Predicted label');
plt.title('Accuracy Score: {0}'.format(score.mean()), size = 15);
from sklearn import metrics
#AUC
metrics.plot_roc_curve(clf, X, y)
from sklearn.metrics import classification_report
print(classification_report(y_test, clf.predict(x_test)))
```
## Death vs time
The boxplot below illustrates the relationship between death and how long time it was between the measurements were taken and the followup event, when the patient health was checked (female=blue, male=orange).
It is noted that short followup time is highly related to high probability of death, for both sexes. An explanation could be that severly unhealthy patients were followed up earlier, based on medical expert decisions.
```
fig, ax = plt.subplots(figsize = (8, 8))
survive = data.loc[(data.DEATH_EVENT == 0)].time
death = data.loc[(data.DEATH_EVENT == 1)].time
print('time_survived = {:.1f}'.format(survive.mean()))
print('time_dead = {:.1f}'.format(death.mean()))
sns.boxplot(data = data, x = 'DEATH_EVENT', y = 'time', hue = 'sex', width = 0.4, ax = ax, fliersize = 3, palette=sns.color_palette("pastel"))
sns.stripplot(data = data, x = 'DEATH_EVENT', y = 'time', hue = 'sex', size = 3, palette=sns.color_palette())
ax.set(xlabel = 'DEATH', ylabel = "time [days] ", title = 'The relationship between death and time')
plt.show()
# If we want to drop time as feature, we can use
Xnew = data.iloc[:,:-2].values
# select which features to use
Xnew = data.drop(columns=['DEATH_EVENT', 'time', 'sm', 'ej','age','cr','pl','se1','an','di','sex'])
y = data.loc[:,'DEATH_EVENT'].values
features = ['se2','hi']
#features_categ = ['an','di', 'hi', 'sex']
#scale the dataset
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
numerical_preprocessor = StandardScaler()
#do one-hot encoding for categorical features
categorical_preprocessor = OneHotEncoder(handle_unknown="ignore")
preprocessor = ColumnTransformer([
#('one-hot-encoder', categorical_preprocessor, features_categ),
('standard-scaler', numerical_preprocessor, features)])
from sklearn.pipeline import Pipeline
#try Random Forest
clf = Pipeline(steps = [('preprocessor', preprocessor), ('classifier', RandomForestClassifier(n_estimators=1000,max_depth=3))])
#split the dataset into trainig and testing
x_train_new, x_test_new, y_train_new, y_test_new = train_test_split(Xnew, y, test_size=0.2, random_state=42)
clf.fit(x_train_new, np.ravel(y_train_new))
print(clf.score(x_train_new,np.ravel(y_train_new)))
print('model score: %.3f' % clf.score(x_test_new,np.ravel(y_test_new)))
clf = RandomForestClassifier()
param_grid = {
'n_estimators': [100, 1000],
'max_depth': [3, 4, 5],
}
search = GridSearchCV(clf, param_grid, cv=4, verbose=1,n_jobs=-1)
search.fit(x_train_new, np.ravel(y_train_new))
score = search.score(x_test_new, np.ravel(y_test_new))
print("Best CV score: {} using {}".format(search.best_score_, search.best_params_))
print("Test accuracy: {}".format(score))
randomForestModel = RandomForestClassifier(n_estimators=100,max_depth=4)
#cross-val score
score=cross_val_score(randomForestModel, Xnew, y, cv=20)
randomForestModel.fit(x_train_new,np.ravel(y_train_new))
print('Training score: ', randomForestModel.score(x_train_new,np.ravel(y_train_new)))
print('Test score: ', randomForestModel.score(x_test_new,np.ravel(y_test_new)))
```
| github_jupyter |
<img src="../../img/logo_amds.png" alt="Logo" style="width: 128px;"/>
# AmsterdamUMCdb - Freely Accessible ICU Database
version 1.0.2 March 2020
Copyright © 2003-2020 Amsterdam UMC - Amsterdam Medical Data Science
# Vasopressors and inotropes
Shows medication for artificially increasing blood pressure (vasopressors) or stimulating heart function (inotropes), if any, a patient received.
## Imports
```
%matplotlib inline
import amsterdamumcdb
import psycopg2
import pandas as pd
import numpy as np
import re
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib as mpl
import io
from IPython.display import display, HTML, Markdown
```
## Display settings
```
#matplotlib settings for image size
#needs to be in a different cell from %matplotlib inline
plt.style.use('seaborn-darkgrid')
plt.rcParams["figure.dpi"] = 288
plt.rcParams["figure.figsize"] = [16, 12]
plt.rcParams["font.size"] = 12
pd.options.display.max_columns = None
pd.options.display.max_rows = None
pd.options.display.max_colwidth = 1000
```
## Connection settings
```
#Modify config.ini in the root folder of the repository to change the settings to connect to your postgreSQL database
import configparser
import os
config = configparser.ConfigParser()
if os.path.isfile('../../config.ini'):
config.read('../../config.ini')
else:
config.read('../../config.SAMPLE.ini')
#Open a connection to the postgres database:
con = psycopg2.connect(database=config['psycopg2']['database'],
user=config['psycopg2']['username'], password=config['psycopg2']['password'],
host=config['psycopg2']['host'], port=config['psycopg2']['port'])
con.set_client_encoding('WIN1252') #Uses code page for Dutch accented characters.
con.set_session(autocommit=True)
cursor = con.cursor()
cursor.execute('SET SCHEMA \'amsterdamumcdb\''); #set search_path to amsterdamumcdb schema
```
## Vasopressors and inotropes
from drugitems
```
sql_vaso_ino = """
WITH vasopressor_inotropes AS (
SELECT
admissionid,
CASE
WHEN COUNT(*) > 0 THEN TRUE
ELSE FALSE
END AS vasopressors_inotropes_bool,
STRING_AGG(DISTINCT item, '; ') AS vasopressors_inotropes_given
FROM drugitems
WHERE
ordercategoryid = 65 -- continuous i.v. perfusor
AND itemid IN (
6818, -- Adrenaline (Epinefrine)
7135, -- Isoprenaline (Isuprel)
7178, -- Dobutamine (Dobutrex)
7179, -- Dopamine (Inotropin)
7196, -- Enoximon (Perfan)
7229, -- Noradrenaline (Norepinefrine)
12467, -- Terlipressine (Glypressin)
13490, -- Methyleenblauw IV (Methylthionide cloride)
19929 -- Fenylefrine
)
AND rate > 0.1
GROUP BY admissionid
)
SELECT
a.admissionid, location,
CASE
WHEN vi.vasopressors_inotropes_bool Then TRUE
ELSE FALSE
END AS vasopressors_inotropes_bool,
vasopressors_inotropes_given
FROM admissions a
LEFT JOIN vasopressor_inotropes vi ON
a.admissionid = vi.admissionid
"""
vaso_ino = pd.read_sql(sql_vaso_ino,con)
vaso_ino.tail()
```
| github_jupyter |
<a href="https://colab.research.google.com/github/EvenSol/NeqSim-Colab/blob/master/notebooks/process/masstransferMeOH.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
```
#@title Calculation of mass transfer and hydrate inhibition of a wet gas by injection of methanol
#@markdown Demonstration of mass transfer calculation using the NeqSim software in Python
#@markdown <br><br>This document is part of the module ["Introduction to Gas Processing using NeqSim in Colab"](https://colab.research.google.com/github/EvenSol/NeqSim-Colab/blob/master/notebooks/examples_of_NeqSim_in_Colab.ipynb#scrollTo=_eRtkQnHpL70).
%%capture
!pip install neqsim
import neqsim
from neqsim.thermo.thermoTools import *
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
from neqsim.thermo import fluid, fluid_df
import pandas as pd
from neqsim.process import gasscrubber, clearProcess, run,nequnit, phasemixer, splitter, clearProcess, stream, valve, separator, compressor, runProcess, viewProcess, heater,saturator, mixer
plt.style.use('classic')
%matplotlib inline
```
#Mass transfer calculations
Model for mass transfer calculation in NeqSim based on Solbraa (2002):
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/231326
In the following calculations we assume a water saturated gas the is mixed with pure liquid methanol. These phases are not in equiibrium when they enter the pipeline. When the gas and methanol liquid comes in contact in the pipeline, methanol will vaporize into the gas, and water (and other comonents from the gas) will be absorbed into the liquid methanol. The focus of the following calculations will be to evaluate the mass transfer as function of contanct length with gas and methanol. It also evaluates the hydrate temperature of the gas leaving the pipe section.
Figure 1 Illustration of mass transfer process
![masstransfer.GIF]()
**The parameters for the model are:**
Temperature and pressure of the pipe (mass transfer calculated at constant temperature and pressure).
Length and diameter of pipe where gas and liquid will be in contact and mass transfer can occur.
Flow rate of the gas in MSm3/day, flow rate of methanol (kg/hr).
#Calculation of compostion of aqueous phase and gas leaving pipe section
In the following script we will simulate the composition of the gas leaving pipe section at a given pipe lengt.
```
# Input parameters
pressure = 52.21 # bara
temperature = 15.2 #C
gasFlow = 1.23 #MSm3/day
methanolFlow = 6000.23 # kg/day
pipelength = 10.0 #meter
pipeInnerDiameter = 0.5 #meter
# Create a gas-condensate fluid
feedgas = {'ComponentName': ["nitrogen","CO2","methane", "ethane" , "propane", "i-butane", "n-butane", "water", "methanol"],
'MolarComposition[-]': [0.01, 0.01, 0.8, 0.06, 0.01,0.005,0.005, 0.0, 0.0]
}
naturalgasFluid = fluid_df(pd.DataFrame(feedgas)).setModel("CPAs-SRK-EOS-statoil")
naturalgasFluid.setTotalFlowRate(gasFlow, "MSm3/day")
naturalgasFluid.setTemperature(temperature, "C")
naturalgasFluid.setPressure(pressure, "bara")
# Create a liquid methanol fluid
feedMeOH = {'ComponentName': ["nitrogen","CO2","methane", "ethane" , "propane", "i-butane", "n-butane", "water", "methanol"],
'MolarComposition[-]': [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,1.0]
}
meOHFluid = fluid_df(pd.DataFrame(feedMeOH) ).setModel("CPAs-SRK-EOS-statoil")
meOHFluid.setTotalFlowRate(methanolFlow, "kg/hr");
meOHFluid.setTemperature(temperature, "C");
meOHFluid.setPressure(pressure, "bara");
clearProcess()
dryinjectiongas = stream(naturalgasFluid)
MeOHFeed = stream(meOHFluid)
watersaturator = saturator(dryinjectiongas)
waterSaturatedFeedGas = stream(watersaturator.getOutStream())
mainMixer = phasemixer("gas MeOH mixer")
mainMixer.addStream(waterSaturatedFeedGas)
mainMixer.addStream(MeOHFeed)
pipeline = nequnit(mainMixer.getOutStream(), equipment="pipeline", flowpattern="stratified") #alternative flow patterns are: stratified, annular and droplet
pipeline.setLength(pipelength)
pipeline.setID(pipeInnerDiameter)
scrubber = gasscrubber(pipeline.getOutStream())
gasFromScrubber = stream(scrubber.getGasOutStream())
aqueousFromScrubber = stream(scrubber.getLiquidOutStream())
run()
print('Composition of gas leaving pipe section after ', pipelength, ' meter')
printFrame(gasFromScrubber.getFluid())
print('Composition of aqueous phase leaving pipe section after ', pipelength, ' meter')
printFrame(aqueousFromScrubber.getFluid())
print('Interface contact area ', pipeline.getInterfacialArea(), ' m^2')
print('Volume fraction aqueous phase ', pipeline.getOutStream().getFluid().getVolumeFraction(1), ' -')
```
# Calculation of hydrate equilibrium temperature of gas leaving pipe section
In the following script we will simulate the composition of the gas leaving pipe section as well as hydrate equilibrium temperature of this gas as function of pipe length.
```
maxpipelength = 10.0
def hydtemps(length):
pipeline.setLength(length)
run();
return gasFromScrubber.getHydrateEquilibriumTemperature()-273.15
length = np.arange(0.01, maxpipelength, (maxpipelength)/10.0)
hydtem = [hydtemps(length2) for length2 in length]
plt.figure()
plt.plot(length, hydtem)
plt.xlabel('Length available for mass transfer [m]')
plt.ylabel('Hydrate eq.temperature [C]')
plt.title('Hydrate eq.temperature of gas leaving pipe section')
```
| github_jupyter |
# Amazon Forecast: predicting time-series at scale
Forecasting is used in a variety of applications and business use cases: For example, retailers need to forecast the sales of their products to decide how much stock they need by location, Manufacturers need to estimate the number of parts required at their factories to optimize their supply chain, Businesses need to estimate their flexible workforce needs, Utilities need to forecast electricity consumption needs in order to attain an efficient energy network, and
enterprises need to estimate their cloud infrastructure needs.
<img src="BlogImages/amazon_forecast.png">
# Table of Contents
* Step 0: [Setting up](#setup)
* Step 1: [Preparing the Datasets](#prepare)
* Step 2: [Importing the Data](#import)
* Step 2a: [Creating a Dataset Group](#create)
* Step 2b: [Creating a Target Dataset](#target)
* Step 2c: [Creating a Related Dataset](#related)
* Step 2d: [Update the Dataset Group](#update)
* Step 2e: [Creating a Target Time Series Dataset Import Job](#targetImport)
* Step 2f: [Creating a Related Time Series Dataset Import Job](#relatedImport)
* Step 3: [Choosing an Algorithm and Evaluating its Performance](#algo)
* Step 3a: [Choosing DeepAR+](#DeepAR)
* Step 3b: [Choosing Prophet](#prophet)
* Step 4: [Computing Error Metrics from Backtesting](#error)
* Step 5: [Creating a Forecast](#forecast)
* Step 6: [Querying the Forecasts](#query)
* Step 7: [Exporting the Forecasts](#export)
* Step 8: [Clearning up your Resources](#cleanup)
# First let us setup Amazon Forecast<a class="anchor" id="setup">
This section sets up the permissions and relevant endpoints.
```
%load_ext autoreload
%autoreload 2
from util.fcst_utils import *
import warnings
import boto3
import s3fs
plt.rcParams['figure.figsize'] = (15.0, 5.0)
warnings.filterwarnings('ignore')
```
Although, we have set the region to us-west-2 below, you can choose any of the 6 regions that the service is available in.
```
region = 'us-west-2'
bucket = 'bike-demo'
version = 'prod'
session = boto3.Session(region_name=region)
forecast = session.client(service_name='forecast')
forecast_query = session.client(service_name='forecastquery')
role_arn = get_or_create_role_arn()
```
# Overview
<img src="BlogImages/outline.png">
<img src="BlogImages/forecast_workflow.png">
The above figure summarizes the key workflow of using Forecast.
# Step 1: Preparing the Datasets<a class="anchor" id="prepare">
```
bike_df = pd.read_csv("../data/train.csv", dtype = object)
bike_df.head()
bike_df['count'] = bike_df['count'].astype('float')
bike_df['workingday'] = bike_df['workingday'].astype('float')
```
We take about two and a half week's of hourly data for demonstration, just for the purpose that there's no missing data in the whole range.
```
bike_df_small = bike_df[-2*7*24-24*3:]
bike_df_small['item_id'] = "bike_12"
```
Let us plot the time series first.
```
bike_df_small.plot(x='datetime', y='count', figsize=(15, 8))
```
We can see that the target time series seem to have a drop over weekends. Next let's plot both the target time series and the related time series that indicates whether today is a `workday` or not. More precisely, $r_t = 1$ if $t$ is a work day and 0 if not.
```
plt.figure(figsize=(15, 8))
ax = plt.gca()
bike_df_small.plot(x='datetime', y='count', ax=ax);
ax2 = ax.twinx()
bike_df_small.plot(x='datetime', y='workingday', color='red', ax=ax2);
```
Notice that to use the related time series, we need to ensure that the related time series covers the whole target time series, as well as the future values as specified by the forecast horizon. More precisely, we need to make sure:
```
len(related time series) >= len(target time series) + forecast horizon
```
Basically, all items need to have data start at or before the item start date, and have data until the forecast horizon (i.e. the latest end date across all items + forecast horizon). Additionally, there should be no missing values in the related time series. The following picture illustrates the desired logic.
<img src="BlogImages/rts_viz.png">
For more details regarding how to prepare your Related Time Series dataset, please refer to the public documentation <a href="https://docs.aws.amazon.com/forecast/latest/dg/related-time-series-datasets.html">here</a>.
Suppose in this particular example, we wish to forecast for the next 24 hours, and thus we generate the following dataset.
```
target_df = bike_df_small[['item_id', 'datetime', 'count']][:-24]
rts_df = bike_df_small[['item_id', 'datetime', 'workingday']]
target_df.head(5)
```
As we can see, the length of the related time series is equal to the length of the target time series plus the forecast horizon.
```
print(len(target_df), len(rts_df))
assert len(target_df) + 24 == len(rts_df), "length doesn't match"
```
Next we check whether there are "holes" in the related time series.
```
assert len(rts_df) == len(pd.date_range(
start=list(rts_df['datetime'])[0],
end=list(rts_df['datetime'])[-1],
freq='H'
)), "missing entries in the related time series"
```
Everything looks fine, and we plot both time series again. As it can be seen, the related time series (indicator of whether the current day is a workday or not) is longer than the target time series. The binary working day indicator feature is a good example of a related time series, since it is known at all future time points. Other examples of related time series include holiday and promotion features.
```
plt.figure(figsize=(15, 10))
ax = plt.gca()
target_df.plot(x='datetime', y='count', ax=ax);
ax2 = ax.twinx()
rts_df.plot(x='datetime', y='workingday', color='red', ax=ax2);
target_df.to_csv("../data/bike_small.csv", index= False, header = False)
rts_df.to_csv("../data/bike_small_rts.csv", index= False, header = False)
s3 = session.client('s3')
account_id = boto3.client('sts').get_caller_identity().get('Account')
```
If you don't have this bucket `amazon-forecast-data-{account_id}`, create it first on S3.
```
bucket_name = f"amazon-forecast-data-{account_id}"
key = "bike_small"
s3.upload_file(Filename="../data/bike_small.csv", Bucket = bucket_name, Key = f"{key}/bike.csv")
s3.upload_file(Filename="../data/bike_small_rts.csv", Bucket = bucket_name, Key = f"{key}/bike_rts.csv")
```
# Step 2. Importing the Data<a class="anchor" id="import">
Now we are ready to import the datasets into the Forecast service. Starting from the raw data, Amazon Forecast automatically extracts the dataset that is suitable for forecasting. As an example, a retailer normally records the transaction record such as
<img src="BlogImages/data_format.png">
<img src="BlogImages/timestamp.png">
```
project = "bike_rts_demo"
idx = 4
s3_data_path = f"s3://{bucket_name}/{key}"
```
Below, we specify key input data and forecast parameters
```
freq = "H"
forecast_horizon = 24
timestamp_format = "yyyy-MM-dd HH:mm:ss"
delimiter = ','
```
## Step 2a. Creating a Dataset Group<a class="anchor" id="create">
First let's create a dataset group and then update it later to add our datasets.
```
dataset_group = f"{project}_gp_{idx}"
dataset_arns = []
create_dataset_group_response = forecast.create_dataset_group(Domain="RETAIL",
DatasetGroupName=dataset_group,
DatasetArns=dataset_arns)
logging.info(f'Creating dataset group {dataset_group}')
dataset_group_arn = create_dataset_group_response['DatasetGroupArn']
forecast.describe_dataset_group(DatasetGroupArn=dataset_group_arn)
```
## Step 2b. Creating a Target Dataset<a class="anchor" id="target">
In this example, we will define a target time series. This is a required dataset to use the service.
Below we specify the target time series name af_demo_ts_4.
```
ts_dataset_name = f"{project}_ts_{idx}"
print(ts_dataset_name)
```
Next, we specify the schema of our dataset below. Make sure the order of the attributes (columns) matches the raw data in the files. We follow the same three attribute format as the above example.
```
ts_schema_val = [{"AttributeName": "item_id", "AttributeType": "string"},
{"AttributeName": "timestamp", "AttributeType": "timestamp"},
{"AttributeName": "demand", "AttributeType": "float"}]
ts_schema = {"Attributes": ts_schema_val}
logging.info(f'Creating target dataset {ts_dataset_name}')
response = forecast.create_dataset(Domain="RETAIL",
DatasetType='TARGET_TIME_SERIES',
DatasetName=ts_dataset_name,
DataFrequency=freq,
Schema=ts_schema
)
ts_dataset_arn = response['DatasetArn']
forecast.describe_dataset(DatasetArn=ts_dataset_arn)
```
## Step 2c. Creating a Related Dataset<a class="anchor" id="related">
In this example, we will define a related time series.
Specify the related time series name af_demo_rts_4.
```
rts_dataset_name = f"{project}_rts_{idx}"
print(rts_dataset_name)
```
Specify the schema of your dataset here. Make sure the order of columns matches the raw data files. We follow the same three column format as the above example.
```
rts_schema_val = [{"AttributeName": "item_id", "AttributeType": "string"},
{"AttributeName": "timestamp", "AttributeType": "timestamp"},
{"AttributeName": "price", "AttributeType": "float"}]
rts_schema = {"Attributes": rts_schema_val}
logging.info(f'Creating related dataset {rts_dataset_name}')
response = forecast.create_dataset(Domain="RETAIL",
DatasetType='RELATED_TIME_SERIES',
DatasetName=rts_dataset_name,
DataFrequency=freq,
Schema=rts_schema
)
rts_dataset_arn = response['DatasetArn']
forecast.describe_dataset(DatasetArn=rts_dataset_arn)
```
## Step 2d. Updating the dataset group with the datasets we created<a class="anchor" id="update">
You can have multiple datasets under the same dataset group. Update it with the datasets we created before.
```
dataset_arns = []
dataset_arns.append(ts_dataset_arn)
dataset_arns.append(rts_dataset_arn)
forecast.update_dataset_group(DatasetGroupArn=dataset_group_arn, DatasetArns=dataset_arns)
forecast.describe_dataset_group(DatasetGroupArn=dataset_group_arn)
```
## Step 2e. Creating a Target Time Series Dataset Import Job<a class="anchor" id="targetImport">
```
ts_s3_data_path = f"{s3_data_path}/bike.csv"
ts_dataset_import_job_response = forecast.create_dataset_import_job(DatasetImportJobName=dataset_group,
DatasetArn=ts_dataset_arn,
DataSource= {
"S3Config" : {
"Path": ts_s3_data_path,
"RoleArn": role_arn
}
},
TimestampFormat=timestamp_format)
ts_dataset_import_job_arn=ts_dataset_import_job_response['DatasetImportJobArn']
status = wait(lambda: forecast.describe_dataset_import_job(DatasetImportJobArn=ts_dataset_import_job_arn))
assert status
```
## Step 2f. Creating a Related Time Series Dataset Import Job<a class="anchor" id="relatedImport">
```
rts_s3_data_path = f"{s3_data_path}/bike_rts.csv"
rts_dataset_import_job_response = forecast.create_dataset_import_job(DatasetImportJobName=dataset_group,
DatasetArn=rts_dataset_arn,
DataSource= {
"S3Config" : {
"Path": rts_s3_data_path,
"RoleArn": role_arn
}
},
TimestampFormat=timestamp_format)
rts_dataset_import_job_arn=rts_dataset_import_job_response['DatasetImportJobArn']
status = wait(lambda: forecast.describe_dataset_import_job(DatasetImportJobArn=rts_dataset_import_job_arn))
assert status
```
# Step 3. Choosing an algorithm and evaluating its performance<a class="anchor" id="algo">
Once the datasets are specified with the corresponding schema, Amazon Forecast will automatically aggregate all the relevant pieces of information for each item, such as sales, price, promotions, as well as categorical attributes, and generate the desired dataset. Next, one can choose an algorithm (forecasting model) and evaluate how well this particular algorithm works on this dataset. The following graph gives a high-level overview of the forecasting models.
<img src="BlogImages/recipes.png">
<img src="BlogImages/pred_details.png">
Amazon Forecast provides several state-of-the-art forecasting algorithms including classic forecasting methods such as ETS, ARIMA, Prophet and deep learning approaches such as DeepAR+. Classical forecasting methods, such as Autoregressive Integrated Moving Average (ARIMA) or Exponential Smoothing (ETS), fit a single model to each individual time series, and then use that model to extrapolate the time series into the future. Amazon's Non-Parametric Time Series (NPTS) forecaster also fits a single model to each individual time series. Unlike the naive or seasonal naive forecasters that use a fixed time index (the previous index $T-1$ or the past season $T - \tau$) as the prediction for time step $T$, NPTS randomly samples a time index $t \in \{0, \dots T-1\}$ in the past to generate a sample for the current time step $T$.
In many applications, you may encounter many similar time series across a set of cross-sectional units. Examples of such time series groupings are demand for different products, server loads, and requests for web pages. In this case, it can be beneficial to train a single model jointly over all of these time series. DeepAR+ takes this approach, outperforming the standard ARIMA and ETS methods when your dataset contains hundreds of related time series. The trained model can also be used for generating forecasts for new time series that are similar to the ones it has been trained on. While deep learning approaches can outperform standard methods, this is only possible when there is sufficient data available for training. It is not true for example when one trains a neural network with a time-series contains only a few dozens of observations. Amazon Forecast provides the best of two worlds allowing users to either choose a specific algorithm or let Amazon Forecast automatically perform model selection.
## How to evaluate a forecasting model?
Before moving forward, let's first introduce the notion of *backtest* when evaluating forecasting models. The key difference between evaluating forecasting algorithms and standard ML applications is that we need to make sure there is no future information gets used in the past. In other words, the procedure needs to be causal.
<img src="BlogImages/backtest.png">
In this notebook, let's compare the neural network based method, DeepAR+ with Facebook's open-source Bayesian method Prophet.
```
algorithm_arn = 'arn:aws:forecast:::algorithm/'
```
## Step 3a. Choosing DeepAR+<a class="anchor" id="DeepAR">
```
algorithm = 'Deep_AR_Plus'
algorithm_arn_deep_ar_plus = algorithm_arn + algorithm
predictor_name_deep_ar = f'{project}_{algorithm.lower()}_{idx}'
logging.info(f'[{predictor_name_deep_ar}] Creating predictor {predictor_name_deep_ar} ...')
create_predictor_response = forecast.create_predictor(PredictorName=predictor_name_deep_ar,
AlgorithmArn=algorithm_arn_deep_ar_plus,
ForecastHorizon=forecast_horizon,
PerformAutoML=False,
PerformHPO=False,
InputDataConfig= {"DatasetGroupArn": dataset_group_arn},
FeaturizationConfig= {"ForecastFrequency": freq}
)
predictor_arn_deep_ar = create_predictor_response['PredictorArn']
status = wait(lambda: forecast.describe_predictor(PredictorArn=predictor_arn_deep_ar))
assert status
forecast.describe_predictor(PredictorArn=predictor_arn_deep_ar)
```
## Step 3b. Choosing Prophet<a class="anchor" id="prophet">
```
algorithm = 'Prophet'
algorithm_arn_prophet = algorithm_arn + algorithm
predictor_name_prophet = f'{project}_{algorithm.lower()}_{idx}'
algorithm_arn_prophet
logging.info(f'[{predictor_name_prophet}] Creating predictor %s ...' % predictor_name_prophet)
create_predictor_response = forecast.create_predictor(PredictorName=predictor_name_prophet,
AlgorithmArn=algorithm_arn_prophet,
ForecastHorizon=forecast_horizon,
PerformAutoML=False,
PerformHPO=False,
InputDataConfig= {"DatasetGroupArn": dataset_group_arn},
FeaturizationConfig= {"ForecastFrequency": freq}
)
predictor_arn_prophet = create_predictor_response['PredictorArn']
status = wait(lambda: forecast.describe_predictor(PredictorArn=predictor_arn_prophet))
assert status
forecast.describe_predictor(PredictorArn=predictor_arn_prophet)
```
# Step 4. Computing Error Metrics from Backtesting<a class="anchor" id="error">
After creating the predictors, we can query the forecast accuracy given by the backtest scenario and have a quantitative understanding of the performance of the algorithm. Such a process is iterative in nature during model development. When an algorithm with satisfying performance is found, the customer can deploy the predictor into a production environment, and query the forecasts for a particular item to make business decisions. The figure below shows a sample plot of different quantile forecasts of a predictor.
```
logging.info('Done creating predictor. Getting accuracy numbers for DeepAR+ ...')
error_metrics_deep_ar_plus = forecast.get_accuracy_metrics(PredictorArn=predictor_arn_deep_ar)
error_metrics_deep_ar_plus
logging.info('Done creating predictor. Getting accuracy numbers for Prophet ...')
error_metrics_prophet = forecast.get_accuracy_metrics(PredictorArn=predictor_arn_prophet)
error_metrics_prophet
def extract_summary_metrics(metric_response, predictor_name):
df = pd.DataFrame(metric_response['PredictorEvaluationResults']
[0]['TestWindows'][0]['Metrics']['WeightedQuantileLosses'])
df['Predictor'] = predictor_name
return df
deep_ar_metrics = extract_summary_metrics(error_metrics_deep_ar_plus, "DeepAR")
prophet_metrics = extract_summary_metrics(error_metrics_prophet, "Prophet")
pd.concat([deep_ar_metrics, prophet_metrics]) \
.pivot(index='Quantile', columns='Predictor', values='LossValue').plot.bar();
```
As we mentioned before, if you only have a handful of time series (in this case, only 1) with a small number of examples, the neural network models (DeepAR+) are not the best choice. Here, we clearly see that DeepAR+ behaves worse than Prophet in the case of a single time series.
# Step 5. Creating a Forecast<a class="anchor" id="forecast">
Next we re-train with the full dataset, and create the forecast.
```
logging.info(f"Done fetching accuracy numbers. Creating forecaster for DeepAR+ ...")
forecast_name_deep_ar = f'{project}_deep_ar_plus_{idx}'
create_forecast_response_deep_ar = forecast.create_forecast(ForecastName=forecast_name_deep_ar,
PredictorArn=predictor_arn_deep_ar)
forecast_arn_deep_ar = create_forecast_response_deep_ar['ForecastArn']
status = wait(lambda: forecast.describe_forecast(ForecastArn=forecast_arn_deep_ar))
assert status
forecast.describe_forecast(ForecastArn=forecast_arn_deep_ar)
logging.info(f"Done fetching accuracy numbers. Creating forecaster for Prophet ...")
forecast_name_prophet = f'{project}_prophet_{idx}'
create_forecast_response_prophet = forecast.create_forecast(ForecastName=forecast_name_prophet,
PredictorArn=predictor_arn_prophet)
forecast_arn_prophet = create_forecast_response_prophet['ForecastArn']
status = wait(lambda: forecast.describe_forecast(ForecastArn=forecast_arn_prophet))
assert status
forecast.describe_forecast(ForecastArn=forecast_arn_prophet)
```
# Step 6. Querying the Forecasts<a class="anchor" id="query">
```
item_id = 'bike_12'
forecast_response_deep = forecast_query.query_forecast(
ForecastArn=forecast_arn_deep_ar,
Filters={"item_id": item_id})
forecast_response_prophet = forecast_query.query_forecast(ForecastArn=forecast_arn_prophet,
Filters={"item_id":item_id})
fname = f'../data/bike_small.csv'
exact = load_exact_sol(fname, item_id)
plot_forecasts(forecast_response_deep, exact)
plt.title("DeepAR Forecast");
plot_forecasts(forecast_response_prophet,exact)
plt.title("Prophet Forecast");
```
# Step 7. Exporting your Forecasts<a class="anchor" id="export">
```
forecast_export_name_deep_ar = f'{project}_forecast_export_deep_ar_plus_{idx}'
forecast_export_name_deep_ar_path = f"{s3_data_path}/{forecast_export_name_deep_ar}"
create_forecast_export_response_deep_ar = forecast.create_forecast_export_job(ForecastExportJobName=forecast_export_name_deep_ar,
ForecastArn=forecast_arn_deep_ar,
Destination={
"S3Config" : {
"Path": forecast_export_name_deep_ar_path,
"RoleArn": role_arn
}
})
forecast_export_arn_deep_ar = create_forecast_export_response_deep_ar['ForecastExportJobArn']
status = wait(lambda: forecast.describe_forecast_export_job(ForecastExportJobArn = forecast_export_arn_deep_ar))
assert status
forecast_export_name_prophet = f'{project}_forecast_export_prophet_{idx}'
forecast_export_name_prophet_path = f"{s3_data_path}/{forecast_export_name_prophet}"
create_forecast_export_response_prophet = forecast.create_forecast_export_job(ForecastExportJobName=forecast_export_name_prophet,
ForecastArn=forecast_arn_prophet,
Destination={
"S3Config" : {
"Path": forecast_export_name_prophet_path,
"RoleArn": role_arn
}
})
forecast_export_arn_prophet = create_forecast_export_response_prophet['ForecastExportJobArn']
status = wait(lambda: forecast.describe_forecast_export_job(ForecastExportJobArn = forecast_export_arn_prophet))
assert status
```
# Step 8. Cleaning up your Resources<a class="anchor" id="cleanup">
Once we have completed the above steps, we can start to cleanup the resources we created. All delete jobs, except for `delete_dataset_group` are asynchronous, so we have added the helpful `wait_till_delete` function.
Resource Limits documented <a href="https://docs.aws.amazon.com/forecast/latest/dg/limits.html">here</a>.
```
# Delete forecast export for both algorithms
wait_till_delete(lambda: forecast.delete_forecast_export_job(ForecastExportJobArn = forecast_export_arn_deep_ar))
wait_till_delete(lambda: forecast.delete_forecast_export_job(ForecastExportJobArn = forecast_export_arn_prophet))
# Delete forecast for both algorithms
wait_till_delete(lambda: forecast.delete_forecast(ForecastArn = forecast_arn_deep_ar))
wait_till_delete(lambda: forecast.delete_forecast(ForecastArn = forecast_arn_prophet))
# Delete predictor for both algorithms
wait_till_delete(lambda: forecast.delete_predictor(PredictorArn = predictor_arn_deep_ar))
wait_till_delete(lambda: forecast.delete_predictor(PredictorArn = predictor_arn_prophet))
# Delete the target time series and related time series dataset import jobs
wait_till_delete(lambda: forecast.delete_dataset_import_job(DatasetImportJobArn=ts_dataset_import_job_arn))
wait_till_delete(lambda: forecast.delete_dataset_import_job(DatasetImportJobArn=rts_dataset_import_job_arn))
# Delete the target time series and related time series datasets
wait_till_delete(lambda: forecast.delete_dataset(DatasetArn=ts_dataset_arn))
wait_till_delete(lambda: forecast.delete_dataset(DatasetArn=rts_dataset_arn))
# Delete dataset group
forecast.delete_dataset_group(DatasetGroupArn=dataset_group_arn)
```
| github_jupyter |
# Census aggregation scratchpad
By [Ben Welsh](https://palewi.re/who-is-ben-welsh/)
```
import math
```
### Approximation
![](https://assets.documentcloud.org/documents/6162551/pages/20180418-MOE-p50-normal.gif)
![](https://assets.documentcloud.org/documents/6162551/pages/20180418-MOE-p51-normal.gif)
```
males_under_5, males_under_5_moe = 10154024, 3778
females_under_5, females_under_5_moe = 9712936, 3911
total_under_5 = males_under_5 + females_under_5
total_under_5
total_under_5_moe = math.sqrt(males_under_5_moe**2 + females_under_5_moe**2)
total_under_5_moe
```
![](https://assets.documentcloud.org/documents/6162551/pages/20180418-MOE-p52-normal.gif?1561126109)
```
def approximate_margin_of_error(*pairs):
"""
Returns the approximate margin of error after combining all of the provided Census Bureau estimates, taking into account each value's margin of error.
Expects a series of arguments, each a paired list with the estimated value first and the margin of error second.
"""
# According to the Census Bureau, when approximating a sum use only the largest zero estimate margin of error, once
# https://www.documentcloud.org/documents/6162551-20180418-MOE.html#document/p52
zeros = [p for p in pairs if p[0] == 0]
if len(zeros) > 1:
max_zero_margin = max([p[1] for p in zeros])
not_zero_margins = [p[1] for p in pairs if p[0] != 0]
margins = [max_zero_margin] + not_zero_margins
else:
margins = [p[1] for p in pairs]
return math.sqrt(sum([m**2 for m in margins]))
approximate_margin_of_error(
(males_under_5, males_under_5_moe),
(females_under_5, females_under_5_moe)
)
approximate_margin_of_error(
[0, 22],
[0, 22],
[0, 29],
[41, 37]
)
```
### Aggregating totals
```
def total(*pairs):
"""
Returns the combined value of all the provided Census Bureau estimates, along with an approximated margin of error.
Expects a series of arguments, each a paired list with the estimated value first and the margin of error second.
"""
return sum([p[0] for p in pairs]), approximate_margin_of_error(*pairs)
total(
(males_under_5, males_under_5_moe),
(females_under_5, females_under_5_moe)
)
total(
[0, 22],
[0, 22],
[0, 29],
[41, 37]
)
```
### Aggregating medians
![](https://assets.documentcloud.org/documents/6165014/pages/How-to-Recalculate-a-Median-p1-normal.gif?1561138970)
![](https://assets.documentcloud.org/documents/6165014/pages/How-to-Recalculate-a-Median-p2-normal.gif?1561138970)
![](https://assets.documentcloud.org/documents/6165014/pages/How-to-Recalculate-a-Median-p3-normal.gif?1561138970)
![](https://assets.documentcloud.org/documents/6165014/pages/How-to-Recalculate-a-Median-p4-normal.gif?1561138970)
```
def approximate_median(range_list, design_factor=1.5):
"""
Returns the estimated median from a set of ranged totals.
Useful for generated medians for measures like median household income and median agn when aggregating census geographies.
Expects a list of dictionaries with three keys:
min: The minimum value in the range
max: The maximum value in the range
n: The number of people, households or other universe figure in the range
"""
# Sort the list
range_list.sort(key=lambda x: x['min'])
# For each range calculate its min and max value along the universe's scale
cumulative_n = 0
for range_ in range_list:
range_['n_min'] = cumulative_n
cumulative_n += range_['n']
range_['n_max'] = cumulative_n
# What is the total number of observations in the universe?
n = sum([d['n'] for d in range_list])
# What is the estimated midpoint of the n?
n_midpoint = n / 2.0
# Now use those to determine which group contains the midpoint.
try:
n_midpoint_range = next(d for d in range_list if n_midpoint >= d['n_min'] and n_midpoint <= d['n_max'])
except StopIteration:
raise StopIteration("The n's midpoint does not fall within a data range.")
# How many households in the midrange are needed to reach the midpoint?
n_midrange_gap = n_midpoint - n_midpoint_range['n_min']
# What is the proportion of the group that would be needed to get the midpoint?
n_midrange_gap_percent = n_midrange_gap / n_midpoint_range['n']
# Apply this proportion to the width of the midrange
n_midrange_gap_adjusted = (n_midpoint_range['max'] - n_midpoint_range['min']) * n_midrange_gap_percent
# Estimate the median
estimated_median = n_midpoint_range['min'] + n_midrange_gap_adjusted
# Get the standard error for this dataset
standard_error = (design_factor * math.sqrt((99/n)*(50**2))) / 100
# Use the standard error to calculate the p values
p_lower = (.5 - standard_error)
p_upper = (.5 + standard_error)
# Estimate the p_lower and p_upper n values
p_lower_n = n * p_lower
p_upper_n = n * p_upper
# Find the ranges the p values fall within
try:
p_lower_range_i, p_lower_range = next(
(i, d) for i, d in enumerate(range_list)
if p_lower_n >= d['n_min'] and p_lower_n <= d['n_max']
)
except StopIteration:
raise StopIteration("The n's lower p value does not fall within a data range.")
try:
p_upper_range_i, p_upper_range = next(
(i, d) for i, d in enumerate(range_list)
if p_upper_n >= d['n_min'] and p_upper_n <= d['n_max']
)
except StopIteration:
raise StopIteration("The n's higher p value does not fall within a data range.")
# Use these values to estimate the lower bound of the confidence interval
p_lower_a1 = p_lower_range['min']
try:
p_lower_a2 = range_list[p_lower_range_i+1]['min']
except IndexError:
p_lower_a2 = p_lower_range['max']
p_lower_c1 = p_lower_range['n_min'] / n
try:
p_lower_c2 = range_list[p_lower_range_i+1]['n_min'] / n
except IndexError:
p_lower_c2 = p_lower_range['n_max'] / n
lower_bound = ((p_lower - p_lower_c1) / (p_lower_c2 - p_lower_c1)) * (p_lower_a2 - p_lower_a1) + p_lower_a1
# Same for the upper bound
p_upper_a1 = p_upper_range['min']
try:
p_upper_a2 = range_list[p_upper_range_i+1]['min']
except IndexError:
p_upper_a2 = p_upper_range['max']
p_upper_c1 = p_upper_range['n_min'] / n
try:
p_upper_c2 = range_list[p_upper_range_i+1]['n_min'] / n
except IndexError:
p_upper_c2 = p_upper_range['n_max'] / n
upper_bound = ((p_upper - p_upper_c1) / (p_upper_c2 - p_upper_c1)) * (p_upper_a2 - p_upper_a1) + p_upper_a1
# Calculate the standard error of the median
standard_error_median = 0.5 * (upper_bound - lower_bound)
# Calculate the margin of error at the 90% confidence level
margin_of_error = 1.645 * standard_error_median
# Return the result
return estimated_median, margin_of_error
income = [
dict(min=-2500, max=9999, n=186),
dict(min=10000, max=14999, n=78),
dict(min=15000, max=19999, n=98),
dict(min=20000, max=24999, n=287),
dict(min=25000, max=29999, n=142),
dict(min=30000, max=34999, n=90),
dict(min=35000, max=39999, n=107),
dict(min=40000, max=44999, n=104),
dict(min=45000, max=49999, n=178),
dict(min=50000, max=59999, n=106),
dict(min=60000, max=74999, n=177),
dict(min=75000, max=99999, n=262),
dict(min=100000, max=124999, n=77),
dict(min=125000, max=149999, n=100),
dict(min=150000, max=199999, n=58),
dict(min=200000, max=250001, n=18)
]
approximate_median(income)
```
| github_jupyter |
```
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
```
# Vertex client library: AutoML tabular binary classification model for batch prediction
<table align="left">
<td>
<a href="https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/community/gapic/automl/showcase_automl_tabular_binary_classification_batch.ipynb">
<img src="https://cloud.google.com/ml-engine/images/colab-logo-32px.png" alt="Colab logo"> Run in Colab
</a>
</td>
<td>
<a href="https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/master/notebooks/community/gapic/automl/showcase_automl_tabular_binary_classification_batch.ipynb">
<img src="https://cloud.google.com/ml-engine/images/github-logo-32px.png" alt="GitHub logo">
View on GitHub
</a>
</td>
</table>
<br/><br/><br/>
## Overview
This tutorial demonstrates how to use the Vertex client library for Python to create tabular binary classification models and do batch prediction using Google Cloud's [AutoML](https://cloud.google.com/vertex-ai/docs/start/automl-users).
### Dataset
The dataset used for this tutorial is the [Bank Marketing](gs://cloud-ml-tables-data/bank-marketing.csv). This dataset does not require any feature engineering. The version of the dataset you will use in this tutorial is stored in a public Cloud Storage bucket.
### Objective
In this tutorial, you create an AutoML tabular binary classification model from a Python script, and then do a batch prediction using the Vertex client library. You can alternatively create and deploy models using the `gcloud` command-line tool or online using the Google Cloud Console.
The steps performed include:
- Create a Vertex `Dataset` resource.
- Train the model.
- View the model evaluation.
- Make a batch prediction.
There is one key difference between using batch prediction and using online prediction:
* Prediction Service: Does an on-demand prediction for the entire set of instances (i.e., one or more data items) and returns the results in real-time.
* Batch Prediction Service: Does a queued (batch) prediction for the entire set of instances in the background and stores the results in a Cloud Storage bucket when ready.
### Costs
This tutorial uses billable components of Google Cloud (GCP):
* Vertex AI
* Cloud Storage
Learn about [Vertex AI
pricing](https://cloud.google.com/vertex-ai/pricing) and [Cloud Storage
pricing](https://cloud.google.com/storage/pricing), and use the [Pricing
Calculator](https://cloud.google.com/products/calculator/)
to generate a cost estimate based on your projected usage.
## Installation
Install the latest version of Vertex client library.
```
import os
import sys
# Google Cloud Notebook
if os.path.exists("/opt/deeplearning/metadata/env_version"):
USER_FLAG = "--user"
else:
USER_FLAG = ""
! pip3 install -U google-cloud-aiplatform $USER_FLAG
```
Install the latest GA version of *google-cloud-storage* library as well.
```
! pip3 install -U google-cloud-storage $USER_FLAG
```
### Restart the kernel
Once you've installed the Vertex client library and Google *cloud-storage*, you need to restart the notebook kernel so it can find the packages.
```
if not os.getenv("IS_TESTING"):
# Automatically restart kernel after installs
import IPython
app = IPython.Application.instance()
app.kernel.do_shutdown(True)
```
## Before you begin
### GPU runtime
*Make sure you're running this notebook in a GPU runtime if you have that option. In Colab, select* **Runtime > Change Runtime Type > GPU**
### Set up your Google Cloud project
**The following steps are required, regardless of your notebook environment.**
1. [Select or create a Google Cloud project](https://console.cloud.google.com/cloud-resource-manager). When you first create an account, you get a $300 free credit towards your compute/storage costs.
2. [Make sure that billing is enabled for your project.](https://cloud.google.com/billing/docs/how-to/modify-project)
3. [Enable the Vertex APIs and Compute Engine APIs.](https://console.cloud.google.com/flows/enableapi?apiid=ml.googleapis.com,compute_component)
4. [The Google Cloud SDK](https://cloud.google.com/sdk) is already installed in Google Cloud Notebook.
5. Enter your project ID in the cell below. Then run the cell to make sure the
Cloud SDK uses the right project for all the commands in this notebook.
**Note**: Jupyter runs lines prefixed with `!` as shell commands, and it interpolates Python variables prefixed with `$` into these commands.
```
PROJECT_ID = "[your-project-id]" # @param {type:"string"}
if PROJECT_ID == "" or PROJECT_ID is None or PROJECT_ID == "[your-project-id]":
# Get your GCP project id from gcloud
shell_output = !gcloud config list --format 'value(core.project)' 2>/dev/null
PROJECT_ID = shell_output[0]
print("Project ID:", PROJECT_ID)
! gcloud config set project $PROJECT_ID
```
#### Region
You can also change the `REGION` variable, which is used for operations
throughout the rest of this notebook. Below are regions supported for Vertex. We recommend that you choose the region closest to you.
- Americas: `us-central1`
- Europe: `europe-west4`
- Asia Pacific: `asia-east1`
You may not use a multi-regional bucket for training with Vertex. Not all regions provide support for all Vertex services. For the latest support per region, see the [Vertex locations documentation](https://cloud.google.com/vertex-ai/docs/general/locations)
```
REGION = "us-central1" # @param {type: "string"}
```
#### Timestamp
If you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append onto the name of resources which will be created in this tutorial.
```
from datetime import datetime
TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S")
```
### Authenticate your Google Cloud account
**If you are using Google Cloud Notebook**, your environment is already authenticated. Skip this step.
**If you are using Colab**, run the cell below and follow the instructions when prompted to authenticate your account via oAuth.
**Otherwise**, follow these steps:
In the Cloud Console, go to the [Create service account key](https://console.cloud.google.com/apis/credentials/serviceaccountkey) page.
**Click Create service account**.
In the **Service account name** field, enter a name, and click **Create**.
In the **Grant this service account access to project** section, click the Role drop-down list. Type "Vertex" into the filter box, and select **Vertex Administrator**. Type "Storage Object Admin" into the filter box, and select **Storage Object Admin**.
Click Create. A JSON file that contains your key downloads to your local environment.
Enter the path to your service account key as the GOOGLE_APPLICATION_CREDENTIALS variable in the cell below and run the cell.
```
# If you are running this notebook in Colab, run this cell and follow the
# instructions to authenticate your GCP account. This provides access to your
# Cloud Storage bucket and lets you submit training jobs and prediction
# requests.
# If on Google Cloud Notebook, then don't execute this code
if not os.path.exists("/opt/deeplearning/metadata/env_version"):
if "google.colab" in sys.modules:
from google.colab import auth as google_auth
google_auth.authenticate_user()
# If you are running this notebook locally, replace the string below with the
# path to your service account key and run this cell to authenticate your GCP
# account.
elif not os.getenv("IS_TESTING"):
%env GOOGLE_APPLICATION_CREDENTIALS ''
```
### Create a Cloud Storage bucket
**The following steps are required, regardless of your notebook environment.**
This tutorial is designed to use training data that is in a public Cloud Storage bucket and a local Cloud Storage bucket for your batch predictions. You may alternatively use your own training data that you have stored in a local Cloud Storage bucket.
Set the name of your Cloud Storage bucket below. Bucket names must be globally unique across all Google Cloud projects, including those outside of your organization.
```
BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"}
if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]":
BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP
```
**Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket.
```
! gsutil mb -l $REGION $BUCKET_NAME
```
Finally, validate access to your Cloud Storage bucket by examining its contents:
```
! gsutil ls -al $BUCKET_NAME
```
### Set up variables
Next, set up some variables used throughout the tutorial.
### Import libraries and define constants
#### Import Vertex client library
Import the Vertex client library into our Python environment.
```
import time
from google.cloud.aiplatform import gapic as aip
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Struct, Value
```
#### Vertex constants
Setup up the following constants for Vertex:
- `API_ENDPOINT`: The Vertex API service endpoint for dataset, model, job, pipeline and endpoint services.
- `PARENT`: The Vertex location root path for dataset, model, job, pipeline and endpoint resources.
```
# API service endpoint
API_ENDPOINT = "{}-aiplatform.googleapis.com".format(REGION)
# Vertex location root path for your dataset, model and endpoint resources
PARENT = "projects/" + PROJECT_ID + "/locations/" + REGION
```
#### AutoML constants
Set constants unique to AutoML datasets and training:
- Dataset Schemas: Tells the `Dataset` resource service which type of dataset it is.
- Data Labeling (Annotations) Schemas: Tells the `Dataset` resource service how the data is labeled (annotated).
- Dataset Training Schemas: Tells the `Pipeline` resource service the task (e.g., classification) to train the model for.
```
# Tabular Dataset type
DATA_SCHEMA = "gs://google-cloud-aiplatform/schema/dataset/metadata/tables_1.0.0.yaml"
# Tabular Labeling type
LABEL_SCHEMA = (
"gs://google-cloud-aiplatform/schema/dataset/ioformat/table_io_format_1.0.0.yaml"
)
# Tabular Training task
TRAINING_SCHEMA = "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_tables_1.0.0.yaml"
```
#### Hardware Accelerators
Set the hardware accelerators (e.g., GPU), if any, for prediction.
Set the variable `DEPLOY_GPU/DEPLOY_NGPU` to use a container image supporting a GPU and the number of GPUs allocated to the virtual machine (VM) instance. For example, to use a GPU container image with 4 Nvidia Telsa K80 GPUs allocated to each VM, you would specify:
(aip.AcceleratorType.NVIDIA_TESLA_K80, 4)
For GPU, available accelerators include:
- aip.AcceleratorType.NVIDIA_TESLA_K80
- aip.AcceleratorType.NVIDIA_TESLA_P100
- aip.AcceleratorType.NVIDIA_TESLA_P4
- aip.AcceleratorType.NVIDIA_TESLA_T4
- aip.AcceleratorType.NVIDIA_TESLA_V100
Otherwise specify `(None, None)` to use a container image to run on a CPU.
```
if os.getenv("IS_TESTING_DEPOLY_GPU"):
DEPLOY_GPU, DEPLOY_NGPU = (
aip.AcceleratorType.NVIDIA_TESLA_K80,
int(os.getenv("IS_TESTING_DEPOLY_GPU")),
)
else:
DEPLOY_GPU, DEPLOY_NGPU = (aip.AcceleratorType.NVIDIA_TESLA_K80, 1)
```
#### Container (Docker) image
For AutoML batch prediction, the container image for the serving binary is pre-determined by the Vertex prediction service. More specifically, the service will pick the appropriate container for the model depending on the hardware accelerator you selected.
#### Machine Type
Next, set the machine type to use for prediction.
- Set the variable `DEPLOY_COMPUTE` to configure the compute resources for the VM you will use for prediction.
- `machine type`
- `n1-standard`: 3.75GB of memory per vCPU.
- `n1-highmem`: 6.5GB of memory per vCPU
- `n1-highcpu`: 0.9 GB of memory per vCPU
- `vCPUs`: number of \[2, 4, 8, 16, 32, 64, 96 \]
*Note: You may also use n2 and e2 machine types for training and deployment, but they do not support GPUs*
```
if os.getenv("IS_TESTING_DEPLOY_MACHINE"):
MACHINE_TYPE = os.getenv("IS_TESTING_DEPLOY_MACHINE")
else:
MACHINE_TYPE = "n1-standard"
VCPU = "4"
DEPLOY_COMPUTE = MACHINE_TYPE + "-" + VCPU
print("Deploy machine type", DEPLOY_COMPUTE)
```
# Tutorial
Now you are ready to start creating your own AutoML tabular binary classification model.
## Set up clients
The Vertex client library works as a client/server model. On your side (the Python script) you will create a client that sends requests and receives responses from the Vertex server.
You will use different clients in this tutorial for different steps in the workflow. So set them all up upfront.
- Dataset Service for `Dataset` resources.
- Model Service for `Model` resources.
- Pipeline Service for training.
- Job Service for batch prediction and custom training.
```
# client options same for all services
client_options = {"api_endpoint": API_ENDPOINT}
def create_dataset_client():
client = aip.DatasetServiceClient(client_options=client_options)
return client
def create_model_client():
client = aip.ModelServiceClient(client_options=client_options)
return client
def create_pipeline_client():
client = aip.PipelineServiceClient(client_options=client_options)
return client
def create_job_client():
client = aip.JobServiceClient(client_options=client_options)
return client
clients = {}
clients["dataset"] = create_dataset_client()
clients["model"] = create_model_client()
clients["pipeline"] = create_pipeline_client()
clients["job"] = create_job_client()
for client in clients.items():
print(client)
```
## Dataset
Now that your clients are ready, your first step is to create a `Dataset` resource instance. This step differs from Vision, Video and Language. For those products, after the `Dataset` resource is created, one then separately imports the data, using the `import_data` method.
For tabular, importing of the data is deferred until the training pipeline starts training the model. What do we do different? Well, first you won't be calling the `import_data` method. Instead, when you create the dataset instance you specify the Cloud Storage location of the CSV file or BigQuery location of the data table, which contains your tabular data as part of the `Dataset` resource's metadata.
#### Cloud Storage
`metadata = {"input_config": {"gcs_source": {"uri": [gcs_uri]}}}`
The format for a Cloud Storage path is:
gs://[bucket_name]/[folder(s)/[file]
#### BigQuery
`metadata = {"input_config": {"bigquery_source": {"uri": [gcs_uri]}}}`
The format for a BigQuery path is:
bq://[collection].[dataset].[table]
Note that the `uri` field is a list, whereby you can input multiple CSV files or BigQuery tables when your data is split across files.
### Data preparation
The Vertex `Dataset` resource for tabular has a couple of requirements for your tabular data.
- Must be in a CSV file or a BigQuery query.
#### CSV
For tabular binary classification, the CSV file has a few requirements:
- The first row must be the heading -- note how this is different from Vision, Video and Language where the requirement is no heading.
- All but one column are features.
- One column is the label, which you will specify when you subsequently create the training pipeline.
#### Location of Cloud Storage training data.
Now set the variable `IMPORT_FILE` to the location of the CSV index file in Cloud Storage.
```
IMPORT_FILE = "gs://cloud-ml-tables-data/bank-marketing.csv"
```
#### Quick peek at your data
You will use a version of the Bank Marketing dataset that is stored in a public Cloud Storage bucket, using a CSV index file.
Start by doing a quick peek at the data. You count the number of examples by counting the number of rows in the CSV index file (`wc -l`) and then peek at the first few rows.
You also need for training to know the heading name of the label column, which is save as `label_column`. For this dataset, it is the last column in the CSV file.
```
count = ! gsutil cat $IMPORT_FILE | wc -l
print("Number of Examples", int(count[0]))
print("First 10 rows")
! gsutil cat $IMPORT_FILE | head
heading = ! gsutil cat $IMPORT_FILE | head -n1
label_column = str(heading).split(",")[-1].split("'")[0]
print("Label Column Name", label_column)
if label_column is None:
raise Exception("label column missing")
```
## Dataset
Now that your clients are ready, your first step in training a model is to create a managed dataset instance, and then upload your labeled data to it.
### Create `Dataset` resource instance
Use the helper function `create_dataset` to create the instance of a `Dataset` resource. This function does the following:
1. Uses the dataset client service.
2. Creates an Vertex `Dataset` resource (`aip.Dataset`), with the following parameters:
- `display_name`: The human-readable name you choose to give it.
- `metadata_schema_uri`: The schema for the dataset type.
- `metadata`: The Cloud Storage or BigQuery location of the tabular data.
3. Calls the client dataset service method `create_dataset`, with the following parameters:
- `parent`: The Vertex location root path for your `Database`, `Model` and `Endpoint` resources.
- `dataset`: The Vertex dataset object instance you created.
4. The method returns an `operation` object.
An `operation` object is how Vertex handles asynchronous calls for long running operations. While this step usually goes fast, when you first use it in your project, there is a longer delay due to provisioning.
You can use the `operation` object to get status on the operation (e.g., create `Dataset` resource) or to cancel the operation, by invoking an operation method:
| Method | Description |
| ----------- | ----------- |
| result() | Waits for the operation to complete and returns a result object in JSON format. |
| running() | Returns True/False on whether the operation is still running. |
| done() | Returns True/False on whether the operation is completed. |
| canceled() | Returns True/False on whether the operation was canceled. |
| cancel() | Cancels the operation (this may take up to 30 seconds). |
```
TIMEOUT = 90
def create_dataset(name, schema, src_uri=None, labels=None, timeout=TIMEOUT):
start_time = time.time()
try:
if src_uri.startswith("gs://"):
metadata = {"input_config": {"gcs_source": {"uri": [src_uri]}}}
elif src_uri.startswith("bq://"):
metadata = {"input_config": {"bigquery_source": {"uri": [src_uri]}}}
dataset = aip.Dataset(
display_name=name,
metadata_schema_uri=schema,
labels=labels,
metadata=json_format.ParseDict(metadata, Value()),
)
operation = clients["dataset"].create_dataset(parent=PARENT, dataset=dataset)
print("Long running operation:", operation.operation.name)
result = operation.result(timeout=TIMEOUT)
print("time:", time.time() - start_time)
print("response")
print(" name:", result.name)
print(" display_name:", result.display_name)
print(" metadata_schema_uri:", result.metadata_schema_uri)
print(" metadata:", dict(result.metadata))
print(" create_time:", result.create_time)
print(" update_time:", result.update_time)
print(" etag:", result.etag)
print(" labels:", dict(result.labels))
return result
except Exception as e:
print("exception:", e)
return None
result = create_dataset("bank-" + TIMESTAMP, DATA_SCHEMA, src_uri=IMPORT_FILE)
```
Now save the unique dataset identifier for the `Dataset` resource instance you created.
```
# The full unique ID for the dataset
dataset_id = result.name
# The short numeric ID for the dataset
dataset_short_id = dataset_id.split("/")[-1]
print(dataset_id)
```
## Train the model
Now train an AutoML tabular binary classification model using your Vertex `Dataset` resource. To train the model, do the following steps:
1. Create an Vertex training pipeline for the `Dataset` resource.
2. Execute the pipeline to start the training.
### Create a training pipeline
You may ask, what do we use a pipeline for? You typically use pipelines when the job (such as training) has multiple steps, generally in sequential order: do step A, do step B, etc. By putting the steps into a pipeline, we gain the benefits of:
1. Being reusable for subsequent training jobs.
2. Can be containerized and ran as a batch job.
3. Can be distributed.
4. All the steps are associated with the same pipeline job for tracking progress.
Use this helper function `create_pipeline`, which takes the following parameters:
- `pipeline_name`: A human readable name for the pipeline job.
- `model_name`: A human readable name for the model.
- `dataset`: The Vertex fully qualified dataset identifier.
- `schema`: The dataset labeling (annotation) training schema.
- `task`: A dictionary describing the requirements for the training job.
The helper function calls the `Pipeline` client service'smethod `create_pipeline`, which takes the following parameters:
- `parent`: The Vertex location root path for your `Dataset`, `Model` and `Endpoint` resources.
- `training_pipeline`: the full specification for the pipeline training job.
Let's look now deeper into the *minimal* requirements for constructing a `training_pipeline` specification:
- `display_name`: A human readable name for the pipeline job.
- `training_task_definition`: The dataset labeling (annotation) training schema.
- `training_task_inputs`: A dictionary describing the requirements for the training job.
- `model_to_upload`: A human readable name for the model.
- `input_data_config`: The dataset specification.
- `dataset_id`: The Vertex dataset identifier only (non-fully qualified) -- this is the last part of the fully-qualified identifier.
- `fraction_split`: If specified, the percentages of the dataset to use for training, test and validation. Otherwise, the percentages are automatically selected by AutoML.
```
def create_pipeline(pipeline_name, model_name, dataset, schema, task):
dataset_id = dataset.split("/")[-1]
input_config = {
"dataset_id": dataset_id,
"fraction_split": {
"training_fraction": 0.8,
"validation_fraction": 0.1,
"test_fraction": 0.1,
},
}
training_pipeline = {
"display_name": pipeline_name,
"training_task_definition": schema,
"training_task_inputs": task,
"input_data_config": input_config,
"model_to_upload": {"display_name": model_name},
}
try:
pipeline = clients["pipeline"].create_training_pipeline(
parent=PARENT, training_pipeline=training_pipeline
)
print(pipeline)
except Exception as e:
print("exception:", e)
return None
return pipeline
```
### Construct the task requirements
Next, construct the task requirements. Unlike other parameters which take a Python (JSON-like) dictionary, the `task` field takes a Google protobuf Struct, which is very similar to a Python dictionary. Use the `json_format.ParseDict` method for the conversion.
The minimal fields you need to specify are:
- `prediction_type`: Whether we are doing "classification" or "regression".
- `target_column`: The CSV heading column name for the column we want to predict (i.e., the label).
- `train_budget_milli_node_hours`: The maximum time to budget (billed) for training the model, where 1000 = 1 hour.
- `disable_early_stopping`: Whether True/False to let AutoML use its judgement to stop training early or train for the entire budget.
- `transformations`: Specifies the feature engineering for each feature column.
For `transformations`, the list must have an entry for each column. The outer key field indicates the type of feature engineering for the corresponding column. In this tutorial, you set it to `"auto"` to tell AutoML to automatically determine it.
Finally, create the pipeline by calling the helper function `create_pipeline`, which returns an instance of a training pipeline object.
```
TRANSFORMATIONS = [
{"auto": {"column_name": "Age"}},
{"auto": {"column_name": "Job"}},
{"auto": {"column_name": "MaritalStatus"}},
{"auto": {"column_name": "Education"}},
{"auto": {"column_name": "Default"}},
{"auto": {"column_name": "Balance"}},
{"auto": {"column_name": "Housing"}},
{"auto": {"column_name": "Loan"}},
{"auto": {"column_name": "Contact"}},
{"auto": {"column_name": "Day"}},
{"auto": {"column_name": "Month"}},
{"auto": {"column_name": "Duration"}},
{"auto": {"column_name": "Campaign"}},
{"auto": {"column_name": "PDays"}},
{"auto": {"column_name": "POutcome"}},
]
PIPE_NAME = "bank_pipe-" + TIMESTAMP
MODEL_NAME = "bank_model-" + TIMESTAMP
task = Value(
struct_value=Struct(
fields={
"target_column": Value(string_value=label_column),
"prediction_type": Value(string_value="classification"),
"train_budget_milli_node_hours": Value(number_value=1000),
"disable_early_stopping": Value(bool_value=False),
"transformations": json_format.ParseDict(TRANSFORMATIONS, Value()),
}
)
)
response = create_pipeline(PIPE_NAME, MODEL_NAME, dataset_id, TRAINING_SCHEMA, task)
```
Now save the unique identifier of the training pipeline you created.
```
# The full unique ID for the pipeline
pipeline_id = response.name
# The short numeric ID for the pipeline
pipeline_short_id = pipeline_id.split("/")[-1]
print(pipeline_id)
```
### Get information on a training pipeline
Now get pipeline information for just this training pipeline instance. The helper function gets the job information for just this job by calling the the job client service's `get_training_pipeline` method, with the following parameter:
- `name`: The Vertex fully qualified pipeline identifier.
When the model is done training, the pipeline state will be `PIPELINE_STATE_SUCCEEDED`.
```
def get_training_pipeline(name, silent=False):
response = clients["pipeline"].get_training_pipeline(name=name)
if silent:
return response
print("pipeline")
print(" name:", response.name)
print(" display_name:", response.display_name)
print(" state:", response.state)
print(" training_task_definition:", response.training_task_definition)
print(" training_task_inputs:", dict(response.training_task_inputs))
print(" create_time:", response.create_time)
print(" start_time:", response.start_time)
print(" end_time:", response.end_time)
print(" update_time:", response.update_time)
print(" labels:", dict(response.labels))
return response
response = get_training_pipeline(pipeline_id)
```
# Deployment
Training the above model may take upwards of 30 minutes time.
Once your model is done training, you can calculate the actual time it took to train the model by subtracting `end_time` from `start_time`. For your model, you will need to know the fully qualified Vertex Model resource identifier, which the pipeline service assigned to it. You can get this from the returned pipeline instance as the field `model_to_deploy.name`.
```
while True:
response = get_training_pipeline(pipeline_id, True)
if response.state != aip.PipelineState.PIPELINE_STATE_SUCCEEDED:
print("Training job has not completed:", response.state)
model_to_deploy_id = None
if response.state == aip.PipelineState.PIPELINE_STATE_FAILED:
raise Exception("Training Job Failed")
else:
model_to_deploy = response.model_to_upload
model_to_deploy_id = model_to_deploy.name
print("Training Time:", response.end_time - response.start_time)
break
time.sleep(60)
print("model to deploy:", model_to_deploy_id)
```
## Model information
Now that your model is trained, you can get some information on your model.
## Evaluate the Model resource
Now find out how good the model service believes your model is. As part of training, some portion of the dataset was set aside as the test (holdout) data, which is used by the pipeline service to evaluate the model.
### List evaluations for all slices
Use this helper function `list_model_evaluations`, which takes the following parameter:
- `name`: The Vertex fully qualified model identifier for the `Model` resource.
This helper function uses the model client service's `list_model_evaluations` method, which takes the same parameter. The response object from the call is a list, where each element is an evaluation metric.
For each evaluation (you probably only have one) we then print all the key names for each metric in the evaluation, and for a small set (`logLoss` and `auPrc`) you will print the result.
```
def list_model_evaluations(name):
response = clients["model"].list_model_evaluations(parent=name)
for evaluation in response:
print("model_evaluation")
print(" name:", evaluation.name)
print(" metrics_schema_uri:", evaluation.metrics_schema_uri)
metrics = json_format.MessageToDict(evaluation._pb.metrics)
for metric in metrics.keys():
print(metric)
print("logloss", metrics["logLoss"])
print("auPrc", metrics["auPrc"])
return evaluation.name
last_evaluation = list_model_evaluations(model_to_deploy_id)
```
## Model deployment for batch prediction
Now deploy the trained Vertex `Model` resource you created for batch prediction. This differs from deploying a `Model` resource for on-demand prediction.
For online prediction, you:
1. Create an `Endpoint` resource for deploying the `Model` resource to.
2. Deploy the `Model` resource to the `Endpoint` resource.
3. Make online prediction requests to the `Endpoint` resource.
For batch-prediction, you:
1. Create a batch prediction job.
2. The job service will provision resources for the batch prediction request.
3. The results of the batch prediction request are returned to the caller.
4. The job service will unprovision the resoures for the batch prediction request.
## Make a batch prediction request
Now do a batch prediction to your deployed model.
### Make test items
You will use synthetic data as a test data items. Don't be concerned that we are using synthetic data -- we just want to demonstrate how to make a prediction.
```
HEADING = "Age,Job,MaritalStatus,Education,Default,Balance,Housing,Loan,Contact,Day,Month,Duration,Campaign,PDays,Previous,POutcome,Deposit"
INSTANCE_1 = (
"58,managment,married,teritary,no,2143,yes,no,unknown,5,may,261,1,-1,0, unknown"
)
INSTANCE_2 = (
"44,technician,single,secondary,no,39,yes,no,unknown,5,may,151,1,-1,0,unknown"
)
```
### Make the batch input file
Now make a batch input file, which you will store in your local Cloud Storage bucket. Unlike image, video and text, the batch input file for tabular is only supported for CSV. For CSV file, you make:
- The first line is the heading with the feature (fields) heading names.
- Each remaining line is a separate prediction request with the corresponding feature values.
For example:
"feature_1", "feature_2". ...
value_1, value_2, ...
```
import tensorflow as tf
gcs_input_uri = BUCKET_NAME + "/test.csv"
with tf.io.gfile.GFile(gcs_input_uri, "w") as f:
f.write(HEADING + "\n")
f.write(str(INSTANCE_1) + "\n")
f.write(str(INSTANCE_2) + "\n")
print(gcs_input_uri)
! gsutil cat $gcs_input_uri
```
### Compute instance scaling
You have several choices on scaling the compute instances for handling your batch prediction requests:
- Single Instance: The batch prediction requests are processed on a single compute instance.
- Set the minimum (`MIN_NODES`) and maximum (`MAX_NODES`) number of compute instances to one.
- Manual Scaling: The batch prediction requests are split across a fixed number of compute instances that you manually specified.
- Set the minimum (`MIN_NODES`) and maximum (`MAX_NODES`) number of compute instances to the same number of nodes. When a model is first deployed to the instance, the fixed number of compute instances are provisioned and batch prediction requests are evenly distributed across them.
- Auto Scaling: The batch prediction requests are split across a scaleable number of compute instances.
- Set the minimum (`MIN_NODES`) number of compute instances to provision when a model is first deployed and to de-provision, and set the maximum (`MAX_NODES) number of compute instances to provision, depending on load conditions.
The minimum number of compute instances corresponds to the field `min_replica_count` and the maximum number of compute instances corresponds to the field `max_replica_count`, in your subsequent deployment request.
```
MIN_NODES = 1
MAX_NODES = 1
```
### Make batch prediction request
Now that your batch of two test items is ready, let's do the batch request. Use this helper function `create_batch_prediction_job`, with the following parameters:
- `display_name`: The human readable name for the prediction job.
- `model_name`: The Vertex fully qualified identifier for the `Model` resource.
- `gcs_source_uri`: The Cloud Storage path to the input file -- which you created above.
- `gcs_destination_output_uri_prefix`: The Cloud Storage path that the service will write the predictions to.
- `parameters`: Additional filtering parameters for serving prediction results.
The helper function calls the job client service's `create_batch_prediction_job` metho, with the following parameters:
- `parent`: The Vertex location root path for Dataset, Model and Pipeline resources.
- `batch_prediction_job`: The specification for the batch prediction job.
Let's now dive into the specification for the `batch_prediction_job`:
- `display_name`: The human readable name for the prediction batch job.
- `model`: The Vertex fully qualified identifier for the `Model` resource.
- `dedicated_resources`: The compute resources to provision for the batch prediction job.
- `machine_spec`: The compute instance to provision. Use the variable you set earlier `DEPLOY_GPU != None` to use a GPU; otherwise only a CPU is allocated.
- `starting_replica_count`: The number of compute instances to initially provision, which you set earlier as the variable `MIN_NODES`.
- `max_replica_count`: The maximum number of compute instances to scale to, which you set earlier as the variable `MAX_NODES`.
- `model_parameters`: Additional filtering parameters for serving prediction results. *Note*, image segmentation models do not support additional parameters.
- `input_config`: The input source and format type for the instances to predict.
- `instances_format`: The format of the batch prediction request file: `csv` only supported.
- `gcs_source`: A list of one or more Cloud Storage paths to your batch prediction requests.
- `output_config`: The output destination and format for the predictions.
- `prediction_format`: The format of the batch prediction response file: `csv` only supported.
- `gcs_destination`: The output destination for the predictions.
This call is an asychronous operation. You will print from the response object a few select fields, including:
- `name`: The Vertex fully qualified identifier assigned to the batch prediction job.
- `display_name`: The human readable name for the prediction batch job.
- `model`: The Vertex fully qualified identifier for the Model resource.
- `generate_explanations`: Whether True/False explanations were provided with the predictions (explainability).
- `state`: The state of the prediction job (pending, running, etc).
Since this call will take a few moments to execute, you will likely get `JobState.JOB_STATE_PENDING` for `state`.
```
BATCH_MODEL = "bank_batch-" + TIMESTAMP
def create_batch_prediction_job(
display_name,
model_name,
gcs_source_uri,
gcs_destination_output_uri_prefix,
parameters=None,
):
if DEPLOY_GPU:
machine_spec = {
"machine_type": DEPLOY_COMPUTE,
"accelerator_type": DEPLOY_GPU,
"accelerator_count": DEPLOY_NGPU,
}
else:
machine_spec = {
"machine_type": DEPLOY_COMPUTE,
"accelerator_count": 0,
}
batch_prediction_job = {
"display_name": display_name,
# Format: 'projects/{project}/locations/{location}/models/{model_id}'
"model": model_name,
"model_parameters": json_format.ParseDict(parameters, Value()),
"input_config": {
"instances_format": IN_FORMAT,
"gcs_source": {"uris": [gcs_source_uri]},
},
"output_config": {
"predictions_format": OUT_FORMAT,
"gcs_destination": {"output_uri_prefix": gcs_destination_output_uri_prefix},
},
"dedicated_resources": {
"machine_spec": machine_spec,
"starting_replica_count": MIN_NODES,
"max_replica_count": MAX_NODES,
},
}
response = clients["job"].create_batch_prediction_job(
parent=PARENT, batch_prediction_job=batch_prediction_job
)
print("response")
print(" name:", response.name)
print(" display_name:", response.display_name)
print(" model:", response.model)
try:
print(" generate_explanation:", response.generate_explanation)
except:
pass
print(" state:", response.state)
print(" create_time:", response.create_time)
print(" start_time:", response.start_time)
print(" end_time:", response.end_time)
print(" update_time:", response.update_time)
print(" labels:", response.labels)
return response
IN_FORMAT = "csv"
OUT_FORMAT = "csv" # [csv]
response = create_batch_prediction_job(
BATCH_MODEL, model_to_deploy_id, gcs_input_uri, BUCKET_NAME, None
)
```
Now get the unique identifier for the batch prediction job you created.
```
# The full unique ID for the batch job
batch_job_id = response.name
# The short numeric ID for the batch job
batch_job_short_id = batch_job_id.split("/")[-1]
print(batch_job_id)
```
### Get information on a batch prediction job
Use this helper function `get_batch_prediction_job`, with the following paramter:
- `job_name`: The Vertex fully qualified identifier for the batch prediction job.
The helper function calls the job client service's `get_batch_prediction_job` method, with the following paramter:
- `name`: The Vertex fully qualified identifier for the batch prediction job. In this tutorial, you will pass it the Vertex fully qualified identifier for your batch prediction job -- `batch_job_id`
The helper function will return the Cloud Storage path to where the predictions are stored -- `gcs_destination`.
```
def get_batch_prediction_job(job_name, silent=False):
response = clients["job"].get_batch_prediction_job(name=job_name)
if silent:
return response.output_config.gcs_destination.output_uri_prefix, response.state
print("response")
print(" name:", response.name)
print(" display_name:", response.display_name)
print(" model:", response.model)
try: # not all data types support explanations
print(" generate_explanation:", response.generate_explanation)
except:
pass
print(" state:", response.state)
print(" error:", response.error)
gcs_destination = response.output_config.gcs_destination
print(" gcs_destination")
print(" output_uri_prefix:", gcs_destination.output_uri_prefix)
return gcs_destination.output_uri_prefix, response.state
predictions, state = get_batch_prediction_job(batch_job_id)
```
### Get Predictions
When the batch prediction is done processing, the job state will be `JOB_STATE_SUCCEEDED`.
Finally you view the predictions stored at the Cloud Storage path you set as output. The predictions will be in a CSV format, which you indicated at the time you made the batch prediction job, under a subfolder starting with the name `prediction`, and under that folder will be a file called `predictions*.csv`.
Now display (cat) the contents. You will see multiple rows, one for each prediction.
For each prediction:
- The first four fields are the values (features) you did the prediction on.
- The remaining fields are the confidence values, between 0 and 1, for each prediction.
```
def get_latest_predictions(gcs_out_dir):
""" Get the latest prediction subfolder using the timestamp in the subfolder name"""
folders = !gsutil ls $gcs_out_dir
latest = ""
for folder in folders:
subfolder = folder.split("/")[-2]
if subfolder.startswith("prediction-"):
if subfolder > latest:
latest = folder[:-1]
return latest
while True:
predictions, state = get_batch_prediction_job(batch_job_id, True)
if state != aip.JobState.JOB_STATE_SUCCEEDED:
print("The job has not completed:", state)
if state == aip.JobState.JOB_STATE_FAILED:
raise Exception("Batch Job Failed")
else:
folder = get_latest_predictions(predictions)
! gsutil ls $folder/prediction*.csv
! gsutil cat $folder/prediction*.csv
break
time.sleep(60)
```
# Cleaning up
To clean up all GCP resources used in this project, you can [delete the GCP
project](https://cloud.google.com/resource-manager/docs/creating-managing-projects#shutting_down_projects) you used for the tutorial.
Otherwise, you can delete the individual resources you created in this tutorial:
- Dataset
- Pipeline
- Model
- Endpoint
- Batch Job
- Custom Job
- Hyperparameter Tuning Job
- Cloud Storage Bucket
```
delete_dataset = True
delete_pipeline = True
delete_model = True
delete_endpoint = True
delete_batchjob = True
delete_customjob = True
delete_hptjob = True
delete_bucket = True
# Delete the dataset using the Vertex fully qualified identifier for the dataset
try:
if delete_dataset and "dataset_id" in globals():
clients["dataset"].delete_dataset(name=dataset_id)
except Exception as e:
print(e)
# Delete the training pipeline using the Vertex fully qualified identifier for the pipeline
try:
if delete_pipeline and "pipeline_id" in globals():
clients["pipeline"].delete_training_pipeline(name=pipeline_id)
except Exception as e:
print(e)
# Delete the model using the Vertex fully qualified identifier for the model
try:
if delete_model and "model_to_deploy_id" in globals():
clients["model"].delete_model(name=model_to_deploy_id)
except Exception as e:
print(e)
# Delete the endpoint using the Vertex fully qualified identifier for the endpoint
try:
if delete_endpoint and "endpoint_id" in globals():
clients["endpoint"].delete_endpoint(name=endpoint_id)
except Exception as e:
print(e)
# Delete the batch job using the Vertex fully qualified identifier for the batch job
try:
if delete_batchjob and "batch_job_id" in globals():
clients["job"].delete_batch_prediction_job(name=batch_job_id)
except Exception as e:
print(e)
# Delete the custom job using the Vertex fully qualified identifier for the custom job
try:
if delete_customjob and "job_id" in globals():
clients["job"].delete_custom_job(name=job_id)
except Exception as e:
print(e)
# Delete the hyperparameter tuning job using the Vertex fully qualified identifier for the hyperparameter tuning job
try:
if delete_hptjob and "hpt_job_id" in globals():
clients["job"].delete_hyperparameter_tuning_job(name=hpt_job_id)
except Exception as e:
print(e)
if delete_bucket and "BUCKET_NAME" in globals():
! gsutil rm -r $BUCKET_NAME
```
| github_jupyter |
# Project: Linear Regression
Reggie is a mad scientist who has been hired by the local fast food joint to build their newest ball pit in the play area. As such, he is working on researching the bounciness of different balls so as to optimize the pit. He is running an experiment to bounce different sizes of bouncy balls, and then fitting lines to the data points he records. He has heard of linear regression, but needs your help to implement a version of linear regression in Python.
_Linear Regression_ is when you have a group of points on a graph, and you find a line that approximately resembles that group of points. A good Linear Regression algorithm minimizes the _error_, or the distance from each point to the line. A line with the least error is the line that fits the data the best. We call this a line of _best fit_.
We will use loops, lists, and arithmetic to create a function that will find a line of best fit when given a set of data.
## Part 1: Calculating Error
The line we will end up with will have a formula that looks like:
```
y = m*x + b
```
`m` is the slope of the line and `b` is the intercept, where the line crosses the y-axis.
Create a function called `get_y()` that takes in `m`, `b`, and `x` and returns what the `y` value would be for that `x` on that line!
```
def get_y(m, b, x):
y = m*x + b
return y
get_y(1, 0, 7) == 7
get_y(5, 10, 3) == 25
```
Reggie wants to try a bunch of different `m` values and `b` values and see which line produces the least error. To calculate error between a point and a line, he wants a function called `calculate_error()`, which will take in `m`, `b`, and an [x, y] point called `point` and return the distance between the line and the point.
To find the distance:
1. Get the x-value from the point and store it in a variable called `x_point`
2. Get the x-value from the point and store it in a variable called `y_point`
3. Use `get_y()` to get the y-value that `x_point` would be on the line
4. Find the difference between the y from `get_y` and `y_point`
5. Return the absolute value of the distance (you can use the built-in function `abs()` to do this)
The distance represents the error between the line `y = m*x + b` and the `point` given.
```
def calculate_error(m, b, point):
x_point, y_point = point
y = m*x_point + b
distance = abs(y - y_point)
return distance
```
Let's test this function!
```
#this is a line that looks like y = x, so (3, 3) should lie on it. thus, error should be 0:
print(calculate_error(1, 0, (3, 3)))
#the point (3, 4) should be 1 unit away from the line y = x:
print(calculate_error(1, 0, (3, 4)))
#the point (3, 3) should be 1 unit away from the line y = x - 1:
print(calculate_error(1, -1, (3, 3)))
#the point (3, 3) should be 5 units away from the line y = -x + 1:
print(calculate_error(-1, 1, (3, 3)))
```
Great! Reggie's datasets will be sets of points. For example, he ran an experiment comparing the width of bouncy balls to how high they bounce:
```
datapoints = [(1, 2), (2, 0), (3, 4), (4, 4), (5, 3)]
```
The first datapoint, `(1, 2)`, means that his 1cm bouncy ball bounced 2 meters. The 4cm bouncy ball bounced 4 meters.
As we try to fit a line to this data, we will need a function called `calculate_all_error`, which takes `m` and `b` that describe a line, and `points`, a set of data like the example above.
`calculate_all_error` should iterate through each `point` in `points` and calculate the error from that point to the line (using `calculate_error`). It should keep a running total of the error, and then return that total after the loop.
```
def calculate_all_error(m, b, points):
total_error = 0
for point in datapoints:
point_error = calculate_error(m, b, point)
total_error += point_error
return total_error
```
Let's test this function!
```
#every point in this dataset lies upon y=x, so the total error should be zero:
datapoints = [(1, 1), (3, 3), (5, 5), (-1, -1)]
print(calculate_all_error(1, 0, datapoints))
#every point in this dataset is 1 unit away from y = x + 1, so the total error should be 4:
datapoints = [(1, 1), (3, 3), (5, 5), (-1, -1)]
print(calculate_all_error(1, 1, datapoints))
#every point in this dataset is 1 unit away from y = x - 1, so the total error should be 4:
datapoints = [(1, 1), (3, 3), (5, 5), (-1, -1)]
print(calculate_all_error(1, -1, datapoints))
#the points in this dataset are 1, 5, 9, and 3 units away from y = -x + 1, respectively, so total error should be
# 1 + 5 + 9 + 3 = 18
datapoints = [(1, 1), (3, 3), (5, 5), (-1, -1)]
print(calculate_all_error(-1, 1, datapoints))
```
Great! It looks like we now have a function that can take in a line and Reggie's data and return how much error that line produces when we try to fit it to the data.
Our next step is to find the `m` and `b` that minimizes this error, and thus fits the data best!
## Part 2: Try a bunch of slopes and intercepts!
The way Reggie wants to find a line of best fit is by trial and error. He wants to try a bunch of different slopes (`a` values) and a bunch of different intercepts (`b` values) and see which one produces the smallest error value for his dataset.
Using a list comprehension, let's create a list of possible `a` values to try. Make the list `possible_as` that goes from -10 to 10, in increments of 0.1.
The way Reggie wants to find a line of best fit is by trial and error. He wants to try a bunch of different slopes (`m` values) and a bunch of different intercepts (`b` values) and see which one produces the smallest error value for his dataset.
Using a list comprehension, let's create a list of possible `m` values to try. Make the list `possible_ms` that goes from -10 to 10, in increments of 0.1.
Hint (to view this hint, either double-click this cell or highlight the following white space): <font color="white">you can go through the values in range(-100, 100) and multiply each one by 0.1</font>
```
possible_ms = [m * 0.1 for m in range(-100, 100)]
```
Now, let's make a list of `possible_bs` to check that would be the values from -20 to 20, in steps of 0.1:
```
possible_bs = [b * 0.1 for b in range(-200, 200)]
```
We are going to find the smallest error. First, we will make every possible `y = m*x + b` line by pairing all of the possible `m`s with all of the possible `b`s. Then, we will see which `y = m*x + b` line produces the smallest total error with the set of data stored in `datapoint`.
First, create the variables that we will be optimizing:
* `smallest_error` — this should start at infinity (`float("inf")`) so that any error we get at first will be smaller than our value of `smallest_error`
* `best_m` — we can start this at `0`
* `best_b` — we can start this at `0`
We want to:
* Iterate through each element `m` in `possible_ms`
* For every `m` value, take every `b` value in `possible_bs`
* If the value returned from `calculate_all_error` on this `m` value, this `b` value, and `datapoints` is less than our current `smallest_error`,
* Set `best_m` and `best_b` to be these values, and set `smallest_error` to this error.
By the end of these nested loops, the `smallest_error` should hold the smallest error we have found, and `best_m` and `best_b` should be the values that produced that smallest error value.
Print out `best_m`, `best_b` and `smallest_error` after the loops.
```
datapoints = [(1, 2), (2, 0), (3, 4), (4, 4), (5, 3)]
best_error = float("inf")
best_m = 0
best_b = 0
for m in possible_ms:
for b in possible_bs:
error = calculate_all_error(m, b, datapoints)
if error < best_error:
best_m = m
best_b = b
best_error = error
print(best_m, best_b, best_error)
```
## Part 3: What does our model predict?
Now we have seen that for this set of observations on the bouncy balls, the line that fits the data best has an `m` of 0.3 and a `b` of 1.7:
```
y = 0.3x + 1.7
```
This line produced a total error of 5.
Using this `m` and this `b`, what does your line predict the bounce height of a ball with a width of 6 to be?
In other words, what is the output of `get_y()` when we call it with:
* m = 0.3
* b = 1.7
* x = 6
```
get_y(0.3, 1.7, 6)
```
Our model predicts that the 6cm ball will bounce 3.5m.
Now, Reggie can use this model to predict the bounce of all kinds of sizes of balls he may choose to include in the ball pit!
| github_jupyter |
# Practical Examples of Interactive Visualizations in JupyterLab with Pixi.js and Jupyter Widgets
# PyData Berlin 2018 - 2018-07-08
# Jeremy Tuloup
# [@jtpio](https://twitter.com/jtpio)
# [github.com/jtpio](https://github.com/jtpio)
# [jtp.io](https://jtp.io)
![skip](./img/skip.png)
# The Python Visualization Landscape (2017)
![Python Landscape](./img/python_viz_landscape.png)
Source:
- [Jake VanderPlas: The Python Visualization Landscape PyCon 2017](https://www.youtube.com/watch?v=FytuB8nFHPQ)
- [Source for the Visualization](https://github.com/rougier/python-visualization-landscape), by Nicolas P. Rougier
![skip](./img/skip.png)
# Motivation
|Not This|This|
|:--------------------------:|:-----------------------------------------:|
|![from](img/matplotlib_barchart.png) | ![to](img/pixijs-jupyterlab.gif)|
![skip](./img/skip.png)
# JupyterLab - Pixi.js - Jupyter Widgets?
![skip](./img/skip.png)
# Prerequisites
# * Jupyter Notebook
# * Python
![skip](./img/skip.png)
# JupyterLab
![skip](./img/skip.png)
![pixi](pixi/pixijs-logo.png)
## * Powerful 2D rendering engine written in JavaScript
## * Abstraction on top of Canvas and WebGL
# [Live Example!](http://localhost:4000)
```javascript
let app = new PIXI.Application(800, 600, {backgroundColor : 0x1099bb});
document.body.appendChild(app.view);
let bunny = PIXI.Sprite.fromImage('bunny.png')
bunny.anchor.set(0.5);
bunny.x = app.screen.width / 2;
bunny.y = app.screen.height / 2;
app.stage.addChild(bunny);
app.ticker.add((delta) => {
bunny.rotation += 0.1 * delta;
});
```
![skip](./img/skip.png)
# Jupyter Widgets
![WidgetModelView](./img/WidgetModelView.png)
[Open the image](./img/WidgetModelView.png)
- Source: [https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Basics.html#Why-does-displaying-the-same-widget-twice-work?](https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Basics.html#Why-does-displaying-the-same-widget-twice-work?)
```
from ipywidgets import IntSlider
slider = IntSlider(min=0, max=10)
slider
slider
slider.value
slider.value = 2
```
# Tutorial to create your own
## https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Custom.html
# Libraries
## bqplot
![bqplot](./img/bqplot.gif)
## ipyleaflet
![ipyleaflet](./img/ipyleaflet.gif)
## ipyvolume
![ipyvolume](./img/ipyvolume.gif)
![skip](./img/skip.png)
# Motivation: Very Custom Visualizations
![motivation](./img/pixijs-jupyterlab.gif)
![skip](./img/skip.png)
# Drawing Shapes on a Canvas
```
from ipyutils import SimpleShape
```
# Implementation
## - [simple_shape.py](../ipyutils/simple_shape.py): defines the **SimpleShape** Python class
## - [widget.ts](../src/simple_shapes/widget.ts): defines the **SimpleShapeModel** and **SimpleShapeView** Typescript classes
```
square = SimpleShape()
square
square.rotate = True
```
# Level Up 🚀
```
from ipyutils import Shapes
shapes = Shapes(n_shapes=100)
shapes
shapes.shape
shapes.shape = 'square'
shapes.rotate = True
shapes.wobble = True
```
![skip](./img/skip.png)
# Visualizing Recursion with the Bermuda Triangle Puzzle
![Bermuda Triangle Puzzle](img/bermuda_triangle_puzzle.jpg)
![skip](./img/skip.png)
# Motivation
# * Solve the puzzle programmatically
# * Verify a solution visually
# * Animate the process
![skip](./img/skip.png)
# BermudaTriangle Widget
```
from ipyutils import TriangleAnimation, BermudaTriangle
triangles = TriangleAnimation()
triangles
```
![skip](./img/skip.png)
# What can we do with this widget?
![skip](./img/skip.png)
# Visualize Transitions
From | To
:--------------------------:|:-------------------------:
![from](img/anim_from.png) | ![to](img/anim_to.png)
```
# states
state_0 = [None] * 16
print(state_0)
state_1 = [[13, 1]] + [None] * 15
print(state_1)
state_2 = [[13, 1], [12, 0]] + [None] * 14
print(state_2)
```
# Example States and Animation
```
example_states = TriangleAnimation()
bermuda = example_states.bermuda
bermuda.states = [
[None] * 16,
[[7, 0]] + [None] * 15,
[[7, 1]] + [None] * 15,
[[7, 2]] + [None] * 15,
[[7, 2], [0, 0]] + [None] * 14,
[[7, 2], [0, 1]] + [None] * 14,
[[i, 0] for i in range(16)],
[[i, 1] for i in range(16)],
]
example_states
```
![skip](./img/skip.png)
# Solver
```
from copy import deepcopy
class Solver(BermudaTriangle):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.reset_state()
def reset_state(self):
self.board = [None] * self.N_TRIANGLES
self.logs = [deepcopy(self.board)]
self.it = 0
def solve(self):
'''
Method to implement
'''
raise NotImplementedError()
def log(self):
self.logs.append(deepcopy(self.board))
def found(self):
return all(self.is_valid(i) for i in range(self.N_TRIANGLES))
def save_state(self):
self.permutation = self.board
self.states = self.logs
```
# Valid Permutation - is_valid()
```
help(Solver.is_valid)
```
```python
solver.is_valid(7)
# False
```
![Valid](./img/valid_triangle.png)
![skip](./img/skip.png)
# First Try: Random Permutations
```
import random
class RandomSearch(Solver):
def solve(self):
random.seed(42)
self.reset_state()
for i in range(200):
self.board = random.sample(self.permutation, self.N_TRIANGLES)
self.log()
if self.found():
print('Found!')
return True
return False
%%time
solver = RandomSearch()
res = solver.solve()
solver.save_state()
rnd = TriangleAnimation()
rnd.bermuda.title = 'Random Search'
rnd.bermuda.states = solver.states
rnd
```
![skip](./img/skip.png)
# Better: Brute Force using Recursion
```
class RecursiveSolver(Solver):
def solve(self):
self.used = [False] * self.N_TRIANGLES
self.reset_state()
self._place(0)
return self.board
def _place(self, i):
self.it += 1
if i == self.N_TRIANGLES:
return True
for j in range(self.N_TRIANGLES - 1, -1, -1):
if self.used[j]:
# piece number j already used
continue
self.used[j] = True
for rot in range(3):
# place the piece on the board
self.board[i] = (j, rot)
self.log()
# stop the recursion if the current configuration
# is not valid or a solution has been found
if self.is_valid(i) and self._place(i + 1):
return True
# remove the piece from the board
self.board[i] = None
self.used[j] = False
self.log()
return False
%%time
solver = RecursiveSolver()
res = solver.solve()
if solver.found():
print('Solution found!')
print(f'{len(solver.logs)} steps')
solver.save_state()
else:
print('No solution found')
recursion = TriangleAnimation()
recursion.bermuda.title = 'Recursive Search'
recursion.bermuda.states = solver.states
recursion
```
![skip](./img/skip.png)
# More details for this example
## * In depth walkthrough on how to create a Jupyter Widget in the notebook
## * [p5.js in the Jupyter Notebook for custom interactive visualizations](https://github.com/jtpio/p5-jupyter-notebook/blob/master/puzzle.ipynb)
## * Using p5.js instead of Pixi.js, but similar concepts
## * Source: [github.com/jtpio/p5-jupyter-notebook](https://github.com/jtpio/p5-jupyter-notebook)
## * [Run on Binder](https://mybinder.org/v2/gh/jtpio/p5-jupyter-notebook/master?filepath=puzzle.ipynb)
![skip](./img/skip.png)
# Recap
## * Custom interactive animations with Pixi.js
## * Leverage the JavaScript ecosystem in JupyterLab
![skip](./img/skip.png)
# Applications
## * Visual debugging and understanding
## * Teaching and education, learning by doing
## * Combine JavaScript games with data
# Downside
## * Requires some effort to build the visualizations in TypeScript / JavaScript
![skip](./img/skip.png)
# References
## Presentations
### - [Jake VanderPlas: The Python Visualization Landscape PyCon 2017](https://www.youtube.com/watch?v=FytuB8nFHPQ)
### - [PyData London 2016: Sylvain Corlay - Interactive Visualization in Jupyter with Bqplot and Interactive Widgets](https://www.youtube.com/watch?v=eVET9IYgbao)
### - [PLOTCON 2017: Sylvain Corlay, Interactive Data Visualization in JupyterLab with Jupyter](https://www.youtube.com/watch?v=p7Hr54VhOp0)
### - [PyData Amsterdam 2017: Maarten Breddels | A billion stars in the Jupyter Notebook](https://www.youtube.com/watch?v=bP-JBbjwLM8)
## Widgets
### - [Building a Custom Widget Tutorial](https://ipywidgets.readthedocs.io/en/stable/examples/Widget%20Custom.html)
### - [Authoring Custom Jupyter Widgets](https://blog.jupyter.org/authoring-custom-jupyter-widgets-2884a462e724)
### - [p5.js in the Jupyter Notebook for custom interactive visualizations](https://github.com/jtpio/p5-jupyter-notebook/blob/master/puzzle.ipynb)
### - [pythreejs](https://github.com/jovyan/pythreejs): Implemented as an Jupyter Widget
### - [bqplot](https://github.com/bloomberg/bqplot): Great library for interactive data exploration
### - [ipyvolume](https://github.com/maartenbreddels/ipyvolume): 3d plotting for Python in the Jupyter Notebook
### - [ipyleaflet](https://github.com/jupyter-widgets/ipyleaflet): interactive maps in the Jupyter notebook
![skip](./img/skip.png)
# Questions?
## [@jtpio](https://twitter.com/jtpio)
## [github.com/jtpio](https://github.com/jtpio)
## [jtp.io](jtp.io)
![skip](./img/skip.png)
| github_jupyter |
# Regressão linear
## **TOC:**
Na aula de hoje, vamos explorar os seguintes tópicos em Python:
- 1) [Introdução](#intro)
- 2) [Regressão linear simples](#reglinear)
- 3) [Regressão linear múltipla](#multireglinear)
- 4) [Tradeoff viés-variância](#tradeoff)
```
# importe as principais bibliotecas de análise de dados
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```
____
____
____
## 1) **Introdução** <a class="anchor" id="intro"></a>
Imagine que você que vender sua casa.
Você sabe os atributos da sua casa: quantos cômodos têm, quantos carros cabem na garagem, qual é a área construída, qual sua localidade, etc.
Agora, a pergunta é: qual seria o melhor preço pra você colocá-la a venda, ou seja, quanto de fato ela vale?
Você pode solicitar a avaliação de um corretor de imóveis (contanto com a experiência dele), ou então...
...fazer um modelo de **Machine Learning**, que, com base nos atributos e preços de diversas outras casas, pode fazer uma **predição** sobre o preço adequado da sua casa!
Para resolver este problema, podemos utilizar um dos mais simples e importantes algoritmos de machine learning: a Regressão Linear!
____
Para introduzirmos as ideias, vamos usar um [dataset de preço de casas](https://www.kaggle.com/c/house-prices-advanced-regression-techniques/data).
Esta base de dados contém **70 features** (+ 1 ID), que são as características de cada uma das casas listadas; e **1 target**, que é o preço pelo qual aquela casa foi vendida.
Para o significado de cada uma das features, e os valores que elas podem assumir, veja a página acima.
**Vamos ler a base e começar a explorá-la!**
```
df = pd.read_csv("data/house_prices/house_price.csv")
```
Por enquanto, não vamos nos preocupar com os dados missing, pois vamos usar apenas uma feature no nosso modelo inicial.
Aproveite para depois explorar os dados da forma que quiser!
Por enquanto, vamos dar uma olhada na coluna target!
Fica evidente que a distribuição é desviada para a direita.
Vamos tentar alterar isso na próximas versões do modelo para ver se teremos ganhos de performance!
Por enquanto, seguimos assim.
Parece que a variável de área construída ```GrLivArea```) é uma forte candidata a **explicar** o preço das casas, pois vemos calaramente uma correlação entre as variáveis!
Mas note que há claramente dois outliers...
Vamos agora iniciar a construção de um modelo bem simples, que utilize a variável GrLivArea para predizer o preço!
___
___
___
## 2) **Regressão linear simples** <a class="anchor" id="reglinear"></a>
Apesar de alguns outliers, parece bem adequado que os pontos plotados acima sejam descritos por uma reta, não é mesmo?
Ou, melhor dizendo: **a variável GrLivArea parece estar relacionada ao target SalePrice linearmente!**
Para modelarmos esta relação, vamos conhecer o modelo de **Regressão Linear Simples**.
Como o próprio nome diz, o modelo de Regressão Linear será **uma reta (polinômio linear)**, que melhor se ajusta aos seus dados!
O modelo de **Regressão Linear Simples** será uma linha reta que relaciona Y (o preço da casa) e X (os atributos da casa).
Se utilizarmos **apenas um atributo** (como, por exemplo, a área construída), temos uma **Regressão Linear Simples**, e nosso modelo é:
$$ y = b_0 + b_1 X $$
Neste caso, o modelo tem dois coeficientes a serem determinados: $b_0$ (intercepto ou coeficiente linear) e $b_1$ (coeficiente angular).
O algoritmo do estimador é utilizado justamente para encontrarmos os coeficientes $b_0$ e $b_1$ **que melhor se ajustam aos dados!**
Para fazer isso, pode-se utilizar o método dos **mínimos quadrados** ou então o **gradiente descendente**.
Mas não nos preocuparemos com os detalhes do treinamento: usaremos o sklearn para isso!
Vamos começar?
Agora que o modelo está treinado, podemos dar uma olhada nos coeficientes que foram encontrados!
Como interpretamos este resultado?
O nosso modelo final é dado por:
$$ y = 1562.01 + 118.61 \times \text{GrLiveArea}$$
Isto quer dizer que:
> Aumentando a variável "GrLiveArea" em uma unidade faz com que o preço seja aumentado em USD 118.6!
> O preço mínimo a ser pago, independente da área construída, é de 1562.01!
Podemos visualizar o modelo treinado, neste caso:
Fazendo uma previsão:
Ou ainda:
É raro que consigamos visualizar nosso modelo final como fizemos acima, mas no caso da regressão linear simples, temos essa sorte! :)
Vamos agora fazer algumas previsões!
Agora que temos o modelo treinado e algumas previsões, como avaliamos a performance do modelo?
Para isso, podemos dar uma olhada nos **resíduos** das predições! Os resíduos nada mais são do que **os erros do modelo**, ou seja, **a diferença entre cada valor predito e o valor real**, para **os dados de teste!**. Isto é,
$$R(y_i) = y_i - \hat{y}_i $$
O caso 100% ideal seria $y_i = \hat{y}_i$, o que produziria uma reta exata!
Quanto mais "espalhados" estiverem os pontos em torno da reta, em geral **pior é o modelo**, pois ele está errando mais!
Uma forma de quantificar isso através de uma métrica conhecida como **$R^2$**, o **coeficiente de determinação**.
Este coeficiente indica **o quão próximos os dados estão da reta ajustada**. Por outro lado, o $R^2$ representa a porcentagem de variação na resposta que é explicada pelo modelo.
$$R^2 = 1 - \frac{\sum_{i=1}^n(y_i-\hat{y}_i)^2}{\sum_{i=1}^n(y_i-\bar{y})^2}$$
É possível utilizar o $R^2$ nos dados de treino, mas isso não é tão significante, devido ao overfitting, que discutiremos a seguir. Mais sgnificativo é calcularmos o $R^2$ nos dados de teste como faremos a seguir. Essa métrica equivale, portanto, **ao gráfico que fizemos acima!**
Outra coisa importante é que os resíduos sejam **normalmente distribuídos**.
Se esse não for o caso, é muito importante que você reveja se o modelo escolhido de fato é adequado ao seu problema!
Além dos resíduos, existem três principais **métricas de avaliação** do modelo de regressão linear:
**Mean Absolute Error** (MAE) é a média do valor absoluto de todos os resíduos (erros):
$$\frac 1n\sum_{i=1}^n|y_i-\hat{y}_i|$$
**Mean Squared Error** (MSE) é a média dos erros quadrados:
$$\frac 1n\sum_{i=1}^n(y_i-\hat{y}_i)^2$$
**Root Mean Squared Error** (RMSE) é a raiz quadrada da média dos erros quadrados:
$$\sqrt{\frac 1n\sum_{i=1}^n(y_i-\hat{y}_i)^2}$$
Comparando as métricas:
- **MAE** é a mais simples de entender, mas ela penaliza mais erros menores;
- **MSE** é a métrica mais popular, pois essa métrica penaliza mais erros maiores, o que faz mais sentido em aplicações reais.
- **RMSE** é ainda mais popular, pois esta métrica está nas mesmas unidades que o target.
Estas métricas todas podem ser utilizadas como **funções de custo** a serem minimizadas pelo algoritmo do estimador.
___
## 3) **Regressão linear múltipla** <a class="anchor" id="multireglinear"></a>
O modelo que fizemos acima considera uma única feature como preditora do preço da casa.
Mas temos outras 78 dessas features! Será que não há mais informação útil em todas essas outras variáveis?
Em geral, sim! É natural que esperemos que **mais variáveis** tragam **mais informações** ao modelo, e, portanto, o torne mais preciso!
Para incorporar estas outras variáveis ao modelo, é muito simples!
Podemos passar a utilizar outros atributos (como o número de cômodos, qual é a renda média da vizinhança, etc.), e neste caso teremos uma **Regressão Linear Múltipla**, que nada mais é que a seguinte equação:
$$ y = b_0 + b_1 X_1 + b_2 X_2 + \cdots + b_n X_n $$
Neste caso, além de $b_0$ e $b_1$, temos também outros coeficientes, um pra cada uma das $n$ features que escolhermos!
Modelos de regressão múltipla são potencialmente mais precisos, mas há também um lado ruim: nós perdemos a **possibilidade de visualização**. Agora, não temos mais uma reta, mas sim um **hiperplano** que relaciona todas as features com o target!
<center><img src="https://miro.medium.com/max/1120/0*rGSfRsMjiQeG5jof.png" width=500></center>
Vamos construir esse modelo?
Observação: a coluna "Id" traz apenas um número de identificação arbitrário que não deve ser correlacionado com o target. Portanto, vamos desconsiderar esta coluna de nosso modelo!
A performance do modelo melhorou?
Será que dá pra melhorar mais?
Opções:
- tentar apenas um subconjunto de features: **feature selection**
- passar a utilizar as features categóricas: **feature engeneering**
---
## 4) **Tradeoff viés-variância** <a class="anchor" id="tradeoff"></a>
Veremos agora um dos conceitos mais importantes em apredizado de maquina.
Muitas vezes alguns modelos têm 100% de acerto nos dados de **treino**, mas **na base de teste** a performance cai para menos de 50%.
Isso pode acontecer porque o modelo fica **especialista apenas no conjunto de treino**, não conseguindo **generalizar os padrões para além dos dados vistos**.
<center><img src="https://miro.medium.com/max/1125/1*_7OPgojau8hkiPUiHoGK_w.png" width=800></center>
O overfitting está intimamente ligado com o conceito de **viés** (bias) e **variância** (variance):
>**Viés**<br>
É a diferença entre o que o modelo prediz, e o valor correto a ser predito.<br>
Modelos com alto viés são muito simples, de modo a **não conseguir capturar as relações que os dados de treino exibem** (underfit).<br>
Issso faz com que ambos os erros de treino e de teste sejam altos.
<br><br>
Em outras palavras:<br>
**Incapacidade de um modelo de capturar a verdadeira relação entre features e target**
> **Variância**<br>
Variância se refere à variabilidade das predições de um modelo.<br>
Modelos com alta variância são muito complexos, por **aprenderem demais as relações exibidas nos dados de treino** (overfit).<br>
Isso faz com que os erros de treino sejam baixos, mas os erros de teste sejam altos.
<br><br>
Em outras palavras:<br>
**Incapacidade de um modelo performar bem em outros datasets diferentes do usado no treinamento**.
<center><img src="https://www.learnopencv.com/wp-content/uploads/2017/02/Bias-Variance-Tradeoff-In-Machine-Learning-1.png" width=500></center>
<center><img src="https://miro.medium.com/max/1494/1*C7ZKM93QVdpeSCGbF5TjIg.png" width=800></center>
Para demonstrar overfit ser usado o conjuto de teste [anscombe](https://en.wikipedia.org/wiki/Anscombe%27s_quartet)
```
df_anscombe = sns.load_dataset('anscombe')
df_anscombe.groupby("dataset").agg({"mean", "std"})
```
Vamos supor que este dado represente valores de medições de um sensor, porém o sensor teve um pequeno problema durante a medição.
Podemos perceber facilmente qual é este erro, e qual seria a função de regreesão para este sensor com os dados validos: **regressão linear**.
Perceba que a função linear encontrar já aprensenta um padrão muito similiar aos dados, porém um ponto error faz com que ela não tenha um resultado otimo.
Podemos utilizar regressões polinomiais, que possuem ordem maiores que 1, para tentar diminuir o erro da regressão, obtendo uma equação do formato.
$$\hat{y}_{i} = \beta_{1} + \beta_{2} x_{i} + \beta_{3} {x_{i}}^{2} + \cdots + \beta_{6} {x_{i}}^{6}$$
Para criar modelos polinomiaus com o sklearn, [dê uma olhada aqui](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html)
Ao utilizarmos uma regressão de ordem 6 percebemos que ela se ajusta ao valor com erro, porém ela **se distancia da regressão que realmente representa os dados**.
Tentar **aprender o erro faz com ela com ela não aprenda a função real**.
Isto acontece pois ela se **super ajustou aos dados de treino, se distanciando dos dados reais**.
__Como garantir que nosso modelo não está sofrendo de overfitting?__
Naturalmente, essa é uma pergunta de extrema importância, especialmente no contexto de **Redes neurais**. [Veja aqui](https://towardsdatascience.com/8-simple-techniques-to-prevent-overfitting-4d443da2ef7d) e [aqui](https://towardsdatascience.com/dont-overfit-how-to-prevent-overfitting-in-your-deep-learning-models-63274e552323) algumas discussões.
Na prática: **jamais se apegue à peformance de treino!!**. O que queremos otimizar sempre será a performance **avaliada nos dados de teste**. Assim, garantimos que uma boa performance não é produto do overfitting!
---
| github_jupyter |
```
from oda_api.api import DispatcherAPI
from oda_api.plot_tools import OdaImage,OdaLightCurve
from oda_api.data_products import BinaryData
import os
from astropy.io import fits
import numpy as np
from numpy import sqrt
import matplotlib.pyplot as plt
%matplotlib inline
source_name='3C 279'
ra=194.046527
dec=-5.789314
radius=10.
Tstart='2003-03-15T00:00:00'
Tstop='2018-03-15T00:00:00'
E1_keV=30.
E2_keV=100.
host='www.astro.unige.ch/cdci/astrooda/dispatch-data'
rebin=10 # minimal significance in energy bin, for spectral plotting
try: input = raw_input
except NameError: pass
token=input() # token for restricted access server
cookies=dict(_oauth2_proxy=token)
disp=DispatcherAPI(host=host)
disp=DispatcherAPI(host=host)
import requests
url="https://www.astro.unige.ch/cdci/astrooda/dispatch-data/gw/timesystem/api/v1.0/scwlist/cons/"
def queryxtime(**args):
params=Tstart+'/'+Tstop+'?&ra='+str(ra)+'&dec='+str(dec)+'&radius='+str(radius)+'&min_good_isgri=1000'
print(url+params)
return requests.get(url+params,cookies=cookies).json()
scwlist=queryxtime()
m=len(scwlist)
pointings_osa10=[]
pointings_osa11=[]
for i in range(m):
if scwlist[i][-2:]=='10':
if(int(scwlist[i][:4])<1626):
pointings_osa10.append(scwlist[i]+'.001')
else:
pointings_osa11.append(scwlist[i]+'.001')
#else:
# pointings=np.genfromtxt('scws_3C279_isgri_10deg.txt', dtype='str')
m_osa10=len(pointings_osa10)
m_osa11=len(pointings_osa11)
scw_lists_osa10=[]
scw_lists_osa11=[]
count=0
scw_string=''
for i in range(m_osa10):
if count<50:
scw_string=scw_string+str(pointings_osa10[i])+','
count+=1
else:
scw_lists_osa10.append(scw_string[:-1])
count=0
scw_string=str(pointings_osa10[i])+','
scw_lists_osa10.append(scw_string[:-1])
print(len(scw_lists_osa10))
count=0
scw_string=''
for i in range(m_osa11):
if count<50:
scw_string=scw_string+str(pointings_osa11[i])+','
count+=1
else:
scw_lists_osa11.append(scw_string[:-1])
count=0
scw_string=str(pointings_osa11[i])+','
scw_lists_osa11.append(scw_string[:-1])
print(len(scw_lists_osa11))
data=disp.get_product(instrument='isgri',
product='isgri_image',
scw_list=scw_lists_osa10[0],
E1_keV=E1_keV,
E2_keV=E2_keV,
osa_version='OSA10.2',
RA=ra,
DEC=dec,
detection_threshold=3.5,
product_type='Real')
data.dispatcher_catalog_1.table
FLAG=0
torm=[]
for ID,n in enumerate(data.dispatcher_catalog_1.table['src_names']):
if(n[0:3]=='NEW'):
torm.append(ID)
if(n==source_name):
FLAG=1
data.dispatcher_catalog_1.table.remove_rows(torm)
nrows=len(data.dispatcher_catalog_1.table['src_names'])
if FLAG==0:
data.dispatcher_catalog_1.table.add_row((0,'3C 279',0,ra,dec,0,2,0,0))
api_cat=data.dispatcher_catalog_1.get_api_dictionary()
spectrum_results=[]
for i in range(len(scw_lists_osa10)):
print(i)
data=disp.get_product(instrument='isgri',
product='isgri_spectrum',
scw_list=scw_lists_osa10[i],
query_type='Real',
osa_version='OSA10.2',
RA=ra,
DEC=dec,
product_type='Real',
selected_catalog=api_cat)
spectrum_results.append(data)
d=spectrum_results[0]
for ID,s in enumerate(d._p_list):
if (s.meta_data['src_name']==source_name):
if(s.meta_data['product']=='isgri_spectrum'):
ID_spec=ID
if(s.meta_data['product']=='isgri_arf'):
ID_arf=ID
if(s.meta_data['product']=='isgri_rmf'):
ID_rmf=ID
print(ID_spec, ID_arf, ID_rmf)
d=spectrum_results[0]
spec=d._p_list[ID_spec].data_unit[1].data
arf=d._p_list[ID_arf].data_unit[1].data
rmf=d._p_list[ID_rmf].data_unit[2].data
ch=spec['CHANNEL']
rate=spec['RATE']*0.
err=spec['STAT_ERR']*0.
syst=spec['SYS_ERR']*0.
rate.fill(0)
err.fill(0)
syst.fill(0)
qual=spec['QUALITY']
matrix=rmf['MATRIX']*0.
specresp=arf['SPECRESP']*0.
tot_expos=0.
corr_expos=np.zeros(len(rate))
print(len(rate))
for k in range(len(scw_lists_osa10)):
d=spectrum_results[k]
spec=d._p_list[ID_spec].data_unit[1].data
arf=d._p_list[ID_arf].data_unit[1].data
rmf=d._p_list[ID_rmf].data_unit[2].data
expos=d._p_list[0].data_unit[1].header['EXPOSURE']
tot_expos=tot_expos+expos
print(k,expos)
for j in range(len(rate)):
if(spec['QUALITY'][j]==0):
rate[j]=rate[j]+spec['RATE'][j]/(spec['STAT_ERR'][j])**2
err[j]=err[j]+1./(spec['STAT_ERR'][j])**2
syst[j]=syst[j]+(spec['SYS_ERR'][j])**2*expos
corr_expos[j]=corr_expos[j]+expos
matrix=matrix+rmf['MATRIX']*expos
specresp=specresp+arf['SPECRESP']*expos
for i in range(len(rate)):
if err[i]>0.:
rate[i]=rate[i]/err[i]
err[i]=1./sqrt(err[i])
matrix=matrix/tot_expos
specresp=specresp/tot_expos
syst=sqrt(syst/(corr_expos+1.))
print('Total exposure:',tot_expos)
print(rate)
print(err)
d._p_list[ID_spec].data_unit[1].data['RATE']=rate
d._p_list[ID_spec].data_unit[1].data['STAT_ERR']=err
d._p_list[ID_rmf].data_unit[2].data['MATRIX']=matrix
d._p_list[ID_arf].data_unit[1].data['SPECRESP']=specresp
name=source_name.replace(" ", "")
specname=name+'_spectrum_osa10.fits'
arfname=name+'_arf_osa10.fits.gz'
rmfname=name+'_rmf_osa10.fits.gz'
data._p_list[ID_spec].write_fits_file(specname)
data._p_list[ID_arf].write_fits_file(arfname)
data._p_list[ID_rmf].write_fits_file(rmfname)
hdul = fits.open(specname, mode='update')
hdr=hdul[1].header
hdr.set('EXPOSURE', tot_expos)
hdul.close()
!./spectrum_fit_osa10.sh $name $rebin
spectrum_results1=[]
for i in range(len(scw_lists_osa11)):
print(i)
data=disp.get_product(instrument='isgri',
product='isgri_spectrum',
scw_list=scw_lists_osa11[i],
query_type='Real',
osa_version='OSA11.0',
RA=ra,
DEC=dec,
product_type='Real',
selected_catalog=api_cat)
spectrum_results1.append(data)
d=spectrum_results1[0]
for ID,s in enumerate(d._p_list):
if (s.meta_data['src_name']==source_name):
if(s.meta_data['product']=='isgri_spectrum'):
ID_spec=ID
if(s.meta_data['product']=='isgri_arf'):
ID_arf=ID
if(s.meta_data['product']=='isgri_rmf'):
ID_rmf=ID
print(ID_spec, ID_arf, ID_rmf)
d=spectrum_results1[0]
spec=d._p_list[ID_spec].data_unit[1].data
arf=d._p_list[ID_arf].data_unit[1].data
rmf=d._p_list[ID_rmf].data_unit[2].data
ch=spec['CHANNEL']
rate=spec['RATE']*0.
err=spec['STAT_ERR']*0.
syst=spec['SYS_ERR']*0.
rate.fill(0)
err.fill(0)
syst.fill(0)
qual=spec['QUALITY']
matrix=rmf['MATRIX']*0.
specresp=arf['SPECRESP']*0.
tot_expos=0.
corr_expos=np.zeros(len(rate))
print(len(rate))
for k in range(len(scw_lists_osa11)):
d=spectrum_results1[k]
spec=d._p_list[ID_spec].data_unit[1].data
arf=d._p_list[ID_arf].data_unit[1].data
rmf=d._p_list[ID_rmf].data_unit[2].data
expos=d._p_list[0].data_unit[1].header['EXPOSURE']
tot_expos=tot_expos+expos
print(k,expos)
for j in range(len(rate)):
if(spec['QUALITY'][j]==0):
rate[j]=rate[j]+spec['RATE'][j]/(spec['STAT_ERR'][j])**2
err[j]=err[j]+1./(spec['STAT_ERR'][j])**2
syst[j]=syst[j]+(spec['SYS_ERR'][j])**2*expos
corr_expos[j]=corr_expos[j]+expos
matrix=matrix+rmf['MATRIX']*expos
specresp=specresp+arf['SPECRESP']*expos
for i in range(len(rate)):
if err[i]>0.:
rate[i]=rate[i]/err[i]
err[i]=1./sqrt(err[i])
matrix=matrix/tot_expos
specresp=specresp/tot_expos
syst=sqrt(syst/(corr_expos+1.))
print('Total exposure:',tot_expos)
d._p_list[ID_spec].data_unit[1].data['RATE']=rate
d._p_list[ID_spec].data_unit[1].data['STAT_ERR']=err
d._p_list[ID_rmf].data_unit[2].data['MATRIX']=matrix
d._p_list[ID_arf].data_unit[1].data['SPECRESP']=specresp
name=source_name.replace(" ", "")
specname=name+'_spectrum_osa11.fits'
arfname=name+'_arf_osa11.fits.gz'
rmfname=name+'_rmf_osa11.fits.gz'
data._p_list[ID_spec].write_fits_file(specname)
data._p_list[ID_arf].write_fits_file(arfname)
data._p_list[ID_rmf].write_fits_file(rmfname)
hdul = fits.open(specname, mode='update')
hdr=hdul[1].header
hdr.set('EXPOSURE', tot_expos)
hdul.close()
!./spectrum_fit_osa11.sh $name $rebin
data=disp.get_product(instrument='isgri',
product='isgri_spectrum',
T1='2015-06-15T15:56:45',
T2='2015-06-16T06:13:10',
query_type='Real',
osa_version='OSA10.2',
RA=ra,
DEC=dec,
detection_threshold=5.0,
radius=15.,
product_type='Real',
selected_catalog=api_cat)
data._p_list[0].write_fits_file(name+'_flare_spectrum_osa10.fits')
data._p_list[1].write_fits_file(name+'_flare_arf_osa10.fits.gz')
data._p_list[2].write_fits_file(name+'_flare_rmf_osa10.fits.gz')
name1=name+'_flare'
!./spectrum_fit_osa10.sh $name1 $rebin
plt.figure(figsize=(10,7))
spectrum=np.genfromtxt(name+'_spectrum_osa10.txt',skip_header=3)
en=spectrum[:,0]
en_err=spectrum[:,1]
fl=spectrum[:,2]
fl_err=spectrum[:,3]
mo=spectrum[:,4]
plt.errorbar(en,fl,xerr=en_err,yerr=fl_err,linestyle='none',linewidth=8,color='black',alpha=0.5)
plt.plot(en,mo,color='black',linewidth=4)
spectrum=np.genfromtxt(name+'_flare_spectrum_osa10.txt',skip_header=3)
en=spectrum[:,0]
en_err=spectrum[:,1]
fl=spectrum[:,2]
fl_err=spectrum[:,3]
mo=spectrum[:,4]
plt.errorbar(en,fl,xerr=en_err,yerr=fl_err,linestyle='none',linewidth=8,color='blue',alpha=0.5)
plt.plot(en,mo,color='blue',linewidth=4,alpha=0.5)
plt.tick_params(axis='both', which='major', labelsize=16)
plt.xscale('log')
plt.yscale('log')
plt.ylim(1.e-3,3.e0)
plt.xlim(15,350)
plt.xlabel('$E$, keV',fontsize=16)
plt.ylabel('$E^2F_E$, keV/(cm$^2$s)',fontsize=16)
plt.savefig(name+'_spectra.pdf',format='pdf',dpi=100)
spectrum_3C279=name+'_spectra.pdf'
```
| github_jupyter |
# Table of Contents
<p><div class="lev1 toc-item"><a href="#Lambda-calcul-implémenté-en-OCaml" data-toc-modified-id="Lambda-calcul-implémenté-en-OCaml-1"><span class="toc-item-num">1 </span>Lambda-calcul implémenté en OCaml</a></div><div class="lev2 toc-item"><a href="#Expressions" data-toc-modified-id="Expressions-11"><span class="toc-item-num">1.1 </span>Expressions</a></div><div class="lev2 toc-item"><a href="#But-?" data-toc-modified-id="But-?-12"><span class="toc-item-num">1.2 </span>But ?</a></div><div class="lev2 toc-item"><a href="#Grammaire" data-toc-modified-id="Grammaire-13"><span class="toc-item-num">1.3 </span>Grammaire</a></div><div class="lev2 toc-item"><a href="#L'identité" data-toc-modified-id="L'identité-14"><span class="toc-item-num">1.4 </span>L'identité</a></div><div class="lev2 toc-item"><a href="#Conditionnelles" data-toc-modified-id="Conditionnelles-15"><span class="toc-item-num">1.5 </span>Conditionnelles</a></div><div class="lev2 toc-item"><a href="#Nombres" data-toc-modified-id="Nombres-16"><span class="toc-item-num">1.6 </span>Nombres</a></div><div class="lev2 toc-item"><a href="#Test-d'inégalité" data-toc-modified-id="Test-d'inégalité-17"><span class="toc-item-num">1.7 </span>Test d'inégalité</a></div><div class="lev2 toc-item"><a href="#Successeurs" data-toc-modified-id="Successeurs-18"><span class="toc-item-num">1.8 </span>Successeurs</a></div><div class="lev2 toc-item"><a href="#Prédecesseurs" data-toc-modified-id="Prédecesseurs-19"><span class="toc-item-num">1.9 </span>Prédecesseurs</a></div><div class="lev2 toc-item"><a href="#Addition" data-toc-modified-id="Addition-110"><span class="toc-item-num">1.10 </span>Addition</a></div><div class="lev2 toc-item"><a href="#Multiplication" data-toc-modified-id="Multiplication-111"><span class="toc-item-num">1.11 </span>Multiplication</a></div><div class="lev2 toc-item"><a href="#Paires" data-toc-modified-id="Paires-112"><span class="toc-item-num">1.12 </span>Paires</a></div><div class="lev2 toc-item"><a href="#Prédécesseurs,-deuxième-essai" data-toc-modified-id="Prédécesseurs,-deuxième-essai-113"><span class="toc-item-num">1.13 </span>Prédécesseurs, deuxième essai</a></div><div class="lev2 toc-item"><a href="#Listes" data-toc-modified-id="Listes-114"><span class="toc-item-num">1.14 </span>Listes</a></div><div class="lev2 toc-item"><a href="#La-fonction-U" data-toc-modified-id="La-fonction-U-115"><span class="toc-item-num">1.15 </span>La fonction U</a></div><div class="lev2 toc-item"><a href="#La-récursion-via-la-fonction-Y" data-toc-modified-id="La-récursion-via-la-fonction-Y-116"><span class="toc-item-num">1.16 </span>La récursion via la fonction Y</a></div><div class="lev2 toc-item"><a href="#Conclusion" data-toc-modified-id="Conclusion-117"><span class="toc-item-num">1.17 </span>Conclusion</a></div>
# Lambda-calcul implémenté en OCaml
Ce notebook est inspiré de [ce post de blog du Professeur Matt Might](http://matt.might.net/articles/python-church-y-combinator/), qui implémente un mini langage de programmation en $\lambda$-calcul, en Python.
Je vais faire la même chose en OCaml.
## Expressions
On rappelle que les expressions du [Lambda calcul](https://fr.wikipedia.org/wiki/Lambda-calcul), ou $\lambda$-calcul, sont les suivantes :
$$ \begin{cases}
x, y, z & \text{(des variables)} \\
u v & \text{(application de deux termes}\, u, v\; \text{)} \\
\lambda x. v & \text{(lambda-function prenant la variable}\; x \;\text{et le terme}\; v \;\text{)}
\end{cases} $$
## But ?
Le but ne va pas être de les représenter comme ça avec des types formels en Caml, mais plutôt d'utiliser les constructions de Caml, respectivement `u(v)` et `fun x -> v` pour l'application et les fonctions anonymes, et encoder des fonctionnalités de plus haut niveau dans ce langage réduit.
## Grammaire
Avec une grammaire BNF, si `<var>` désigne un nom d'expression valide (on se limitera à des noms en miniscules consistitués des 26 lettres `a,b,..,z`) :
<exp> ::= <var>
| <exp>(<exp>)
| fun <var> -> <exp>
| (<exp>)
----
## L'identité
```
let identite = fun x -> x ;;
let vide = fun x -> x ;;
```
## Conditionnelles
La conditionnelle est `si cond alors valeur_vraie sinon valeur_fausse`.
```
let si = fun cond valeur_vraie valeur_fausse -> cond valeur_vraie valeur_fausse ;;
```
C'est très simple, du moment qu'on s'assure que `cond` est soit `vrai` soit `faux` tels que définis par leur comportement :
si vrai e1 e2 == e1
si faux e1 e2 == e2
```
let vrai = fun valeur_vraie valeur_fausse -> valeur_vraie ;;
let faux = fun valeur_vraie valeur_fausse -> valeur_fausse ;;
```
La négation est facile !
```
let non = fun v x y -> v y x;;
```
En fait, on va forcer une évaluation paresseuse, comme ça si l'une des deux expressions ne terminent pas, l'évaluation fonctionne quand même.
```
let vrai_paresseux = fun valeur_vraie valeur_fausse -> valeur_vraie () ;;
let faux_paresseux = fun valeur_vraie valeur_fausse -> valeur_fausse () ;;
```
Pour rendre paresseux un terme, rien de plus simple !
```
let paresseux = fun f -> fun () -> f ;;
```
## Nombres
La représentation de Church consiste a écrire $n$ comme $\lambda f. \lambda z. f^n z$.
```
type 'a nombres = ('a -> 'a) -> 'a -> 'a;; (* inutilisé *)
type entiers_church = (int -> int) -> int -> int;;
```
$0$ est trivialement $\lambda f. \lambda z. z$ :
```
let zero = fun (f : ('a -> 'a)) (z : 'a) -> z ;;
```
$1$ est $\lambda f. \lambda z. f z$ :
```
let un = fun (f : ('a -> 'a)) -> f ;;
```
Avec l'opérateur de composition, l'écriture des entiers suivants est facile.
```
let compose = fun f g x -> f (g x);;
let deux = fun f -> compose f f;; (* == compose f (un f) *)
let trois = fun f -> compose f (deux f) ;;
let quatre = fun f -> compose f (trois f) ;;
(* etc *)
```
On peut généraliser ça, avec une fonction qui transforme un entier (`int`) de Caml en un entier de Church :
```
let rec entierChurch (n : int) =
fun f z -> if n = 0 then z else f ((entierChurch (n-1)) f z)
;;
```
Par exemple :
```
(entierChurch 0) (fun x -> x + 1) 0;; (* 0 *)
(entierChurch 7) (fun x -> x + 1) 0;; (* 7 *)
(entierChurch 3) (fun x -> 2*x) 1;; (* 8 *)
```
Et une fonction qui fait l'inverse (note : cette fonction n'est *pas* un $\lambda$-terme) :
```
let entierNatif c : int =
c (fun x -> x + 1) 0
;;
```
Un petit test :
```
entierNatif (si vrai zero un);; (* 0 *)
entierNatif (si faux zero un);; (* 1 *)
entierNatif (entierChurch 100);; (* 100 *)
```
## Test d'inégalité
On a besoin de pouvoir tester si $n \leq 0$ (ou $n = 0$) en fait.
```
(* prend un lambda f lambda z. ... est donne vrai ssi n = 0 ou faux sinon *)
let estnul = fun n -> n (fun z -> faux) (vrai);;
(* prend un lambda f lambda z. ... est donne vrai ssi n > 0 ou faux sinon *)
let estnonnul = fun n -> n (fun z -> vrai) (faux);;
```
On peut proposer cette autre implémentation, qui "fonctionne" pareil (au sens calcul des $\beta$-réductions) mais est plus compliquée :
```
let estnonnul2 = fun n -> non (estnul n);;
entierNatif (si (estnul zero) zero un);; (* 0 *)
entierNatif (si (estnul un) zero un);; (* 1 *)
entierNatif (si (estnul deux) zero un);; (* 1 *)
entierNatif (si (estnonnul zero) zero un);; (* 0 *)
entierNatif (si (estnonnul un) zero un);; (* 1 *)
entierNatif (si (estnonnul deux) zero un);; (* 1 *)
entierNatif (si (non (estnul zero)) zero un);; (* 0 *)
entierNatif (si (non (estnul un)) zero un);; (* 1 *)
entierNatif (si (non (estnul deux)) zero un);; (* 1 *)
```
## Successeurs
Vue la représentation de Churc, $n+1$ consiste a appliquer l'argument $f$ une fois de plus :
$f^{n+1}(z) = f (f^n(z))$.
```
let succ = fun n f z -> f ((n f) z) ;;
entierNatif (succ un);; (* 2 *)
deux;;
succ un;;
```
On remarque qu'ils ont le même typage, mais OCaml indique qu'il a moins d'informations à propos du deuxième : ce `'_a` signifie que le type est *contraint*, il sera fixé dès la première utilisation de cette fonction.
C'est assez mystérieux, mais il faut retenir le point suivant : `deux` était écrit manuellement, donc le système a vu le terme en entier, il le connaît et saît que `deux = fun f -> fun x -> f (f x))`, pas de surprise. Par contre, `succ un` est le résultat d'une évaluation *partielle* et vaut `fun f z -> f ((deux f) z)`. Sauf que le système ne calcule pas tout et laisse l'évaluation partielle ! (heureusement !)
Si on appelle `succ un` à une fonction, le `'_a` va être contraint, et on ne pourra pas s'en reservir :
```
let succ_de_un = succ un;;
(succ_de_un) (fun x -> x + 1);;
(succ_de_un) (fun x -> x ^ "0");;
(succ un) (fun x -> x ^ "0");;
(* une valeur fraîchement calculée, sans contrainte *)
```
## Prédecesseurs
Vue la représentation de Church, $\lambda n. n-1$ n'existe pas... mais on peut tricher.
```
let pred = fun n ->
if (entierNatif n) > 0 then entierChurch ((entierNatif n) - 1)
else zero
;;
entierNatif (pred deux);; (* 1 *)
entierNatif (pred trois);; (* 2 *)
```
## Addition
Pour ajouter $n$ et $m$, il faut appliquer une fonction $f$ $n$ fois puis $m$ fois : $f^{n+m}(z) = f^n(f^m(z))$.
```
let somme = fun n m f z -> n(f)( m(f)(z));;
let cinq = somme deux trois ;;
entierNatif cinq;;
let sept = somme cinq deux ;;
entierNatif sept;;
```
## Multiplication
Pour multiplier $n$ et $m$, il faut appliquer le codage de $n$ exactement $m$ fois : $f^{nm}(z) = (f^n(f^n(...(f^n(z))...))$.
```
let produit = fun n m f z -> m(n(f))(z);;
```
On peut faire encore mieux avec l'opérateur de composition :
```
let produit = fun n m -> compose m n;;
let six = produit deux trois ;;
entierNatif six;;
let huit = produit deux quatre ;;
entierNatif huit;;
```
## Paires
On va écrire un constructeur de paires, `paire a b` qui sera comme `(a, b)`, et deux destructeurs, `gauche` et `droite`, qui vérifient :
gauche (paire a b) == a
droite (paire a b) == b
```
let paire = fun a b -> fun f -> f(a)(b);;
let gauche = fun p -> p(fun a b -> a);;
let droite = fun p -> p(fun a b -> b);;
entierNatif (gauche (paire zero un));;
entierNatif (droite (paire zero un));;
```
## Prédécesseurs, deuxième essai
Il y a une façon, longue et compliquée ([source](http://gregfjohnson.com/pred/)) d'y arriver, avec des paires.
```
let pred n suivant premier =
let pred_suivant = paire vrai premier in
let pred_premier = fun p ->
si (gauche p)
(paire faux premier)
(paire faux (suivant (droite p)))
in
let paire_finale = n pred_suivant pred_premier in
droite paire_finale
;;
```
Malheureusement, ce n'est pas bien typé.
```
entierNatif (pred deux);; (* 1 *)
```
## Listes
Pour construire des listes (simplement chaînées), on a besoin d'une valeur pour la liste vide, `listevide`, d'un constructeur pour une liste `cons`, un prédicat pour la liste vide `estvide`, un accesseur `tete` et `queue`, et avec les contraintes suivantes (avec `vrai`, `faux` définis comme plus haut) :
estvide (listevide) == vrai
estvide (cons tt qu) == faux
tete (cons tt qu) == tt
queue (cons tt qu) == qu
On va stocker tout ça avec des fonctions qui attendront deux arguments (deux fonctions - rappel tout est fonction en $\lambda$-calcul), l'une appellée si la liste est vide, l'autre si la liste n'est pas vide.
```
let listevide = fun survide surpasvide -> survide;;
let cons = fun hd tl -> fun survide surpasvide -> surpasvide hd tl;;
```
Avec cette construction, `estvide` est assez simple : `survide` est `() -> vrai` et `surpasvide` est `tt qu -> faux`.
```
let estvide = fun liste -> liste (vrai) (fun tt qu -> faux);;
```
Deux tests :
```
entierNatif (si (estvide (listevide)) un zero);; (* estvide listevide == vrai *)
entierNatif (si (estvide (cons un listevide)) un zero);; (* estvide (cons un listevide) == faux *)
```
Et pour les deux extracteurs, c'est très facile avec cet encodage.
```
let tete = fun liste -> liste (vide) (fun tt qu -> tt);;
let queue = fun liste -> liste (vide) (fun tt qu -> qu);;
entierNatif (tete (cons un listevide));;
entierNatif (tete (queue (cons deux (cons un listevide))));;
entierNatif (tete (queue (cons trois (cons deux (cons un listevide)))));;
```
Visualisons les types que Caml trouve a des listes de tailles croissantes :
```
cons un (cons un listevide);; (* 8 variables pour une liste de taille 2 *)
cons un (cons un (cons un (cons un listevide)));; (* 14 variables pour une liste de taille 4 *)
cons un (cons un (cons un (cons un (cons un (cons un (cons un (cons un listevide)))))));; (* 26 variables pour une liste de taille 7 *)
```
Pour ces raisons là, on se rend compte que le type donné par Caml à une liste de taille $k$ croît linéairement *en taille* en fonction de $k$ !
Aucun espoir donc (avec cet encodage) d'avoir un type générique pour les listes représentés en Caml.
Et donc nous ne sommes pas surpris de voir cet essai échouer :
```
let rec longueur liste =
liste (zero) (fun t q -> succ (longueur q))
;;
```
<span style="color:red;">En effet, `longueur` devrait être bien typée et `liste` et `q` devraient avoir le même type, or le type de `liste` est strictement plus grand que celui de `q`...</span>
On peut essayer de faire une fonction `ieme`.
On veut que `ieme zero liste = tete` et `ieme n liste = ieme (pred n) (queue liste)`.
En écrivant en haut niveau, on aimerait pouvoir faire :
```
let pop liste =
si (estvide liste) (listevide) (queue liste)
;;
let ieme n liste =
tete (n pop liste)
;;
```
## La fonction U
C'est le premier indice que le $\lambda$-calcul peut être utilisé comme modèle de calcul : le terme $U : f \to f(f)$ ne termine pas si on l'applique à lui-même.
Mais ce sera la faiblesse de l'utilisation de Caml : ce terme ne peut être correctement typé !
```
let u = fun f -> f (f);;
```
A noter que même dans un langage non typé (par exemple Python), on peut définir $U$ mais son exécution échouera, soit à caude d'un dépassement de pile, soit parce qu'elle ne termine pas.
## La récursion via la fonction Y
La fonction $Y$ trouve le point fixe d'une autre fonction.
C'est très utile pour définir des fonctions par récurrence.
Par exemple, la factorielle est le point fixe de la fonction suivante :
"$\lambda f. \lambda n. 1$ si $n \leq 0$ sinon $n * f(n-1)$" (écrite dans un langage plus haut niveau, pas en $\lambda$-calcul).
$Y$ satisfait ces contraintes : $Y(F) = f$ et $f = F(f)$.
Donc $Y(F) = F(Y(F))$ et donc $Y = \lambda F. F(Y(F))$. Mais ce premier essai ne marche pas.
```
let rec y = fun f -> f (y(f));;
let fact = y(fun f n -> si (estnul n) (un) (produit n (f (pred n))));;
```
On utilise la $\eta$-expansion : si $e$ termine, $e$ est équivalent (ie tout calcul donne le même terme) à $\lambda x. e(x)$.
```
let rec y = fun f -> f (fun x -> y(f)(x));;
```
Par contre, le typage n'arrive toujours pas à trouver que l'expression suivante devrait être bien définie :
```
let fact = y(fun f n -> si (estnul n) (un) (produit n (f (pred n))));;
```
## Conclusion
Je n'ai pas réussi à traduire intégralement la prouesse initiale, écrite en Python, par Matt Might.
Dommage, le typage de Caml est trop strict pour cet exercice.
| github_jupyter |
<h1>Table of Contents<span class="tocSkip"></span></h1>
<div class="toc"><ul class="toc-item"><li><span><a href="#Dimensionality-Reduction" data-toc-modified-id="Dimensionality-Reduction-1"><span class="toc-item-num">1 </span>Dimensionality Reduction</a></span><ul class="toc-item"><li><span><a href="#The-Problem" data-toc-modified-id="The-Problem-1.1"><span class="toc-item-num">1.1 </span>The Problem</a></span><ul class="toc-item"><li><span><a href="#Multi-Collinearity" data-toc-modified-id="Multi-Collinearity-1.1.1"><span class="toc-item-num">1.1.1 </span>Multi-Collinearity</a></span></li></ul></li><li><span><a href="#Sparsity" data-toc-modified-id="Sparsity-1.2"><span class="toc-item-num">1.2 </span>Sparsity</a></span></li></ul></li><li><span><a href="#Principle-Component-Analysis" data-toc-modified-id="Principle-Component-Analysis-2"><span class="toc-item-num">2 </span>Principle Component Analysis</a></span><ul class="toc-item"><li><span><a href="#Important-Points:" data-toc-modified-id="Important-Points:-2.1"><span class="toc-item-num">2.1 </span>Important Points:</a></span></li></ul></li><li><span><a href="#Singular-Value-Decomposition" data-toc-modified-id="Singular-Value-Decomposition-3"><span class="toc-item-num">3 </span>Singular Value Decomposition</a></span><ul class="toc-item"><li><span><a href="#Measuring-the-Quality-of-the-Reconstruction" data-toc-modified-id="Measuring-the-Quality-of-the-Reconstruction-3.1"><span class="toc-item-num">3.1 </span>Measuring the Quality of the Reconstruction</a></span></li><li><span><a href="#Heuristic-Step-for-How-Many-Dimensions-to-Keep" data-toc-modified-id="Heuristic-Step-for-How-Many-Dimensions-to-Keep-3.2"><span class="toc-item-num">3.2 </span>Heuristic Step for How Many Dimensions to Keep</a></span></li></ul></li><li><span><a href="#GLOVE" data-toc-modified-id="GLOVE-4"><span class="toc-item-num">4 </span>GLOVE</a></span><ul class="toc-item"><li><span><a href="#Using-Spacy-word2vec-embeddings" data-toc-modified-id="Using-Spacy-word2vec-embeddings-4.1"><span class="toc-item-num">4.1 </span>Using Spacy word2vec embeddings</a></span></li><li><span><a href="#Using-Glove" data-toc-modified-id="Using-Glove-4.2"><span class="toc-item-num">4.2 </span>Using Glove</a></span></li></ul></li><li><span><a href="#Clustering-Text" data-toc-modified-id="Clustering-Text-5"><span class="toc-item-num">5 </span>Clustering Text</a></span></li></ul></div>
# Dimensionality Reduction
## The Problem
There is an interesting tradeoff between model performance and a feature's dimensionality:
![http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/](images/dimensionality_vs_performance.png)
>*If the amount of available training data is fixed, then overfitting occurs if we keep adding dimensions. On the other hand, if we keep adding dimensions, the amount of **training data needs to grow exponentially fast to maintain the same coverage** and to avoid overfitting* ([Computer Vision for Dummies](http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/)).
![http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/](images/curseofdimensionality.png)
### Multi-Collinearity
In many cases, there is a high degree of correlation between many of the features in a dataset. This multi-collinearity has the effect of drowning out the "signal" of your dataset in many cases, and amplifies "outlier" noise.
## Sparsity
- High dimensionality increases the sparsity of your features (**what NLP techniques have we used that illustrate this point?**)
- The density of the training samples decreases when dimensionality increases:
- **Distance measures (Euclidean, for instance) start losing their effectiveness**, because there isn't much difference between the max and min distances in higher dimensions.
- Many models that rely upon **assumptions of Gaussian distributions** (like OLS linear regression), Gaussian mixture models, Gaussian processes, etc. become less and less effective since their distributions become flatter and "fatter tailed".
![http://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/](images/distance-asymptote.png)
What is the amount of data needed to maintain **20% coverage** of the feature space? For 1 dimension, it is **20% of the entire population's dataset**. For a dimensionality of $D$:
$$
X^{D} = .20
$$
$$
(X^{D})^{\frac{1}{D}} = .20^{\frac{1}{D}}
$$
$$
X = \sqrt[D]{.20}
$$
You can approximate this as
```python
def coverage_requirement(requirement, D):
return requirement ** (1 / D)
x = []
y = []
for d in range(1,20):
y.append(coverage_requirement(0.10, d))
x.append(d)
import matplotlib.pyplot as plt
plt.plot(x,y)
plt.xlabel("Number of Dimensions")
plt.ylabel("Appromximate % of Population Dataset")
plt.title("% of Dataset Needed to Maintain 10% Coverage of Feature Space")
plt.show()
```
<img src="images/coverage-needed.png" width="500">
```
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer
reviews = pd.read_csv("mcdonalds-yelp-negative-reviews.csv", encoding='latin-1')
reviews = open("poor_amazon_toy_reviews.txt", encoding='latin-1')
#text = reviews["review"].values
text = reviews.readlines()
vectorizer = CountVectorizer(ngram_range=(3,3), min_df=0.01, max_df=0.75, max_features=200)
# tokenize and build vocab
vectorizer.fit(text)
vector = vectorizer.transform(text)
features = vector.toarray()
features_df = pd.DataFrame(features, columns=vectorizer.get_feature_names())
correlations = features_df.corr()
correlations_stacked = correlations.stack().reset_index()
#set column names
correlations_stacked.columns = ['Tri-Gram 1','Tri-Gram 2','Correlation']
correlations_stacked = correlations_stacked[correlations_stacked["Correlation"] < 1]
correlations_stacked = correlations_stacked.sort_values(by=['Correlation'], ascending=False)
correlations_stacked.head()
import numpy as np
import matplotlib.pyplot as plt
# visualize the correlations (install seaborn first)!
import seaborn as sns
# Generate a mask for the upper triangle
mask = np.triu(np.ones_like(correlations, dtype=np.bool))
# Set up the matplotlib figure
f, ax = plt.subplots(figsize=(11, 9))
# Generate a custom diverging colormap
cmap = sns.diverging_palette(220, 10, as_cmap=True)
# Draw the heatmap with the mask and correct aspect ratio
sns.heatmap(correlations, mask=mask, cmap=cmap, vmax=.3, center=0,
square=True, linewidths=.5, cbar_kws={"shrink": .5})
```
# Principle Component Analysis
If you have an original matrix $Z$, you can decompose this matrix into two smaller matrices $X$ and $Q$.
## Important Points:
- Multiplying a vector by a matrix typically changes the direction of the vector. For instance:
<figure>
<img src="images/multvector.png" alt="my alt text"/>
<figcaption><a href="https://lazyprogrammer.me/tutorial-principal-components-analysis-pca">Lazy Programmer-
Tutorial to PCA</a></figcaption>
</figure>
However, there are eigenvalues λ and eigenvectors $v$ such that
$$
\sum_{X}v = \lambda v
$$
Multiplying the eigenvectors $v$ with the eigenvalue $\lambda$ does not change the direction of the eigenvector.
Multiplying the eigenvector $v$ by the covariance matrix $\sum_{X}$ also does not change the direction of the eigenvector.
If our data $X$ is of shape $N \times D$, it turns out that we have $D$ eigenvalues and $D$ eigenvectors. This means we can arrange the eigenvalues $\lambda$ in decreasing order so that
$$
\lambda_3 > \lambda_2 > \lambda_5
$$
In this case, $\lambda_3$ is the largest eigenvalue, followed by $\lambda_2$, and then $\lambda_5$. Then, we can arrange
We can also rearrange the eigenvectors the same: $v_3$ will be the first column, $v_2$ will be the second column, and $v_5$ will be the third column.
We'll end up with two matrices $V$ and $\Lambda$:
<figure>
<img src="images/pca1.png" alt="my alt text"/>
<figcaption><a href="https://lazyprogrammer.me/tutorial-principal-components-analysis-pca">Lazy Programmer-
Tutorial to PCA</a></figcaption>
</figure>
```
# what is the shape of our features?
features.shape
from sklearn.decomposition import PCA
pca = PCA(n_components=4)
Z = pca.fit_transform(features)
# what is the shape of Z?
Z.shape
# what will happen if we take the correlation matrix and covariance matrix of our new reduced features?
import numpy as np
covariances = pd.DataFrame(np.cov(Z.transpose()))
plt.rcParams["figure.figsize"] = (5,5)
sns.heatmap(covariances)
# train the model to reduce the dimensions down to 2
pca = PCA(n_components=2)
Z_two_dimensions = pca.fit_transform(features)
Z_two_dimensions
import matplotlib.pyplot as plt
plt.scatter(Z_two_dimensions[:,0], Z_two_dimensions[:, 1])
reduced_features_df = pd.DataFrame(Z_two_dimensions, columns=["x1", "x2"])
reduced_features_df["text"] = text
```
# Singular Value Decomposition
Given an input matrix $A$, we want to try to represent it instead as three smaller matrices $U$, $\sum$, and $V$. Instead of **$n$ original terms**, we want to represent each document as **$r$ concepts** (other referred to as **latent dimensions**, or **latent factors**):
<figure>
<img src="images/svd.png" alt="my alt text"/>
<figcaption><i>
<a href="https://www.youtube.com/watch?v=P5mlg91as1c">Mining of Massive Datasets - Dimensionality Reduction: Singular Value Decomposition</a> by Leskovec, Rajaraman, and Ullman (Stanford University)</i></figcaption>
</figure>
Here, **$A$ is your matrix of word vectors** - you could use any of the word vectorization techniques we have learned so far, include one-hot encoding, word count, TF-IDF.
- $\sum$ will be a **diagonal matrix** with values that are positive and sorted in decreasing order. Its value indicate the **variance (information encoded on that new dimension)**- therefore, the higher the value, the stronger that dimension is in capturing data from A, the original features. For our purposes, we can think of the rank of this $\sum$ matrix as the number of desired dimensions. Instance, if we want to reduce $A$ from shape $1020 x 300$ to $1020 x 10$, we will want to reduce the rank of $\sum$ from 300 to 10.
- $U^T U = I$ and $V^T V = I$
## Measuring the Quality of the Reconstruction
A popular metric used for measuring the quality of the reconstruction is the [Frobenius Norm](https://en.wikipedia.org/wiki/Matrix_norm#Frobenius_norm). When you explain your methodology for reducing dimensions, usually managers / stakeholders will want to some way to compare multiple dimensionality techniques' ability to quantify its ability to retain information but trim dimensions:
$$
\begin{equation}
||A_{old}-A_{new}||_{F} = \sqrt{\sum_{ij}{(A^{old}_{ij}- A^{new}_{ij}}})^2
\end{equation}
$$
## Heuristic Step for How Many Dimensions to Keep
1. Sum the $\sum$ matrix's diagonal values:
$$
\begin{equation}
\sum_{i}^{m}\sigma_{i}
\end{equation}
$$
2. Define your threshold of "information" (variance) $\alpha$ to keep: usually 80% to 90%.
3. Define your cutoff point $C$: $$
\begin{equation}
C = \sum_{i}^{m}\sigma_{i} \alpha
\end{equation}
$$
4. Beginning with your largest singular value, sum your singular values $\sigma_{i}$ until it is greater than C. Retain only those dimensions.
<figure>
<img src="images/userratings.png" alt="my alt text"/>
<figcaption><i>
<a href="https://www.youtube.com/watch?v=P5mlg91as1c">Mining of Massive Datasets - Dimensionality Reduction: Singular Value Decomposition</a> by Leskovec, Rajaraman, and Ullman (Stanford University)</i></figcaption>
</figure>
```
# create sample data
import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import svd
x = np.linspace(1,20, 20) # create the first dimension
x = np.concatenate((x,x))
y = x + np.random.normal(0,1, 40) # create the second dimension
z = x + np.random.normal(0,2, 40) # create the third dimension
a = x + np.random.normal(0,4, 40) # create the fourth dimension
plt.scatter(x,y) # plot just the first two dimensions
plt.show()
# create matrix
A = np.stack([x,y,z,a]).T
# perform SVD
D = 1
U, s, V = svd(A)
print(f"s is {s}\n")
print(f"U is {U}\n")
print(f"V is {V}")
# Frobenius norm
s[D:] = 0
S = np.zeros((A.shape[0], A.shape[1]))
S[:A.shape[1], :A.shape[1]] = np.diag(s)
A_reconstructed = U.dot(S.dot(V))
np.sum((A_reconstructed - A) ** 2) ** (1/2) # Frobenius norm
# reconstruct matrix
U.dot(S)
```
# GLOVE
Global vectors for word presentation:
<figure>
<img src="images/glove_1.png" alt="my alt text"/>
<figcaption><i>
<a href="https://nlp.stanford.edu/pubs/glove.pdf">GloVe: Global Vectors for Word Representation</a></i></figcaption>
</figure>
```
!pip3 install gensim
# import glove embeddings into a word2vec format that is consumable by Gensim
from gensim.scripts.glove2word2vec import glove2word2vec
glove_input_file = 'glove.6B.100d.txt'
word2vec_output_file = 'glove.6B.100d.txt.word2vec'
glove2word2vec(glove_input_file, word2vec_output_file)
from gensim.models import KeyedVectors
# load the Stanford GloVe model
filename = 'glove.6B.100d.txt.word2vec'
model = KeyedVectors.load_word2vec_format(filename, binary=False)
# calculate: (king - man) + woman = ?
result = model.most_similar(positive=['woman', 'king'], negative=['man'], topn=1)
print(result)
words = ["woman", "king", "man", "queen", "puppy", "kitten", "cat",
"quarterback", "football", "stadium", "touchdown",
"dog", "government", "tax", "federal", "judicial", "elections",
"avocado", "tomato", "pear", "championship", "playoffs"]
vectors = [model.wv[word] for word in words]
import pandas as pd
vector_df = pd.DataFrame(vectors)
vector_df["word"] = words
vector_df.head()
```
## Using Spacy word2vec embeddings
```
import en_core_web_md
import spacy
from scipy.spatial.distance import cosine
nlp = en_core_web_md.load()
words = ["woman", "king", "man", "queen", "puppy", "kitten", "cat",
"quarterback", "football", "stadium", "touchdown",
"dog", "government", "tax", "federal", "judicial", "elections",
"avocado", "tomato", "pear", "championship", "playoffs"]
tokens = nlp(" ".join(words))
word2vec_vectors = [token.vector for token in tokens]
np.array(word2vec_vectors).shape
%matplotlib inline
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from sklearn.decomposition import TruncatedSVD
import matplotlib.pyplot as plt
import matplotlib
dimension_model = PCA(n_components=2)
reduced_vectors = dimension_model.fit_transform(word2vec_vectors)
reduced_vectors.shape
matplotlib.rc('figure', figsize=(10, 10))
for i, vector in enumerate(reduced_vectors):
x = vector[0]
y = vector[1]
plt.plot(x,y, 'bo')
plt.text(x * (1 + 0.01), y * (1 + 0.01) , words[i], fontsize=12)
```
## Using Glove
```
%matplotlib inline
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from sklearn.decomposition import TruncatedSVD
import matplotlib.pyplot as plt
dimension_model = PCA(n_components=2)
reduced_vectors = dimension_model.fit_transform(vectors)
for i, vector in enumerate(reduced_vectors):
x = vector[0]
y = vector[1]
plt.plot(x,y, 'bo')
plt.text(x * (1 + 0.01), y * (1 + 0.01) , words[i], fontsize=12)
```
# Clustering Text
```
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=4)
cluster_assignments = kmeans.fit_predict(reduced_vectors)
for cluster_assignment, word in zip(cluster_assignments, words):
print(f"{word} assigned to cluster {cluster_assignment}")
color_map = {
0: "r",
1: "b",
2: "g",
3: "y"
}
plt.rcParams["figure.figsize"] = (10,10)
for i, vector in enumerate(reduced_vectors):
x = vector[0]
y = vector[1]
plt.plot(x,y, 'bo', c=color_map[cluster_assignments[i]])
plt.text(x * (1 + 0.01), y * (1 + 0.01) , words[i], fontsize=12)
```
| github_jupyter |
## 용어 정의
```
#가설설정
# A hypothesis test is a statistical method that uses sample data to evaluate a hypothesis about a population.
1. First, we state a hypothesis about a population. Usually the hypothesis concerns the value of a population parameter.
2. Before we select a sample, we use the hypothesis to predict the characteristics that the sample should have.
3. Next, we obtain a random sample from the population.
4. Finally, we compare the obtained sample data with the prediction that was made from the hypothesis.
## 가설설정 프로세스
1. State the hypothesis. null hypothesis(H0)
귀무가설 : 독립변수가 종속변수에 어떤 영향을 미치지 않는다는 것 => 레스토랑의 웨이터가 레드 셔츠 입는 것이 팁에 영향이 없다.
The null hypothesis (H0) states that in the general population
there is no change, no difference, or no relationship.
In the context of an experiment,
H0 predicts that the independent variable (treatment)
has no effect on the dependent variable (scores) for the population.
m = 15.8
대안가설 : 어떤 변인이 종속 변수에 효과가 있다는 것 => 레스토랑의 웨이터가 레드 셔츠 입는 것 팁에 영향이 있다.
The alternative hypothesis (H1) states that there is a change, a difference,
or a relationship for the general population.
In the context of an experiment,
H1 predicts that the independent variable (treatment) does have an effect on the dependent variable.
m != 15.8 이다.
이 실험에서는
m > 15.8
directional hypothisis test
2. set the criteria for a decision
a. Sample means that are likely to be obtained if H0 is true;
that is, sample means that are close to the null hypothesis
b. Sample means that are very unlikely to be obtained if H0 is true;
that is, sample means that are very different from the null hypothesis
The Alpha Level
alpha levels are α = .05 (5%), α = .01 (1%), and α = .001 (0.1%).
The alpha level, or the level of significance,
is a probability value that is used to define the concept of
“very unlikely” in a hypothesis test.
The critical region is composed of the extreme sample values that are very unlikely (as defined by the alpha level) to be obtained if the null hypothesis is true. The boundaries for the critical region are determined by the alpha level.
If sample data fall in the critical region, the null hypothesis is rejected.
3. Collect data and compute sample statistics.
z = sample mean - hypothesized population mean / standard error between M and m
4. Make a decision
1. Thesampledataarelocatedinthecriticalregion.
Bydefinition,asamplevaluein the critical region is very unlikely to occur if the null hypothesis is true.
2. The sample data are not in the critical region.
In this case, the sample mean is reasonably close to the population mean specified in the null hypothesis (in the center of the distribution).
```
# Problems
```
1. Identify the four steps of a hypothesis test as presented in this chapter.
1)State the hypothesis.
귀무가설과 대안가설 언급
2)alpha level 설정, 신뢰 구간 설정
3) Collect data and compute sample statistics.
데이터 수집과 샘플 통계적 계산
4)make decision
결론 결정
2. Define the alpha level and the critical region for a hypothesis test.
독립변수와 종속변수에 대한 귀무가설을 reject하기 위해 그 통계치를 통상적인 수치를 벗어나 의미있는 수가 나온 것을 설정해준다.
3. Define a Type I error and a Type II error and explain the consequences of each.
가설검증에서 실제효과가 없는데 효과가 있는 것으로 나온것, 실제 효과가 있는데, 없는 것으로 나온것. 가설 설정에 문제
4. If the alpha level is changed from α = .05 to α = .01,
a. What happens to the boundaries for the critical
region?
신뢰구간이 줄어든다.
b. What happens to the probability of a Type I error?
에러 확률은 낮아진다.
6. Although there is a popular belief that herbal remedies such as Ginkgo biloba and Ginseng may improve learning and memory in healthy adults, these effects are usually not supported by well- controlled research (Persson, Bringlov, Nilsson, and Nyberg, 2004). In a typical study, a researcher
obtains a sample of n = 16 participants and has each person take the herbal supplements every day for
90 days. At the end of the 90 days, each person takes a standardized memory test. For the general popula- tion, scores from the test form a normal distribution with a mean of μ = 50 and a standard deviation of
σ = 12. The sample of research participants had an average of M = 54.
a. Assuming a two-tailed test, state the null hypoth-
esis in a sentence that includes the two variables
being examined.
b. Using the standard 4-step procedure, conduct a
two-tailed hypothesis test with α = .05 to evaluate the effect of the supplements.
from scipy import stats
sample_number = 16 # 샘플수
population_mean = 50 # 모집단의 평균
standard_deviation = 12 # 표준편차
sample_mean = 54 # 샘플의 평균
result = stats.ttest_1samp(sample_mean, 50) # 비교집단, 관측치
result
sample_mean - population_mean
## Import
import numpy as np
from scipy import stats
sample_number = 16 # 샘플수
population_mean = 50 # 모집단의 평균
standard_deviation = 12 # 표준편차
sample_mean = 54 # 샘플의 평균
## 신뢰구간을 벗어나는지 아닌지 확인 함수
alpha_level05 = 1.96
alpha_level01 = 2.58
def h_test(sample_mean, population_mean, standard_deviation, sample_number, alpha_level):
result = (sample_mean - population_mean)/ (standard_deviation/np.sqrt(sample_number))
if result> alpha_level or result< - alpha_level:
print("a = .05 신뢰구간에서 귀무가설 reject되고, 가설이 ok")
else:
print("귀무가설이 reject 되지 않아 가설이 기각됩니다.")
return result
##Compute Cohen’s d
def Cohen(sample_mean, population_mean, standard_deviation):
result = (sample_mean - population_mean) / (standard_deviation)
if result<=0.2:
print("small effect")
elif result<= 0.5:
print("medium effect")
elif result<= 0.8:
print("Large effect")
return result
## 신뢰구간을 벗어나는지 아닌지 확인 함수
h_test(sample_mean, population_mean, standard_deviation, sample_number, alpha_level05)
Cohen(sample_mean, population_mean, standard_deviation)
함수를 활용해서, 신뢰구간과 cohen's d를 구할 수 있다.
# ## Import the packages
# import numpy as np
# from scipy import stats
# ## 함수로 만들기
# #Sample Size
# sample_number = 16
# population_mean = 50 # 모집단의 평균
# standard_deviation = 12 # 표준편차
# sample_mean = [54,54,58,53,52] # 샘플의 평균
# def h_test(sample_mean, population_mean, standard_deviation, sample_number):
# #For unbiased max likelihood estimate we have to divide the var by N-1, and therefore the parameter ddof = 1
# var_sample_mean = sample_mean.var(ddof=1)
# var_population_mean = population_mean.var(ddof=1)
# #std deviation
# std_deviation = np.sqrt((var_sample_mean + var_population_mean)/2)
# ## Calculate the t-statistics
# t = (a.mean() - b.mean())/(s*np.sqrt(2/N))
# ## Define 2 random distributions
# N = 10
# #Gaussian distributed data with mean = 2 and var = 1
# a = np.random.randn(N) + 2
# #Gaussian distributed data with with mean = 0 and var = 1
# b = np.random.randn(N)
# ## Calculate the Standard Deviation
# #Calculate the variance to get the standard deviation
# #For unbiased max likelihood estimate we have to divide the var by N-1, and therefore the parameter ddof = 1
# var_a = a.var(ddof=1)
# var_b = b.var(ddof=1)
# #std deviation
# s = np.sqrt((var_a + var_b)/2)
# s
# ## Calculate the t-statistics
# t = (a.mean() - b.mean())/(s*np.sqrt(2/N))
# ## Compare with the critical t-value
# #Degrees of freedom
# df = 2*N - 2
# #p-value after comparison with the t
# p = 1 - stats.t.cdf(t,df=df)
# print("t = " + str(t))
# print("p = " + str(2*p))
# ### You can see that after comparing the t statistic with the critical t value (computed internally) we get a good p value of 0.0005 and thus we reject the null hypothesis and thus it proves that the mean of the two distributions are different and statistically significant.
# ## Cross Checking with the internal scipy function
# t2, p2 = stats.ttest_ind(a,b)
# print("t = " + str(t2))
# print("p = " + str(p2))
```
| github_jupyter |
Source: https://qiskit.org/documentation/tutorials/circuits/01_circuit_basics.html
## Circuit Basics
```
import numpy as np
from qiskit import QuantumCircuit
%matplotlib inline
```
Create a Quantum Circuit acting on a quantum register of three qubits
```
circ = QuantumCircuit(3)
```
After you create the circuit with its registers, you can add gates (“operations”) to manipulate the registers. As you proceed through the tutorials you will find more gates and circuits; below is an example of a quantum circuit that makes a three-qubit GHZ state
|𝜓⟩=(|000⟩+|111⟩)/2‾√
To create such a state, we start with a three-qubit quantum register. By default, each qubit in the register is initialized to |0⟩. To make the GHZ state, we apply the following gates: - A Hadamard gate 𝐻 on qubit 0, which puts it into the superposition state (|0⟩+|1⟩)/2‾√. - A controlled-Not operation (𝐶𝑋) between qubit 0 and qubit 1. - A controlled-Not operation between qubit 0 and qubit 2.
On an ideal quantum computer, the state produced by running this circuit would be the GHZ state above.
```
# Add a H gate on qubit 0, putting this qubit in superposition.
circ.h(0)
# Add a CX (CNOT) gate on control qubit 0 and target qubit 1, putting
# the qubits in a Bell state.
circ.cx(0, 1)
# Add a CX (CNOT) gate on control qubit 0 and target qubit 2, putting
# the qubits in a GHZ state.
circ.cx(0, 2)
```
Visualize circuit
```
circ.draw('mpl')
```
Simulating Circuits
To simulate a circuit we use the quant-info module in Qiskit. This simulator returns the quantum state, which is a complex vector of dimensions 2𝑛, where 𝑛 is the number of qubits (so be careful using this as it will quickly get too large to run on your machine).
There are two stages to the simulator. The fist is to set the input state and the second to evolve the state by the quantum circuit.
```
from qiskit.quantum_info import Statevector
# Set the intial state of the simulator to the ground state using from_int
state = Statevector.from_int(0, 2**3)
# Evolve the state by the quantum circuit
state = state.evolve(circ)
#draw using latex
state.draw('latex')
```
Visualization
Below, we use the visualization function to plot the qsphere and a hinton representing the real and imaginary components of the state density matrix 𝜌.
```
state.draw('qsphere')
state.draw('hinton')
```
Unitary representation of a circuit
Qiskit’s quant_info module also has an operator method which can be used to make a unitary operator for the circuit. This calculates the 2𝑛×2𝑛 matrix representing the quantum circuit.
```
from qiskit.quantum_info import Operator
U = Operator(circ)
# Show the results
U.data
```
OpenQASM backend
The simulators above are useful because they provide information about the state output by the ideal circuit and the matrix representation of the circuit. However, a real experiment terminates by measuring each qubit (usually in the computational |0⟩,|1⟩ basis). Without measurement, we cannot gain information about the state. Measurements cause the quantum system to collapse into classical bits.
For example, suppose we make independent measurements on each qubit of the three-qubit GHZ state
|𝜓⟩=(|000⟩+|111⟩)/2‾√,
and let 𝑥𝑦𝑧 denote the bitstring that results. Recall that, under the qubit labeling used by Qiskit, 𝑥 would correspond to the outcome on qubit 2, 𝑦 to the outcome on qubit 1, and 𝑧 to the outcome on qubit 0.
Note: This representation of the bitstring puts the most significant bit (MSB) on the left, and the least significant bit (LSB) on the right. This is the standard ordering of binary bitstrings. We order the qubits in the same way (qubit representing the MSB has index 0), which is why Qiskit uses a non-standard tensor product order.
Recall the probability of obtaining outcome 𝑥𝑦𝑧 is given by
Pr(𝑥𝑦𝑧)=|⟨𝑥𝑦𝑧|𝜓⟩|2
and as such for the GHZ state probability of obtaining 000 or 111 are both 1/2.
To simulate a circuit that includes measurement, we need to add measurements to the original circuit above, and use a different Aer backend.
```
# Create a Quantum Circuit
meas = QuantumCircuit(3, 3)
meas.barrier(range(3))
# map the quantum measurement to the classical bits
meas.measure(range(3), range(3))
# The Qiskit circuit object supports composition.
# Here the meas has to be first and front=True (putting it before)
# as compose must put a smaller circuit into a larger one.
qc = meas.compose(circ, range(3), front=True)
#drawing the circuit
qc.draw('mpl')
```
This circuit adds a classical register, and three measurements that are used to map the outcome of qubits to the classical bits.
To simulate this circuit, we use the qasm_simulator in Qiskit Aer. Each run of this circuit will yield either the bitstring 000 or 111. To build up statistics about the distribution of the bitstrings (to, e.g., estimate Pr(000)), we need to repeat the circuit many times. The number of times the circuit is repeated can be specified in the execute function, via the shots keyword.
```
# Adding the transpiler to reduce the circuit to QASM instructions
# supported by the backend
from qiskit import transpile
# Use Aer's qasm_simulator
from qiskit.providers.aer import QasmSimulator
backend = QasmSimulator()
# First we have to transpile the quantum circuit
# to the low-level QASM instructions used by the
# backend
qc_compiled = transpile(qc, backend)
# Execute the circuit on the qasm simulator.
# We've set the number of repeats of the circuit
# to be 1024, which is the default.
job_sim = backend.run(qc_compiled, shots=1024)
# Grab the results from the job.
result_sim = job_sim.result()
```
Once you have a result object, you can access the counts via the function get_counts(circuit). This gives you the aggregated binary outcomes of the circuit you submitted.
```
counts = result_sim.get_counts(qc_compiled)
print(counts)
```
Approximately 50 percent of the time, the output bitstring is 000. Qiskit also provides a function plot_histogram, which allows you to view the outcomes.
```
from qiskit.visualization import plot_histogram
plot_histogram(counts)
```
The estimated outcome probabilities Pr(000) and Pr(111) are computed by taking the aggregate counts and dividing by the number of shots (times the circuit was repeated). Try changing the shots keyword in the execute function and see how the estimated probabilities change.
```
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
```
| github_jupyter |
# Linear algebra
```
import numpy as np
np.__version__
```
## Matrix and vector products
Q1. Predict the results of the following code.
```
import numpy as np
x = [1,2]
y = [[4, 1], [2, 2]]
print np.dot(x, y)
print np.dot(y, x)
print np.matmul(x, y)
print np.inner(x, y)
print np.inner(y, x)
```
Q2. Predict the results of the following code.
```
x = [[1, 0], [0, 1]]
y = [[4, 1], [2, 2], [1, 1]]
print np.dot(y, x)
print np.matmul(y, x)
```
Q3. Predict the results of the following code.
```
x = np.array([[1, 4], [5, 6]])
y = np.array([[4, 1], [2, 2]])
print np.vdot(x, y)
print np.vdot(y, x)
print np.dot(x.flatten(), y.flatten())
print np.inner(x.flatten(), y.flatten())
print (x*y).sum()
```
Q4. Predict the results of the following code.
```
x = np.array(['a', 'b'], dtype=object)
y = np.array([1, 2])
print np.inner(x, y)
print np.inner(y, x)
print np.outer(x, y)
print np.outer(y, x)
```
## Decompositions
Q5. Get the lower-trianglular `L` in the Cholesky decomposition of x and verify it.
```
x = np.array([[4, 12, -16], [12, 37, -43], [-16, -43, 98]], dtype=np.int32)
L = np.linalg.cholesky(x)
print L
assert np.array_equal(np.dot(L, L.T.conjugate()), x)
```
Q6. Compute the qr factorization of x and verify it.
```
x = np.array([[12, -51, 4], [6, 167, -68], [-4, 24, -41]], dtype=np.float32)
q, r = np.linalg.qr(x)
print "q=\n", q, "\nr=\n", r
assert np.allclose(np.dot(q, r), x)
```
Q7. Factor x by Singular Value Decomposition and verify it.
```
x = np.array([[1, 0, 0, 0, 2], [0, 0, 3, 0, 0], [0, 0, 0, 0, 0], [0, 2, 0, 0, 0]], dtype=np.float32)
U, s, V = np.linalg.svd(x, full_matrices=False)
print "U=\n", U, "\ns=\n", s, "\nV=\n", v
assert np.allclose(np.dot(U, np.dot(np.diag(s), V)), x)
```
## Matrix eigenvalues
Q8. Compute the eigenvalues and right eigenvectors of x. (Name them eigenvals and eigenvecs, respectively)
```
x = np.diag((1, 2, 3))
eigenvals = np.linalg.eig(x)[0]
eigenvals_ = np.linalg.eigvals(x)
assert np.array_equal(eigenvals, eigenvals_)
print "eigenvalues are\n", eigenvals
eigenvecs = np.linalg.eig(x)[1]
print "eigenvectors are\n", eigenvecs
```
Q9. Predict the results of the following code.
```
print np.array_equal(np.dot(x, eigenvecs), eigenvals * eigenvecs)
```
## Norms and other numbers
Q10. Calculate the Frobenius norm and the condition number of x.
```
x = np.arange(1, 10).reshape((3, 3))
print np.linalg.norm(x, 'fro')
print np.linalg.cond(x, 'fro')
```
Q11. Calculate the determinant of x.
```
x = np.arange(1, 5).reshape((2, 2))
out1 = np.linalg.det(x)
out2 = x[0, 0] * x[1, 1] - x[0, 1] * x[1, 0]
assert np.allclose(out1, out2)
print out1
```
Q12. Calculate the rank of x.
```
x = np.eye(4)
out1 = np.linalg.matrix_rank(x)
out2 = np.linalg.svd(x)[1].size
assert out1 == out2
print out1
```
Q13. Compute the sign and natural logarithm of the determinant of x.
```
x = np.arange(1, 5).reshape((2, 2))
sign, logdet = np.linalg.slogdet(x)
det = np.linalg.det(x)
assert sign == np.sign(det)
assert logdet == np.log(np.abs(det))
print sign, logdet
```
Q14. Return the sum along the diagonal of x.
```
x = np.eye(4)
out1 = np.trace(x)
out2 = x.diagonal().sum()
assert out1 == out2
print out1
```
## Solving equations and inverting matrices
Q15. Compute the inverse of x.
```
x = np.array([[1., 2.], [3., 4.]])
out1 = np.linalg.inv(x)
assert np.allclose(np.dot(x, out1), np.eye(2))
print out1
```
| github_jupyter |
# 自然语言处理实战——命名实体识别
### 进入ModelArts
点击如下链接:https://www.huaweicloud.com/product/modelarts.html , 进入ModelArts主页。点击“立即使用”按钮,输入用户名和密码登录,进入ModelArts使用页面。
### 创建ModelArts notebook
下面,我们在ModelArts中创建一个notebook开发环境,ModelArts notebook提供网页版的Python开发环境,可以方便的编写、运行代码,并查看运行结果。
第一步:在ModelArts服务主界面依次点击“开发环境”、“创建”
![create_nb_create_button](./img/create_nb_create_button.png)
第二步:填写notebook所需的参数:
| 参数 | 说明 |
| - - - - - | - - - - - |
| 计费方式 | 按需计费 |
| 名称 | Notebook实例名称 |
| 工作环境 | Python3 |
| 资源池 | 选择"公共资源池"即可 |
| 类型 | 选择"GPU" |
| 规格 | 选择"[限时免费]体验规格GPU版"|
| 存储配置 | 选择EVS,磁盘规格5GB |
第三步:配置好notebook参数后,点击下一步,进入notebook信息预览。确认无误后,点击“立即创建”
第四步:创建完成后,返回开发环境主界面,等待Notebook创建完毕后,打开Notebook,进行下一步操作。
![modelarts_notebook_index](./img/modelarts_notebook_index.png)
### 在ModelArts中创建开发环境
接下来,我们创建一个实际的开发环境,用于后续的实验步骤。
第一步:点击下图所示的“打开”按钮,进入刚刚创建的Notebook
![inter_dev_env](img/enter_dev_env.png)
第二步:创建一个Python3环境的的Notebook。点击右上角的"New",然后创建TensorFlow 1.13.1开发环境。
第三步:点击左上方的文件名"Untitled",并输入一个与本实验相关的名称
![notebook_untitled_filename](./img/notebook_untitled_filename.png)
![notebook_name_the_ipynb](./img/notebook_name_the_ipynb.png)
### 在Notebook中编写并执行代码
在Notebook中,我们输入一个简单的打印语句,然后点击上方的运行按钮,可以查看语句执行的结果:
![run_helloworld](./img/run_helloworld.png)
开发环境准备好啦,接下来可以愉快地写代码啦!
### 准备源代码和数据
准备案例所需的源代码和数据,相关资源已经保存在 OBS 中,我们通过 ModelArts SDK 将资源下载到本地。
```
from modelarts.session import Session
session = Session()
if session.region_name == 'cn-north-1':
bucket_path = 'modelarts-labs/notebook/DL_nlp_ner/ner.tar.gz'
elif session.region_name == 'cn-north-4':
bucket_path = 'modelarts-labs-bj4/notebook/DL_nlp_ner/ner.tar.gz'
else:
print("请更换地区到北京一或北京四")
session.download_data(bucket_path=bucket_path, path='./ner.tar.gz')
!ls -la
```
解压从obs下载的压缩包,解压后删除压缩包。
```
# 解压
!tar xf ./ner.tar.gz
# 删除
!rm ./ner.tar.gz
!ls -la
```
#### 导入Python库
```
import os
import json
import numpy as np
import tensorflow as tf
import codecs
import pickle
import collections
from ner.bert import modeling, optimization, tokenization
```
#### 定义路径及参数
```
data_dir = "./ner/data"
output_dir = "./ner/output"
vocab_file = "./ner/chinese_L-12_H-768_A-12/vocab.txt"
data_config_path = "./ner/chinese_L-12_H-768_A-12/bert_config.json"
init_checkpoint = "./ner/chinese_L-12_H-768_A-12/bert_model.ckpt"
max_seq_length = 128
batch_size = 64
num_train_epochs = 5.0
```
#### 定义processor类获取数据,打印标签
```
tf.logging.set_verbosity(tf.logging.INFO)
from ner.src.models import InputFeatures, InputExample, DataProcessor, NerProcessor
processors = {"ner": NerProcessor }
processor = processors["ner"](output_dir)
label_list = processor.get_labels()
print("labels:", label_list)
```
以上 labels 分别表示:
- O:非标注实体
- B-PER:人名首字
- I-PER:人名非首字
- B-ORG:组织首字
- I-ORG:组织名非首字
- B-LOC:地名首字
- I-LOC:地名非首字
- X:未知
- [CLS]:句首
- [SEP]:句尾
#### 加载预训练参数
```
data_config = json.load(codecs.open(data_config_path))
train_examples = processor.get_train_examples(data_dir)
num_train_steps = int(len(train_examples) / batch_size * num_train_epochs)
num_warmup_steps = int(num_train_steps * 0.1)
data_config['num_train_steps'] = num_train_steps
data_config['num_warmup_steps'] = num_warmup_steps
data_config['num_train_size'] = len(train_examples)
print("显示配置信息:")
for key,value in data_config.items():
print('{key}:{value}'.format(key = key, value = value))
bert_config = modeling.BertConfig.from_json_file(data_config_path)
tokenizer = tokenization.FullTokenizer(vocab_file=vocab_file, do_lower_case=True)
#tf.estimator运行参数
run_config = tf.estimator.RunConfig(
model_dir=output_dir,
save_summary_steps=1000,
save_checkpoints_steps=1000,
session_config=tf.ConfigProto(
log_device_placement=False,
inter_op_parallelism_threads=0,
intra_op_parallelism_threads=0,
allow_soft_placement=True
)
)
```
#### 读取数据,获取句向量
```
def convert_single_example(ex_index, example, label_list, max_seq_length,
tokenizer, output_dir, mode):
label_map = {}
for (i, label) in enumerate(label_list, 1):
label_map[label] = i
if not os.path.exists(os.path.join(output_dir, 'label2id.pkl')):
with codecs.open(os.path.join(output_dir, 'label2id.pkl'), 'wb') as w:
pickle.dump(label_map, w)
textlist = example.text.split(' ')
labellist = example.label.split(' ')
tokens = []
labels = []
for i, word in enumerate(textlist):
token = tokenizer.tokenize(word)
tokens.extend(token)
label_1 = labellist[i]
for m in range(len(token)):
if m == 0:
labels.append(label_1)
else:
labels.append("X")
if len(tokens) >= max_seq_length - 1:
tokens = tokens[0:(max_seq_length - 2)]
labels = labels[0:(max_seq_length - 2)]
ntokens = []
segment_ids = []
label_ids = []
ntokens.append("[CLS]") # 句子开始设置 [CLS] 标志
segment_ids.append(0)
label_ids.append(label_map["[CLS]"])
for i, token in enumerate(tokens):
ntokens.append(token)
segment_ids.append(0)
label_ids.append(label_map[labels[i]])
ntokens.append("[SEP]") # 句尾添加 [SEP] 标志
segment_ids.append(0)
label_ids.append(label_map["[SEP]"])
input_ids = tokenizer.convert_tokens_to_ids(ntokens)
input_mask = [1] * len(input_ids)
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
label_ids.append(0)
ntokens.append("**NULL**")
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
feature = InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_ids=label_ids,
)
return feature
def filed_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_file, mode=None):
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 5000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer, output_dir, mode)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature(feature.label_ids)
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
train_file = os.path.join(output_dir, "train.tf_record")
#将训练集中字符转化为features作为训练的输入
filed_based_convert_examples_to_features(
train_examples, label_list, max_seq_length, tokenizer, output_file=train_file)
```
#### 引入 BiLSTM+CRF 层,作为下游模型
```
learning_rate = 5e-5
dropout_rate = 1.0
lstm_size=1
cell='lstm'
num_layers=1
from ner.src.models import BLSTM_CRF
from tensorflow.contrib.layers.python.layers import initializers
def create_model(bert_config, is_training, input_ids, input_mask,
segment_ids, labels, num_labels, use_one_hot_embeddings,
dropout_rate=dropout_rate, lstm_size=1, cell='lstm', num_layers=1):
model = modeling.BertModel(
config=bert_config,
is_training=is_training,
input_ids=input_ids,
input_mask=input_mask,
token_type_ids=segment_ids,
use_one_hot_embeddings=use_one_hot_embeddings
)
embedding = model.get_sequence_output()
max_seq_length = embedding.shape[1].value
used = tf.sign(tf.abs(input_ids))
lengths = tf.reduce_sum(used, reduction_indices=1)
blstm_crf = BLSTM_CRF(embedded_chars=embedding, hidden_unit=1, cell_type='lstm', num_layers=1,
dropout_rate=dropout_rate, initializers=initializers, num_labels=num_labels,
seq_length=max_seq_length, labels=labels, lengths=lengths, is_training=is_training)
rst = blstm_crf.add_blstm_crf_layer(crf_only=True)
return rst
def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
num_train_steps, num_warmup_steps,use_one_hot_embeddings=False):
#构建模型
def model_fn(features, labels, mode, params):
tf.logging.info("*** Features ***")
for name in sorted(features.keys()):
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
input_ids = features["input_ids"]
input_mask = features["input_mask"]
segment_ids = features["segment_ids"]
label_ids = features["label_ids"]
print('shape of input_ids', input_ids.shape)
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
total_loss, logits, trans, pred_ids = create_model(
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
num_labels, False, dropout_rate, lstm_size, cell, num_layers)
tvars = tf.trainable_variables()
if init_checkpoint:
(assignment_map, initialized_variable_names) = \
modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
output_spec = None
if mode == tf.estimator.ModeKeys.TRAIN:
train_op = optimization.create_optimizer(
total_loss, learning_rate, num_train_steps, num_warmup_steps, False)
hook_dict = {}
hook_dict['loss'] = total_loss
hook_dict['global_steps'] = tf.train.get_or_create_global_step()
logging_hook = tf.train.LoggingTensorHook(
hook_dict, every_n_iter=100)
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
train_op=train_op,
training_hooks=[logging_hook])
elif mode == tf.estimator.ModeKeys.EVAL:
def metric_fn(label_ids, pred_ids):
return {
"eval_loss": tf.metrics.mean_squared_error(labels=label_ids, predictions=pred_ids), }
eval_metrics = metric_fn(label_ids, pred_ids)
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
loss=total_loss,
eval_metric_ops=eval_metrics
)
else:
output_spec = tf.estimator.EstimatorSpec(
mode=mode,
predictions=pred_ids
)
return output_spec
return model_fn
```
#### 创建模型,开始训练
```
model_fn = model_fn_builder(
bert_config=bert_config,
num_labels=len(label_list) + 1,
init_checkpoint=init_checkpoint,
learning_rate=learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
use_one_hot_embeddings=False)
def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder):
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([seq_length], tf.int64),
}
def _decode_record(record, name_to_features):
example = tf.parse_single_example(record, name_to_features)
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
params["batch_size"] = 32
batch_size = params["batch_size"]
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=300)
d = d.apply(tf.contrib.data.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder
))
return d
return input_fn
#训练输入
train_input_fn = file_based_input_fn_builder(
input_file=train_file,
seq_length=max_seq_length,
is_training=True,
drop_remainder=True)
num_train_size = len(train_examples)
tf.logging.info("***** Running training *****")
tf.logging.info(" Num examples = %d", num_train_size)
tf.logging.info(" Batch size = %d", batch_size)
tf.logging.info(" Num steps = %d", num_train_steps)
#模型预测estimator
estimator = tf.estimator.Estimator(
model_fn=model_fn,
config=run_config,
params={
'batch_size':batch_size
})
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
```
#### 在验证集上验证模型
```
eval_examples = processor.get_dev_examples(data_dir)
eval_file = os.path.join(output_dir, "eval.tf_record")
filed_based_convert_examples_to_features(
eval_examples, label_list, max_seq_length, tokenizer, eval_file)
data_config['eval.tf_record_path'] = eval_file
data_config['num_eval_size'] = len(eval_examples)
num_eval_size = data_config.get('num_eval_size', 0)
tf.logging.info("***** Running evaluation *****")
tf.logging.info(" Num examples = %d", num_eval_size)
tf.logging.info(" Batch size = %d", batch_size)
eval_steps = None
eval_drop_remainder = False
eval_input_fn = file_based_input_fn_builder(
input_file=eval_file,
seq_length=max_seq_length,
is_training=False,
drop_remainder=eval_drop_remainder)
result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
output_eval_file = os.path.join(output_dir, "eval_results.txt")
with codecs.open(output_eval_file, "w", encoding='utf-8') as writer:
tf.logging.info("***** Eval results *****")
for key in sorted(result.keys()):
tf.logging.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
if not os.path.exists(data_config_path):
with codecs.open(data_config_path, 'a', encoding='utf-8') as fd:
json.dump(data_config, fd)
```
#### 在测试集上进行测试
```
token_path = os.path.join(output_dir, "token_test.txt")
if os.path.exists(token_path):
os.remove(token_path)
with codecs.open(os.path.join(output_dir, 'label2id.pkl'), 'rb') as rf:
label2id = pickle.load(rf)
id2label = {value: key for key, value in label2id.items()}
predict_examples = processor.get_test_examples(data_dir)
predict_file = os.path.join(output_dir, "predict.tf_record")
filed_based_convert_examples_to_features(predict_examples, label_list,
max_seq_length, tokenizer,
predict_file, mode="test")
tf.logging.info("***** Running prediction*****")
tf.logging.info(" Num examples = %d", len(predict_examples))
tf.logging.info(" Batch size = %d", batch_size)
predict_drop_remainder = False
predict_input_fn = file_based_input_fn_builder(
input_file=predict_file,
seq_length=max_seq_length,
is_training=False,
drop_remainder=predict_drop_remainder)
predicted_result = estimator.evaluate(input_fn=predict_input_fn)
output_eval_file = os.path.join(output_dir, "predicted_results.txt")
with codecs.open(output_eval_file, "w", encoding='utf-8') as writer:
tf.logging.info("***** Predict results *****")
for key in sorted(predicted_result.keys()):
tf.logging.info(" %s = %s", key, str(predicted_result[key]))
writer.write("%s = %s\n" % (key, str(predicted_result[key])))
result = estimator.predict(input_fn=predict_input_fn)
output_predict_file = os.path.join(output_dir, "label_test.txt")
def result_to_pair(writer):
for predict_line, prediction in zip(predict_examples, result):
idx = 0
line = ''
line_token = str(predict_line.text).split(' ')
label_token = str(predict_line.label).split(' ')
if len(line_token) != len(label_token):
tf.logging.info(predict_line.text)
tf.logging.info(predict_line.label)
for id in prediction:
if id == 0:
continue
curr_labels = id2label[id]
if curr_labels in ['[CLS]', '[SEP]']:
continue
try:
line += line_token[idx] + ' ' + label_token[idx] + ' ' + curr_labels + '\n'
except Exception as e:
tf.logging.info(e)
tf.logging.info(predict_line.text)
tf.logging.info(predict_line.label)
line = ''
break
idx += 1
writer.write(line + '\n')
from ner.src.conlleval import return_report
with codecs.open(output_predict_file, 'w', encoding='utf-8') as writer:
result_to_pair(writer)
eval_result = return_report(output_predict_file)
for line in eval_result:
print(line)
```
### 在线命名实体识别
由以上训练得到模型进行在线测试,可以任意输入句子,进行命名实体识别。
输入“再见”,结束在线命名实体识别。
<span style="color:red">若下述程序未执行成功,则表示训练完成后,GPU显存还在占用,需要restart kernel,然后执行 %run 命令。</span>
释放资源具体流程为:菜单 > Kernel > Restart
![释放资源](./img/释放资源.png)
```
%run ner/src/terminal_predict.py
```
| github_jupyter |
# 100 pandas puzzles
Inspired by [100 Numpy exerises](https://github.com/rougier/numpy-100), here are 100* short puzzles for testing your knowledge of [pandas'](http://pandas.pydata.org/) power.
Since pandas is a large library with many different specialist features and functions, these excercises focus mainly on the fundamentals of manipulating data (indexing, grouping, aggregating, cleaning), making use of the core DataFrame and Series objects.
Many of the excerises here are stright-forward in that the solutions require no more than a few lines of code (in pandas or NumPy... don't go using pure Python or Cython!). Choosing the right methods and following best practices is the underlying goal.
The exercises are loosely divided in sections. Each section has a difficulty rating; these ratings are subjective, of course, but should be a seen as a rough guide as to how inventive the required solution is.
If you're just starting out with pandas and you are looking for some other resources, the official documentation is very extensive. In particular, some good places get a broader overview of pandas are...
- [10 minutes to pandas](http://pandas.pydata.org/pandas-docs/stable/10min.html)
- [pandas basics](http://pandas.pydata.org/pandas-docs/stable/basics.html)
- [tutorials](http://pandas.pydata.org/pandas-docs/stable/tutorials.html)
- [cookbook and idioms](http://pandas.pydata.org/pandas-docs/stable/cookbook.html#cookbook)
Enjoy the puzzles!
\* *the list of exercises is not yet complete! Pull requests or suggestions for additional exercises, corrections and improvements are welcomed.*
## Importing pandas
### Getting started and checking your pandas setup
Difficulty: *easy*
**1.** Import pandas under the alias `pd`.
```
import pandas as pd
```
**2.** Print the version of pandas that has been imported.
```
pd.__version__
```
**3.** Print out all the *version* information of the libraries that are required by the pandas library.
```
pd.show_versions()
```
## DataFrame basics
### A few of the fundamental routines for selecting, sorting, adding and aggregating data in DataFrames
Difficulty: *easy*
Note: remember to import numpy using:
```python
import numpy as np
```
Consider the following Python dictionary `data` and Python list `labels`:
``` python
data = {'animal': ['cat', 'cat', 'snake', 'dog', 'dog', 'cat', 'snake', 'cat', 'dog', 'dog'],
'age': [2.5, 3, 0.5, np.nan, 5, 2, 4.5, np.nan, 7, 3],
'visits': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
```
(This is just some meaningless data I made up with the theme of animals and trips to a vet.)
**4.** Create a DataFrame `df` from this dictionary `data` which has the index `labels`.
```
import numpy as np
raw_data = {'animal': ['cat', 'cat', 'snake', 'dog', 'dog', 'cat', 'snake', 'cat', 'dog', 'dog'],
'age': [2.5, 3, 0.5, np.nan, 5, 2, 4.5, np.nan, 7, 3],
'visits': [1, 3, 2, 3, 2, 3, 1, 1, 2, 1],
'priority': ['yes', 'yes', 'no', 'yes', 'no', 'no', 'no', 'yes', 'no', 'no']}
labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']
df = pd.DataFrame(raw_data, index=labels)# (complete this line of code)
df
```
**5.** Display a summary of the basic information about this DataFrame and its data (*hint: there is a single method that can be called on the DataFrame*).
```
df.describe()
```
**6.** Return the first 3 rows of the DataFrame `df`.
```
df.iloc[:3,:]
```
**7.** Select just the 'animal' and 'age' columns from the DataFrame `df`.
```
df[['animal', 'age']]
```
**8.** Select the data in rows `[3, 4, 8]` *and* in columns `['animal', 'age']`.
```
df.iloc[[3, 4, 8]][['animal','age']]
```
**9.** Select only the rows where the number of visits is greater than 3.
```
df[df['visits'] > 3]
```
**10.** Select the rows where the age is missing, i.e. it is `NaN`.
```
df[df['age'].isna()]
```
**11.** Select the rows where the animal is a cat *and* the age is less than 3.
```
df[(df['animal'] == 'cat') & (df['age'] < 3)]
```
**12.** Select the rows the age is between 2 and 4 (inclusive).
```
df.iloc[2:5]
```
**13.** Change the age in row 'f' to 1.5.
```
df.loc['f','age'] = 1.5
df
```
**14.** Calculate the sum of all visits in `df` (i.e. find the total number of visits).
```
df['visits'].sum()
```
**15.** Calculate the mean age for each different animal in `df`.
```
df.groupby('animal').agg({'age':'mean'})
```
**16.** Append a new row 'k' to `df` with your choice of values for each column. Then delete that row to return the original DataFrame.
```
import numpy as np
rnum = np.random.randint(10, size=len(df))
df['k'] = rnum
```
**17.** Count the number of each type of animal in `df`.
```
df['animal'].value_counts()
```
**18.** Sort `df` first by the values in the 'age' in *decending* order, then by the value in the 'visits' column in *ascending* order (so row `i` should be first, and row `d` should be last).
```
df.sort_values(by = ['age', 'visits'], ascending=[False, True])
```
**19.** The 'priority' column contains the values 'yes' and 'no'. Replace this column with a column of boolean values: 'yes' should be `True` and 'no' should be `False`.
```
df['priority'] = df['priority'].map({'yes': True, 'no': False})
```
**20.** In the 'animal' column, change the 'snake' entries to 'python'.
```
df['animal'] = df['animal'].replace('snake', 'python')
df
```
**21.** For each animal type and each number of visits, find the mean age. In other words, each row is an animal, each column is a number of visits and the values are the mean ages (*hint: use a pivot table*).
```
df.pivot_table(index = 'animal', columns = 'visits', values = 'age', aggfunc = 'mean').fillna(0)
```
## DataFrames: beyond the basics
### Slightly trickier: you may need to combine two or more methods to get the right answer
Difficulty: *medium*
The previous section was tour through some basic but essential DataFrame operations. Below are some ways that you might need to cut your data, but for which there is no single "out of the box" method.
**22.** You have a DataFrame `df` with a column 'A' of integers. For example:
```python
df = pd.DataFrame({'A': [1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 7]})
```
How do you filter out rows which contain the same integer as the row immediately above?
You should be left with a column containing the following values:
```python
1, 2, 3, 4, 5, 6, 7
```
**23.** Given a DataFrame of numeric values, say
```python
df = pd.DataFrame(np.random.random(size=(5, 3))) # a 5x3 frame of float values
```
how do you subtract the row mean from each element in the row?
**24.** Suppose you have DataFrame with 10 columns of real numbers, for example:
```python
df = pd.DataFrame(np.random.random(size=(5, 10)), columns=list('abcdefghij'))
```
Which column of numbers has the smallest sum? Return that column's label.
**25.** How do you count how many unique rows a DataFrame has (i.e. ignore all rows that are duplicates)? As input, use a DataFrame of zeros and ones with 10 rows and 3 columns.
```python
df = pd.DataFrame(np.random.randint(0, 2, size=(10, 3)))
```
The next three puzzles are slightly harder.
**26.** In the cell below, you have a DataFrame `df` that consists of 10 columns of floating-point numbers. Exactly 5 entries in each row are NaN values.
For each row of the DataFrame, find the *column* which contains the *third* NaN value.
You should return a Series of column labels: `e, c, d, h, d`
```
nan = np.nan
data = [[0.04, nan, nan, 0.25, nan, 0.43, 0.71, 0.51, nan, nan],
[ nan, nan, nan, 0.04, 0.76, nan, nan, 0.67, 0.76, 0.16],
[ nan, nan, 0.5 , nan, 0.31, 0.4 , nan, nan, 0.24, 0.01],
[0.49, nan, nan, 0.62, 0.73, 0.26, 0.85, nan, nan, nan],
[ nan, nan, 0.41, nan, 0.05, nan, 0.61, nan, 0.48, 0.68]]
columns = list('abcdefghij')
df = pd.DataFrame(data, columns=columns)
# write a solution to the question here
```
**27.** A DataFrame has a column of groups 'grps' and and column of integer values 'vals':
```python
df = pd.DataFrame({'grps': list('aaabbcaabcccbbc'),
'vals': [12,345,3,1,45,14,4,52,54,23,235,21,57,3,87]})
```
For each *group*, find the sum of the three greatest values. You should end up with the answer as follows:
```
grps
a 409
b 156
c 345
```
```
df = pd.DataFrame({'grps': list('aaabbcaabcccbbc'),
'vals': [12,345,3,1,45,14,4,52,54,23,235,21,57,3,87]})
# write a solution to the question here
```
**28.** The DataFrame `df` constructed below has two integer columns 'A' and 'B'. The values in 'A' are between 1 and 100 (inclusive).
For each group of 10 consecutive integers in 'A' (i.e. `(0, 10]`, `(10, 20]`, ...), calculate the sum of the corresponding values in column 'B'.
The answer should be a Series as follows:
```
A
(0, 10] 635
(10, 20] 360
(20, 30] 315
(30, 40] 306
(40, 50] 750
(50, 60] 284
(60, 70] 424
(70, 80] 526
(80, 90] 835
(90, 100] 852
```
```
df = pd.DataFrame(np.random.RandomState(8765).randint(1, 101, size=(100, 2)), columns = ["A", "B"])
# write a solution to the question here
```
## DataFrames: harder problems
### These might require a bit of thinking outside the box...
...but all are solvable using just the usual pandas/NumPy methods (and so avoid using explicit `for` loops).
Difficulty: *hard*
**29.** Consider a DataFrame `df` where there is an integer column 'X':
```python
df = pd.DataFrame({'X': [7, 2, 0, 3, 4, 2, 5, 0, 3, 4]})
```
For each value, count the difference back to the previous zero (or the start of the Series, whichever is closer). These values should therefore be
```
[1, 2, 0, 1, 2, 3, 4, 0, 1, 2]
```
Make this a new column 'Y'.
**30.** Consider the DataFrame constructed below which contains rows and columns of numerical data.
Create a list of the column-row index locations of the 3 largest values in this DataFrame. In this case, the answer should be:
```
[(5, 7), (6, 4), (2, 5)]
```
```
df = pd.DataFrame(np.random.RandomState(30).randint(1, 101, size=(8, 8)))
```
**31.** You are given the DataFrame below with a column of group IDs, 'grps', and a column of corresponding integer values, 'vals'.
```python
df = pd.DataFrame({"vals": np.random.RandomState(31).randint(-30, 30, size=15),
"grps": np.random.RandomState(31).choice(["A", "B"], 15)})
```
Create a new column 'patched_values' which contains the same values as the 'vals' any negative values in 'vals' with the group mean:
```
vals grps patched_vals
0 -12 A 13.6
1 -7 B 28.0
2 -14 A 13.6
3 4 A 4.0
4 -7 A 13.6
5 28 B 28.0
6 -2 A 13.6
7 -1 A 13.6
8 8 A 8.0
9 -2 B 28.0
10 28 A 28.0
11 12 A 12.0
12 16 A 16.0
13 -24 A 13.6
14 -12 A 13.6
```
**32.** Implement a rolling mean over groups with window size 3, which ignores NaN value. For example consider the following DataFrame:
```python
>>> df = pd.DataFrame({'group': list('aabbabbbabab'),
'value': [1, 2, 3, np.nan, 2, 3, np.nan, 1, 7, 3, np.nan, 8]})
>>> df
group value
0 a 1.0
1 a 2.0
2 b 3.0
3 b NaN
4 a 2.0
5 b 3.0
6 b NaN
7 b 1.0
8 a 7.0
9 b 3.0
10 a NaN
11 b 8.0
```
The goal is to compute the Series:
```
0 1.000000
1 1.500000
2 3.000000
3 3.000000
4 1.666667
5 3.000000
6 3.000000
7 2.000000
8 3.666667
9 2.000000
10 4.500000
11 4.000000
```
E.g. the first window of size three for group 'b' has values 3.0, NaN and 3.0 and occurs at row index 5. Instead of being NaN the value in the new column at this row index should be 3.0 (just the two non-NaN values are used to compute the mean (3+3)/2)
## Series and DatetimeIndex
### Exercises for creating and manipulating Series with datetime data
Difficulty: *easy/medium*
pandas is fantastic for working with dates and times. These puzzles explore some of this functionality.
**33.** Create a DatetimeIndex that contains each business day of 2015 and use it to index a Series of random numbers. Let's call this Series `s`.
**34.** Find the sum of the values in `s` for every Wednesday.
**35.** For each calendar month in `s`, find the mean of values.
**36.** For each group of four consecutive calendar months in `s`, find the date on which the highest value occurred.
**37.** Create a DateTimeIndex consisting of the third Thursday in each month for the years 2015 and 2016.
## Cleaning Data
### Making a DataFrame easier to work with
Difficulty: *easy/medium*
It happens all the time: someone gives you data containing malformed strings, Python, lists and missing data. How do you tidy it up so you can get on with the analysis?
Take this monstrosity as the DataFrame to use in the following puzzles:
```python
df = pd.DataFrame({'From_To': ['LoNDon_paris', 'MAdrid_miLAN', 'londON_StockhOlm',
'Budapest_PaRis', 'Brussels_londOn'],
'FlightNumber': [10045, np.nan, 10065, np.nan, 10085],
'RecentDelays': [[23, 47], [], [24, 43, 87], [13], [67, 32]],
'Airline': ['KLM(!)', '<Air France> (12)', '(British Airways. )',
'12. Air France', '"Swiss Air"']})
```
Formatted, it looks like this:
```
From_To FlightNumber RecentDelays Airline
0 LoNDon_paris 10045.0 [23, 47] KLM(!)
1 MAdrid_miLAN NaN [] <Air France> (12)
2 londON_StockhOlm 10065.0 [24, 43, 87] (British Airways. )
3 Budapest_PaRis NaN [13] 12. Air France
4 Brussels_londOn 10085.0 [67, 32] "Swiss Air"
```
(It's some flight data I made up; it's not meant to be accurate in any way.)
**38.** Some values in the the **FlightNumber** column are missing (they are `NaN`). These numbers are meant to increase by 10 with each row so 10055 and 10075 need to be put in place. Modify `df` to fill in these missing numbers and make the column an integer column (instead of a float column).
**39.** The **From\_To** column would be better as two separate columns! Split each string on the underscore delimiter `_` to give a new temporary DataFrame called 'temp' with the correct values. Assign the correct column names 'From' and 'To' to this temporary DataFrame.
**40.** Notice how the capitalisation of the city names is all mixed up in this temporary DataFrame 'temp'. Standardise the strings so that only the first letter is uppercase (e.g. "londON" should become "London".)
**41.** Delete the **From_To** column from `df` and attach the temporary DataFrame 'temp' from the previous questions.
**42**. In the **Airline** column, you can see some extra puctuation and symbols have appeared around the airline names. Pull out just the airline name. E.g. `'(British Airways. )'` should become `'British Airways'`.
**43**. In the RecentDelays column, the values have been entered into the DataFrame as a list. We would like each first value in its own column, each second value in its own column, and so on. If there isn't an Nth value, the value should be NaN.
Expand the Series of lists into a DataFrame named `delays`, rename the columns `delay_1`, `delay_2`, etc. and replace the unwanted RecentDelays column in `df` with `delays`.
The DataFrame should look much better now.
```
FlightNumber Airline From To delay_1 delay_2 delay_3
0 10045 KLM London Paris 23.0 47.0 NaN
1 10055 Air France Madrid Milan NaN NaN NaN
2 10065 British Airways London Stockholm 24.0 43.0 87.0
3 10075 Air France Budapest Paris 13.0 NaN NaN
4 10085 Swiss Air Brussels London 67.0 32.0 NaN
```
## Using MultiIndexes
### Go beyond flat DataFrames with additional index levels
Difficulty: *medium*
Previous exercises have seen us analysing data from DataFrames equipped with a single index level. However, pandas also gives you the possibilty of indexing your data using *multiple* levels. This is very much like adding new dimensions to a Series or a DataFrame. For example, a Series is 1D, but by using a MultiIndex with 2 levels we gain of much the same functionality as a 2D DataFrame.
The set of puzzles below explores how you might use multiple index levels to enhance data analysis.
To warm up, we'll look make a Series with two index levels.
**44**. Given the lists `letters = ['A', 'B', 'C']` and `numbers = list(range(10))`, construct a MultiIndex object from the product of the two lists. Use it to index a Series of random numbers. Call this Series `s`.
**45.** Check the index of `s` is lexicographically sorted (this is a necessary proprty for indexing to work correctly with a MultiIndex).
**46**. Select the labels `1`, `3` and `6` from the second level of the MultiIndexed Series.
**47**. Slice the Series `s`; slice up to label 'B' for the first level and from label 5 onwards for the second level.
**48**. Sum the values in `s` for each label in the first level (you should have Series giving you a total for labels A, B and C).
**49**. Suppose that `sum()` (and other methods) did not accept a `level` keyword argument. How else could you perform the equivalent of `s.sum(level=1)`?
**50**. Exchange the levels of the MultiIndex so we have an index of the form (letters, numbers). Is this new Series properly lexsorted? If not, sort it.
## Minesweeper
### Generate the numbers for safe squares in a Minesweeper grid
Difficulty: *medium* to *hard*
If you've ever used an older version of Windows, there's a good chance you've played with Minesweeper:
- https://en.wikipedia.org/wiki/Minesweeper_(video_game)
If you're not familiar with the game, imagine a grid of squares: some of these squares conceal a mine. If you click on a mine, you lose instantly. If you click on a safe square, you reveal a number telling you how many mines are found in the squares that are immediately adjacent. The aim of the game is to uncover all squares in the grid that do not contain a mine.
In this section, we'll make a DataFrame that contains the necessary data for a game of Minesweeper: coordinates of the squares, whether the square contains a mine and the number of mines found on adjacent squares.
**51**. Let's suppose we're playing Minesweeper on a 5 by 4 grid, i.e.
```
X = 5
Y = 4
```
To begin, generate a DataFrame `df` with two columns, `'x'` and `'y'` containing every coordinate for this grid. That is, the DataFrame should start:
```
x y
0 0 0
1 0 1
2 0 2
```
**52**. For this DataFrame `df`, create a new column of zeros (safe) and ones (mine). The probability of a mine occuring at each location should be 0.4.
**53**. Now create a new column for this DataFrame called `'adjacent'`. This column should contain the number of mines found on adjacent squares in the grid.
(E.g. for the first row, which is the entry for the coordinate `(0, 0)`, count how many mines are found on the coordinates `(0, 1)`, `(1, 0)` and `(1, 1)`.)
**54**. For rows of the DataFrame that contain a mine, set the value in the `'adjacent'` column to NaN.
**55**. Finally, convert the DataFrame to grid of the adjacent mine counts: columns are the `x` coordinate, rows are the `y` coordinate.
## Plotting
### Visualize trends and patterns in data
Difficulty: *medium*
To really get a good understanding of the data contained in your DataFrame, it is often essential to create plots: if you're lucky, trends and anomalies will jump right out at you. This functionality is baked into pandas and the puzzles below explore some of what's possible with the library.
**56.** Pandas is highly integrated with the plotting library matplotlib, and makes plotting DataFrames very user-friendly! Plotting in a notebook environment usually makes use of the following boilerplate:
```python
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('ggplot')
```
matplotlib is the plotting library which pandas' plotting functionality is built upon, and it is usually aliased to ```plt```.
```%matplotlib inline``` tells the notebook to show plots inline, instead of creating them in a separate window.
```plt.style.use('ggplot')``` is a style theme that most people find agreeable, based upon the styling of R's ggplot package.
For starters, make a scatter plot of this random data, but use black X's instead of the default markers.
```df = pd.DataFrame({"xs":[1,5,2,8,1], "ys":[4,2,1,9,6]})```
Consult the [documentation](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.plot.html) if you get stuck!
**57.** Columns in your DataFrame can also be used to modify colors and sizes. Bill has been keeping track of his performance at work over time, as well as how good he was feeling that day, and whether he had a cup of coffee in the morning. Make a plot which incorporates all four features of this DataFrame.
(Hint: If you're having trouble seeing the plot, try multiplying the Series which you choose to represent size by 10 or more)
*The chart doesn't have to be pretty: this isn't a course in data viz!*
```
df = pd.DataFrame({"productivity":[5,2,3,1,4,5,6,7,8,3,4,8,9],
"hours_in" :[1,9,6,5,3,9,2,9,1,7,4,2,2],
"happiness" :[2,1,3,2,3,1,2,3,1,2,2,1,3],
"caffienated" :[0,0,1,1,0,0,0,0,1,1,0,1,0]})
```
**58.** What if we want to plot multiple things? Pandas allows you to pass in a matplotlib *Axis* object for plots, and plots will also return an Axis object.
Make a bar plot of monthly revenue with a line plot of monthly advertising spending (numbers in millions)
```
df = pd.DataFrame({"revenue":[57,68,63,71,72,90,80,62,59,51,47,52],
"advertising":[2.1,1.9,2.7,3.0,3.6,3.2,2.7,2.4,1.8,1.6,1.3,1.9],
"month":range(12)
})
```
Now we're finally ready to create a candlestick chart, which is a very common tool used to analyze stock price data. A candlestick chart shows the opening, closing, highest, and lowest price for a stock during a time window. The color of the "candle" (the thick part of the bar) is green if the stock closed above its opening price, or red if below.
![Candlestick Example](img/candle.jpg)
This was initially designed to be a pandas plotting challenge, but it just so happens that this type of plot is just not feasible using pandas' methods. If you are unfamiliar with matplotlib, we have provided a function that will plot the chart for you so long as you can use pandas to get the data into the correct format.
Your first step should be to get the data in the correct format using pandas' time-series grouping function. We would like each candle to represent an hour's worth of data. You can write your own aggregation function which returns the open/high/low/close, but pandas has a built-in which also does this.
The below cell contains helper functions. Call ```day_stock_data()``` to generate a DataFrame containing the prices a hypothetical stock sold for, and the time the sale occurred. Call ```plot_candlestick(df)``` on your properly aggregated and formatted stock data to print the candlestick chart.
```
import numpy as np
def float_to_time(x):
return str(int(x)) + ":" + str(int(x%1 * 60)).zfill(2) + ":" + str(int(x*60 % 1 * 60)).zfill(2)
def day_stock_data():
#NYSE is open from 9:30 to 4:00
time = 9.5
price = 100
results = [(float_to_time(time), price)]
while time < 16:
elapsed = np.random.exponential(.001)
time += elapsed
if time > 16:
break
price_diff = np.random.uniform(.999, 1.001)
price *= price_diff
results.append((float_to_time(time), price))
df = pd.DataFrame(results, columns = ['time','price'])
df.time = pd.to_datetime(df.time)
return df
#Don't read me unless you get stuck!
def plot_candlestick(agg):
"""
agg is a DataFrame which has a DatetimeIndex and five columns: ["open","high","low","close","color"]
"""
fig, ax = plt.subplots()
for time in agg.index:
ax.plot([time.hour] * 2, agg.loc[time, ["high","low"]].values, color = "black")
ax.plot([time.hour] * 2, agg.loc[time, ["open","close"]].values, color = agg.loc[time, "color"], linewidth = 10)
ax.set_xlim((8,16))
ax.set_ylabel("Price")
ax.set_xlabel("Hour")
ax.set_title("OHLC of Stock Value During Trading Day")
plt.show()
```
**59.** Generate a day's worth of random stock data, and aggregate / reformat it so that it has hourly summaries of the opening, highest, lowest, and closing prices
**60.** Now that you have your properly-formatted data, try to plot it yourself as a candlestick chart. Use the ```plot_candlestick(df)``` function above, or matplotlib's [```plot``` documentation](https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.plot.html) if you get stuck.
*More exercises to follow soon...*
| github_jupyter |
```
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn import linear_model
import statsmodels.api as sm
from sqlalchemy import create_engine
# Display preferences.
%matplotlib inline
pd.options.display.float_format = '{:.3f}'.format
import warnings
warnings.filterwarnings(action="ignore")
postgres_user = 'dsbc_student'
postgres_pw = '7*.8G9QH21'
postgres_host = '142.93.121.174'
postgres_port = '5432'
postgres_db = 'weatherinszeged'
engine = create_engine('postgresql://{}:{}@{}:{}/{}'.format(
postgres_user, postgres_pw, postgres_host, postgres_port, postgres_db))
weather_df = pd.read_sql_query('select * from weatherinszeged',con=engine)
# no need for an open connection, as we're only doing a single query
engine.dispose()
# Y is the target variable
Y = weather_df['apparenttemperature'] - weather_df['temperature']
# X is the feature set
X = weather_df[['humidity','windspeed']]
# We add constant to the model as it's a best practice
# to do so every time!
X = sm.add_constant(X)
# We fit an OLS model using statsmodels
results = sm.OLS(Y, X).fit()
# We print the summary results.
print(results.summary())
#r-sqaured = .288 and Adjusted r-squared = .288
# This is unsatisfactory because it's very low and gives a lot of room to improve the model
#interaction
# Y is the target variable
Y = weather_df['apparenttemperature'] - weather_df['temperature']
weather_df["humidity"] = weather_df.humidity * weather_df.windspeed
# X is the feature set
X = weather_df[['humidity','windspeed']]
# We add a constant to the model as it's a best practice
# to do so every time!
X = sm.add_constant(X)
# We fit an OLS model using statsmodels
results = sm.OLS(Y, X).fit()
# We print the summary results
print(results.summary())
#The new r-squared and adjusted r-squared have barely risen, still low given they're below the .50 mark
#This doesn't improve the model by much
# Y is the target variable
Y = weather_df['apparenttemperature'] - weather_df['temperature']
# X is the feature set with visibility
X = weather_df[['humidity','windspeed','visibility']]
# We add constant to the model as it's a best practice
# to do so every time!
X = sm.add_constant(X)
# We fit an OLS model using statsmodels
results = sm.OLS(Y, X).fit()
# We print the summary results.
print(results.summary())
#This is the best model by far because the r-squared and adjusted r-sqaured
#values, because it's the highest among the three at 0.361; and the AIC and BIC numbers are the lowest
```
| github_jupyter |
```
import matplotlib.pyplot as plt
import numpy as np
from mvmm.single_view.gaussian_mixture import GaussianMixture
from mvmm.single_view.MMGridSearch import MMGridSearch
from mvmm.single_view.toy_data import sample_1d_gmm
from mvmm.single_view.sim_1d_utils import plot_est_params
from mvmm.viz_utils import plot_scatter_1d, set_xaxis_int_ticks
from mvmm.single_view.opt_diagnostics import plot_opt_hist
```
# sample data from a 1d gussian mixture model
```
n_samples = 200
n_components = 3
X, y, true_params = sample_1d_gmm(n_samples=n_samples,
n_components=n_components,
random_state=1)
plot_scatter_1d(X)
```
# Fit a Gaussian mixture model
```
# fit a guassian mixture model with 3 (the true number) of components
# from mvmm.single_view.gaussian_mixture.GaussianMixture() is similar to sklearn.mixture.GaussianMixture()
gmm = GaussianMixture(n_components=3,
n_init=10) # 10 random initalizations
gmm.fit(X)
# plot parameter estimates
plot_scatter_1d(X)
plot_est_params(gmm)
# the GMM class has all the familiar sklearn functionality
gmm.sample(n_samples=20)
gmm.predict(X)
gmm.score_samples(X)
gmm.predict_proba(X)
gmm.bic(X)
# with a few added API features for convenience
# sample from a single mixture component
gmm.sample_from_comp(y=0)
# observed data log-likelihood
gmm.log_likelihood(X)
# total number of cluster parameters
gmm._n_parameters()
# some additional metadata is stored such as the fit time (in seconds)
gmm.metadata_['fit_time']
# gmm.opt_data_ stores the optimization history
plot_opt_hist(loss_vals=gmm.opt_data_['history']['loss_val'],
init_loss_vals=gmm.opt_data_['init_loss_vals'],
loss_name='observed data negative log likelihood')
```
# Model selection with BIC
```
# setup the base estimator for the grid search
# here we add some custom arguments
base_estimator = GaussianMixture(reg_covar=1e-6,
init_params_method='rand_pts', # initalize cluster means from random data points
n_init=10, abs_tol=1e-8, rel_tol=1e-8, max_n_steps=200)
# do a grid search from 1 to 10 components
param_grid = {'n_components': np.arange(1, 10 + 1)}
# setup grid search object and fit using the data
grid_search = MMGridSearch(base_estimator=base_estimator, param_grid=param_grid)
grid_search.fit(X)
# the best model is stored in .best_estimator_
print('BIC selected the model with', grid_search.best_estimator_.n_components, ' components')
# all fit estimators are containted in .estimators_
print(len(grid_search.estimators_))
# the model selection for each grid point are stored in /model_sel_scores_
print(grid_search.model_sel_scores_)
# plot BIC
n_comp_seq = grid_search.param_grid['n_components']
est_n_comp = grid_search.best_params_['n_components']
bic_values = grid_search.model_sel_scores_['bic']
plt.plot(n_comp_seq, bic_values, marker='.')
plt.axvline(est_n_comp,
label='estimated {} components'.format(est_n_comp),
color='red')
plt.legend()
plt.xlabel('n_components')
plt.ylabel('BIC')
set_xaxis_int_ticks()
```
| github_jupyter |
```
%matplotlib inline
import seaborn as sns
sns.set()
tips = sns.load_dataset("tips")
sns.relplot(x="total_bill", y="tip", col="time",
hue="smoker", style="smoker", size="size",
data=tips);
```
```
import seaborn as sns
```
```
sns.set()
```
```
tips = sns.load_dataset("tips")
```
```
sns.relplot(x="total_bill", y="tip", col="time",
hue="smoker", style="smoker", size="size",
data=tips)
```
```
dots = sns.load_dataset("dots")
sns.relplot(x="time", y="firing_rate", col="align",
hue="choice", size="coherence", style="choice",
facet_kws=dict(sharex=False),
kind="line", legend="full", data=dots);
```
```
fmri = sns.load_dataset("fmri")
sns.relplot(x="timepoint", y="signal", col="region",
hue="event", style="event",
kind="line", data=fmri);
```
```
sns.lmplot(x="total_bill", y="tip", col="time", hue="smoker",
data=tips);
```
```
sns.catplot(x="day", y="total_bill", hue="smoker",
kind="swarm", data=tips);
```
```
sns.catplot(x="day", y="total_bill", hue="smoker",
kind="violin", split=True, data=tips);
```
```
sns.catplot(x="day", y="total_bill", hue="smoker",
kind="bar", data=tips);
```
```
import matplotlib.pyplot as plt
f, axes = plt.subplots(1, 2, sharey=True, figsize=(6, 4))
sns.boxplot(x="day", y="tip", data=tips, ax=axes[0])
sns.scatterplot(x="total_bill", y="tip", hue="day", data=tips, ax=axes[1]);
```
```
sns.relplot(x="time", y="firing_rate", col="align",
hue="choice", size="coherence", style="choice",
height=4.5, aspect=2 / 3,
facet_kws=dict(sharex=False),
kind="line", legend="full", data=dots);
```
```
iris = sns.load_dataset("iris")
sns.jointplot(x="sepal_length", y="petal_length", data=iris);
```
```
sns.pairplot(data=iris, hue="species");
```
```
sns.set(style="ticks", palette="muted")
sns.relplot(x="total_bill", y="tip", col="time",
hue="smoker", style="smoker", size="size",
data=tips);
```
```
sns.relplot(x="total_bill", y="tip", col="time",
hue="size", style="smoker", size="size",
palette="YlGnBu", markers=["D", "o"], sizes=(10, 125),
edgecolor=".2", linewidth=.5, alpha=.75,
data=tips);
```
```
g = sns.catplot(x="total_bill", y="day", hue="time",
height=3.5, aspect=1.5,
kind="box", legend=False, data=tips);
g.add_legend(title="Meal")
g.set_axis_labels("Total bill ($)", "")
g.set(xlim=(0, 60), yticklabels=["Thursday", "Friday", "Saturday", "Sunday"])
g.despine(trim=True)
g.fig.set_size_inches(6.5, 3.5)
g.ax.set_xticks([5, 15, 25, 35, 45, 55], minor=True);
plt.setp(g.ax.get_yticklabels(), rotation=30);
```
```
tips.head()
```
```
fmri.head()
```
| github_jupyter |
# <img style="float: left; padding-right: 10px; width: 45px" src="https://raw.githubusercontent.com/Harvard-IACS/2018-CS109A/master/content/styles/iacs.png"> CS-109B Introduction to Data Science
## Lab 5: Convolutional Neural Networks
**Harvard University**<br>
**Spring 2019**<br>
**Lab instructor:** Eleni Kaxiras<br>
**Instructors:** Pavlos Protopapas and Mark Glickman<br>
**Authors:** Eleni Kaxiras, Pavlos Protopapas, Patrick Ohiomoba, and Davis Sontag
```
# RUN THIS CELL TO PROPERLY HIGHLIGHT THE EXERCISES
import requests
from IPython.core.display import HTML
styles = requests.get("https://raw.githubusercontent.com/Harvard-IACS/2019-CS109B/master/content/styles/cs109.css").text
HTML(styles)
```
## Learning Goals
In this lab we will look at Convolutional Neural Networks (CNNs), and their building blocks.
By the end of this lab, you should:
- know how to put together the building blocks used in CNNs - such as convolutional layers and pooling layers - in `keras` with an example.
- have a good undertanding on how images, a common type of data for a CNN, are represented in the computer and how to think of them as arrays of numbers.
- be familiar with preprocessing images with `keras` and `sckit-learn`.
- use `keras-viz` to produce Saliency maps.
- learn best practices for configuring the hyperparameters of a CNN.
- run your first CNN and see the error rate.
```
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (5,5)
import numpy as np
from scipy.optimize import minimize
import tensorflow as tf
import keras
from keras import layers
from keras import models
from keras import utils
from keras.layers import Dense
from keras.models import Sequential
from keras.layers import Flatten
from keras.layers import Dropout
from keras.layers import Activation
from keras.regularizers import l2
from keras.optimizers import SGD
from keras.optimizers import RMSprop
from keras import datasets
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import LearningRateScheduler
from keras.callbacks import History
from keras import losses
from keras.datasets import mnist
from keras.utils import to_categorical
from sklearn.utils import shuffle
print(tf.VERSION)
print(tf.keras.__version__)
%matplotlib inline
```
## Prologue: `keras-viz` Visualization Toolkit
`keras-vis` is a high-level toolkit for visualizing and debugging your trained keras neural net models. Currently supported visualizations include:
- Activation maximization
- **Saliency maps**
- Class activation maps
All visualizations by default support N-dimensional image inputs. i.e., it generalizes to N-dim image inputs to your model. Compatible with both theano and tensorflow backends with 'channels_first', 'channels_last' data format.
Read the documentation at https://raghakot.github.io/keras-vis.https://github.com/raghakot/keras-vis
To install use `pip install git+https://github.com/raghakot/keras-vis.git --upgrade`
## SEAS JupyterHub
[Instructions for Using SEAS JupyterHub](https://canvas.harvard.edu/courses/48088/pages/instructions-for-using-seas-jupyterhub)
SEAS and FAS are providing you with a platform in AWS to use for the class (accessible from the 'Jupyter' menu link in Canvas). These are AWS p2 instances with a GPU, 10GB of disk space, and 61 GB of RAM, for faster training for your networks. Most of the libraries such as keras, tensorflow, pandas, etc. are pre-installed. If a library is missing you may install it via the Terminal.
**NOTE : The AWS platform is funded by SEAS and FAS for the purposes of the class. It is not running against your individual credit. You are not allowed to use it for purposes not related to this course.**
**Help us keep this service: Make sure you stop your instance as soon as you do not need it.**
![aws-dog](fig/aws-dog.jpeg)
## Part 1: Parts of a Convolutional Neural Net
There are three types of layers in a Convolutional Neural Network:
- Convolutional Layers
- Pooling Layers.
- Dropout Layers.
- Fully Connected Layers.
### a. Convolutional Layers.
Convolutional layers are comprised of **filters** and **feature maps**. The filters are essentially the **neurons** of the layer. They have the weights and produce the input for the next layer. The feature map is the output of one filter applied to the previous layer.
The fundamental difference between a densely connected layer and a convolution layer is that dense layers learn global patterns in their input feature space (for example, for an MNIST digit, patterns involving all pixels), whereas convolution layers learn local patterns: in the case of images, patterns found in small 2D windows of the inputs called *receptive fields*.
This key characteristic gives convnets two interesting properties:
- The patterns they learn are **translation invariant**. After learning a certain pattern in the lower-right corner of a picture, a convnet can recognize it anywhere: for example, in the upper-left corner. A densely connected network would have to learn the pattern anew if it appeared at a new location. This makes convnets data efficient when processing images (because the visual world is fundamentally translation invariant): they need fewer training samples to learn representations that have generalization power.
- They can learn **spatial hierarchies of patterns**. A first convolution layer will learn small local patterns such as edges, a second convolution layer will learn larger patterns made of the features of the first layers, and so on. This allows convnets to efficiently learn increasingly complex and abstract visual concepts (because the visual world is fundamentally spatially hierarchical).
Convolutions operate over 3D tensors, called feature maps, with two spatial axes (height and width) as well as a depth axis (also called the channels axis). For an RGB image, the dimension of the depth axis is 3, because the image has three color channels: red, green, and blue. For a black-and-white picture, like the MNIST digits, the depth is 1 (levels of gray). The convolution operation extracts patches from its input feature map and applies the same transformation to all of these patches, producing an output feature map. This output feature map is still a 3D tensor: it has a width and a height. Its depth can be arbitrary, because the output depth is a parameter of the layer, and the different channels in that depth axis no longer stand for specific colors as in RGB input; rather, they stand for filters. Filters encode specific aspects of the input data: at a high level, a single filter could encode the concept “presence of a face in the input,” for instance.
In the MNIST example that we will see, the first convolution layer takes a feature map of size (28, 28, 1) and outputs a feature map of size (26, 26, 32): it computes 32 filters over its input. Each of these 32 output channels contains a 26×26 grid of values, which is a response map of the filter over the input, indicating the response of that filter pattern at different locations in the input.
Convolutions are defined by two key parameters:
- Size of the patches extracted from the inputs. These are typically 3×3 or 5×5
- The number of filters computed by the convolution.
**Padding**: One of "valid", "causal" or "same" (case-insensitive). "valid" means "no padding". "same" results in padding the input such that the output has the same length as the original input. "causal" results in causal (dilated) convolutions,
In `keras` see [convolutional layers](https://keras.io/layers/convolutional/)
**keras.layers.Conv2D**(filters, kernel_size, strides=(1, 1), padding='valid', activation=None, use_bias=True,
kernel_initializer='glorot_uniform', data_format='channels_last',
bias_initializer='zeros')
#### How are the values in feature maps calculated?
![title](fig/convolution-many-filters.png)
### Exercise 1:
- Compute the operations by hand (assuming zero padding and same arrays for all channels) to produce the first element of the 4x4 feature map. How did we get the 4x4 output size?
- Write this Conv layer in keras
-- your answer here
### b. Pooling Layers.
Pooling layers are also comprised of filters and feature maps. Let's say the pooling layer has a 2x2 receptive field and a stride of 2. This stride results in feature maps that are one half the size of the input feature maps. We can use a max() operation for each receptive field.
In `keras` see [pooling layers](https://keras.io/layers/pooling/)
**keras.layers.MaxPooling2D**(pool_size=(2, 2), strides=None, padding='valid', data_format=None)
![Max Pool](fig/MaxPool.png)
### c. Dropout Layers.
Dropout consists in randomly setting a fraction rate of input units to 0 at each update during training time, which helps prevent overfitting.
In `keras` see [Dropout layers](https://keras.io/layers/core/)
keras.layers.Dropout(rate, seed=None)
rate: float between 0 and 1. Fraction of the input units to drop.<br>
seed: A Python integer to use as random seed.
References
[Dropout: A Simple Way to Prevent Neural Networks from Overfitting](http://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf)
### d. Fully Connected Layers.
A fully connected layer flattens the square feature map into a vector. Then we can use a sigmoid or softmax activation function to output probabilities of classes.
In `keras` see [FC layers](https://keras.io/layers/core/)
**keras.layers.Dense**(units, activation=None, use_bias=True,
kernel_initializer='glorot_uniform', bias_initializer='zeros')
#### IT'S ALL ABOUT THE HYPERPARAMETERS!
- stride
- size of filter
- number of filters
- poolsize
## Part 2: Preprocessing the data
### Taking a look at how images are represented in a computer using a photo of a Picasso sculpture
```
img = plt.imread('data/picasso.png')
img.shape
img[1,:,1]
print(type(img[50][0][0]))
# let's see the image
imgplot = plt.imshow(img)
```
#### Visualizing the channels
```
R_img = img[:,:,0]
G_img = img[:,:,1]
B_img = img[:,:,2]
plt.subplot(221)
plt.imshow(R_img, cmap=plt.cm.Reds)
plt.subplot(222)
plt.imshow(G_img, cmap=plt.cm.Greens)
plt.subplot(223)
plt.imshow(B_img, cmap=plt.cm.Blues)
plt.subplot(224)
plt.imshow(img)
plt.show()
```
More on preprocessing data below!
If you want to learn more: [Image Processing with Python and Scipy](http://prancer.physics.louisville.edu/astrowiki/index.php/Image_processing_with_Python_and_SciPy)
## Part 3: Putting the Parts together to make a small ConvNet Model
Let's put all the parts together to make a convnet for classifying our good old MNIST digits.
```
# Load data and preprocess
(train_images, train_labels), (test_images, test_labels) = mnist.load_data() # load MNIST data
train_images.shape
train_images.max(), train_images.min()
train_images = train_images.reshape((60000, 28, 28, 1)) # Reshape to get third dimension
train_images = train_images.astype('float32') / 255 # Normalize between 0 and 1
test_images = test_images.reshape((10000, 28, 28, 1)) # Reshape to get third dimension
test_images = test_images.astype('float32') / 255 # Normalize between 0 and 1
# Convert labels to categorical data
train_labels = to_categorical(train_labels)
test_labels = to_categorical(test_labels)
mnist_cnn_model = models.Sequential() # Create sequential model
# Add network layers
mnist_cnn_model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
mnist_cnn_model.add(layers.MaxPooling2D((2, 2)))
mnist_cnn_model.add(layers.Conv2D(64, (3, 3), activation='relu'))
mnist_cnn_model.add(layers.MaxPooling2D((2, 2)))
mnist_cnn_model.add(layers.Conv2D(64, (3, 3), activation='relu'))
```
The next step is to feed the last output tensor (of shape (3, 3, 64)) into a densely connected classifier network like those you’re already familiar with: a stack of Dense layers. These classifiers process vectors, which are 1D, whereas the current output is a 3D tensor. First we have to flatten the 3D outputs to 1D, and then add a few Dense layers on top.
```
mnist_cnn_model.add(layers.Flatten())
mnist_cnn_model.add(layers.Dense(64, activation='relu'))
mnist_cnn_model.add(layers.Dense(10, activation='softmax'))
mnist_cnn_model.summary()
# Compile model
mnist_cnn_model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
# Fit the model
mnist_cnn_model.fit(train_images, train_labels, epochs=5, batch_size=64)
# Evaluate the model on the test data:
test_loss, test_acc = mnist_cnn_model.evaluate(test_images, test_labels)
test_acc
```
A densely connected network (MLP) running MNIST usually has a test accuracy of 97.8%, whereas our basic convnet has a test accuracy of 99.03%: we decreased the error rate by 68% (relative) with only 5 epochs. Not bad! But why does this simple convnet work so well, compared to a densely connected model? The answer is above on how convolutional layers work!
### Data Preprocessing : Meet the `ImageDataGenerator` class in `keras` [(docs)](https://keras.io/preprocessing/image/)
The MNIST and other pre-loaded dataset are formatted in a way that is almost ready for feeding into the model. What about plain images? They should be formatted into appropriately preprocessed floating-point tensors before being fed into the network.
The Dogs vs. Cats dataset that you’ll use isn’t packaged with Keras. It was made available by Kaggle as part of a computer-vision competition in late 2013, back when convnets weren’t mainstream. The data has been downloaded for you from https://www.kaggle.com/c/dogs-vs-cats/data The pictures are medium-resolution color JPEGs.
```
# TODO: set your base dir to your correct local location
base_dir = 'data/cats_and_dogs_small'
import os, shutil
# Set up directory information
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')
test_dir = os.path.join(base_dir, 'test')
train_cats_dir = os.path.join(train_dir, 'cats')
train_dogs_dir = os.path.join(train_dir, 'dogs')
validation_cats_dir = os.path.join(validation_dir, 'cats')
validation_dogs_dir = os.path.join(validation_dir, 'dogs')
test_cats_dir = os.path.join(test_dir, 'cats')
test_dogs_dir = os.path.join(test_dir, 'dogs')
print('total training cat images:', len(os.listdir(train_cats_dir)))
print('total training dog images:', len(os.listdir(train_dogs_dir)))
print('total validation cat images:', len(os.listdir(validation_cats_dir)))
print('total validation dog images:', len(os.listdir(validation_dogs_dir)))
print('total test cat images:', len(os.listdir(test_cats_dir)))
print('total test dog images:', len(os.listdir(test_dogs_dir)))
```
So you do indeed have 2,000 training images, 1,000 validation images, and 1,000 test images. Each split contains the same number of samples from each class: this is a balanced binary-classification problem, which means classification accuracy will be an appropriate measure of success.
#### Building the network
```
from keras import layers
from keras import models
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()
```
For the compilation step, you’ll go with the RMSprop optimizer. Because you ended the network with a single sigmoid unit, you’ll use binary crossentropy as the loss.
```
from keras import optimizers
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
```
The steps for getting it into the network are roughly as follows:
1. Read the picture files.
2. Decode the JPEG content to RGB grids of pixels.
3. Convert these into floating-point tensors.
4. Rescale the pixel values (between 0 and 255) to the [0, 1] interval (as you know, neural networks prefer to deal with small input values).
It may seem a bit daunting, but fortunately Keras has utilities to take care of these steps automatically with the class `ImageDataGenerator`, which lets you quickly set up Python generators that can automatically turn image files on disk into batches of preprocessed tensors. This is what you’ll use here.
```
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
```
Let’s look at the output of one of these generators: it yields batches of 150×150 RGB images (shape (20, 150, 150, 3)) and binary labels (shape (20,)). There are 20 samples in each batch (the batch size). Note that the generator yields these batches indefinitely: it loops endlessly over the images in the target folder. For this reason, you need to break the iteration loop at some point:
```
for data_batch, labels_batch in train_generator:
print('data batch shape:', data_batch.shape)
print('labels batch shape:', labels_batch.shape)
break
```
Let’s fit the model to the data using the generator. You do so using the `.fit_generator` method, the equivalent of `.fit` for data generators like this one. It expects as its first argument a Python generator that will yield batches of inputs and targets indefinitely, like this one does.
Because the data is being generated endlessly, the Keras model needs to know how many samples to draw from the generator before declaring an epoch over. This is the role of the `steps_per_epoch` argument: after having drawn steps_per_epoch batches from the generator—that is, after having run for steps_per_epoch gradient descent steps - the fitting process will go to the next epoch. In this case, batches are 20 samples, so it will take 100 batches until you see your target of 2,000 samples.
When using fit_generator, you can pass a validation_data argument, much as with the fit method. It’s important to note that this argument is allowed to be a data generator, but it could also be a tuple of Numpy arrays. If you pass a generator as validation_data, then this generator is expected to yield batches of validation data endlessly; thus you should also specify the validation_steps argument, which tells the process how many batches to draw from the validation generator for evaluation
```
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=5, # TODO: should be 30
validation_data=validation_generator,
validation_steps=50)
# It’s good practice to always save your models after training.
model.save('cats_and_dogs_small_1.h5')
```
Let’s plot the loss and accuracy of the model over the training and validation data during training:
```
fig, ax = plt.subplots(1, 1, figsize=(10,6))
ax.plot((history.history['acc']), 'r', label='train')
ax.plot((history.history['val_acc']), 'b' ,label='val')
ax.set_xlabel(r'Epoch', fontsize=20)
ax.set_ylabel(r'Accuracy', fontsize=20)
ax.legend()
ax.tick_params(labelsize=20)
```
Let's try data augmentation
```
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
```
These are just a few of the options available (for more, see the Keras documentation).
Let’s quickly go over this code:
- rotation_range is a value in degrees (0–180), a range within which to randomly rotate pictures.
- width_shift and height_shift are ranges (as a fraction of total width or height) within which to randomly translate pictures vertically or horizontally.
- shear_range is for randomly applying shearing transformations.
- zoom_range is for randomly zooming inside pictures.
- horizontal_flip is for randomly flipping half the images horizontally—relevant when there are no assumptions of - horizontal asymmetry (for example, real-world pictures).
- fill_mode is the strategy used for filling in newly created pixels, which can appear after a rotation or a width/height shift.
Let’s look at the augmented images
```
from keras.preprocessing import image
fnames = [os.path.join(train_dogs_dir, fname) for
fname in os.listdir(train_dogs_dir)]
img_path = fnames[3] # Chooses one image to augment
img = image.load_img(img_path, target_size=(150, 150))
# Reads the image and resizes it
x = image.img_to_array(img) # Converts it to a Numpy array with shape (150, 150, 3)
x = x.reshape((1,) + x.shape) # Reshapes it to (1, 150, 150, 3)
i=0
for batch in datagen.flow(x, batch_size=1):
plt.figure(i)
imgplot = plt.imshow(image.array_to_img(batch[0]))
i += 1
if i % 4 == 0:
break
plt.show()
```
If you train a new network using this data-augmentation configuration, the network will never see the same input twice. But the inputs it sees are still heavily intercorrelated, because they come from a small number of original images—you can’t produce new information, you can only remix existing information. As such, this may not be enough to completely get rid of overfitting. To further fight overfitting, you’ll also add a **Dropout** layer to your model right before the densely connected classifier.
```
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
# Let’s train the network using data augmentation and dropout.
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,)
test_datagen = ImageDataGenerator(rescale=1./255)
# Note that the validation data shouldn’t be augmented!
train_generator = train_datagen.flow_from_directory(
train_dir,
target_size=(150, 150),
batch_size=32,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=32,
class_mode='binary')
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=5, # TODO: should be 100
validation_data=validation_generator,
validation_steps=50)
model.save('cats_and_dogs_small_2.h5')
```
And let’s plot the results again. Thanks to data augmentation and dropout, you’re no longer overfitting: the training curves are closely tracking the validation curves. You now reach an accuracy of 82%, a 15% relative improvement over the non-regularized model. (Note: these numbers are for 100 epochs..)
```
fig, ax = plt.subplots(1, 1, figsize=(10,6))
ax.plot((history.history['acc']), 'r', label='train')
ax.plot((history.history['val_acc']), 'b' ,label='val')
ax.set_xlabel(r'Epoch', fontsize=20)
ax.set_ylabel(r'Accuracy', fontsize=20)
ax.legend()
ax.tick_params(labelsize=20)
```
By using regularization techniques even further, and by tuning the network’s parameters (such as the number of filters per convolution layer, or the number of layers in the network), you may be able to get an even better accuracy, likely up to 86% or 87%. But it would prove difficult to go any higher just by training your own convnet from scratch, because you have so little data to work with. As a next step to improve your accuracy on this problem, you’ll have to use a pretrained model.
## Part 4: keras viz toolkit
https://github.com/raghakot/keras-vis/blob/master/examples/mnist/attention.ipynb
```
class_idx = 0
indices = np.where(test_labels[:, class_idx] == 1.)[0]
# pick some random input from here.
idx = indices[0]
# Lets sanity check the picked image.
from matplotlib import pyplot as plt
%matplotlib inline
plt.rcParams['figure.figsize'] = (18, 6)
plt.imshow(test_images[idx][..., 0])
input_shape=(28, 28, 1)
num_classes = 10
batch_size = 128
epochs = 5
model = Sequential()
model.add(layers.Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Dropout(0.25))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dropout(0.5))
model.add(layers.Dense(num_classes, activation='softmax', name='preds'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(),
metrics=['accuracy'])
model.fit(train_images, train_labels,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(test_images, test_labels))
score = model.evaluate(test_images, test_labels, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
from vis.visualization import visualize_saliency
from vis.utils import utils
from keras import activations
# Utility to search for layer index by name.
# Alternatively we can specify this as -1 since it corresponds to the last layer.
layer_idx = utils.find_layer_idx(model, 'preds')
plt.rcParams["figure.figsize"] = (5,5)
from vis.visualization import visualize_cam
import warnings
warnings.filterwarnings('ignore')
# This corresponds to the Dense linear layer.
for class_idx in np.arange(10):
indices = np.where(test_labels[:, class_idx] == 1.)[0]
idx = indices[0]
f, ax = plt.subplots(1, 4)
ax[0].imshow(test_images[idx][..., 0])
for i, modifier in enumerate([None, 'guided', 'relu']):
grads = visualize_cam(model, layer_idx, filter_indices=class_idx,
seed_input=test_images[idx], backprop_modifier=modifier)
if modifier is None:
modifier = 'vanilla'
ax[i+1].set_title(modifier)
ax[i+1].imshow(grads, cmap='jet')
```
#### References and Acknowledgements
The cats and dogs part of this lab is based on the book Deep Learning with Python, Chapter 5 written by the Francois Chollet, the author of Keras. It is a very practical introduction to Deep Learning. It is appropriate for those with some Python knowledge who want to start with machine learning.
The saliency maps are from https://github.com/raghakot/keras-vis/blob/master/examples/mnist/attention.ipynb
| github_jupyter |
# Pragmatic color describers
```
__author__ = "Christopher Potts"
__version__ = "CS224u, Stanford, Spring 2020"
```
## Contents
1. [Overview](#Overview)
1. [Set-up](#Set-up)
1. [The corpus](#The-corpus)
1. [Corpus reader](#Corpus-reader)
1. [ColorsCorpusExample instances](#ColorsCorpusExample-instances)
1. [Displaying examples](#Displaying-examples)
1. [Color representations](#Color-representations)
1. [Utterance texts](#Utterance-texts)
1. [Far, Split, and Close conditions](#Far,-Split,-and-Close-conditions)
1. [Toy problems for development work](#Toy-problems-for-development-work)
1. [Core model](#Core-model)
1. [Toy dataset illustration](#Toy-dataset-illustration)
1. [Predicting sequences](#Predicting-sequences)
1. [Listener-based evaluation](#Listener-based-evaluation)
1. [Other prediction and evaluation methods](#Other-prediction-and-evaluation-methods)
1. [Cross-validation](#Cross-validation)
1. [Baseline SCC model](#Baseline-SCC-model)
1. [Modifying the core model](#Modifying-the-core-model)
1. [Illustration: LSTM Cells](#Illustration:-LSTM-Cells)
1. [Illustration: Deeper models](#Illustration:-Deeper-models)
## Overview
This notebook is part of our unit on grounding. It illustrates core concepts from the unit, and it provides useful background material for the associated homework and bake-off.
## Set-up
```
from colors import ColorsCorpusReader
import os
import pandas as pd
from sklearn.model_selection import train_test_split
import torch
from torch_color_describer import (
ContextualColorDescriber, create_example_dataset)
import utils
from utils import START_SYMBOL, END_SYMBOL, UNK_SYMBOL
utils.fix_random_seeds()
```
The [Stanford English Colors in Context corpus](https://cocolab.stanford.edu/datasets/colors.html) (SCC) is included in the data distribution for this course. If you store the data in a non-standard place, you'll need to update the following:
```
COLORS_SRC_FILENAME = os.path.join(
"data", "colors", "filteredCorpus.csv")
```
## The corpus
The SCC corpus is based in a two-player interactive game. The two players share a context consisting of three color patches, with the display order randomized between them so that they can't use positional information when communicating.
The __speaker__ is privately assigned a target color and asked to produce a description of it that will enable the __listener__ to identify the speaker's target. The listener makes a choice based on the speaker's message, and the two succeed if and only if the listener identifies the target correctly.
In the game, the two players played repeated reference games and could communicate with each other in a free-form way. This opens up the possibility of modeling these repeated interactions as task-oriented dialogues. However, for this unit, we'll ignore most of this structure. We'll treat the corpus as a bunch of independent reference games played by anonymous players, and we will ignore the listener and their choices entirely.
For the bake-off, we will be distributing a separate test set. Thus, all of the data in the SCC can be used for exploration and development.
### Corpus reader
The corpus reader class is `ColorsCorpusReader` in `colors.py`. The reader's primary function is to let you iterate over corpus examples:
```
corpus = ColorsCorpusReader(
COLORS_SRC_FILENAME,
word_count=None,
normalize_colors=True)
```
The two keyword arguments have their default values here.
* If you supply `word_count` with an interger value, it will restrict to just examples where the utterance has that number of words (using a whitespace heuristic). This creates smaller corpora that are useful for development.
* The colors in the corpus are in [HLS format](https://en.wikipedia.org/wiki/HSL_and_HSV). With `normalize_colors=False`, the first (hue) value is an integer between 1 and 360 inclusive, and the L (lightness) and S (saturation) values are between 1 and 100 inclusive. With `normalize_colors=True`, these values are all scaled to between 0 and 1 inclusive. The default is `normalize_colors=True` because this is a better choice for all the machine learning models we'll consider.
```
examples = list(corpus.read())
```
We can verify that we read in the same number of examples as reported in [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142):
```
# Should be 46994:
len(examples)
```
### ColorsCorpusExample instances
The examples are `ColorsCorpusExample` instances:
```
ex1 = next(corpus.read())
```
These objects have a lot of attributes and methods designed to help you study the corpus and use it for our machine learning tasks. Let's review some highlights.
#### Displaying examples
You can see what the speaker saw, with the utterance they chose wote above the patches:
```
ex1.display(typ='speaker')
```
This is the original order of patches for the speaker. The target happens to the be the leftmost patch, as indicated by the black box around it.
Here's what the listener saw, with the speaker's message printed above the patches:
```
ex1.display(typ='listener')
```
The listener isn't shown the target, of course, so no patches are highlighted.
If `display` is called with no arguments, then the target is placed in the final position and the other two are given in an order determined by the corpus metadata:
```
ex1.display()
```
This is the representation order we use for our machine learning models.
#### Color representations
For machine learning, we'll often need to access the color representations directly. The primary attribute for this is `colors`:
```
ex1.colors
```
In this display order, the third element is the target color and the first two are the distractors. The attributes `speaker_context` and `listener_context` return the same colors but in the order that those players saw them. For example:
```
ex1.speaker_context
```
#### Utterance texts
Utterances are just strings:
```
ex1.contents
```
There are cases where the speaker made a sequences of utterances for the same trial. We follow [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142) in concatenating these into a single utterances. To preserve the original information, the individual turns are separated by `" ### "`. Example 3 is the first with this property – let's check it out:
```
ex3 = examples[2]
ex3.contents
```
The method `parse_turns` will parse this into individual turns:
```
ex3.parse_turns()
```
For examples consisting of a single turn, `parse_turns` returns a list of length 1:
```
ex1.parse_turns()
```
### Far, Split, and Close conditions
The SCC contains three conditions:
__Far condition__: All three colors are far apart in color space. Example:
```
print("Condition type:", examples[1].condition)
examples[1].display()
```
__Split condition__: The target is close to one of the distractors, and the other is far away from both of them. Example:
```
print("Condition type:", examples[3].condition)
examples[3].display()
```
__Close condition__: The target is similar to both distractors. Example:
```
print("Condition type:", examples[2].condition)
examples[2].display()
```
These conditions go from easiest to hardest when it comes to reliable communication. In the __Far__ condition, the context is hardly relevant, whereas the nature of the distractors reliably shapes the speaker's choices in the other two conditions.
You can begin to see how this affects speaker choices in the above examples: "purple" suffices for the __Far__ condition, a more marked single word ("lime") suffices in the __Split__ condition, and the __Close__ condition triggers a pretty long, complex description.
The `condition` attribute provides access to this value:
```
ex1.condition
```
The following verifies that we have the same number of examples per condition as reported in [Monroe et al. 2017](https://transacl.org/ojs/index.php/tacl/article/view/1142):
```
pd.Series([ex.condition for ex in examples]).value_counts()
```
## Toy problems for development work
The SCC corpus is fairly large and quite challenging as an NLU task. This means it isn't ideal when it comes to testing hypotheses and debugging code. Poor performance could trace to a mistake, but it could just as easily trace to the fact that the problem is very challenging from the point of view of optimization.
To address this, the module `torch_color_describer.py` includes a function `create_example_dataset` for creating small, easy datasets with the same basic properties as the SCC corpus.
Here's a toy problem containing just six examples:
```
tiny_contexts, tiny_words, tiny_vocab = create_example_dataset(
group_size=2, vec_dim=2)
tiny_vocab
tiny_words
tiny_contexts
```
Each member of `tiny_contexts` contains three vectors. The final (target) vector always has values in a range that determines the corresponding word sequence, which is drawn from a set of three fixed sequences. Thus, the model basically just needs to learn to ignore the distractors and find the association between the target vector and the corresponding sequence.
All the models we study have a capacity to solve this task with very little data, so you should see perfect or near perfect performance on reasonably-sized versions of this task.
## Core model
Our core model for this problem is implemented in `torch_color_describer.py` as `ContextualColorDescriber`. At its heart, this is a pretty standard encoder–decoder model:
* `Encoder`: Processes the color contexts as a sequence. We always place the target in final position so that it is closest to the supervision signals that we get when decoding.
* `Decoder`: A neural language model whose initial hidden representation is the final hidden representation of the `Encoder`.
* `EncoderDecoder`: Coordinates the operations of the `Encoder` and `Decoder`.
Finally, `ContextualColorDescriber` is a wrapper around these model components. It handle the details of training and implements the prediction and evaluation functions that we will use.
Many additional details about this model are included in the slides for this unit.
### Toy dataset illustration
To highlight the core functionality of `ContextualColorDescriber`, let's create a small toy dataset and use it to train and evaluate a model:
```
toy_color_seqs, toy_word_seqs, toy_vocab = create_example_dataset(
group_size=50, vec_dim=2)
toy_color_seqs_train, toy_color_seqs_test, toy_word_seqs_train, toy_word_seqs_test = \
train_test_split(toy_color_seqs, toy_word_seqs)
```
Here we expose all of the available parameters with their default values:
```
toy_mod = ContextualColorDescriber(
toy_vocab,
embedding=None, # Option to supply a pretrained matrix as an `np.array`.
embed_dim=10,
hidden_dim=10,
max_iter=100,
eta=0.01,
optimizer=torch.optim.Adam,
batch_size=128,
l2_strength=0.0,
warm_start=False,
device=None)
_ = toy_mod.fit(toy_color_seqs_train, toy_word_seqs_train)
```
### Predicting sequences
The `predict` method takes a list of color contexts as input and returns model descriptions:
```
toy_preds = toy_mod.predict(toy_color_seqs_test)
toy_preds[0]
```
We can then check that we predicted all correct sequences:
```
toy_correct = sum(1 for x, p in zip(toy_word_seqs_test, toy_preds))
toy_correct / len(toy_word_seqs_test)
```
For real problems, this is too stringent a requirement, since there are generally many equally good descriptions. This insight gives rise to metrics like [BLEU](https://en.wikipedia.org/wiki/BLEU), [METEOR](https://en.wikipedia.org/wiki/METEOR), [ROUGE](https://en.wikipedia.org/wiki/ROUGE_(metric)), [CIDEr](https://arxiv.org/pdf/1411.5726.pdf), and others, which seek to relax the requirement of an exact match with the test sequence. These are reasonable options to explore, but we will instead adopt a communcation-based evaluation, as discussed in the next section.
### Listener-based evaluation
`ContextualColorDescriber` implements a method `listener_accuracy` that we will use for our primary evaluations in the assignment and bake-off. The essence of the method is that we can calculate
$$
c^{*} = \text{argmax}_{c \in C} P_S(\text{utterance} \mid c)
$$
where $P_S$ is our describer model and $C$ is the set of all permutations of all three colors in the color context. We take $c^{*}$ to be a correct prediction if it is one where the target is in the privileged final position. (There are two such contexts; we try both in case the order of the distractors influences the predictions, and the model is correct if one of them has the highest probability.)
Here's the listener accuracy of our toy model:
```
toy_mod.listener_accuracy(toy_color_seqs_test, toy_word_seqs_test)
```
### Other prediction and evaluation methods
You can get the perplexities for test examles with `perpelexities`:
```
toy_perp = toy_mod.perplexities(toy_color_seqs_test, toy_word_seqs_test)
toy_perp[0]
```
You can use `predict_proba` to see the full probability distributions assigned to test examples:
```
toy_proba = toy_mod.predict_proba(toy_color_seqs_test, toy_word_seqs_test)
toy_proba[0].shape
for timestep in toy_proba[0]:
print(dict(zip(toy_vocab, timestep)))
```
### Cross-validation
You can use `utils.fit_classifier_with_crossvalidation` to cross-validate these models. Just be sure to set `scoring=None` so that the sklearn model selection methods use the `score` method of `ContextualColorDescriber`, which is an alias for `listener_accuracy`:
```
best_mod = utils.fit_classifier_with_crossvalidation(
toy_color_seqs_train,
toy_word_seqs_train,
toy_mod,
cv=2,
scoring=None,
param_grid={'hidden_dim': [10, 20]})
```
## Baseline SCC model
Just to show how all the pieces come together, here's a very basic SCC experiment using the core code and very simplistic assumptions (which you will revisit in the assignment) about how to represent the examples:
To facilitate quick development, we'll restrict attention to the two-word examples:
```
dev_corpus = ColorsCorpusReader(COLORS_SRC_FILENAME, word_count=2)
dev_examples = list(dev_corpus.read())
len(dev_examples)
```
Here we extract the raw colors and texts (as strings):
```
dev_cols, dev_texts = zip(*[[ex.colors, ex.contents] for ex in dev_examples])
```
To tokenize the examples, we'll just split on whitespace, taking care to add the required boundary symbols:
```
dev_word_seqs = [[START_SYMBOL] + text.split() + [END_SYMBOL] for text in dev_texts]
```
We'll use a random train–test split:
```
dev_cols_train, dev_cols_test, dev_word_seqs_train, dev_word_seqs_test = \
train_test_split(dev_cols, dev_word_seqs)
```
Our vocab is determined by the train set, and we take care to include the `$UNK` token:
```
dev_vocab = sorted({w for toks in dev_word_seqs_train for w in toks}) + [UNK_SYMBOL]
```
And now we're ready to train a model:
```
dev_mod = ContextualColorDescriber(
dev_vocab,
embed_dim=10,
hidden_dim=10,
max_iter=10,
batch_size=128)
_ = dev_mod.fit(dev_cols_train, dev_word_seqs_train)
```
And finally an evaluation in terms of listener accuracy:
```
dev_mod.listener_accuracy(dev_cols_test, dev_word_seqs_test)
```
## Modifying the core model
The first few assignment problems concern how you preprocess the data for your model. After that, the goal is to subclass model components in `torch_color_describer.py`. For the bake-off submission, you can do whatever you like in terms of modeling, but my hope is that you'll be able to continue subclassing based on `torch_color_describer.py`.
This section provides some illustrative examples designed to give you a feel for how the code is structured and what your options are in terms of creating subclasses.
### Illustration: LSTM Cells
Both the `Encoder` and the `Decoder` of `torch_color_describer` are currently GRU cells. Switching to another cell type is easy:
__Step 1__: Subclass the `Encoder`; all we have to do here is change `GRU` from the original to `LSTM`:
```
import torch.nn as nn
from torch_color_describer import Encoder
class LSTMEncoder(Encoder):
def __init__(self, color_dim, hidden_dim):
super().__init__(color_dim, hidden_dim)
self.rnn = nn.LSTM(
input_size=self.color_dim,
hidden_size=self.hidden_dim,
batch_first=True)
```
__Step 2__: Subclass the `Decoder`, making the same simple change as above:
```
import torch.nn as nn
from torch_color_describer import Encoder, Decoder
class LSTMDecoder(Decoder):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.rnn = nn.LSTM(
input_size=self.embed_dim,
hidden_size=self.hidden_dim,
batch_first=True)
```
__Step 3__:`ContextualColorDescriber` has a method called `build_graph` that sets up the `Encoder` and `Decoder`. The needed revision just uses `LSTMEncoder`:
```
from torch_color_describer import EncoderDecoder
class LSTMContextualColorDescriber(ContextualColorDescriber):
def build_graph(self):
# Use the new Encoder:
encoder = LSTMEncoder(
color_dim=self.color_dim,
hidden_dim=self.hidden_dim)
# Use the new Decoder:
decoder = LSTMDecoder(
vocab_size=self.vocab_size,
embed_dim=self.embed_dim,
embedding=self.embedding,
hidden_dim=self.hidden_dim)
return EncoderDecoder(encoder, decoder)
```
Here's an example run:
```
lstm_mod = LSTMContextualColorDescriber(
toy_vocab,
embed_dim=10,
hidden_dim=10,
max_iter=100,
batch_size=128)
_ = lstm_mod.fit(toy_color_seqs_train, toy_word_seqs_train)
lstm_mod.listener_accuracy(toy_color_seqs_test, toy_word_seqs_test)
```
### Illustration: Deeper models
The `Encoder` and `Decoder` are both currently hard-coded to have just one hidden layer. It is straightforward to make them deeper as long as we ensure that both the `Encoder` and `Decoder` have the same depth; since the `Encoder` final states are the initial hidden states for the `Decoder`, we need this alignment.
(Strictly speaking, we could have different numbers of `Encoder` and `Decoder` layers, as long as we did some kind of averaging or copying to achieve the hand-off from `Encoder` to `Decocer`. I'll set this possibility aside.)
__Step 1__: We need to subclass the `Encoder` and `Decoder` so that they have `num_layers` argument that is fed into the RNN cell:
```
import torch.nn as nn
from torch_color_describer import Encoder, Decoder
class DeepEncoder(Encoder):
def __init__(self, *args, num_layers=2, **kwargs):
super().__init__(*args, **kwargs)
self.num_layers = num_layers
self.rnn = nn.GRU(
input_size=self.color_dim,
hidden_size=self.hidden_dim,
num_layers=self.num_layers,
batch_first=True)
class DeepDecoder(Decoder):
def __init__(self, *args, num_layers=2, **kwargs):
super().__init__(*args, **kwargs)
self.num_layers = num_layers
self.rnn = nn.GRU(
input_size=self.embed_dim,
hidden_size=self.hidden_dim,
num_layers=self.num_layers,
batch_first=True)
```
__Step 2__: As before, we need to update the `build_graph` method of `ContextualColorDescriber`. The needed revision just uses `DeepEncoder` and `DeepDecoder`. To expose this new argument to the user, we also add a new keyword argument to `ContextualColorDescriber`:
```
from torch_color_describer import EncoderDecoder
class DeepContextualColorDescriber(ContextualColorDescriber):
def __init__(self, *args, num_layers=2, **kwargs):
self.num_layers = num_layers
super().__init__(*args, **kwargs)
def build_graph(self):
encoder = DeepEncoder(
color_dim=self.color_dim,
hidden_dim=self.hidden_dim,
num_layers=self.num_layers) # The new piece is this argument.
decoder = DeepDecoder(
vocab_size=self.vocab_size,
embed_dim=self.embed_dim,
embedding=self.embedding,
hidden_dim=self.hidden_dim,
num_layers=self.num_layers) # The new piece is this argument.
return EncoderDecoder(encoder, decoder)
```
An example/test run:
```
mod_deep = DeepContextualColorDescriber(
toy_vocab,
embed_dim=10,
hidden_dim=10,
max_iter=100,
batch_size=128)
_ = mod_deep.fit(toy_color_seqs_train, toy_word_seqs_train)
mod_deep.listener_accuracy(toy_color_seqs_test, toy_word_seqs_test)
```
| github_jupyter |
```
# Simple Optimal Growth Model for Disrete DP
# making a class which prepares the instances for DiscreteDP
import numpy as np
class SimpleOG(object):
def __init__(self, B = 10, M = 5 , alpha = 0.5, beta = 0.9):
self.B ,self.M ,self.alpha, self.beta = B,M,alpha,beta
self.n = B+M+1
self.m = M+1
self.R = np.empty((self.n, self.m))
self.Q = np.zeros((self.n, self.m, self.n))
self.populate_Q()
self.populate_R()
def u(self, c):
return c**self.alpha
def populate_R(self):
for i in range(self.n):
for j in range(self.m):
if i >= j:
self.R[i][j] = self.u(i - j)
else:
self.R[i][j] = -np.inf
def populate_Q(self):
for a in range(self.m):
self.Q[:, a, a:(a + self.B + 1)] = 1.0 / (self.B +1)
g = SimpleOG()
# Using DiscreteDP
#DiscreteDP needs three arguments, R, Q, beta
import quantecon as qe
ddp = qe.markov.DiscreteDP(g.R, g.Q, g.beta)
# solving DP by using DiscreetDP
results = ddp.solve(method = "policy_iteration")
results
ddp.compute_greedy(results.v)
# check the elements in results
dir(results)
print "The maximum number of iterations is" , results.max_iter
print "The transition matrix taken when following the optimal policy is" ,results.mc
print "The method used here to solve this problem is ", results.method
print "The number of iterations taken here is ", results.num_iter
print "The optimal value function is ", results.v
print "The optimal policy function is ", results.sigma
# optimal value function は、各stateが初期状態の時に達成しうる無限期間での最大化された期待効用
#optimal policy functionは、各stateに対して取るべき次の行動を表示。例えば、state7に対しては、indexの7番目を見て、action2を取る。
# and mc is MarkovChain instance
#so, you can calculate the stationary distribution for P
# optimal policyをとっている時に、stationary_distributionに従って初期状態を決定すれば、以降取る状態の分布はstationary_distributionに従う
results.mc.stationary_distributions
# the graph for this distribution
import matplotlib.pyplot as plt
% matplotlib inline
fig = plt.figure()
ax = fig.add_subplot(111)
h = results.mc.stationary_distributions
ax.bar(np.arange(16), h[0])
plt.show()
g.R
# betaを変えてstationaryを表示してみる(小さいほど近視眼的)
#patientなほど、高いstateを取るようになる
#これは、目先の紅葉が高い消費を抑えて、収入を将来の貯蓄にまわすようになること意味する
import numpy as np
import quantecon as qe
import matplotlib.pyplot as plt
i = 1
for beta_2 in [0.05, 0.5, 0.9, 0.95, 0.99]:
k = SimpleOG(beta = beta_2)
ddp = qe.markov.DiscreteDP(k.R, k.Q, k.beta)
results = ddp.solve(method = "policy_iteration")
f = results.mc.stationary_distributions
fig = plt.figure(figsize=(10, 15))
plt.subplot(5,1,i)
plt.bar(np.arange(16), f[0])
i +=1
plt.show()
```
| github_jupyter |
```
# Ipython magic
%pylab inline
```
## Introduction
In the `numpy` package the terminology used for vectors, matrices and higher-dimensional data sets is *array*.
## Creating `numpy` arrays
There are a number of ways to initialize new numpy arrays, for example from
* a Python list or tuples
* using functions that are dedicated to generating numpy arrays, such as `arange`, `linspace`, etc.
* reading data from files
### From lists
We can use the `numpy.array` function.
```
# a vector: the argument to the array function is a Python list
v = array([1,2,3,4])
v
# a matrix: the argument to the array function is a nested Python list
M = array([[1, 2], [3, 4]])
M
```
The `v` and `M` objects are both of the type `numpy.ndarray`
```
type(v), type(M)
```
The difference between the `v` and `M` arrays is only their shapes.
We can check it with the `ndarray.shape` property.
```
v.shape
M.shape
```
The number of elements in the array is available through the `ndarray.size` property:
```
M.size
```
Equivalently, we could use the function `numpy.shape` and `numpy.size`
```
shape(M)
size(M)
```
So far the `numpy.ndarray` looks awefully much like a Python list (or nested list).
Why not simply use Python lists for computations instead of creating a new array type?
**There are several reasons**
* Python lists are very general.
- They can contain any kind of object.
- They are dynamically typed.
* They do not support mathematical functions
- such as matrix and dot multiplications, etc.
- Implementating such functions for Python lists would not be very efficient
* because of the dynamic typing
* Numpy arrays are **statically typed** and **homogeneous**.
- The type of the elements is determined when array is created
- By already knowing the static type, numpy can implement low-level optimization
* Numpy arrays are memory efficient.
- fast implementation of mathematical functions can be implemented in a compiled language
* C and Fortran is used
Using the `dtype` (data type) property of an `ndarray`, we can see what type the data of an array has:
```
M.dtype
```
We get an error if we try to assign a value of the wrong type to an element in a numpy array:
```
M[0,0] = "hello"
```
If we want, we can explicitly define the type of the array data when we create it, using the `dtype` keyword argument:
```
M = array([[1, 2], [3, 4]], dtype=complex)
M
```
Common types that can be used with `dtype`
`int`, `float`, `complex`, `bool`, `object`, etc.
We can also explicitly define the bit size of the data types
`int64`, `int16`, `float128`, `complex128`.
## If i don't see it, i don't believe it
`ndarray` = n-dimension array
<img src="images/ndarray.png">
A quick benchmark
```
# Normal python vector
dim = 10000
a = range(dim)
t1 = %timeit -o [i**2 for i in a]
# Numpy vector with normal python loop
b = arange(dim)
t2 = %timeit -o [i**2 for i in b]
# Numpy vector with numpy loop
c = arange(dim)
t3 = %timeit -n 1000 -o [c**2]
print "Python loops (no) speedup: ", t1.best / t2.best
print "Numpy loops speedup:", int(t1.best / t3.best), "x"
```
We want to make sure...
```
print "Type", type(a), [i**2 for i in a][0:10]
print type(b), (b**2)[0:10]
```
## Using more array-generating functions
#### arange
```
# create a range
x = arange(0, 10, 1) # arguments: start, stop, step
x
x = arange(-1, 1, 0.1)
x
type(x)
```
#### mgrid
```
print numpy.mgrid.__doc__.split('\n')[0]
x, y = mgrid[0:5, 0:5] # similar to meshgrid in MATLAB
x
y
```
#### random data
```
from numpy import random
# uniform random numbers in [0,1]
random.rand(5,5)
# standard normal distributed random numbers
random.randn(5,5)
```
#### diag
```
# a diagonal matrix
diag([1,2,3])
# diagonal with offset from the main diagonal
diag([1,2,3], k=1)
```
#### zeros and ones
```
zeros((3,3))
ones((3,3))
```
## More properties of arrays
```
M.itemsize # bytes per element
M.nbytes # number of bytes
M.ndim # number of dimensions
# With `newaxis`, we can insert new dimensions in an array
v = array([1,2,3])
print "Original:", shape(v)
# column matrix
print "Col:", v[:,newaxis].shape
# row matrix
print "Row:", v[newaxis,:].shape
```
##Exercise
Create your own matrix and try some of the operations shown so far
## Manipulating arrays
### Indexing
We can index elements in an array using the square bracket and indices:
```
# v is a vector, and has only one dimension, taking one index
v[0]
# M is a matrix, or a 2 dimensional array, taking two indices
M[1,1]
```
If we omit an index of a multidimensional array it returns the whole row (or, in general, a N-1 dimensional array)
```
M
M[1]
```
The same thing can be achieved with using `:` instead of an index
```
M[1,:] # row 1
M[:,1] # column 1
```
We can assign new values to elements in an array using indexing
```
M[0,0] = 1
M
# also works for rows and columns
M[1,:] = 0
M[:,2] = -1
M
```
### Index slicing
Index slicing is the technical name for the syntax `M[lower:upper:step]` to extract part of an array
```
A = array([1,2,3,4,5])
A
A[1:3]
```
Array slices are *mutable*:
if they are assigned a new value the original array from which the slice was extracted is modified
```
A[1:3] = [-2,-3]
A
```
We can omit any of the three parameters in `M[lower:upper:step]`:
```
A[::] # lower, upper, step all take the default values
A[::2] # step is 2, lower and upper defaults to the beginning and end of the array
A[:3] # first three elements
A[3:] # elements from index 3
```
Negative indices counts from the end of the array (positive index from the begining):
```
A = array([1,2,3,4,5])
A[-1] # the last element in the array
A[-3:] # the last three elements
```
Index slicing works exactly the same way for multidimensional arrays:
```
A = array([[n+m*10 for n in range(5)] for m in range(5)])
A
# a block from the original array
A[1:4, 1:4]
# strides
A[::2, ::2]
```
### Fancy indexing
Fancy indexing is the name for when **an array or list** is used in-place of an *index*
```
row_indices = [1, 2, 3]
A[row_indices]
col_indices = [1, 2, -1] # remember, index -1 means the last element
A[row_indices, col_indices]
```
##Exercise
- Define two odd number: n, m
- Create a random matrix with shape n x m
- Compute the middle cell position and get the center element
```
odd_list = range(1,10,2)
import random as stdrand
n = stdrand.choice(odd_list)
m = stdrand.choice(odd_list)
print "Dimenions:", n, m
MAT = random.randn(n,m)
matrix_center = (n/2, m/2)
print MAT
MAT[matrix_center]
```
###We can also index masks
* e.g. a Numpy array of data type `bool`
- an element is selected (True) or not (False)
- depending on the value of the index mask at the position each element
```
B = array([n for n in range(5)])
B
row_mask = array([True, False, True, False, False])
B[row_mask]
# same thing
row_mask = array([1,0,1,0,0], dtype=bool)
B[row_mask]
```
This feature is very useful to conditionally select elements from an array, using for example comparison operators:
```
x = arange(0, 10, 0.5)
x
mask = (5 < x) * (x < 7.5)
x[mask]
print mask
print x[mask]
```
## Other functions
for extracting data from arrays and creating arrays
### where
The index mask can be converted to position index using the `where` function
```
indices = where(mask)
indices
x[indices] # this indexing is equivalent to the fancy indexing x[mask]
```
### diag
With the diag function we can also extract the diagonal and subdiagonals of an array
```
diag(A)
diag(A, -1)
```
### choose
Constructs an array by picking elements form several arrays
```
which = [1, 0, 1, 0]
choices = [[-2,-2,-2,-2], [5,5,5,5]]
choose(which, choices)
```
## Linear algebra
Efficient numerical calculation with Numpy
- Object should always be formulated in terms of matrix and vector operations
- like matrix-matrix multiplication.
### Scalar-array operations
We can use the usual arithmetic operators to multiply, add, subtract, and divide arrays with scalar numbers.
```
v1 = arange(0, 5)
v1 * 2
v1 + 2
# Also works on a matrix
A * 2, A + 2
```
## Exercise
Can you list the first 20 elements of the *"power of two"* using scalar array operations?
```
from numpy import array
elements = 20
two = array([2]*elements)
for i in range(len(two)):
two[i:] = two[i:]*2
print two
```
### Element-wise array-array operations
When we add, subtract, multiply and divide arrays with each other, the default behaviour is **element-wise** operations:
```
print A
print A * A # element-wise multiplication
v1 * v1
```
If we multiply arrays with compatible shapes, we get an element-wise multiplication of each row:
```
A.shape, v1.shape
A * v1
```
### Matrix algebra
What about matrix mutiplication?
* We can either use the `dot` function, which applies a matrix-matrix, matrix-vector, or inner vector multiplication to its two arguments:
```
dot(A, A)
dot(A, v1)
dot(v1, v1)
```
Alternatively
* we can cast the array objects to the type `matrix`.
<small>Note: This changes the behavior of the standard arithmetic operators `+, -, *` to use matrix algebra.</small>
```
M = matrix(A)
M
v = matrix(v1).T # make it a column vector
v
M * M
M * v
# inner product
v.T * v
# with matrix objects, standard matrix algebra applies
v + M*v
```
###warning
If we try to add, subtract or multiply objects with incomplatible shapes we get an error:
```
v = matrix([1,2,3,4,5,6]).T
shape(M), shape(v)
M * v
```
See also the related functions: `inner`, `outer`, `cross`, `kron`, `tensordot`
### Matrix computations
#### Inverse
```
C = matrix([[1j, 2j], [3j, 4j]])
inv(C) # equivalent to C.I
C.I * C
```
#### Determinant
```
det(C)
det(C.I)
```
## Data processing
File Input/Output
### Comma-separated values (CSV)
A very common file format for data files are the comma-separated values (CSV).
```
# To read data from such file into Numpy arrays we can use the `numpy.genfromtxt` function
?genfromtxt
```
data source: https://archive.ics.uci.edu/ml/datasets/Covertype
```
A = genfromtxt('data/num.csv.gz', delimiter = ',')
A.shape
A.size
A[:4,:3]
```
Using `numpy.savetxt` we can store a Numpy array to a file in **TSV** format:
```
M = rand(3,3)
M
savetxt("random-matrix.csv", M)
!cat random-matrix.csv
```
## Exercise
Read from the gzipped csv:
- Only from row 11 to 20
- Only third and sixth column
- Truncate values to integer
```
read = 10
skip = 10
a_len = len(A)
B = genfromtxt('data/num.csv.gz', delimiter = ',', usecols = (2, 5),
skip_header=skip, skip_footer=a_len-(read+skip), dtype=np.int16)
```
### Numpy's native file format
Useful when storing and reading back numpy array data. Use the functions `numpy.save` and `numpy.load`:
```
# numpy binary file saving
save("random-matrix.npy", M)
# check type of file
!file random-matrix.npy
# very fast, but not portable
load("random-matrix.npy")
```
### Statistics
Numpy provides a number of functions to calculate statistics of datasets in arrays.
```
data = A[:1000,:5]
data.shape
```
#### mean
```
# The mean of the 4th element
mean(data[:,3])
```
#### standard deviations and variance
```
std(data[:,3]), var(data[:,3])
```
#### min and max
```
# search the lowest value of a column
col = 4
print "Min value for", col, "is", data[:,col].min()
print "Max value for", col, "is", data[:,col].max()
```
There are many other operations.
...but you will find more power in *pandas* for this.
### Copy and "deep copy"
- when objects are passed between functions
- you want to avoid an excessive amount of memory copying when it is not necessary
- (techincal term: pass by reference)
```
A = array([[1, 2], [3, 4]])
A
B = A # now B is referring to the same array data as A
B
A == B # check this
# changing B affects A
B[0,0] = 10
B
A
```
If we want to avoid this behavior
- get a new completely independent object `B` copied from `A`
- we need to do a so-called "deep copy" using the function `copy`
```
B = copy(A)
# now, if we modify B, A is not affected
B[0,0] = -5
B
A
```
### Iterating over array elements
> Vectorization describes the absence of any explicit looping, indexing, etc., in the code - these things are taking place, of course, just “behind the scenes” (in optimized, pre-compiled C code).
source: numpy website
- Generally, we want to avoid iterating over the elements of arrays
* at all costs
- In a *interpreted language* like Python (or MATLAB, or R)
* iterations are really slow compared to vectorized operations
- Use always numpy functions which are optimized
* if you try a `for` loop you know what you get
### Type casting
- Numpy arrays are *statically typed*
- the type of an array does not change once created
- but we can explicitly cast an array of some type to another
- using the `astype` functions
- (see also the similar `asarray` function)
- This always create a new array of new type
```
M.dtype
M
M2 = M.astype(bool)
M2
M3 = M.astype(str)
M3
```
## Versions
```
%reload_ext version_information
%version_information numpy
```
**Let's move to the next part :)**
| github_jupyter |
Uploading an image with graphical annotations stored in a CSV file
======================
We'll be using standard python tools to parse CSV and create an XML document describing cell nuclei for BisQue
Make sure you have bisque api installed:
> pip install bisque-api
```
import os
import csv
from datetime import datetime
try:
from lxml import etree
except ImportError:
import xml.etree.ElementTree as etree
```
Include BisQue API
```
from bqapi import BQSession
from bqapi.util import save_blob
```
define some paths
```
path = '.'
path_img = os.path.join(path, 'BisQue_CombinedSubtractions.lsm')
path_csv = os.path.join(path, 'BisQue_CombinedSubtractions.csv')
```
Parse CSV file and load nuclei positions
------------------------------------------
We'll create a list of XYZT coordinates with confidence
```
#x, y, z, t, confidence
coords = []
with open(path_csv, 'rb') as csvfile:
reader = csv.reader(csvfile)
h = reader.next()
for r in reader:
c = (r[0], r[1], r[2], r[4])
print c
coords.append(c)
```
Initiaize authenticated session
--------------
Initialize a BisQue session using simple user credentials
```
root = 'https://bisque.cyverse.org'
user = 'demo'
pswd = 'iplant'
session = BQSession().init_local(user, pswd, bisque_root=root, create_mex=False)
```
Create XML image descriptor
---------------------------
We'll provide a suggested path in the remote user's directory
```
path_on_bisque = 'demo/nuclei_%s/%s'%(datetime.now().strftime('%Y%m%dT%H%M%S'), os.path.basename(path_img))
resource = etree.Element('image', name=path_on_bisque)
print etree.tostring(resource, pretty_print=True)
```
Upload the image
-----------------
```
# use import service to /import/transfer activating import service
r = etree.XML(session.postblob(path_img, xml=resource)).find('./')
if r is None or r.get('uri') is None:
print 'Upload failed'
else:
print 'Uploaded ID: %s, URL: %s\n'%(r.get('resource_uniq'), r.get('uri'))
print etree.tostring(r, pretty_print=True)
```
Add graphical annotations
------------------------------
We'll create point annotaions as an XML attached to the image we just uploaded into BisQue
```
g = etree.SubElement (r, 'gobject', type='My nuclei')
for c in coords:
p = etree.SubElement(g, 'point')
etree.SubElement(p, 'vertex', x=c[0], y=c[1], z=c[2])
etree.SubElement(p, 'tag', name='confidence', value=c[3])
print etree.tostring(r, pretty_print=True)
```
Save graphical annotations to the system
------------------------------------------
After storing all annotations become searchable
```
url = session.service_url('data_service')
r = session.postxml(url, r)
if r is None or r.get('uri') is None:
print 'Adding annotations failed'
else:
print 'Image ID: %s, URL: %s'%(r.get('resource_uniq'), r.get('uri'))
```
| github_jupyter |
```
import pandas as pd
import json
import numpy as np
from cleaner import *
# df_train = read_json('./processed_data/preprocess_train.json')
# df_dev = read_json('./processed_data/preprocess_my_dev.json')
# df_test = read_json('./processed_data/preprocess_eval.json')
df_train = read_json('./original_data/train.json')
df_dev = read_json('./processed_data/my_dev.json')
df_test = read_json('./original_data/eval.json')
print("Number of training data: {}".format(df_train.shape[0]))
print("Number of developing data: {}".format(df_dev.shape[0]))
print("Number of testing data: {}".format(df_test.shape[0]))
category = {
'fake': 0,
'real': 1
}
df_train['label'] = df_train['label'].map(category)
df_dev['label'] = df_dev['label'].map(category)
# df_train[df_train['label'] == 0]['idx'].value_counts()
# for each in df_train[df_train['idx'] == 21934].values:
# print(each[4])
df_train[df_train['idx'] == 21934]
df_train[df_train['label'] == 1]['context_idx'].value_counts(), df_dev[df_dev['label'] == 1]['context_idx'].value_counts()
df_train['label'].value_counts(), df_dev['label'].value_counts()
# df_my_gold = pd.read_csv('./my_gold_dev.csv')
# df_dev['label'] = df_my_gold['label']
# df_dev.to_json('my_dev.json', orient='records')
label = []
for i in range(len(df_test)):
if df_test['context_idx'][i] == 0:
label.append('real')
else:
label.append('fake')
df_test['label'] = label
print(df_test['label'].value_counts())
df_test[['idx', 'context_idx', 'label']].to_csv('eval.csv', index=False)
# same idx will contain the same label
df_predicted = pd.read_csv('my_gold_dev.csv')
df_predicted['label'].value_counts()
diff, diff_with_root = 0, 0
for idx in df_predicted['idx'].unique():
real_fake_counts = df_predicted[df_predicted['idx'] == idx]['label'].value_counts()
real_fake_list = real_fake_counts.keys().to_list()
if len(real_fake_list) != 1:
# method 1: same as root
root = df_predicted.loc[(df_predicted['idx'] == idx) & (df_predicted['context_idx'] == 0), 'label'].tolist()[0]
# method 2: same as majority
majority = real_fake_list[np.argmax(real_fake_counts)]
df_predicted.loc[(df_predicted['idx'] == idx), 'label'] = majority
if root != majority:
diff_with_root += 1
diff += 1
diff, diff_with_root
df_predicted['label'].value_counts()
df_predicted.to_csv('dev.csv', index=False)
df_train['combine'] = ['[CLS] '] + df_train['text'] + [' [SEP] '] + df_train['reply'] + [' [SEP]']
df_train['combine'].to_csv(r'LM/training.txt', header=None, index=None, sep=' ')
```
| github_jupyter |
Copyright © 2017-2021 ABBYY Production LLC
```
#@title
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
```
# *k*-means clustering
[Download the tutorial as a Jupyter notebook](https://github.com/neoml-lib/neoml/blob/master/NeoML/docs/en/Python/tutorials/KMeans.ipynb)
In this tutorial, we will use the NeoML implementation of *k*-means clustering algorithm to clusterize a randomly generated dataset.
The tutorial includes the following steps:
* [Generate the dataset](#Generate-the-dataset)
* [Cluster the data](#Cluster-the-data)
* [Visualize the results](#Visualize-the-results)
## Generate the dataset
*Note:* This section doesn't have any NeoML-specific code. It just generates a dataset. If you are not running this notebook, you may [skip](#Cluster-the-data) this section.
Let's generate a dataset of 4 clusters on the plane. Each cluster will be generated from center + noise taken from normal distribution for each coordinate.
```
import numpy as np
np.random.seed(451)
n_dots = 128
n_clusters = 4
centers = np.array([(-2., -2.),
(-2., 2.),
(2., -2.),
(2., 2.)])
X = np.zeros(shape=(n_dots, 2), dtype=np.float32)
y = np.zeros(shape=(n_dots,), dtype=np.int32)
for i in range(n_dots):
# Choose random center
cluster_id = np.random.randint(0, n_clusters)
y[i] = cluster_id
# object = center + some noise
X[i, 0] = centers[cluster_id][0] + np.random.normal(0, 1)
X[i, 1] = centers[cluster_id][1] + np.random.normal(0, 1)
```
## Cluster the data
Now we'll create a `neoml.Clustering.KMeans` class that represents the clustering algorithm, and feed the data into it.
```
import neoml
kmeans = neoml.Clustering.KMeans(max_iteration_count=1000,
cluster_count=n_clusters,
thread_count=4)
y_pred, centers_pred, vars_pred = kmeans.clusterize(X)
```
Before going further let's take a look at the returned data.
```
print('y_pred')
print(' ', type(y_pred))
print(' ', y_pred.shape)
print(' ', y_pred.dtype)
print('centers_pred')
print(' ', type(centers_pred))
print(' ', centers_pred.shape)
print(' ', centers_pred.dtype)
print('vars_pred')
print(' ', type(vars_pred))
print(' ', vars_pred.shape)
print(' ', vars_pred.dtype)
```
As you can see, the `y_pred` array contains the cluster indices of each object. `centers_pred` and `disps_pred` contain centers and variances of each cluster.
## Visualize the results
In this section we'll draw both clusterizations: ground truth and predicted.
```
%matplotlib inline
import matplotlib.pyplot as plt
colors = {
0: 'r',
1: 'g',
2: 'b',
3: 'y'
}
# Create figure with 2 subplots
fig, axs = plt.subplots(ncols=2)
fig.set_size_inches(10, 5)
# Show ground truth
axs[0].set_title('Ground truth')
axs[0].scatter(X[:, 0], X[:, 1], marker='o', c=list(map(colors.get, y)))
axs[0].scatter(centers[:, 0], centers[:, 1], marker='x', c='black')
# Show NeoML markup
axs[1].set_title('NeoML K-Means')
axs[1].scatter(X[:, 0], X[:, 1], marker='o', c=list(map(colors.get, y_pred)))
axs[1].scatter(centers_pred[:, 0], centers_pred[:, 1], marker='x', c='black')
plt.show()
```
As you can see, *k*-means didn't clusterize the outliers correctly.
| github_jupyter |
```
import sys
sys.path.append('../src')
import common.config as cfg
from common.nb_utils import estimate_optimal_ncomponents, pca_transform
from common.utils import get_device, Struct
from data.loader import get_testloader, get_trainloader
import matplotlib.pyplot as plt
from models.fcn import FCN
from models.resnet import resnet18
from models.model_op import get_model_grads, gradient_approximation
from models.svm import SVM
import models.resnet as resnet
import numpy as np
import pickle as pkl
import torch as t
import time
from tqdm.notebook import tqdm
dataset = 'mnist'
input_size = cfg.input_sizes[dataset]
output_size = cfg.output_sizes[dataset]
lr = 1e-1
sdirs_algo = 'pca' # 'qr'
bs = 16
epochs = 20
device = t.device('cuda:1')
loss = t.nn.CrossEntropyLoss().to(device)
trainloader = get_trainloader(dataset, bs, True)
testloader = get_testloader(dataset, bs, True)
sdirs = []
m = 6
n_accum = m*50
for idx, (data, labels) in tqdm(enumerate(trainloader), total=len(trainloader), leave=False):
x, y = data.to(device), labels.to(device)
model = resnet.resnet18(num_channels=1, num_classes=output_size).to(device)
optimizer = t.optim.SGD(model.parameters(), lr=lr)
optimizer.zero_grad()
y_hat = model(x)
loss_val = loss(y_hat, y)
loss_val.backward()
sdirs.append(get_model_grads(model))
if idx == n_accum:
break
sdirs_ = []
for i in range(len(sdirs[0])):
sdirs_.append(np.hstack([_[i].reshape(-1, 1).cpu().numpy() for _ in sdirs]))
[_.shape for _ in sdirs_]
n0 = [_.shape[1] for _ in sdirs_]
n = [estimate_optimal_ncomponents(_, 0.99)[0] for _ in sdirs_]
plt.figure(figsize=(10, 2))
plt.bar(range(len(n0)), [_/m for _ in n0], color='r')
plt.bar(range(len(n)), [_/m for _ in n], color='k', alpha=0.6)
plt.title('grads: {}, bs: {}, dataset: {}'.format(n_accum, bs, dataset))
name = '../ckpts/nb/grads_{}_bs_{}_dataset_{}.png'.format(
n_accum, bs, dataset
)
print(name)
plt.savefig(name, bbox_inches='tight', dpi=330)
```
# BS: 32 MNIST
![](../ckpts/nb/grads_300_bs_16_dataset_mnist.png)
![](../ckpts/nb/grads_200_bs_16_dataset_mnist.png)
![](../ckpts/nb/grads_100_bs_16_dataset_mnist.png)
![](../ckpts/nb/grads_50_bs_16_dataset_mnist.png)
# BS: 128 MNIST
![](../ckpts/nb/grads_300_bs_128_dataset_mnist.png)
![](../ckpts/nb/grads_200_bs_128_dataset_mnist.png)
![](../ckpts/nb/grads_100_bs_128_dataset_mnist.png)
![](../ckpts/nb/grads_50_bs_128_dataset_mnist.png)
```
if sdirs_algo=='pca':
sdirs0, _ = pca_transform(sdirs0, n0)
# sdirs1, _ = pca_transform(sdirs1, n1)
else:
sdirs0, _ = np.linalg.qr(sdirs0)
# sdirs1, _ = np.linalg.qr(sdirs1)
sdirs0.shape, sdirs1.shape
sdirs = [[t.Tensor(sdirs0[:, _].reshape(output_size, input_size)), t.Tensor(sdirs1[:,_].reshape(output_size,))] for _ in range(sdirs0.shape[1])]
```
# pretraining
```
trainloader = get_trainloader(dataset, 256, False)
testloader = get_testloader(dataset, 256, False)
model = resnet.resnet18(num_channels=1, num_classes=output_size).to(device)
model.load_state_dict(t.load('../ckpts/init/{}_resnet18.init'.format(dataset)))
correcti = 0
x_test = 0
for idx, (data, labels) in enumerate(testloader):
x, y = data.to(device), labels.to(device)
y_hat = model(x)
loss_val = loss(y_hat, y)
predi = y_hat.argmax(1, keepdim=True)
correcti += predi.eq(y.view_as(predi)).sum().item()
y_test = correcti/len(testloader.dataset)
x_test, y_test
```
# w/o gradient approximation
```
model = resnet.resnet18(num_channels=1, num_classes=output_size).to(device)
model.load_state_dict(t.load('../ckpts/init/{}_resnet18.init'.format(dataset)))
xb_train, yb_train = [], []
xb_test, yb_test =[], []
for _ in tqdm(range(1, epochs+1), leave=False):
xb_train.append(_)
correcti = 0
for idx, (data, labels) in enumerate(trainloader):
x, y = data.to(device), labels.to(device)
optimizer = t.optim.SGD(model.parameters(), lr=lr)
optimizer.zero_grad()
y_hat = model(x)
loss_val = loss(y_hat, y)
loss_val.backward()
optimizer.step()
predi = y_hat.argmax(1, keepdim=True)
correcti += predi.eq(y.view_as(predi)).sum().item()
yb_train.append(correcti/len(trainloader.dataset))
correcti = 0
for idx, (data, labels) in enumerate(testloader):
x, y = data.to(device), labels.to(device)
y_hat = model(x)
loss_val = loss(y_hat, y)
predi = y_hat.argmax(1, keepdim=True)
correcti += predi.eq(y.view_as(predi)).sum().item()
yb_test.append(correcti/len(testloader.dataset))
print('{} \t {:.4f} \t {:.2f} \t {:.2f}'.format(
xb_train[-1], loss_val.item(), yb_train[-1], yb_test[-1]
))
```
# gradient approximation using all directions
```
model = resnet.resnet18(num_channels=1, num_classes=output_size).to(device)
model.load_state_dict(t.load('../ckpts/init/{}_resnet18.init'.format(dataset)))
xa_train, ya_train = [], []
xa_test, ya_test = [], []
for _ in tqdm(range(1, epochs+1), leave=False):
start = time.time()
xa_train.append(_)
xa_test.append(_)
correcti = 0
for idx, (data, labels) in enumerate(trainloader):
x, y = data.to(device), labels.to(device)
optimizer = t.optim.SGD(model.parameters(), lr=lr)
optimizer.zero_grad()
y_hat = model(x)
loss_val = loss(y_hat, y)
loss_val.backward()
_, error = gradient_approximation(model, sdirs, device, [])
optimizer.step()
predi = y_hat.argmax(1, keepdim=True)
correcti += predi.eq(y.view_as(predi)).sum().item()
ya_train.append(correcti/len(trainloader.dataset))
correcti = 0
for idx, (data, labels) in enumerate(testloader):
x, y = data.to(device), labels.to(device)
y_hat = model(x)
loss_val = loss(y_hat, y)
predi = y_hat.argmax(1, keepdim=True)
correcti += predi.eq(y.view_as(predi)).sum().item()
ya_test.append(correcti/len(testloader.dataset))
print('{} \t {:.4f} \t {:.2f} \t {:.2f}'.format(
xa_train[-1], loss_val.item(), ya_train[-1], ya_test[-1]
))
```
# gradient approximation using n directions
```
n = 1
model = resnet.resnet18(num_channels=1, num_classes=output_size).to(device)
model.load_state_dict(t.load('../ckpts/init/{}_resnet18.init'.format(dataset)))
xe_train, ye_train = [], []
xe_test, ye_test = [], []
for _ in tqdm(range(1, epochs+1), leave=False):
start = time.time()
xe_train.append(_)
xe_test.append(_)
correcti = 0
for idx, (data, labels) in enumerate(trainloader):
x, y = data.to(device), labels.to(device)
optimizer = t.optim.SGD(model.parameters(), lr=lr)
optimizer.zero_grad()
y_hat = model(x)
loss_val = loss(y_hat, y)
loss_val.backward()
_, error = gradient_approximation(
model,
[sdirs[idx]], device, [])
optimizer.step()
predi = y_hat.argmax(1, keepdim=True)
correcti += predi.eq(y.view_as(predi)).sum().item()
ye_train.append(correcti/len(trainloader.dataset))
correcti = 0
for idx, (data, labels) in enumerate(testloader):
x, y = data.to(device), labels.to(device)
y_hat = model(x)
loss_val = loss(y_hat, y)
predi = y_hat.argmax(1, keepdim=True)
correcti += predi.eq(y.view_as(predi)).sum().item()
ye_test.append(correcti/len(testloader.dataset))
print('{} \t {:.4f} \t {:.2f} \t {:.2f}'.format(
xe_train[-1], loss_val.item(), ye_train[-1], ye_test[-1]
))
n = 10
model = resnet.resnet18(num_channels=1, num_classes=output_size).to(device)
model.load_state_dict(t.load('../ckpts/init/{}_resnet18.init'.format(dataset)))
xc_train, yc_train = [], []
xc_test, yc_test = [], []
for _ in tqdm(range(1, epochs+1), leave=False):
start = time.time()
xc_train.append(_)
xc_test.append(_)
correcti = 0
for idx, (data, labels) in enumerate(trainloader):
x, y = data.to(device), labels.to(device)
optimizer = t.optim.SGD(model.parameters(), lr=lr)
optimizer.zero_grad()
y_hat = model(x)
loss_val = loss(y_hat, y)
loss_val.backward()
_, error = gradient_approximation(
model,
sdirs[idx: idx+n] , device, [])
optimizer.step()
predi = y_hat.argmax(1, keepdim=True)
correcti += predi.eq(y.view_as(predi)).sum().item()
yc_train.append(correcti/len(trainloader.dataset))
correcti = 0
for idx, (data, labels) in enumerate(testloader):
x, y = data.to(device), labels.to(device)
y_hat = model(x)
loss_val = loss(y_hat, y)
predi = y_hat.argmax(1, keepdim=True)
correcti += predi.eq(y.view_as(predi)).sum().item()
yc_test.append(correcti/len(testloader.dataset))
print('{} \t {:.4f} \t {:.2f} \t {:.2f}'.format(
xc_train[-1], loss_val.item(), yc_train[-1], yc_test[-1]
))
n = 100
model = resnet.resnet18(num_channels=1, num_classes=output_size).to(device)
model.load_state_dict(t.load('../ckpts/init/{}_resnet18.init'.format(dataset)))
xd_train, yd_train = [], []
xd_test, yd_test = [], []
for _ in tqdm(range(1, epochs+1), leave=False):
start = time.time()
xd_train.append(_)
xd_test.append(_)
correcti = 0
for idx, (data, labels) in enumerate(trainloader):
x, y = data.to(device), labels.to(device)
optimizer = t.optim.SGD(model.parameters(), lr=lr)
optimizer.zero_grad()
y_hat = model(x)
loss_val = loss(y_hat, y)
loss_val.backward()
_, error = gradient_approximation(
model,
sdirs[idx: idx+n], device, [])
optimizer.step()
predi = y_hat.argmax(1, keepdim=True)
correcti += predi.eq(y.view_as(predi)).sum().item()
yd_train.append(correcti/len(trainloader.dataset))
correcti = 0
for idx, (data, labels) in enumerate(testloader):
x, y = data.to(device), labels.to(device)
y_hat = model(x)
loss_val = loss(y_hat, y)
predi = y_hat.argmax(1, keepdim=True)
correcti += predi.eq(y.view_as(predi)).sum().item()
yd_test.append(correcti/len(testloader.dataset))
print('{} \t {:.4f} \t {:.2f} \t {:.2f}'.format(
xd_train[-1], loss_val.item(), yd_train[-1], yd_test[-1]
))
plt.figure()
plt.plot([x_test]+xb_train, [y_test]+yb_test, label='SGD', c='r')
# plt.plot([x_test]+xa_train, [y_test]+ya_test, label='SGD {}-approx.'.format(len(sdirs)), c='b')
plt.plot([x_test]+xc_train, [y_test]+yc_test, label='SGD 10-approx.', c='g')
plt.plot([x_test]+xd_train, [y_test]+yd_test, label='SGD 100-approx.', c='k')
plt.plot([x_test]+xe_train, [y_test]+ye_test, label='SGD 1-approx.', c='c')
history = {
'test': [x_test, y_test],
# 'a': [xa_train, ya_train, xa_test, ya_test],
'b': [xb_train, yb_train, xb_test, yb_test],
'c': [xc_train, yc_train, xc_test, yc_test],
'd': [xd_train, yd_train, xd_test, yd_test],
'e': [xe_train, ye_train, xe_test, ye_test],
}
name = 'clf_{}_{}_algo_{}_bs_{}_sgd_vs_sgd_approx_random_grad_sampling'.format(
'resnet18', dataset, sdirs_algo, bs)
print(name)
pkl.dump(history, open('../ckpts/history/{}.pkl'.format(name), 'wb'))
plt.xlabel('epochs')
plt.ylabel('accuracy')
plt.legend()
plt.savefig(
'../ckpts/plots/{}.png'.format(name),
dpi=300, bbox_inches='tight'
)
```
| github_jupyter |
```
lat = 40.229730557967
lon = -74.002934930983
profile = [
{
"key": "natural",
"value": "beach",
"distance_within": 15,
"type": "bicycle",
"weight": 20
},
{
"key": "name",
"value": "Newark Penn Station",
"distance_within": 60,
"type": "auto",
"weight": 10
},
{
"key": "name",
"value": "Hurley School (historical)",
"distance_within": 20,
"type": "auto",
"weight": 10
},
{
"key": "name",
"value": "Sandy Hook Lighthouse",
"distance_within": 30,
"type": "auto",
"weight": 10
},
{
"key": "amenity",
"value": "pub",
"distance_within": 5,
"type": "pedestrian",
"weight": 20
},
{
"key": "amenity",
"value": "cafe",
"distance_within": 5,
"type": "pedestrian",
"weight": 20
},
{
"key": "amenity",
"value": "restaurant",
"distance_within": 5,
"type": "pedestrian",
"weight": 20
},
{
"key": "highway",
"value": "cycleway",
"distance_within": 10,
"type": "bicycle",
"weight": 20
},
]
query_fields = """
[
'access',
'addr:housename',
'addr:housenumber',
'addr:interpolation',
'admin_level',
'aerialway',
'aeroway',
'amenity',
'area',
'barrier',
'bicycle',
'brand',
'bridge',
'boundary',
'building',
'construction',
'covered',
'culvert',
'cutting',
'denomination',
'disused',
'embankment',
'foot',
'generator:source',
'harbour',
'highway',
'historic',
'horse',
'intermittent',
'junction',
'landuse',
'layer',
'leisure',
'lock',
'man_made',
'military',
'motorcar',
'name',
'natural',
'office',
'oneway',
'operator',
'place',
'population',
'power',
'power_source',
'public_transport',
'railway',
'ref',
'religion',
'route',
'service',
'shop',
'sport',
'surface',
'toll',
'tourism',
'tower:type',
'tunnel',
'water',
'waterway',
'wetland',
'width',
'wood'
]
"""
import psycopg2
def get_buffer(lat, lon, key_query, distance_in_meters):
conn = psycopg2.connect(host="postgres",database="osm", user="osm", password="osm")
cursor = conn.cursor()
query_fields_2 = query_fields.replace('\'', '"')
cursor.execute("""
SELECT name, keys,
ST_X(closest_point) as lon,
ST_Y(closest_point) as lat,
distance
FROM (
SELECT *, ST_Transform(ST_ClosestPoint(way,
ST_TRANSFORM(
ST_SETSRID(
ST_GeomFromText(
'POINT(%f %f)'
),
4326),
3857)), 4326) as closest_point,
ST_DISTANCE(
way,
ST_TRANSFORM(
ST_SETSRID(
ST_GeomFromText(
'POINT(%f %f)'
),
4326),
3857)
) AS distance
FROM (
SELECT osm_id, name, way,
hstore(ARRAY%s, ARRAY%s) as keys
from planet_osm_polygon
UNION ALL
SELECT osm_id, name, way,
hstore(ARRAY%s, ARRAY%s) as keys
from planet_osm_point
UNION ALL
SELECT osm_id, name, way,
hstore(ARRAY%s, ARRAY%s) as keys
from planet_osm_line) osm WHERE
ST_DWithin(way,
ST_TRANSFORM(
ST_SETSRID(
ST_GeomFromText(
'POINT(%f %f)'
),
4326),
3857), %f)
AND %s
) nearby ORDER BY DISTANCE LIMIT 2
""" % (lon, lat, lon, lat,
query_fields, query_fields_2,
query_fields, query_fields_2,
query_fields, query_fields_2,
lon, lat, distance_in_meters,
key_query))
#select * FROM (
# select
# *,
# ST_X(ST_Transform(st_centroid(way), 4326)) as lon,
# ST_Y(ST_Transform(st_centroid(way), 4326)) as lat,
# ST_DISTANCE(
# way,
# ST_TRANSFORM(
# ST_SETSRID(
# ST_GeomFromText(
# 'POINT(%f %f)'
# ),
# 4326),
# 3857)
# ) AS distance
# FROM
# planet_osm_polygon
#) AS subquery WHERE distance < %f
#ORDER BY distance;
#""" % (lon, lat, distance_in_meters))
returned_data = []
for record in cursor:
returned_data.append(record)
cursor.close()
return returned_data
costing_multiplier = {
'auto': 100,
'bicycle': 30,
'pedestrian': 10
}
scores = list()
for setting in profile:
key_query = "keys->'%s' = '%s'" % (setting['key'], setting['value'])
distance_in_meters = setting['distance_within'] * costing_multiplier[setting['type']] * 100
nearby = get_buffer(lat, lon, key_query, distance_in_meters)
if len(nearby) == 0:
nearby = [[None, None, None, None, None]]
print (key_query, distance_in_meters, nearby[0][4])
scores.append({'profile': setting, 'name': nearby[0][0],'lon': nearby[0][2], 'lat': nearby[0][3]})
#print (scores)
# Load the path from Valhalla
import requests
import json
def get_routed_distance(o_lon, o_lat, d_lon, d_lat, costing):
url = "http://valhalla:8002/route"
data = {
"locations":[
{
"lat":o_lat,
"lon":o_lon,
"type":"break"
},{
"lat":d_lat,
"lon":d_lon,
"type":"break"
}
],
"costing":costing,
"directions_options":{
"units":"miles"
}
}
data_json = json.dumps(data)
response = requests.post(url, data=data_json)
response_obj = json.loads(response.text)
#distance = response_obj['trip']['summary']['length']
time_in_seconds = response_obj['trip']['summary']['time']
#west = response_obj['trip']['summary']['min_lon']
#south = response_obj['trip']['summary']['min_lat']
#east = response_obj['trip']['summary']['max_lon']
#north = response_obj['trip']['summary']['max_lat']
#geometry = decode_geometry(response_obj['trip']['legs'][0]['shape'])
#print (distance)
#print (time_in_seconds)
return time_in_seconds
total_weights = 0
total_weighted_values = 0
for score in scores:
ideal_distance = (score['profile']['distance_within'] * 60)
value = 0
if (score['lon'] and score['lat']):
time = get_routed_distance(lon, lat, score['lon'], score['lat'], score['profile']['type'])
if time > ideal_distance:
value = 100 - (((time - ideal_distance) / 60) * 2)
elif time < ideal_distance:
value = 100 + (((ideal_distance - time) / 60) * 0.5)
else:
value = 100
if value > 200:
value = 200
elif value < 0:
value = 0
score['time'] = time
score['ideal_time'] = ideal_distance
score['value'] = value
score['weighted_time'] = value * score['profile']['weight']
total_weights = total_weights + score['profile']['weight']
total_weighted_values = total_weighted_values + score['weighted_time']
print(score['profile']['key'],score['profile']['value'],score['profile']['weight'],score['value'])
final_score = (total_weighted_values / total_weights)
print('-------------------------')
print (final_score)
```
| github_jupyter |
## Dependencies
```
import os
import sys
import cv2
import shutil
import random
import warnings
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from tensorflow import set_random_seed
from sklearn.utils import class_weight
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, cohen_kappa_score
from keras import backend as K
from keras.models import Model
from keras.utils import to_categorical
from keras import optimizers, applications
from keras.preprocessing.image import ImageDataGenerator
from keras.callbacks import EarlyStopping, ReduceLROnPlateau, Callback, LearningRateScheduler
from keras.layers import Dense, Dropout, GlobalAveragePooling2D, GlobalMaxPooling2D, Input, Flatten, BatchNormalization, Activation
def seed_everything(seed=0):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
set_random_seed(0)
seed = 0
seed_everything(seed)
%matplotlib inline
sns.set(style="whitegrid")
warnings.filterwarnings("ignore")
sys.path.append(os.path.abspath('../input/efficientnet/efficientnet-master/efficientnet-master/'))
from efficientnet import *
```
## Load data
```
hold_out_set = pd.read_csv('../input/aptos-data-split/hold-out.csv')
X_train = hold_out_set[hold_out_set['set'] == 'train']
X_val = hold_out_set[hold_out_set['set'] == 'validation']
test = pd.read_csv('../input/aptos2019-blindness-detection/test.csv')
print('Number of train samples: ', X_train.shape[0])
print('Number of validation samples: ', X_val.shape[0])
print('Number of test samples: ', test.shape[0])
# Preprocecss data
X_train["id_code"] = X_train["id_code"].apply(lambda x: x + ".png")
X_val["id_code"] = X_val["id_code"].apply(lambda x: x + ".png")
test["id_code"] = test["id_code"].apply(lambda x: x + ".png")
display(X_train.head())
```
# Model parameters
```
# Model parameters
FACTOR = 4
BATCH_SIZE = 8 * FACTOR
EPOCHS = 20
WARMUP_EPOCHS = 5
LEARNING_RATE = 1e-4 * FACTOR
WARMUP_LEARNING_RATE = 1e-3 * FACTOR
HEIGHT = 224
WIDTH = 224
CHANNELS = 3
ES_PATIENCE = 5
RLROP_PATIENCE = 3
DECAY_DROP = 0.5
LR_WARMUP_EPOCHS_1st = 2
LR_WARMUP_EPOCHS_2nd = 5
STEP_SIZE = len(X_train) // BATCH_SIZE
TOTAL_STEPS_1st = WARMUP_EPOCHS * STEP_SIZE
TOTAL_STEPS_2nd = EPOCHS * STEP_SIZE
WARMUP_STEPS_1st = LR_WARMUP_EPOCHS_1st * STEP_SIZE
WARMUP_STEPS_2nd = LR_WARMUP_EPOCHS_2nd * STEP_SIZE
```
# Pre-procecess images
```
train_base_path = '../input/aptos2019-blindness-detection/train_images/'
test_base_path = '../input/aptos2019-blindness-detection/test_images/'
train_dest_path = 'base_dir/train_images/'
validation_dest_path = 'base_dir/validation_images/'
test_dest_path = 'base_dir/test_images/'
# Making sure directories don't exist
if os.path.exists(train_dest_path):
shutil.rmtree(train_dest_path)
if os.path.exists(validation_dest_path):
shutil.rmtree(validation_dest_path)
if os.path.exists(test_dest_path):
shutil.rmtree(test_dest_path)
# Creating train, validation and test directories
os.makedirs(train_dest_path)
os.makedirs(validation_dest_path)
os.makedirs(test_dest_path)
def crop_image(img, tol=7):
if img.ndim ==2:
mask = img>tol
return img[np.ix_(mask.any(1),mask.any(0))]
elif img.ndim==3:
gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
mask = gray_img>tol
check_shape = img[:,:,0][np.ix_(mask.any(1),mask.any(0))].shape[0]
if (check_shape == 0): # image is too dark so that we crop out everything,
return img # return original image
else:
img1=img[:,:,0][np.ix_(mask.any(1),mask.any(0))]
img2=img[:,:,1][np.ix_(mask.any(1),mask.any(0))]
img3=img[:,:,2][np.ix_(mask.any(1),mask.any(0))]
img = np.stack([img1,img2,img3],axis=-1)
return img
def circle_crop(img):
img = crop_image(img)
height, width, depth = img.shape
largest_side = np.max((height, width))
img = cv2.resize(img, (largest_side, largest_side))
height, width, depth = img.shape
x = width//2
y = height//2
r = np.amin((x, y))
circle_img = np.zeros((height, width), np.uint8)
cv2.circle(circle_img, (x, y), int(r), 1, thickness=-1)
img = cv2.bitwise_and(img, img, mask=circle_img)
img = crop_image(img)
return img
def preprocess_image(base_path, save_path, image_id, HEIGHT, WIDTH, sigmaX=10):
image = cv2.imread(base_path + image_id)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = circle_crop(image)
image = cv2.resize(image, (HEIGHT, WIDTH))
image = cv2.addWeighted(image, 4, cv2.GaussianBlur(image, (0,0), sigmaX), -4 , 128)
cv2.imwrite(save_path + image_id, image)
# Pre-procecss train set
for i, image_id in enumerate(X_train['id_code']):
preprocess_image(train_base_path, train_dest_path, image_id, HEIGHT, WIDTH)
# Pre-procecss validation set
for i, image_id in enumerate(X_val['id_code']):
preprocess_image(train_base_path, validation_dest_path, image_id, HEIGHT, WIDTH)
# Pre-procecss test set
for i, image_id in enumerate(test['id_code']):
preprocess_image(test_base_path, test_dest_path, image_id, HEIGHT, WIDTH)
```
# Data generator
```
datagen=ImageDataGenerator(rescale=1./255,
rotation_range=360,
horizontal_flip=True,
vertical_flip=True)
train_generator=datagen.flow_from_dataframe(
dataframe=X_train,
directory=train_dest_path,
x_col="id_code",
y_col="diagnosis",
class_mode="raw",
batch_size=BATCH_SIZE,
target_size=(HEIGHT, WIDTH),
seed=seed)
valid_generator=datagen.flow_from_dataframe(
dataframe=X_val,
directory=validation_dest_path,
x_col="id_code",
y_col="diagnosis",
class_mode="raw",
batch_size=BATCH_SIZE,
target_size=(HEIGHT, WIDTH),
seed=seed)
test_generator=datagen.flow_from_dataframe(
dataframe=test,
directory=test_dest_path,
x_col="id_code",
batch_size=1,
class_mode=None,
shuffle=False,
target_size=(HEIGHT, WIDTH),
seed=seed)
def cosine_decay_with_warmup(global_step,
learning_rate_base,
total_steps,
warmup_learning_rate=0.0,
warmup_steps=0,
hold_base_rate_steps=0):
"""
Cosine decay schedule with warm up period.
In this schedule, the learning rate grows linearly from warmup_learning_rate
to learning_rate_base for warmup_steps, then transitions to a cosine decay
schedule.
:param global_step {int}: global step.
:param learning_rate_base {float}: base learning rate.
:param total_steps {int}: total number of training steps.
:param warmup_learning_rate {float}: initial learning rate for warm up. (default: {0.0}).
:param warmup_steps {int}: number of warmup steps. (default: {0}).
:param hold_base_rate_steps {int}: Optional number of steps to hold base learning rate before decaying. (default: {0}).
:param global_step {int}: global step.
:Returns : a float representing learning rate.
:Raises ValueError: if warmup_learning_rate is larger than learning_rate_base, or if warmup_steps is larger than total_steps.
"""
if total_steps < warmup_steps:
raise ValueError('total_steps must be larger or equal to warmup_steps.')
learning_rate = 0.5 * learning_rate_base * (1 + np.cos(
np.pi *
(global_step - warmup_steps - hold_base_rate_steps
) / float(total_steps - warmup_steps - hold_base_rate_steps)))
if hold_base_rate_steps > 0:
learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps,
learning_rate, learning_rate_base)
if warmup_steps > 0:
if learning_rate_base < warmup_learning_rate:
raise ValueError('learning_rate_base must be larger or equal to warmup_learning_rate.')
slope = (learning_rate_base - warmup_learning_rate) / warmup_steps
warmup_rate = slope * global_step + warmup_learning_rate
learning_rate = np.where(global_step < warmup_steps, warmup_rate,
learning_rate)
return np.where(global_step > total_steps, 0.0, learning_rate)
class WarmUpCosineDecayScheduler(Callback):
"""Cosine decay with warmup learning rate scheduler"""
def __init__(self,
learning_rate_base,
total_steps,
global_step_init=0,
warmup_learning_rate=0.0,
warmup_steps=0,
hold_base_rate_steps=0,
verbose=0):
"""
Constructor for cosine decay with warmup learning rate scheduler.
:param learning_rate_base {float}: base learning rate.
:param total_steps {int}: total number of training steps.
:param global_step_init {int}: initial global step, e.g. from previous checkpoint.
:param warmup_learning_rate {float}: initial learning rate for warm up. (default: {0.0}).
:param warmup_steps {int}: number of warmup steps. (default: {0}).
:param hold_base_rate_steps {int}: Optional number of steps to hold base learning rate before decaying. (default: {0}).
:param verbose {int}: quiet, 1: update messages. (default: {0}).
"""
super(WarmUpCosineDecayScheduler, self).__init__()
self.learning_rate_base = learning_rate_base
self.total_steps = total_steps
self.global_step = global_step_init
self.warmup_learning_rate = warmup_learning_rate
self.warmup_steps = warmup_steps
self.hold_base_rate_steps = hold_base_rate_steps
self.verbose = verbose
self.learning_rates = []
def on_batch_end(self, batch, logs=None):
self.global_step = self.global_step + 1
lr = K.get_value(self.model.optimizer.lr)
self.learning_rates.append(lr)
def on_batch_begin(self, batch, logs=None):
lr = cosine_decay_with_warmup(global_step=self.global_step,
learning_rate_base=self.learning_rate_base,
total_steps=self.total_steps,
warmup_learning_rate=self.warmup_learning_rate,
warmup_steps=self.warmup_steps,
hold_base_rate_steps=self.hold_base_rate_steps)
K.set_value(self.model.optimizer.lr, lr)
if self.verbose > 0:
print('\nBatch %02d: setting learning rate to %s.' % (self.global_step + 1, lr))
```
# Model
```
def create_model(input_shape):
input_tensor = Input(shape=input_shape)
base_model = EfficientNetB5(weights=None,
include_top=False,
input_tensor=input_tensor)
base_model.load_weights('../input/efficientnet-keras-weights-b0b5/efficientnet-b5_imagenet_1000_notop.h5')
x = GlobalMaxPooling2D()(base_model.output)
x = Dropout(0.5)(x)
x = Dense(1024)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
final_output = Dense(1, activation='linear', name='final_output')(x)
model = Model(input_tensor, final_output)
return model
```
# Train top layers
```
model = create_model(input_shape=(HEIGHT, WIDTH, CHANNELS))
for layer in model.layers:
layer.trainable = False
for i in range(-7, 0):
model.layers[i].trainable = True
cosine_lr_1st = WarmUpCosineDecayScheduler(learning_rate_base=WARMUP_LEARNING_RATE,
total_steps=TOTAL_STEPS_1st,
warmup_learning_rate=0.0,
warmup_steps=WARMUP_STEPS_1st,
hold_base_rate_steps=(2 * STEP_SIZE))
metric_list = ["accuracy"]
callback_list = [cosine_lr_1st]
optimizer = optimizers.Adam(lr=WARMUP_LEARNING_RATE)
model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=metric_list)
model.summary()
STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size
STEP_SIZE_VALID = valid_generator.n//valid_generator.batch_size
history_warmup = model.fit_generator(generator=train_generator,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=valid_generator,
validation_steps=STEP_SIZE_VALID,
epochs=WARMUP_EPOCHS,
callbacks=callback_list,
verbose=2).history
```
# Fine-tune the complete model
```
for layer in model.layers:
layer.trainable = True
es = EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1)
cosine_lr_2nd = WarmUpCosineDecayScheduler(learning_rate_base=LEARNING_RATE,
total_steps=TOTAL_STEPS_2nd,
warmup_learning_rate=0.0,
warmup_steps=WARMUP_STEPS_2nd,
hold_base_rate_steps=(3 * STEP_SIZE))
callback_list = [es, cosine_lr_2nd]
optimizer = optimizers.Adam(lr=LEARNING_RATE)
model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=metric_list)
model.summary()
history = model.fit_generator(generator=train_generator,
steps_per_epoch=STEP_SIZE_TRAIN,
validation_data=valid_generator,
validation_steps=STEP_SIZE_VALID,
epochs=EPOCHS,
callbacks=callback_list,
verbose=2).history
fig, (ax1, ax2) = plt.subplots(2, 1, sharex='col', figsize=(20, 6))
ax1.plot(cosine_lr_1st.learning_rates)
ax1.set_title('Warm up learning rates')
ax2.plot(cosine_lr_2nd.learning_rates)
ax2.set_title('Fine-tune learning rates')
plt.xlabel('Steps')
plt.ylabel('Learning rate')
sns.despine()
plt.show()
```
# Model loss graph
```
fig, (ax1, ax2) = plt.subplots(2, 1, sharex='col', figsize=(20, 14))
ax1.plot(history['loss'], label='Train loss')
ax1.plot(history['val_loss'], label='Validation loss')
ax1.legend(loc='best')
ax1.set_title('Loss')
ax2.plot(history['acc'], label='Train accuracy')
ax2.plot(history['val_acc'], label='Validation accuracy')
ax2.legend(loc='best')
ax2.set_title('Accuracy')
plt.xlabel('Epochs')
sns.despine()
plt.show()
# Create empty arays to keep the predictions and labels
df_preds = pd.DataFrame(columns=['label', 'pred', 'set'])
train_generator.reset()
valid_generator.reset()
# Add train predictions and labels
for i in range(STEP_SIZE_TRAIN + 1):
im, lbl = next(train_generator)
preds = model.predict(im, batch_size=train_generator.batch_size)
for index in range(len(preds)):
df_preds.loc[len(df_preds)] = [lbl[index], preds[index][0], 'train']
# Add validation predictions and labels
for i in range(STEP_SIZE_VALID + 1):
im, lbl = next(valid_generator)
preds = model.predict(im, batch_size=valid_generator.batch_size)
for index in range(len(preds)):
df_preds.loc[len(df_preds)] = [lbl[index], preds[index][0], 'validation']
df_preds['label'] = df_preds['label'].astype('int')
def classify(x):
if x < 0.5:
return 0
elif x < 1.5:
return 1
elif x < 2.5:
return 2
elif x < 3.5:
return 3
return 4
# Classify predictions
df_preds['predictions'] = df_preds['pred'].apply(lambda x: classify(x))
train_preds = df_preds[df_preds['set'] == 'train']
validation_preds = df_preds[df_preds['set'] == 'validation']
```
# Model Evaluation
## Confusion Matrix
### Original thresholds
```
labels = ['0 - No DR', '1 - Mild', '2 - Moderate', '3 - Severe', '4 - Proliferative DR']
def plot_confusion_matrix(train, validation, labels=labels):
train_labels, train_preds = train
validation_labels, validation_preds = validation
fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', figsize=(24, 7))
train_cnf_matrix = confusion_matrix(train_labels, train_preds)
validation_cnf_matrix = confusion_matrix(validation_labels, validation_preds)
train_cnf_matrix_norm = train_cnf_matrix.astype('float') / train_cnf_matrix.sum(axis=1)[:, np.newaxis]
validation_cnf_matrix_norm = validation_cnf_matrix.astype('float') / validation_cnf_matrix.sum(axis=1)[:, np.newaxis]
train_df_cm = pd.DataFrame(train_cnf_matrix_norm, index=labels, columns=labels)
validation_df_cm = pd.DataFrame(validation_cnf_matrix_norm, index=labels, columns=labels)
sns.heatmap(train_df_cm, annot=True, fmt='.2f', cmap="Blues",ax=ax1).set_title('Train')
sns.heatmap(validation_df_cm, annot=True, fmt='.2f', cmap=sns.cubehelix_palette(8),ax=ax2).set_title('Validation')
plt.show()
plot_confusion_matrix((train_preds['label'], train_preds['predictions']), (validation_preds['label'], validation_preds['predictions']))
```
## Quadratic Weighted Kappa
```
def evaluate_model(train, validation):
train_labels, train_preds = train
validation_labels, validation_preds = validation
print("Train Cohen Kappa score: %.3f" % cohen_kappa_score(train_preds, train_labels, weights='quadratic'))
print("Validation Cohen Kappa score: %.3f" % cohen_kappa_score(validation_preds, validation_labels, weights='quadratic'))
print("Complete set Cohen Kappa score: %.3f" % cohen_kappa_score(np.append(train_preds, validation_preds), np.append(train_labels, validation_labels), weights='quadratic'))
evaluate_model((train_preds['label'], train_preds['predictions']), (validation_preds['label'], validation_preds['predictions']))
```
## Apply model to test set and output predictions
```
def apply_tta(model, generator, steps=10):
step_size = generator.n//generator.batch_size
preds_tta = []
for i in range(steps):
generator.reset()
preds = model.predict_generator(generator, steps=step_size)
preds_tta.append(preds)
return np.mean(preds_tta, axis=0)
preds = apply_tta(model, test_generator)
predictions = [classify(x) for x in preds]
results = pd.DataFrame({'id_code':test['id_code'], 'diagnosis':predictions})
results['id_code'] = results['id_code'].map(lambda x: str(x)[:-4])
# Cleaning created directories
if os.path.exists(train_dest_path):
shutil.rmtree(train_dest_path)
if os.path.exists(validation_dest_path):
shutil.rmtree(validation_dest_path)
if os.path.exists(test_dest_path):
shutil.rmtree(test_dest_path)
```
# Predictions class distribution
```
fig = plt.subplots(sharex='col', figsize=(24, 8.7))
sns.countplot(x="diagnosis", data=results, palette="GnBu_d").set_title('Test')
sns.despine()
plt.show()
results.to_csv('submission.csv', index=False)
display(results.head())
```
| github_jupyter |
# Exp 43 analysis
See `./informercial/Makefile` for experimental
details.
```
import os
import numpy as np
from IPython.display import Image
import matplotlib
import matplotlib.pyplot as plt`
%matplotlib inline
%config InlineBackend.figure_format = 'retina'
import seaborn as sns
sns.set_style('ticks')
matplotlib.rcParams.update({'font.size': 16})
matplotlib.rc('axes', titlesize=16)
from infomercial.exp import meta_bandit
from infomercial.local_gym import bandit
from infomercial.exp.meta_bandit import load_checkpoint
import gym
# ls ../data/exp2*
```
# Load and process data
```
data_path ="/Users/qualia/Code/infomercial/data/"
exp_name = "exp43"
best_params = load_checkpoint(os.path.join(data_path, f"{exp_name}_best.pkl"))
sorted_params = load_checkpoint(os.path.join(data_path, f"{exp_name}_sorted.pkl"))
best_params
```
# Performance
of best parameters
```
env_name = 'BanditOneHigh2-v0'
num_episodes = 20*100
# Run w/ best params
result = meta_bandit(
env_name=env_name,
num_episodes=num_episodes,
lr=best_params["lr"],
tie_threshold=best_params["tie_threshold"],
seed_value=19,
save="exp43_best_model.pkl"
)
# Plot run
episodes = result["episodes"]
actions =result["actions"]
scores_R = result["scores_R"]
values_R = result["values_R"]
scores_E = result["scores_E"]
values_E = result["values_E"]
# Get some data from the gym...
env = gym.make(env_name)
best = env.best
print(f"Best arm: {best}, last arm: {actions[-1]}")
# Init plot
fig = plt.figure(figsize=(6, 14))
grid = plt.GridSpec(5, 1, wspace=0.3, hspace=0.8)
# Do plots:
# Arm
plt.subplot(grid[0, 0])
plt.scatter(episodes, actions, color="black", alpha=.5, s=2, label="Bandit")
plt.plot(episodes, np.repeat(best, np.max(episodes)+1),
color="red", alpha=0.8, ls='--', linewidth=2)
plt.ylim(-.1, np.max(actions)+1.1)
plt.ylabel("Arm choice")
plt.xlabel("Episode")
# score
plt.subplot(grid[1, 0])
plt.scatter(episodes, scores_R, color="grey", alpha=0.4, s=10, label="R")
plt.scatter(episodes, scores_E, color="purple", alpha=0.9, s=10, label="E")
plt.ylabel("log score")
plt.xlabel("Episode")
plt.semilogy()
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
_ = sns.despine()
# Q
plt.subplot(grid[2, 0])
plt.scatter(episodes, values_R, color="grey", alpha=0.4, s=10, label="R")
plt.scatter(episodes, values_E, color="purple", alpha=0.4, s=10, label="E")
plt.ylabel("log Q(s,a)")
plt.xlabel("Episode")
plt.semilogy()
plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))
_ = sns.despine()
# -
plt.savefig("figures/epsilon_bandit.pdf", bbox_inches='tight')
plt.savefig("figures/epsilon_bandit.eps", bbox_inches='tight')
```
# Sensitivity
to parameter choices
```
total_Rs = []
ties = []
lrs = []
trials = list(sorted_params.keys())
for t in trials:
total_Rs.append(sorted_params[t]['total_E'])
ties.append(sorted_params[t]['tie_threshold'])
lrs.append(sorted_params[t]['lr'])
# Init plot
fig = plt.figure(figsize=(10, 18))
grid = plt.GridSpec(4, 1, wspace=0.3, hspace=0.8)
# Do plots:
# Arm
plt.subplot(grid[0, 0])
plt.scatter(trials, total_Rs, color="black", alpha=.5, s=6, label="total R")
plt.xlabel("Sorted params")
plt.ylabel("total R")
_ = sns.despine()
plt.subplot(grid[1, 0])
plt.scatter(trials, ties, color="black", alpha=.3, s=6, label="total R")
plt.xlabel("Sorted params")
plt.ylabel("Tie threshold")
_ = sns.despine()
plt.subplot(grid[2, 0])
plt.scatter(trials, lrs, color="black", alpha=.5, s=6, label="total R")
plt.xlabel("Sorted params")
plt.ylabel("lr")
_ = sns.despine()
```
# Distributions
of parameters
```
# Init plot
fig = plt.figure(figsize=(5, 6))
grid = plt.GridSpec(2, 1, wspace=0.3, hspace=0.8)
plt.subplot(grid[0, 0])
plt.hist(ties, color="black")
plt.xlabel("tie threshold")
plt.ylabel("Count")
_ = sns.despine()
plt.subplot(grid[1, 0])
plt.hist(lrs, color="black")
plt.xlabel("lr")
plt.ylabel("Count")
_ = sns.despine()
```
of total reward
```
# Init plot
fig = plt.figure(figsize=(5, 2))
grid = plt.GridSpec(1, 1, wspace=0.3, hspace=0.8)
plt.subplot(grid[0, 0])
plt.hist(total_Rs, color="black", bins=50)
plt.xlabel("Total reward")
plt.ylabel("Count")
plt.xlim(0, 10)
_ = sns.despine()
```
| github_jupyter |
```
!pip install wandb
!wandb login
from collections import deque
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms as transforms
import gym
import wandb
class Actor(nn.Module):
def __init__(self, num_actions):
super().__init__()
# Create the layers for the model
self.actor = nn.Sequential(
nn.Conv2d(
in_channels=3, out_channels=32,
kernel_size=5, padding=2, stride=2
), # (32, 32, 32)
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(
in_channels=32, out_channels=64,
kernel_size=3, padding=1, stride=2
), # (64, 16, 16)
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(
in_channels=64, out_channels=64,
kernel_size=3, padding=1, stride=2
), # (64, 8, 8)
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(
in_channels=64, out_channels=128,
kernel_size=3, padding=1, stride=2
), # (128, 4, 4)
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Flatten(start_dim=1), # (2048)
nn.Linear(128 * 4 * 4, 512),
nn.ReLU(),
nn.Linear(512, num_actions),
nn.Softmax(dim=-1)
)
def forward(self, x):
return self.actor(x)
class Critic(nn.Module):
def __init__(self, act_dim):
super().__init__()
# Create the layers for the model
self.critic = nn.Sequential(
nn.Conv2d(
in_channels=3, out_channels=32,
kernel_size=5, padding=2, stride=2
), # (32, 32, 32)
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(
in_channels=32, out_channels=64,
kernel_size=3, padding=1, stride=2
), # (64, 16, 16)
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(
in_channels=64, out_channels=64,
kernel_size=3, padding=1, stride=2
), # (64, 8, 8)
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(
in_channels=64, out_channels=128,
kernel_size=3, padding=1, stride=2
), # (128, 4, 4)
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Flatten(start_dim=1), # (2048)
)
self.fc = nn.Sequential(
nn.Linear(128 * 4 * 4 + act_dim, 512),
nn.ReLU(),
nn.Linear(512, 1),
nn.Tanh()
)
def forward(self, state, action):
x = self.critic(state)
x = torch.cat([x, action], dim=1)
x = self.fc(x)
return x
class ReplayMemory:
def __init__(self, max_len):
self.replay = deque(maxlen=max_len)
def store_experience(self, state, reward,
action, next_state,
done):
self.replay.append([state, reward, action, next_state, done])
def size(self):
return len(self.replay)
def sample(self, batch_size):
if len(self.replay) < batch_size:
return None
return random.sample(self.replay, k=batch_size)
class DDPG:
def __init__(self, memory_size, num_actions,
actor_lr, critic_lr, gamma,
tau, device, img_transforms):
# Set up model
self.actor = Actor(num_actions).to(device)
self.target_actor = Actor(num_actions).to(device)
self.target_actor.eval()
self.critic = Critic(num_actions).to(device)
self.target_critic = Critic(num_actions).to(device)
self.target_critic.eval()
# Set up optimizer and criterion
self.critic_criterion = nn.MSELoss()
self.actor_optim = torch.optim.Adam(self.actor.parameters(), lr=actor_lr)
self.critic_optim = torch.optim.Adam(self.critic.parameters(), lr=critic_lr)
# Set up transforms and other hyper-parameters
self.device = device
self.img_transforms = img_transforms
self.num_actions = num_actions
self.memory = ReplayMemory(memory_size)
self.gamma = gamma
self.tau = tau
def choose_action(self, cur_state, eps):
# Open evaluation mode
self.actor.eval()
# Exploration
if np.random.uniform() < eps:
action = np.random.randint(0, self.num_actions)
else: # Exploitation
cur_state = self.img_transforms(cur_state).to(self.device).unsqueeze(0)
action_list = self.actor(cur_state)
action = torch.argmax(action_list, dim=-1).item()
# Open training mode
self.actor.train()
return action
def actor_update(self, batch_data):
# Separate the data into groups
cur_state_batch = []
for cur_state, *_ in batch_data:
cur_state_batch.append(self.img_transforms(cur_state).unsqueeze(0))
cur_state_batch = torch.cat(cur_state_batch, dim=0).to(self.device)
actor_actions = F.gumbel_softmax(torch.log(F.softmax(self.actor(cur_state_batch), dim=1)), hard=True)
loss = -self.critic(cur_state_batch, actor_actions).mean()
self.actor_optim.zero_grad()
loss.backward()
self.actor_optim.step()
def critic_update(self, batch_data):
# Separate the data into groups
cur_state_batch = []
reward_batch = []
action_batch = []
next_state_batch = []
done_batch = []
for cur_state, reward, action, next_state, done in batch_data:
cur_state_batch.append(self.img_transforms(cur_state).unsqueeze(0))
reward_batch.append(reward)
action_batch.append(action)
next_state_batch.append(self.img_transforms(next_state).unsqueeze(0))
done_batch.append(done)
cur_state_batch = torch.cat(cur_state_batch, dim=0).to(self.device)
reward_batch = torch.FloatTensor(reward_batch).to(self.device)
action_batch = torch.LongTensor(action_batch)
action_batch = torch.zeros(len(batch_data), self.num_actions).scatter_(
1, action_batch.unsqueeze(1), 1).to(self.device)
next_state_batch = torch.cat(next_state_batch, dim=0).to(self.device)
done_batch = torch.Tensor(done_batch).to(self.device)
# Compute the TD error between eval and target
Q_eval = self.critic(cur_state_batch, action_batch)
next_action = F.softmax(self.target_actor(next_state_batch), dim=1)
index = torch.argmax(next_action, dim=1).unsqueeze(1)
next_action = torch.zeros_like(next_action).scatter_(1, index, 1).to(self.device)
Q_target = reward_batch + self.gamma * (1 - done_batch) * self.target_critic(next_state_batch,
next_action).squeeze(1)
loss = self.critic_criterion(Q_eval.squeeze(1), Q_target)
self.critic_optim.zero_grad()
loss.backward()
self.critic_optim.step()
def soft_update(self):
# EMA for both actor and critic network
for param, target_param in zip(self.actor.parameters(), self.target_actor.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.critic.parameters(), self.target_critic.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
env = gym.make("snake:snake-v0", mode="hardworking")
device = "cpu"
# Set up environment hyperparameters
num_actions = env.action_space.n
# Set up training hyperparameters
tau = 0.05
max_time_steps = 100000
max_iter = 2000
gamma = 0.9
memory_size = 2000
batch_size = 32
actor_lr = 3e-4
critic_lr = 3e-4
def train(max_time_steps, max_iter, memory_size,
num_actions, actor_lr, critic_lr,
gamma, tau, device, batch_size):
# Set up model training
img_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((64, 64))
])
ddpg = DDPG(
memory_size, num_actions,
actor_lr, critic_lr, gamma,
tau, device, img_transforms
)
max_reward = -1e-9
running_reward = 0
running_episodes = 0
time_step = 0
print_freq = max_iter * 2
while time_step < max_time_steps:
state = env.reset()
current_ep_reward = 0
for _ in range(max_iter):
# Get reward and state
actions = ddpg.choose_action(state["frame"], 0.1)
new_state, reward, done, _ = env.step(actions)
current_ep_reward += reward
ddpg.memory.store_experience(state["frame"], reward, actions, new_state["frame"], done)
state = new_state
if done:
break
# Wait for updating
if ddpg.memory.size() < batch_size:
continue
batch_data = ddpg.memory.sample(batch_size)
ddpg.critic_update(batch_data)
ddpg.actor_update(batch_data)
ddpg.soft_update()
time_step += 1
if time_step % print_freq == 0:
avg_reward = running_reward / running_episodes
print(f"Iteration:{running_episodes}, get average reward: {avg_reward:.2f}")
running_reward = 0
running_episodes = 0
log = {
"avg_reward": avg_reward,
}
wandb.log(log)
if avg_reward > max_reward:
max_reward = avg_reward
torch.save(ddpg.actor.state_dict(), "actor_best.pt")
torch.save(ddpg.critic.state_dict(), "critic_best.pt")
running_reward += current_ep_reward
running_episodes += 1
model_config = {
"gamma": gamma,
"max_time_steps": max_time_steps,
"memory size": memory_size
}
run = wandb.init(
project="snake_RL",
resume=False,
config=model_config,
name="DDPG"
)
train(
max_time_steps, max_iter, memory_size,
4, actor_lr, critic_lr,
gamma, tau, "cpu", batch_size
)
```
| github_jupyter |
Lambda School Data Science
*Unit 2, Sprint 2, Module 1*
---
# Decision Trees
## Assignment
- [ ] [Sign up for a Kaggle account](https://www.kaggle.com/), if you don’t already have one. Go to our Kaggle InClass competition website. You will be given the URL in Slack. Go to the Rules page. Accept the rules of the competition. Notice that the Rules page also has instructions for the Submission process. The Data page has feature definitions.
- [ ] Do train/validate/test split with the Tanzania Waterpumps data.
- [ ] Begin with baselines for classification.
- [ ] Select features. Use a scikit-learn pipeline to encode categoricals, impute missing values, and fit a decision tree classifier.
- [ ] Get your validation accuracy score.
- [ ] Get and plot your feature importances.
- [ ] Submit your predictions to our Kaggle competition. (Go to our Kaggle InClass competition webpage. Use the blue **Submit Predictions** button to upload your CSV file. Or you can use the Kaggle API to submit your predictions.)
- [ ] Commit your notebook to your fork of the GitHub repo.
## Stretch Goals
### Reading
- A Visual Introduction to Machine Learning
- [Part 1: A Decision Tree](http://www.r2d3.us/visual-intro-to-machine-learning-part-1/)
- [Part 2: Bias and Variance](http://www.r2d3.us/visual-intro-to-machine-learning-part-2/)
- [Decision Trees: Advantages & Disadvantages](https://christophm.github.io/interpretable-ml-book/tree.html#advantages-2)
- [How a Russian mathematician constructed a decision tree — by hand — to solve a medical problem](http://fastml.com/how-a-russian-mathematician-constructed-a-decision-tree-by-hand-to-solve-a-medical-problem/)
- [How decision trees work](https://brohrer.github.io/how_decision_trees_work.html)
- [Let’s Write a Decision Tree Classifier from Scratch](https://www.youtube.com/watch?v=LDRbO9a6XPU) — _Don’t worry about understanding the code, just get introduced to the concepts. This 10 minute video has excellent diagrams and explanations._
- [Random Forests for Complete Beginners: The definitive guide to Random Forests and Decision Trees](https://victorzhou.com/blog/intro-to-random-forests/)
### Doing
- [ ] Add your own stretch goal(s) !
- [ ] Define a function to wrangle train, validate, and test sets in the same way. Clean outliers and engineer features. (For example, [what columns have zeros and shouldn't?](https://github.com/Quartz/bad-data-guide#zeros-replace-missing-values) What columns are duplicates, or nearly duplicates? Can you extract the year from date_recorded? Can you engineer new features, such as the number of years from waterpump construction to waterpump inspection?)
- [ ] Try other [scikit-learn imputers](https://scikit-learn.org/stable/modules/impute.html).
- [ ] Make exploratory visualizations and share on Slack.
#### Exploratory visualizations
Visualize the relationships between feature(s) and target. I recommend you do this with your training set, after splitting your data.
For this problem, you may want to create a new column to represent the target as a number, 0 or 1. For example:
```python
train['functional'] = (train['status_group']=='functional').astype(int)
```
You can try [Seaborn "Categorical estimate" plots](https://seaborn.pydata.org/tutorial/categorical.html) for features with reasonably few unique values. (With too many unique values, the plot is unreadable.)
- Categorical features. (If there are too many unique values, you can replace less frequent values with "OTHER.")
- Numeric features. (If there are too many unique values, you can [bin with pandas cut / qcut functions](https://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html?highlight=qcut#discretization-and-quantiling).)
You can try [Seaborn linear model plots](https://seaborn.pydata.org/tutorial/regression.html) with numeric features. For this classification problem, you may want to use the parameter `logistic=True`, but it can be slow.
You do _not_ need to use Seaborn, but it's nice because it includes confidence intervals to visualize uncertainty.
#### High-cardinality categoricals
This code from a previous assignment demonstrates how to replace less frequent values with 'OTHER'
```python
# Reduce cardinality for NEIGHBORHOOD feature ...
# Get a list of the top 10 neighborhoods
top10 = train['NEIGHBORHOOD'].value_counts()[:10].index
# At locations where the neighborhood is NOT in the top 10,
# replace the neighborhood with 'OTHER'
train.loc[~train['NEIGHBORHOOD'].isin(top10), 'NEIGHBORHOOD'] = 'OTHER'
test.loc[~test['NEIGHBORHOOD'].isin(top10), 'NEIGHBORHOOD'] = 'OTHER'
```
```
import sys
# If you're on Colab:
if 'google.colab' in sys.modules:
DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Kaggle-Challenge/master/data/'
!pip install category_encoders==2.*
!pip install pandas-profiling==2.*
# If you're working locally:
else:
DATA_PATH = '../data/'
import pandas as pd
from sklearn.model_selection import train_test_split
train = pd.merge(pd.read_csv(DATA_PATH+'waterpumps/train_features.csv'),
pd.read_csv(DATA_PATH+'waterpumps/train_labels.csv'))
test = pd.read_csv(DATA_PATH+'waterpumps/test_features.csv')
sample_submission = pd.read_csv(DATA_PATH+'waterpumps/sample_submission.csv')
train.shape, test.shape
# Check Pandas Profiling version
import pandas_profiling
pandas_profiling.__version__
# Old code for Pandas Profiling version 2.3
# It can be very slow with medium & large datasets.
# These parameters will make it faster.
# profile = train.profile_report(
# check_correlation_pearson=False,
# correlations={
# 'pearson': False,
# 'spearman': False,
# 'kendall': False,
# 'phi_k': False,
# 'cramers': False,
# 'recoded': False,
# },
# plot={'histogram': {'bayesian_blocks_bins': False}},
# )
#
# New code for Pandas Profiling version 2.4
from pandas_profiling import ProfileReport
profile = ProfileReport(train, minimal=True).to_notebook_iframe()
profile
```
| github_jupyter |
```
import pandas as pd
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from os import listdir
from keras.preprocessing import sequence
import tensorflow as tf
from keras.models import Sequential, Model
from keras.layers import Dense, Conv1D, Input, Concatenate, GlobalMaxPooling1D, ConvLSTM2D
from keras.layers import LSTM
from keras.layers import Flatten
from keras.layers import Dropout
from keras.callbacks import EarlyStopping
from keras import optimizers
from keras.regularizers import l1,l2,l1_l2
from keras.optimizers import Adam
from keras.models import load_model
from keras.callbacks import ModelCheckpoint
# split a univariate sequence into samples
def split_sequence(sequence, n_steps):
X, y = list(), list()
for i in range(len(sequence)):
# find the end of this pattern
end_ix = i + n_steps
# print(end_ix, len(sequence))
if end_ix == len(sequence):
# print(end_ix)
seq_x, seq_y = sequence[i:end_ix], end_ix-1
X.append(seq_x)
y.append(seq_y)
# check if we are beyond the sequence
if end_ix > len(sequence)-1:
break
# gather input and output parts of the pattern
seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
X.append(seq_x)
y.append(seq_y)
# return np.array(X), np.array(y)
return X, y
with open('output.txt') as f:
content = f.readlines()
# you may also want to remove whitespace characters like `\n` at the end of each line
content = [x.strip() for x in content]
processed = []
for i in range(0, len(content)):
a_list = content[i].split()
map_object = map(int, a_list)
list_of_integers = list(map_object)
processed.append(list_of_integers)
# Reversing a list using reversed()
def Reverse(lst):
return [ele for ele in reversed(lst)]
processed_18 = []
for i in range(len(processed)):
if len(processed[i]) == 18:
processed_18.append(processed[i])
processed_18.append(Reverse(processed[i]))
processed_18
# choose a number of time steps
n_steps = 3
samples = []
samples_output = []
# split into samples
for i in range(len(processed_18)):
X, y = split_sequence(processed_18[i], n_steps)
samples.append(X)
samples_output.append(y)
samples
samples_output
import itertools
concat = list(itertools.chain.from_iterable(samples))
concat_output = list(itertools.chain.from_iterable(samples_output))
concat,len(concat)
concat_output,len(concat_output)
concat_output = [str(x) for x in concat_output]
concat_output
b_set = set(tuple(x) for x in concat)
concat_set = [ list(x) for x in b_set ]
concat_set,len(concat_set)
from collections import defaultdict
def list_duplicates(seq):
tally = defaultdict(list)
for i,item in enumerate(seq):
tally[item].append(i)
return ((key,locs) for key,locs in tally.items()
if len(locs)>1)
dict_dup = dict()
for dup in sorted(list_duplicates(tuple(x) for x in concat)):
dict_dup.update({dup[0] : dup[1]})
print(dup)
concat_output_processed = []
for i in range(len(concat_set)):
b = dict_dup[tuple(concat_set[i])]
c = [concat_output[i] for i in b]
concat_output_processed.append(set(c))
concat_set, len(concat_set)
concat_output_processed, len(concat_output_processed)
for i in range(len(concat_output_processed)):
concat_output_processed[i] = list(concat_output_processed[i])
while (len(concat_output_processed[i]) < 2):
concat_output_processed[i].append(concat_output_processed[i][0])
concat_output_processed[i] = [int(x) for x in concat_output_processed[i]]
concat_output_processed
concat_output_processed_one = []
for i in range(len(concat_output_processed)):
concat_output_processed_one.append(concat_output_processed[i][0])
X, y = np.array(concat_set), np.array(concat_output_processed)
# X, y = np.array(concat_set), np.array(concat_output_processed_one)
X,y
# X, y = np.array(concat_set), np.array(concat_output_processed)
X, y = np.array(concat_set), np.array(concat_output_processed_one)
X,y
# Feature Scaling
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.externals.joblib import dump, load
sc1 = StandardScaler()
X = sc1.fit_transform(X)
# sc2 = StandardScaler()
# y = sc2.fit_transform(y.reshape(-1,1))
X, y
# reshape from [samples, timesteps] into [samples, timesteps, features]
n_features = 1
X = X.reshape((X.shape[0], X.shape[1], n_features))
X.shape
y.shape
model = Sequential()
model.add(LSTM(128, return_sequences=False, kernel_regularizer=l2(0.01), input_shape=(3, 1)))
# model.add(Flatten())
# model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='linear'))
# model.compile(optimizer='adam', loss='mse')
# model.fit(X, y, epochs=130, validation_split=0.1, batch_size=2)
model.summary()
import os
model_filename = 'model-{epoch:03d}-{loss:03f}.h5'
checkpoint_path = os.path.join('temp_seqpred/', model_filename)
monitor = EarlyStopping(monitor = 'loss', min_delta = 1e-3, patience = 100, verbose = 1, mode = 'auto')
checkpoint = ModelCheckpoint(filepath=checkpoint_path, verbose=1, monitor='loss',save_best_only=True, mode='auto')
adam = optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, amsgrad=False)
model.compile(optimizer = 'adam', loss = 'mse')
# Fitting our model [input_smallseq, input_medseq, input_origseq, input_smoothseq]
print('Train...')
history = model.fit(X, y, callbacks = [monitor, checkpoint], verbose = 1, batch_size = 1, nb_epoch = 1000)
# serialize model to JSON
model_json = model.to_json()
with open("/home/hongyu/Documents/Spring2020/ECE_research/signal_analysis/data_18points/3_section_sliding5/MSLSTM_models/lstm_nextMove.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
# model.save_weights("/home/hongyu/Documents/Spring2020/ECE_research/signal_analysis/data_18points/3_section_sliding5/MSLSTM_weights/MSLSTM_18pts_weight.h5")
print("Saved model to disk")
dump(sc1, 'std_scaler_nextMove.bin', compress=True)
from keras.models import model_from_json
# load json and create model
# json_file = open("/home/hongyu/Documents/Spring2020/ECE_research/signal_analysis/data_18points/3_section_sliding5/MSLSTM_models/MSLSTM_18pts_model.json", 'r')
# loaded_model_json = json_file.read()
# json_file.close()
# model = model_from_json(loaded_model_json)
# load weights into new model
model.load_weights("/home/hongyu/Documents/Spring2020/ECE_research/signal_analysis/data_18points/3_section_sliding5/MSLSTM_weights/model-959-0.057756-nextMove.h5")
print("Loaded model from disk")
# test_input = np.array([[1, 4, 7],
# [0, 1, 2],
# [ 3, 6, 9]]) #[10, 8], [5, 18]
# test_input = np.array([[ 8, 11, 10, 7],
# [14, 13, 12, 15],
# [14, 13, 10, 9]]) # [4,6] , [16,20], [12,20]
# test_input = np.array([[14, 13, 12, 15],
# [14, 13, 10, 9],
# [11, 8, 7, 10],
# [ 4, 1, 2, 5],
# [ 0, 1, 2, 5],
# [ 0, 3, 6, 9]])# 16, 12, 13, 8, 4, 5
test_input = np.array([[1, 4, 7],
[0, 1, 2],
[ 0, 3, 6],
[3, 6, 9],
[6, 3, 4],
[0, 6, 8]]) #10, 5, 9, 12, 5, ?
test_input = sc1.transform(test_input)
test_input = test_input.reshape((6, 3, 1))
test_output = model.predict(test_input, verbose=0)
# test_output = sc2.inverse_transform(test_output)
print(np.round(test_output))
```
| github_jupyter |
```
# Importing some python libraries.
import numpy as np
from numpy.random import randn,rand
import matplotlib.pyplot as pl
from matplotlib.pyplot import plot
import seaborn as sns
%matplotlib inline
# Fixing figure sizes
from pylab import rcParams
rcParams['figure.figsize'] = 10,5
sns.set_palette('Reds_r')
```
# Reaction Network Homework
In this homework, we will study a very simple set of reactions by modelling it through three different ways. First, we shall employ an ODE model called the **Reaction Rate Equation**. Then, we will solve the **Chemical Langevin Equation** and, finally, we will simulate the exact model by "solving" the **Chemical Master Equation**.
The reaction network of choice shall be a simple birth-death process, described by the relations :
$$
\begin{align}
\emptyset \stackrel{a}{\to} X,\\
X \stackrel{\mu X}{\to} \emptyset.
\end{align}
$$
$X$ here is the population number.
Throughout, we shall use $a=10$ and $\mu=1.0$.
## Reaction Rate Equation
The reaction rate equation corresponding to the system is
$$
\begin{align}
\dot{x}=a-\mu\cdot x,\\
x(0)=x_0.
\end{align}
$$
As this is a linear equation, we can solve it exactly, with solution
$$
x(t)=x(t) = a/\mu+(x_0-a/\mu) e^{\mu (-t)}
$$
```
# Solution of the RRE
def x(t,x0=3,a=10.0,mu=1.0):
return (x0-a/mu)*np.exp(-t*mu)+a/mu
```
We note that there is a stationary solution, $x(t)=a/\mu$. From the exponential in the solution, we can see that this is an attracting fixed point.
```
t = np.linspace(0,3)
x0list = np.array([0.5,1,15])
sns.set_palette("Reds",n_colors=3)
for x0 in x0list:
pl.plot(t,x(t,x0),linewidth=4)
pl.title('Population numbers for different initial conditions.', fontsize=20)
pl.xlabel('Time',fontsize=20)
```
# Chemical Langevin Equation
Next, we will model the system by using the CLE. For our particular birth/death process, this will be
$$
dX_t=(a-\mu\cdot X_t)dt+(\sqrt{a}-\sqrt{\mu\cdot X_t})dW.
$$
To solve this, we shall use the Euler-Maruyama scheme from the previous homework. We fix a $\Delta t$ positive. Then, the scheme shall be :
$$
X_{n+1}=X_n+(a-\mu\cdot X_n)\Delta t+(\sqrt{a}-\sqrt{\mu\cdot X_t})\cdot \sqrt{\Delta t}\cdot z,\ z\sim N(0,1).
$$
```
def EM(xinit,T,Dt=0.1,a=1,mu=2):
'''
Returns the solution of the CLE with parameters a, mu
Arguments
=========
xinit : real, initial condition.
Dt : real, stepsize of the Euler-Maruyama.
T : real, final time to reach.
a : real, parameter of the RHS.
mu : real, parameter of the RHS.
'''
n = int(T/Dt) # number of steps to reach T
X = np.zeros(n)
z = randn(n)
X[0] = xinit # Initial condition
# EM method
for i in xrange(1,n):
X[i] = X[i-1] + Dt* (a-mu*X[i-1])+(np.sqrt(a)-np.sqrt(mu*X[i-1]))*np.sqrt(Dt)*z[i]
return X
```
Similarly to the previous case, here is a run with multiple initial conditions.
```
T = 10 # final time to reach
Dt = 0.01 # time-step for EM
# Set the palette to reds with ten colors
sns.set_palette('Reds',10)
def plotPaths(T,Dt):
n = int(T/Dt)
t = np.linspace(0,T,n)
xinitlist = np.linspace(10,15,10)
for x0 in xinitlist :
path = EM(xinit=x0,T=T,Dt=Dt,a=10.0,mu=1.0)
pl.plot(t, path,linewidth=5)
pl.xlabel('time', fontsize=20)
pl.title('Paths for initial conditions between 1 and 10.', fontsize=20)
return path
path = plotPaths(T,Dt)
print 'Paths decay towards', path[np.size(path)-1]
print 'The stationary point is', 1.0
```
We notice that the asymptotic behavior of the CLE is the same as that of the RRE. The only notable difference is the initial random kicks in the paths, all because of the stochasticicity.
## Chemical Master Equation
Finally, we shall simulate the system exactly by using the Stochastic Simulation Algorithm (SSA).
```
def SSA(xinit, nsteps, a=10.0, mu=1.0):
'''
Using SSA to exactly simulate the death/birth process starting
from xinit and for nsteps.
a and mu are parameters of the propensities.
Returns
=======
path : array-like, the path generated.
tpath: stochastic time steps
'''
path = np.zeros(nsteps)
tpath= np.zeros(nsteps)
path[0] = xinit # initial population
u = rand(2,nsteps) # pre-pick all the uniform variates we need
for i in xrange(1,nsteps):
# The propensities will be normalized
tot_prop = path[i-1]*mu+a
prob = path[i-1]*mu/tot_prop # probability of death
if(u[0,i]<prob):
# Death
path[i] = path[i-1]-1
else:
# Birth
path[i] = path[i-1]+1
# Time stayed at current state
tpath[i] = -np.log(u[1,i])*1/tot_prop
tpath = np.cumsum(tpath)
return path, tpath
```
Now that we have SSA setup, we can run multiple paths and compare the results to the previous cases.
```
# Since the paths below are not really related
# let's use a more interesting palette
# for the plot.
sns.set_palette('hls',1)
for _ in xrange(1):
path, tpath = SSA(xinit=1,nsteps=100)
# Since this is the path of a jump process
# I'm switching from "plot" to "step"
# to get the figure right. :)
pl.step(tpath,path,linewidth=5,alpha=0.9)
pl.title('One path simulated with SSA, $a<\mu$. ', fontsize=20);
pl.xlabel('Time', fontsize=20)
# Since the paths below are not really related
# let's use a more interesting palette
# for the plot.
sns.set_palette('hls',3)
for _ in xrange(3):
path, tpath = SSA(xinit=1,nsteps=100)
# Since this is the path of a jump process
# I'm switching from "plot" to "step"
# to get the figure right. :)
pl.step(tpath,path,linewidth=5,alpha=0.9)
pl.title('Three paths simulated with SSA, $a<\mu$. ', fontsize=20);
pl.xlabel('Time', fontsize=20)
```
We can see three chains above, all starting from $X_0=1$, and simulated with the SSA.
```
npaths = 1
nsteps = 30000
path = np.zeros([npaths,nsteps])
for i in xrange(npaths):
path[i,:], tpath = SSA(xinit=1,nsteps=nsteps)
skip = 20000
sum(path[0,skip:nsteps-1]*tpath[skip:nsteps-1])/sum(tpath[skip:nsteps-1])
```
| github_jupyter |
##### Copyright 2018 The TensorFlow Authors.
```
#@title Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#@title MIT License
#
# Copyright (c) 2017 François Chollet
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
```
# 과대적합과 과소적합
<table class="tfo-notebook-buttons" align="left">
<td>
<a target="_blank" href="https://colab.research.google.com/github/tensorflow/docs-l10n/blob/master/site/ko/r1/tutorials/keras/overfit_and_underfit.ipynb"><img src="https://www.tensorflow.org/images/colab_logo_32px.png" />구글 코랩(Colab)에서 실행하기</a>
</td>
<td>
<a target="_blank" href="https://github.com/tensorflow/docs-l10n/blob/master/site/ko/r1/tutorials/keras/overfit_and_underfit.ipynb"><img src="https://www.tensorflow.org/images/GitHub-Mark-32px.png" />깃허브(GitHub) 소스 보기</a>
</td>
</table>
Note: 이 문서는 텐서플로 커뮤니티에서 번역했습니다. 커뮤니티 번역 활동의 특성상 정확한 번역과 최신 내용을 반영하기 위해 노력함에도
불구하고 [공식 영문 문서](https://www.tensorflow.org/?hl=en)의 내용과 일치하지 않을 수 있습니다.
이 번역에 개선할 부분이 있다면
[tensorflow/docs](https://github.com/tensorflow/docs) 깃헙 저장소로 풀 리퀘스트를 보내주시기 바랍니다.
문서 번역이나 리뷰에 참여하려면
[[email protected]](https://groups.google.com/a/tensorflow.org/forum/#!forum/docs-ko)로
메일을 보내주시기 바랍니다.
지금까지 그랬듯이 이 예제의 코드도 `tf.keras` API를 사용합니다. 텐서플로 [케라스 가이드](https://www.tensorflow.org/r1/guide/keras)에서 `tf.keras` API에 대해 더 많은 정보를 얻을 수 있습니다.
앞서 영화 리뷰 분류와 주택 가격 예측의 두 예제에서 일정 에포크 동안 훈련하면 검증 세트에서 모델 성능이 최고점에 도달한 다음 감소하기 시작한 것을 보았습니다.
다른 말로 하면, 모델이 훈련 세트에 *과대적합*(overfitting)된 것입니다. 과대적합을 다루는 방법은 꼭 배워야 합니다. *훈련 세트*에서 높은 성능을 얻을 수 있지만 진짜 원하는 것은 *테스트 세트*(또는 이전에 본 적 없는 데이터)에 잘 일반화되는 모델입니다.
과대적합의 반대는 *과소적합*(underfitting)입니다. 과소적합은 테스트 세트의 성능이 향상될 여지가 아직 있을 때 일어납니다. 발생하는 원인은 여러가지입니다. 모델이 너무 단순하거나, 규제가 너무 많거나, 그냥 단순히 충분히 오래 훈련하지 않는 경우입니다. 즉 네트워크가 훈련 세트에서 적절한 패턴을 학습하지 못했다는 뜻입니다.
모델을 너무 오래 훈련하면 과대적합되기 시작하고 테스트 세트에서 일반화되지 못하는 패턴을 훈련 세트에서 학습합니다. 과대적합과 과소적합 사이에서 균형을 잡아야 합니다. 이를 위해 적절한 에포크 횟수동안 모델을 훈련하는 방법을 배워보겠습니다.
과대적합을 막는 가장 좋은 방법은 더 많은 훈련 데이터를 사용하는 것입니다. 많은 데이터에서 훈련한 모델은 자연적으로 일반화 성능이 더 좋습니다. 데이터를 더 준비할 수 없을 때 그다음으로 가장 좋은 방법은 규제(regularization)와 같은 기법을 사용하는 것입니다. 모델이 저장할 수 있는 정보의 양과 종류에 제약을 부과하는 방법입니다. 네트워크가 소수의 패턴만 기억할 수 있다면 최적화 과정 동안 일반화 가능성이 높은 가장 중요한 패턴에 촛점을 맞출 것입니다.
이 노트북에서 널리 사용되는 두 가지 규제 기법인 가중치 규제와 드롭아웃(dropout)을 알아 보겠습니다. 이런 기법을 사용하여 IMDB 영화 리뷰 분류 모델의 성능을 향상시켜 보죠.
```
import tensorflow.compat.v1 as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
print(tf.__version__)
```
## IMDB 데이터셋 다운로드
이전 노트북에서처럼 임베딩을 사용하지 않고 여기에서는 문장을 멀티-핫 인코딩(multi-hot encoding)으로 변환하겠습니다. 이 모델은 훈련 세트에 빠르게 과대적합될 것입니다. 과대적합을 발생시키기고 어떻게 해결하는지 보이기 위해 선택했습니다.
멀티-핫 인코딩은 정수 시퀀스를 0과 1로 이루어진 벡터로 변환합니다. 정확하게 말하면 시퀀스 `[3, 5]`를 인덱스 3과 5만 1이고 나머지는 모두 0인 10,000 차원 벡터로 변환한다는 의미입니다.
```
NUM_WORDS = 10000
(train_data, train_labels), (test_data, test_labels) = keras.datasets.imdb.load_data(num_words=NUM_WORDS)
def multi_hot_sequences(sequences, dimension):
# 0으로 채워진 (len(sequences), dimension) 크기의 행렬을 만듭니다
results = np.zeros((len(sequences), dimension))
for i, word_indices in enumerate(sequences):
results[i, word_indices] = 1.0 # results[i]의 특정 인덱스만 1로 설정합니다
return results
train_data = multi_hot_sequences(train_data, dimension=NUM_WORDS)
test_data = multi_hot_sequences(test_data, dimension=NUM_WORDS)
```
만들어진 멀티-핫 벡터 중 하나를 살펴 보죠. 단어 인덱스는 빈도 순으로 정렬되어 있습니다. 그래프에서 볼 수 있듯이 인덱스 0에 가까울수록 1이 많이 등장합니다:
```
plt.plot(train_data[0])
```
## 과대적합 예제
과대적합을 막는 가장 간단한 방법은 모델의 규모를 축소하는 것입니다. 즉, 모델에 있는 학습 가능한 파라미터의 수를 줄입니다(모델 파라미터는 층(layer)의 개수와 층의 유닛(unit) 개수에 의해 결정됩니다). 딥러닝에서는 모델의 학습 가능한 파라미터의 수를 종종 모델의 "용량"이라고 말합니다. 직관적으로 생각해 보면 많은 파라미터를 가진 모델이 더 많은 "기억 용량"을 가집니다. 이런 모델은 훈련 샘플과 타깃 사이를 일반화 능력이 없는 딕셔너리와 같은 매핑으로 완벽하게 학습할 수 있습니다. 하지만 이전에 본 적 없는 데이터에서 예측을 할 땐 쓸모가 없을 것입니다.
항상 기억해야 할 점은 딥러닝 모델이 훈련 세트에는 학습이 잘 되는 경향이 있지만 진짜 해결할 문제는 학습이 아니라 일반화라는 것입니다.
반면에 네트워크의 기억 용량이 부족하다면 이런 매핑을 쉽게 학습할 수 없을 것입니다. 손실을 최소화하기 위해서는 예측 성능이 더 많은 압축된 표현을 학습해야 합니다. 또한 너무 작은 모델을 만들면 훈련 데이터를 학습하기 어렵울 것입니다. "너무 많은 용량"과 "충분하지 않은 용량" 사이의 균형을 잡아야 합니다.
안타깝지만 어떤 모델의 (층의 개수나 뉴런 개수에 해당하는) 적절한 크기나 구조를 결정하는 마법같은 공식은 없습니다. 여러 가지 다른 구조를 사용해 실험을 해봐야만 합니다.
알맞은 모델의 크기를 찾으려면 비교적 적은 수의 층과 파라미터로 시작해서 검증 손실이 감소할 때까지 새로운 층을 추가하거나 층의 크기를 늘리는 것이 좋습니다. 영화 리뷰 분류 네트워크를 사용해 이를 실험해 보죠.
```Dense``` 층만 사용하는 간단한 기준 모델을 만들고 작은 규모의 버전와 큰 버전의 모델을 만들어 비교하겠습니다.
### 기준 모델 만들기
```
baseline_model = keras.Sequential([
# `.summary` 메서드 때문에 `input_shape`가 필요합니다
keras.layers.Dense(16, activation=tf.nn.relu, input_shape=(NUM_WORDS,)),
keras.layers.Dense(16, activation=tf.nn.relu),
keras.layers.Dense(1, activation=tf.nn.sigmoid)
])
baseline_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'binary_crossentropy'])
baseline_model.summary()
baseline_history = baseline_model.fit(train_data,
train_labels,
epochs=20,
batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)
```
### 작은 모델 만들기
앞서 만든 기준 모델과 비교하기 위해 적은 수의 은닉 유닛을 가진 모델을 만들어 보죠:
```
smaller_model = keras.Sequential([
keras.layers.Dense(4, activation=tf.nn.relu, input_shape=(NUM_WORDS,)),
keras.layers.Dense(4, activation=tf.nn.relu),
keras.layers.Dense(1, activation=tf.nn.sigmoid)
])
smaller_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'binary_crossentropy'])
smaller_model.summary()
```
같은 데이터를 사용해 이 모델을 훈련합니다:
```
smaller_history = smaller_model.fit(train_data,
train_labels,
epochs=20,
batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)
```
### 큰 모델 만들기
아주 큰 모델을 만들어 얼마나 빠르게 과대적합이 시작되는지 알아 볼 수 있습니다. 이 문제에 필요한 것보다 훨씬 더 큰 용량을 가진 네트워크를 추가해서 비교해 보죠:
```
bigger_model = keras.models.Sequential([
keras.layers.Dense(512, activation=tf.nn.relu, input_shape=(NUM_WORDS,)),
keras.layers.Dense(512, activation=tf.nn.relu),
keras.layers.Dense(1, activation=tf.nn.sigmoid)
])
bigger_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy','binary_crossentropy'])
bigger_model.summary()
```
역시 같은 데이터를 사용해 모델을 훈련합니다:
```
bigger_history = bigger_model.fit(train_data, train_labels,
epochs=20,
batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)
```
### 훈련 손실과 검증 손실 그래프 그리기
<!--TODO(markdaoust): This should be a one-liner with tensorboard -->
실선은 훈련 손실이고 점선은 검증 손실입니다(낮은 검증 손실이 더 좋은 모델입니다). 여기서는 작은 네트워크가 기준 모델보다 더 늦게 과대적합이 시작되었습니다(즉 에포크 4가 아니라 6에서 시작됩니다). 또한 과대적합이 시작되고 훨씬 천천히 성능이 감소합니다.
```
def plot_history(histories, key='binary_crossentropy'):
plt.figure(figsize=(16,10))
for name, history in histories:
val = plt.plot(history.epoch, history.history['val_'+key],
'--', label=name.title()+' Val')
plt.plot(history.epoch, history.history[key], color=val[0].get_color(),
label=name.title()+' Train')
plt.xlabel('Epochs')
plt.ylabel(key.replace('_',' ').title())
plt.legend()
plt.xlim([0,max(history.epoch)])
plot_history([('baseline', baseline_history),
('smaller', smaller_history),
('bigger', bigger_history)])
```
큰 네트워크는 거의 바로 첫 번째 에포크 이후에 과대적합이 시작되고 훨씬 더 심각하게 과대적합됩니다. 네트워크의 용량이 많을수록 훈련 세트를 더 빠르게 모델링할 수 있습니다(훈련 손실이 낮아집니다). 하지만 더 쉽게 과대적합됩니다(훈련 손실과 검증 손실 사이에 큰 차이가 발생합니다).
## 전략
### 가중치를 규제하기
아마도 오캄의 면도날(Occam's Razor) 이론을 들어 보았을 것입니다. 어떤 것을 설명하는 두 가지 방법이 있다면 더 정확한 설명은 최소한의 가정이 필요한 가장 "간단한" 설명일 것입니다. 이는 신경망으로 학습되는 모델에도 적용됩니다. 훈련 데이터와 네트워크 구조가 주어졌을 때 이 데이터를 설명할 수 있는 가중치의 조합(즉, 가능한 모델)은 많습니다. 간단한 모델은 복잡한 것보다 과대적합되는 경향이 작을 것입니다.
여기서 "간단한 모델"은 모델 파라미터의 분포를 봤을 때 엔트로피(entropy)가 작은 모델입니다(또는 앞 절에서 보았듯이 적은 파라미터를 가진 모델입니다). 따라서 과대적합을 완화시키는 일반적인 방법은 가중치가 작은 값을 가지도록 네트워크의 복잡도에 제약을 가하는 것입니다. 이는 가중치 값의 분포를 좀 더 균일하게 만들어 줍니다. 이를 "가중치 규제"(weight regularization)라고 부릅니다. 네트워크의 손실 함수에 큰 가중치에 해당하는 비용을 추가합니다. 이 비용은 두 가지 형태가 있습니다:
* [L1 규제](https://developers.google.com/machine-learning/glossary/#L1_regularization)는 가중치의 절댓값에 비례하는 비용이 추가됩니다(즉, 가중치의 "L1 노름(norm)"을 추가합니다).
* [L2 규제](https://developers.google.com/machine-learning/glossary/#L2_regularization)는 가중치의 제곱에 비례하는 비용이 추가됩니다(즉, 가중치의 "L2 노름"의 제곱을 추가합니다). 신경망에서는 L2 규제를 가중치 감쇠(weight decay)라고도 부릅니다. 이름이 다르지만 혼돈하지 마세요. 가중치 감쇠는 수학적으로 L2 규제와 동일합니다.
`tf.keras`에서는 가중치 규제 객체를 층의 키워드 매개변수에 전달하여 가중치에 규제를 추가합니다. L2 가중치 규제를 추가해 보죠.
```
l2_model = keras.models.Sequential([
keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),
activation=tf.nn.relu, input_shape=(NUM_WORDS,)),
keras.layers.Dense(16, kernel_regularizer=keras.regularizers.l2(0.001),
activation=tf.nn.relu),
keras.layers.Dense(1, activation=tf.nn.sigmoid)
])
l2_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy', 'binary_crossentropy'])
l2_model_history = l2_model.fit(train_data, train_labels,
epochs=20,
batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)
```
```l2(0.001)```는 네트워크의 전체 손실에 층에 있는 가중치 행렬의 모든 값이 ```0.001 * weight_coefficient_value**2```만큼 더해진다는 의미입니다. 이런 페널티(penalty)는 훈련할 때만 추가됩니다. 따라서 테스트 단계보다 훈련 단계에서 네트워크 손실이 훨씬 더 클 것입니다.
L2 규제의 효과를 확인해 보죠:
```
plot_history([('baseline', baseline_history),
('l2', l2_model_history)])
```
결과에서 보듯이 모델 파라미터의 개수는 같지만 L2 규제를 적용한 모델이 기본 모델보다 과대적합에 훨씬 잘 견디고 있습니다.
### 드롭아웃 추가하기
드롭아웃(dropout)은 신경망에서 가장 효과적이고 널리 사용하는 규제 기법 중 하나입니다. 토론토(Toronto) 대학의 힌튼(Hinton)과 그의 제자들이 개발했습니다. 드롭아웃을 층에 적용하면 훈련하는 동안 층의 출력 특성을 랜덤하게 끕니다(즉, 0으로 만듭니다). 훈련하는 동안 어떤 입력 샘플에 대해 [0.2, 0.5, 1.3, 0.8, 1.1] 벡터를 출력하는 층이 있다고 가정해 보죠. 드롭아웃을 적용하면 이 벡터에서 몇 개의 원소가 랜덤하게 0이 됩니다. 예를 들면, [0, 0.5, 1.3, 0, 1.1]가 됩니다. "드롭아웃 비율"은 0이 되는 특성의 비율입니다. 보통 0.2에서 0.5 사이를 사용합니다. 테스트 단계에서는 어떤 유닛도 드롭아웃하지 않습니다. 훈련 단계보다 더 많은 유닛이 활성화되기 때문에 균형을 맞추기 위해 층의 출력 값을 드롭아웃 비율만큼 줄입니다.
`tf.keras`에서는 `Dropout` 층을 이용해 네트워크에 드롭아웃을 추가할 수 있습니다. 이 층은 바로 이전 층의 출력에 드롭아웃을 적용합니다.
IMDB 네트워크에 두 개의 `Dropout` 층을 추가하여 과대적합이 얼마나 감소하는지 알아 보겠습니다:
```
dpt_model = keras.models.Sequential([
keras.layers.Dense(16, activation=tf.nn.relu, input_shape=(NUM_WORDS,)),
keras.layers.Dropout(0.5),
keras.layers.Dense(16, activation=tf.nn.relu),
keras.layers.Dropout(0.5),
keras.layers.Dense(1, activation=tf.nn.sigmoid)
])
dpt_model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy','binary_crossentropy'])
dpt_model_history = dpt_model.fit(train_data, train_labels,
epochs=20,
batch_size=512,
validation_data=(test_data, test_labels),
verbose=2)
plot_history([('baseline', baseline_history),
('dropout', dpt_model_history)])
```
드롭아웃을 추가하니 기준 모델보다 확실히 향상되었습니다.
정리하면 신경망에서 과대적합을 방지하기 위해 가장 널리 사용하는 방법은 다음과 같습니다:
* 더 많은 훈련 데이터를 모읍니다.
* 네트워크의 용량을 줄입니다.
* 가중치 규제를 추가합니다.
* 드롭아웃을 추가합니다.
이 문서에서 다루지 않은 중요한 방법 두 가지는 데이터 증식(data-augmentation)과 배치 정규화(batch normalization)입니다.
| github_jupyter |
## Gambling 101
You are participating in a lottery game. A deck of cards numbered from 1-50 is shuffled and 5 cards are drawn out and laid out. You are given a coin. For each card, you toss the coin and pick it up if it says heads, otherwise you don't pick it up. The sum of the cards is what you win.
The lottery ticket costs c rupees. If the expected value of the sum of cards you pick up is less than the lottery ticket, then you buy another ticket otherwise you don't.
Input Format:
The first 5 lines of the input will contain 5 numbers between 1 to 50.
The next line will contain c, the cost of lottery ticket.
Output Format:
Print "Don't buy another" if the expected value is less than the ticket price and print "Buy another one" if the expected value is more than the ticket price.
**Sample Input:**
1
4
6
17
3
23
**Sample Output:**
Don't buy another
**Note:** You have to take input using the input() function. For your practice with taking inputs, the stub will be empty.
```
#my_input1 = input("Enter the 1st input here :" )
#my_input2 = input("Enter the 2nd input here :" )
#my_input3 = input("Enter the 3rd input here :" )
#my_input4 = input("Enter the 4th input here :" )
#my_input5 = input("Enter the 5th input here :" )
c = input("cost of lottery ticket here :" )
import ast,sys
input_str = sys.stdin.read()
input_list = ast.literal_eval(input_str)
my_input=input_list[0]
sum=0
for i in range(0,5):
sum=sum+int(my_input[i])
if sum<=int(c):
print("Don't buy another")
else:
print("Buy another one")
```
## Generating normal distribution
Generate an array of real numbers representing a normal distribution. You will be given the mean and standard deviation as input. You have to generate 10 such numbers.
**Hint:** You can use numpy's numpy's np.random here... np.random https://pynative.com/python-random-seed/.
To keep the output consistent, you have to set the seed as a specific number which will be given to you as input. Setting a seed means that every time you generate random numbers, they will be the same for the same seed. You can read more about it here.. https://pynative.com/python-random-seed/
**Input Format:**
The input will contain 3 lines which have the seed, mean and standard deviation of the distribution in the same order.
The output will be a numpy array of the generated normal distribution.
**Sample Input:**
1
0
0.1
```
import numpy as np
seed=int(input())
mean=float(input())
std_dev=float(input())
np.random.seed(seed)
s = np.random.normal(mean, std_dev, 10)
print(s)
```
## Confidence Intervals
For a given column in a dataframe, you have to calculate the 90 percent confidence interval for its mean value. (You can find Z* value for 90 percent confidence from previous segments)
The input will have the column name.
The output should have the confidence interval printed as a tuple.
**Note:** Do not use the inbuilt function via statmodels.api or any other libraries. You should write the code on your own to get accurate answers.
The confidence interval values have to be approximated up to two decimal places.
**Sample Input:**
GRE Score
```
import pandas as pd
import numpy as np
df=pd.read_csv("https://media-doselect.s3.amazonaws.com/generic/N9LKLvBAx1y14PLoBdL0yRn3/Admission_Predict.csv")
col=input()
mean = df[col].mean()
sd = df[col].std()
n = len(df)
Zstar=1.65
se = sd/np.sqrt(n)
lcb = mean - Zstar * se
ucb = mean + Zstar * se
print((round(lcb,2),round(ucb,2)))
#via statmodels.api you can do this as follows:
#import statsmodels.api as sm
#sm.stats.DescrStatsW(df[col]).zconfint_mean()
```
## College admissions
The probability that a college will accept a student's application is x.
Consider that m students have applied to college. You have to find the probability that at most n students are accepted by the college.
The input will contain three lines with x, m and n respectively.
The output should be rounded off to four decimal places.
**Sample Input:**
0.3
5
2
**Sample Output:**
0.8369
```
#probability of accepting an application
x=float(input())
#number of applicants
m=int(input())
#find the probability that at most n applications are accepted
n=int(input())
#write your code here
import scipy.stats as ss
dist=ss.binom(m,x)
sum=0.0
for i in range(0,n+1):
sum=sum+dist.pmf(i)
print(round(sum,4))
```
## Tossing a coin
Given that you are tossing a coin n times, you have to find the probability of getting heads at most m times.
The input will have two lines containing n and m respectively.
**Sample Input:**
10
2
**Sample Output:**
0.0547
```
import scipy.stats as ss
#number of trials
n=int(input())
# find the probability of getting at most m heads
m=int(input())
dist=ss.binom(n,0.5)
sum=0.0
for i in range(0,m+1):
sum=sum+dist.pmf(i)
print(round(sum,4))
#you can also use the following
#round(dist.cdf(m),2)
```
## Combination Theory
You are given a list of n natural numbers. You select m numbers from the list at random.
Find the probability that at least one of the selected alphabets is "x" where x is a number given to you as input.
The first line of input will contain a list of numbers. The second line will contain m and the third line will contain x.
The output should be printed out as float.
**Sample Input:**
[1,2,3,4,5,6,6,6,6,7,7,7]
3
6
**Sample Output:**
0.7454545454545455
```
import ast,sys
input_str = sys.stdin.read()
input_list = ast.literal_eval(input_str)
nums=input_list[0]
#m numbers are chosen
m=int(input_list[1])
#find probability of getting at least one x
x=int(input_list[2])
from itertools import combinations
num = 0
den = 0
for c in combinations(nums,m):
den=den+1
if x in c:
num=num+1
```
## Rolling the dice
A die is rolled n times. You have to find the probability that a number i is rolled at least j times(up to four decimal places)
The input will contain the integers n, i and j in three lines respectively. You can assume that j<n and 0<i<7.
The output should be rounded off to four decimal places.
**Sample Input:**
4
1
2
**Sample Output:**
0.1319
```
import scipy.stats as ss
n=int(input())
i=int(input())
j=int(input())
dist=ss.binom(n,1/6)
print(round(1-dist.cdf(j-1),4))
```
## Lego Stack
You are given a row of Lego Blocks consisting of n blocks. All the blocks given have a square base whose side length is known. You need to stack the blocks over each other and create a vertical tower. Block-1 can go over Block-2 only if sideLength(Block-2)>sideLength(Block-1).
From the row of Lego blocks, you on only pick up either the leftmost or rightmost block.
Print "Possible" if it is possible to stack all n cubes this way or else print "Impossible".
**Input Format:**
The input will contain a list of n integers representing the side length of each block's base in the row starting from the leftmost.
**Sample Input:**
[5 ,4, 2, 1, 4 ,5]
**Sample Output:**
Possible
```
import ast,sys
input_str = sys.stdin.read()
sides = ast.literal_eval(input_str)#list of side lengths
l=len(sides)
diff = [(sides[i]-sides[i+1]) for i in range(l-1)]
i = 0
while (i<l-1 and diff[i]>=0) : i += 1
while (i<l-1 and diff[i]<=0) : i += 1
if (i==l-1) : print("Possible")
else : print("Impossible")
#to understand the code, try printing out all intermediate variables.
```
| github_jupyter |
# Ensemble Learning
## Initial Imports
```
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import pandas as pd
from pathlib import Path
from collections import Counter
from sklearn.metrics import balanced_accuracy_score
from sklearn.metrics import confusion_matrix
from imblearn.metrics import classification_report_imbalanced
```
## Read the CSV and Perform Basic Data Cleaning
```
# Load the data
file_path = Path('Resources/LoanStats_2019Q1.csv')
df = pd.read_csv(file_path)
# Preview the data
df.head()
df.shape
df.info()
pd.set_option('display.max_rows', None) # or 1000
df.nunique(axis=0)
df['recoveries'].value_counts()
df['pymnt_plan'].value_counts()
# Drop all unnecessary columns with only a single value.
pd.set_option('display.max_columns', None) # or 1000
df.drop(columns=['pymnt_plan','recoveries','collection_recovery_fee','policy_code','acc_now_delinq','num_tl_120dpd_2m','num_tl_30dpd','tax_liens','hardship_flag','debt_settlement_flag'], inplace=True)
df.head()
# Update the DataFrame to numerical values:
df_encoded = pd.get_dummies(df, columns=['home_ownership','verification_status','issue_d','initial_list_status','next_pymnt_d','application_type',], drop_first=True)
df_encoded.head()
```
## Split the Data into Training and Testing
```
# Create our features
X = df_encoded.drop(columns=['loan_status'])
# Create our target
y = df_encoded['loan_status'].to_frame('loan_status')
y.head()
X.describe()
# Check the balance of our target values
y['loan_status'].value_counts()
# Split the X and y into X_train, X_test, y_train, y_test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
```
## Data Pre-Processing
Scale the training and testing data using the `StandardScaler` from `sklearn`. Remember that when scaling the data, you only scale the features data (`X_train` and `X_testing`).
```
X_train.columns
X_train.head()
X_train.shape
```
## NEW SOLUTION: USE SCIKIT-LEARN'S ColumnTransformer():
OneHotEncoder versus GetDummies:
https://www.quora.com/When-would-you-choose-to-use-pandas-get_dummies-vs-sklearn-OneHotEncoder
Both options are equally handy but the major difference is that OneHotEncoder is a transformer class, so it can be fitted to data. Once fitted, it is able to transform validation data based on the categories it learned. That is, if previously unseed data contains new categories and is being transformed, the encoder will ignore them or raise an error (depending on handle_unknown parameter). Also, OneHotEncoder matches scikit-learn’s transformer API so that one can use it in pipelines for convenience.
Basically, get_dummies is used in exploratory analysis, whereas OneHotEncoder in computation and estimation. See documentations for more details.
```
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import make_column_transformer
ohe = OneHotEncoder()
sc = StandardScaler()
ct = make_column_transformer(
(sc, ['loan_amnt', 'int_rate', 'installment', 'annual_inc', 'dti',
'delinq_2yrs', 'inq_last_6mths', 'open_acc', 'pub_rec', 'revol_bal',
'total_acc', 'out_prncp', 'out_prncp_inv', 'total_pymnt',
'total_pymnt_inv', 'total_rec_prncp', 'total_rec_int',
'total_rec_late_fee', 'last_pymnt_amnt', 'collections_12_mths_ex_med',
'tot_coll_amt', 'tot_cur_bal', 'open_acc_6m', 'open_act_il',
'open_il_12m', 'open_il_24m', 'mths_since_rcnt_il', 'total_bal_il',
'il_util', 'open_rv_12m', 'open_rv_24m', 'max_bal_bc', 'all_util',
'total_rev_hi_lim', 'inq_fi', 'total_cu_tl', 'inq_last_12m',
'acc_open_past_24mths', 'avg_cur_bal', 'bc_open_to_buy', 'bc_util',
'chargeoff_within_12_mths', 'delinq_amnt', 'mo_sin_old_il_acct',
'mo_sin_old_rev_tl_op', 'mo_sin_rcnt_rev_tl_op', 'mo_sin_rcnt_tl',
'mort_acc', 'mths_since_recent_bc', 'mths_since_recent_inq',
'num_accts_ever_120_pd', 'num_actv_bc_tl', 'num_actv_rev_tl',
'num_bc_sats', 'num_bc_tl', 'num_il_tl', 'num_op_rev_tl',
'num_rev_accts', 'num_rev_tl_bal_gt_0', 'num_sats',
'num_tl_90g_dpd_24m', 'num_tl_op_past_12m', 'pct_tl_nvr_dlq',
'percent_bc_gt_75', 'pub_rec_bankruptcies', 'tot_hi_cred_lim',
'total_bal_ex_mort', 'total_bc_limit', 'total_il_high_credit_limit']),
(ohe, ['home_ownership_MORTGAGE', 'home_ownership_OWN', 'home_ownership_RENT',
'verification_status_Source Verified', 'verification_status_Verified',
'issue_d_Jan-2019', 'issue_d_Mar-2019', 'initial_list_status_w',
'next_pymnt_d_May-2019', 'application_type_Joint App'])
)
X_train_scaled = ct.fit_transform(X_train)
print(type(X_train_scaled))
pd.DataFrame(X_train_scaled).head()
print(type(X_train_scaled))
# Fit & Transform to standardize X_test:
X_test_scaled = ct.fit_transform(X_test)
print(type(X_test_scaled))
```
## Ensemble Learners
In this section, you will compare two ensemble algorithms to determine which algorithm results in the best performance. You will train a Balanced Random Forest Classifier and an Easy Ensemble classifier . For each algorithm, be sure to complete the folliowing steps:
1. Train the model using the training data.
2. Calculate the balanced accuracy score from sklearn.metrics.
3. Display the confusion matrix from sklearn.metrics.
4. Generate a classication report using the `imbalanced_classification_report` from imbalanced-learn.
5. For the Balanced Random Forest Classifier only, print the feature importance sorted in descending order (most important feature to least important) along with the feature score
Note: Use a random state of 1 for each algorithm to ensure consistency between tests
### Balanced Random Forest Classifier
```
# Resample the training data with the BalancedRandomForestClassifier
from imblearn.ensemble import BalancedRandomForestClassifier
brf = BalancedRandomForestClassifier(n_estimators=1000, random_state=1)
brf.fit(X_train_scaled, y_train)
# Predict
y_pred_rf = brf.predict(X_test_scaled)
# Calculated the balanced accuracy score
from sklearn.metrics import balanced_accuracy_score
balanced_accuracy_score(y_test, y_pred_rf)
# Display the confusion matrix
confusion_matrix(y_test, y_pred_rf)
# Print the imbalanced classification report
print(classification_report_imbalanced(y_test, y_pred_rf))
# Calculate the feature importance
importance = brf.feature_importances_
# List the features sorted in descending order by feature importance
sorted(zip(brf.feature_importances_, X.columns), reverse=True)
```
### Visualizing the Features by Importance to the model: (Top 20)
```
importance_df = pd.DataFrame(sorted(zip(brf.feature_importances_, X.columns), reverse=True))
importance_df.set_index(importance_df[1], inplace=True)
importance_df.drop(columns=1, inplace=True)
importance_df.rename(columns={0:'Feature Importances'}, inplace=True)
importance_sorted = importance_df.sort_values(by='Feature Importances').head(20)
importance_sorted.plot(kind='barh', color='blue', title='Top 20 Features Importances', legend=False)
```
### Easy Ensemble Classifier
https://imbalanced-learn.org/stable/references/generated/imblearn.ensemble.EasyEnsembleClassifier.html
```
# Create an instance of an Easy Ensemble Classifier:
from imblearn.ensemble import EasyEnsembleClassifier
eec = EasyEnsembleClassifier(n_estimators=1000, random_state=1)
# Train the Classifier
eec.fit(X_train_scaled, y_train)
# Predict
y_pred_eec = eec.predict(X_test_scaled)
# Calculated the balanced accuracy score
balanced_accuracy_score(y_test, y_pred_eec)
# Display the confusion matrix
cm_eec = confusion_matrix(y_test, y_pred_eec)
cm_eec_df = pd.DataFrame(
cm_eec, index=['Actual=No: 0', 'Actual=Yes: 1'], columns=['Predicted=No: 0', 'Predicted=Yes: 1']
)
print('Confusion Matrix:')
display(cm_eec_df)
# Print the imbalanced classification report
print(classification_report_imbalanced(y_test, y_pred_eec))
```
### Final Questions
1. Which model had the best balanced accuracy score?
Easy Ensemble Classifier.
2. Which model had the best recall score?
Easy Ensemble Classifier.
3. Which model had the best geometric mean score?
Easy Ensemble Classifier.
4. What are the top three features?
1. open_rv_12m
2. delinq_2yrs
3. tot_coll_amt
| github_jupyter |
# Codenation - Data Science
<pre>Autor: Leonardo Simões</pre>
## Desafio 7 - Descubra as melhores notas de matemática do ENEM 2016
Você deverá criar um modelo para prever a nota da prova de matemática de quem participou do ENEM 2016. Para isso, usará Python, Pandas, Sklearn e Regression.
### Detalhes
O contexto do desafio gira em torno dos resultados do ENEM 2016 (disponíveis no arquivo train.csv). Este arquivo, e apenas ele, deve ser utilizado para todos os desafios. Qualquer dúvida a respeito das colunas, consulte o [Dicionário dos Microdados do Enem 2016](https://s3-us-west-1.amazonaws.com/acceleration-assets-highway/data-science/dicionario-de-dados.zip).
No arquivo test.csv crie um modelo para prever nota da prova de matemática (coluna `NU_NOTA_MT`) de quem participou do ENEM 2016.
Salve sua resposta em um arquivo chamado answer.csv com duas colunas: `NU_INSCRICAO` e `NU_NOTA_MT`.
### Tópicos
Neste desafio você aprenderá:
- Python
- Pandas
- Sklearn
- Regression
## Setup geral
```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error, mean_absolute_error
```
## Análise dos dados
Lendo os arquivos de treino (train) e de teste (test).
```
df_train = pd.read_csv('train.csv')
df_train.head()
df_test = pd.read_csv('test.csv')
df_test.head()
```
Antes de manipular os dataframes, deve-separar as colunas de notas da prova de matemática do treino e a do número de inscrição do teste.
```
train_y = df_train['NU_NOTA_MT'].fillna(0)
n_insc = df_test['NU_INSCRICAO'].values
```
Idealmente os arquivos de teste e treino teriam as mesmas colunas, exceto a que deve ser predita.
Então, primeiro verifica-se a quantidade de colunas de cada, e depois exclui-se as colunas que não pertence a ambas.
```
len(df_test.columns)
len(df_train.columns)
colunas_intersecao = np.intersect1d(df_train.columns.values, df_test.columns.values)
colunas_intersecao
df_train = df_train[colunas_intersecao]
df_train.head()
df_test = df_test[colunas_intersecao]
df_test.head()
df_train.info()
```
Em um momento anterior eu usei todas as colunas numéricas na predição, mas isso se mostrou menos eficaz do que usar apenas as colunas de notas.
```
colunas_numericas = df_train.select_dtypes(include=['float64', 'int64']).columns
colunas_numericas
colunas_notas = ['NU_NOTA_CH', 'NU_NOTA_CN', 'NU_NOTA_COMP1', 'NU_NOTA_COMP2','NU_NOTA_COMP3',
'NU_NOTA_COMP4','NU_NOTA_COMP5','NU_NOTA_LC', 'NU_NOTA_REDACAO']
df_train = df_train[colunas_notas].fillna(0)
df_test = df_test[colunas_notas].fillna(0)
sc = StandardScaler()
x_train = sc.fit_transform(df_train)
x_test = sc.transform(df_test)
lm = LinearRegression()
lm.fit(x_train, train_y)
y_teste = lm.predict(x_test)
y_teste = [round(y,1) for y in y_teste]
```
Depois de predizer as notas do arquivo de teste, estas foram salvar em um arquivo csv.
```
answer = pd.DataFrame()
answer['NU_INSCRICAO'] = n_insc
answer['NU_NOTA_MT'] = y_teste
answer.head()
answer.to_csv('answer.csv', index=False)
```
| github_jupyter |
## Introduction
If you've had any experience with the python scientific stack, you've probably come into contact with, or at least heard of, the [pandas][1] data analysis library. Before the introduction of pandas, if you were to ask anyone what language to learn as a budding data scientist, most would've likely said the [R statistical programming language][2]. With its [data frame][3] data structure, it was the obvious winner when it came to filtering, slicing, aggregating, or analyzing your data. However, with the introduction of pandas to python's growing set of data analysis libraries, the gap between the two langauges has effectively closed, and as a result, pandas has become a vital tool for data scientists using python.
While we won't be covering the pandas library itself, since that's a topic fit for a course of its own, in this lesson we will be discussing the simple interface pandas provides for interacting with the matplotlib library. In addition, we'll also take a look at the recent changes the matplotlib team has made to make it possible for the two libraries to work together more harmoniously.
That said, let's get set up and see what pandas has to offer.
[1]: http://pandas.pydata.org/
[2]: https://www.r-project.org/
[3]: https://cran.r-project.org/doc/manuals/r-release/R-intro.html#Data-frames
```
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import set_matplotlib_formats
set_matplotlib_formats('retina')
```
### What is pandas?
Pandas is a library created by [Wes McKinney][1] that provides several data structures that make working with data fast, efficient, and easy. Chief among them is the `DataFrame`, which takes on R's `data.frame` data type, and in many scenarios, bests it. It also provides a simple wrapper around the `pyplot` interface, allowing you to plot the data in your `DataFrame` objects without any context switching in many cases.
But, enough talk, let's see it in action.
[1]: https://twitter.com/wesmckinn
### Import the Library
The following bit of code imports the pandas library using the widely accepted `pd` naming convention. You'll likely see pandas imported like this just about everywhere it's used, and it is recommended that you always use the same naming convention in your code as well.
```
import pandas as pd
```
### Load in Some Data
In the next cell, we'll use the `read_csv` function to load in the [Census Income][1] dataset from the [UCI Machine Learning Repository][2]. Incidentally, this is the exact same dataset that we used in our Exploratory Data Analysis (EDA) example in chapter 2, so we'll get to see some examples of how we could perform some of the same steps using the plotting commands on our `DataFrame` object.
[1]: http://archive.ics.uci.edu/ml/datasets/Adult
[2]: http://archive.ics.uci.edu/ml/index.html
```
import pandas as pd
# Download and read in the data from the UCI Machine Learning Repository
df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data',
header=None,
names=('age',
'workclass',
'fnlwgt',
'education',
'education_num',
'marital_status',
'occupation',
'relationship',
'race',
'sex',
'capital_gain',
'capital_loss',
'hours_per_week',
'native_country',
'target'))
```
### Plotting With pandas
Just like we did in our EDA example from chapter 2, we can once again create a simple histogram from our data. This time though, notice that we simply call the `hist` command on the column that contains the education level to plot our data.
```
df.education_num.hist(bins=16);
```
And, remember, pandas isn't doing anything magical here, it's just providing a very simple wrapper around the `pyplot` module. At the end of the day, the code above is simply calling the `pyplot.hist` function to create the histogram. So, we can interact with the plot that it produces the same way we would any other plot. As an example, let's create our histogram again, but this time let's get rid of that empty bar to the left by setting the plot's x-axis limits using the `pyplot.xlim` function.
```
df.education_num.hist(bins=16)
# Remove the empty bar from the histogram that's below the
# education_num's minimum value.
plt.xlim(df.education_num.min(), df.education_num.max());
```
Well, that looks better, but we're still stuck with many of the same problems that we had in the original EDA lesson. You'll notice that most of the x-ticks don't actually line up with their bars, and there's a good reason for that. Remember, in that lesson, we discussed how a histogram was meant to be used with continuous data, and in our case we're dealing with discrete values. So, a bar chart is actually what we want to use here.
Luckily, pandas makes the task of creating the bar chart even easier. In our EDA lesson, we had to do the frequency count ourselves, and take care of lining the x-axis labels up properly, and several other small issues. With pandas, it's just a single line of code. First, we call the `value_counts` function on the `education` column to get a set of frequency counts, ordered largest to smallest, for each education level. Then, we call the `plot` function on the `Series` object returned from `value_counts`, and pass in the type of plot with the `kind` parameter, and while we're at it, we'll set our width to 1, like we did in the chapter 2 example, to make it look more histogram-ish.
```
df.education.value_counts().plot(kind='bar', width=1);
```
Now, rather than passing in the plot type with the `kind` parameter, we could've also just called the `bar` function from the `plot` object, like we do in the next cell.
```
df.education.value_counts().plot.bar(width=1);
```
Ok, so that's a pretty good introduction to the simple interface that pandas provides to the matplotlib library, but it doesn't stop there. Pandas also provides a handful of more complex plotting functions in the `pandas.tools.plotting` module. So, let's import another dataset and take a look at an example of what's available.
In the cell below, we pull in the Iris dataset that we used in our scatterplot matrix example from chapter 3. Incidentally, if you don't want to mess with network connections, or if you happen to be in a situation where network access just isn't an option, I've copied the data file to the local data folder. The file can be found at `./data/iris_data.csv`
```
df = pd.read_csv('https://raw.githubusercontent.com/pydata/pandas/master/pandas/tests/data/iris.csv')
```
We'll need a color map, essentially just a dictionary mapping each species to a unique color, so we'll put one together in the next cell. Fortunately, pandas makes it easy to get the species names by simply calling the `unique` function on the `Name` column.
```
names = df.Name.unique()
colors = ['red', 'green', 'blue']
cmap = dict(zip(names, colors))
```
Now, before we take a look at one of the functions from the `plotting` module, let's quickly take a look at one of the [changes that was made to matplotlib in version 1.5][1] to accommodate labeled data, like a pandas `DataFrame` for example. The code in the next cell, creates a scatter plot using the `pyplot.scatter` function, like we've done in the past, but notice how we specify the columns that contain our `x` and `y` values. In our example below, we are simply passing in the names of the columns alongside the `DataFrame` object itself. Now, it's arguable just how much more readable this light layer of abstraction is over just passing in the data directly, but it's nice to have the option, nonetheless.
[1]: http://matplotlib.org/users/whats_new.html#working-with-labeled-data-like-pandas-dataframes
```
plt.scatter(x='PetalLength', y='PetalWidth', data=df, c=df.Name.apply(lambda name: cmap[name]));
```
Now, we're ready to take a look at one of the functions that pandas provides us, and for comparison sake, let's take a look at our old friend, the scatterplot matrix. In the next cell, we'll import the `scatter_matrix` function from the `pandas.tools.plotting` module and run it on the Iris dataset.
```
from pandas.tools.plotting import scatter_matrix
scatter_matrix(df, figsize=(10,8), c=df.Name.apply(lambda name: cmap[name]), s=40);
```
Well, that looks pretty good, and it's a heck of a lot easier than writing our own. Though, I prefer the seaborn version, this one will do in a pinch. If you get a chance, I recommend taking a look at what the pandas `plotting` module has to offer. Aside from the scatterplot matrix function, it also provides functions for creating things like density plots and parallel coordinates plots. It's not as powerful as the seaborn library, but many times it may be all you need to perform your analysis.
## Conclusion
And, that will bring us to the end once again.
To recap, in this lesson, we saw some quick examples of how to use the Pandas data analysis library with the matplotlib library. Specifically, we saw a few examples of the simple interface that pandas provides to the `pyplot` module, and we also saw one example of the new labeled data change that was made to matplotlib in version 1.5. Finally, we took a quick look at one of the more complex functions that the pandas `plotting` module provides.
The main goal of this lesson wasn't to turn you into a pandas power user, but rather to give you some idea of what pandas provides, and more importantly, to take away any of the mystery of how it works. Now that you understand that pandas is basically just providing a very simple layer of abstraction on top of the `pyplot` interface, you should be prepared to deal with any issues that come up when plotting the data in your `DataFrame` objects.
| github_jupyter |
# Interpreting Tree Models
You'll need to install the `treeinterpreter` library.
```
# !pip install treeinterpreter
import sklearn
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeRegressor, export_graphviz
from sklearn.ensemble import RandomForestRegressor
from treeinterpreter import treeinterpreter as ti
from IPython.display import Image
print('The scikit-learn version is {}.'.format(sklearn.__version__))
```
## For Regression task
Load the dataset.
```
cal_housing = fetch_california_housing()
print(cal_housing.DESCR)
X = cal_housing.data
y = cal_housing.target
cal_features = cal_housing.feature_names
df = pd.concat((pd.DataFrame(X, columns=cal_features),
pd.DataFrame({'MedianHouseVal': y})), axis=1)
df.head()
```
#### Visualizing a Decision Tree
You will need to install the `pydotplus` library.
```
#!pip install pydotplus
import pydotplus
# Create dataset
X_train, X_test, y_train, y_test = train_test_split(df[cal_features], y, test_size=0.2)
dt_reg = DecisionTreeRegressor(max_depth=3)
dt_reg.fit(X_train, y_train)
dot_data = export_graphviz(dt_reg, out_file="ca_housing.dot",
feature_names=cal_features,
filled=True, rounded=True,
special_characters=True,
leaves_parallel=False)
graph = pydotplus.graphviz.graph_from_dot_file("ca_housing.dot")
Image(graph.create_png())
```
Make a sample prediction.
```
X_test[cal_features].iloc[[0]].transpose()
dt_reg.predict(X_test[cal_features].iloc[[0]])
```
The root node is the mean of the labels from the training data.
```
y_train.mean()
```
#### Train a simple Random Forest
```
rf_reg = RandomForestRegressor()
rf_reg.fit(X_train, y_train)
print(f'Instance 11 prediction: {rf_reg.predict(X_test.iloc[[11]])}')
print(f'Instance 17 prediction: {rf_reg.predict(X_test.iloc[[17]])}')
idx = 11
from treeinterpreter import treeinterpreter
prediction, bias, contributions = treeinterpreter.predict(rf_reg,
X_test.iloc[[idx]].values)
print(f'prediction: {prediction}')
print(f'bias: {bias}')
print(f'contributions: {contributions}')
for idx in [11, 17]:
print(f'Instance: {idx}')
prediction, bias, contributions = treeinterpreter.predict(
rf_reg, X_test.iloc[[idx]].values)
print(f'Bias term (training set mean): {bias}')
print(f'Feature contributions:')
for contribution, feature in sorted(zip(contributions[0],
cal_features),
key=lambda x: -abs(x[0])):
print(feature, round(contribution, 2))
print('-'*20)
idx = 17
prediction, bias, contributions = treeinterpreter.predict(
rf_reg, X_test.iloc[[idx]].values)
print(f'prediction: {prediction[0]}')
print(f'bias + contributions: {bias + np.sum(contributions)}')
```
In fact, we can check that this holds for all elements of the test set:
```
predictions, biases, contributions = treeinterpreter.predict(
rf_reg, X_test.values)
assert(np.allclose(np.squeeze(predictions), biases + np.sum(contributions, axis=1)))
assert(np.allclose(rf_reg.predict(X_test), biases + np.sum(contributions, axis=1)))
```
## Comparing Contributions across data slices
```
X1_test = X_test[:X_test.shape[0]//2:]
X2_test = X_test[X_test.shape[0]//2:]
predictions1, biases1, contributions1 = ti.predict(rf_reg, X1_test.values)
predictions2, biases2, contributions2 = ti.predict(rf_reg, X2_test.values)
total_contribs1 = np.mean(contributions1, axis=0)
total_contribs2 = np.mean(contributions2, axis=0)
print(f'Total contributions from X1_test: {total_contribs1}')
print(f'Total contributions from X2_test: {total_contribs2}')
print(f'Sum of feature contributions differences: {np.sum(total_contribs1 - total_contribs2)}')
print(f'Difference between the average predictions: {np.mean(predictions1) - np.mean(predictions2)}')
```
## TreeExplainer with SHAP
```
from sklearn.model_selection import train_test_split
import xgboost as xgb
import shap
# print the JS visualization code to the notebook
shap.initjs()
import xgboost as xgb
xgb_reg = xgb.XGBClassifier(max_depth=3,
n_estimators=300,
learning_rate=0.05)
xgb_reg.fit(X_train, y_train)
model_mse_error = np.sqrt(np.mean((xgb_reg.predict(X_test) - y_test)**2))
print(f'Mean squared error of MLP model: {model_mse_error}')
explainer = shap.TreeExplainer(xgb_reg)
shap_values = explainer.shap_values(X_train)
shap.force_plot(explainer.expected_value[1],
shap_values[1][0,:],
X_train.iloc[0,:])
shap.force_plot(explainer.expected_value[1], shap_values[1][:1000,:], X_train.iloc[:1000,:])
```
Copyright 2022 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License
| github_jupyter |
```
# Load WSC dataset
import xml.etree.ElementTree as etree
import json
import numpy as np
import logging
import numpy
import os
def softmax(x):
return np.exp(x)/sum(np.exp(x))
tree = etree.parse('WSCollection.xml')
root = tree.getroot()
original_problems = root.getchildren()
problems = list()
for original_problem in original_problems:
problem = dict()
for information in original_problem.getchildren():
if information.tag == 'answers':
answers = information.getchildren()
answer_list = list()
for answer in answers:
answer_list.append(answer.text.strip())
problem['answers'] = answer_list
elif information.tag == 'text':
texts = information.getchildren()
text_dict = dict()
for text1 in texts:
text_dict[text1.tag] = text1.text.replace('\n', ' ').strip()
problem['text'] = text_dict
elif information.tag == 'quote':
pass
else:
problem[information.tag] = information.text.replace(' ', '')
problems.append(problem)
print(problems[0])
all_sentences = list()
for question in problems:
sentence = question['text']['txt1'] + ' ' + question['text']['pron'] + ' ' + question['text']['txt2']
all_sentences.append(sentence)
# print(sentence)
import json
import numpy as np
import tensorflow as tf
import model, sample, encoder
model_name = '774M'
models_dir = '../models'
enc = encoder.get_encoder(model_name, models_dir)
batch_size = 1
seed=None
nsamples=1
hparams = model.default_hparams()
with open(os.path.join(models_dir, model_name, 'hparams.json')) as f:
hparams.override_from_dict(json.load(f))
length = hparams.n_ctx // 2
answer_collector = []
def logits_score(logits,skeleton_tokens, context_tokens):
score = 1
start_index = len(skeleton_tokens) - 1
end_index = len(context_tokens) - 1
for i in range(end_index - start_index):
m = softmax(logits[start_index+i])
score *= m[context_tokens[start_index+i+1]]
return score
with tf.Session(graph=tf.Graph()) as sess:
context = tf.placeholder(tf.int32, [batch_size, None])
np.random.seed(seed)
tf.set_random_seed(seed)
context_tokens = []
output = model.model(hparams=hparams, X=context, past=None, reuse=tf.AUTO_REUSE)
saver = tf.train.Saver()
ckpt = tf.train.latest_checkpoint(os.path.join(models_dir, model_name))
saver.restore(sess, ckpt)
for i in range(273):
if problems[i]['text']['txt1'] != ".":
ans0 = problems[i]['answers'][0].replace("The","the")
ans1 = problems[i]['answers'][1].replace("The","the")
else:
ans0 = problems[i]['answers'][0]
ans1 = problems[i]['answers'][1]
skeleton1 = problems[i]['text']['txt1'] + ' ' + problems[i]['answers'][0]
skeleton2 = problems[i]['text']['txt1'] + ' ' + problems[i]['answers'][1]
raw_text1 = problems[i]['text']['txt1'] + ' ' + problems[i]['answers'][0] + ' ' + problems[i]['text']['txt2']
raw_text2 = problems[i]['text']['txt1'] + ' ' + problems[i]['answers'][1] + ' ' + problems[i]['text']['txt2']
context_tokens1 = enc.encode(raw_text1)
context_tokens2 = enc.encode(raw_text2)
skeleton_tokens1 = enc.encode(skeleton1)
skeleton_tokens2 = enc.encode(skeleton2)
out1 = sess.run(output, feed_dict={context: [context_tokens1 for _ in range(batch_size)]})
out2 = sess.run(output, feed_dict={context: [context_tokens2 for _ in range(batch_size)]})
logits1 = out1['logits'][:, :, :hparams.n_vocab]
logits2 = out2['logits'][:, :, :hparams.n_vocab]
score1 = logits_score(logits1[0],skeleton_tokens1,context_tokens1)
score2 = logits_score(logits2[0],skeleton_tokens2,context_tokens2)
correctAnswer = problems[i]["correctAnswer"]
if score1 >= score2:
predictedAnswer = "A"
else:
predictedAnswer = "B"
# A. Problem
answer_collector.append(predictedAnswer in correctAnswer)
print(len(answer_collector))
print(np.sum(answer_collector)/273)
```
| github_jupyter |
## Analyze A/B Test Results
You may either submit your notebook through the workspace here, or you may work from your local machine and submit through the next page. Either way assure that your code passes the project [RUBRIC](https://review.udacity.com/#!/projects/37e27304-ad47-4eb0-a1ab-8c12f60e43d0/rubric). **Please save regularly.**
This project will assure you have mastered the subjects covered in the statistics lessons. The hope is to have this project be as comprehensive of these topics as possible. Good luck!
## Table of Contents
- [Introduction](#intro)
- [Part I - Probability](#probability)
- [Part II - A/B Test](#ab_test)
- [Part III - Regression](#regression)
<a id='intro'></a>
### Introduction
A/B tests are very commonly performed by data analysts and data scientists. It is important that you get some practice working with the difficulties of these
For this project, you will be working to understand the results of an A/B test run by an e-commerce website. Your goal is to work through this notebook to help the company understand if they should implement the new page, keep the old page, or perhaps run the experiment longer to make their decision.
**As you work through this notebook, follow along in the classroom and answer the corresponding quiz questions associated with each question.** The labels for each classroom concept are provided for each question. This will assure you are on the right track as you work through the project, and you can feel more confident in your final submission meeting the criteria. As a final check, assure you meet all the criteria on the [RUBRIC](https://review.udacity.com/#!/projects/37e27304-ad47-4eb0-a1ab-8c12f60e43d0/rubric).
<a id='probability'></a>
#### Part I - Probability
To get started, let's import our libraries.
```
import pandas as pd
import numpy as np
import random
import matplotlib.pyplot as plt
%matplotlib inline
#We are setting the seed to assure you get the same answers on quizzes as we set up
random.seed(42)
```
`1.` Now, read in the `ab_data.csv` data. Store it in `df`. **Use your dataframe to answer the questions in Quiz 1 of the classroom.**
a. Read in the dataset and take a look at the top few rows here:
```
df = pd.read_csv('ab_data.csv')
df.head()
```
b. Use the cell below to find the number of rows in the dataset.
```
df.shape[0]
```
c. The number of unique users in the dataset.
```
df.nunique()[0]
```
d. The proportion of users converted.
```
df['converted'].sum() / df.shape[0]
```
e. The number of times the `new_page` and `treatment` don't match.
```
df[((df['group'] == 'treatment') & (df['landing_page'] != 'new_page')) | ((df['group'] != 'treatment') & (df['landing_page'] == 'new_page'))].shape[0]
```
f. Do any of the rows have missing values?
```
df.info()
```
`2.` For the rows where **treatment** does not match with **new_page** or **control** does not match with **old_page**, we cannot be sure if this row truly received the new or old page. Use **Quiz 2** in the classroom to figure out how we should handle these rows.
a. Now use the answer to the quiz to create a new dataset that meets the specifications from the quiz. Store your new dataframe in **df2**.
```
df2 = df[(((df['group'] == 'treatment') & (df['landing_page'] == 'new_page')) | ((df['group'] == 'control') & (df['landing_page'] == 'old_page')))]
df2.head()
# Double Check all of the correct rows were removed - this should be 0
df2[((df2['group'] == 'treatment') == (df2['landing_page'] == 'new_page')) == False].shape[0]
```
`3.` Use **df2** and the cells below to answer questions for **Quiz3** in the classroom.
a. How many unique **user_id**s are in **df2**?
```
df2.nunique()[0]
```
b. There is one **user_id** repeated in **df2**. What is it?
```
uid = df2[df2['user_id'].duplicated() == True].index[0]
uid
```
c. What is the row information for the repeat **user_id**?
```
df2.loc[uid]
```
d. Remove **one** of the rows with a duplicate **user_id**, but keep your dataframe as **df2**.
```
df2.drop(2893, inplace=True)
df2.shape[0]
```
`4.` Use **df2** in the cells below to answer the quiz questions related to **Quiz 4** in the classroom.
a. What is the probability of an individual converting regardless of the page they receive?
```
df2[df2['converted'] == 1].shape[0] / df2.shape[0]
```
b. Given that an individual was in the `control` group, what is the probability they converted?
```
df2[(df2['converted'] == 1) & ((df2['group'] == 'control'))].shape[0] / df2[(df2['group'] == 'control')].shape[0]
```
c. Given that an individual was in the `treatment` group, what is the probability they converted?
```
df2[(df2['converted'] == 1) & ((df2['group'] == 'treatment'))].shape[0] / df2[(df2['group'] == 'treatment')].shape[0]
```
d. What is the probability that an individual received the new page?
```
df2[df2['landing_page'] == 'new_page'].shape[0] / df2.shape[0]
```
e. Consider your results from parts (a) through (d) above, and explain below whether you think there is sufficient evidence to conclude that the new treatment page leads to more conversions.
**The probability of converting for an individual who received the control page is more than that who received the treatment page. So its more likely to convert for the control page viewers. So there is not much evidence to prove that the new treatment page leads to more conversions**
<a id='ab_test'></a>
### Part II - A/B Test
Notice that because of the time stamp associated with each event, you could technically run a hypothesis test continuously as each observation was observed.
However, then the hard question is do you stop as soon as one page is considered significantly better than another or does it need to happen consistently for a certain amount of time? How long do you run to render a decision that neither page is better than another?
These questions are the difficult parts associated with A/B tests in general.
`1.` For now, consider you need to make the decision just based on all the data provided. If you want to assume that the old page is better unless the new page proves to be definitely better at a Type I error rate of 5%, what should your null and alternative hypotheses be? You can state your hypothesis in terms of words or in terms of **$p_{old}$** and **$p_{new}$**, which are the converted rates for the old and new pages.
**Put your answer here.**
`2.` Assume under the null hypothesis, $p_{new}$ and $p_{old}$ both have "true" success rates equal to the **converted** success rate regardless of page - that is $p_{new}$ and $p_{old}$ are equal. Furthermore, assume they are equal to the **converted** rate in **ab_data.csv** regardless of the page. <br><br>
Use a sample size for each page equal to the ones in **ab_data.csv**. <br><br>
Perform the sampling distribution for the difference in **converted** between the two pages over 10,000 iterations of calculating an estimate from the null. <br><br>
Use the cells below to provide the necessary parts of this simulation. If this doesn't make complete sense right now, don't worry - you are going to work through the problems below to complete this problem. You can use **Quiz 5** in the classroom to make sure you are on the right track.<br><br>
```
df2.head()
```
a. What is the **conversion rate** for $p_{new}$ under the null?
```
p_new = df2[(df2['converted'] == 1)].shape[0] / df2.shape[0]
p_new
```
b. What is the **conversion rate** for $p_{old}$ under the null? <br><br>
```
p_old = df2[(df2['converted'] == 1)].shape[0] / df2.shape[0]
p_old
```
c. What is $n_{new}$, the number of individuals in the treatment group?
```
n_new = df2[(df2['landing_page'] == 'new_page') & (df2['group'] == 'treatment')].shape[0]
n_new
```
d. What is $n_{old}$, the number of individuals in the control group?
```
n_old = df2[(df2['landing_page'] == 'old_page') & (df2['group'] == 'control')].shape[0]
n_old
```
e. Simulate $n_{new}$ transactions with a conversion rate of $p_{new}$ under the null. Store these $n_{new}$ 1's and 0's in **new_page_converted**.
```
new_page_converted = np.random.choice([1,0],n_new, p=(p_new,1-p_new))
new_page_converted.mean()
```
f. Simulate $n_{old}$ transactions with a conversion rate of $p_{old}$ under the null. Store these $n_{old}$ 1's and 0's in **old_page_converted**.
```
old_page_converted = np.random.choice([1,0],n_old, p=(p_old,1-p_old))
old_page_converted.mean()
```
g. Find $p_{new}$ - $p_{old}$ for your simulated values from part (e) and (f).
```
# p_new - p_old
new_page_converted.mean() - old_page_converted.mean()
```
h. Create 10,000 $p_{new}$ - $p_{old}$ values using the same simulation process you used in parts (a) through (g) above. Store all 10,000 values in a NumPy array called **p_diffs**.
```
p_diffs = []
for _ in range(10000):
new_page_converted = np.random.choice([0, 1], size = n_new, p = [1-p_new, p_new], replace = True).sum()
old_page_converted = np.random.choice([0, 1], size = n_old, p = [1-p_old, p_old], replace = True).sum()
diff = new_page_converted/n_new - old_page_converted/n_old
p_diffs.append(diff)
p_diffs = np.array(p_diffs)
p_diffs
```
i. Plot a histogram of the **p_diffs**. Does this plot look like what you expected? Use the matching problem in the classroom to assure you fully understand what was computed here.
```
plt.hist(p_diffs);
plt.plot();
```
j. What proportion of the **p_diffs** are greater than the actual difference observed in **ab_data.csv**?
```
# (p_diffs > (p_new - p_old))
prop = (p_diffs > df['converted'].sample(10000)).mean()
prop
```
k. Please explain using the vocabulary you've learned in this course what you just computed in part **j.** What is this value called in scientific studies? What does this value mean in terms of whether or not there is a difference between the new and old pages?
**Difference is not significant**
l. We could also use a built-in to achieve similar results. Though using the built-in might be easier to code, the above portions are a walkthrough of the ideas that are critical to correctly thinking about statistical significance. Fill in the below to calculate the number of conversions for each page, as well as the number of individuals who received each page. Let `n_old` and `n_new` refer the the number of rows associated with the old page and new pages, respectively.
```
import statsmodels.api as sm
convert_old = df2[(df2['landing_page'] == 'old_page') & (df2['group'] == 'control')]
convert_new = df2[(df2['landing_page'] == 'new_page') & (df2['group'] == 'treatment')]
n_old = convert_old.shape[0]
n_new = convert_new.shape[0]
n_old, n_new
# df2.head()
```
m. Now use `stats.proportions_ztest` to compute your test statistic and p-value. [Here](http://knowledgetack.com/python/statsmodels/proportions_ztest/) is a helpful link on using the built in.
```
from statsmodels.stats.proportion import proportions_ztest
(df2['converted'] == 1).sum()
df2.shape[0]
prop
stat, pval = proportions_ztest((df2['converted'] == 1).sum(), df2.shape[0], prop)
stat, pval
```
n. What do the z-score and p-value you computed in the previous question mean for the conversion rates of the old and new pages? Do they agree with the findings in parts **j.** and **k.**?
**p val = 0**
**No**
<a id='regression'></a>
### Part III - A regression approach
`1.` In this final part, you will see that the result you achieved in the A/B test in Part II above can also be achieved by performing regression.<br><br>
a. Since each row is either a conversion or no conversion, what type of regression should you be performing in this case?
**Logical Regression**
```
df2.head()
```
b. The goal is to use **statsmodels** to fit the regression model you specified in part **a.** to see if there is a significant difference in conversion based on which page a customer receives. However, you first need to create in df2 a column for the intercept, and create a dummy variable column for which page each user received. Add an **intercept** column, as well as an **ab_page** column, which is 1 when an individual receives the **treatment** and 0 if **control**.
```
import statsmodels.api as sm
df2[['control','ab_page']] = pd.get_dummies(df2['group'])
df2.drop(['control','group'],axis=1, inplace=True)
df2.head()
```
c. Use **statsmodels** to instantiate your regression model on the two columns you created in part b., then fit the model using the two columns you created in part **b.** to predict whether or not an individual converts.
```
df2['intercept'] = 1
logit_mod = sm.Logit(df2['converted'], df2[['intercept','ab_page']])
results = logit_mod.fit()
np.exp(-0.0150)
1/np.exp(-0.0150)
```
d. Provide the summary of your model below, and use it as necessary to answer the following questions.
```
results.summary()
```
e. What is the p-value associated with **ab_page**? Why does it differ from the value you found in **Part II**?<br><br> **Hint**: What are the null and alternative hypotheses associated with your regression model, and how do they compare to the null and alternative hypotheses in **Part II**?
**P value = 0.190**
f. Now, you are considering other things that might influence whether or not an individual converts. Discuss why it is a good idea to consider other factors to add into your regression model. Are there any disadvantages to adding additional terms into your regression model?
**Yes, its good to check for some more fields**
**Disadvantage - It may not be as easy to interpret as in the previous case**
g. Now along with testing if the conversion rate changes for different pages, also add an effect based on which country a user lives in. You will need to read in the **countries.csv** dataset and merge together your datasets on the appropriate rows. [Here](https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.join.html) are the docs for joining tables.
Does it appear that country had an impact on conversion? Don't forget to create dummy variables for these country columns - **Hint: You will need two columns for the three dummy variables.** Provide the statistical output as well as a written response to answer this question.
```
df_countries = pd.read_csv('countries.csv')
df_countries.head()
df_merged = pd.merge(df2,df_countries, left_on='user_id', right_on='user_id')
df_merged.head()
df_merged[['US','UK','CA']] = pd.get_dummies(df_merged['country'])
df_merged.drop(['country','CA'],axis=1, inplace=True)
df_merged.head()
df_merged['intercept'] = 1
logit_mod = sm.Logit(df_merged['converted'], df_merged[['intercept','US','UK']])
results = logit_mod.fit()
results.summary()
```
**US ia having negative coeff which means that conversion rate decreases if person is from US**
**UK ia having positive coeff which means that conversion rate increases if person is from UK**
h. Though you have now looked at the individual factors of country and page on conversion, we would now like to look at an interaction between page and country to see if there significant effects on conversion. Create the necessary additional columns, and fit the new model.
Provide the summary results, and your conclusions based on the results.
```
final_df = df_merged[['user_id','timestamp','landing_page','converted','ab_page','US','UK']]
final_df.head()
final_df['intercept'] = 1
logit_mod = sm.Logit(final_df['ab_page'], final_df[['intercept','US','UK']])
results = logit_mod.fit()
results.summary()
```
**'ab_page' column is 1 when an individual receives the treatment and 0 if control.**
**US ia having positive coeff which means that chance of getting treatment page increases **
**UK ia having negative coeff which means that change of getting control page increases**
<a id='conclusions'></a>
## Finishing Up
> Congratulations! You have reached the end of the A/B Test Results project! You should be very proud of all you have accomplished!
> **Tip**: Once you are satisfied with your work here, check over your report to make sure that it is satisfies all the areas of the rubric (found on the project submission page at the end of the lesson). You should also probably remove all of the "Tips" like this one so that the presentation is as polished as possible.
## Directions to Submit
> Before you submit your project, you need to create a .html or .pdf version of this notebook in the workspace here. To do that, run the code cell below. If it worked correctly, you should get a return code of 0, and you should see the generated .html file in the workspace directory (click on the orange Jupyter icon in the upper left).
> Alternatively, you can download this report as .html via the **File** > **Download as** submenu, and then manually upload it into the workspace directory by clicking on the orange Jupyter icon in the upper left, then using the Upload button.
> Once you've done this, you can submit your project by clicking on the "Submit Project" button in the lower right here. This will create and submit a zip file with this .ipynb doc and the .html or .pdf version you created. Congratulations!
```
from subprocess import call
call(['python', '-m', 'nbconvert', 'Analyze_ab_test_results_notebook.ipynb'])
```
| github_jupyter |
# Standalone Convergence Checker for the numerical vKdV solver
Copied from Standalone Convergence Checker for the numerical KdV solver - just add bathy
Does not save or require any input data
```
import xarray as xr
from iwaves.kdv.kdvimex import KdVImEx#from_netcdf
from iwaves.kdv.vkdv import vKdV
from iwaves.kdv.solve import solve_kdv
#from iwaves.utils.plot import vKdV_plot
import iwaves.utils.initial_conditions as ics
import numpy as np
from scipy.interpolate import PchipInterpolator as pchip
import matplotlib.pyplot as plt
%matplotlib inline
from matplotlib import rcParams
# Set font sizes
rcParams['font.family'] = 'sans-serif'
rcParams['font.sans-serif'] = ['Bitstream Vera Sans']
rcParams['font.serif'] = ['Bitstream Vera Sans']
rcParams["font.size"] = "14"
rcParams['axes.labelsize']='large'
# CONSTANTS FOR WHOLE NOTEBOOK
d = 252.5
L_d = 3.0e5
Nz = 100
# Functions
def run_kdv(args):
"""
Main function for generating different soliton scenarios
"""
rho_params, bathy_params, a0, L_d, mode, nu_H, dx, runtime, dt, Lw = args
####################################################
# Inputs
mode = 0
Nz = 100
ntout = 1800.0
z = np.linspace(0, -d, Nz)
dz = np.abs(z[1]-z[0])
x = np.arange(-2*dx,L_d+dx,dx)
h = ics.depth_tanh2(bathy_params, x)
kdvargs = dict(\
verbose=False,\
a0=a0,\
Lw=Lw,\
mode=mode,
dt=dt,\
nu_H=nu_H,\
ekdv=False,\
wavefunc=ics.eta_fullsine,\
#L_d = L_d,
x=x,\
Nsubset=10,
)
###
# THIS WAS COPIED FROM THE KdV VERSION. IT INITIALISES EACH vKdV 3 TIMES - QUITE SLOW.
###
ii=0
#rhoz = single_tanh_rho(
# z, pp['rho0'][ii], pp['drho1'][ii], pp['z1'][ii], pp['h1'][ii])
rhoz = ics.rho_double_tanh_rayson(rho_params,z)
######
## Call the vKdV run function
mykdv, Bda, density = solve_kdv(rhoz, z, runtime,\
solver='vkdv', h=h, ntout=ntout, outfile=None, **kdvargs)
print('Done with dx={} and dt={}'.format(dx, dt))
return mykdv, Bda
dx = 10
x = np.arange(-2*dx,L_d+dx,dx)
bathy_params = [L_d*0.6, 50000, d+50, d-50]
h = ics.depth_tanh2(bathy_params, x)
plt.figure(figsize=(9,5))
plt.plot(x, h, 'k')
plt.ylabel('h (m)')
plt.xlabel('x (m)')
plt.title('vKdV bathy')
#betas = [1023.7, 1.12, 105, 52, 155, 43] # ~April 5
#betas = [1023.5, 1.22, 67, 55, 157, 52] # ~March 1
betas_w = [1023.8229810318612,
0.9865506702797462,
143.5428700089361,
46.1265812512485,
136.66278860120943,
41.57014327398592] # 15 July 2016
betas_s =[1023.6834358117951,
1.2249066117658955,
156.78804559089772,
53.66835548728355,
73.14183287436342,
40.21031777315428] # 1st April 2017
a0 = 20.
mode =0
nu_H = 0
runtime = 1.25*86400.
# Going to make Lw an input for the vKdV as it will really speed things up.
dx = 100
dt = 10
z = np.linspace(0, -d, Nz)
rhoz_w = ics.rho_double_tanh_rayson(betas_w, z)
rhoz_s = ics.rho_double_tanh_rayson(betas_s, z)
Lw_w = ics.get_Lw(rhoz_w, z, z0=max(h), mode=0)
Lw_s = ics.get_Lw(rhoz_s, z, z0=max(h), mode=0)
print(Lw_w)
print(Lw_s)
dxs =[1600,800,400,200,100,75,50,37.5,25]
dxs =[800,400,200,100,75,50,35]
dt = 8.
all_kdv_dx_w = []
all_kdv_dx_s = []
for dx in dxs:
print(' ')
print('Running dx={}'.format(dx))
print(' ')
mykdv, B = run_kdv( (betas_w, bathy_params, a0, L_d, mode, nu_H, dx, runtime, dt, Lw_w))
all_kdv_dx_w.append(mykdv)
mykdv, B = run_kdv( (betas_s, bathy_params, a0, L_d, mode, nu_H, dx, runtime, dt, Lw_s))
all_kdv_dx_s.append(mykdv)
print(' ')
print('Completed dx={}'.format(dx))
print(' ')
plt.figure(figsize=(9,5))
for mykdv in all_kdv_dx_s:
plt.plot(mykdv.x, mykdv.B, label=mykdv.dx_s)
# plt.xlim((162200, 163600))
plt.legend()
plt.show()
plt.figure(figsize=(9,5))
for mykdv in all_kdv_dx_s:
plt.plot(mykdv.x, mykdv.B, label=mykdv.dx_s)
# plt.xlim((162200, 163600))
plt.ylim((-65, 40))
plt.xlim((165000, 185000))
plt.legend()
plt.figure(figsize=(9,5))
for mykdv in all_kdv_dx_w:
plt.plot(mykdv.x, mykdv.B, label=mykdv.dx_s)
plt.legend()
plt.show()
plt.figure(figsize=(9,5))
for mykdv in all_kdv_dx_w:
plt.plot(mykdv.x, mykdv.B, label=mykdv.dx_s)
plt.legend()
plt.ylim((-40, 10))
plt.xlim((135000, 170000))
# Compute the errors
X = np.arange(0,L_d, 10.)
nx = X.shape[0]
ndx = len(dxs)
solns = np.zeros((ndx, nx))
for ii, mykdv in enumerate(all_kdv_dx_w):
Fx = pchip(mykdv.x, mykdv.B)
solns[ii,:] = Fx(X)
# Compute the error between each solution
#err = np.diff(solns, axis=0)
err = solns - solns[-1,:]
err_rms_w = np.linalg.norm(err, ord=2, axis=1) # L2-norm
#err_rms_w = np.sqrt(np.mean(err**2,axis=1))
solns = np.zeros((ndx, nx))
for ii, mykdv in enumerate(all_kdv_dx_s):
Fx = pchip(mykdv.x, mykdv.B)
solns[ii,:] = Fx(X)
# Compute the error between each solution
#err = np.diff(solns, axis=0)
err = solns - solns[-1,:]
err_rms_s = np.linalg.norm(err, ord=2, axis=1) # L2-norm
#err_rms_s = np.sqrt(np.mean(err**2,axis=1))
plt.figure(figsize=(9,8))
plt.loglog(dxs[:-1],err_rms_s[:-1],'ko')
plt.loglog(dxs[:-1],err_rms_w[:-1],'s', color='0.5')
plt.xlim(2e1,2e3)
plt.ylim(1e1,2e3)
plt.grid(b=True)
x0 = np.array([50,100.])
plt.plot(x0, 100/x0[0]**2*x0**2, 'k--')
plt.plot(x0, 100/x0[0]**1*x0**1, 'k:')
plt.ylabel('L2-norm Error [m]')
plt.xlabel('$\Delta x$ [m]')
alpha_s = -2*all_kdv_dx_s[0].c1*all_kdv_dx_s[0].r10
beta_s = -1*all_kdv_dx_s[0].r01
alpha_w = -2*all_kdv_dx_w[0].c1*all_kdv_dx_w[0].r10
beta_w = -1*all_kdv_dx_w[0].r01
plt.legend((r'$\alpha$ = (%3.4f,%3.4f), $\beta$ = (%3.4f,%3.4f)'%(min(alpha_s), max(alpha_s), min(beta_s), max(beta_s)),
r'$\alpha$ = (%3.4f,%3.4f), $\beta$ = (%3.4f,%3.4f)'%(min(alpha_w), max(alpha_w), min(beta_w), max(beta_w))), loc='lower right')
# Delta t comparison
dts = [20,10.,5,2.5,1.25,0.6,0.3]
dx = 50.
all_kdv_dt_w = []
all_kdv_dt_s = []
for dt in dts:
print(' ')
print('Running dt={}'.format(dt))
print(' ')
mykdv, B = run_kdv( (betas_w, bathy_params, a0, L_d, mode, nu_H, dx, runtime, dt, Lw_w))
all_kdv_dt_w.append(mykdv)
mykdv, B = run_kdv( (betas_s, bathy_params, a0, L_d, mode, nu_H, dx, runtime, dt, Lw_s))
all_kdv_dt_s.append(mykdv)
print(' ')
print('Completed dt={}'.format(dt))
print(' ')
plt.figure(figsize=(9,5))
for mykdv in all_kdv_dt_s:
plt.plot(mykdv.x, mykdv.B, label=mykdv.dt_s)
plt.legend()
plt.show()
plt.figure(figsize=(9,5))
for mykdv in all_kdv_dt_s:
plt.plot(mykdv.x, mykdv.B, label=mykdv.dt_s)
plt.legend()
plt.ylim((-50, 30))
plt.xlim((195000, 210000))
plt.figure(figsize=(9,5))
for mykdv in all_kdv_dt_w:
plt.plot(mykdv.x, mykdv.B, label=mykdv.dt_s)
plt.legend()
plt.show()
plt.figure(figsize=(9,5))
for mykdv in all_kdv_dt_w:
plt.plot(mykdv.x, mykdv.B, label=mykdv.dt_s)
plt.legend()
plt.ylim((-30, 1))
plt.xlim((175000, 205000))
# Compute the errors
X = np.arange(0,L_d, 10.)
nx = X.shape[0]
ndx = len(dts)
solns = np.zeros((ndx, nx))
for ii, mykdv in enumerate(all_kdv_dt_w):
print(ii)
Fx = pchip(mykdv.x, mykdv.B)
solns[ii,:] = Fx(X)
# Compute the error between each solution
#err = np.diff(solns, axis=0)
err = solns - solns[-1,:]
err_rms_w_t = np.linalg.norm(err, ord=2, axis=1) # L2-norm
#err_rms_w = np.sqrt(np.mean(err**2,axis=1))
solns = np.zeros((ndx, nx))
for ii, mykdv in enumerate(all_kdv_dt_s):
print(ii)
Fx = pchip(mykdv.x, mykdv.B)
solns[ii,:] = Fx(X)
# Compute the error between each solution
#err = np.diff(solns, axis=0)
err = solns - solns[-1,:]
err_rms_s_t = np.linalg.norm(err, ord=2, axis=1) # L2-norm
#err_rms_s = np.sqrt(np.mean(err**2,axis=1))
plt.figure(figsize=(12,8))
ax=plt.subplot(121)
plt.loglog(dxs[:-1],err_rms_s[:-1],'ko', markersize=6)
plt.loglog(dxs[:-1],err_rms_w[:-1],'s', color='0.5', markersize=4)
plt.xlim(2e1,2e3)
plt.ylim(1e0,2e3)
plt.grid(b=True)
x0 = np.array([50,100.])
plt.plot(x0, 100/x0[0]**2*x0**2, 'k--')
plt.plot(x0, 100/x0[0]**1*x0**1, 'k:')
plt.ylabel('L2-norm Error [m]')
plt.xlabel('$\Delta x$ [m]')
alpha_s = -2*all_kdv_dx_s[0].c1*all_kdv_dx_s[0].r10
beta_s = -1*all_kdv_dx_s[0].r01
alpha_w = -2*all_kdv_dx_w[0].c1*all_kdv_dx_w[0].r10
beta_w = -1*all_kdv_dx_w[0].r01
plt.legend((r'$\alpha$ = (%3.3f, %3.3f), $\beta$ = (%3.0f, %3.0f)'%(min(alpha_s), max(alpha_s), min(beta_s), max(beta_s)),
r'$\alpha$ = (%3.3f, %3.3f), $\beta$ = (%3.0f, %3.0f)'%(min(alpha_w), max(alpha_w), min(beta_w), max(beta_w))), loc='lower right')
plt.text(0.05,0.95,'(a)',transform=ax.transAxes)
ax=plt.subplot(122)
plt.loglog(dts[:-1],err_rms_s_t[:-1],'kd', markersize=6)
plt.loglog(dts[:-1],err_rms_w_t[:-1],'s', color='0.5', markersize=4)
plt.xlim(0,0.5e2)
plt.ylim(1e-2,1e3)
plt.grid(b=True)
x0 = np.array([5,20])
plt.plot(x0, 10/x0[0]**2*x0**2, 'k--')
plt.plot(x0, 10/x0[0]**1*x0**1, 'k:')
#plt.ylabel('L2-norm Error [m]')
plt.xlabel('$\Delta t$ [s]')
plt.text(0.05,0.95,'(b)',transform=ax.transAxes)
alpha_s = -2*all_kdv_dt_s[0].c1*all_kdv_dt_s[0].r10
beta_s = -1*all_kdv_dt_s[0].r01
alpha_w = -2*all_kdv_dt_w[0].c1*all_kdv_dt_w[0].r10
beta_w = -1*all_kdv_dt_w[0].r01
plt.legend((r'$\alpha$ = (%3.3f, %3.3f), $\beta$ = (%3.0f, %3.0f)'%(min(alpha_s), max(alpha_s), min(beta_s), max(beta_s)),
r'$\alpha$ = (%3.3f, %3.3f), $\beta$ = (%3.0f, %3.0f)'%(min(alpha_w), max(alpha_w), min(beta_w), max(beta_w))), loc='lower right')
# plt.savefig('../FIGURES/vkdv_convergence_dxdt.png',dpi=150)
# plt.savefig('../FIGURES/vkdv_convergence_dxdt.pdf',dpi=150)
```
| github_jupyter |
## Random Forest Classification
### Random Forest
#### The fundamental idea behind a random forest is to combine many decision trees into a single model. Individually, predictions made by decision trees (or humans) may not be accurate, but combined together, the predictions will be closer to the mark on average.
#### Pros
- can handle large datasets
- can handle missing values
- less influenced by outliers in the data
- no assumptions about underlying distributions in the data
- can implicitly handle collinearity in features, highly similar features
- work well with categorical and numerical features, mixing different range values
#### Cons
- robust algorithm makes it more complex tougher to analyze small details
- not best to determine feature and target relationships/effects due to working with highly similar features
### Model Set Up
#### Steps
- load the data
- determine regression or classification target
- inspect, clean, organize data
- check for, handle outliers
- encode data if necessary
- set features and target
- train, test split the data
- scale the data if necessary
- build the model, fit on the data, run the model
- run metrics, analyze, view results, adjust parameters, repeat until satisfied...
### Regression Models
#### Random Forest Classification
1 dependent variable (binary) , 1+ independent variables (interval or ratio or categorical)
![photo](https://upload.wikimedia.org/wikipedia/commons/7/76/Random_forest_diagram_complete.png)
- classification predictor
- generate reasonable predictions across a wide range of data while requiring little configuration
#### Classification Models
##### Import + Inspect
```
### imports ###
import pandas as pd
import numpy as np
import sklearn
df = pd.read_csv('https://raw.githubusercontent.com/CVanchieri/CS_Notes/main/Classification_Notes/bill_authentication.csv') # read in the file
print('data frame shape:', df.shape) # show the data frame shape
df.head() # show the data frame
### inspecting the data ###
print('--- INSPECTING THE DATA --- ')
print('--- columns --- ')
print(df.columns)
print('--- types --- ')
print(df.dtypes)
print('--- NA counts --- ')
print(df.isna().sum())
# print('--- object descriptions --- ')
# print(df.describe(include=object))
print('--- numericals descriptions --- ')
df.describe()
### view basic feature correlations ###
print('--- feature correlations ---')
df.corr()
### view basic feature correlations in a heatmap ###
import seaborn as sns
import matplotlib.pyplot as plt
f, ax = plt.subplots(1, 1, figsize = (10, 7))
print('--- feature correlations heatmap ---')
sns.heatmap(df.corr() , cmap = 'Wistia' , annot = True)
### view scatter plots for each feature vs. target ###
import matplotlib.pyplot as plt
target_ = 'Class' # set the target
features_ = df.iloc[:, 0:4] # set the features
print('--- bar plots ---')
for feature in features_:
figure = plt.figure
f, ax = plt.subplots(1, 1, figsize = (10, 7))
ax = plt.gca()
ax.bar(df[target_], df[feature])
ax.set_xlabel(target_)
ax.set_ylabel(feature)
ax.set_title(f'''{target_} vs {feature}''')
plt.show()
```
##### Encode + Clean + Organize
```
### encoding not necessary with this example, all are numericals ###
### check for outliers in the data ###
import matplotlib.pyplot as plt
# view each feature in a boxplot
for column in df:
plt.figure() # plot figure
f, ax = plt.subplots(1, 1, figsize = (10, 7))
df.boxplot([column]) # set data
### function to find outliers in the data ###
def outlier_zscore(data):
global outliers,zscore
outliers = []
zscore = []
threshold = 3.5 # set threshold
mean = np.mean(data)
std = np.std(data)
for i in data:
z_score = (i - mean)/std # calculate the z_score
zscore.append(z_score) # append the score to the zscore
if np.abs(z_score) > threshold:
outliers.append(i) # append z_score the outliers
print(outliers)
return len(outliers), outliers
### run each feature 'wanted' through the function ###
print('--- possible outliers --- ')
Variance_outliers_number, Variance_outliers = outlier_zscore(df.Variance)
Skewness_outliers_number, Skewness_outliers = outlier_zscore(df.Skewness)
Curtosis_outliers_number, Curtosis_outliers = outlier_zscore(df.Curtosis)
Entropy_outliers_number, Entropy_outliers = outlier_zscore(df.Entropy)
Class_outliers_number, Class_outliers = outlier_zscore(df.Class)
### removal of outliers per feature ###
for num, i in enumerate(df['Curtosis']): # removing the outliers of 'bmi'
if i in Curtosis_outliers:
df['Curtosis'][num] = 13.5 # 3.5 under the lowest outlier
for num, i in enumerate(df['Entropy']): # removing the outliers of 'charges'
if i in Entropy_outliers:
df['Entropy'][num] = -5.5 # 3.5 under the lowest outlier
```
#### Random Forest Classification
- GridSearch CV
- RandomSearch CV
```
### copy the data frame ###
df1 = df.copy()
### split the data into features & target sets ###
X = df1.iloc[:, 0:4].values # set the features
y = df1.iloc[:, 4].values # set the target
print('--- data shapes --- ')
print('X shape:', X.shape)
print('y shape:', y.shape)
### set the train test split parameters ###
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # split 80/20
### feature scaling ###
from sklearn.preprocessing import StandardScaler
sc = StandardScaler() # initiate the scalar
X_train = sc.fit_transform(X_train) # fit transform the data with scalar
X_test = sc.transform(X_test) # fit transform the data with scalar
### random forest classifier ###
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
model = RandomForestClassifier()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
#### create data frame of predictions and results ###
y_pred_df = pd.DataFrame(y_pred, columns=["Predicted_Values" ])
y_test_df = pd.DataFrame(np.array(y_test), columns=["Real_Values"])
df_final = pd.concat([y_test_df , y_pred_df] , axis=1)
print('--- real values vs predicted values ---')
print(df_final.head())
### get the model metrics ###
print('--- model metrics ---')
print('mean absolute error:', metrics.mean_absolute_error(y_test, y_pred)) # mae
print('mean squared error:', metrics.mean_squared_error(y_test, y_pred)) # mse
print('root mean squared error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) # rmse
score = metrics.r2_score(y_test , y_pred) # get the r2 score
print("r2 score = {}".format(score)) # show the r2 score
print('model score=', model.score(X_train, y_train)) # show the model score
print("model accuracy= {}%".format(score * 100)) # show the model accuracy
print('--- confusion matrix ---')
print(metrics.confusion_matrix(y_test,y_pred)) # confusion matrix
print('--- classification report ---')
print(metrics.classification_report(y_test,y_pred)) # classificatin report
print('model accuracy score=', metrics.accuracy_score(y_test, y_pred)) # model accuracy
### visualize the model prediction accuracy ###
import seaborn as sns
import matplotlib.pyplot as plt
### configure the plot ###
print('--- distplot accuracy --- ')
f, ax = plt.subplots(1, 1, figsize = (10, 7))
ax1 = sns.distplot(y_test, hist=False, color="b", label="Actual Values")
sns.distplot(y_pred, hist=False, color="r", label="Predicted Values" , axlabel='Charges', ax=ax1)
plt.legend()
```
###### GridSearch CV
```
### copy the data frame ###
df2 = df.copy()
### split the data into features & target sets ###
# for single regression select 1 feature
X = df2.iloc[:, 0:4].values # set the features
y = df2.iloc[:, 4].values # set the target
print('--- data shapes --- ')
print('X shape:', X.shape)
print('y shape:', y.shape)
### set the train test split parameters ###
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # split 80/20
### feature scaling ###
from sklearn.preprocessing import StandardScaler
sc = StandardScaler() # initiate the scalar
X_train = sc.fit_transform(X_train) # fit transform the data with scalar
X_test = sc.transform(X_test) # fit transform the data with scalar
### random forest classifier + gridsearch CV model ###
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
model1 = RandomForestClassifier()
param_grid = { # create the param grid
'n_estimators': [20, 100, 200],
'max_features': ['auto', 'sqrt', 'log2'],
'max_leaf_nodes' : [2, 6, 10],
'max_depth' : [5, 15, 25],
'min_samples_split' : [2, 10, 15],
# 'bootstrap': [True, False],
# 'ccp_alpha': [0.0, 0.25, 0.50],
# 'criterion': 'mse',
# 'max_samples': [2, 10, 15],
# 'min_impurity_decrease': [0.0, 0.25, 0.50],
# 'min_impurity_split': [2, 10, 15],
# 'min_samples_leaf': [1, 5, 10],
# 'min_weight_fraction_leaf': [0.0, 0.25, 0.50],
# 'n_jobs': [1, 2, 5],
# 'oob_score': [True, False],
# 'random_state': [0, 2, 4],
# 'verbose': [1],
# 'warm_start': [True, False]
}
CV_rfc = GridSearchCV(estimator=model1, param_grid=param_grid, cv=3)
print('--- model runtime --- ')
%time CV_rfc.fit(X_train, y_train)
print('--- best params --- ')
CV_rfc.best_params_
### random forest classifier + grid best params ###
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
model1 = RandomForestClassifier(
max_depth= 25,
max_features= 'log2',
max_leaf_nodes= 10,
min_samples_split= 2,
n_estimators= 20
)
print('--- model runtime --- ')
%time model1.fit(X_train, y_train)
y_pred = model1.predict(X_test)
#### create data frame of predictions and results ###
y_pred_df = pd.DataFrame(y_pred, columns=["Predicted_Values" ])
y_test_df = pd.DataFrame(np.array(y_test), columns=["Real_Values"])
df_final = pd.concat([y_test_df , y_pred_df] , axis=1)
print('--- real values vs predicted values ---')
print(df_final.head())
### get the model1 metrics ###
print('--- model metrics ---')
print('mean absolute error:', metrics.mean_absolute_error(y_test, y_pred)) # mae
print('mean squared error:', metrics.mean_squared_error(y_test, y_pred)) # mse
print('root mean squared error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) # rmse
score = metrics.r2_score(y_test , y_pred) # get the r2 score
print("r2 score = {}".format(score)) # show the r2 score
print('model score=', model1.score(X_train, y_train)) # show the model score
print("model accuracy= {}%".format(score * 100)) # show the model accuracy
print('--- confusion matrix ---')
print(metrics.confusion_matrix(y_test,y_pred)) # confusion matrix
print('--- classification report ---')
print(metrics.classification_report(y_test,y_pred)) # classificatin report
print('model1 accuracy score=', metrics.accuracy_score(y_test, y_pred)) # model accuracy
### visualize the model prediction accuracy ###
import seaborn as sns
import matplotlib.pyplot as plt
### configure the plot ###
print('--- distplot accuracy --- ')
f, ax = plt.subplots(1, 1, figsize = (10, 7))
ax1 = sns.distplot(y_test, hist=False, color="b", label="Actual Values")
sns.distplot(y_pred, hist=False, color="r", label="Predicted Values" , axlabel='Charges', ax=ax1)
plt.legend()
```
###### RandomSearch CV
```
### copy the data frame ###
df3 = df.copy()
### split the data into features & target sets ###
# for single regression select the 1 feature
X = df3.iloc[:, 0:4].values # set the features
y = df3.iloc[:, 4].values # set the target
print('--- data shapes --- ')
print('X shape:', X.shape) # show the shape
print('y shape:', y.shape) # show the shape
### set the train test split parameters ###
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) # split 80/20
### feature scaling ###
from sklearn.preprocessing import StandardScaler
sc = StandardScaler() # initiate the scalar
X_train = sc.fit_transform(X_train) # fit transform the data with scalar
X_test = sc.transform(X_test) # fit transform the data with scalar
### random forest classifier + randomizedsearch CV model ###
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import RandomizedSearchCV
model2 = RandomForestClassifier()
param_grid = { # create the param grid
'n_estimators': [20, 100, 200],
'max_features': ['auto', 'sqrt', 'log2'],
'max_leaf_nodes' : [2, 6, 10],
'max_depth' : [5, 15, 25],
'min_samples_split' : [2, 10, 15],
# 'bootstrap': [True, False],
# 'ccp_alpha': [0.0, 0.25, 0.50],
# 'criterion': 'mse',
# 'max_samples': [2, 10, 15],
# 'min_impurity_decrease': [0.0, 0.25, 0.50],
# 'min_impurity_split': [2, 10, 15],
# 'min_samples_leaf': [1, 5, 10],
# 'min_weight_fraction_leaf': [0.0, 0.25, 0.50],
# 'n_jobs': [1, 2, 5],
# 'oob_score': [True, False],
# 'random_state': [0, 2, 4],
# 'verbose': [1],
# 'warm_start': [True, False]
}
CV_rfc = RandomizedSearchCV(model2, param_grid, cv=3)
%time CV_rfc.fit(X_train, y_train)
CV_rfc.best_params_
### random forest classifier + random best params ###
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
model2 = RandomForestClassifier(
max_depth= 15,
max_features= 'auto',
max_leaf_nodes= 10,
min_samples_split= 15,
n_estimators= 20
)
print('--- model runtime --- ')
%time model2.fit(X_train, y_train)
y_pred = model2.predict(X_test)
#### create data frame of predictions and results ###
y_pred_df = pd.DataFrame(y_pred, columns=["Predicted_Values" ])
y_test_df = pd.DataFrame(np.array(y_test), columns=["Real_Values"])
df_final = pd.concat([y_test_df , y_pred_df] , axis=1)
print('--- real values vs predicted values ---')
print(df_final.head())
### get the model2 metrics ###
print('--- model metrics ---')
print('mean absolute error:', metrics.mean_absolute_error(y_test, y_pred)) # mae
print('mean squared error:', metrics.mean_squared_error(y_test, y_pred)) # mse
print('root mean squared error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) # rmse
score = metrics.r2_score(y_test , y_pred) # get the r2 score
print("r2 score = {}".format(score)) # show the r2 score
print('model score=', model2.score(X_train, y_train)) # show the model score
print("model accuracy= {}%".format(score * 100)) # show the model accuracy
print('--- confusion matrix ---')
print(metrics.confusion_matrix(y_test,y_pred)) # confusion matrix
print('--- classification report ---')
print(metrics.classification_report(y_test,y_pred)) # classificatin report
print('model2 accuracy score=', metrics.accuracy_score(y_test, y_pred)) # model accuracy
### visualize the model prediction accuracy ###
import seaborn as sns
import matplotlib.pyplot as plt
### configure the plot ###
print('--- distplot accuracy --- ')
f, ax = plt.subplots(1, 1, figsize = (10, 7))
ax1 = sns.distplot(y_test, hist=False, color="b", label="Actual Values")
sns.distplot(y_pred, hist=False, color="r", label="Predicted Values" , axlabel='Charges', ax=ax1)
plt.legend()
```
| github_jupyter |
<a href="https://colab.research.google.com/github/thingumajig/colab-experiments/blob/master/RetinaNet_Video_Object_Detection.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a>
# .init
## setup keras-retinanet
```
!git clone https://github.com/fizyr/keras-retinanet.git
%cd keras-retinanet/
!pip install .
!python setup.py build_ext --inplace
```
## download model
```
#!curl -LJO --output snapshots/pretrained.h5 https://github.com/fizyr/keras-retinanet/releases/download/0.5.0/resnet50_coco_best_v2.1.0.h5
import urllib
PRETRAINED_MODEL = './snapshots/_pretrained_model.h5'
URL_MODEL = 'https://github.com/fizyr/keras-retinanet/releases/download/0.5.0/resnet50_coco_best_v2.1.0.h5'
urllib.request.urlretrieve(URL_MODEL, PRETRAINED_MODEL)
```
# inference
## modules
```
!pwd
#import os, sys
#sys.path.insert(0, 'keras-retinanet')
# show images inline
%matplotlib inline
# automatically reload modules when they have changed
%load_ext autoreload
%autoreload 2
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = '0'
# import keras
import keras
from keras_retinanet import models
from keras_retinanet.utils.image import read_image_bgr, preprocess_image, resize_image
from keras_retinanet.utils.visualization import draw_box, draw_caption
from keras_retinanet.utils.colors import label_color
# import miscellaneous modules
import matplotlib.pyplot as plt
import cv2
import numpy as np
import time
# set tf backend to allow memory to grow, instead of claiming everything
import tensorflow as tf
def get_session():
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
return tf.Session(config=config)
# use this environment flag to change which GPU to use
#os.environ["CUDA_VISIBLE_DEVICES"] = "1"
# set the modified tf session as backend in keras
keras.backend.tensorflow_backend.set_session(get_session())
```
## load model
```
# %cd keras-retinanet/
model_path = os.path.join('snapshots', sorted(os.listdir('snapshots'), reverse=True)[0])
print(model_path)
print(os.path.isfile(model_path))
# load retinanet model
model = models.load_model(model_path, backbone_name='resnet50')
# model = models.convert_model(model)
# load label to names mapping for visualization purposes
labels_to_names = {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon',
45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange',
50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut',
55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed',
60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse',
65: 'remote', 66: 'keyboard', 67: 'cell phone', 68: 'microwave',
69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book',
74: 'clock', 75: 'vase', 76: 'scissors', 77: 'teddy bear', 78: 'hair drier',
79: 'toothbrush'}
```
## detect objects
```
def img_inference(img_path, threshold_score = 0.8):
image = read_image_bgr(img_path)
# copy to draw on
draw = image.copy()
draw = cv2.cvtColor(draw, cv2.COLOR_BGR2RGB)
# preprocess image for network
image = preprocess_image(image)
image, scale = resize_image(image)
# process image
start = time.time()
boxes, scores, labels = model.predict_on_batch(np.expand_dims(image, axis=0))
print("processing time: ", time.time() - start)
# correct for image scale
boxes /= scale
# visualize detections
for box, score, label in zip(boxes[0], scores[0], labels[0]):
# scores are sorted so we can break
if score < threshold_score:
break
color = label_color(label)
b = box.astype(int)
draw_box(draw, b, color=color)
caption = "{} {:.3f}".format(labels_to_names[label], score)
draw_caption(draw, b, caption)
plt.figure(figsize=(10, 10))
plt.axis('off')
plt.imshow(draw)
plt.show()
img_inference('examples/000000008021.jpg')
from tensorflow.python.client import device_lib
def get_available_gpus():
local_device_protos = device_lib.list_local_devices()
return [x.physical_device_desc for x in local_device_protos if x.device_type == 'GPU']
GPU = get_available_gpus()[-1][0:-1]
print(GPU)
import glob
def create_video(img_path, name ='processed', img_ext = '*.jpg', image_size=(1280, 720)):
_name = name + '.mp4'
#_cap = VideoCapture(0)
_fourcc = cv2.VideoWriter_fourcc(*'MP4V')
_out = cv2.VideoWriter(_name, _fourcc, 15.0, image_size)
# out = cv2.VideoWriter('project.avi',cv2.VideoWriter_fourcc(*'DIVX'), 15, size)
for filename in sorted(glob.glob(os.path.join(img_path, img_ext))):
print(filename)
img = cv2.imread(filename)
_out.write(img)
del img
_out.release()
import unicodedata
import string
valid_filename_chars = f"-_.() {string.ascii_letters}{string.digits}"
char_limit = 255
def clean_filename(filename, whitelist=valid_filename_chars, replace=' '):
# replace spaces
for r in replace:
filename = filename.replace(r, '_')
# keep only valid ascii chars
cleaned_filename = unicodedata.normalize('NFKD', filename).encode('ASCII', 'ignore').decode()
# keep only whitelisted chars
cleaned_filename = ''.join(c for c in cleaned_filename if c in whitelist)
if len(cleaned_filename) > char_limit:
print(f"Warning, filename truncated because it was over {char_limit}. Filenames may no longer be unique")
return cleaned_filename[:char_limit]
import colorsys
import random
from tqdm import tqdm
N = len(labels_to_names)
HSV_tuples = [(x*1.0/N, 0.5, 0.5) for x in range(N)]
RGB_tuples = list(map(lambda x: tuple(255*np.array(colorsys.hsv_to_rgb(*x))), HSV_tuples))
random.shuffle(RGB_tuples)
def object_detect_video(video_path, out_temp_dir='tmp', video_name = 'processed', threshold = 0.6):
cap = cv2.VideoCapture(video_path)
if not os.path.exists(out_temp_dir):
os.makedirs(out_temp_dir)
tq = tqdm(total=1, unit="frame(s)")
counter = 0
sum_time = 0
video_out = None
while(True):
ret, draw = cap.read()
if not ret:
break
bgr = cv2.cvtColor(draw, cv2.COLOR_RGB2BGR)
# preprocess image for network
image = preprocess_image(bgr)
image, scale = resize_image(image)
if counter == 0:
height, width, channels = draw.shape
#print(f'Shape: {width}X{height}')
_name = video_name + '.mp4'
_fourcc = cv2.VideoWriter_fourcc(*'MP4V')
video_out = cv2.VideoWriter(_name, _fourcc, 20.0, (width, height))
# process image
start = time.time()
boxes, scores, labels = model.predict_on_batch(np.expand_dims(image, axis=0))
t = time.time() - start
#print(f"frame:{counter} processing time: {t}")
tq.total += 1
# fancy way to give info without forcing a refresh
tq.set_postfix(dir=f'frame {counter} time {sum_time}', refresh=False)
tq.update(0) # may trigger a refresh
# correct for image scale
boxes /= scale
# visualize detections
#draw_detections(image, boxes, scores, labels, color=None, label_to_name=None, score_threshold=0.5)
for box, score, label in zip(boxes[0], scores[0], labels[0]):
if score < threshold:
continue
color = label_color(label)
b = box.astype(int)
draw_box(draw, b, color=color)
caption = f"{labels_to_names[label]} {score:.3f}"
draw_caption(draw, b, caption)
if sum_time>0:
cv2.putText(draw, "Processing time %.2fs (%.1ffps) AVG %.2fs (%.1ffps)"%(t,1.0/t,sum_time/counter,counter/sum_time), (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 7)
cv2.putText(draw, "Processing time %.2fs (%.1ffps) AVG %.2fs (%.1ffps)"%(t,1.0/t,sum_time/counter,counter/sum_time), (10, 70), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 3)
# cv2.imwrite(os.path.join(out_temp_dir, f'img{counter:08d}.jpg'),draw)
video_out.write(draw)
counter=counter+1
sum_time+=t
cap.release()
video_out.release()
cv2.destroyAllWindows()
tq.set_postfix(dir=video_path)
tq.close()
from google.colab import files
uploaded = files.upload()
for fn in uploaded.keys():
print(f'User uploaded file "{fn}" with length {len(uploaded[fn])} bytes')
fn0 = clean_filename(fn)
#with open(fn0, "wb") as df:
# df.write(uploaded[fn])
# df.close()
object_detect_video(fn, f'{fn0}_tmp', video_name=f'{os.path.basename(fn0)}_processed', threshold = 0.5)
#create_video(f'{fn0}_tmp')
files.download(f'{os.path.basename(fn0)}_processed.mp4')
# object_detect_video('Canada vs. Finland - Gold Medal Game - Game Highlights - IIHFWorlds 2019.mp4', 'video_tmp', video_name = 'processed2')
#sorted(glob.glob('/content/keras-retinanet/video_tmp/*.jpg'))
#create_video('/content/keras-retinanet/video_tmp')
```
| github_jupyter |
# Project: Part of Speech Tagging with Hidden Markov Models
---
### Introduction
Part of speech tagging is the process of determining the syntactic category of a word from the words in its surrounding context. It is often used to help disambiguate natural language phrases because it can be done quickly with high accuracy. Tagging can be used for many NLP tasks like determining correct pronunciation during speech synthesis (for example, _dis_-count as a noun vs dis-_count_ as a verb), for information retrieval, and for word sense disambiguation.
In this notebook, we'll use the [Pomegranate](http://pomegranate.readthedocs.io/) library to build a hidden Markov model for part of speech tagging using a "universal" tagset. Hidden Markov models have been able to achieve [>96% tag accuracy with larger tagsets on realistic text corpora](http://www.coli.uni-saarland.de/~thorsten/publications/Brants-ANLP00.pdf). Hidden Markov models have also been used for speech recognition and speech generation, machine translation, gene recognition for bioinformatics, and human gesture recognition for computer vision, and more.
![](_post-hmm.png)
### The Road Ahead
We will complete this project in 3 steps mentioned below. The section on Step 4 includes references & resources you can use to further explore HMM taggers.
- [Step 1](#Step-1:-Read-and-preprocess-the-dataset): Review the provided interface to load and access the text corpus
- [Step 2](#Step-2:-Build-a-Most-Frequent-Class-tagger): Build a Most Frequent Class tagger to use as a baseline
- [Step 3](#Step-3:-Build-an-HMM-tagger): Build an HMM Part of Speech tagger and compare to the MFC baseline
- [Step 4](#Step-4:-[Optional]-Improving-model-performance): (Optional) Improve the HMM tagger
<div class="alert alert-block alert-warning">
**Note:** Make sure you have selected a **Python 3** kernel in Workspaces or the hmm-tagger conda environment if you are running the Jupyter server on your own machine.
</div>
```
# Jupyter "magic methods" -- only need to be run once per kernel restart
%load_ext autoreload
%aimport helpers, tests
%autoreload 1
# import python modules -- this cell needs to be run again if you make changes to any of the files
import matplotlib.pyplot as plt
import numpy as np
from IPython.core.display import HTML
from itertools import chain
from collections import Counter, defaultdict
from helpers import show_model, Dataset
from pomegranate import State, HiddenMarkovModel, DiscreteDistribution
```
## Step 1: Read and preprocess the dataset
---
We'll start by reading in a text corpus and splitting it into a training and testing dataset. The data set is a copy of the [Brown corpus](https://en.wikipedia.org/wiki/Brown_Corpus) (originally from the [NLTK](https://www.nltk.org/) library) that has already been pre-processed to only include the [universal tagset](https://arxiv.org/pdf/1104.2086.pdf). We should get slightly higher accuracy using this simplified tagset than the same model would achieve on a larger tagset like the full [Penn treebank tagset](https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html).
The `Dataset` class provided in helpers.py will read and parse the corpus. You can generate your own datasets compatible with the reader by writing them to the following format. The dataset is stored in plaintext as a collection of words and corresponding tags. Each sentence starts with a unique identifier on the first line, followed by one tab-separated word/tag pair on each following line. Sentences are separated by a single blank line.
Example from the Brown corpus.
```
b100-38532
Perhaps ADV
it PRON
was VERB
right ADJ
; .
; .
b100-35577
...
```
```
data = Dataset("tags-universal.txt", "brown-universal.txt", train_test_split=0.8)
print("There are {} sentences in the corpus.".format(len(data)))
print("There are {} sentences in the training set.".format(len(data.training_set)))
print("There are {} sentences in the testing set.".format(len(data.testing_set)))
assert len(data) == len(data.training_set) + len(data.testing_set), \
"The number of sentences in the training set + testing set should sum to the number of sentences in the corpus"
```
### The Dataset Interface
We can access (mostly) immutable references to the dataset through a simple interface provided through the `Dataset` class, which represents an iterable collection of sentences along with easy access to partitions of the data for training & testing. Review the reference below, to make sure you understand the interface before moving on to the next step.
```
Dataset-only Attributes:
training_set - reference to a Subset object containing the samples for training
testing_set - reference to a Subset object containing the samples for testing
Dataset & Subset Attributes:
sentences - a dictionary with an entry {sentence_key: Sentence()} for each sentence in the corpus
keys - an immutable ordered (not sorted) collection of the sentence_keys for the corpus
vocab - an immutable collection of the unique words in the corpus
tagset - an immutable collection of the unique tags in the corpus
X - returns an array of words grouped by sentences ((w11, w12, w13, ...), (w21, w22, w23, ...), ...)
Y - returns an array of tags grouped by sentences ((t11, t12, t13, ...), (t21, t22, t23, ...), ...)
N - returns the number of distinct samples (individual words or tags) in the dataset
Methods:
stream() - returns an flat iterable over all (word, tag) pairs across all sentences in the corpus
__iter__() - returns an iterable over the data as (sentence_key, Sentence()) pairs
__len__() - returns the nubmer of sentences in the dataset
```
For example, consider a Subset, `subset`, of the sentences `{"s0": Sentence(("See", "Spot", "run"), ("VERB", "NOUN", "VERB")), "s1": Sentence(("Spot", "ran"), ("NOUN", "VERB"))}`. The subset will have these attributes:
```
subset.keys == {"s1", "s0"} # unordered
subset.vocab == {"See", "run", "ran", "Spot"} # unordered
subset.tagset == {"VERB", "NOUN"} # unordered
subset.X == (("Spot", "ran"), ("See", "Spot", "run")) # order matches .keys
subset.Y == (("NOUN", "VERB"), ("VERB", "NOUN", "VERB")) # order matches .keys
subset.N == 7 # there are a total of seven observations over all sentences
len(subset) == 2 # because there are two sentences
```
<div class="alert alert-block alert-info">
**Note:** The `Dataset` class is _convenient_, but it is **not** efficient. It is not suitable for huge datasets because it stores multiple redundant copies of the same data.
</div>
#### Sentences
`Dataset.sentences` is a dictionary of all sentences in the training corpus, each keyed to a unique sentence identifier. Each `Sentence` is itself an object with two attributes: a tuple of the words in the sentence named `words` and a tuple of the tag corresponding to each word named `tags`.
```
key = 'b100-38532'
print("Sentence: {}".format(key))
print("words:\n\t{!s}".format(data.sentences[key].words))
print("tags:\n\t{!s}".format(data.sentences[key].tags))
```
<div class="alert alert-block alert-info">
**Note:** The underlying iterable sequence is **unordered** over the sentences in the corpus; it is not guaranteed to return the sentences in a consistent order between calls. Use `Dataset.stream()`, `Dataset.keys`, `Dataset.X`, or `Dataset.Y` attributes if you need ordered access to the data.
</div>
#### Counting Unique Elements
We can access the list of unique words (the dataset vocabulary) via `Dataset.vocab` and the unique list of tags via `Dataset.tagset`.
```
print("There are a total of {} samples of {} unique words in the corpus."
.format(data.N, len(data.vocab)))
print("There are {} samples of {} unique words in the training set."
.format(data.training_set.N, len(data.training_set.vocab)))
print("There are {} samples of {} unique words in the testing set."
.format(data.testing_set.N, len(data.testing_set.vocab)))
print("There are {} words in the test set that are missing in the training set."
.format(len(data.testing_set.vocab - data.training_set.vocab)))
assert data.N == data.training_set.N + data.testing_set.N, \
"The number of training + test samples should sum to the total number of samples"
```
#### Accessing word and tag Sequences
The `Dataset.X` and `Dataset.Y` attributes provide access to ordered collections of matching word and tag sequences for each sentence in the dataset.
```
# accessing words with Dataset.X and tags with Dataset.Y
for i in range(2):
print("Sentence {}:".format(i + 1), data.X[i])
print()
print("Labels {}:".format(i + 1), data.Y[i])
print()
```
#### Accessing (word, tag) Samples
The `Dataset.stream()` method returns an iterator that chains together every pair of (word, tag) entries across all sentences in the entire corpus.
```
# use Dataset.stream() (word, tag) samples for the entire corpus
print("\nStream (word, tag) pairs:\n")
for i, pair in enumerate(data.stream()):
print("\t", pair)
if i > 5: break
```
For both our baseline tagger and the HMM model we'll build, we need to estimate the frequency of tags & words from the frequency counts of observations in the training corpus. The next several cells will complete functions to compute the counts of several sets of counts.
## Step 2: Build a Most Frequent Class tagger
---
Perhaps the simplest tagger (and a good baseline for tagger performance) is to simply choose the tag most frequently assigned to each word. This "most frequent class" tagger inspects each observed word in the sequence and assigns it the label that was most often assigned to that word in the corpus.
### IMPLEMENTATION: Pair Counts
The function below computes the joint frequency counts for two input sequences.
```
def pair_counts(sequences_A, sequences_B):
"""Return a dictionary keyed to each unique value in the first sequence list
that counts the number of occurrences of the corresponding value from the
second sequences list.
For example, if sequences_A is tags and sequences_B is the corresponding
words, then if 1244 sequences contain the word "time" tagged as a NOUN, then
you should return a dictionary such that pair_counts[NOUN][time] == 1244
"""
# TODO: Finish this function!
pair_dict = {}
i = 0;
for tag in sequences_A:
pair_dict[tag] = {}
for word, tag in (sequences_B):
if word in pair_dict[tag]:
pair_dict[tag][word] = pair_dict[tag][word] + 1
else:
pair_dict[tag][word] = 1
return pair_dict
# Calculate C(t_i, w_i)
emission_counts = pair_counts(data.tagset, data.stream())
assert len(emission_counts) == 12, \
"Uh oh. There should be 12 tags in your dictionary."
assert max(emission_counts["NOUN"], key=emission_counts["NOUN"].get) == 'time', \
"Hmmm...'time' is expected to be the most common NOUN."
HTML('<div class="alert alert-block alert-success">Your emission counts look good!</div>')
```
### IMPLEMENTATION: Most Frequent Class Tagger
Use the `pair_counts()` function and the training dataset to find the most frequent class label for each word in the training data, and populate the `mfc_table` below. The table keys should be words, and the values should be the appropriate tag string.
The `MFCTagger` class is provided to mock the interface of Pomegranite HMM models so that they can be used interchangeably.
```
# Create a lookup table mfc_table where mfc_table[word] contains the tag label most frequently assigned to that word
from collections import namedtuple
FakeState = namedtuple("FakeState", "name")
class MFCTagger:
# NOTE: You should not need to modify this class or any of its methods
missing = FakeState(name="<MISSING>")
def __init__(self, table):
self.table = defaultdict(lambda: MFCTagger.missing)
self.table.update({word: FakeState(name=tag) for word, tag in table.items()})
def viterbi(self, seq):
"""This method simplifies predictions by matching the Pomegranate viterbi() interface"""
return 0., list(enumerate(["<start>"] + [self.table[w] for w in seq] + ["<end>"]))
# calculate the frequency of each tag being assigned to each word (hint: similar, but not
# the same as the emission probabilities) and use it to fill the mfc_table
word_counts = pair_counts(data.tagset, data.training_set.stream())
def getMaxFreq(word, counts):
maxFreq = -1
#maxFreqTag
for key, value in counts.items():
if word in value:
if value[word] > maxFreq:
maxFreq = value[word]
maxFreqTag = key
return maxFreqTag
def GetVocabFrequencies(vocab, counts):
word_freq = {}
for word in vocab:
word_freq[word] = getMaxFreq(word, counts)
return word_freq
mfc_table = GetVocabFrequencies(data.training_set.vocab, word_counts) # TODO: YOUR CODE HERE
# DO NOT MODIFY BELOW THIS LINE
mfc_model = MFCTagger(mfc_table) # Create a Most Frequent Class tagger instance
assert len(mfc_table) == len(data.training_set.vocab), ""
assert all(k in data.training_set.vocab for k in mfc_table.keys()), ""
assert sum(int(k not in mfc_table) for k in data.testing_set.vocab) == 5521, ""
HTML('<div class="alert alert-block alert-success">Your MFC tagger has all the correct words!</div>')
```
### Making Predictions with a Model
The helper functions provided below interface with Pomegranate network models & the mocked MFCTagger to take advantage of the [missing value](http://pomegranate.readthedocs.io/en/latest/nan.html) functionality in Pomegranate through a simple sequence decoding function. Run these functions, then run the next cell to see some of the predictions made by the MFC tagger.
```
def replace_unknown(sequence):
"""Return a copy of the input sequence where each unknown word is replaced
by the literal string value 'nan'. Pomegranate will ignore these values
during computation.
"""
return [w if w in data.training_set.vocab else 'nan' for w in sequence]
def simplify_decoding(X, model):
"""X should be a 1-D sequence of observations for the model to predict"""
_, state_path = model.viterbi(replace_unknown(X))
return [state[1].name for state in state_path[1:-1]] # do not show the start/end state predictions
```
### Example Decoding Sequences with MFC Tagger
```
for key in data.testing_set.keys[:3]:
print("Sentence Key: {}\n".format(key))
print("Predicted labels:\n-----------------")
print(simplify_decoding(data.sentences[key].words, mfc_model))
print()
print("Actual labels:\n--------------")
print(data.sentences[key].tags)
print("\n")
```
### Evaluating Model Accuracy
The function below will evaluate the accuracy of the MFC tagger on the collection of all sentences from a text corpus.
```
def accuracy(X, Y, model):
"""Calculate the prediction accuracy by using the model to decode each sequence
in the input X and comparing the prediction with the true labels in Y.
The X should be an array whose first dimension is the number of sentences to test,
and each element of the array should be an iterable of the words in the sequence.
The arrays X and Y should have the exact same shape.
X = [("See", "Spot", "run"), ("Run", "Spot", "run", "fast"), ...]
Y = [(), (), ...]
"""
correct = total_predictions = 0
for observations, actual_tags in zip(X, Y):
# The model.viterbi call in simplify_decoding will return None if the HMM
# raises an error (for example, if a test sentence contains a word that
# is out of vocabulary for the training set). Any exception counts the
# full sentence as an error (which makes this a conservative estimate).
try:
most_likely_tags = simplify_decoding(observations, model)
correct += sum(p == t for p, t in zip(most_likely_tags, actual_tags))
except:
pass
total_predictions += len(observations)
return correct / total_predictions
```
#### Evaluate the accuracy of the MFC tagger
Run the next cell to evaluate the accuracy of the tagger on the training and test corpus.
```
mfc_training_acc = accuracy(data.training_set.X, data.training_set.Y, mfc_model)
print("training accuracy mfc_model: {:.2f}%".format(100 * mfc_training_acc))
mfc_testing_acc = accuracy(data.testing_set.X, data.testing_set.Y, mfc_model)
print("testing accuracy mfc_model: {:.2f}%".format(100 * mfc_testing_acc))
assert mfc_training_acc >= 0.955, "Uh oh. Your MFC accuracy on the training set doesn't look right."
assert mfc_testing_acc >= 0.925, "Uh oh. Your MFC accuracy on the testing set doesn't look right."
HTML('<div class="alert alert-block alert-success">Your MFC tagger accuracy looks correct!</div>')
```
## Step 3: Build an HMM tagger
---
The HMM tagger has one hidden state for each possible tag, and parameterized by two distributions: the emission probabilties giving the conditional probability of observing a given **word** from each hidden state, and the transition probabilities giving the conditional probability of moving between **tags** during the sequence.
We will also estimate the starting probability distribution (the probability of each **tag** being the first tag in a sequence), and the terminal probability distribution (the probability of each **tag** being the last tag in a sequence).
The maximum likelihood estimate of these distributions can be calculated from the frequency counts as described in the following sections where you'll implement functions to count the frequencies, and finally build the model. The HMM model will make predictions according to the formula:
$$t_i^n = \underset{t_i^n}{\mathrm{argmax}} \prod_{i=1}^n P(w_i|t_i) P(t_i|t_{i-1})$$
Refer to Speech & Language Processing [Chapter 10](https://web.stanford.edu/~jurafsky/slp3/10.pdf) for more information.
### IMPLEMENTATION: Unigram Counts
Complete the function below to estimate the co-occurrence frequency of each symbol over all of the input sequences. The unigram probabilities in our HMM model are estimated from the formula below, where N is the total number of samples in the input. (You only need to compute the counts for now.)
$$P(tag_1) = \frac{C(tag_1)}{N}$$
```
def unigram_counts(sequences):
"""Return a dictionary keyed to each unique value in the input sequence list that
counts the number of occurrences of the value in the sequences list. The sequences
collection should be a 2-dimensional array.
For example, if the tag NOUN appears 275558 times over all the input sequences,
then you should return a dictionary such that your_unigram_counts[NOUN] == 275558.
"""
unigram_counts ={}
for i in range(len(sequences)):
for j in range(len(sequences[i])):
if sequences[i][j] in unigram_counts:
unigram_counts[sequences[i][j]] = unigram_counts[sequences[i][j]] + 1
else:
unigram_counts[sequences[i][j]] = 1
return unigram_counts
# call unigram_counts with a list of tag sequences from the training set
tag_unigrams = unigram_counts(data.training_set.Y)
print((tag_unigrams))
assert set(tag_unigrams.keys()) == data.training_set.tagset, \
"Uh oh. It looks like your tag counts doesn't include all the tags!"
assert min(tag_unigrams, key=tag_unigrams.get) == 'X', \
"Hmmm...'X' is expected to be the least common class"
assert max(tag_unigrams, key=tag_unigrams.get) == 'NOUN', \
"Hmmm...'NOUN' is expected to be the most common class"
HTML('<div class="alert alert-block alert-success">Your tag unigrams look good!</div>')
```
### IMPLEMENTATION: Bigram Counts
Complete the function below to estimate the co-occurrence frequency of each pair of symbols in each of the input sequences. These counts are used in the HMM model to estimate the bigram probability of two tags from the frequency counts according to the formula: $$P(tag_2|tag_1) = \frac{C(tag_2|tag_1)}{C(tag_2)}$$
```
def bigram_counts(sequences):
"""Return a dictionary keyed to each unique PAIR of values in the input sequences
list that counts the number of occurrences of pair in the sequences list. The input
should be a 2-dimensional array.
For example, if the pair of tags (NOUN, VERB) appear 61582 times, then you should
return a dictionary such that your_bigram_counts[(NOUN, VERB)] == 61582
"""
bigram_counts ={}
for i in range(len(sequences)):
for j in range(len(sequences[i]) - 1):
pair = (sequences[i][j], sequences[i][j + 1])
if pair in bigram_counts:
bigram_counts[pair] = bigram_counts[pair] + 1
else:
bigram_counts[pair] = 1
return bigram_counts
# TODO: call bigram_counts with a list of tag sequences from the training set
tag_bigrams = bigram_counts(data.training_set.Y)
assert len(tag_bigrams) == 144, \
"Uh oh. There should be 144 pairs of bigrams (12 tags x 12 tags)"
assert min(tag_bigrams, key=tag_bigrams.get) in [('X', 'NUM'), ('PRON', 'X')], \
"Hmmm...The least common bigram should be one of ('X', 'NUM') or ('PRON', 'X')."
assert max(tag_bigrams, key=tag_bigrams.get) in [('DET', 'NOUN')], \
"Hmmm...('DET', 'NOUN') is expected to be the most common bigram."
HTML('<div class="alert alert-block alert-success">Your tag bigrams look good!</div>')
```
### IMPLEMENTATION: Sequence Starting Counts
Complete the code below to estimate the bigram probabilities of a sequence starting with each tag.
```
def starting_counts(sequences):
"""Return a dictionary keyed to each unique value in the input sequences list
that counts the number of occurrences where that value is at the beginning of
a sequence.
For example, if 8093 sequences start with NOUN, then you should return a
dictionary such that your_starting_counts[NOUN] == 8093
"""
starting_counts = {}
for i in range(len(sequences)):
if sequences[i][0] in starting_counts:
starting_counts[sequences[i][0]] = starting_counts[sequences[i][0]] + 1
else:
starting_counts[sequences[i][0]] = 1
return starting_counts
# Calculate the count of each tag starting a sequence
tag_starts = starting_counts(data.training_set.Y)
assert len(tag_starts) == 12, "Uh oh. There should be 12 tags in your dictionary."
assert min(tag_starts, key=tag_starts.get) == 'X', "Hmmm...'X' is expected to be the least common starting bigram."
assert max(tag_starts, key=tag_starts.get) == 'DET', "Hmmm...'DET' is expected to be the most common starting bigram."
HTML('<div class="alert alert-block alert-success">Your starting tag counts look good!</div>')
```
### IMPLEMENTATION: Sequence Ending Counts
Complete the function below to estimate the bigram probabilities of a sequence ending with each tag.
```
def ending_counts(sequences):
"""Return a dictionary keyed to each unique value in the input sequences list
that counts the number of occurrences where that value is at the end of
a sequence.
For example, if 18 sequences end with DET, then you should return a
dictionary such that your_starting_counts[DET] == 18
"""
ending_counts = {}
for i in range(len(sequences)):
last_idx = len(sequences[i]) - 1
if sequences[i][last_idx] in ending_counts:
ending_counts[sequences[i][last_idx]] = ending_counts[sequences[i][last_idx]] + 1
else:
ending_counts[sequences[i][last_idx]] = 1
return ending_counts
# Calculate the count of each tag ending a sequence
tag_ends = ending_counts(data.training_set.Y)
assert len(tag_ends) == 12, "Uh oh. There should be 12 tags in your dictionary."
assert min(tag_ends, key=tag_ends.get) in ['X', 'CONJ'], "Hmmm...'X' or 'CONJ' should be the least common ending bigram."
assert max(tag_ends, key=tag_ends.get) == '.', "Hmmm...'.' is expected to be the most common ending bigram."
HTML('<div class="alert alert-block alert-success">Your ending tag counts look good!</div>')
```
### IMPLEMENTATION: Basic HMM Tagger
Use the tag unigrams and bigrams calculated above to construct a hidden Markov tagger.
- Add one state per tag
- The emission distribution at each state should be estimated with the formula: $P(w|t) = \frac{C(t, w)}{C(t)}$
- Add an edge from the starting state `basic_model.start` to each tag
- The transition probability should be estimated with the formula: $P(t|start) = \frac{C(start, t)}{C(start)}$
- Add an edge from each tag to the end state `basic_model.end`
- The transition probability should be estimated with the formula: $P(end|t) = \frac{C(t, end)}{C(t)}$
- Add an edge between _every_ pair of tags
- The transition probability should be estimated with the formula: $P(t_2|t_1) = \frac{C(t_1, t_2)}{C(t_1)}$
```
basic_model = HiddenMarkovModel(name="base-hmm-tagger")
states = {}
for tag in emission_counts:
tag_count = tag_unigrams[tag]
prob_distributuion = {word : word_count/tag_count for word, word_count in emission_counts[tag].items() }
state = State(DiscreteDistribution(prob_distributuion), name=tag)
states[tag] = state
basic_model.add_states(state)
for tag_pair in tag_bigrams.keys():
training_set_count = len(data.training_set.Y)
start_prob = tag_starts[tag_pair[0]]/training_set_count
basic_model.add_transition(basic_model.start, states[tag_pair[0]], start_prob)
trans_prob = tag_bigrams[tag_pair]/tag_unigrams[tag_pair[0]]
basic_model.add_transition(states[tag_pair[0]], states[tag_pair[1]], trans_prob)
end_prob = tag_ends[tag_pair[0]]/training_set_count
basic_model.add_transition(states[tag_pair[0]], basic_model.end, end_prob)
basic_model.bake()
assert all(tag in set(s.name for s in basic_model.states) for tag in data.training_set.tagset), \
"Every state in your network should use the name of the associated tag, which must be one of the training set tags."
assert basic_model.edge_count() == 168, \
("Your network should have an edge from the start node to each state, one edge between every " +
"pair of tags (states), and an edge from each state to the end node.")
HTML('<div class="alert alert-block alert-success">Your HMM network topology looks good!</div>')
hmm_training_acc = accuracy(data.training_set.X, data.training_set.Y, basic_model)
print("training accuracy basic hmm model: {:.2f}%".format(100 * hmm_training_acc))
hmm_testing_acc = accuracy(data.testing_set.X, data.testing_set.Y, basic_model)
print("testing accuracy basic hmm model: {:.2f}%".format(100 * hmm_testing_acc))
assert hmm_training_acc > 0.97, "Uh oh. Your HMM accuracy on the training set doesn't look right."
assert hmm_testing_acc > 0.955, "Uh oh. Your HMM accuracy on the testing set doesn't look right."
HTML('<div class="alert alert-block alert-success">Your HMM tagger accuracy looks correct! Congratulations, you\'ve finished the project.</div>')
```
### Example Decoding Sequences with the HMM Tagger
```
for key in data.testing_set.keys[:3]:
print("Sentence Key: {}\n".format(key))
print("Predicted labels:\n-----------------")
print(simplify_decoding(data.sentences[key].words, basic_model))
print()
print("Actual labels:\n--------------")
print(data.sentences[key].tags)
print("\n")
```
## Step 4: [Optional] Improving model performance
---
There are additional enhancements that can be incorporated into your tagger that improve performance on larger tagsets where the data sparsity problem is more significant. The data sparsity problem arises because the same amount of data split over more tags means there will be fewer samples in each tag, and there will be more missing data tags that have zero occurrences in the data. The techniques in this section are optional.
- [Laplace Smoothing](https://en.wikipedia.org/wiki/Additive_smoothing) (pseudocounts)
Laplace smoothing is a technique where you add a small, non-zero value to all observed counts to offset for unobserved values.
- Backoff Smoothing
Another smoothing technique is to interpolate between n-grams for missing data. This method is more effective than Laplace smoothing at combatting the data sparsity problem. Refer to chapters 4, 9, and 10 of the [Speech & Language Processing](https://web.stanford.edu/~jurafsky/slp3/) book for more information.
- Extending to Trigrams
HMM taggers have achieved better than 96% accuracy on this dataset with the full Penn treebank tagset using an architecture described in [this](http://www.coli.uni-saarland.de/~thorsten/publications/Brants-ANLP00.pdf) paper. Altering your HMM to achieve the same performance would require implementing deleted interpolation (described in the paper), incorporating trigram probabilities in your frequency tables, and re-implementing the Viterbi algorithm to consider three consecutive states instead of two.
### Obtain the Brown Corpus with a Larger Tagset
Run the code below to download a copy of the brown corpus with the full NLTK tagset. You will need to research the available tagset information in the NLTK docs and determine the best way to extract the subset of NLTK tags you want to explore. If you write the following the format specified in Step 1, then you can reload the data using all of the code above for comparison.
Refer to [Chapter 5](http://www.nltk.org/book/ch05.html) of the NLTK book for more information on the available tagsets.
```
import nltk
from nltk import pos_tag, word_tokenize
from nltk.corpus import brown
nltk.download('brown')
training_corpus = nltk.corpus.brown
training_corpus.tagged_sents()[0]
```
| github_jupyter |
# Pos-Tagging & Feature Extraction
Following normalisation, we can now proceed to the process of pos-tagging and feature extraction. Let's start with pos-tagging.
## POS-tagging
Part-of-speech tagging is one of the most important text analysis tasks used to classify words into their part-of-speech and label them according the tagset which is a collection of tags used for the pos tagging. Part-of-speech tagging also known as word classes or lexical categories.
The `nltk` library provides its own pre-trained `POS-tagger`. Let's see how it is used.
```
import pandas as pd
df0 = pd.read_csv("../../data/interim/001_normalised_keyed_reviews.csv", sep="\t", low_memory=False)
df0.head()
# For monitoring duration of pandas processes
from tqdm import tqdm, tqdm_pandas
# To avoid RuntimeError: Set changed size during iteration
tqdm.monitor_interval = 0
# Register `pandas.progress_apply` and `pandas.Series.map_apply` with `tqdm`
# (can use `tqdm_gui`, `tqdm_notebook`, optional kwargs, etc.)
tqdm.pandas(desc="Progress:")
# Now you can use `progress_apply` instead of `apply`
# and `progress_map` instead of `map`
# can also groupby:
# df.groupby(0).progress_apply(lambda x: x**2)
def convert_text_to_list(review):
return review.replace("[","").replace("]","").replace("'","").split(",")
# Convert "reviewText" field to back to list
df0['reviewText'] = df0['reviewText'].astype(str)
df0['reviewText'] = df0['reviewText'].progress_apply(lambda text: convert_text_to_list(text));
df0['reviewText'].head()
df0['reviewText'][12]
import nltk
nltk.__version__
# Split negs
def split_neg(review):
new_review = []
for token in review:
if '_' in token:
split_words = token.split("_")
new_review.append(split_words[0])
new_review.append(split_words[1])
else:
new_review.append(token)
return new_review
df0["reviewText"] = df0["reviewText"].progress_apply(lambda review: split_neg(review))
df0["reviewText"].head()
### Remove Stop Words
from nltk.corpus import stopwords
stop_words = set(stopwords.words('english'))
def remove_stopwords(review):
return [token for token in review if not token in stop_words]
df0["reviewText"] = df0["reviewText"].progress_apply(lambda review: remove_stopwords(review))
df0["reviewText"].head()
```
<span style="color:red">Unfortunatelly, this tagger, though much better and accurate, takes a lot of time. In order to process the above data set it would need close to 3 days of running.</span>
Follow this link for more info on the tagger: https://nlp.stanford.edu/software/tagger.shtml#History
```
from nltk.tag import StanfordPOSTagger
from nltk import word_tokenize
# import os
# os.getcwd()
# Add the jar and model via their path (instead of setting environment variables):
jar = '../../models/stanford-postagger-full-2017-06-09/stanford-postagger.jar'
model = '../../models/stanford-postagger-full-2017-06-09/models/english-left3words-distsim.tagger'
pos_tagger = StanfordPOSTagger(model, jar, encoding='utf8')
def pos_tag(review):
if(len(review)>0):
return pos_tagger.tag(review)
# Example
text = pos_tagger.tag(word_tokenize("What's the airspeed of an unladen swallow ?"))
print(text)
tagged_df = pd.DataFrame(df0['reviewText'].progress_apply(lambda review: pos_tag(review)))
tagged_df.head()
# tagged_df = pd.DataFrame(df0['reviewText'].progress_apply(lambda review: nltk.pos_tag(review)))
# tagged_df.head()
```
Thankfully, `nltk` provides documentation for each tag, which can be queried using the tag, e.g., `nltk.help.upenn_tagset(‘RB’)`, or a regular expression. `nltk` also provides batch pos-tagging method for document pos-tagging:
```
tagged_df['reviewText'][8]
```
The list of all possible tags appears below:
| Tag | Description |
|------|------------------------------------------|
| CC | Coordinating conjunction |
| CD | Cardinal number |
| DT | Determiner |
| EX | ExistentialĘthere |
| FW | Foreign word |
| IN | Preposition or subordinating conjunction |
| JJ | Adjective |
| JJR | Adjective, comparative |
| JJS | Adjective, superlative |
| LS | List item marker |
| MD | Modal |
| NN | Noun, singular or mass |
| NNS | Noun, plural |
| NNP | Proper noun, singular |
| NNPS | Proper noun, plural |
| PDT | Predeterminer |
| POS | Possessive ending |
| PRP | Personal pronoun |
| PRP* | Possessive pronoun |
| RB | Adverb |
| RBR | Adverb, comparative |
| RBS | Adverb, superlative |
| RP | Particle |
| SYM | Symbol |
| TO | to |
| UH | Interjection |
| VB | Verb, base form |
| VBD | Verb, past tense |
| VBG | Verb, gerund or present participle |
| VBN | Verb, past participle |
| VBP | Verb, non-3rd person singular present |
| VBZ | Verb, 3rd person singular present |
| WDT | Wh-determiner |
| WP | Wh-pronoun |
| WP* | Possessive wh-pronoun |
| WRB | Wh-adverb |
Notice: where you see `*` replace with `$`.
```
## Join with Original Key and Persist Locally to avoid RE-processing
uniqueKey_series_df = df0[['uniqueKey']]
uniqueKey_series_df.head()
pos_tagged_keyed_reviews = pd.concat([uniqueKey_series_df, tagged_df], axis=1);
pos_tagged_keyed_reviews.head()
pos_tagged_keyed_reviews.to_csv("../data/interim/002_pos_tagged_keyed_reviews.csv", sep='\t', header=True, index=False);
```
## Nouns
Nouns generally refer to people, places, things, or concepts, e.g.: woman, Scotland, book, intelligence. Nouns can appear after determiners and adjectives, and can be the subject or object of the verb.
The simplified noun tags are `N` for common nouns like book, and `NP` for proper nouns like Scotland.
```
def noun_collector(word_tag_list):
if(len(word_tag_list)>0):
return [word for (word, tag) in word_tag_list if tag in {'NN', 'NNS', 'NNP', 'NNPS'}]
nouns_df = pd.DataFrame(tagged_df['reviewText'].progress_apply(lambda review: noun_collector(review)))
nouns_df.head()
keyed_nouns_df = pd.concat([uniqueKey_series_df, nouns_df], axis=1);
keyed_nouns_df.head()
keyed_nouns_df.to_csv("../../data/interim/002_keyed_nouns_stanford.csv", sep='\t', header=True, index=False);
## END_OF_FILE
```
| github_jupyter |
```
from IPython.display import Image
```
# CNTK 201B: Hands On Labs Image Recognition
This hands-on lab shows how to implement image recognition task using [convolution network][] with CNTK v2 Python API. You will start with a basic feedforward CNN architecture in order to classify Cifar dataset, then you will keep adding advanced feature to your network. Finally, you will implement a VGG net and residual net similar to the one that won ImageNet competition but smaller in size.
[convolution network]:https://en.wikipedia.org/wiki/Convolutional_neural_network
## Introduction
In this hands-on, you will practice the following:
* Understanding subset of CNTK python API needed for image classification task.
* Write a custom convolution network to classify Cifar dataset.
* Modifying the network structure by adding:
* [Dropout][] layer.
* Batchnormalization layer.
* Implement a [VGG][] style network.
* Introduction to Residual Nets (RESNET).
* Implement and train [RESNET network][].
[RESNET network]:https://github.com/Microsoft/CNTK/wiki/Hands-On-Labs-Image-Recognition
[VGG]:http://www.robots.ox.ac.uk/~vgg/research/very_deep/
[Dropout]:https://en.wikipedia.org/wiki/Dropout_(neural_networks)
## Prerequisites
CNTK 201A hands-on lab, in which you will download and prepare Cifar dataset is a prerequisites for this lab. This tutorial depends on CNTK v2, so before starting this lab you will need to install CNTK v2. Furthermore, all the tutorials in this lab are done in python, therefore, you will need a basic knowledge of Python.
CNTK 102 lab is recommended but not a prerequisites for this tutorials. However, a basic understanding of Deep Learning is needed.
## Dataset
You will use Cifar 10 dataset, from https://www.cs.toronto.edu/~kriz/cifar.html, during this tutorials. The dataset contains 50000 training images and 10000 test images, all images are 32x32x3. Each image is classified as one of 10 classes as shown below:
```
# Figure 1
Image(url="https://cntk.ai/jup/201/cifar-10.png", width=500, height=500)
```
The above image is from: https://www.cs.toronto.edu/~kriz/cifar.html
## Convolution Neural Network (CNN)
Convolution Neural Network (CNN) is a feedforward network comprise of a bunch of layers in such a way that the output of one layer is fed to the next layer (There are more complex architecture that skip layers, we will discuss one of those at the end of this lab). Usually, CNN start with alternating between convolution layer and pooling layer (downsample), then end up with fully connected layer for the classification part.
### Convolution layer
Convolution layer consist of multiple 2D convolution kernels applied on the input image or the previous layer, each convolution kernel output a feature map.
```
# Figure 2
Image(url="https://cntk.ai/jup/201/Conv2D.png")
```
The stack of feature maps output are the input to the next layer.
```
# Figure 3
Image(url="https://cntk.ai/jup/201/Conv2DFeatures.png")
```
> Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998
> Y. LeCun, L. Bottou, Y. Bengio and P. Haffner
#### In CNTK:
Here the [convolution][] layer in Python:
```python
def Convolution(filter_shape, # e.g. (3,3)
num_filters, # e.g. 64
activation, # relu or None...etc.
init, # Random initialization
pad, # True or False
strides) # strides e.g. (1,1)
```
[convolution]:https://www.cntk.ai/pythondocs/layerref.html#convolution
### Pooling layer
In most CNN vision architecture, each convolution layer is succeeded by a pooling layer, so they keep alternating until the fully connected layer.
The purpose of the pooling layer is as follow:
* Reduce the dimensionality of the previous layer, which speed up the network.
* Provide a limited translation invariant.
Here an example of max pooling with a stride of 2:
```
# Figure 4
Image(url="https://cntk.ai/jup/201/MaxPooling.png", width=400, height=400)
```
#### In CNTK:
Here the [pooling][] layer in Python:
```python
# Max pooling
def MaxPooling(filter_shape, # e.g. (3,3)
strides, # (2,2)
pad) # True or False
# Average pooling
def AveragePooling(filter_shape, # e.g. (3,3)
strides, # (2,2)
pad) # True or False
```
[pooling]:https://www.cntk.ai/pythondocs/layerref.html#maxpooling-averagepooling
### Dropout layer
Dropout layer takes a probability value as an input, the value is called the dropout rate. Let's say the dropu rate is 0.5, what this layer does it pick at random 50% of the nodes from the previous layer and drop them out of the nework. This behavior help regularize the network.
> Dropout: A Simple Way to Prevent Neural Networks from Overfitting
> Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov
#### In CNTK:
Dropout layer in Python:
```python
# Dropout
def Dropout(prob) # dropout rate e.g. 0.5
```
### Batch normalization (BN)
Batch normalization is a way to make the input to each layer has zero mean and unit variance. BN help the network converge faster and keep the input of each layer around zero. BN has two learnable parameters called gamma and beta, the purpose of those parameters is for the network to decide for itself if the normalized input is what is best or the raw input.
> Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
> Sergey Ioffe, Christian Szegedy
#### In CNTK:
[Batch normalization][] layer in Python:
```python
# Batch normalization
def BatchNormalization(map_rank) # For image map_rank=1
```
[Batch normalization]:https://www.cntk.ai/pythondocs/layerref.html#batchnormalization-layernormalization-stabilizer
## Microsoft Cognitive Network Toolkit (CNTK)
CNTK is a highly flexible computation graphs, each node take inputs as tensors and produce tensors as the result of the computation. Each node is exposed in Python API, which give you the flexibility of creating any custom graphs, you can also define your own node in Python or C++ using CPU, GPU or both.
For Deep learning, you can use the low level API directly or you can use CNTK layered API. We will start with the low level API, then switch to the layered API in this lab.
So let's first import the needed modules for this lab.
```
from __future__ import print_function
import os
import numpy as np
import matplotlib.pyplot as plt
import math
from cntk.layers import default_options, Convolution, MaxPooling, AveragePooling, Dropout, BatchNormalization, Dense, Sequential, For
from cntk.io import MinibatchSource, ImageDeserializer, StreamDef, StreamDefs
import cntk.io.transforms as xforms
from cntk.initializer import glorot_uniform, he_normal
from cntk import Trainer
from cntk.learner import momentum_sgd, learning_rate_schedule, UnitType, momentum_as_time_constant_schedule
from cntk.ops import cross_entropy_with_softmax, classification_error, relu, input_variable, softmax, element_times
from cntk.utils import *
# Figure 5
Image(url="https://cntk.ai/jup/201/CNN.png")
```
Now that we imported the needed modules, let's implement our first CNN, as shown in Figure 5 above.
Let's implement the above network using CNTK layer API:
```
def create_basic_model(input, out_dims):
net = Convolution((5,5), 32, init=glorot_uniform(), activation=relu, pad=True)(input)
net = MaxPooling((3,3), strides=(2,2))(net)
net = Convolution((5,5), 32, init=glorot_uniform(), activation=relu, pad=True)(net)
net = MaxPooling((3,3), strides=(2,2))(net)
net = Convolution((5,5), 64, init=glorot_uniform(), activation=relu, pad=True)(net)
net = MaxPooling((3,3), strides=(2,2))(net)
net = Dense(64, init=glorot_uniform())(net)
net = Dense(out_dims, init=glorot_uniform(), activation=None)(net)
return net
```
To train the above model we need two things:
* Read the training images and their corresponding labels.
* Define a cost function, compute the cost for each mini-batch and update the model weights according to the cost value.
To read the data in CNTK, we will use CNTK readers which handle data augmentation and can fetch data in parallel.
Example of a map text file:
S:\data\CIFAR-10\train\00001.png 9
S:\data\CIFAR-10\train\00002.png 9
S:\data\CIFAR-10\train\00003.png 4
S:\data\CIFAR-10\train\00004.png 1
S:\data\CIFAR-10\train\00005.png 1
```
# model dimensions
image_height = 32
image_width = 32
num_channels = 3
num_classes = 10
#
# Define the reader for both training and evaluation action.
#
def create_reader(map_file, mean_file, train):
if not os.path.exists(map_file) or not os.path.exists(mean_file):
raise RuntimeError("This tutorials depends 201A tutorials, please run 201A first.")
# transformation pipeline for the features has jitter/crop only when training
transforms = []
if train:
transforms += [
xforms.crop(crop_type='randomside', side_ratio=0.8) # train uses data augmentation (translation only)
]
transforms += [
xforms.scale(width=image_width, height=image_height, channels=num_channels, interpolations='linear'),
xforms.mean(mean_file)
]
# deserializer
return MinibatchSource(ImageDeserializer(map_file, StreamDefs(
features = StreamDef(field='image', transforms=transforms), # first column in map file is referred to as 'image'
labels = StreamDef(field='label', shape=num_classes) # and second as 'label'
)))
```
Now let us write the the training and validation loop.
```
#
# Train and evaluate the network.
#
def train_and_evaluate(reader_train, reader_test, max_epochs, model_func):
# Input variables denoting the features and label data
input_var = input_variable((num_channels, image_height, image_width))
label_var = input_variable((num_classes))
# Normalize the input
feature_scale = 1.0 / 256.0
input_var_norm = element_times(feature_scale, input_var)
# apply model to input
z = model_func(input_var_norm, out_dims=10)
#
# Training action
#
# loss and metric
ce = cross_entropy_with_softmax(z, label_var)
pe = classification_error(z, label_var)
# training config
epoch_size = 50000
minibatch_size = 64
# Set training parameters
lr_per_minibatch = learning_rate_schedule([0.01]*10 + [0.003]*10 + [0.001], UnitType.minibatch, epoch_size)
momentum_time_constant = momentum_as_time_constant_schedule(-minibatch_size/np.log(0.9))
l2_reg_weight = 0.001
# trainer object
learner = momentum_sgd(z.parameters,
lr = lr_per_minibatch, momentum = momentum_time_constant,
l2_regularization_weight=l2_reg_weight)
progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs)
trainer = Trainer(z, (ce, pe), [learner], [progress_printer])
# define mapping from reader streams to network inputs
input_map = {
input_var: reader_train.streams.features,
label_var: reader_train.streams.labels
}
log_number_of_parameters(z) ; print()
# perform model training
batch_index = 0
plot_data = {'batchindex':[], 'loss':[], 'error':[]}
for epoch in range(max_epochs): # loop over epochs
sample_count = 0
while sample_count < epoch_size: # loop over minibatches in the epoch
data = reader_train.next_minibatch(min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch.
trainer.train_minibatch(data) # update model with it
sample_count += data[label_var].num_samples # count samples processed so far
# For visualization...
plot_data['batchindex'].append(batch_index)
plot_data['loss'].append(trainer.previous_minibatch_loss_average)
plot_data['error'].append(trainer.previous_minibatch_evaluation_average)
batch_index += 1
trainer.summarize_training_progress()
#
# Evaluation action
#
epoch_size = 10000
minibatch_size = 16
# process minibatches and evaluate the model
metric_numer = 0
metric_denom = 0
sample_count = 0
minibatch_index = 0
while sample_count < epoch_size:
current_minibatch = min(minibatch_size, epoch_size - sample_count)
# Fetch next test min batch.
data = reader_test.next_minibatch(current_minibatch, input_map=input_map)
# minibatch data to be trained with
metric_numer += trainer.test_minibatch(data) * current_minibatch
metric_denom += current_minibatch
# Keep track of the number of samples processed so far.
sample_count += data[label_var].num_samples
minibatch_index += 1
print("")
print("Final Results: Minibatch[1-{}]: errs = {:0.1f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom))
print("")
# Visualize training result:
window_width = 32
loss_cumsum = np.cumsum(np.insert(plot_data['loss'], 0, 0))
error_cumsum = np.cumsum(np.insert(plot_data['error'], 0, 0))
# Moving average.
plot_data['batchindex'] = np.insert(plot_data['batchindex'], 0, 0)[window_width:]
plot_data['avg_loss'] = (loss_cumsum[window_width:] - loss_cumsum[:-window_width]) / window_width
plot_data['avg_error'] = (error_cumsum[window_width:] - error_cumsum[:-window_width]) / window_width
plt.figure(1)
plt.subplot(211)
plt.plot(plot_data["batchindex"], plot_data["avg_loss"], 'b--')
plt.xlabel('Minibatch number')
plt.ylabel('Loss')
plt.title('Minibatch run vs. Training loss ')
plt.show()
plt.subplot(212)
plt.plot(plot_data["batchindex"], plot_data["avg_error"], 'r--')
plt.xlabel('Minibatch number')
plt.ylabel('Label Prediction Error')
plt.title('Minibatch run vs. Label Prediction Error ')
plt.show()
return softmax(z)
data_path = os.path.join('data', 'CIFAR-10')
reader_train = create_reader(os.path.join(data_path, 'train_map.txt'), os.path.join(data_path, 'CIFAR-10_mean.xml'), True)
reader_test = create_reader(os.path.join(data_path, 'test_map.txt'), os.path.join(data_path, 'CIFAR-10_mean.xml'), False)
pred = train_and_evaluate(reader_train, reader_test, max_epochs=5, model_func=create_basic_model)
```
Although, this model is very simple, it still has too much code, we can do better. Here the same model in more terse format:
```
def create_basic_model_terse(input, out_dims):
with default_options(activation=relu):
model = Sequential([
For(range(3), lambda i: [
Convolution((5,5), [32,32,64][i], init=glorot_uniform(), pad=True),
MaxPooling((3,3), strides=(2,2))
]),
Dense(64, init=glorot_uniform()),
Dense(out_dims, init=glorot_uniform(), activation=None)
])
return model(input)
pred_basic_model = train_and_evaluate(reader_train, reader_test, max_epochs=10, model_func=create_basic_model_terse)
```
Now that we have a trained model, let's classify the following image:
```
# Figure 6
Image(url="https://cntk.ai/jup/201/00014.png", width=64, height=64)
import PIL
def eval(pred_op, image_path):
label_lookup = ["airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse", "ship", "truck"]
image_mean = 133.0
image_data = np.array(PIL.Image.open(image_path), dtype=np.float32)
image_data -= image_mean
image_data = np.ascontiguousarray(np.transpose(image_data, (2, 0, 1)))
result = np.squeeze(pred_op.eval({pred_op.arguments[0]:[image_data]}))
# Return top 3 results:
top_count = 3
result_indices = (-np.array(result)).argsort()[:top_count]
print("Top 3 predictions:")
for i in range(top_count):
print("\tLabel: {:10s}, confidence: {:.2f}%".format(label_lookup[result_indices[i]], result[result_indices[i]] * 100))
eval(pred_basic_model, "data/CIFAR-10/test/00014.png")
```
Adding dropout layer, with drop rate of 0.25, before the last dense layer:
```
def create_basic_model_with_dropout(input, out_dims):
with default_options(activation=relu):
model = Sequential([
For(range(3), lambda i: [
Convolution((5,5), [32,32,64][i], init=glorot_uniform(), pad=True),
MaxPooling((3,3), strides=(2,2))
]),
Dense(64, init=glorot_uniform()),
Dropout(0.25),
Dense(out_dims, init=glorot_uniform(), activation=None)
])
return model(input)
pred_basic_model_dropout = train_and_evaluate(reader_train, reader_test, max_epochs=5, model_func=create_basic_model_with_dropout)
```
Add batch normalization after each convolution and before the last dense layer:
```
def create_basic_model_with_batch_normalization(input, out_dims):
with default_options(activation=relu):
model = Sequential([
For(range(3), lambda i: [
Convolution((5,5), [32,32,64][i], init=glorot_uniform(), pad=True),
BatchNormalization(map_rank=1),
MaxPooling((3,3), strides=(2,2))
]),
Dense(64, init=glorot_uniform()),
BatchNormalization(map_rank=1),
Dense(out_dims, init=glorot_uniform(), activation=None)
])
return model(input)
pred_basic_model_bn = train_and_evaluate(reader_train, reader_test, max_epochs=5, model_func=create_basic_model_with_batch_normalization)
```
Let's implement an inspired VGG style network, using layer API, here the architecture:
| VGG9 |
| ------------- |
| conv3-64 |
| conv3-64 |
| max3 |
| |
| conv3-96 |
| conv3-96 |
| max3 |
| |
| conv3-128 |
| conv3-128 |
| max3 |
| |
| FC-1024 |
| FC-1024 |
| |
| FC-10 |
```
def create_vgg9_model(input, out_dims):
with default_options(activation=relu):
model = Sequential([
For(range(3), lambda i: [
Convolution((3,3), [64,96,128][i], init=glorot_uniform(), pad=True),
Convolution((3,3), [64,96,128][i], init=glorot_uniform(), pad=True),
MaxPooling((3,3), strides=(2,2))
]),
For(range(2), lambda : [
Dense(1024, init=glorot_uniform())
]),
Dense(out_dims, init=glorot_uniform(), activation=None)
])
return model(input)
pred_vgg = train_and_evaluate(reader_train, reader_test, max_epochs=5, model_func=create_vgg9_model)
```
### Residual Network (ResNet)
One of the main problem of a Deep Neural Network is how to propagate the error all the way to the first layer. For a deep network, the gradient keep getting smaller until it has no effect on the network weights. [ResNet](https://arxiv.org/abs/1512.03385) was designed to overcome such problem, by defining a block with identity path, as shown below:
```
# Figure 7
Image(url="https://cntk.ai/jup/201/ResNetBlock2.png")
```
The idea of the above block is 2 folds:
* During back propagation the gradient have a path that doesn't affect its magnitude.
* The network need to learn residual mapping (delta to x).
So let's implements ResNet blocks using CNTK:
ResNetNode ResNetNodeInc
| |
+------+------+ +---------+----------+
| | | |
V | V V
+----------+ | +--------------+ +----------------+
| Conv, BN | | | Conv x 2, BN | | SubSample, BN |
+----------+ | +--------------+ +----------------+
| | | |
V | V |
+-------+ | +-------+ |
| ReLU | | | ReLU | |
+-------+ | +-------+ |
| | | |
V | V |
+----------+ | +----------+ |
| Conv, BN | | | Conv, BN | |
+----------+ | +----------+ |
| | | |
| +---+ | | +---+ |
+--->| + |<---+ +------>+ + +<-------+
+---+ +---+
| |
V V
+-------+ +-------+
| ReLU | | ReLU |
+-------+ +-------+
| |
V V
```
from cntk.ops import combine, times, element_times, AVG_POOLING
def convolution_bn(input, filter_size, num_filters, strides=(1,1), init=he_normal(), activation=relu):
if activation is None:
activation = lambda x: x
r = Convolution(filter_size, num_filters, strides=strides, init=init, activation=None, pad=True, bias=False)(input)
r = BatchNormalization(map_rank=1)(r)
r = activation(r)
return r
def resnet_basic(input, num_filters):
c1 = convolution_bn(input, (3,3), num_filters)
c2 = convolution_bn(c1, (3,3), num_filters, activation=None)
p = c2 + input
return relu(p)
def resnet_basic_inc(input, num_filters):
c1 = convolution_bn(input, (3,3), num_filters, strides=(2,2))
c2 = convolution_bn(c1, (3,3), num_filters, activation=None)
s = convolution_bn(input, (1,1), num_filters, strides=(2,2), activation=None)
p = c2 + s
return relu(p)
def resnet_basic_stack(input, num_filters, num_stack):
assert (num_stack > 0)
r = input
for _ in range(num_stack):
r = resnet_basic(r, num_filters)
return r
```
Let's write the full model:
```
def create_resnet_model(input, out_dims):
conv = convolution_bn(input, (3,3), 16)
r1_1 = resnet_basic_stack(conv, 16, 3)
r2_1 = resnet_basic_inc(r1_1, 32)
r2_2 = resnet_basic_stack(r2_1, 32, 2)
r3_1 = resnet_basic_inc(r2_2, 64)
r3_2 = resnet_basic_stack(r3_1, 64, 2)
# Global average pooling
pool = AveragePooling(filter_shape=(8,8), strides=(1,1))(r3_2)
net = Dense(out_dims, init=he_normal(), activation=None)(pool)
return net
pred_resnet = train_and_evaluate(reader_train, reader_test, max_epochs=5, model_func=create_resnet_model)
```
| github_jupyter |
# Objective
* 20190815:
* Given stock returns for the last N days, we do prediction for the next N+H days, where H is the forecast horizon
* We use double exponential smoothing to predict
```
%matplotlib inline
import math
import matplotlib
import numpy as np
import pandas as pd
import seaborn as sns
import time
from collections import defaultdict
from datetime import date, datetime, time, timedelta
from matplotlib import pyplot as plt
from pylab import rcParams
from sklearn.metrics import mean_squared_error
from tqdm import tqdm_notebook
#### Input params ##################
stk_path = "./data/VTI_20130102_20181231.csv"
H = 21
train_size = 252*3 # Use 3 years of data as train set. Note there are about 252 trading days in a year
val_size = 252 # Use 1 year of data as validation set
# alpha - smoothing coeff
alphaMax = 0.999
alphaMin = 0.001
alphaStep = 0.001
# beta - trend coeff
betaMax = 0.999
betaMin = 0.001
betaStep = 0.001
fontsize = 14
ticklabelsize = 14
####################################
train_val_size = train_size + val_size # Size of train+validation set
print("No. of days in train+validation set = " + str(train_val_size))
print("We will start forecasting on day %d" % (train_val_size+1))
```
# Common functions
```
def get_smape(y_true, y_pred):
"""
Compute symmetric mean absolute percentage error
"""
y_true, y_pred = np.array(y_true), np.array(y_pred)
return 100/len(y_true) * np.sum(2 * np.abs(y_pred - y_true) / (np.abs(y_true) + np.abs(y_pred)))
def get_mape(y_true, y_pred):
"""
Compute mean absolute percentage error (MAPE)
"""
y_true, y_pred = np.array(y_true), np.array(y_pred)
return np.mean(np.abs((y_true - y_pred) / y_true)) * 100
def get_mae(a, b):
"""
Comp mean absolute error e_t = E[|a_t - b_t|]. a and b can be lists.
Returns a vector of len = len(a) = len(b)
"""
return np.mean(abs(np.array(a)-np.array(b)))
def get_rmse(a, b):
"""
Comp RMSE. a and b can be lists.
Returns a scalar.
"""
return math.sqrt(np.mean((np.array(a)-np.array(b))**2))
def double_exponential_smoothing(series, H, alpha=0.5, beta=0.5, return_all=False):
"""
Given a series and alpha, return series of smoothed points
Initialization:
S_1 = y_1,
b_1 = y_2 - y_1,
F_1 = 0, F_2 = y_1
level, S_t = alpha*y_t + (1-alpha)*(S_t-1 + b_t-1)
trend, b_t = beta*(S_t - S_t-1) + (1-beta)*b_t-1
forecast, F_t+1 = S_t + b_t
forecast, F_t+m = S_t + m*b_t
result[len(series)] is the estimate of series[len(series)]
Inputs
series: series to forecast
H : forecast horizon
alpha : smoothing constant.
When alpha is close to 1, dampening is quick.
When alpha is close to 0, dampening is slow
beta : smoothing constant for trend
return_all : if 1 return both original series + predictions, if 0 return predictions only
Outputs
the predictions of length H
"""
result = [0, series[0]]
for n in range(1, len(series)+H-1):
if n == 1:
level, trend = series[0], series[1] - series[0]
if n >= len(series): # we are forecasting
m = n - len(series) + 2
result.append(level + m*trend) # result[len(series)+1] is the estimate of series[len(series)+1]
else:
value = series[n]
last_level, level = level, alpha*value + (1-alpha)*(level+trend)
trend = beta*(level-last_level) + (1-beta)*trend
result.append(level+trend)
# e.g. result[2] uses series[1]
# ie. result[2] is the estimate of series[2]
# e.g. result[len(series)] uses series[len(series)-1]
# ie. result[len(series)] is the estimate of series[len(series)]
if return_all == True:
return result
else:
return result[len(series):len(series)+H]
def get_error_metrics(series, train_size, H, alpha, beta):
"""
Given a series consisting of both train+validation, do predictions of forecast horizon H on the validation set,
at H/2 intervals.
Inputs
series : series to forecast, with length = (train_size + val_size)
train_size : length of series to use as train ie. train set is series[:train_size]
H : forecast horizon
Outputs
mean of rmse, mean of mape, mean of mae
"""
# Predict using single exponential smoothing, and compute error metrics also
rmse = [] # root mean square error
mape = [] # mean absolute percentage error
mae = [] # mean absolute error
smape = [] # symmetric mean absolute percentage error
preds_dict = {}
for i in range(train_size, len(series)-H, int(H/2)):
preds_list = double_exponential_smoothing(series[i-train_size:i], H, alpha, beta)
rmse.append(get_rmse(series[i:i+H], preds_list))
mape.append(get_mape(series[i:i+H], preds_list))
mae.append(get_mae(series[i:i+H], preds_list))
smape.append(get_smape(series[i:i+H], preds_list))
preds_dict[i] = preds_list
return np.mean(rmse), np.mean(mape), np.mean(mae), np.mean(smape), preds_dict
def hyperpram_tune_alpha_beta(series, train_size, H):
"""
Given a series, tune hyperparameter alpha, fit and predict
Inputs
series : series to forecast, with length = (train_size + val_size)
train_size : length of series to use as train ie. train set is series[:train_size]
H : forecast horizon
Outputs
optimum hyperparameters, error metrics dataframe
"""
err_dict = defaultdict(list)
alpha = alphaMin
beta = betaMin
while alpha <= alphaMax:
while beta <= betaMax:
rmse_mean, mape_mean, mae_mean, smape_mean, _ = get_error_metrics(series, train_size, H, alpha, beta)
# Append alpha and beta
err_dict['alpha'].append(alpha)
err_dict['beta'].append(beta)
# Compute error metrics
err_dict['rmse'].append(rmse_mean)
err_dict['mape'].append(mape_mean)
err_dict['mae'].append(mae_mean)
err_dict['smape'].append(smape_mean)
# Increase beta by one step
beta = beta + betaStep
# Increase alpha by one step
alpha = alpha + alphaStep
# Convert to dataframe
err_df = pd.DataFrame(err_dict)
# Get min RMSE
rmse_min = err_df['rmse'].min()
return err_df[err_df['rmse'] == rmse_min]['alpha'].values[0], err_df[err_df['rmse'] == rmse_min]['beta'].values[0], err_df
```
# Load data
```
df = pd.read_csv(stk_path, sep = ",")
# Convert Date column to datetime
df.loc[:, 'Date'] = pd.to_datetime(df['Date'],format='%Y-%m-%d')
# Change all column headings to be lower case, and remove spacing
df.columns = [str(x).lower().replace(' ', '_') for x in df.columns]
# Sort by datetime
df.sort_values(by='date', inplace=True, ascending=True)
df.head(10)
df['date'].min(), df['date'].max()
# Plot adjusted close over time
rcParams['figure.figsize'] = 10, 8 # width 10, height 8
ax = df.plot(x='date', y='adj_close', style='b-', grid=True)
ax.set_xlabel("date")
ax.set_ylabel("USD")
```
# Get Stock Returns
```
df['returns'] = df['adj_close'].pct_change() * 100
df.loc[0, 'returns'] = 0 # set the first value of returns to be 0 for simplicity
df.head()
# Plot returns over time
rcParams['figure.figsize'] = 10, 8 # width 10, height 8
ax = df.plot(x='date', y='returns', style='b-', grid=True)
ax.set_xlabel("date")
ax.set_ylabel("returns")
# Plot distribution of returns
plt.figure(figsize=(12, 8), dpi=80)
ax = sns.distplot(df['returns'][1:])
ax.grid()
ax.set_xlabel('daily returns', fontsize = 14)
ax.set_ylabel("probability density function", fontsize = 14)
matplotlib.rcParams.update({'font.size': 14})
```
# Predict for a specific H (forecast horizon) and a specific date
```
i = train_val_size # Predict for day i, for the next H-1 days. Note indexing of days start from 0.
print("Predicting on day %d, date %s, with forecast horizon H = %d" % (i, df.iloc[i]['date'], H))
# Predict
preds_list = double_exponential_smoothing(df['returns'][i-train_val_size:i].values, H)
print("For forecast horizon %d, predicting on day %d, date %s, the RMSE is %f" % (H, i, df['date'][i], get_rmse(df[i:i+H]['returns'], preds_list)))
print("For forecast horizon %d, predicting on day %d, date %s, the MAPE is %f" % (H, i, df['date'][i], get_mape(df[i:i+H]['returns'], preds_list)))
print("For forecast horizon %d, predicting on day %d, date %s, the SMAPE is %f" % (H, i, df['date'][i], get_smape(df[i:i+H]['returns'], preds_list)))
print("For forecast horizon %d, predicting on day %d, date %s, the MAE is %f" % (H, i, df['date'][i], get_mae(df[i:i+H]['returns'], preds_list)))
# Plot the predictions
rcParams['figure.figsize'] = 10, 8 # width 10, height 8
matplotlib.rcParams.update({'font.size': 14})
ax = df.plot(x='date', y='returns', style='bx-', grid=True)
# Plot the predictions
ax.plot(df['date'][i:i+H], preds_list, marker='x')
ax.set_xlabel("date")
# ax.set_ylabel("daily returns")
ax.legend(['daily returns', 'predictions'])
# ax.set_ylim([105, 120])
ax.set_xlim([date(2016, 11, 1), date(2017, 2, 28)])
```
# Predict for a specific H (forecast horizon) and a specific date, with hyperparameter tuning - alpha, beta
```
i = train_val_size # Predict for day i, for the next H-1 days. Note indexing of days start from 0.
print("Predicting on day %d, date %s, with forecast horizon H = %d" % (i, df.iloc[i]['date'], H))
# Get optimum hyperparams
alpha_opt, beta_opt, err_df = hyperpram_tune_alpha_beta(df['returns'][i-train_val_size:i].values, train_size, H)
print("alpha_opt = " + str(alpha_opt))
print("beta_opt = " + str(beta_opt))
# print("rmse opt = " + str(err_df[(err_df['alpha']==alpha_opt) & (err_df['beta']==beta_opt)]['rmse'].values[0]))
print(err_df[(err_df['alpha']==alpha_opt) & (err_df['beta']==beta_opt)])
err_df
# Predict
preds_list = double_exponential_smoothing(df['returns'][i-train_val_size:i].values, H, alpha_opt, beta_opt)
print("For forecast horizon %d, predicting on day %d, date %s, the RMSE is %f" % (H, i, df['date'][i], get_rmse(df[i:i+H]['returns'], preds_list)))
print("For forecast horizon %d, predicting on day %d, date %s, the MAPE is %f" % (H, i, df['date'][i], get_mape(df[i:i+H]['returns'], preds_list)))
print("For forecast horizon %d, predicting on day %d, date %s, the SMAPE is %f" % (H, i, df['date'][i], get_smape(df[i:i+H]['returns'], preds_list)))
print("For forecast horizon %d, predicting on day %d, date %s, the MAE is %f" % (H, i, df['date'][i], get_mae(df[i:i+H]['returns'], preds_list)))
# Plot the predictions
rcParams['figure.figsize'] = 10, 8 # width 10, height 8
matplotlib.rcParams.update({'font.size': 14})
ax = df.plot(x='date', y='returns', style='bx-', grid=True)
# Plot the predictions
ax.plot(df['date'][i:i+H], preds_list, marker='x')
ax.set_xlabel("date")
# ax.set_ylabel("USD")
ax.legend(['returns', 'predictions'])
# ax.set_ylim([105, 120])
ax.set_xlim([date(2016, 11, 1), date(2017, 2, 28)])
```
# Predict for a specific H (forecast horizon), and various dates, using model trained in previous step
```
print("alpha_opt = " + str(alpha_opt))
print("beta_opt = " + str(beta_opt))
# Predict and compute error metrics also
rmse = [] # root mean square error
mape = [] # mean absolute percentage error
mae = [] # mean absolute error
smape = [] # symmetric mean absolute percentage error
preds_dict = {}
i_list = range(train_val_size, train_val_size+84*5+42+1, 42)
for i in i_list:
print("Predicting on day %d, date %s" % (i, df.iloc[i]['date']))
preds_list = double_exponential_smoothing(df['returns'][i-train_val_size:i].values, H, alpha_opt, beta_opt)
# Collect the predictions
preds_dict[i] = preds_list
# Compute error metrics
rmse.append(get_rmse(df[i:i+H]['returns'], preds_list))
mape.append(get_mape(df[i:i+H]['returns'], preds_list))
mae.append(get_mae(df[i:i+H]['returns'], preds_list))
smape.append(get_smape(df[i:i+H]['returns'], preds_list))
print("Altogether we made %d forecasts, each of length %d days" % (len(rmse), H))
print("For forecast horizon %d, the mean RMSE is %f" % (H, np.mean(rmse)))
print("For forecast horizon %d, the mean MAPE is %f" % (H, np.mean(mape)))
print("For forecast horizon %d, the mean SMAPE is %f" % (H, np.mean(smape)))
print("For forecast horizon %d, the mean MAE is %f" % (H, np.mean(mae)))
results_final_no_tune = pd.DataFrame({'day': i_list,
'alpha_opt': [alpha_opt]*len(i_list),
'beta_opt': [beta_opt]*len(i_list),
'rmse': rmse,
'mape': mape,
'mae': mae,
'smape': smape})
results_final_no_tune
# Plot the predictions, and zoom in
rcParams['figure.figsize'] = 10, 8 # width 10, height 8
ax = df.plot(x='date', y='returns', style='b-', grid=True)
# Plot the predictions
for key in preds_dict:
ax.plot(df['date'][key:key+H], preds_dict[key])
ax.set_xlabel("date")
# ax.set_ylabel("USD")
ax.legend(['returns', 'predictions'])
# ax.set_ylim([105, 150])
ax.set_xlim([date(2017, 1, 1), date(2018, 12, 31)])
```
# Predict for a specific H (forecast horizon), and various dates, tuning model for every prediction
```
# Predict and compute error metrics also
preds_dict = {}
results_final = defaultdict(list)
i_list = range(train_val_size, train_val_size+84*5+42+1, 42)
for i in i_list:
print("Predicting on day %d, date %s" % (i, df.iloc[i]['date']))
# Get optimum hyperparams
alpha_opt, beta_opt, err_df = hyperpram_tune_alpha_beta(df['returns'][i-train_val_size:i].values, train_size, H)
preds_list = double_exponential_smoothing(df['returns'][i-train_val_size:i].values, H, alpha_opt, beta_opt)
# Collect the predictions
preds_dict[i] = preds_list
# Compute error metrics
results_final['rmse'].append(get_rmse(df[i:i+H]['returns'], preds_list))
results_final['mape'].append(get_mape(df[i:i+H]['returns'], preds_list))
results_final['mae'].append(get_mae(df[i:i+H]['returns'], preds_list))
results_final['smape'].append(get_smape(df[i:i+H]['returns'], preds_list))
results_final['alpha_opt'].append(alpha_opt)
results_final['beta_opt'].append(beta_opt)
results_final = pd.DataFrame(results_final)
print("Altogether we made %d forecasts, each of length %d days" % (len(rmse), H))
print("For forecast horizon %d, the mean RMSE is %f" % (H, results_final['rmse'].mean()))
print("For forecast horizon %d, the mean MAPE is %f" % (H, results_final['mape'].mean()))
print("For forecast horizon %d, the mean SMAPE is %f" % (H, results_final['smape'].mean()))
print("For forecast horizon %d, the mean MAE is %f" % (H, results_final['mae'].mean()))
# results
results_final
# Plot the predictions, and zoom in
rcParams['figure.figsize'] = 10, 8 # width 10, height 8
ax = df.plot(x='date', y='returns', style='b-', grid=True)
# Plot the predictions
for key in preds_dict:
ax.plot(df['date'][key:key+H], preds_dict[key])
ax.set_xlabel("date")
# ax.set_ylabel("USD")
ax.legend(['returns', 'predictions'])
# ax.set_ylim([105, 150])
ax.set_xlim([date(2017, 1, 1), date(2018, 12, 31)])
# Plot scatter plot of actual values vs. predictions
for key in preds_dict:
plt.plot(df['returns'][key:key+H], preds_dict[key], 'x')
plt.plot(range(-3, 4, 1), range(-3, 4, 1), 'b-')
plt.xlabel('returns')
plt.ylabel('predictions')
plt.grid()
```
# Findings
Double exponential smoothing does not predict stock returns well.
| github_jupyter |
# Developing an AI application
Going forward, AI algorithms will be incorporated into more and more everyday applications. For example, you might want to include an image classifier in a smart phone app. To do this, you'd use a deep learning model trained on hundreds of thousands of images as part of the overall application architecture. A large part of software development in the future will be using these types of models as common parts of applications.
In this project, you'll train an image classifier to recognize different species of flowers. You can imagine using something like this in a phone app that tells you the name of the flower your camera is looking at. In practice you'd train this classifier, then export it for use in your application. We'll be using [this dataset](http://www.robots.ox.ac.uk/~vgg/data/flowers/102/index.html) of 102 flower categories, you can see a few examples below.
<img src='assets/Flowers.png' width=500px>
The project is broken down into multiple steps:
* Load and preprocess the image dataset
* Train the image classifier on your dataset
* Use the trained classifier to predict image content
We'll lead you through each part which you'll implement in Python.
When you've completed this project, you'll have an application that can be trained on any set of labeled images. Here your network will be learning about flowers and end up as a command line application. But, what you do with your new skills depends on your imagination and effort in building a dataset. For example, imagine an app where you take a picture of a car, it tells you what the make and model is, then looks up information about it. Go build your own dataset and make something new.
First up is importing the packages you'll need. It's good practice to keep all the imports at the beginning of your code. As you work through this notebook and find you need to import a package, make sure to add the import up here.
Please make sure if you are running this notebook in the workspace that you have chosen GPU rather than CPU mode.
```
# Imports here
import numpy as np
import torch
import data_utils
import train_f as train
from utils import get_saved_model, get_device, get_checkpoints_path, evaluate_model
import predict_f as predict
import matplotlib.pyplot as plt
```
## Load the data
Here you'll use `torchvision` to load the data ([documentation](http://pytorch.org/docs/0.3.0/torchvision/index.html)). The data should be included alongside this notebook, otherwise you can [download it here](https://s3.amazonaws.com/content.udacity-data.com/nd089/flower_data.tar.gz). The dataset is split into three parts, training, validation, and testing. For the training, you'll want to apply transformations such as random scaling, cropping, and flipping. This will help the network generalize leading to better performance. You'll also need to make sure the input data is resized to 224x224 pixels as required by the pre-trained networks.
The validation and testing sets are used to measure the model's performance on data it hasn't seen yet. For this you don't want any scaling or rotation transformations, but you'll need to resize then crop the images to the appropriate size.
The pre-trained networks you'll use were trained on the ImageNet dataset where each color channel was normalized separately. For all three sets you'll need to normalize the means and standard deviations of the images to what the network expects. For the means, it's `[0.485, 0.456, 0.406]` and for the standard deviations `[0.229, 0.224, 0.225]`, calculated from the ImageNet images. These values will shift each color channel to be centered at 0 and range from -1 to 1.
```
data_dir = 'flowers'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
test_dir = data_dir + '/test'
# TODO: Define your transforms for the training, validation, and testing sets
dataloaders, image_datasets, data_transforms = data_utils.get_data(data_dir, train_dir, valid_dir, test_dir)
```
### Label mapping
You'll also need to load in a mapping from category label to category name. You can find this in the file `cat_to_name.json`. It's a JSON object which you can read in with the [`json` module](https://docs.python.org/2/library/json.html). This will give you a dictionary mapping the integer encoded categories to the actual names of the flowers.
```
import json
with open('cat_to_name.json', 'r') as f:
cat_to_name = json.load(f)
```
# Building and training the classifier
Now that the data is ready, it's time to build and train the classifier. As usual, you should use one of the pretrained models from `torchvision.models` to get the image features. Build and train a new feed-forward classifier using those features.
We're going to leave this part up to you. Refer to [the rubric](https://review.udacity.com/#!/rubrics/1663/view) for guidance on successfully completing this section. Things you'll need to do:
* Load a [pre-trained network](http://pytorch.org/docs/master/torchvision/models.html) (If you need a starting point, the VGG networks work great and are straightforward to use)
* Define a new, untrained feed-forward network as a classifier, using ReLU activations and dropout
* Train the classifier layers using backpropagation using the pre-trained network to get the features
* Track the loss and accuracy on the validation set to determine the best hyperparameters
We've left a cell open for you below, but use as many as you need. Our advice is to break the problem up into smaller parts you can run separately. Check that each part is doing what you expect, then move on to the next. You'll likely find that as you work through each part, you'll need to go back and modify your previous code. This is totally normal!
When training make sure you're updating only the weights of the feed-forward network. You should be able to get the validation accuracy above 70% if you build everything right. Make sure to try different hyperparameters (learning rate, units in the classifier, epochs, etc) to find the best model. Save those hyperparameters to use as default values in the next part of the project.
One last important tip if you're using the workspace to run your code: To avoid having your workspace disconnect during the long-running tasks in this notebook, please read in the earlier page in this lesson called Intro to GPU Workspaces about Keeping Your Session Active. You'll want to include code from the workspace_utils.py module.
```
# arch = 'resnet34'
# arch = 'inception_v3' -> Expected tensor for argument #1 'input' to have the same dimension as tensor for 'result'; but 4 does not equal 2 (while checking arguments for cudnn_convolution)
# arch = 'densenet161'
arch = 'vgg16'
train.train(data_dir, cat_to_name, './', max_epochs=1, arch=arch)
```
## Testing your network
It's good practice to test your trained network on test data, images the network has never seen either in training or validation. This will give you a good estimate for the model's performance on completely new images. Run the test images through the network and measure the accuracy, the same way you did validation. You should be able to reach around 70% accuracy on the test set if the model has been trained well.
```
model = get_saved_model(arch=arch)
model.to(get_device())
model.eval()
acc, _ = evaluate_model(dataloaders['test'], model)
print('Accuracy on the test dataset: %d %%' % (acc))
```
## Save the checkpoint
Now that your network is trained, save the model so you can load it later for making predictions. You probably want to save other things such as the mapping of classes to indices which you get from one of the image datasets: `image_datasets['train'].class_to_idx`. You can attach this to the model as an attribute which makes inference easier later on.
```model.class_to_idx = image_datasets['train'].class_to_idx```
Remember that you'll want to completely rebuild the model later so you can use it for inference. Make sure to include any information you need in the checkpoint. If you want to load the model and keep training, you'll want to save the number of epochs as well as the optimizer state, `optimizer.state_dict`. You'll likely want to use this trained model in the next part of the project, so best to save it now.
```
# See utils.save_checkpoint
```
## Loading the checkpoint
At this point it's good to write a function that can load a checkpoint and rebuild the model. That way you can come back to this project and keep working on it without having to retrain the network.
```
# See utils.get_saved_model
```
# Inference for classification
Now you'll write a function to use a trained network for inference. That is, you'll pass an image into the network and predict the class of the flower in the image. Write a function called `predict` that takes an image and a model, then returns the top $K$ most likely classes along with the probabilities. It should look like
```python
probs, classes = predict(image_path, model)
print(probs)
print(classes)
> [ 0.01558163 0.01541934 0.01452626 0.01443549 0.01407339]
> ['70', '3', '45', '62', '55']
```
First you'll need to handle processing the input image such that it can be used in your network.
## Image Preprocessing
You'll want to use `PIL` to load the image ([documentation](https://pillow.readthedocs.io/en/latest/reference/Image.html)). It's best to write a function that preprocesses the image so it can be used as input for the model. This function should process the images in the same manner used for training.
First, resize the images where the shortest side is 256 pixels, keeping the aspect ratio. This can be done with the [`thumbnail`](http://pillow.readthedocs.io/en/3.1.x/reference/Image.html#PIL.Image.Image.thumbnail) or [`resize`](http://pillow.readthedocs.io/en/3.1.x/reference/Image.html#PIL.Image.Image.thumbnail) methods. Then you'll need to crop out the center 224x224 portion of the image.
Color channels of images are typically encoded as integers 0-255, but the model expected floats 0-1. You'll need to convert the values. It's easiest with a Numpy array, which you can get from a PIL image like so `np_image = np.array(pil_image)`.
As before, the network expects the images to be normalized in a specific way. For the means, it's `[0.485, 0.456, 0.406]` and for the standard deviations `[0.229, 0.224, 0.225]`. You'll want to subtract the means from each color channel, then divide by the standard deviation.
And finally, PyTorch expects the color channel to be the first dimension but it's the third dimension in the PIL image and Numpy array. You can reorder dimensions using [`ndarray.transpose`](https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.ndarray.transpose.html). The color channel needs to be first and retain the order of the other two dimensions.
```
# See predict.process_image
```
To check your work, the function below converts a PyTorch tensor and displays it in the notebook. If your `process_image` function works, running the output through this function should return the original image (except for the cropped out portions).
```
def imshow(image, ax=None, title=None):
"""Imshow for Tensor."""
if ax is None:
fig, ax = plt.subplots()
# PyTorch tensors assume the color channel is the first dimension
# but matplotlib assumes is the third dimension
image = image.numpy().transpose((1, 2, 0))
# Undo preprocessing
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
image = std * image + mean
# Image needs to be clipped between 0 and 1 or it looks like noise when displayed
image = np.clip(image, 0, 1)
ax.imshow(image)
return ax
#img = process_image('./flowers/valid/59/image_05034.jpg')
#imshow(torch.from_numpy(img).float())
```
## Class Prediction
Once you can get images in the correct format, it's time to write a function for making predictions with your model. A common practice is to predict the top 5 or so (usually called top-$K$) most probable classes. You'll want to calculate the class probabilities then find the $K$ largest values.
To get the top $K$ largest values in a tensor use [`x.topk(k)`](http://pytorch.org/docs/master/torch.html#torch.topk). This method returns both the highest `k` probabilities and the indices of those probabilities corresponding to the classes. You need to convert from these indices to the actual class labels using `class_to_idx` which hopefully you added to the model or from an `ImageFolder` you used to load the data ([see here](#Save-the-checkpoint)). Make sure to invert the dictionary so you get a mapping from index to class as well.
Again, this method should take a path to an image and a model checkpoint, then return the probabilities and classes.
```python
probs, classes = predict(image_path, model)
print(probs)
print(classes)
> [ 0.01558163 0.01541934 0.01452626 0.01443549 0.01407339]
> ['70', '3', '45', '62', '55']
```
```
predict.predict('./flowers/valid/59/image_05034.jpg', get_saved_model(arch=arch))
```
## Sanity Checking
Now that you can use a trained model for predictions, check to make sure it makes sense. Even if the testing accuracy is high, it's always good to check that there aren't obvious bugs. Use `matplotlib` to plot the probabilities for the top 5 classes as a bar graph, along with the input image. It should look like this:
<img src='assets/inference_example.png' width=300px>
You can convert from the class integer encoding to actual flower names with the `cat_to_name.json` file (should have been loaded earlier in the notebook). To show a PyTorch tensor as an image, use the `imshow` function defined above.
```
# TODO: Display an image along with the top 5 classes
model = get_saved_model(arch=arch)
model.eval()
checkpoint = torch.load(get_checkpoints_path(), map_location=str(get_device()))
img_path = './flowers/valid/76/image_02458.jpg'
real_class = checkpoint['cat_to_name'].get(str(img_path.split('/')[3]))
print(real_class)
img = predict.process_image(img_path)
imshow(torch.from_numpy(img).float())
probs, classes = predict.predict(img_path, model)
idx_to_class = {v: k for k, v in checkpoint['class_to_idx'].items()}
categories = [checkpoint['cat_to_name'].get(str(idx_to_class.get(x.item()))) for x in classes]
fig, ax = plt.subplots()
ax.barh(categories, probs, align='center')
plt.show()
```
| github_jupyter |
# 스파크를 이용한 기본 지표 생성 예제
> 기본 지표를 생성하는 데에 있어, 정해진 틀을 그대로 따라하기 보다, 가장 직관적인 방법을 지속적으로 개선하는 과정을 설명하기 위한 예제입니다.
첫 번째 예제인 만큼 지표의 복잡도를 줄이기 위해 해당 서비스를 오픈 일자는 2020/10/25 이며, 지표를 집계하는 시점은 2020/10/26 일 입니다
* 원본 데이터를 그대로 읽는 방법
* dataframe api 를 이용하는 방법
* spark.sql 을 이용하는 방법
* 기본 지표 (DAU, PU)를 추출하는 예제 실습
* 날짜에 대한 필터를 넣는 방법
* 날짜에 대한 필터를 데이터 소스에 적용하는 방법
* 기본 지표 (ARPU, ARPPU)를 추출하는 예제 실습
* 스칼라 값을 가져와서 다음 질의문에 적용하는 방법
* 누적 금액을 구할 때에 단순한 방법
* 서비스 오픈 일자의 디멘젼 테이블을 생성하는 방법
* 널 값에 대한 처리하는 방법
* 생성된 데이터 프레임을 저장하는 방법
* 전 일자 데이터를 가져오는 방법
* 요약 지표를 생성할 때에 단순한 방법
* 팩트 테이블을 활용하는 방법
```
from pyspark.sql import SparkSession
from pyspark.sql.functions import *
spark = SparkSession \
.builder \
.appName("Data Engineer Basic Day3") \
.config("spark.dataengineer.basic.day3", "tutorial-1") \
.getOrCreate()
spark.read.option("inferSchema", "true").option("header", "true").json("access/20201026") \
.withColumn("gmt_time", expr("from_unixtime(a_time, 'yyyy-MM-dd HH:mm:ss')")) \
.withColumn("localtime", expr("from_utc_timestamp(from_unixtime(a_time), 'Asis/Seoul')")) \
.show()
# from_utc_timestamp(from_unixtime(epoch_time), tz_name) as local_time
# spark.conf.unset("spark.sql.session.timeZone")
spark.conf.get("spark.sql.session.timeZone") # 'Etc/UTC' => 이게 원인이었네 ... 초기 값의 TimeZone 설정이 제대로 안 되어 있었음.;ㅁ;
spark.conf.set("spark.sql.session.timeZone", "Asia/Seoul")
spark.conf.get("spark.sql.session.timeZone")
spark.read.option("inferSchema", "true").option("header", "true").json("access/20201026") \
.withColumn("gmt_time", expr("from_unixtime(a_time, 'yyyy-MM-dd HH:mm:ss')")) \
.withColumn("localtime", expr("from_utc_timestamp(from_unixtime(a_time), 'Asis/Seoul')")) \
.show()
sc = spark.sparkContext
spark.read.option("inferSchema", "true").option("header", "true").parquet("user/20201025").createOrReplaceTempView("user")
pWhere=""
spark.read.option("inferSchema", "true").option("header", "true").parquet("purchase/20201025").withColumn("p_time", expr("from_unixtime(p_time)")).createOrReplaceTempView("purchase")
aWhere=""
spark.read.option("inferSchema", "true").option("header", "true").json("access/20201026").withColumn("a_time", expr("from_unixtime(a_time)")).createOrReplaceTempView("access")
spark.sql("desc user").show()
spark.sql("desc purchase").show()
spark.sql("desc access").show()
```
### 과제 1. 주어진 데이터를 이용하여 2020/10/25 기준의 DAU, PU 를 구하시오
* DAU : Daily Active User, 일 별 접속자 수
- log_access 를 통해 unique 한 a_uid 값을 구합니다
* PU : Purchase User, 일 별 구매자 수
- tbl_purchase 를 통해 unique 한 p_uid 값을 구합니다
> 값을 구하기 전에 Spark API 대신 Spark SQL 을 이용하기 위해 [createOrReplaceTempView](https://spark.apache.org/docs/latest/api/python/pyspark.sql.html?highlight=createorreplace#pyspark.sql.DataFrame.createOrReplaceTempView) 를 생성합니다
```
# DAU - access
spark.sql("select a_time as a_time, a_uid from access").show()
dau = spark.sql("select count(distinct a_uid) as DAU from access where a_time >= '2020-10-25 00:00:00' and a_time < '2020-10-26 00:00:00'")
dau.show()
# PU - purchase
spark.sql("select p_time, p_uid from purchase").show()
pu = spark.sql("select count(distinct p_uid) as PU from purchase where p_time >= '2020-10-25 00:00:00' and p_time < '2020-10-26 00:00:00'")
pu.show()
v_dau = dau.collect()[0]["DAU"]
v_pu = pu.collect()[0]["PU"]
```
### 과제 2. 주어진 데이터를 이용하여 2020/10/25 기준의 ARPU, ARPPU 를 구하시오
* ARPU : Average Revenue Per User, 유저 당 평균 수익
- 해당 일자의 전체 수익 (Total Purchase Amount) / 해당 일에 접속한 유저 수 (DAU)
* ARPPU : Average Revenue Per Purchase User, 구매 유저 당 평균 수익
- 해당 일자의 전체 수익 (Total Purchase Amount) / 해당 일에 접속한 구매 유저 수 (PU)
```
# ARPU - total purchase amount, dau
query="select sum(p_amount) / {} from purchase where p_time >= '2020-10-25 00:00:00' and p_time < '2020-10-26 00:00:00'".format(v_dau)
print(query)
total_purchase_amount = spark.sql("select sum(p_amount) as total_purchase_amount from purchase where p_time >= '2020-10-25 00:00:00' and p_time < '2020-10-26 00:00:00'")
total_purchase_amount.show()
spark.sql("select sum(p_amount) / 5 from purchase where p_time >= '2020-10-25 00:00:00' and p_time < '2020-10-26 00:00:00'").show()
spark.sql("select sum(p_amount) / {} as ARPU from purchase where p_time >= '2020-10-25 00:00:00' and p_time < '2020-10-26 00:00:00'".format(v_dau)).show()
# ARPPU - total purchase amount, pu
v_amt = total_purchase_amount.collect()[0]["total_purchase_amount"]
print("| ARPPU | {} |".format(v_amt / v_pu))
```
### 과제 3. 주어진 데이터를 이용하여 2020/10/26 현재의 "누적 매출 금액" 과 "누적 접속 유저수"를 구하시오
* 누적 매출 금액 : 10/25 (오픈) ~ 현재
- 전체 로그를 읽어서 매출 금액의 합을 구한다
- 유저별 매출 정보를 누적하여 저장해두고 재활용한다
* 누적 접속 유저수 : 10/25 (오픈) ~ 현재
- 전체 로그를 읽어서 접속자의 유일한 수를 구한다
- 유저별 접속 정보를 누적하여 저장해두고 재활용한다
```
# 누적 매출 금액
spark.sql("select sum(p_amount) from purchase ").show()
# 누적 접속 유저수
spark.sql("select count(distinct a_uid) from access").show()
```
### 과제 4. 유저별 정보를 누적시키기 위한 디멘젼 테이블을 설계하고 생성합니다
#### User Dimension 테이블 설계
| 컬럼 명 | 컬럼 타입 | 컬럼 설명 |
| :- | :-: | :- |
| d_uid | int | 유저 아이디 |
| d_name | string | 고객 이름 |
| d_pamount | int | 누적 구매 금액 |
| d_pcount | int | 누적 구매 횟수 |
| d_acount | int | 누적 접속 횟수 |
```
# 오픈 첫 날의 경우 예외적으로 별도의 프로그램을 작성합니다
#
# 1. 가장 큰 레코드 수를 가진 정보가 접속정보이므로 해당 일자의 이용자 별 접속 횟수를 추출합니다
# 단, login 횟수를 접속 횟수로 가정합니다 - logout 만 있는 경우는 login 유실 혹은 전일자의 로그이므로 이러한 경우는 제외합니다
spark.sql("describe access").show()
spark.sql("select * from access where a_id = 'login' and a_time >= '2020-10-25 00:00:00' and a_time < '2020-10-26 00:00:00'").show()
uids = spark.sql("select a_uid, count(a_uid) as acount from access where a_id = 'login' and a_time >= '2020-10-25 00:00:00' and a_time < '2020-10-26 00:00:00' group by a_uid")
uids.show()
# 2. 해당 일자의 이용자 별 총 매출 금액과, 구매 횟수를 추출합니다
spark.sql("describe purchase").show()
amts = spark.sql("select p_uid, sum(p_amount) as pamount, count(p_uid) as pcount from purchase where p_time >= '2020-10-25 00:00:00' and p_time < '2020-10-26 00:00:00' group by p_uid")
amts.show()
# 3. 이용자 접속횟수 + 총구매금액 + 구매횟수 (uids + amts)
uids.printSchema()
amts.printSchema()
dim1 = uids.join(amts, uids["a_uid"] == amts["p_uid"], how="left").sort(uids["a_uid"].asc())
dim2 = dim1.withColumnRenamed("a_uid", "d_uid") \
.withColumnRenamed("acount", "d_acount") \
.drop("p_uid") \
.withColumnRenamed("pamount", "d_pamount") \
.withColumnRenamed("pcount", "d_pcount")
dim2.show()
# 4. 이용자 정보를 덧붙입니다
user = spark.sql("select * from user")
user.show()
dim3 = dim2.join(user, dim2["d_uid"] == user["u_id"], "left")
dim4 = dim3.withColumnRenamed("u_name", "d_name") \
.withColumnRenamed("u_gender", "d_gender")
dim5 = dim4.select("d_uid", "d_name", "d_gender", "d_acount", "d_pamount", "d_pcount")
dimension = dim5.na.fill({"d_pamount":0, "d_pcount":0})
dimension.show()
# 4. 다음날 해당 데이터를 사용하도록 하기 위해 일자별 경로에 저장합니다
# - ./users/dt=20201025/
target="./users/dt=20201025"
dimension.write.mode("overwrite").parquet(target)
```
### 과제 5. 전일자 디멘젼 정보를 이용하여 누적된 접속, 매출 지표를 생성합니다
```
# 이전 일자 기준의 고객의 상태를 유지하여 활용합니다
yesterday = spark.read.parquet(target)
yesterday.sort(yesterday["d_uid"].asc()).show()
# 5. 다음 날 동일한 지표를 생성하되 이전 일자의 정보에 누적한 지표를 생성합니다
# 기존 테이블의 고객과 오늘 신규 고객을 모두 포함한 전체 데이터집합을 생성합니다
yesterday.show()
# 새로운 모수를 추가해야 하므로 전체 모수에 해당하는 uid 만을 추출합니다
uid = yesterday.select("d_uid").join(accs.select("a_uid"), yesterday.d_uid == accs.a_uid, "full_outer") \
.withColumn("uid", when(yesterday.d_uid.isNull(), accs.a_uid).otherwise(yesterday.d_uid)) \
.select("uid")
uid.show()
# uid 기준으로 이름, 성별을 조인합니다
user.show()
dim1 = uid.join(user, uid.uid == user.u_id).select(uid.uid, user.u_name, user.u_gender)
dim1.show()
# 어제 디멘젼을 기준으로 누적접속, 누적구매금액, 누적구매횟수 등을 조인합니다
print("dim2")
dim2 = dim1.join(yesterday, dim1.uid == yesterday.d_uid, "left") \
.select(dim1.uid, dim1.u_name, dim1.u_gender, yesterday.d_acount, yesterday.d_pamount, yesterday.d_pcount) \
.na.fill({"d_acount":0, "d_pamount":0, "d_pcount":0})
dim2.show()
# 6. 오늘 생성된 접속수치, 매출 및 매출 횟수를 더합니다
accs = spark.sql("select a_uid, count(a_uid) as acount from access where a_id = 'login' and a_time >= '2020-10-26 00:00:00' and a_time < '2020-10-27 00:00:00' group by a_uid")
accs.show()
print("dim3")
dim3 = dim2.join(accs, dim2.uid == accs.a_uid, "left") \
.withColumn("total_amount", dim2.d_acount + when(accs.acount.isNull(), 0).otherwise(accs.acount)) \
.select("uid", "u_name", "u_gender", "total_amount", "d_pamount", "d_pcount") \
.withColumnRenamed("total_amount", "d_acount")
dim3.show()
# 오늘 발생한 매출을 더합니다
dim3.show()
amts = spark.sql("select p_uid, sum(p_amount) as pamount, count(p_uid) as pcount from purchase where p_time >= '2020-10-26 00:00:00' and p_time < '2020-10-27 00:00:00' group by p_uid")
amts.show()
print("dim4")
dim4 = dim3.join(amts, dim3.uid == amts.p_uid, "left") \
.withColumn("total_pamount", dim3.d_pamount + when(amts.pamount.isNull(), 0).otherwise(amts.pamount)) \
.withColumn("total_pcount", dim3.d_acount + when(amts.pcount.isNull(), 0).otherwise(amts.pcount)) \
.drop("d_pamount", "d_pcount") \
.withColumnRenamed("uid", "d_uid") \
.withColumnRenamed("u_name", "d_name") \
.withColumnRenamed("u_gender", "d_gender") \
.withColumnRenamed("total_pamount", "d_pamount") \
.withColumnRenamed("total_pcount", "d_pcount") \
.select("d_uid", "d_name", "d_gender", "d_acount", "d_pamount", "d_pcount")
dimension = dim4.sort(dim4.d_uid.asc()).coalesce(1)
dimension.show()
# 7. 생성된 디멘젼을 20201026 경로에 저장합니다
target="./users/dt=20201026"
dimension.write.mode("overwrite").parquet(target)
```
### 과제 6. inner, left_outer, right_outer, full_outer 조인 실습 예제를 작성하시오
```
valuesA = [('A',1),('B',2),('C',3),('D',4)]
A = spark.createDataFrame(valuesA,['a_id','a_value'])
valuesB = [('C',10),('D',20),('E',30),('F',40)]
B = spark.createDataFrame(valuesB,['b_id','b_value'])
A.join(B, A.a_id == B.b_id, "inner").sort(A.a_id.asc()).show() # C, D
# A.join(B, A.a_id == B.b_id, "left").sort(A.a_id.asc()).show() # A, B, C, D
# A.join(B, A.a_id == B.b_id, "right").sort(B.b_id.asc()).show() # C, D, E, F
A.join(B, A.a_id == B.b_id, "left_outer").sort(A.a_id.asc()).show() # A, B, C, D
A.join(B, A.a_id == B.b_id, "right_outer").sort(B.b_id.asc()).show() # C, D, E, F
A.join(B, A.a_id == B.b_id, "full_outer").sort(A.a_id.asc_nulls_last(), B.b_id.asc_nulls_last()).show() # A, B, C, D, E, F
# full outer 조인 시에 결과 생성
A.join(B, A.a_id == B.b_id, "full_outer").withColumn("id", expr("case when a_id is null then b_id else a_id end")).select("id").sort("id").show()
# F.when(df.age > 4, 1).when(df.age < 3, -1).otherwise(0)
A.join(B, A.a_id == B.b_id, "full_outer").show()
A.join(B, A.a_id == B.b_id, "full_outer").withColumn("id", when(A.a_id.isNull(), B.b_id).otherwise(A.a_id)).select("id").sort("id").show()
```
### 과제 7. 전일자 디멘젼 정보와 오늘자 로그를 이용하여 팩트 데이터를 생성합니다.
### 과제 8. 팩트 데이터를 이용하여 2020/10/25 기준 성별 매출금액 지표를 추출합니다
| github_jupyter |
## AI for Medicine Course 1 Week 1 lecture exercises
<a name="counting-labels"></a>
# Counting labels
As you saw in the lecture videos, one way to avoid having class imbalance impact the loss function is to weight the losses differently. To choose the weights, you first need to calculate the class frequencies.
For this exercise, you'll just get the count of each label. Later on, you'll use the concepts practiced here to calculate frequencies in the assignment!
```
# Import the necessary packages
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
# Read csv file containing training datadata
train_df = pd.read_csv("nih/train-small.csv")
# Count up the number of instances of each class (drop non-class columns from the counts)
class_counts = train_df.sum().drop(['Image','PatientId'])
for column in class_counts.keys():
print(f"The class {column} has {train_df[column].sum()} samples")
# Plot up the distribution of counts
sns.barplot(class_counts.values, class_counts.index, color='b')
plt.title('Distribution of Classes for Training Dataset', fontsize=15)
plt.xlabel('Number of Patients', fontsize=15)
plt.ylabel('Diseases', fontsize=15)
plt.show()
```
<a name="weighted-loss"></a>
# Weighted Loss function
Below is an example of calculating weighted loss. In the assignment, you will calculate a weighted loss function. This sample code will give you some intuition for what the weighted loss function is doing, and also help you practice some syntax you will use in the graded assignment.
For this example, you'll first define a hypothetical set of true labels and then a set of predictions.
Run the next cell to create the 'ground truth' labels.
```
# Generate an array of 4 binary label values, 3 positive and 1 negative
y_true = np.array(
[[1],
[1],
[1],
[0]])
print(f"y_true: \n{y_true}")
```
### Two models
To better understand the loss function, you will pretend that you have two models.
- Model 1 always outputs a 0.9 for any example that it's given.
- Model 2 always outputs a 0.1 for any example that it's given.
```
# Make model predictions that are always 0.9 for all examples
y_pred_1 = 0.9 * np.ones(y_true.shape)
print(f"y_pred_1: \n{y_pred_1}")
print()
y_pred_2 = 0.1 * np.ones(y_true.shape)
print(f"y_pred_2: \n{y_pred_2}")
```
### Problems with the regular loss function
The learning goal here is to notice that with a regular loss function (not a weighted loss), the model that always outputs 0.9 has a smaller loss (performs better) than model 2.
- This is because there is a class imbalance, where 3 out of the 4 labels are 1.
- If the data were perfectly balanced, (two labels were 1, and two labels were 0), model 1 and model 2 would have the same loss. Each would get two examples correct and two examples incorrect.
- However, since the data is not balanced, the regular loss function implies that model 1 is better than model 2.
### Notice the shortcomings of a regular non-weighted loss
See what loss you get from these two models (model 1 always predicts 0.9, and model 2 always predicts 0.1), see what the regular (unweighted) loss function is for each model.
```
loss_reg_1 = -1 * np.sum(y_true * np.log(y_pred_1)) + \
-1 * np.sum((1 - y_true) * np.log(1 - y_pred_1))
print(f"loss_reg_1: {loss_reg_1:.4f}")
loss_reg_2 = -1 * np.sum(y_true * np.log(y_pred_2)) + \
-1 * np.sum((1 - y_true) * np.log(1 - y_pred_2))
print(f"loss_reg_2: {loss_reg_2:.4f}")
print(f"When the model 1 always predicts 0.9, the regular loss is {loss_reg_1:.4f}")
print(f"When the model 2 always predicts 0.1, the regular loss is {loss_reg_2:.4f}")
```
Notice that the loss function gives a greater loss when the predictions are always 0.1, because the data is imbalanced, and has three labels of `1` but only one label for `0`.
Given a class imbalance with more positive labels, the regular loss function implies that the model with the higher prediction of 0.9 performs better than the model with the lower prediction of 0.1
### How a weighted loss treats both models the same
With a weighted loss function, you will get the same weighted loss when the predictions are all 0.9 versus when the predictions are all 0.1.
- Notice how a prediction of 0.9 is 0.1 away from the positive label of 1.
- Also notice how a prediction of 0.1 is 0.1 away from the negative label of 0
- So model 1 and 2 are "symmetric" along the midpoint of 0.5, if you plot them on a number line between 0 and 1.
### Weighted Loss Equation
Calculate the loss for the zero-th label (column at index 0)
- The loss is made up of two terms. To make it easier to read the code, you will calculate each of these terms separately. We are giving each of these two terms a name for explanatory purposes, but these are not officially called $loss_{pos}$ or $loss_{neg}$
- $loss_{pos}$: we'll use this to refer to the loss where the actual label is positive (the positive examples).
- $loss_{neg}$: we'll use this to refer to the loss where the actual label is negative (the negative examples).
$$ loss^{(i)} = loss_{pos}^{(i)} + los_{neg}^{(i)} $$
$$loss_{pos}^{(i)} = -1 \times weight_{pos}^{(i)} \times y^{(i)} \times log(\hat{y}^{(i)})$$
$$loss_{neg}^{(i)} = -1 \times weight_{neg}^{(i)} \times (1- y^{(i)}) \times log(1 - \hat{y}^{(i)})$$
Since this sample dataset is small enough, you can calculate the positive weight to be used in the weighted loss function. To get the positive weight, count how many NEGATIVE labels are present, divided by the total number of examples.
In this case, there is one negative label, and four total examples.
Similarly, the negative weight is the fraction of positive labels.
Run the next cell to define positive and negative weights.
```
# calculate the positive weight as the fraction of negative labels
w_p = 1/4
# calculate the negative weight as the fraction of positive labels
w_n = 3/4
print(f"positive weight w_p: {w_p}")
print(f"negative weight w_n {w_n}")
```
### Model 1 weighted loss
Run the next two cells to calculate the two loss terms separately.
Here, `loss_1_pos` and `loss_1_neg` are calculated using the `y_pred_1` predictions.
```
# Calculate and print out the first term in the loss function, which we are calling 'loss_pos'
loss_1_pos = -1 * np.sum(w_p * y_true * np.log(y_pred_1 ))
print(f"loss_1_pos: {loss_1_pos:.4f}")
# Calculate and print out the second term in the loss function, which we're calling 'loss_neg'
loss_1_neg = -1 * np.sum(w_n * (1 - y_true) * np.log(1 - y_pred_1 ))
print(f"loss_1_neg: {loss_1_neg:.4f}")
# Sum positive and negative losses to calculate total loss
loss_1 = loss_1_pos + loss_1_neg
print(f"loss_1: {loss_1:.4f}")
```
### Model 2 weighted loss
Now do the same calculations for when the predictions are from `y_pred_2'. Calculate the two terms of the weighted loss function and add them together.
```
# Calculate and print out the first term in the loss function, which we are calling 'loss_pos'
loss_2_pos = -1 * np.sum(w_p * y_true * np.log(y_pred_2))
print(f"loss_2_pos: {loss_2_pos:.4f}")
# Calculate and print out the second term in the loss function, which we're calling 'loss_neg'
loss_2_neg = -1 * np.sum(w_n * (1 - y_true) * np.log(1 - y_pred_2))
print(f"loss_2_neg: {loss_2_neg:.4f}")
# Sum positive and negative losses to calculate total loss when the prediction is y_pred_2
loss_2 = loss_2_pos + loss_2_neg
print(f"loss_2: {loss_2:.4f}")
```
### Compare model 1 and model 2 weighted loss
```
print(f"When the model always predicts 0.9, the total loss is {loss_1:.4f}")
print(f"When the model always predicts 0.1, the total loss is {loss_2:.4f}")
```
### What do you notice?
Since you used a weighted loss, the calculated loss is the same whether the model always predicts 0.9 or always predicts 0.1.
You may have also noticed that when you calculate each term of the weighted loss separately, there is a bit of symmetry when comparing between the two sets of predictions.
```
print(f"loss_1_pos: {loss_1_pos:.4f} \t loss_1_neg: {loss_1_neg:.4f}")
print()
print(f"loss_2_pos: {loss_2_pos:.4f} \t loss_2_neg: {loss_2_neg:.4f}")
```
Even though there is a class imbalance, where there are 3 positive labels but only one negative label, the weighted loss accounts for this by giving more weight to the negative label than to the positive label.
### Weighted Loss for more than one class
In this week's assignment, you will calculate the multi-class weighted loss (when there is more than one disease class that your model is learning to predict). Here, you can practice working with 2D numpy arrays, which will help you implement the multi-class weighted loss in the graded assignment.
You will work with a dataset that has two disease classes (two columns)
```
# View the labels (true values) that you will practice with
y_true = np.array(
[[1,0],
[1,0],
[1,0],
[1,0],
[0,1]
])
y_true
```
### Choosing axis=0 or axis=1
You will use `numpy.sum` to count the number of times column `0` has the value 0.
First, notice the difference when you set axis=0 versus axis=1
```
# See what happens when you set axis=0
print(f"using axis = 0 {np.sum(y_true,axis=0)}")
# Compare this to what happens when you set axis=1
print(f"using axis = 1 {np.sum(y_true,axis=1)}")
```
Notice that if you choose `axis=0`, the sum is taken for each of the two columns. This is what you want to do in this case. If you set `axis=1`, the sum is taken for each row.
### Calculate the weights
Previously, you visually inspected the data to calculate the fraction of negative and positive labels. Here, you can do this programmatically.
```
# set the positive weights as the fraction of negative labels (0) for each class (each column)
w_p = np.sum(y_true == 0,axis=0) / y_true.shape[0]
w_p
# set the negative weights as the fraction of positive labels (1) for each class
w_n = np.sum(y_true == 1, axis=0) / y_true.shape[0]
w_n
```
In the assignment, you will train a model to try and make useful predictions. In order to make this example easier to follow, you will pretend that your model always predicts the same value for every example.
```
# Set model predictions where all predictions are the same
y_pred = np.ones(y_true.shape)
y_pred[:,0] = 0.3 * y_pred[:,0]
y_pred[:,1] = 0.7 * y_pred[:,1]
y_pred
```
As before, calculate the two terms that make up the loss function. Notice that you are working with more than one class (represented by columns). In this case, there are two classes.
Start by calculating the loss for class `0`.
$$ loss^{(i)} = loss_{pos}^{(i)} + los_{neg}^{(i)} $$
$$loss_{pos}^{(i)} = -1 \times weight_{pos}^{(i)} \times y^{(i)} \times log(\hat{y}^{(i)})$$
$$loss_{neg}^{(i)} = -1 \times weight_{neg}^{(i)} \times (1- y^{(i)}) \times log(1 - \hat{y}^{(i)})$$
View the zero column for the weights, true values, and predictions that you will use to calculate the loss from the positive predictions.
```
# Print and view column zero of the weight
print(f"w_p[0]: {w_p[0]}")
print(f"y_true[:,0]: {y_true[:,0]}")
print(f"y_pred[:,0]: {y_pred[:,0]}")
# calculate the loss from the positive predictions, for class 0
loss_0_pos = -1 * np.sum(w_p[0] *
y_true[:, 0] *
np.log(y_pred[:, 0])
)
print(f"loss_0_pos: {loss_0_pos:.4f}")
```
View the zero column for the weights, true values, and predictions that you will use to calculate the loss from the negative predictions.
```
# Print and view column zero of the weight
print(f"w_n[0]: {w_n[0]}")
print(f"y_true[:,0]: {y_true[:,0]}")
print(f"y_pred[:,0]: {y_pred[:,0]}")
# Calculate the loss from the negative predictions, for class 0
loss_0_neg = -1 * np.sum(
w_n[0] *
(1 - y_true[:, 0]) *
np.log(1 - y_pred[:, 0])
)
print(f"loss_0_neg: {loss_0_neg:.4f}")
# add the two loss terms to get the total loss for class 0
loss_0 = loss_0_neg + loss_0_pos
print(f"loss_0: {loss_0:.4f}")
```
Now you are familiar with the array slicing that you would use when there are multiple disease classes stored in a two-dimensional array.
#### Now it's your turn!
* Can you calculate the loss for class (column) `1`?
```
# calculate the loss from the positive predictions, for class 1
loss_1_pos = None
```
Expected output
```CPP
loss_1_pos: 0.2853
```
```
# Calculate the loss from the negative predictions, for class 1
loss_1_neg = None
```
#### Expected output
```CPP
loss_1_neg: 0.9632
```
```
# add the two loss terms to get the total loss for class 0
loss_1 = None
```
#### Expected output
```CPP
loss_1: 1.2485
```
### Note
The data for the two classes (two columns) as well as the predictions were chosen so that you end up getting the same weighted loss for both categories.
- In general, you will expect to calculate different weighted loss values for each disease category, as the model predictions and data will differ from one category to another.
If you want some help, please click on the green "Solution" cell below to reveal the solution.
<details>
<summary>
<font size="3" color="darkgreen"><b>Solution</b></font>
</summary>
<p>
<code>
-- # calculate the loss from the positive predictions, for class 1
loss_1_pos = -1 * np.sum(w_p[1] *
y_true[:, 1] *
np.log(y_pred[:, 1])
)
print(f"loss_1_pos: {loss_1_pos:.4f}")
-- # Calculate the loss from the negative predictions, for class 1
loss_1_neg = -1 * np.sum(
w_n[1] *
(1 - y_true[:, 1]) *
np.log(1 - y_pred[:, 1])
)
print(f"loss_1_neg: {loss_1_neg:.4f}")
-- # add the two loss terms to get the total loss for class 1
loss_1 = loss_1_neg + loss_1_pos
print(f"loss_1: {loss_1:.4f}")
</code>
</p>
### How this practice relates to and differs from the upcoming graded assignment
- In the assignment, you will generalize this to calculating the loss for any number of classes.
- Also in the assignment, you will learn how to avoid taking the log of zero by adding a small number (more details will be explained in the assignment).
- Note that in the lecture videos and in this lecture notebook, you are taking the **sum** of losses for all examples. In the assignment, you will take the **average (the mean)** for all examples.
- Finally, in the assignment, you will work with "tensors" in TensorFlow, so you will use the TensorFlow equivalents of the numpy operations (keras.mean instead of numpy.mean).
#### That's all for this lab. You now have a couple more tools you'll need for this week's assignment!
| github_jupyter |
```
import psycopg2
import pandas as pd
import pandas.io.sql as pd_sql
import numpy as np
import matplotlib.pyplot as plt
def connectDB(DB):
# connect to the PostgreSQL server
return psycopg2.connect(
database=DB,
user="postgres",
password="Georgetown16",
host="database-1.c5vispb5ezxg.us-east-1.rds.amazonaws.com",
port='5432')
def disconnectDB(conn):
conn.close()
# connect to "Dataset" DB
conn = connectDB("Dataset")
# extract everything from 'table_name' into a dataframe
df = pd_sql.read_sql(f"select * from public.\"analysisFeatures\" ", con=conn).reset_index()
#make sure that all columns are displayed in our dataframe
pd.set_option('display.max_column',50)
#check dataframe
df.head(100)
#count null values of date_unregistration
df['date_unregistration'].isnull().sum()
drop_list = ['reg_period','code_presentation','date_unregistration','pass_fail_ind','std_total_weight']
df = df.drop(drop_list, axis=1)
df.head(10)
df['module_domain'].value_counts()
df['code_module'].value_counts()
#mapping the columns
df['imd_band'] = df['imd_band'].map({'0-10%':0,'10-20':1,'20-30%':2,'30-40%':3,'40-50%':4,'50-60%':5,'60-70%':6,'70-80%':7,'80-90%':8,'90-100%':9})
df['module_domain'] = df['module_domain'].map({'SocialScience': 0,'STEM': 1})
df['code_module'] = df['code_module'].map({'AAA': 0,'BBB': 1,'CCC':2,'DDD':3,'EEE':4,'FFF':5,'GGG':6})
df['term'] = df['term'].map({'J': 0,'B': 1})
df['year'] = df['year'].map({'2013': 0,'2014': 1})
df['gender'] = df['gender'].map({'M': 0,'F': 1})
df['age_band'] = df['age_band'].map({'0-35': 0,'35-55': 1,'55<=':2})
df['region'] = df['region'].map({'Scotland': 0,'East Anglian Region': 1,'London Region':2,'South Region': 3,'North Western Region': 4,'West Midlands Region':5,'South West Region': 6,'East Midlands Region': 7,'South East Region':8,'Wales': 9,'Yorkshire Region': 10,'North Region':11,'Ireland':12})
df['final_result'] = df['final_result'].map({'Withdrawn':0, 'Fail':0,'Pass':1,'Distinction':1})
df['disability'] = df['disability'].map({'N':0,'Y':1})
df['highest_education'] = df['highest_education'].map({'No Formal quals':0,'Lower Than A Level':1,'A Level or Equivalent':2,'HE Qualification':3,'Post Graduate Qualification':4})
df.head(10)
# write dataframe to database
from sqlalchemy import create_engine
engine = create_engine('postgresql://postgres:[email protected]:5432/Dataset')
df.to_sql('featureSTG1', engine, if_exists='replace')
disconnectDB(conn)
```
| github_jupyter |
```
# Import the modules
import numpy as np
import pandas as pd
from pathlib import Path
from sklearn.metrics import balanced_accuracy_score
from sklearn.metrics import confusion_matrix
from imblearn.metrics import classification_report_imbalanced
import warnings
warnings.filterwarnings('ignore')
```
---
```
# Read the CSV file from the Resources folder into a Pandas DataFrame
loans_df = pd.read_csv(Path('Resources/lending_data.csv'))
# Review the DataFrame
display(loans_df.head())
display(loans_df.tail())
# Separate the data into labels and features
# Separate the y variable, the labels
y = loans_df['loan_status']
# Separate the X variable, the features
X = loans_df.drop(columns=['loan_status'])
# Review the y variable Series
display(y.head())
display(y.tail())
# Review the X variable DataFrame
display(X.head())
display(X.tail())
# Check the balance of our target values
y.value_counts()
# Import the train_test_learn module
from sklearn.model_selection import train_test_split
# Split the data using train_test_split
# Assign a random_state of 1 to the function
train_X, test_X, train_y, test_y = train_test_split(X, y, random_state=1)
```
---
```
# Import the LogisticRegression module from SKLearn
from sklearn.linear_model import LogisticRegression
# Instantiate the Logistic Regression model
# Assign a random_state parameter of 1 to the model
logistic_regression_model = LogisticRegression(random_state=1)
# Fit the model using training data
logistic_regression_model.fit(train_X, train_y)
# Make a prediction using the testing data
testing_predictions = logistic_regression_model.predict(test_X)
# Print the balanced_accuracy score of the model
balanced_accuracy_score(test_y, testing_predictions)
# Generate a confusion matrix for the model
confusion_matrix(test_y, testing_predictions)
# Print the classification report for the model
print(classification_report_imbalanced(test_y, testing_predictions))
```
**Question:** How well does the logistic regression model predict both the `0` (healthy loan) and `1` (high-risk loan) labels?
**Answer:** The model appears to predict both of them with really well. It predicts the healthy loan almost perfectly, and predicts the high risk loan a little less accuratley but still very high. Both their precision and recall scores are high as well as their F-1 score. The healthy loan has perfect on 2/3 and 0.99 on the recall. While the high risk loan has a 0.85 precision, 0.91 recall, and 0.88 F-1 score. However, due to the imbalance we cannot be sure that this is actually true, and that the results are not skewed due to the low value counts of the high risk loans.
```
# Import the RandomOverSampler module form imbalanced-learn
from imblearn.over_sampling import RandomOverSampler
# Instantiate the random oversampler model
# Assign a random_state parameter of 1 to the model
random_oversampler = RandomOverSampler(random_state=1)
# Fit the original training data to the random_oversampler model
X_resampled, y_resampled = random_oversampler.fit_resample(train_X, train_y)
# Count the distinct values of the resampled labels data
y_resampled.value_counts()
# Instantiate the Logistic Regression model
# Assign a random_state parameter of 1 to the model
new_logistic_regression_model = LogisticRegression(random_state=1)
# Fit the model using the resampled training data
new_logistic_regression_model.fit(X_resampled, y_resampled)
# Make a prediction using the testing data
oversampled_predictions = new_logistic_regression_model.predict(test_X)
# Print the balanced_accuracy score of the model
balanced_accuracy_score(test_y, oversampled_predictions)
# Generate a confusion matrix for the model
confusion_matrix(test_y, oversampled_predictions)
# Print the classification report for the model
print(classification_report_imbalanced(test_y, oversampled_predictions))
```
**Question:** How well does the logistic regression model, fit with oversampled data, predict both the `0` (healthy loan) and `1` (high-risk loan) labels?
**Answer:** Overall, the logistic regression model fit with oversampled data predicts the healthy and high risk loans better than the original non-oversampled data. Even though the original model had high scores for accuracy, precision, recall, and F-1, it appears the new oversampled model had higher scores in all categories. So the oversampled model predicts better than the one fit with original data.
| github_jupyter |
# Introduction à Python
> présentée par Loïc Messal
## Introduction aux flux de contrôles
### Les tests
Ils permettent d'exécuter des déclarations sous certaines conditions.
```
age = 17
if age < 18:
print("Mineur") # executé si et seulement si la condition est vraie
age = 19
if age < 18:
print("Mineur") # executé si et seulement si la condition est vraie
else:
print("Majeur") # exécuté si et seulement si la condition est fausse
employeur = "JLR"
# employeur = "Jakarto"
# employeur = "Une autre entreprise"
# Commentez, décommentez les valeurs de la variable employeur pour tester.
if employeur == "JLR":
# exécuté si et seulement si la condition employeur == "JLR" est vraie
richesse_statut = "riche"
elif employeur == "Jakarto":
# exécuté si et seulement si la condition employeur == "Jakarto" est vraie
# et qu'aucune condition précédente n'a été remplie
richesse_statut = "ça s'en vient bientôt"
else:
# exécuté si et seulement si aucune condition précédente n'a été remplie
richesse_statut = "probablement pas"
print("Richesse d'un employé de {} : {}".format(employeur, richesse_statut))
```
### Les boucles
Les boucles permettent d'itérer sur des itérables (composés de plusieurs éléments).
```
un_iterable = []
un_iterable.append({"nom": "Messal", "prénom": "Loïc", "employeur": "Jakarto", "age": 23})
un_iterable.append({"nom": "Lassem", "prénom": "Ciol", "employeur": "Otrakaj", "age": 17})
un_iterable.append({"nom": "Alssem", "prénom": "Icol", "employeur": "Torakaj", "age": 20})
un_iterable
for item in un_iterable:
print("{} {} travaille chez {}.".format(item["prénom"], item["nom"], item["employeur"]))
```
Il est possible de générer des séquences avec la fonction `range()`.
```
for compteur in range(5): # range(5) génére une séquence de 0 à 5 (exclus)
print(compteur)
for compteur in range(1, 5+1): # range(1, 5+1) génére une séquence de 1 à 5+1 (exclus)
print(compteur)
for index in range(len(un_iterable)):
item = un_iterable[index] # accède à l'item à partir de son index
print("Item {} : {} {} travaille chez {}.".format(index, item["prénom"], item["nom"], item["employeur"]))
for index, item in enumerate(un_iterable): # enumerate permet d'itérer en obtenant l'index ET l'item
print("Item {} : {} {} travaille chez {}.".format(index, item["prénom"], item["nom"], item["employeur"]))
compteur = 0
stop = 5
while compteur < stop: # exécutera les déclarations suivantes tant que la condition est vraie
print(compteur)
compteur = compteur + 1
```
Il est possible de contrôler les boucles avec certains mots clés:
- `continue` passera à l'itération suivante sans exécuter les déclarations qui suivent
- `break` quittera la boucle prématurément
```
for index, item in enumerate(un_iterable):
if item["age"] < 18:
continue # Si la condition est vraie, passage à l'itération suivante.
print("Item {} : {} {} (majeur) travaille chez {}.".format(index, item["prénom"], item["nom"], item["employeur"]))
for index, item in enumerate(un_iterable):
print("Item {} : {} {} travaille chez {}.".format(index, item["prénom"], item["nom"], item["employeur"]))
if item["prénom"] == "Loïc":
break # Arrête la boucle si la condition est vraie
```
[Prochain chapitre : Les fonctions](04_Fonctions.ipynb)
| github_jupyter |
## Logistic Regression
```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split,KFold
from sklearn.utils import shuffle
from sklearn.metrics import confusion_matrix,accuracy_score,precision_score,\
recall_score,roc_curve,auc
import expectation_reflection as ER
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import GridSearchCV
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import MinMaxScaler
from function import split_train_test,make_data_balance
np.random.seed(1)
```
First of all, the processed data are imported.
```
#data_list = ['1paradox','2peptide','3stigma']
#data_list = np.loadtxt('data_list.txt',dtype='str')
data_list = np.loadtxt('data_list_30sets.txt',dtype='str')
#data_list = ['9coag']
print(data_list)
def read_data(data_id):
data_name = data_list[data_id]
print('data_name:',data_name)
Xy = np.loadtxt('../classification_data/%s/data_processed_knn7.dat'%data_name)
X = Xy[:,:-1]
y = Xy[:,-1]
#print(np.unique(y,return_counts=True))
X,y = make_data_balance(X,y)
print(np.unique(y,return_counts=True))
X, y = shuffle(X, y, random_state=1)
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.5,random_state = 1)
sc = MinMaxScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
return X_train,X_test,y_train,y_test
def measure_performance(X_train,X_test,y_train,y_test):
#model = LogisticRegression(max_iter=100)
model = SGDClassifier(loss='log',max_iter=1000,tol=0.001) # 'log' for logistic regression, 'hinge' for SVM
# regularization penalty space
#penalty = ['l1','l2']
penalty = ['elasticnet']
# solver
#solver=['saga']
#solver=['liblinear']
# regularization hyperparameter space
#C = np.logspace(0, 4, 10)
#C = [0.001,0.1,1.0,10.0,100.0]
alpha = [0.001,0.01,0.1,1.0,10.,100.]
# l1_ratio
#l1_ratio = [0.1,0.5,0.9]
l1_ratio = [0.,0.2,0.4,0.6,0.8,1.0]
# Create hyperparameter options
#hyperparameters = dict(penalty=penalty,solver=solver,C=C,l1_ratio=l1_ratio)
#hyper_parameters = dict(penalty=penalty,solver=solver,C=C)
hyper_parameters = dict(penalty=penalty,alpha=alpha,l1_ratio=l1_ratio)
# Create grid search using cross validation
clf = GridSearchCV(model, hyper_parameters, cv=4, iid='deprecated')
# Fit grid search
best_model = clf.fit(X_train, y_train)
# View best hyperparameters
#print('Best Penalty:', best_model.best_estimator_.get_params()['penalty'])
#print('Best C:', best_model.best_estimator_.get_params()['C'])
#print('Best alpha:', best_model.best_estimator_.get_params()['alpha'])
#print('Best l1_ratio:', best_model.best_estimator_.get_params()['l1_ratio'])
# best hyper parameters
print('best_hyper_parameters:',best_model.best_params_)
# performance:
y_test_pred = best_model.best_estimator_.predict(X_test)
acc = accuracy_score(y_test,y_test_pred)
#print('Accuracy:', acc)
p_test_pred = best_model.best_estimator_.predict_proba(X_test) # prob of [0,1]
p_test_pred = p_test_pred[:,1] # prob of 1
fp,tp,thresholds = roc_curve(y_test, p_test_pred, drop_intermediate=False)
roc_auc = auc(fp,tp)
#print('AUC:', roc_auc)
precision = precision_score(y_test,y_test_pred)
#print('Precision:',precision)
recall = recall_score(y_test,y_test_pred)
#print('Recall:',recall)
f1_score = 2*precision*recall/(precision+recall)
return acc,roc_auc,precision,recall,f1_score
n_data = len(data_list)
roc_auc = np.zeros(n_data) ; acc = np.zeros(n_data)
precision = np.zeros(n_data) ; recall = np.zeros(n_data)
f1_score = np.zeros(n_data)
#data_id = 0
for data_id in range(n_data):
X_train,X_test,y_train,y_test = read_data(data_id)
acc[data_id],roc_auc[data_id],precision[data_id],recall[data_id],f1_score[data_id] =\
measure_performance(X_train,X_test,y_train,y_test)
print(data_id,acc[data_id],roc_auc[data_id],precision[data_id],recall[data_id],f1_score[data_id])
print('acc_mean:',acc.mean())
print('roc_mean:',roc_auc.mean())
print('precision:',precision.mean())
print('recall:',recall.mean())
print('f1_score:',f1_score.mean())
np.savetxt('result_knn7_LR.dat',(roc_auc,acc,precision,recall,f1_score),fmt='%f')
```
| github_jupyter |
```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
%matplotlib inline
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', 1000)
```
# Importação dos dados
* Um CSV para cada campus
* data: de 2019-02-18 (segunda semana de aula) até 019-06-28 (penultima semana de aula)
* Granularidade: 1h (potência agregada pela média)
* Dados climáticos obtidos pela plataforma yr
* Colunas
* potencia ativa da fase A (Kw)
* Temperatura (ºC)
* Pressão (hPa)
```
raw = pd.read_csv ('../../datasets/2019-1 Fpolis.csv', sep=',')
raw.describe()
(ax1, ax2,ax3) = raw.plot(subplots=True)
ax1.legend(loc='upper left')
ax2.legend(loc='upper left')
ax3.legend(loc='upper left')
raw['pa'].plot.kde().set_xlabel("Potência Ativa (KW)")
raw['temp_celsius'].plot.kde().set_xlabel("Temperatura (ºC)")
raw['pressao'].plot.kde().set_xlabel("Pressão (hPa)")
```
# Data cleaning
* Filtra horários de aula
* remover linhas incompletas (sistema fora do ar)
* remover oulier (falhas na coleta de dados).
* remover dias não-letivos
* remover dias com falhas na medição (sistema fora do ar)
```
processed = raw.dropna()
processed = processed.set_index(pd.to_datetime (processed['momento'])).drop('momento', axis=1)
(ax1, ax2, ax3) = processed['2019-05-20 00:00:00' : '2019-05-25 00:00:00'].plot(subplots=True, sharex=True)
ax1.legend(loc='upper left')
ax2.legend(loc='upper left')
ax3.legend(loc='upper left')
#ax1.legend(loc="upper right")
processed = processed[processed['pa']<500]
processed = processed[processed['pa']>10]
## Remove fins de semana
# Create an index of just the date portion of your index (this is the slow step)
dfDays = pd.to_datetime(processed.index.date)
# Create a range of business days over that period
dfBdays = pd.bdate_range(start=processed.index[0].date(), end=processed.index[-1].date())
#Filter the series to just those days contained in the business day range.
filtered = processed[dfDays.isin(dfBdays)]
## Removendo dias não-letivos ou com erros
# março
# abril 4, 8, 15, 16,17,18,19, 22, 25, 29
# maio 1, 9, 10, 14, 15, 16, 17
# junho 20, 21
filtered = filtered[~((filtered.index.month == 4) & (filtered.index.day == 4))]
filtered = filtered[~((filtered.index.month == 4) & (filtered.index.day == 8))]
filtered = filtered[~((filtered.index.month == 4) & (filtered.index.day == 15))]
filtered = filtered[~((filtered.index.month == 4) & (filtered.index.day == 16))]
filtered = filtered[~((filtered.index.month == 4) & (filtered.index.day == 17))]
filtered = filtered[~((filtered.index.month == 4) & (filtered.index.day == 18))]
filtered = filtered[~((filtered.index.month == 4) & (filtered.index.day == 19))]
filtered = filtered[~((filtered.index.month == 4) & (filtered.index.day == 22))]
filtered = filtered[~((filtered.index.month == 4) & (filtered.index.day == 25))]
filtered = filtered[~((filtered.index.month == 4) & (filtered.index.day == 29))]
filtered = filtered[~((filtered.index.month == 5) & (filtered.index.day == 1))]
filtered = filtered[~((filtered.index.month == 5) & (filtered.index.day == 9))]
filtered = filtered[~((filtered.index.month == 5) & (filtered.index.day == 10))]
filtered = filtered[~((filtered.index.month == 5) & (filtered.index.day == 14))]
filtered = filtered[~((filtered.index.month == 5) & (filtered.index.day == 15))]
filtered = filtered[~((filtered.index.month == 5) & (filtered.index.day == 16))]
filtered = filtered[~((filtered.index.month == 5) & (filtered.index.day == 17))]
filtered = filtered[~((filtered.index.month == 6) & (filtered.index.day == 20))]
filtered = filtered[~((filtered.index.month == 6) & (filtered.index.day == 21))]
# Selecionando horários de aula
filtered1 = filtered.between_time('08:00:00', '11:00:00')
filtered2 = filtered.between_time('14:00:00', '17:00:00')
filtered = pd.concat([filtered1, filtered2])
filtered = filtered[~((filtered['pa']<50) & (filtered['temp_celsius']>27))]
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True,figsize=(15,6))
ax1.scatter(filtered['temp_celsius'], filtered['pa'], Alpha=0.5)
ax1.set_xlabel("temperatura (ºC)")
ax1.set_ylabel("Potência ativa (KW)")
ax2.scatter(filtered['pressao'], filtered['pa'], Alpha=0.5)
ax2.set_xlabel("Pressão (hPa)")
ax2.set_ylabel("Potência ativa (KW)")
filtered.describe()
filtered['id']=1
filtered
# Cross validation split
from sklearn.model_selection import train_test_split
X = filtered.drop('pa', axis=1)
y = filtered ['pa']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)
X_test
y_test
```
# Linear Regression
```
model1 = LinearRegression()
model1.fit (X_train, y_train)
pd.DataFrame(model1.coef_,X.columns,columns=['Coefficient'])
from sklearn import metrics
y_hat1 = model1.predict(X_test)
print ("MAE: ", metrics.mean_absolute_error(y_test, y_hat1))
print ("RMSE: ", np.sqrt(metrics.mean_squared_error(y_test, y_hat1)))
print ("Percentual: ", metrics.mean_absolute_error(y_test,y_hat1)/y_test.mean()*100, "%")
# Previsto vs real
line = np.arange(0, 250, 1)
plt.scatter(y_test,y_hat1, Alpha=0.6)
plt.scatter(line,line)
plt.grid(True)
plt.xlabel("Valores reais")
plt.ylabel("Valores previstos")
plt.scatter(X['temp_celsius'], y,color='g')
plt.scatter(X['temp_celsius'], model1.predict(X),color='k')
plt.show()
```
# Random Forest
```
import sklearn.metrics as metrics
import math
from sklearn.ensemble import RandomForestRegressor
mae1 = {}
mae2 = {}
for k in range(1,15, 1):
model2 = RandomForestRegressor(max_depth=k, n_estimators=100, criterion='mae').fit(X_train,y_train)
y_hat = model2.predict(X_train)
mae1[k] = metrics.mean_absolute_error(y_train,y_hat)
y_hat = model2.predict(X_test)
mae2[k] = metrics.mean_absolute_error(y_test,y_hat)
plt.figure()
plt.plot(list(mae1.keys()), list(mae1.values()), label='Erro no conunto de treinamento')
plt.plot(list(mae2.keys()), list(mae2.values()), label='Erro no conunto de teste')
plt.legend(loc='lower left')
plt.xlabel("Altura máxima")
plt.ylabel("MAE")
plt.grid(True)
# Random Forest
model2 = RandomForestRegressor(max_depth=3, n_estimators=100)
model2.fit(X_train,y_train)
# Model Evaluation
y_hat2 = model2.predict(X_test)
print ("MAE: ", metrics.mean_absolute_error(y_test,y_hat2))
print ("RMSE: ", math.sqrt(metrics.mean_squared_error(y_test,y_hat2)))
print ("Percentual: ", metrics.mean_absolute_error(y_test,y_hat2)/y_test.mean()*100, "%")
# Feature analysis
print ("=====================================")
print ("FEATURE IMPORTANCE:")
for i in range(model2.feature_importances_.size):
print (X_train.columns[i], "=", model2.feature_importances_[i])
# Previsto vs real
line = np.arange(0, 250, 1)
plt.scatter(y_test,y_hat, Alpha=0.6)
plt.scatter(line,line)
plt.grid(True)
plt.scatter(X['temp_celsius'], y,color='g')
plt.scatter(X['temp_celsius'], model2.predict(X),color='k')
plt.xlabel("Temperatura (ºC)")
plt.ylabel("Potência Ativa (KW)")
plt.show()
import pickle
with open('fpolis_trained_model.pkl', 'wb') as f:
pickle.dump(model2, f)
with open('fpolis_trained_model.pkl', 'rb') as f:
model2_loaded = pickle.load(f)
model2_loaded
```
| github_jupyter |
```
# Note: restart runtime after this import before running the augmentations
!pip install -U augly
!sudo apt-get install python3-magic
import os
import augly.image as imaugs
import augly.utils as utils
from IPython.display import display
# Get input image, scale it down to avoid taking up the whole screen
input_img_path = os.path.join(
utils.TEST_URI, "image", "inputs", "dfdc_1.jpg"
)
# We can use the AugLy scale augmentation
input_img = imaugs.scale(input_img_path, factor=0.2)
display(input_img)
# Now we can apply various augmentations to the scaled image!
display(
imaugs.meme_format(
input_img,
caption_height=75,
meme_bg_color=(0, 0, 0),
text_color=(255, 255, 255),
)
)
"""
You can optionally pass in a metadata list, to which metadata about the
augmentation will be appended, including kwargs, input & output
dimensions, and intensity (defined based on the kwargs for each
augmentation).
"""
meta = []
display(imaugs.shuffle_pixels(input_img, factor=0.3, metadata=meta))
meta
"""
You can also pass in bounding boxes, which will be transformed along with
the image & included in the metadata (note: you must provide metadata to
get the transformed bboxes)
"""
meta = []
display(
imaugs.rotate(
input_img,
degrees=15,
metadata=meta,
bboxes=[(20, 6, 250, 180)],
bbox_format="pascal_voc",
)
)
meta
# For all the augmentations, we have class-based definitions as well as
# functional
meta = []
aug = imaugs.PerspectiveTransform(sigma=20.0)
display(aug(input_img, metadata=meta))
meta
"""
For some augmentations, we also provide versions that will randomly sample
from a set of parameters (e.g. for ChangeAspectRatio, RandomAspectRatio
samples an emoji from Twitter's Twemoji set which we provide in the augly
package). The metadata will contain the actual sampled param values.
"""
meta = []
aug = imaugs.RandomAspectRatio()
display(aug(input_img, metadata=meta))
meta
# You can also compose several transformations together
meta = []
aug = imaugs.Compose(
[
imaugs.Saturation(factor=2.0),
imaugs.OverlayOntoScreenshot(
template_filepath=os.path.join(
utils.SCREENSHOT_TEMPLATES_DIR, "mobile.png"
),
),
imaugs.Scale(factor=0.6),
]
)
display(aug(input_img, metadata=meta))
meta
# AugLy also integrates seamlessly with PyTorch transforms
# Note: you must have torchvision installed, which it is by default in colab
import torchvision.transforms as transforms
aug = transforms.Compose(
[
imaugs.Brightness(factor=2.0),
imaugs.RandomRotation(),
transforms.ToTensor(),
]
)
type(aug(input_img))
# We also provide a numpy wrapper in case your data is in np.ndarray format
import numpy as np
from augly.image import aug_np_wrapper, overlay_emoji
np_image = np.zeros((300, 300))
# pass in function arguments as kwargs
np_aug_img = aug_np_wrapper(np_image, overlay_emoji, **{'opacity': 0.5, 'y_pos': 0.45})
type(np_aug_img)
```
| github_jupyter |
# Introduction
Linear Regression is one of the most famous and widely used machine learning algorithms out there. It assumes that the target variable can be explained as a linear combination of the input features. What does this mean? It means that the target can be viewed as a weighted sum of each feature. Let’s use a practical example to illustrate that.
Let’s say that we are opening a restaurant, we make great food but we want to know how much to charge for it. We can be very pragmatic and say that the cost of the meal is directly related to what is in it. We can, for instance, have a rule that each ingredient costs a certain amount, and based on how much there is of each ingredient in the dish, we can calculate its price. There may also be a fixed minimum price for each dish. Mathematically, this is called the intercept.
```
fixed_price = 5
ingredient_costs = {"meat": 10,
"fish": 13,
"vegetables": 2,
"fries": 3}
def price(**ingredients):
""" returns the price of a dish """
cost = 0
for name, quantity in ingredients.items():
cost += ingredient_costs[name] * quantity
return cost
```
Linear Regression makes the assumption that the target, in this case, the price, can be explained like this. The model will know about the quantity of each ingredient, but it will have to infer what the fixed price is, and what is the cost of each ingredient.
>It is important to remember that cost, in this situation, is rather abstract. It represents how much each feature affect the outcome, and in which way. Therefore, features can have negative costs for instance.
In the univariate case, where there is only one feature, Linear Regression can be thought of as trying to fit a line through points.
![](https://skratch.valentincalomme.com/wp-content/uploads/2018/09/polymial_regression_1.gif)
Now, Linear Regression is one of the most popular algorithms because it can do much more than fit straight lines through data. Indeed, with a simple trick, we can make it fit polynomial functions, making it much more powerful.
The trick is to "replace" the original features with a polynomial of a higher degree. In the univariate case, this comes down to not only using the feature itself but also its squared value, cubed value, and so on. For instance, instead of using a single feature $X = 2$, we end up with features $X = 2, 4, 8, 16, 32$, and so on. More features mean that the model is explained by more weights, and these weights can express more complex functions.
![](https://skratch.valentincalomme.com/wp-content/uploads/2018/09/polymial_regression_4.gif)
A Linear Regression model's goal is to find the coefficients, also called weights, which will fit the data best. In order to define what best means, we need to define a loss function. This loss function, as we will see later, can be tweaked to alter how the weights are learned. We will also see that finding the best weights in order to minimize the loss function can be done in different ways.
| github_jupyter |
######The Iris flower data set is a multivariate data set introduced by the British statistician and biologist Ronald Fisher in his 1936 paper The use of multiple measurements in taxonomic problems. The dataset consists of 50 samples from each of three species of Iris (Iris Setosa, Iris virginica, and Iris versicolor). Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters.
Import Libraries
```
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import seaborn as sns
import matplotlib.pyplot as plt
iris = pd.read_csv("iris.csv")
iris.head()
```
##### *We can see that we have a column named ID that we donot need , so let's drop it !*
```
iris.drop("Id", axis=1, inplace = True)
iris.info()
figure = iris[iris.Species == 'Iris-setosa'].plot(kind='scatter', x='SepalLengthCm', y='SepalWidthCm', color='red', label='Setosa')
iris[iris.Species == 'Iris-versicolor'].plot(kind='scatter', x='SepalLengthCm', y='SepalWidthCm', color='blue', label='Versicolor', ax=figure)
iris[iris.Species == 'Iris-virginica'].plot(kind='scatter', x='SepalLengthCm', y='SepalWidthCm', color='green', label='Virginica', ax=figure)
figure.set_xlabel('Sepal Length')
figure.set_ylabel('Sepal Width')
figure.set_title('Sepal Length Vs Width')
figure=plt.gcf()
figure.set_size_inches(7, 4)
plt.show()
figure = iris[iris.Species == 'Iris-setosa'].plot(kind='scatter', x='PetalLengthCm', y='PetalWidthCm', color='red', label='Setosa')
iris[iris.Species == 'Iris-versicolor'].plot(kind='scatter', x='PetalLengthCm', y='PetalWidthCm', color='blue', label='Versicolor', ax=figure)
iris[iris.Species == 'Iris-virginica'].plot(kind='scatter', x='PetalLengthCm', y='PetalWidthCm', color='green', label='Virginica', ax=figure)
figure.set_xlabel('Petal Length')
figure.set_ylabel('Petal Width')
figure.set_title('Petal Length Vs Width')
figure=plt.gcf()
figure.set_size_inches(7, 4)
plt.show()
plt.figure(figsize=(15,10))
plt.subplot(2,2,1)
sns.boxplot(x='Species',y='SepalLengthCm',data=iris)
plt.subplot(2,2,2)
sns.boxplot(x='Species',y='SepalWidthCm',data=iris)
plt.subplot(2,2,3)
sns.boxplot(x='Species',y='PetalLengthCm',data=iris)
plt.subplot(2,2,4)
sns.boxplot(x='Species',y='PetalWidthCm',data=iris)
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn import svm
from sklearn import metrics
from sklearn.tree import DecisionTreeClassifier
import xgboost as xgb
```
Splitting The Data into Training And Testing Dataset
```
train, test = train_test_split(iris, test_size=0.2)
print(train.shape)
print(test.shape)
train_X = train[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']]
train_y = train.Species
test_X = test[['SepalLengthCm','SepalWidthCm','PetalLengthCm','PetalWidthCm']]
test_y = test.Species
```
1. Logistic Regression
```
model1 = LogisticRegression()
model1.fit(train_X, train_y)
prediction1 = model1.predict(test_X)
print('Accuracy of Logistic Regression is: ', metrics.accuracy_score(prediction1, test_y))
```
2. SVM Classifier
```
model2 = svm.SVC()
model2.fit(train_X, train_y)
prediction2 = model2.predict(test_X)
print('Accuracy of SVM is: ', metrics.accuracy_score(prediction2, test_y))
```
3. K-Nearest Neighbors
```
model3 = KNeighborsClassifier(n_neighbors=3) # this examines 3 neighbors
model3.fit(train_X, train_y)
prediction3 = model3.predict(test_X)
print('Accuracy of KNN is: ', metrics.accuracy_score(prediction3, test_y))
```
4. Decision Tree
```
model4 = DecisionTreeClassifier()
model4.fit(train_X, train_y)
prediction4 = model4.predict(test_X)
print('Accuracy of Decision Tree is: ', metrics.accuracy_score(prediction4, test_y))
```
5. XGBoost
```
model5 = xgb.XGBClassifier()
model5.fit(train_X, train_y)
prediction5 = model5.predict(test_X)
print('Accuracy of xgb classifier is: ', metrics.accuracy_score(prediction5, test_y))
```
| github_jupyter |
```
import pandas as pd
from pathlib import Path
import yfinance as yf
import numpy as np
import csv
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings('ignore')
df_50 = pd.read_csv(
Path("./Data/QM_50.csv")
)
tickers = list(df_50["Tickers"])
historical = yf.Ticker("PWR").history(period="2y")
price_3month = historical.loc["2021-02":"2021-04"]
price_3month["return"] = price_3month["Close"].pct_change()
price_3month.head()
lags = 5
cols = []
for lag in range(1, lags + 1):
col = f'lag_{lag}'
price_3month[col] = price_3month['Close'].shift(lag)
cols.append(col)
price_3month.dropna(inplace=True)
price_3month
sum_ret = np.zeros(63)
for ticker in tickers:
df_price = yf.Ticker(ticker).history(period="2y")
df_price_3month = df_price.loc["2021-02":"2021-04"]
df_price_3month["return"] = df_price_3month["Close"].pct_change()
cum_ret = weighting * np.array((1 + df_price_3month["return"]).cumprod())
sum_ret = sum_ret + cum_ret
print(ticker, cum_ret[-1])
plt.plot(sum_ret)
```
# Lagged Price Machine Learning Testing
```
df1_50 = pd.read_csv(
Path("./Data/QM_50_6month.csv")
)
tickers = list(df1_50["Tickers"])
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
historical = yf.Ticker("idxx").history(period="max")
historical["return"] = historical["Close"].pct_change()
lags = 5
cols = []
for lag in range(1, lags + 1):
col = f'lag_{lag}'
historical[col] = historical['Close'].shift(lag)
cols.append(col)
historical_train = historical.loc[:"2021-01"]
historical_train.dropna(inplace=True)
historical_train
price_3month = historical.loc["2021-02":"2021-04"]
display(price_3month.head())
model = LogisticRegression(C=1e6, solver="lbfgs",
multi_class="auto",
max_iter=1000)
model.fit(historical_train[cols],np.sign(historical_train["return"]))
price_3month["prediction"] = model.predict(price_3month[cols])
price_3month["prediction"].value_counts()
price_3month["prediction"].value_counts()
print(classification_report(price_3month["prediction"],
np.sign(price_3month["return"])))
price_3month["strategy"] = price_3month["prediction"] * price_3month["return"]
price_3month[["strategy","return"]].cumsum().apply(np.exp).plot()
```
## SVC
```
poly_kernel_svm_clf = Pipeline([
("scaler", StandardScaler()),
("svm_clf", SVC())
])
poly_kernel_svm_clf.fit(historical_train[cols],np.sign(historical_train["return"]))
price_3month["prediction"] = model.predict(price_3month[cols])
price_3month["prediction"].value_counts()
print(classification_report(price_3month["prediction"],
np.sign(price_3month["return"])))
price_3month["strategy"] = price_3month["prediction"] * price_3month["return"]
price_3month[["strategy","return"]].cumsum().apply(np.exp).plot()
lags = 21
weighting = 1/50
strat = np.zeros(63)
actual = np.zeros(63)
for ticker in tickers:
# Pull the historical data
df_price = yf.Ticker(ticker).history(period="max")
df_price["return"] = df_price["Close"].pct_change()
# Create lags price
cols = []
for lag in range(1, lags + 1):
col = f'lag_{lag}'
df_price[col] = df_price['Close'].shift(lag)
cols.append(col)
df_price.dropna(inplace=True)
# Create train and test data
df_price_train = df_price.loc[:"2020-12"]
df_price_test = df_price.loc["2021-02":"2021-04"]
model = LogisticRegression(C=1e-2, solver="lbfgs",
multi_class="auto",
max_iter=1000)
model.fit(df_price_train[cols], np.sign(df_price_train["return"]))
df_price_test["prediction"] = model.predict(df_price_test[cols])
df_price_test["strategy"] = df_price_test["prediction"] * df_price_test["return"]
cum_ret = df_price_test[["strategy","return"]].cumsum().apply(np.exp)
strat = strat + np.array(cum_ret["strategy"]) * weighting
actual = actual + np.array(cum_ret["return"]) * weighting
print(ticker, cum_ret)
spy = np.array(yf.Ticker("spy").history(period="2y").loc["2021-02":"2021-04"]["Close"].pct_change().cumsum().apply(np.exp))
plt.figure(figsize=(10,8))
plt.plot(strat,'b-', label="Strategy")
plt.plot(actual,'r--', label="Actual")
plt.plot(spy,'g:', label="Spy")
plt.grid()
plt.legend()
spy
```
## SMA
```
%%time
short_win = 5
long_win = 15
weighting = 1/50
strat = np.zeros(63)
actual = np.zeros(63)
for ticker in tickers:
historical = yf.Ticker(ticker).history(period="max")
historical["return"] = historical["Close"].pct_change()
historical["SMA_short"] = historical["Close"].rolling(window=short_win).mean().shift()
historical["SMA_long"] = historical["Close"].rolling(window=long_win).mean().shift()
historical["distance1"] = (historical["Close"] - historical["SMA_short"]).shift()
historical["distance2"] = (historical["SMA_short"] - historical["SMA_long"]).shift()
historical["distance3"] = (historical["Close"] - historical["SMA_long"]).shift()
historical.dropna(inplace=True)
historical_train = historical.loc["2020-06":"2020"].copy()
historical_test = historical.loc["2021-02":"2021-04"].copy()
scaler = StandardScaler()
X_scaler = scaler.fit(historical_train[["SMA_short","SMA_long","distance1","distance2","distance3"]])
X_train_scaled = X_scaler.transform(historical_train[["SMA_short","SMA_long","distance1","distance2","distance3"]])
X_test_scaled = X_scaler.transform(historical_test[["SMA_short","SMA_long","distance1","distance2","distance3"]])
svm_model = SVC()
svm_model = svm_model.fit(X_train_scaled, np.sign(historical_train[["return"]]))
historical_test["prediction"] = svm_model.predict(X_test_scaled)
historical_test["strategy"] = historical_test["prediction"] * historical_test["return"]
cum_ret = historical_test[["strategy","return"]].cumsum().apply(np.exp)
strat = strat + np.array(cum_ret["strategy"]) * weighting
actual = actual + np.array(cum_ret["return"]) * weighting
print(ticker, cum_ret)
spy = np.array(yf.Ticker("spy").history(period="2y").loc["2021-02":"2021-04"]["Close"].pct_change().cumsum().apply(np.exp))
plt.figure(figsize=(10,8))
plt.plot(strat,'b-', label="Strategy")
plt.plot(actual,'r--', label="Actual")
plt.plot(spy,'g:', label="Spy")
plt.grid()
plt.legend()
```
## EMA
```
short_win = 12
long_win = 26
strat = np.zeros(63)
actual = np.zeros(63)
for ticker in tickers:
historical = yf.Ticker(ticker).history(period="2y")
historical["return"] = historical["Close"].pct_change()
historical["exp1"] = historical["Close"].ewm(span=short_win, adjust=False).mean().shift()
historical["exp2"] = historical["Close"].ewm(span=long_win, adjust=False).mean().shift()
historical["distance1"] = (historical["Close"] - historical["exp1"]).shift()
historical["distance2"] = (historical["Close"] - historical["exp2"]).shift()
#historical["distance3"] = (historical["exp1"] - historical["exp2"]).shift()
historical.dropna(inplace=True)
historical_train = historical.loc["2020-07":"2020"].copy()
historical_test = historical.loc["2021-02":"2021-04"].copy()
scaler = StandardScaler()
X_scaler = scaler.fit(historical_train[["exp1","exp2","distance1","distance2"]])
X_train_scaled = X_scaler.transform(historical_train[["exp1","exp2","distance1","distance2"]])
X_test_scaled = X_scaler.transform(historical_test[["exp1","exp2","distance1","distance2"]])
svm_model = SVC(C=0.5)
svm_model = svm_model.fit(X_train_scaled, np.sign(historical_train[["return"]]))
historical_test["prediction"] = svm_model.predict(X_test_scaled)
historical_test["strategy"] = historical_test["prediction"] * historical_test["return"]
cum_ret = historical_test[["strategy","return"]].cumsum().apply(np.exp)
strat = strat + np.array(cum_ret["strategy"]) * weighting
actual = actual + np.array(cum_ret["return"]) * weighting
print(ticker, cum_ret)
spy = np.array(yf.Ticker("spy").history(period="2y").loc["2021-02":"2021-04"]["Close"].pct_change().cumsum().apply(np.exp))
plt.figure(figsize=(10,8))
plt.plot(strat,'b-', label="Strategy")
plt.plot(actual,'r--', label="Actual")
plt.plot(spy,'g:', label="Spy")
plt.grid()
plt.legend()
```
# MACD
```
short_win = 12
long_win = 26
signal_line = 9
strat = np.zeros(63)
actual = np.zeros(63)
for ticker in tickers:
historical = yf.Ticker(ticker).history(period="2y")
historical["return"] = historical["Close"].pct_change()
historical["exp1"] = historical["Close"].ewm(span=short_win, adjust=False).mean().shift()
historical["exp2"] = historical["Close"].ewm(span=long_win, adjust=False).mean().shift()
historical["macd"] = historical["exp1"] - historical["exp2"]
historical["exp3"] = historical["Close"].ewm(span=signal_line, adjust=False).mean().shift()
historical["macd_histogram"] = historical["macd"] - historical["exp3"]
historical["lag_1"] = historical["Close"].shift()
historical["roc"] = ((historical["Close"] - historical["lag_1"])/ historical["lag_1"]).shift()
historical["macd_histogram_lag1"] = historical["macd_histogram"].shift()
historical["roc_macd"] = ((historical["macd_histogram"]-historical["macd_histogram_lag1"])/historical["macd_histogram_lag1"])
historical.dropna(inplace=True)
historical_train = historical.loc[:"2020"].copy()
historical_test = historical.loc["2021-02":"2021-04"].copy()
scaler = StandardScaler()
X_scaler = scaler.fit(historical_train[["roc","roc_macd"]])
X_train_scaled = X_scaler.transform(historical_train[["roc","roc_macd"]])
X_test_scaled = X_scaler.transform(historical_test[["roc","roc_macd"]])
svm_model = SVC(C=0.5)
svm_model = svm_model.fit(X_train_scaled, np.sign(historical_train[["return"]]))
historical_test["prediction"] = svm_model.predict(X_test_scaled)
historical_test["strategy"] = historical_test["prediction"] * historical_test["return"]
cum_ret = historical_test[["strategy","return"]].cumsum().apply(np.exp)
strat = strat + np.array(cum_ret["strategy"]) * weighting
actual = actual + np.array(cum_ret["return"]) * weighting
print(ticker, accuracy_score(historical_test["prediction"],
np.sign(historical_test["return"])))
spy = np.array(yf.Ticker("spy").history(period="2y").loc["2021-02":"2021-04"]["Close"].pct_change().cumsum().apply(np.exp))
plt.figure(figsize=(10,8))
plt.plot(strat,'b-', label="Strategy")
plt.plot(actual,'r--', label="Actual")
plt.plot(spy,'g:', label="Spy")
plt.grid()
plt.legend()
```
| github_jupyter |
```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from time import strftime
import os
%matplotlib inline
"""
Función que genera los mapas de temperatura mínima
"""
#%% fecha del pronostico
fechaPronostico = strftime("%Y-%m-%d")
variables = ["Rain","Tmax","Tmin","Tpro","Hr","Hrmin","Hrmax"]
LAT_MAX = 33.5791
LAT_MIN = 12.3782
LONG_MAX = -86.101
LONG_MIN = -118.236
#%% generate arrayFechas
# Generate Days
arrayFechas = []
tanio, tmes, tdia = fechaPronostico.split('-')
anio = int(tanio)
mes = int(tmes)
dia = int(tdia)
dirAnio = anio
dirMes = mes
dirDia = dia
#%% generate arrayFechas
for i in range(0,5,1):
if i == 0:
newDiaString = '{}'.format(dia)
if len(newDiaString) == 1:
newDiaString = '0' + newDiaString
newMesString = '{}'.format(mes)
if len(newMesString) == 1:
newMesString = '0' + newMesString
fecha = '{}'.format(anio)+"-"+newMesString+"-"+newDiaString
arrayFechas.append(fecha)
if i > 0:
dia = dia + 1
if mes == 2 and anio % 4 == 0:
diaEnElMes = 29
elif mes == 2 and anio % 4 != 0:
diaEnElMes = 28
elif mes == 1 or mes == 3 or mes == 5 or mes == 7 or mes == 8 or mes == 10 or mes == 12:
diaEnElMes = 31
elif mes == 4 or mes == 6 or mes == 9 or mes == 11:
diaEnElMes = 30
if dia > diaEnElMes:
mes = mes + 1
dia = 1
if mes > 12:
anio = anio + 1
mes = 1
newDiaString = '{}'.format(dia)
if len(newDiaString) == 1:
newDiaString = '0' + newDiaString
newMesString = '{}'.format(mes)
if len(newMesString) == 1:
newMesString = '0' + newMesString
fecha = '{}'.format(anio)+"-"+newMesString+"-"+newDiaString
arrayFechas.append(fecha)
# path server
path = "/home/jorge/Documents/Research/generar_boletin"
# os.chdir("/home/jorge/Documents/work/autoPronosticoSonora")
os.chdir(path)
#%% read csvs
pathFile1 = '{}/data/{}/d1.txt'.format(path, fechaPronostico)
pathFile2 = '{}/data/{}/d2.txt'.format(path, fechaPronostico)
pathFile3 = '{}/data/{}/d3.txt'.format(path, fechaPronostico)
pathFile4 = '{}/data/{}/d4.txt'.format(path, fechaPronostico)
pathFile5 = '{}/data/{}/d5.txt'.format(path, fechaPronostico)
data1 = pd.read_table(pathFile1, sep=',')
data2 = pd.read_table(pathFile2, sep=',')
data3 = pd.read_table(pathFile3, sep=',')
data4 = pd.read_table(pathFile4, sep=',')
data5 = pd.read_table(pathFile5, sep=',')
cols = ["Long","Lat","Graupel","Hail","Rain","Tmax","Tmin","Tpro","Dpoint","Hr","Windpro","WindDir","Hrmin","Hrmax","TprSoil0_10","TprSoil10_40","WprSoil0_10","WprSoil10_40"]
data1.columns = cols
data2.columns = cols
data3.columns = cols
data4.columns = cols
data5.columns = cols
#%% make one dataFrame
variable = "Rain"
data = data1.filter(items=['Long', 'Lat'])
data['{}1'.format(variable)] = data1[variable]
data['{}2'.format(variable)] = data2[variable]
data['{}3'.format(variable)] = data3[variable]
data['{}4'.format(variable)] = data4[variable]
data['{}5'.format(variable)] = data5[variable]
#%% get values from Ags
data = data.loc[data['Lat'] >= LAT_MIN]
data = data.loc[data['Lat'] <= LAT_MAX]
data = data.loc[data['Long'] >= LONG_MIN]
data = data.loc[data['Long'] <= LONG_MAX]
y1 = []
y2 = []
for k in range(1,6):
y1.append(data["Rain{}".format(k)].max())
y2.append(data["Rain{}".format(k)].min())
print()
ind = np.arange(5)
fig, ax = plt.subplots()
width = 0.35
rects1 = ax.bar(ind, y1, width, color='r')
rects2 = ax.bar(ind + width, y2, width, color='b')
# add some text for labels, title and axes ticks
ax.set_ylabel('mm')
ax.set_title('Precipitación')
ax.set_xticks(ind + width / 2)
ax.set_xticklabels(arrayFechas)
ax.legend((rects1[0], rects2[0]), ('Máximo', 'Mínimo'))
def autolabel(rects):
"""
Attach a text label above each bar displaying its height
"""
for rect in rects:
height = rect.get_height()
ax.text(rect.get_x() + rect.get_width()/2., .90*height,
'%d' % int(height),
ha='center', va='bottom')
autolabel(rects1)
autolabel(rects2)
data.head()
data.columns
plt.plot(1, data["Rain1"].max(), 2, "r", data["Rain2"].max(), "b")
plt.title("Gráfica")
data["Rain1"].max()
pd.Series(data.max()).plot.bar()
```
| github_jupyter |
```
%load_ext autoreload
%autoreload 2
import pathlib
import IPython.display
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import scipy.interpolate
import scipy.signal
import pymedphys
import pymedphys._wlutz.iview
indexed_dir = pathlib.Path(r'S:\DataExchange\iViewDB_decoded\indexed')
movie_dirs = list(indexed_dir.glob('*/*/*/*/*'))
movie_dirs
wlutz_results = {}
edge_lengths = [20, 24]
pd.set_option("display.max_rows", 101)
for directory in movie_dirs:
image_paths = list(directory.glob('*.png'))
print(image_paths)
wlutz_results[directory] = pymedphys._wlutz.iview.batch_process(image_paths, edge_lengths, display_figure=True)
IPython.display.display(wlutz_results[directory])
for directory in movie_dirs:
try:
wlutz_results[directory]
except KeyError:
image_paths = list(directory.glob('*.png'))
print(image_paths)
try:
wlutz_results[directory] = pymedphys._wlutz.iview.batch_process(image_paths, edge_lengths, display_figure=True)
IPython.display.display(wlutz_results[directory])
except ValueError:
continue
for directory in movie_dirs:
try:
wlutz_results[directory]
except KeyError:
image_paths = list(directory.glob('*.png'))
print(image_paths)
try:
wlutz_results[directory] = pymedphys._wlutz.iview.batch_process(image_paths, edge_lengths, display_figure=True)
IPython.display.display(wlutz_results[directory])
except ValueError:
continue
for directory in movie_dirs:
try:
wlutz_results[directory]
except KeyError:
image_paths = list(directory.glob('*.png'))
print(image_paths)
try:
wlutz_results[directory] = pymedphys._wlutz.iview.batch_process(image_paths, edge_lengths, display_figure=True)
IPython.display.display(wlutz_results[directory])
except ValueError:
continue
for key, table in wlutz_results.items():
print(key)
IPython.display.display(table)
keys = list(wlutz_results.keys())
keys
direction_keys = [
key.parent.stem for key in keys
]
direction_keys
rotations = [
wlutz_results[key]['Rotation']
for key in keys
]
lt_zero = rotations[0] < 0
gantry = np.empty_like(rotations[0])
gantry[lt_zero] = -180 - rotations[0][lt_zero]
gte_zero = np.invert(lt_zero)
gantry[gte_zero] = 180 - rotations[0][gte_zero]
gantry
gantry = []
for i, direction_key in enumerate(direction_keys):
if direction_keys[i] == '00_CW':
diff = np.diff(np.concatenate([[-180], rotations[i]]))
diff[diff > 0] = diff[diff > 0] - 180
gantry.append(-180 - np.cumsum(diff * 2))
elif direction_keys[i] == '01_CC':
diff = np.diff(np.concatenate([[0], rotations[i]]))
diff[diff < 0] = diff[diff < 0] + 180
gantry.append(180 - np.cumsum(diff * 2))
else:
raise ValueError("Expected one of '00_CW' or '01_CC'")
gantry
bb_x = [
wlutz_results[key]['BB x'] for key in keys
]
bb_y = [
wlutz_results[key]['BB y'] for key in keys
]
gantry
bb_x
scipy.interpolate.interp1d?
interp_bb_x = [
scipy.interpolate.interp1d(g, x, bounds_error=False, fill_value='extrapolate')
for g, x in zip(gantry, bb_x)
]
def get_avg_bb_x(gantry):
results = []
for interp in interp_bb_x:
results.append(interp(gantry))
return (np.min(results, axis=0) + np.max(results, axis=0))/2
interp_bb_y = [
scipy.interpolate.interp1d(g, y, bounds_error=False, fill_value='extrapolate')
for g, y in zip(gantry, bb_y)
]
def get_avg_bb_y(gantry):
results = []
for interp in interp_bb_y:
results.append(interp(gantry))
return (np.min(results, axis=0) + np.max(results, axis=0))/2
get_avg_bb_y([0, 2])
# gantry_all = np.concatenate(gantry)
# ind = np.argsort(gantry_all)
# sorted_gantry = gantry_all[ind]
# within_bounds = np.logical_and(sorted_gantry <= 180, sorted_gantry >= -180)
# sorted_gantry = sorted_gantry[within_bounds]
# sorted_bb_x = np.concatenate(bb_x)[ind][within_bounds]
# sorted_bb_y = np.concatenate(bb_y)[ind][within_bounds]
# b, a = scipy.signal.butter(3, 0.05)
# filtered_bb_x = scipy.signal.filtfilt(b, a, sorted_bb_x)
# filtered_bb_y = scipy.signal.filtfilt(b, a, sorted_bb_y)
# plt.plot(sorted_gantry, filtered_bb_x)
# unique_gantry, unique_inverse = np.unique(sorted_gantry, return_inverse=True)
# inc = np.arange(len(unique_inverse))
# make_unique = np.ones((len(unique_gantry), len(unique_inverse))) * np.nan
# make_unique[unique_inverse, inc] = sorted_bb_x
# striclty_increasing_bb_x = np.nanmean(make_unique, axis=1)
# make_unique[unique_inverse, inc] = sorted_bb_y
# striclty_increasing_bb_y = np.nanmean(make_unique, axis=1)
# def predict_bb_pos(gantry, gantry_range=10):
# gantry = np.array(gantry)
# lte = gantry[:,None] - gantry_range <= gantry_all[None,:]
# gte = gantry[:,None] + gantry_range >= gantry_all[None,:]
# in_range = np.logical_and(lte, gte)
# sorted_bb_x
# return in_range
# predict_bb_pos([0, 1], gantry_range=10)
# unique_gantry = np.unique(sorted_gantry)
# bb_x_interp = scipy.interpolate.interp1d(sorted_gantry, filtered_bb_x, bounds_error=False)
# bb_y_interp = scipy.interpolate.interp1d(sorted_gantry, filtered_bb_y, bounds_error=False)
# bb_x_interp = scipy.interpolate.UnivariateSpline(unique_gantry, strictly_increasing_bb_x, s=0.1)
# bb_y_interp = scipy.interpolate.UnivariateSpline(unique_gantry, strictly_increasing_bb_y, s=1)
gantry_i = np.linspace(-180, 180, 91)
for i, key in enumerate(keys):
plt.plot(gantry[i], bb_x[i], '.')
plt.plot(gantry_i, get_avg_bb_x(gantry_i))
plt.xlim([-180, 180])
for i, key in enumerate(keys):
plt.plot(gantry[i], bb_y[i], '.')
plt.plot(gantry_i, get_avg_bb_y(gantry_i))
plt.xlim([-180, 180])
```
| github_jupyter |
```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
X, y = make_blobs(n_samples = 100, centers = 2, random_state = 42)
# Splitting the data for training and testing
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
# Plotting the available data
plt.scatter(X[:, 0], X[:, 1], c = y)
class ImplementLogisticRegression:
# Constructor
def __init__(self, learning_rate = 0.01):
self.learning_rate = learning_rate
# Training the model
def fit(self, X, y):
# Creating a column of ones for multiplication of vectors
ones = np.ones((X.shape[0], 1))
# Storing x coordinates
self.X = np.hstack([ones, X])
# Storing the values of 'yi's
self.y = y.reshape(-1, 1)
# Storing the variables of theta
self.theta = np.array(np.zeros((self.X.shape[1], 1)))
# Carrying out gradient descent a fixed number of times
for i in range(200):
self.gradient_ascent()
def predict(self, X_test, y_test):
# Storing the number of correct and the total number of predictions
correct, total = 0, 0
predicted_classes = []
# Predicting for all the points
for x1, x2, y in zip(X_test[:, 0], X_test[:, 1], y_test[:]):
# Noting that a prediction has been made
total += 1
# Obtaining the attributes of theta
theta = self.theta
theta_0 = theta[0]
theta_1 = theta[1]
theta_2 = theta[2]
# Computing the expression by substituting the values in the equation
val = theta_0 + theta_1 * x1 + theta_2 * x2
# Predicting the class to which the point belongs to
if(val >= 0):
predicted_classes.append(1)
val = 1
else:
predicted_classes.append(0)
val = 0
# Noting for a correct prediction
if val == y:
correct += 1
# Returning the set of predictions and the percentage accuracy
return np.array(predicted_classes), correct / total * 100
# Returns the outputs from the hypothesis
def get_hypothesis(self):
dot_product = np.dot(self.X, self.theta)
# Calculating the outputs from the hypothesis for all the values of X
hypothesis = 1 / (1 + np.exp(-dot_product))
return hypothesis
# Performing the gradient descent
def gradient_ascent(self):
# Getting the hypothesis output for all the values of X
hypothesis = self.get_hypothesis()
# Calculating the sigma term in the gradient ascent formula
sigma = np.dot(self.X.T, self.y - hypothesis)
# Updating the values of theta
self.theta += self.learning_rate * sigma
# Creating a model for logistic regression
model = ImplementLogisticRegression()
# Training the model with training data
model.fit(X_train, y_train)
# Getting the attributes of the line
theta = model.theta
theta_0 = theta[0]
theta_1 = theta[1]
theta_2 = theta[2]
# Plotting the points
plt.scatter(X_train[:, 0], X_train[:, 1], c = y_train)
# Plotting the line dividing the two classes
x_plot = np.linspace(-2, 3)
y_plot = -theta_1 / theta_2 * x_plot - theta_0 / theta_2
plt.plot(x_plot, y_plot, color = 'red')
# Obtaining the set of predictions and their accuracy
predictions, accuracy = model.predict(X_test, y_test)
print(accuracy)
```
| github_jupyter |