prompt
stringlengths
501
4.98M
target
stringclasses
1 value
chunk_prompt
bool
1 class
kind
stringclasses
2 values
prob
float64
0.2
0.97
path
stringlengths
10
394
quality_prob
float64
0.4
0.99
learning_prob
float64
0.15
1
filename
stringlengths
4
221
Corrigir versao de scipy para Inception ``` pip install scipy==1.3.3 ``` Importar bibliotecas ``` from __future__ import division, print_function from torchvision import datasets, models, transforms import copy import matplotlib.pyplot as plt import numpy as np import os import shutil import time import torch import torch.nn as nn import torch.optim as optim import torchvision import zipfile ``` Montar Google Drive ``` from google.colab import drive drive.mount('/content/drive') ``` Definir constantes ``` DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') ZIP_FILE_PATH = './dataset.zip' DATASET_PATH = './dataset' INCEPTION = 'inception' VGG19 = 'vgg-19' MODEL = INCEPTION # Define o tipo de modelo a ser usado. IMG_SIZE = { INCEPTION: 299, VGG19: 224, }[MODEL] NORMALIZE_MEAN = [0.485, 0.456, 0.406] NORMALIZE_STD = [0.229, 0.224, 0.225] BATCH_SIZE = 4 NUM_WORKERS = 4 TRAIN = 'train' VAL = 'val' TEST = 'test' PHASES = { TRAIN: 'train', VAL: 'val', TEST: 'test', } print(DEVICE) ``` Limpar diretorio do dataset ``` shutil.rmtree(DATASET_PATH) ``` Extrair dataset ``` zip_file = zipfile.ZipFile(ZIP_FILE_PATH) zip_file.extractall() zip_file.close() ``` Carregar dataset ``` # Augmentacao de dados para treinamento, # apenas normalizacao para validacao e teste. data_transforms = { TRAIN: transforms.Compose([ transforms.Resize(IMG_SIZE), transforms.RandomHorizontalFlip(), transforms.RandomRotation(15), transforms.ToTensor(), transforms.Normalize(NORMALIZE_MEAN, NORMALIZE_STD), ]), VAL: transforms.Compose([ transforms.Resize(IMG_SIZE), transforms.ToTensor(), transforms.Normalize(NORMALIZE_MEAN, NORMALIZE_STD), ]), TEST: transforms.Compose([ transforms.Resize(IMG_SIZE), transforms.ToTensor(), transforms.Normalize(NORMALIZE_MEAN, NORMALIZE_STD), ]), } data_sets = { phase: datasets.ImageFolder( os.path.join(DATASET_PATH, PHASES[phase]), data_transforms[phase], ) for phase in PHASES } data_loaders = { phase: torch.utils.data.DataLoader( data_sets[phase], batch_size = BATCH_SIZE, shuffle = True, num_workers = NUM_WORKERS, ) for phase in PHASES } data_sizes = { phase: len(data_sets[phase]) for phase in PHASES } class_names = data_sets[TRAIN].classes print(data_sets) print(data_loaders) print(data_sizes) print(class_names) ``` Helper functions ``` # Exibe uma imagem a partir de um Tensor. def imshow(data): mean = np.array(NORMALIZE_MEAN) std = np.array(NORMALIZE_STD) image = data.numpy().transpose((1, 2, 0)) image = std * image + mean image = np.clip(image, 0, 1) plt.imshow(image) # Treina o modelo e retorna o modelo treinado. def train_model(model_type, model, optimizer, criterion, num_epochs = 25): start_time = time.time() num_epochs_without_improvement = 0 best_acc = 0.0 best_model = copy.deepcopy(model.state_dict()) torch.save(best_model, 'model.pth') for epoch in range(num_epochs): print('Epoch {}/{} ...'.format(epoch + 1, num_epochs)) for phase in PHASES: if phase == TRAIN: model.train() elif phase == VAL: model.eval() else: continue running_loss = 0.0 running_corrects = 0 for data, labels in data_loaders[phase]: data = data.to(DEVICE) labels = labels.to(DEVICE) optimizer.zero_grad() with torch.set_grad_enabled(phase == TRAIN): outputs = model(data) if phase == TRAIN and model_type == INCEPTION: outputs = outputs.logits _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) if phase == TRAIN: loss.backward() optimizer.step() running_loss += loss.item() * data.size(0) running_corrects += torch.sum(preds == labels.data) epoch_loss = running_loss / data_sizes[phase] epoch_acc = running_corrects.double() / data_sizes[phase] print('{} => Loss: {:.4f}, Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc)) if phase == VAL: if epoch_acc > best_acc: num_epochs_without_improvement = 0 best_acc = epoch_acc best_model = copy.deepcopy(model.state_dict()) torch.save(best_model, 'model.pth') else: num_epochs_without_improvement += 1 if num_epochs_without_improvement == 50: print('Exiting early...') break elapsed_time = time.time() - start_time print('Took {:.0f}m {:.0f}s'.format(elapsed_time // 60, elapsed_time % 60)) print('Best Acc: {:4f}'.format(best_acc)) model.load_state_dict(best_model) return model # Visualiza algumas predicoes do modelo. def visualize_model(model, num_images = 6): was_training = model.training model.eval() fig = plt.figure() images_so_far = 0 with torch.no_grad(): for i, (data, labels) in enumerate(data_loaders[TEST]): data = data.to(DEVICE) labels = labels.to(DEVICE) outputs = model(data) _, preds = torch.max(outputs, 1) for j in range(data.size()[0]): images_so_far += 1 ax = plt.subplot(num_images // 2, 2, images_so_far) ax.axis('off') ax.set_title('Predicted: {}'.format(class_names[preds[j]])) imshow(data.cpu().data[j]) if images_so_far == num_images: model.train(mode = was_training) return model.train(mode = was_training) # Testa o modelo. def test_model(model, criterion): was_training = model.training model.eval() running_loss = 0.0 running_corrects = 0 with torch.no_grad(): for data, labels in data_loaders[TEST]: data = data.to(DEVICE) labels = labels.to(DEVICE) outputs = model(data) _, preds = torch.max(outputs, 1) loss = criterion(outputs, labels) running_loss += loss.item() * data.size(0) running_corrects += torch.sum(preds == labels.data) loss = running_loss / data_sizes[TEST] acc = running_corrects.double() / data_sizes[TEST] print('Loss: {:4f}, Acc: {:4f}'.format(loss, acc)) model.train(mode = was_training) ``` Exibir amostra do dataset ``` data, labels = next(iter(data_loaders[TRAIN])) grid = torchvision.utils.make_grid(data) imshow(grid) ``` Definir modelo ``` if MODEL == INCEPTION: model = models.inception_v3(pretrained = True, progress = True) print(model.fc) for param in model.parameters(): param.requires_grad = False num_features = model.fc.in_features model.fc = nn.Linear(num_features, len(class_names)) model = model.to(DEVICE) optimizer = optim.SGD(model.fc.parameters(), lr = 0.001, momentum = 0.9) elif MODEL == VGG19: model = models.vgg19(pretrained = True, progress = True) print(model.classifier[6]) for param in model.parameters(): param.requires_grad = False num_features = model.classifier[6].in_features model.classifier[6] = nn.Linear(num_features, len(class_names)) model = model.to(DEVICE) optimizer = optim.SGD(model.classifier[6].parameters(), lr = 0.001, momentum = 0.9) else: print('ERRO: Nenhum tipo de modelo definido!') criterion = nn.CrossEntropyLoss() print(model) ``` Treinar modelo ``` model = train_model(MODEL, model, optimizer, criterion) ``` Visualizar modelo ``` visualize_model(model) ``` Testar modelo ``` model.load_state_dict(torch.load('model.pth')) test_model(model, criterion) ``` Salvar modelo para CPU ``` model = model.cpu() torch.save(model.state_dict(), 'model-cpu.pth') ``` Salvar no Google Drive ``` torch.save(model.state_dict(), '/content/drive/My Drive/model-inception.pth') ```
true
code
0.75656
null
null
null
null
<a href="https://colab.research.google.com/github/flych3r/IA025_2022S1/blob/main/ex04/matheus_xavier/IA025_A04.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # Regressão Softmax com dados do MNIST utilizando gradiente descendente estocástico por minibatches Este exercicío consiste em treinar um modelo de uma única camada linear no MNIST **sem** usar as seguintes funções do pytorch: - torch.nn.Linear - torch.nn.CrossEntropyLoss - torch.nn.NLLLoss - torch.nn.LogSoftmax - torch.optim.SGD - torch.utils.data.Dataloader ## Importação das bibliotecas ``` %matplotlib inline import numpy as np import matplotlib.pyplot as plt import random import torch import torchvision from torchvision.datasets import MNIST ``` ## Fixando as seeds ``` random.seed(123) np.random.seed(123) torch.manual_seed(123) ``` ## Dataset e dataloader ### Definição do tamanho do minibatch ``` batch_size = 50 ``` ### Carregamento, criação dataset e do dataloader ``` dataset_dir = '../data/' dataset_train_full = MNIST( dataset_dir, train=True, download=True, transform=torchvision.transforms.ToTensor() ) print(dataset_train_full.data.shape) print(dataset_train_full.targets.shape) ``` ### Usando apenas 1000 amostras do MNIST Neste exercício utilizaremos 1000 amostras de treinamento. ``` indices = torch.randperm(len(dataset_train_full))[:1000] dataset_train = torch.utils.data.Subset(dataset_train_full, indices) # Escreva aqui o equivalente do código abaixo: # loader_train = torch.utils.data.DataLoader(dataset_train, batch_size=batch_size, shuffle=False) import math class DataLoader: def __init__(self, dataset: torch.utils.data.Dataset, batch_size: int = 1, shuffle: bool = True): self.dataset = dataset self.batch_size = batch_size self.shuffle = shuffle self.idx = 0 self.indexes = np.arange(len(dataset)) self._size = math.ceil(len(dataset) / self.batch_size) def __iter__(self): self.idx = 0 return self def __next__(self): if self.idx < len(self): if self.idx == 0 and self.shuffle: np.random.shuffle(self.indexes) batch = self.indexes[self.idx * self.batch_size: (self.idx + 1) * self.batch_size] self.idx += 1 x_batch, y_batch = [], [] for b in batch: x, y = self.dataset[b] x_batch.append(x) y_batch.append(y) return torch.stack(x_batch), torch.tensor(y_batch) raise StopIteration def __len__(self): return self._size loader_train = DataLoader(dataset_train, batch_size=batch_size, shuffle=False) print('Número de minibatches de trenamento:', len(loader_train)) x_train, y_train = next(iter(loader_train)) print("\nDimensões dos dados de um minibatch:", x_train.size()) print("Valores mínimo e máximo dos pixels: ", torch.min(x_train), torch.max(x_train)) print("Tipo dos dados das imagens: ", type(x_train)) print("Tipo das classes das imagens: ", type(y_train)) ``` ## Modelo ``` # Escreva aqui o codigo para criar um modelo cujo o equivalente é: # model = torch.nn.Linear(28*28, 10) # model.load_state_dict(dict(weight=torch.zeros(model.weight.shape), bias=torch.zeros(model.bias.shape))) class Model: def __init__(self, in_features: int, out_features: int): self.weight = torch.zeros(out_features, in_features, requires_grad=True) self.bias = torch.zeros(out_features, requires_grad=True) def __call__(self, x: torch.Tensor) -> torch.Tensor: y_pred = x.mm(torch.t(self.weight)) + self.bias.unsqueeze(0) return y_pred def parameters(self): return self.weight, self.bias model = Model(28*28, 10) ``` ## Treinamento ### Inicialização dos parâmetros ``` n_epochs = 50 lr = 0.1 ``` ## Definição da Loss ``` # Escreva aqui o equivalente de: # criterion = torch.nn.CrossEntropyLoss() class CrossEntropyLoss: def __init__(self): self.loss = 0 def __call__(self, inputs: torch.Tensor, targets: torch.Tensor): log_sum_exp = torch.log(torch.sum(torch.exp(inputs), dim=1, keepdim=True)) logits = inputs.gather(dim=1, index=targets.unsqueeze(dim=1)) return torch.mean(-logits + log_sum_exp) criterion = CrossEntropyLoss() ``` # Definição do Optimizer ``` # Escreva aqui o equivalente de: # optimizer = torch.optim.SGD(model.parameters(), lr) from typing import Iterable class SGD: def __init__(self, parameters: Iterable[torch.Tensor], learning_rate: float): self.parameters = parameters self.learning_rate = learning_rate def step(self): for p in self.parameters: p.data -= self.learning_rate * p.grad def zero_grad(self): for p in self.parameters: p.grad = torch.zeros_like(p.data) optimizer = SGD(model.parameters(), lr) ``` ### Laço de treinamento dos parâmetros ``` epochs = [] loss_history = [] loss_epoch_end = [] total_trained_samples = 0 for i in range(n_epochs): # Substitua aqui o loader_train de acordo com sua implementação do dataloader. for x_train, y_train in loader_train: # Transforma a entrada para uma dimensão inputs = x_train.view(-1, 28 * 28) # predict da rede outputs = model(inputs) # calcula a perda loss = criterion(outputs, y_train) # zero, backpropagation, ajusta parâmetros pelo gradiente descendente # Escreva aqui o código cujo o resultado é equivalente às 3 linhas abaixo: optimizer.zero_grad() loss.backward() optimizer.step() total_trained_samples += x_train.size(0) epochs.append(total_trained_samples / len(dataset_train)) loss_history.append(loss.item()) loss_epoch_end.append(loss.item()) print(f'Epoch: {i:d}/{n_epochs - 1:d} Loss: {loss.item()}') ``` ### Visualizando gráfico de perda durante o treinamento ``` plt.plot(epochs, loss_history) plt.xlabel('época') ``` ### Visualização usual da perda, somente no final de cada minibatch ``` n_batches_train = len(loader_train) plt.plot(epochs[::n_batches_train], loss_history[::n_batches_train]) plt.xlabel('época') # Assert do histórico de losses target_loss_epoch_end = np.array([ 1.1979684829711914, 0.867622971534729, 0.7226786613464355, 0.6381281018257141, 0.5809749960899353, 0.5387411713600159, 0.5056464076042175, 0.4786270558834076, 0.4558936357498169, 0.4363219141960144, 0.4191650450229645, 0.4039044976234436, 0.3901679515838623, 0.3776799440383911, 0.3662314713001251, 0.35566139221191406, 0.34584277868270874, 0.33667415380477905, 0.32807353138923645, 0.31997355818748474, 0.312318354845047, 0.3050611615180969, 0.29816246032714844, 0.29158851504325867, 0.28531041741371155, 0.2793029546737671, 0.273544579744339, 0.2680158317089081, 0.26270008087158203, 0.2575823664665222, 0.25264936685562134, 0.24788929522037506, 0.24329163134098053, 0.23884665966033936, 0.23454584181308746, 0.23038141429424286, 0.22634628415107727, 0.22243399918079376, 0.2186385989189148, 0.21495483815670013, 0.21137762069702148, 0.20790249109268188, 0.20452524721622467, 0.20124195516109467, 0.19804897904396057, 0.1949428766965866, 0.19192075729370117, 0.188979372382164, 0.18611609935760498, 0.1833282858133316]) assert np.allclose(np.array(loss_epoch_end), target_loss_epoch_end, atol=1e-6) ``` ## Exercício Escreva um código que responda às seguintes perguntas: Qual é a amostra classificada corretamente, com maior probabilidade? Qual é a amostra classificada erradamente, com maior probabilidade? Qual é a amostra classificada corretamente, com menor probabilidade? Qual é a amostra classificada erradamente, com menor probabilidade? ``` # Escreva o código aqui: loader_eval = DataLoader(dataset_train, batch_size=len(dataset_train), shuffle=False) x, y = next(loader_eval) logits = model(x.view(-1, 28 * 28)) exp_logits = torch.exp(logits) sum_exp_logits = torch.sum(exp_logits, dim=1, keepdim=True) softmax = (exp_logits / sum_exp_logits).detach() y_pred = torch.argmax(softmax, dim=1) y_proba = softmax.gather(-1, y_pred.view(-1, 1)).ravel() corret_preditions = (y == y_pred) wrong_predictions = (y != y_pred) def plot_image_and_proba(images, probas, idx, title): plt.figure(figsize=(16, 8)) x_labels = list(range(10)) plt.subplot(121) plt.imshow(images[idx][0]) plt.subplot(122) plt.bar(x_labels, probas[idx]) plt.xticks(x_labels) plt.suptitle(title) plt.show() # Qual é a amostra classificada corretamente, com maior probabilidade? mask = corret_preditions idx = torch.argmax(y_proba[mask]) title = 'Predita: {} | Probabilidate: {:.4f} | Correta: {}'.format( y_pred[mask][idx], y_proba[mask][idx], y[mask][idx], ) plot_image_and_proba(x[mask], softmax[mask], idx, title) # Qual é a amostra classificada erradamente, com maior probabilidade? mask = wrong_predictions idx = torch.argmax(y_proba[mask]) title = 'Predita: {} | Probabilidate: {:.4f} | Correta: {}'.format( y_pred[mask][idx], y_proba[mask][idx], y[mask][idx], ) plot_image_and_proba(x[mask], softmax[mask], idx, title) # Qual é a amostra classificada corretamente, com menor probabilidade? mask = corret_preditions idx = torch.argmin(y_proba[mask]) title = 'Predita: {} | Probabilidate: {:.4f} | Correta: {}'.format( y_pred[mask][idx], y_proba[mask][idx], y[mask][idx], ) plot_image_and_proba(x[mask], softmax[mask], idx, title) # Qual é a amostra classificada erradamente, com menor probabilidade? mask = wrong_predictions idx = torch.argmin(y_proba[mask]) title = 'Predita: {} | Probabilidate: {:.4f} | Correta: {}'.format( y_pred[mask][idx], y_proba[mask][idx], y[mask][idx], ) plot_image_and_proba(x[mask], softmax[mask], idx, title) ``` ## Exercício Bonus Implemente um dataloader que aceite como parâmetro de entrada a distribuição probabilidade das classes que deverão compor um batch. Por exemplo, se a distribuição de probabilidade passada como entrada for: `[0.01, 0.01, 0.72, 0.2, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]` Em média, 72% dos exemplos do batch deverão ser da classe 2, 20% deverão ser da classe 3, e os demais deverão ser das outras classes. Mostre também que sua implementação está correta.
true
code
0.697145
null
null
null
null
Copyright (c) Microsoft Corporation. All rights reserved. Licensed under the MIT License. # Deploying a web service to Azure Kubernetes Service (AKS) This notebook shows the steps for deploying a service: registering a model, creating an image, provisioning a cluster (one time action), and deploying a service to it. We then test and delete the service, image and model. ``` from azureml.core import Workspace from azureml.core.compute import AksCompute, ComputeTarget from azureml.core.webservice import Webservice, AksWebservice from azureml.core.image import Image from azureml.core.model import Model import azureml.core print(azureml.core.VERSION) ``` # Get workspace Load existing workspace from the config file info. ``` from azureml.core.workspace import Workspace ws = Workspace.from_config() print(ws.name, ws.resource_group, ws.location, ws.subscription_id, sep = '\n') ``` # Register the model Register an existing trained model, add descirption and tags. ``` #Register the model from azureml.core.model import Model model = Model.register(model_path = "sklearn_regression_model.pkl", # this points to a local file model_name = "sklearn_regression_model.pkl", # this is the name the model is registered as tags = {'area': "diabetes", 'type': "regression"}, description = "Ridge regression model to predict diabetes", workspace = ws) print(model.name, model.description, model.version) ``` # Create an image Create an image using the registered model the script that will load and run the model. ``` %%writefile score.py import pickle import json import numpy from sklearn.externals import joblib from sklearn.linear_model import Ridge from azureml.core.model import Model def init(): global model # note here "sklearn_regression_model.pkl" is the name of the model registered under # this is a different behavior than before when the code is run locally, even though the code is the same. model_path = Model.get_model_path('sklearn_regression_model.pkl') # deserialize the model file back into a sklearn model model = joblib.load(model_path) # note you can pass in multiple rows for scoring def run(raw_data): try: data = json.loads(raw_data)['data'] data = numpy.array(data) result = model.predict(data) # you can return any data type as long as it is JSON-serializable return result.tolist() except Exception as e: error = str(e) return error from azureml.core.conda_dependencies import CondaDependencies myenv = CondaDependencies.create(conda_packages=['numpy','scikit-learn']) with open("myenv.yml","w") as f: f.write(myenv.serialize_to_string()) from azureml.core.image import ContainerImage image_config = ContainerImage.image_configuration(execution_script = "score.py", runtime = "python", conda_file = "myenv.yml", description = "Image with ridge regression model", tags = {'area': "diabetes", 'type': "regression"} ) image = ContainerImage.create(name = "myimage1", # this is the model object models = [model], image_config = image_config, workspace = ws) image.wait_for_creation(show_output = True) ``` # Provision the AKS Cluster This is a one time setup. You can reuse this cluster for multiple deployments after it has been created. If you delete the cluster or the resource group that contains it, then you would have to recreate it. ``` # Use the default configuration (can also provide parameters to customize) prov_config = AksCompute.provisioning_configuration() aks_name = 'my-aks-9' # Create the cluster aks_target = ComputeTarget.create(workspace = ws, name = aks_name, provisioning_configuration = prov_config) %%time aks_target.wait_for_completion(show_output = True) print(aks_target.provisioning_state) print(aks_target.provisioning_errors) ``` ## Optional step: Attach existing AKS cluster If you have existing AKS cluster in your Azure subscription, you can attach it to the Workspace. ``` ''' # Use the default configuration (can also provide parameters to customize) resource_id = '/subscriptions/92c76a2f-0e1c-4216-b65e-abf7a3f34c1e/resourcegroups/raymondsdk0604/providers/Microsoft.ContainerService/managedClusters/my-aks-0605d37425356b7d01' create_name='my-existing-aks' # Create the cluster aks_target = AksCompute.attach(workspace=ws, name=create_name, resource_id=resource_id) # Wait for the operation to complete aks_target.wait_for_completion(True) ''' ``` # Deploy web service to AKS ``` #Set the web service configuration (using default here) aks_config = AksWebservice.deploy_configuration() %%time aks_service_name ='aks-service-1' aks_service = Webservice.deploy_from_image(workspace = ws, name = aks_service_name, image = image, deployment_config = aks_config, deployment_target = aks_target) aks_service.wait_for_deployment(show_output = True) print(aks_service.state) ``` # Test the web service We test the web sevice by passing data. ``` %%time import json test_sample = json.dumps({'data': [ [1,2,3,4,5,6,7,8,9,10], [10,9,8,7,6,5,4,3,2,1] ]}) test_sample = bytes(test_sample,encoding = 'utf8') prediction = aks_service.run(input_data = test_sample) print(prediction) ``` # Clean up Delete the service, image and model. ``` %%time aks_service.delete() image.delete() model.delete() ```
true
code
0.369969
null
null
null
null
# Linear Regression --- - Author: Diego Inácio - GitHub: [github.com/diegoinacio](https://github.com/diegoinacio) - Notebook: [regression_linear.ipynb](https://github.com/diegoinacio/machine-learning-notebooks/blob/master/Machine-Learning-Fundamentals/regression_linear.ipynb) --- Overview and implementation of *Linear Regression* analysis. ``` %matplotlib inline import matplotlib import matplotlib.pyplot as plt import numpy as np from regression__utils import * # Synthetic data 1 x, yA, yB, yC, yD = synthData1() ``` ![linear regression correlation](output/regression_linear_correlation.png "Linear Regression Correlation") ## 1. Simple --- $$ \large y_i=mx_i+b $$ Where **m** describes the angular coefficient (or line slope) and **b** the linear coefficient (or line y-intersept). $$ \large m=\frac{\sum_i^n (x_i-\overline{x})(y_i-\overline{y})}{\sum_i^n (x_i-\overline{x})^2} $$ $$ \large b=\overline{y}-m\overline{x} $$ ``` class linearRegression_simple(object): def __init__(self): self._m = 0 self._b = 0 def fit(self, X, y): X = np.array(X) y = np.array(y) X_ = X.mean() y_ = y.mean() num = ((X - X_)*(y - y_)).sum() den = ((X - X_)**2).sum() self._m = num/den self._b = y_ - self._m*X_ def pred(self, x): x = np.array(x) return self._m*x + self._b lrs = linearRegression_simple() %%time lrs.fit(x, yA) yA_ = lrs.pred(x) lrs.fit(x, yB) yB_ = lrs.pred(x) lrs.fit(x, yC) yC_ = lrs.pred(x) lrs.fit(x, yD) yD_ = lrs.pred(x) ``` ![linear regression prediction](output/regression_linear_pred.png "Linear Regression Prediction") $$ \large MSE=\frac{1}{n} \sum_i^n (Y_i- \hat{Y}_i)^2 $$ ![linear regression residuals](output/regression_linear_residual.png "Linear Regression Residuals") ## 2. Multiple --- $$ \large y=m_1x_1+m_2x_2+...+m_nx_n+b $$ ``` class linearRegression_multiple(object): def __init__(self): self._m = 0 self._b = 0 def fit(self, X, y): X = np.array(X).T y = np.array(y).reshape(-1, 1) X_ = X.mean(axis = 0) y_ = y.mean(axis = 0) num = ((X - X_)*(y - y_)).sum(axis = 0) den = ((X - X_)**2).sum(axis = 0) self._m = num/den self._b = y_ - (self._m*X_).sum() def pred(self, x): x = np.array(x).T return (self._m*x).sum(axis = 1) + self._b lrm = linearRegression_multiple() %%time # Synthetic data 2 M = 10 s, t, x1, x2, y = synthData2(M) # Prediction lrm.fit([x1, x2], y) y_ = lrm.pred([x1, x2]) ``` ![linear regression multiple](output/regression_linear_multiple_pred.png "Linear Regression Multiple") ![linear regression multiple residuals](output/regression_linear_multipla_residual.png "Linear Regression Multiple Residuals") ## 3. Gradient Descent --- $$ \large e_{m,b}=\frac{1}{n} \sum_i^n (y_i-(mx_i+b))^2 $$ To perform the gradient descent as a function of the error, it is necessary to calculate the gradient vector $\nabla$ of the function, described by: $$ \large \nabla e_{m,b}=\Big\langle\frac{\partial e}{\partial m},\frac{\partial e}{\partial b}\Big\rangle $$ where: $$ \large \begin{aligned} \frac{\partial e}{\partial m}&=\frac{2}{n} \sum_{i}^{n}-x_i(y_i-(mx_i+b)), \\ \frac{\partial e}{\partial b}&=\frac{2}{n} \sum_{i}^{n}-(y_i-(mx_i+b)) \end{aligned} $$ ``` class linearRegression_GD(object): def __init__(self, mo = 0, bo = 0, rate = 0.001): self._m = mo self._b = bo self.rate = rate def fit_step(self, X, y): X = np.array(X) y = np.array(y) n = X.size dm = (2/n)*np.sum(-x*(y - (self._m*x + self._b))) db = (2/n)*np.sum(-(y - (self._m*x + self._b))) self._m -= dm*self.rate self._b -= db*self.rate def pred(self, x): x = np.array(x) return self._m*x + self._b %%time lrgd = linearRegression_GD(rate=0.01) # Synthetic data 3 x, x_, y = synthData3() iterations = 3072 for i in range(iterations): lrgd.fit_step(x, y) y_ = lrgd.pred(x) ``` ![gradient descent](output/regression_linear_gradDesc.gif "Gradient Descent") ## 4. Non-linear analysis --- ``` # Synthetic data 4 # Anscombe's quartet x1, y1, x2, y2, x3, y3, x4, y4 = synthData4() %%time lrs.fit(x1, y1) y1_ = lrs.pred(x1) lrs.fit(x2, y2) y2_ = lrs.pred(x2) lrs.fit(x3, y3) y3_ = lrs.pred(x3) lrs.fit(x4, y4) y4_ = lrs.pred(x4) ``` ![non linear](output/regression_linear_anscombe_pred.png "Non-linear") ![non linear residuals](output/regression_linear_anscombe_residual.png "Non-linear Residuals")
true
code
0.603552
null
null
null
null
# Clusters as Knowledge Areas of Annotators ``` # import required packages import sys sys.path.append("../..") import warnings warnings.filterwarnings('ignore') import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from annotlib import ClusterBasedAnnot from sklearn.datasets import make_classification from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score ``` A popular approach to simulate annotators is to use clustering methods. By using clustering methods, we can emulate areas of knowledge. The assumption is that the knowledge of an annotator is not constant for a whole classification problem, but there are areas where the annotator has a wider knowledge compared to areas of sparse knowledge. As the samples lie in a feature space, we can model the area of knowledge as an area in the feature space. The simulation of annotators by means of clustering is implemented by the class [ClusterBasedAnnot](../annotlib.cluster_based.rst). To create such annotators, you have to provide the samples `X`, their corresponding true class labels `y_true` and the cluster labels `y_cluster`. In this section, we introduce the following simulation options: - class labels as clustering, - clustering algorithms to find clustering, - and feature space as a single cluster. The code below generates a two-dimensional (`n_features=2`) artificial data set with `n_samples=500` samples and `n_classes=4` classes. ``` X, y_true = make_classification(n_samples=500, n_features=2, n_informative=2, n_redundant=0, n_repeated=0, n_classes=4, n_clusters_per_class=1, flip_y=0.1, random_state=4) plt.figure(figsize=(5, 3), dpi=150) plt.scatter(X[:, 0], X[:, 1], marker='o', c=y_true, s=10) plt.title('artificial data set: samples with class labels', fontsize=7) plt.xticks(fontsize=7) plt.yticks(fontsize=7) plt.show() ``` ## 1. Class Labels as Clustering If you do not provide any cluster labels `y_cluster`, the true class labels `y_true` are assumed to be a representive clustering. As a result the class labels and cluster labels are equivalent `y_cluster = y_true` and define the knowledge areas of the simulated annotators. To simulate annotators on this dataset, we create an instance of the [ClusterBasedAnnot](../annotlib.cluster_based.rst) class by providing the samples `X` with the true labels `y_true` as input. ``` # simulate annotators where the clusters are defined by the class labels clust_annot_cls = ClusterBasedAnnot(X=X, y_true=y_true, random_state=42) ``` The above simulated annotators have knowledge areas defined by the class label distribution. As a result, there are four knowledge areas respectively clusters. In the default setting, the number of annotators is equal to the number of defined clusters. Correspondingly, there are four simulated annotators in our example. ☝🏽An important aspect is the simulation of the labelling performances of the annotators on the different clusters. By default, each annotator is assumed to be an expert on a single cluster. Since we have four clusters and four annotators, each cluster has only one annotator as expert. Being an expert means that an annotator has a higher probability for providing the correct class label for a sample than in the clusters of low expertise. Let the number of clusters be $K$ (`n_clusters`) and the number of annotators be $A$ (`n_annotators`). For the case $K=A$, an annotator $a_i$ is expert on cluster $c_i$ with $i \in \{0,\dots,A-1\}$, the probability of providing the correct class label $y^{\text{true}}_\mathbf{x}$ for sample $\mathbf{x} \in c_i$ is defined by $$p(y^{\text{true}}_\mathbf{x} \mid \mathbf{x}, a_i, c_i) = U(0.8, 1.0)$$ where $U(a,b)$ means that a value is uniformly drawn from the interval $[0.8, 1.0]$. In contrast for the clusters of low expertise, the default probability for providing a correct class label is defined by $$p(y^{\text{true}}_\mathbf{x} \mid \mathbf{x}, a_i, c_j) = U\left(\frac{1}{C}, \text{min}(\frac{1}{C}+0.1,1)\right),$$ where $j=0,\dots,A-1$, $j\neq i$ and $C$ denotes the number of classes (`n_classes`). These properties apply only for the default settings. The actual labelling accuracies per cluster are exemplary plotted for annotator $a_0$ below. ``` acc_cluster = clust_annot_cls.labelling_performance_per_cluster(accuracy_score) x = np.arange(len(np.unique(clust_annot_cls.y_cluster_))) plt.figure(figsize=(4, 2), dpi=150) plt.bar(x, acc_cluster[0]) plt.xticks(x, ('cluster $c_0$', 'cluster $c_1$', 'cluster $c_2$', 'cluster $c_3$'), fontsize=7) plt.ylabel('labelling accuracy', fontsize=7) plt.title('labelling accuracy of annotator $a_0$', fontsize=7) plt.show() ``` The above figure matches the description of the default behaviour. We can see that the accuracy of annotator $a_0$ is high in cluster $c_0$, whereas the labelling accuracy on the remaining clusters is comparable to randomly guessing of class labels. You can also manually define properties of the annotators. This may be interesting when you want to evaluate the performance of a developed method coping with multiple uncertain annotators. Let's see how the ranges of uniform distributions for correct class labels on the clusters can be defined manually. For the default setting, we observe the following ranges: ``` print('ranges of uniform distributions for correct' +' class labels on the clusters:') for a in range(clust_annot_cls.n_annotators()): print('annotator a_' + str(a) + ':\n' + str(clust_annot_cls.cluster_labelling_acc_[a])) ``` The attribute `cluster_labelling_acc_` is an array with the shape `(n_annotators, n_clusters, 2)` and can be defined by means of the parameter `cluster_labelling_acc`. This parameter may be either a `str` or array-like. By default, `cluster_labelling_acc='one_hot'` is valid, which indicates that each annotator is expert on one cluster. Another option is `cluster_labelling_acc='equidistant'` and is explained in one of the following examples. The entry `cluster_labelling_acc_[i, j , 0]` indicates the lower limit of the uniform distribution for correct class labels of annotator $a_i$ on cluster $c_j$. Analogous, the entry `cluster_labelling_acc_[i, j ,1]` represents the upper limit. The sampled probabilities for correct class labels are also the confidence scores of the annotators. An illustration of the annotators $a_0$ and $a_1$ simulated with default values on the predefined data set is given in the following plots. The confidence scores correspond to the size of the crosses and dots. ``` clust_annot_cls.plot_class_labels(X=X, y_true=y_true, annotator_ids=[0, 1], plot_confidences=True) print('The confidence scores correspond to the size of the crosses and dots.') plt.tight_layout() plt.show() ``` ☝🏽To sum up, by using the true class labels `y_true` as proxy of a clustering and specifying the input parameter `cluster_labelling_acc`, annotators being experts on different classes can be simulated. ## 2. Clustering Algorithms to Find Clustering There are several algorithms available for perfoming clustering on a data set. The framework *scikit-learn* provides many clustering algorithms, e.g. - `sklearn.cluster.KMeans`, - `sklearn.cluster.DBSCAN`, - `sklearn.cluster.AgglomerativeClustering`, - `sklearn.cluster.bicluster.SpectralBiclusterin`, - `sklearn.mixture.BayesianGaussianMixture`, - and `sklearn.mixture.GaussianMixture`. We examplary apply the `KMeans` algorithm being a very popular clustering algorithm. For this purpose, you have to specify the number of clusters. By doing so, you determine the number of different knowledge areas in the feature space with reference to the simulation of annotators. We set `n_clusters = 3` as number of clusters. The clusters found by `KMeans` on the previously defined data set are given in the following: ``` # standardize features of samples X_z = StandardScaler().fit_transform(X) # apply k-means algorithm y_cluster_k_means = KMeans(n_clusters=3).fit_predict(X_z) # plot found clustering plt.figure(figsize=(5, 3), dpi=150) plt.scatter(X[:, 0], X[:, 1], c=y_cluster_k_means, s=10) plt.title('samples with cluster labels of k-means algorithm', fontsize=7) plt.xticks(fontsize=7) plt.yticks(fontsize=7) plt.show() ``` The clusters are found on the standardised data set, so that the mean of each feature is 0 and the variance is 1. The computed cluster labels `y_cluster` are used as input parameter to simulate two annotators, where the annotator $a_0$ is expert on two clusters and the annotator $a_1$ is expert on one cluster. ``` # define labelling accuracy ranges on four clusters for three annotators clu_label_acc_km = np.array([[[0.8, 1], [0.8, 1], [0.3, 0.5]], [[0.3, 0.5], [0.3, 0.5], [0.8, 1]]]) # simulate annotators cluster_annot_kmeans = ClusterBasedAnnot(X=X, y_true=y_true, y_cluster=y_cluster_k_means, n_annotators=2, cluster_labelling_acc=clu_label_acc_km) # scatter plots of annotators cluster_annot_kmeans.plot_class_labels(X=X, y_true=y_true, plot_confidences=True, annotator_ids=[0, 1]) plt.tight_layout() plt.show() ``` ☝🏽The employment of different clustering allows to define almost arbitrarily knowledge areas and offers a huge flexibiility. However, the clusters should reflect the actual regions within a feature space. ## 3. Feature Space as a Single Cluster Finally, you can simulate annotators whose knowledge does not depend on clusters. Hence, their knowledge level is constant over the whole feature space. To emulate such a behaviour, you create a clustering array `y_cluster_const`, in which all samples in the feature space are assigned to the same cluster. ``` y_cluster_const = np.zeros(len(X), dtype=int) cluster_annot_const = ClusterBasedAnnot(X=X, y_true=y_true, y_cluster=y_cluster_const, n_annotators=5, cluster_labelling_acc='equidistant') # plot labelling accuracies cluster_annot_const.plot_labelling_accuracy(X=X, y_true=y_true, figsize=(4, 2), fontsize=6) plt.show() # print predefined labelling accuracies print('ranges of uniform distributions for correct class ' + 'labels on the clusters:') for a in range(cluster_annot_const.n_annotators()): print('annotator a_' + str(a) + ': ' + str(cluster_annot_const.cluster_labelling_acc_[a])) ``` Five annotators are simulated whose labelling accuracy intervals are increasing with the index number of the annotator. ☝🏽The input parameter `cluster_labelling_acc='equidistant'` means that the lower bounds of the labelling accuracy intervals between two annotators have always the same distance. In general, the interval of the correct labelling probability for annotator $a_i$ is computed by $$d = \frac{1 - \frac{1}{C}}{A+1},$$ $$p(y^{(\text{true})}_\mathbf{x} \mid \mathbf{x}, a_i, c_j) \in U(\frac{1}{C} + i \cdot d, \frac{1}{C} + 2 \cdot i \cdot d),$$ where $i=0,\dots,A-1$ and $j=0,\dots,K-1$ with $K$. This procedure ensures that the intervals of the correct labelling probabilities are overlapping.
true
code
0.638835
null
null
null
null
# Cross-Validation Cross-validation is a step where we take our training sample and further divide it in many folds, as in the illustration here: ```{image} ./img/feature_5_fold_cv.jpg :alt: 5-fold :width: 400px :align: center ``` As we talked about in the last chapter, cross-validation allows us to test our models outside the training data more often. This trick reduces the likelihood of overfitting and improves generalization: It _should_ improve our model's performance when we apply it outside the training data. ```{warning} I say "_should_" because the exact manner in which you create the folds matters. ``` - **If your data has groups** (i.e. repeated observations for a given firm), you should use [group-wise cross-validation](https://scikit-learn.org/stable/modules/cross_validation.html#group-cv), like `GroupKFold` to make sure no group is in the training and validation partitions of the fold - **If your data and/or task is time dependent**, like predicting stock returns, you should use a [time-wise cross-validation](https://scikit-learn.org/stable/modules/cross_validation.html#timeseries-cv), like `TimeSeriesSplit` to ensure that the validation partitions are subsequent to the training sample ```{margin} Illustration: If you emulate the simple folding method as depicted in the above graphic for stock return data, some folds will end up testing your model on data from _before_ the periods where the model was estimated! ``` --- ## CV in practice Like before, let's load the data. Notice I consolidated the import lines at the top. ``` import pandas as pd import numpy as np from sklearn.linear_model import Ridge from sklearn.model_selection import train_test_split url = 'https://github.com/LeDataSciFi/ledatascifi-2021/blob/main/data/Fannie_Mae_Plus_Data.gzip?raw=true' fannie_mae = pd.read_csv(url,compression='gzip').dropna() y = fannie_mae.Original_Interest_Rate fannie_mae = (fannie_mae .assign(l_credscore = np.log(fannie_mae['Borrower_Credit_Score_at_Origination']), l_LTV = np.log(fannie_mae['Original_LTV_(OLTV)']), ) .iloc[:,-11:] # limit to these vars for the sake of this example ) ``` ### **STEP 1:** Set up your test and train split samples ``` rng = np.random.RandomState(0) # this helps us control the randomness so we can reproduce results exactly X_train, X_test, y_train, y_test = train_test_split(fannie_mae, y, random_state=rng) ``` --- **An important digression:** Now that we've introduced some of the conceptual issues with how you create folds for CV, let's revisit this `test_train_split` code above. [This page](https://scikit-learn.org/stable/modules/cross_validation.html#using-cross-validation-iterators-to-split-train-and-test) says `train_test_split` uses [ShuffleSplit](https://scikit-learn.org/stable/modules/cross_validation.html#random-permutations-cross-validation-a-k-a-shuffle-split). This method does not divide by time or any group type. ```{dropdown} Q: Does this data need special attention to how we divide it up? A question to ponder, in class perhaps... ``` If you want to use any other CV iterators to divide up your sample, you can: ```python # Just replace "GroupShuffleSplit" with your CV of choice, # and update the contents of split() as needed train_idx, test_idx = next( GroupShuffleSplit(random_state=7).split(X, y, groups) ) X_train, X_test, y_train, y_test = X[train_idx], X[train_idx], y[test_idx], y[test_idx] ``` --- Back to our regularly scheduled "CV in Practice" programming. ### **STEP 2:** Set up the CV SK-learn makes cross-validation pretty easy. The `cross_validate("estimator",X_train,y_train,cv,scoring,...)` function ([documentation here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_validate.html)) will 1. Create folds in X_train and y_train using the method you put in the `cv` parameter. For each fold, it will create a smaller "training partition" and "testing partition" like in the figure at the top of this page. 1. For each fold, 1. It will fit your "estimator" (as if you ran `estimator.fit(X_trainingpartition,y_trainingpartition)`) on the smaller training partition it creates. **Your estimator will be a "pipeline" object** ([covered in detail on the next page](04e_pipelines)) that tells sklearn to apply a series of steps to the data (preprocessing, etc.), culminating in a model. 1. Use that fitted estimator on the testing partition (as if you ran `estimator.predict(X_testingpartition)` will apply all of the data transformations in the pipeline and use the estimated model on it) 1. Score those predictions with the function(s) you put in `scoring` 1. Output a dictionary object with performance data You can even give it multiple scoring metrics to evaluate. So, you need to set up 1. Your preferred folding method (and number of folds) 1. Your estimator 1. Your scoring method (you can specify this inside the cross_validate function) ``` from sklearn.model_selection import KFold, cross_validate cv = KFold(5) # set up fold method ridge = Ridge(alpha=1.0) # set up model/estimator cross_validate(ridge,X_train,y_train, cv=cv, scoring='r2') # tell it the scoring method here ``` ```{note} Wow, that was easy! Just 3 lines of code (and an import) ``` And we can output test score statistics like: ``` scores = cross_validate(ridge,X_train,y_train,cv=cv, scoring='r2') print(scores['test_score'].mean()) # scores is just a dictionary print(scores['test_score'].std()) ``` ## Next step: Pipelines The model above - Only uses a few continuous variables: what if we want to include other variable types (like categorical)? - Uses the variables as given: ML algorithms often need you to transform your variables - Doesn't deal with any data problems (e.g. missing values or outliers) - Doesn't create any interaction terms or polynomial transformations - Uses every variable I give it: But if your input data had 400 variables, you'd be in danger of overfitting! At this point, you are capable of solving all of these problems. (For example, you could clean the data in pandas.) But for our models to be robust to evil monsters like "data leakage", we need the fixes to be done within pipelines.
true
code
0.775387
null
null
null
null
# Stock Price Prediction From Employee / Job Market Information ## Modelling: Linear Model Objective utilise the Thinknum LinkedIn and Job Postings datasets, along with the Quandl WIKI prices dataset to investigate the effect of hiring practices on stock price. In this notebook I'll begin exploring the increase in predictive power from historic employment data. ``` import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from pathlib import Path from glob import glob # Utilities from utils import * %matplotlib inline PATH = Path('D:\data\jobs') %%capture #ignore output warnings for now link, companies, stocks = data_load(PATH) ``` Let's start with some of the series that had the most promising cross correlations. ``` filtered = companies.sort_values('max_corr',ascending=False)[['dataset_id', 'company_name','MarketCap', 'Sector', 'Symbol', 'max_corr', 'best_lag']] filtered = filtered.query('(max_corr > 0.95) & (best_lag < -50)') filtered.head() ``` Modelling for the top stock here USA Truck Inc. ``` USAK = stocks.USAK USAK_link = link[link['dataset_id']==929840]['employees_on_platform'] start = min(USAK_link.index) end = max(USAK_link.index) fig, ax = plt.subplots(figsize=(12,8)) ax.set_xlim(start,end) ax.plot(USAK.index,USAK, label='Adjusted Close Price (USAK)') ax.set_ylabel('Adjusted close stock price') ax1=ax.twinx() ax1.set_ylabel('LinkedIn employee count') ax1.plot(USAK_link.index, USAK_link,color='r',label='LinkedIn employee data') plt.legend(); # Error in this code leading to slightly different train time ranges def build_t_feats(stock,employ,n, include_employ=True): if include_employ: X = pd.concat([stock,employ],axis=1) X.columns = ['close','emps'] else: X = pd.DataFrame(stock) X.columns = ['close'] y=None start = max(pd.datetime(2016,7,1),min(stock.dropna().index)) - pd.Timedelta(1, unit='d') end = max(stock.dropna().index) X = X.loc[start:end] # Normalize X = (X-X.mean())/X.std() # Fill gaps X = X.interpolate() # Daily returns X = X.diff() # Create target variable X['y'] = X.close.shift(-1) # Create time shifted features for t in range(n): X['c'+str(t+1)] = X.close.shift(t+1) if include_employ: X['e'+str(t+1)] = X.emps.shift(t+1) X = X.dropna() y = X.y X.drop('y',axis=1,inplace=True) return X,y X, y = build_t_feats(USAK,USAK_link,180) ``` ## Linear Model Start with a basic linear model, so we can easily interpret the model outputs. ``` from sklearn.model_selection import TimeSeriesSplit, cross_val_score from sklearn.linear_model import Ridge, LinearRegression from sklearn.metrics import mean_absolute_error reg = Ridge() def fit_predict(reg, X, y, plot=True): cv = TimeSeriesSplit(n_splits=10) scores = cross_val_score(reg, X, y, cv=cv, scoring='neg_mean_absolute_error') if plot: print('Mean absolute error: ', np.mean(-scores), '\nSplit scores: ',-scores) cut = int(X.shape[0]*0.9) X_train, y_train = X[:cut], y[:cut].values.reshape(-1,1) X_dev, y_dev = X[cut:], y[cut:].values.reshape(-1,1) reg.fit(X_train,y_train) pred_dev = reg.predict(X_dev) pred_train = reg.predict(X_train) if plot: f,ax = plt.subplots(nrows=1,ncols=2,figsize=(25,8)) ax[0].plot(y_train,pred_train,marker='.',linestyle='None',alpha=0.6,label='train') ax[0].plot(y_dev,pred_dev,marker='.',linestyle='None',color='r',alpha=0.6,label='dev') ax[0].set_title('Predicted v actual daily changes') ax[0].legend() ax[1].plot(X[cut:].index,y_dev,alpha=0.6,label='actual',marker='.') ax[1].plot(X[cut:].index,pred_dev,color='r',alpha=0.6,label='predict',marker='.') ax[1].set_title('Development set, predicted v actual daily changes') ax[1].legend(); return reg, np.mean(-scores) reg, _ = fit_predict(reg, X, y) ``` Using MAE (Mean Absolute Error) as the evaluation metric here. Around 0.05 MAE seems acceptable at predicting the daily changes. ``` coefs = reg.coef_.ravel() idx = coefs.argsort()[-40:] x = np.arange(len(coefs[idx])) fig,ax = plt.subplots(figsize=(20,5)) plt.bar(x,coefs[idx]) plt.xticks(x,X.columns.values[idx]) plt.title('Importance of shifted feature in model') plt.show(); ``` Looks like most of the top features are time lagged versions of the daily price change rather than the employment data. ## Same model excluding employment data I'll now rerun the same analysis but exluced the employment data. ``` X, y = build_t_feats(USAK,USAK_link,180,include_employ=False) reg = Ridge() reg, _ = fit_predict(reg, X, y) coefs = reg.coef_.ravel() idx = coefs.argsort()[-40:] x = np.arange(len(coefs[idx])) fig,ax = plt.subplots(figsize=(20,5)) plt.bar(x,coefs[idx]) plt.xticks(x,X.columns.values[idx]) plt.title('Importance of shifted feature in model') plt.show(); ``` Over a similar time period it looks like our model performed better using employment data. ## Rerun analysis for all top stocks ``` %%capture def run_for_all(filtered): MAEs = np.full((len(filtered),2),np.nan) for i,ID in enumerate(filtered.dataset_id.values): print(i, ID, filtered.set_index('dataset_id').loc[ID].company_name) try: sym = filtered.set_index('dataset_id').loc[ID].Symbol tick = stocks[sym] emp = link[link['dataset_id']==ID]['employees_on_platform'] except: print('Symbol Error, Skipping') # Including employee data X, y = build_t_feats(tick,emp,180,True) reg = Ridge() reg, MAE = fit_predict(reg, X, y, plot=False) MAEs[i][0] = MAE # Excluding employee data X, y = build_t_feats(tick,emp,180,False) reg = Ridge() reg, MAE = fit_predict(reg, X, y, plot=False) MAEs[i][1] = MAE # Create columns with mean absolute errors added filtered['MAE_w_emp'] = MAEs[:,0] filtered['MAE_wo_emp'] = MAEs[:,1] return filtered filtered = filtered[filtered.dataset_id != 868877].copy() filtered = run_for_all(filtered) from bokeh.plotting import figure, show, output_notebook from bokeh.models import HoverTool output_notebook() def plot_predicts(filtered): TOOLS="hover,save" p1 = figure(plot_width=600, plot_height=600, title="Prediction score with and without LinkedIn data",tools=TOOLS) p1.xgrid.grid_line_color = None p1.circle(x='MAE_wo_emp', y='MAE_w_emp', size=12, alpha=0.5, source=filtered) p1.line(x=np.arange(0,0.25,0.01),y=np.arange(0,0.25,0.01)) p1.xaxis.axis_label = 'MAE with employee data in model' p1.yaxis.axis_label = 'MAE without employee data in model' hover = p1.select(dict(type=HoverTool)) hover.tooltips = [ ("Name", "@company_name"), ("Correlation", "@max_corr"), ("Optimal Lag", "@best_lag"), ] show(p1) plot_predicts(filtered) ``` The vast majority of points fall below the line, suggesting the predictions generated with a simple linear model were improved when Employee data was included in the model. **However** upon further review of my methodology it looks like I'm using comparing prediction accuracy on slightly different time ranges. I'll re-run the code below this time fixing identical time ranges. ``` # Updated code for processing data def build_t_feats(stock,employ,n, include_employ=True, norm_diff=True): X = pd.concat([stock,employ],axis=1) X.columns = ['close','emps'] y=None #start = max(pd.datetime(2016,7,1),min(stock.dropna().index)) - pd.Timedelta(1, unit='d') start = min(employ.dropna().index) - pd.Timedelta(1, unit='d') end = max(stock.dropna().index) #print(start,end) X = X.loc[start:end] if norm_diff: # Normalize X = (X-X.mean())/X.std() # Fill gaps X = X.interpolate() if norm_diff: # Daily returns X = X.diff() # Create target variable X['y'] = X.close.shift(-1) # Create time shifted features for t in range(n): X['c'+str(t+1)] = X.close.shift(t+1) if include_employ: X['e'+str(t+1)] = X.emps.shift(t+1) X = X.dropna() if not include_employ: X = X.drop('emps',axis=1) y = X.y X.drop('y',axis=1,inplace=True) return X,y ``` ### With employment data ``` X, y = build_t_feats(USAK,USAK_link,180) reg = Ridge() reg, _ = fit_predict(reg, X, y) ``` ### Without Employment Data ``` X, y = build_t_feats(USAK,USAK_link,180,include_employ=False) reg = Ridge() reg, _ = fit_predict(reg, X, y) ``` As you can see the results are a lot less clear here. It looks as if there is no improved predictive power from including employment data. ## Rerun on all stocks ``` %%capture filtered = companies.sort_values('max_corr',ascending=False)[['dataset_id', 'company_name','MarketCap', 'Sector', 'Symbol', 'max_corr', 'best_lag']] filtered = filtered.query('(max_corr > 0.95) & (best_lag < -50)') filtered = filtered[filtered.dataset_id != 868877].copy() filtered = run_for_all(filtered) plot_predicts(filtered) ``` As you can see except for some noise most stocks fall along the line **suggesting that there is no improvement in prediction accuracy when including LinkedIn data**.
true
code
0.517998
null
null
null
null
# LassoRegresion with Scale & Power Transformer This Code template is for the regression analysis using Lasso Regression, the feature transformation technique Power Transformer and rescaling technique Scale in a pipeline. Lasso stands for Least Absolute Shrinkage and Selection Operator is a type of linear regression that uses shrinkage. ### Required Packages ``` import warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as se from sklearn.linear_model import Lasso from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PowerTransformer from sklearn.preprocessing import scale from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error warnings.filterwarnings('ignore') ``` ### Initialization Filepath of CSV file ``` #filepath file_path = "" ``` List of features which are required for model training . ``` #x_values features = [] ``` Target feature for prediction. ``` #y_value target = '' ``` ### Data Fetching Pandas is an open-source, BSD-licensed library providing high-performance, easy-to-use data manipulation and data analysis tools. We will use panda's library to read the CSV file using its storage path.And we use the head function to display the initial row or entry. ``` df=pd.read_csv(file_path) df.head() ``` ### Feature Selections It is the process of reducing the number of input variables when developing a predictive model. Used to reduce the number of input variables to both reduce the computational cost of modelling and, in some cases, to improve the performance of the model. We will assign all the required input features to X and target/outcome to Y. ``` X=df[features] Y=df[target] ``` ### Data Preprocessing Since the majority of the machine learning models in the Sklearn library doesn't handle string category data and Null value, we have to explicitly remove or replace null values. The below snippet have functions, which removes the null value if any exists. And convert the string classes data in the datasets by encoding them to integer classes. ``` def NullClearner(df): if(isinstance(df, pd.Series) and (df.dtype in ["float64","int64"])): df.fillna(df.mean(),inplace=True) return df elif(isinstance(df, pd.Series)): df.fillna(df.mode()[0],inplace=True) return df else:return df def EncodeX(df): return pd.get_dummies(df) ``` Calling preprocessing functions on the feature and target set. ``` x=X.columns.to_list() for i in x: X[i]=NullClearner(X[i]) X=EncodeX(X) Y=NullClearner(Y) X.head() ``` #### Correlation Map In order to check the correlation between the features, we will plot a correlation matrix. It is effective in summarizing a large amount of data where the goal is to see patterns. ``` f,ax = plt.subplots(figsize=(18, 18)) matrix = np.triu(X.corr()) se.heatmap(X.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax, mask=matrix) plt.show() ``` ### Data Splitting The train-test split is a procedure for evaluating the performance of an algorithm. The procedure involves taking a dataset and dividing it into two subsets. The first subset is utilized to fit/train the model. The second subset is used for prediction. The main motive is to estimate the performance of the model on new data. ``` x_train,x_test,y_train,y_test=train_test_split(X,Y,test_size=0.2,random_state=123) ``` ## Data Rescaling ### Scale: Standardize a dataset along any axis. Center to the mean and component wise scale to unit variance. for more... [click here](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.scale.html) ``` x_train = scale(x_train) x_test = scale(x_test) ``` ### Model Linear Model trained with L1 prior as regularizer (aka the Lasso) The Lasso is a linear model that estimates sparse coefficients. It is useful in some contexts due to its tendency to prefer solutions with fewer non-zero coefficients, effectively reducing the number of features upon which the given solution is dependent. For this reason Lasso and its variants are fundamental to the field of compressed sensing. #### Model Tuning Parameter > **alpha** -> Constant that multiplies the L1 term. Defaults to 1.0. alpha = 0 is equivalent to an ordinary least square, solved by the LinearRegression object. For numerical reasons, using alpha = 0 with the Lasso object is not advised. > **selection** -> If set to ‘random’, a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to ‘random’) often leads to significantly faster convergence especially when tol is higher than 1e-4. > **tol** -> The tolerance for the optimization: if the updates are smaller than tol, the optimization code checks the dual gap for optimality and continues until it is smaller than tol. > **max_iter** -> The maximum number of iterations. #### Feature Transformation Power Transformers are a family of parametric, monotonic transformations that are applied to make data more Gaussian-like. This is useful for modeling issues related to heteroscedasticity (non-constant variance), or other situations where normality is desired [More on PowerTransformer module and parameters](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html) ``` model=make_pipeline(PowerTransformer(),Lasso(random_state=123)) model.fit(x_train,y_train) ``` #### Model Accuracy We will use the trained model to make a prediction on the test set.Then use the predicted value for measuring the accuracy of our model. > **score**: The **score** function returns the coefficient of determination <code>R<sup>2</sup></code> of the prediction. ``` print("Accuracy score {:.2f} %\n".format(model.score(x_test,y_test)*100)) ``` > **r2_score**: The **r2_score** function computes the percentage variablility explained by our model, either the fraction or the count of correct predictions. > **mae**: The **mean abosolute error** function calculates the amount of total error(absolute average distance between the real data and the predicted data) by our model. > **mse**: The **mean squared error** function squares the error(penalizes the model for large errors) by our model. ``` y_pred=model.predict(x_test) print("R2 Score: {:.2f} %".format(r2_score(y_test,y_pred)*100)) print("Mean Absolute Error {:.2f}".format(mean_absolute_error(y_test,y_pred))) print("Mean Squared Error {:.2f}".format(mean_squared_error(y_test,y_pred))) ``` #### Prediction Plot First, we make use of a plot to plot the actual observations, with x_train on the x-axis and y_train on the y-axis. For the regression line, we will use x_train on the x-axis and then the predictions of the x_train observations on the y-axis. ``` plt.figure(figsize=(14,10)) plt.plot(range(20),y_test[0:20], color = "green") plt.plot(range(20),model.predict(x_test[0:20]), color = "red") plt.legend(["Actual","prediction"]) plt.title("Predicted vs True Value") plt.xlabel("Record number") plt.ylabel(target) plt.show() ``` ##### Creator - Vikas Mishra, Github: [Profile](https://github.com/Vikaas08)
true
code
0.500366
null
null
null
null
# 0. Setup ``` # Imports import arviz as az import io import matplotlib.pyplot as plt import numpy as np import pandas as pd import pymc3 as pm import scipy import scipy.stats as st import theano.tensor as tt # Helper functions def plot_golf_data(data, ax=None): """Utility function to standardize a pretty plotting of the golf data.""" if ax is None: _, ax = plt.subplots(figsize=(10, 6)) bg_color = ax.get_facecolor() ax.vlines( data["distance"], ymin=data["p_hat"] - data["se"], ymax=data["p_hat"] + data["se"], label=None, ) ax.plot(data["distance"], data["p_hat"], 'o', mfc=bg_color, label=None) ax.set_xlabel("Distance from hole") ax.set_ylabel("Proportion of putts made") ax.set_ylim(bottom=0, top=1) ax.set_xlim(left=0) ax.grid(True, axis='y', alpha=0.7) return ax ``` # 1. Introduction The following example is based on a study by [Gelman and Nolan (2002)](http://www.stat.columbia.edu/~gelman/research/published/golf.pdf), where they use Bayesian methods to estimate the accuracy of pro golfers with respect to putting. The data comes from Don Berry's textbook *Statistics: A Bayesian Perspective* (1995) and describes the number of tries and successes of golf putting from a range of distances. This example is also featured in the case studies sections of the [Stan](https://mc-stan.org/users/documentation/case-studies/golf.html) and [PyMC3](https://docs.pymc.io/notebooks/putting_workflow.html) documentation. This notebook is based heavily on these two sources. ## 1.1 Data ``` # Putting data from Berry (1995) data = pd.read_csv("golf_1995.csv", sep=",") data["p_hat"] = data["successes"] / data["tries"] data ``` The authors start by estimating the standard error of the estimated probability of success for each distance in order to get a sense of how closely the model should be expected to fit the data, given by $SE(\hat{p}_i) = \sqrt{\dfrac{\hat{p}_i(1 - \hat{p}_i)}{n}}$ ``` def se(data): """Calculate standard error of estimator.""" p_hat = data["p_hat"] n = data["tries"] return np.sqrt(p_hat * (1 - p_hat) / n) data["se"] = se(data) ax = plot_golf_data(data) ax.set_title("Overview of data from Berry (1995)") plt.show() ``` # 2. Baseline: Logit model As a baseline model, we fit a simple logistic regression to the data, where the probability is give as a function of the distance $x_j$ from the hole. The data generating process for $y_j$ is assumed to be a [binomial distribution](https://en.wikipedia.org/wiki/Binomial_distribution): $$y_j \sim \text{Binomial}(n_j, p_j),\\ p_j = \dfrac{1}{1 + e^{-(a + bx_j)}}, \quad \text{for} j = 1 \ldots J,\\ a, b \sim \text{Normal}(0, 1)$$ ``` def logit_model(data): """Logistic regression model.""" with pm.Model() as logit_binomial: # Priors a = pm.Normal('a', mu=0, tau=1) b = pm.Normal('b', mu=0, tau=1) # Logit link link = pm.math.invlogit(a + b*data["distance"]) # Likelihood success = pm.Binomial( 'success', n=data["tries"], p=link, observed=data["successes"] ) return logit_binomial # Visualise model as graph pm.model_to_graphviz(logit_model(data)) # Sampling from posterior with logit_model(data): logit_trace = pm.sample(10000, tune=1000) # Retrieving summaries from models pm.summary(logit_trace) # Plotting posterior distributions of a, b pm.plot_posterior(logit_trace) plt.show() ``` Our estimates seem to make sense. As the distance $x_j \rightarrow 0$, it seems intuitive that the probability of success is high. Conversely, if $x_j \rightarrow \infty$, the probability of success should be close to zero. ``` p_test = lambda x: scipy.special.expit(2.224 - 0.255*x) print(f" x = 0 --> p = {p_test(0)}") print(f" x = really big --> p = {p_test(10**5)}") ``` ## 2.1 Baseline: Posterior predictive samples We plot the our probability model by drawing 50 samples from the posterior distribution of $a$ and $b$ and calculating the inverse logit (expit) for each sample: ``` # Plotting ax = plot_golf_data(data) distances = np.linspace(0, data["distance"].max(), 200) # Plotting individual predicted sigmoids for 50 random draws of (a, b) for idx in np.random.randint(0, len(logit_trace), 50): post_logit = scipy.special.expit(logit_trace["a"][idx] + logit_trace["b"][idx] * distances) ax.plot( distances, post_logit, lw=1, color="tab:orange", alpha=.7, ) # Plotting average prediction over all sampled (a, b) logit_average = scipy.special.expit( logit_trace["a"].reshape(-1, 1) + logit_trace["b"].reshape(-1, 1) * distances, ).mean(axis=0) ax.plot( distances, logit_average, label = "Inverse logit mean", color="k", linestyle="--", ) ax.set_title("Fitted logistic regression") ax.legend() plt.show() ``` We see that: * The posterior uncertainty is relatively low. * The fit is OK, but we tend to overestimate the difficulty of making short putts and underestimate the probability of making long puts. # 3. Modelling from first principles Not satisfied with the logistic regression, we contact a golf pro who also happens to have a background in mathematics. She suggests that as an alternative, we could build a model from first principles and fit it to the data. She provides us with the following sketch (from the [Stan case study](https://mc-stan.org/users/documentation/case-studies/golf.html)): > The graph below shows a simplified sketch of a golf shot. The dotted line represents the angle within which the ball of radius r must be hit so that it falls within the hole of radius R. This threshold angle is $sin^{−1}\Bigg(\dfrac{R−r}{x}\Bigg)$. The graph, which is not to scale, is intended to illustrate the geometry of the ball needing to go into the hole. ![]() If the angle is less (in absolute value) than the threshold, the show will go in the cup. The mathematically inclined golf pro suggests that we can assume that the putter will attempt to shoot perfectly straight, but that external factors will interfere with this goal. She suggests modelling this uncertainty using a normal distribution centered at 0 (i.e. assume that shots don't deviate systematically to the right or left) with some variance in angle (in radians) given by $\sigma_{\text{angle}}$. Since our golf expert is also a expert mathematician, she provides us with an expression for the probability that the ball goes in the cup (which is the probability that the angle is less than the threshold): $$p\Bigg(\vert\text{angle}\vert < sin^{−1}\Bigg(\dfrac{R−r}{x}\Bigg)\Bigg) = 2\Theta\Bigg(\dfrac{1}{\sigma_{\text{angle}}}sin^{−1}\Bigg(\dfrac{R−r}{x}\Bigg)\Bigg) - 1,$$ where $\Theta$ is the cumulative normal distribution function. The full model is then given by $$y_j \sim \text{Binomial}(n_j, p_j)\\ p_j = 2\Theta\Bigg(\dfrac{1}{\sigma_{\text{angle}}}sin^{−1}\Bigg(\dfrac{R−r}{x}\Bigg)\Bigg) - 1, \quad \text{for} j = 1 \ldots J.$$ Prior to fitting the model, our expert provides us with the appropriate measurements for the golf ball and cup radii. We also plot the probabilities given by the above expression for different values of $\sigma_{\text{angle}}$ to get a feel for the model: ``` def forward_angle_model(variance_of_shot, distance): """Geometry-based probabilities.""" BALL_RADIUS = (1.68 / 2) / 12 CUP_RADIUS = (4.25 / 2) / 12 return 2 * st.norm(0, variance_of_shot).cdf(np.arcsin((CUP_RADIUS - BALL_RADIUS) / distance)) - 1 # Plotting variance_of_shot = (0.01, 0.02, 0.05, 0.1, 0.2, 1) distances = np.linspace(0, data["distance"].max(), 200) ax = plot_golf_data(data) for sigma in variance_of_shot: ax.plot(distances, forward_angle_model(sigma, distances), label=f"$\sigma$ = {sigma}") ax.set_title("Model prediction for selected amounts of variance") ax.legend() plt.show() def phi(x): """Calculates the standard normal CDF.""" return 0.5 + 0.5 * tt.erf(x / tt.sqrt(2.)) def angle_model(data): """Geometry-based model.""" BALL_RADIUS = (1.68 / 2) / 12 CUP_RADIUS = (4.25 / 2) / 12 with pm.Model() as angle_model: variance_of_shot = pm.HalfNormal('variance_of_shot') prob = 2 * phi(tt.arcsin((CUP_RADIUS - BALL_RADIUS) / data["distance"]) / variance_of_shot) - 1 prob_success = pm.Deterministic('prob_success', prob) success = pm.Binomial('success', n=data["tries"], p=prob_success, observed=data["successes"]) return angle_model # Plotting model as graph pm.model_to_graphviz(angle_model(data)) ``` ## 3.1 Geometry-based model: Prior predictive checks ``` # Drawing 500 samples from the prior predictive distribution with angle_model(data): angle_prior = pm.sample_prior_predictive(500) # Use these variances to sample an equivalent amount of random angles from a normal distribution angle_of_shot = np.random.normal(0, angle_prior['variance_of_shot']) distance = 20 # Calculate possible end positions end_positions = np.array([ distance * np.cos(angle_of_shot), distance * np.sin(angle_of_shot) ]) # Plotting fig, ax = plt.subplots(figsize=(10, 6)) for endx, endy in end_positions.T: ax.plot([0, endx], [0, endy], 'k-o', lw=1, mfc='w', alpha=0.1); ax.plot(0, 0, 'o', color="tab:blue", label='Start', ms=10) ax.plot(distance, 0, 'o', color="tab:orange", label='Goal', ms=10) ax.set_title(f"Prior distribution of putts from {distance}ft away") ax.legend() plt.show() ``` ## 3.2 Fitting model ``` # Draw samples from posterior distribution with angle_model(data): angle_trace = pm.sample(10000, tune=1000) pm.summary(angle_trace) # Plotting posterior distribution of angle variance pm.plot_posterior(angle_trace["variance_of_shot"]) pm.forestplot(angle_trace) plt.show() ``` ## 3.3 Logistic regression vs. geometry-based model ``` # Plot model ax = plot_golf_data(data) distances = np.linspace(0, data["distance"].max(), 200) for idx in np.random.randint(0, len(angle_trace), 50): ax.plot( distances, forward_angle_model(angle_trace['variance_of_shot'][idx], distances), lw=1, color="tab:orange", alpha=0.7, ) # Average of angle model ax.plot( distances, forward_angle_model(angle_trace['variance_of_shot'].mean(), distances), label='Geometry-based model', color="tab:blue", ) # Compare with average of logit model ax.plot(distances, logit_average, color="tab:green", label='Logit-binomial model (avg.)') ax.set_title("Comparing the fit of geometry-based and logit-binomial model") ax.set_ylim([0, 1.05]) ax.legend() plt.show() # Comparing models using WAIC (Watanabe-Akaike Information Criterion) models = { "logit": logit_trace, "geometry": angle_trace, } pm.compare(models) ``` ## 3.4 Geometry-based model: Posterior predictive check ``` # Randomly sample a sigma from the posterior distribution variances = np.random.choice(angle_trace['variance_of_shot'].flatten()) # Randomly sample 500 angles based on sample from posterior angle_of_shot = np.random.normal(0, variances, 500) # radians distance = 20 # Calculate end positions end_positions = np.array([ distance * np.cos(angle_of_shot), distance * np.sin(angle_of_shot) ]) # Plotting fig, ax = plt.subplots(figsize=(10, 6)) for endx, endy in end_positions.T: ax.plot([0, endx], [0, endy], '-o', color="gray", lw=1, mfc='w', alpha=0.05); ax.plot(0, 0, 'o', color="tab:blue", label='Start', ms=10) ax.plot(distance, 0, 'o', color="tab:orange", label='Goal', ms=10) ax.set_xlim(-21, 21) ax.set_ylim(-21, 21) ax.set_title(f"Posterior distribution of putts from {distance}ft.") ax.legend() plt.show() ``` # 4. Further work The [official](https://docs.pymc.io/notebooks/putting_workflow.html) [docs](https://mc-stan.org/users/documentation/case-studies/golf.html) further extend the angle model by accounting for distance and distance plus dispersion. Furthermore, the [PyMC3 docs](https://docs.pymc.io/notebooks/putting_workflow.html) show how you can model the final position of the putt, given starting distance from the cup, e.g.: ![](https://docs.pymc.io/_images/notebooks_putting_workflow_52_0.png) ![](https://docs.pymc.io/_images/notebooks_putting_workflow_53_0.png) The authors show how this information can be leveraged to > [...] work out how many putts a player may need to take from a given distance. This can influence strategic decisions like trying to reach the green in fewer shots, which may lead to a longer first putt, vs. a more conservative approach. We do this by simulating putts until they have all gone in. ![](https://docs.pymc.io/_images/notebooks_putting_workflow_56_0.png)
true
code
0.827932
null
null
null
null
# RoadMap 16 - Classification 3 - Training & Validating [Custom CNN, Custom Dataset] ``` import torch import torchvision import torchvision.transforms as transforms import torch.optim as optim import matplotlib.pyplot as plt import numpy as np from torchvision import datasets ``` # [NOTE: - The network, transformation and training parameters are not suited for the dataset. Hence, the training does not converge] # Steps to take 1. Create a network - Arrange layers - Visualize layers - Creating loss function module - Creating optimizer module [Set learning rates here] 2. Data prepraration - Creating a data transformer - Downloading and storing dataset - Applying transformation - Understanding dataset - Loading the transformed dataset [Set batch size and number of parallel processors here] 3. Setting up data - plotters 4. Training - Set Epoch - Train model 5. Validating - Overall-accuracy validation - Class-wise accuracy validation ``` # 1.1 Creating a custom neural network import torch.nn as nn import torch.nn.functional as F ''' Network arrangement Input -> Conv1 -> Relu -> Pool -> Conv2 -> Relu -> Pool -> FC1 -> Relu -> FC2 -> Relu -> FC3 -> Output ''' class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=5) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.relu = nn.ReLU() # Activation function self.conv2 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5) self.fc1 = nn.Linear(16 * 53 * 53, 120) # In-channels, Out-Channels self.fc2 = nn.Linear(120, 84) # In-channels, Out-Channels self.fc3 = nn.Linear(84, 2) # In-channels, Out-Channels def forward(self, x): x = self.relu(self.conv1(x)) x = self.pool(x) x = self.relu(self.conv2(x)) x = self.pool(x) x = x.view(-1, 16 * 53 * 53) #Reshaping - Like flatten in caffe x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) return x net = Net() net.cuda() # 1.2 Visualizing network from torchsummary import summary print("Network - ") summary(net, (3, 224, 224)) # 1.3. Creating loss function module cross_entropy_loss = nn.CrossEntropyLoss() # 1.4. Creating optimizer module optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 2.1. Creating data trasnformer data_transform = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) ``` ### 2.2 Storing downloaded dataset Data storage directory [NOTE: Directory and File names can be anything] Parent Directory [cat_dog] | |----Train | | | |----Class1 [cat] | | |----img1.png | | |----img2.png | |----Class2 [dog] | | |----img1.png | |----img2.png |-----Val | | | |----Class1 [cat] | | |----img1.png | | |----img2.png | |----Class2 [dog] | | |----img1.png | | |----img2.png ``` # 2.2. Applying transformations simultaneously trainset = datasets.ImageFolder(root='cat_dog/train', transform=data_transform) valset = datasets.ImageFolder(root='cat_dog/val', transform=data_transform) print(dir(trainset)) # 2.3. - Understanding dataset print("Number of training images - ", len(trainset.imgs)) print("Number of testing images - ", len(valset.imgs)) print("Classes - ", trainset.classes) # 2.4. - Loading the transformed dataset batch = 4 parallel_processors = 3 trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch, shuffle=True, num_workers=parallel_processors) valloader = torch.utils.data.DataLoader(valset, batch_size=batch, shuffle=False, num_workers=parallel_processors) # Class list classes = tuple(trainset.classes) # 3. Setting up data plotters def imshow(inp, title=None): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) if title is not None: plt.title(title) plt.pause(0.001) # pause a bit so that plots are updated # Get a batch of training data inputs, labels = next(iter(trainloader)) # Make a grid from batch out = torchvision.utils.make_grid(inputs) imshow(out, title=[classes[x] for x in labels]) from tqdm.notebook import tqdm # 4. Training num_epochs = 2 for epoch in range(num_epochs): # loop over the dataset multiple times running_loss = 0.0 pbar = tqdm(total=len(trainloader)) for i, data in enumerate(trainloader): pbar.update(); # get the inputs inputs, labels = data inputs = inputs.cuda() labels = labels.cuda() # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = cross_entropy_loss(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 10 == 9: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') # 5.1 Overall-accuracy Validation correct = 0 total = 0 with torch.no_grad(): for data in valloader: images, labels = data images = images.cuda() labels = labels.cuda() outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) # 5.2 Classwise-accuracy Validation class_correct = list(0. for i in range(2)) class_total = list(0. for i in range(2)) with torch.no_grad(): for data in valloader: images, labels = data images = images.cuda() labels = labels.cuda() outputs = net(images) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(len(c)): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 for i in range(2): print('Accuracy of %5s : %2d %%' % ( classes[i], 100 * class_correct[i] / class_total[i])) ``` ## Author - Tessellate Imaging - https://www.tessellateimaging.com/ ## Monk Library - https://github.com/Tessellate-Imaging/monk_v1 Monk is an opensource low-code tool for computer vision and deep learning ### Monk features - low-code - unified wrapper over major deep learning framework - keras, pytorch, gluoncv - syntax invariant wrapper ### Enables - to create, manage and version control deep learning experiments - to compare experiments across training metrics - to quickly find best hyper-parameters ### At present it only supports transfer learning, but we are working each day to incorporate - GUI based custom model creation - various object detection and segmentation algorithms - deployment pipelines to cloud and local platforms - acceleration libraries such as TensorRT - preprocessing and post processing libraries ## To contribute to Monk AI or Pytorch RoadMap repository raise an issue in the git-repo or dm us on linkedin - Abhishek - https://www.linkedin.com/in/abhishek-kumar-annamraju/ - Akash - https://www.linkedin.com/in/akashdeepsingh01/
true
code
0.822777
null
null
null
null
## Some fundamental elements of programming III ### Understanding and creating correlated datasets and how to create functions As we said before, the core of data science is computer programming. To really explore data, we need to be able to write code to (1) wrangle or even generate data that has the properties needed for analysis and (2) do actual data analysis and visualization. If data science didn't involve programming – if it only involved clicking buttons in a statistics program like SPSS – it wouldn't be called data *science*. In fact, it wouldn't even be a "thing" at all. Learning goals: - Understand how to generate correlated variables. - More indexing - More experiments with loops #### Generate correlated datasets In thispart of the tutorial we will learn how generate datasets that are 'related.' While doing that we will practice a few things learned recently in previous tutorials: - Plotting with matplotlib - generating numpy arrays - indexing into arrays - using `while` loops First thing first, we will import the basic libraries we need. ``` import numpy as np import seaborn as sns import matplotlib.pyplot as plt ``` After that we will create a few datasets. More specifically, we will create `n` datasets each called `x` (say 5 datasets, where `n=5`). Each dataset will have the length of `m` (where for example, `m` could be 100), this means for example that each dataset will have the shape of (m,1) or in our example (100,1). After that, we will create another group of `n` datasets called `y` of the same shape of `x`. Each one of the `y` datasets will have a corresponding `x` dataset that it will be correlated with. This means that for each dataset in `x` there will be a dataset in `y` that is correlated with it. Let's get started with a hands on method. Forst we will make the example of a single dataset `x` and a correlated dataset `y`. ``` # We first build the dataset `x`, # we will use our standard method # based on randn m = 1000 mu = 5 sd = 1 x = mu + sd*np.random.randn(m,1) # let take a look at it plt.hist(x, 60) ``` OK. After generating the first dataset we will generate a second dataset, let's call it `y`. This second dataset will be correlated to the first. To generate a dataset correlated to `x` we will indeed use `x` as our base for the data and add on top of `x` a small amount of noise, let's call it `noise`. `noise` represents the small (or larger) difference between `x` and `y`. ``` err = np.random.randn(m,1) y = x + err plt.hist(y,60) ``` OK. The two histograms seem similar (similar range and height), but it is difficult to judge if `x` and `y` are indeed correlated. To do that we need to make a scatter plot. `matplotlib` has a convenient function for scatter plots, `plt.scatter()`, we will use that function to take a look at whether the two datasets are correlated. ``` plt.scatter(x,y) ``` Great, the symbols should be aligned along the major diagonal. This means that they are indeed correlated. To get to understand more what we did above, let's think about `err`. Imagine, if there were no error, e.g., no `err`. That would mean that there would be no difference between `x` and `y`. Literally, the two datasets would be identical. We can do that with the code above by setting `err` to `0`. ``` err = 0 y = x + err plt.scatter(x,y) ``` The symbols should all lay on the major diagonal. So, `err` effectively controls the level of correlation between `x` and `y`. So if we set it to something small, in other words if we add only a small amount of error then the two arrays (`x` and `y`) would be very similar. For example, let's try setting it up to 10% of the original `err`. ``` err = np.random.randn(m,1); err = err*0.1 # 0.1 -> scaling factor y = x + err plt.scatter(x,y) ``` OK. It should have worked. The error added is not large, the symbols should lay almost on the diagonal, but not quite. As we increase the `err` the symbols should move away from the diagonal. ``` err = np.random.randn(m,1); scaling_factor = 0.9 err = err*scaling_factor y = x + err plt.scatter(x,y) ``` One way to think about the scaling factor and `err` is that they are related to correlation. Indeed, they are not directly related to correlation (not a one-to-one relationship, but a proxy). The scaling factor is inversely related to correlation because as the scaling factor increases the correlation decreases. Furthermore, they are not directly related to correlation because they both depend on a couple of variables, for example, the variance of the distributions (both `err` and `x` will affect the relationship between the correlation and the scaling factor). Python has a method to generate couples of correlated arrays. We will now briefly explore it, but leave a deeper dive on each function to you. You are suggested to further explore the code below and its implications. It might come helpful to us later down the road, you never know! #### A more principled way to make correlated datasets NumPy has a function called `multivariate_normal` that generates pairs of correlated datasets. The correlation values can be specified conveniently. A little bit of thinking is required, though. The function uses the covariance matrix. The covariance matrix is composed of 4 numbers. Two of the numbers describe the variances of the two datasamples we want to generate. The other two values describe the correlation between the samples and are generally called `covariances` (co-variations or co-relations). ``` from numpy.random import multivariate_normal # we import the function x_mu = 0; # we set up the mean of the first set of data points y_mu = 0; # we set up the mean of the second sample x_var = 1; # the variance of the first sample y_var = 1; # the variance of the second sample cov = 0.9; # this is the covariance (can be thought of as correlation) # the function multivariate_normal will need a matrix to control # the relation between the samples, this matrix is called covariance matrix cov_m = [[x_var, cov], [cov, y_var]] # we now create the two data sets by setting the the proper # means and passing the covariance matrix, we also pass the # requested size of the sample data = multivariate_normal([x_mu, y_mu], cov_m, size=1000) # We can plot the two data sets x, y = data[:,0], data[:,1] plt.scatter(x, y) ``` #### Creating many correlated datasets Imagine now if we were asked to create a series of correlated datasets. Not one, nottwo, more than that. Once the basic code used to build one is known. The rest of the datasets can be generated reusing the same code and putting the code inside a loop. Below we will show how to create 5 datasets using a `while` loop. ``` counter = 0; n_datasets = 5; siz_datasets = 1000; x_mu = 1; # mean of the first dataset y_mu = 1; # mean of the second dataset x_var = 2; # the variance of the first dataset y_var = 2; # the variance of the second dataset cov = 0.85; # this is the covariance (can be thought of as correlation) # covariance matrix cov_m = [[x_var, cov], [cov, y_var]] while counter < n_datasets : data = multivariate_normal([x_mu, y_mu], cov_m, size=siz_datasets) x, y = data[:,0], data[:,1] counter = counter + 1 # Make a plot, show it, wait some time print("Plotting dataset: ", counter) plt.scatter(x, y); plt.show() ; plt.pause(0.05) else: print("DONE Plotting datasets!") ```
true
code
0.700716
null
null
null
null
# Modules Python has a way to put definitions in a file so they can easily be reused. Such files are called a modules. You can define your own module (for instance see [here](https://docs.python.org/3/tutorial/modules.html)) how to do this but in this course we will only discuss how to use existing modules as they come with python as the [python standard library](https://docs.python.org/3.9/tutorial/stdlib.html?highlight=library) or as third party libraries as they for instance are distributed through [anaconda](https://www.anaconda.com/) or your Linux distribution or you can install trough `pip` or from source. Definitions from a module can be imported into your jupyter notebook, your python script, and into other modules. The module is imported using the import statement. Here we import the mathematics library from the python standard library: ``` import math ``` You can find a list of the available functions, variables and classes using the `dir` method: ``` dir(math) ``` A particular function (or class or constant) can be called in the form `<module name>.<function name>`: ``` math.exp(1) ``` Documentation of a function (or class or constant) can be obtained using the `help` function (if the developer has written it): ``` help(math.exp) ``` You can also import a specific function (or a set of functions) so you can directly use them without a prefix: ``` from cmath import exp exp(1j) ``` In python terminology that means that - in this case - the `exp` function is imported into the main *name space*. This needs to be applied with care as existing functions (or class definition) with identical names are overwritten. For instance the `math` and the `cmath` module have a function `exp`. Importing both will create a problem in the main name space. If you are conficdent in what you are doing you can import all functions and class definitions into the main name space: ``` from cmath import * cos(1.) ``` Modules can contain submodules. The functions are then accessed `<module name>.<sub-module name>.<function name>`: ``` import os os.path.exists('FileHandling.ipynb') ``` In these cases it can be useful to use an alias to make the code easier to read: ``` import os.path as pth pth.exists('FileHandling.ipynb') ``` # More on printing Python provides a powerful way of formatting output using formatted string. Basicly the ideas is that in a formatted string marked by a leading 'f' variable names are replaced by the corresponding variable values. Here comes an example: ``` x, y = 2.124, 3 f"the value of x is {x} and of y is {y}." ``` python makes guesses on how to format the value of the variable but you can also be specific if values should be shown in a specific way. here we want to show `x` as a floating point numbers with a scientific number representation indicated by `e` and `y` to be shown as an integer indicated by `d`: ``` f"x={x} x={x:10f} x={x:e} y={y:d}" ``` More details on [Formatted string literals](https://docs.python.org/3.7/reference/lexical_analysis.html#index-24) Formatted strings are used to prettify output when printing: ``` print(f"x={x:10f}") print(f"y={y:10d}") ``` An alternative way of formatting is the `format` method of a string. You can use the positional arguments: ``` guest='John' 'Hi {0}, welcome to {1}!"'.format(guest, 'Brisbane') ``` Or keyword arguments: ``` 'Hi {guest}, welcome to {place}!'.format(guest='Mike', place='Brisbane') ``` and a combination of positional arguments and keyword arguments: ``` 'Hi {guest}, welcome to {1}! Enjoy your stay for {0} days.'.format(10, 'Brisbane', guest="Bob") ``` You can also introduce some formatting on how values are represented: ``` 'Hi {guest}, welcome to {0}! Enjoy your stay for {1:+10d} days.'.format('Brisbane', 10, guest="Bob") ``` More details in particular for formating numbers are found [here](https://docs.python.org/3.9/library/string.html). # Writing and Reading files To open a file for reading or writing use the `open` function. `open()` returns a file object, and is most commonly used with two arguments: open(filename, mode). ``` outfile=open("myRicker.csv", 'wt') ``` It is commonly used with two arguments: `open(filename, mode)` where the `mode` takes the values: - `w` open for writing. An existing file with the same name will be erased. - `a` opens the file for appending; any data written to the file is automatically added to the end. - `r` opens the file for both reading only. By default text mode `t` is used that means, you read and write strings from and to the file, which are encoded in a specific encoding. `b` appended to the mode opens the file in binary mode: now the data is read and written in the form of bytes objects. We want to write some code that writes the `Ricker` wavelet of a period of `length` and given frequency `f` to the files `myRicker.csv` in the comma-separated-value (CSV) format. The time is incremented by `dt`. ``` length=0.128 f=25 dt=0.001 def ricker(t, f): """ return the value of the Ricker wavelet at time t for peak frequency f """ r = (1.0 - 2.0*(math.pi**2)*(f**2)*(t**2)) * math.exp(-(math.pi**2)*(f**2)*(t**2)) return r t=-length/2 n=0 while t < length/2: outfile.write("{0}, {1}\n".format(t, ricker(t, f))) t+=dt n+=1 print("{} records writen to {}.".format(n, outfile.name)) ``` You can download/open the file ['myRicker.csv'](myRicker.csv). ** Notice ** There is an extra new line character `\n` at the of string in the `write` statement. This makes sure that separate rows can be identified in the file. Don't forget to close the file at the end: ``` outfile.close() ``` Now we want to read this back. First we need to open the file for reading: ``` infile=open("myRicker.csv", 'r') ``` We then can read the entire file as a string: ``` content=infile.read() content[0:100] ``` In some cases it is more easier to read the file row-by-row. First we need to move back to the beginning of the file: ``` infile.seek(0) ``` Now we read the file line by line. Each line is split into the time and wavelet value which are collected as floats in two lists `times` and `ricker`: ``` infile.seek(0) line=infile.readline() times=[] ricker=[] n=0 while len(line)>0: a, b=line.split(',') times.append(float(a)) ricker.append(float(b)) line=infile.readline() n+=1 print("{} records read from {}.".format(n, infile.name)) ``` Notice that the end of file is reached when the read line is empty (len(line)=0). Then the loop is exited. ``` time[:10] ``` # JSON Files JSON files (JavaScript Object Notation) is an open-standard file format that uses human-readable text to transmit data objects consisting of dictionaries and lists. It is a very common data format, with a diverse range of applications in particular when exchanging data between web browsers and web services. A typical structure that is saved in JSON files are combinations of lists and dictionaries with string, integer and float entries. For instance ``` course = [ { "name": "John", "age": 30, "id" : 232483948} , { "name": "Tim", "age": 45, "id" : 3246284632} ] course ``` The `json` module provides the necessary functionality to write `course` into file, here `course.json`: ``` import json json.dump(course, open("course.json", 'w'), indent=4) ``` You can access the [course.json](course.json). Depending on your web browser the file is identified as JSON file and presented accordingly. We can easily read the file back using the `load` method: ``` newcourse=json.load(open("course.json", 'r')) ``` This recovers the original list+dictionary structure: ``` newcourse ``` We can recover the names of the persons in the course: ``` [ p['name'] for p in newcourse ] ``` We can add new person to `newcourse`: ``` newcourse.append({'age': 29, 'name': 'Jane', 'studentid': 2643746328}) newcourse ``` # Visualization We would like to plot the Ricker wavelet. The `matplotlib` library provides a convenient, flexible and powerful tool for visualization at least for 2D data sets. Here we can give only a very brief introduction with more functionality being presented as the course evolves. For a comprehensive documentation and list of examples we refer to the [matplotlib web page](https://matplotlib.org). Here we use the `matplotlib.pyplot` library which is a collection of command style functions but there is also a more general API which gives a reacher functionality: ``` #%matplotlib notebook import matplotlib.pyplot as plt ``` It is very easy to plot data point we have read: ``` plt.figure(figsize=(8,5)) plt.scatter(times, ricker) ``` We can also plot this as a function rather than just data point: ``` plt.figure(figsize=(8,5)) plt.plot(times, ricker) ``` Let's use proper labeling of the horizontal axis: ``` plt.xlabel('time [sec]') ``` and for the vertical axis: ``` plt.ylabel('aplitude') ``` And maybe a title: ``` plt.title('Ricker wavelet for frequency f = 25 hz') ``` We can also change the line style, eg. red doted line: ``` plt.figure(figsize=(8,5)) plt.plot(times, ricker, 'r:') plt.xlabel('time [sec]') plt.ylabel('aplitude') ``` We can put different data sets or representations into the plot: ``` plt.figure(figsize=(8,5)) plt.plot(times, ricker, 'r:', label="function") plt.scatter(times, ricker, c='b', s=10, label="data") plt.xlabel('time [sec]') plt.ylabel('aplitude') plt.legend() ``` You can also add grid line to make the plot easier to read: ``` plt.grid(True) ``` Save the plot to a file: ``` plt.savefig("ricker.png") ``` see [ricker.png](ricker.png) for the file.
true
code
0.375807
null
null
null
null
``` import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score #from sklearn.metrics import precision_recall_curve #from sklearn.metrics import plot_precision_recall_curve from sklearn.metrics import average_precision_score import matplotlib.pyplot as plt %matplotlib inline ``` # demonstration of vectorizer in Scikit learn ``` # word counts # list of text documents text_test = ["This is a test document","this is a second text","and here is a third text", "this is a dum text!"] # create the transform vectorizer_test = CountVectorizer() # tokenize and build vocab vectorizer_test.fit(text_test) # summarize print(vectorizer_test.vocabulary_) # encode document vector_test = vectorizer_test.transform(text_test) # show encoded vector print(vector_test.toarray()) ``` # Spam/Ham dataset ``` # import data from TSV sms_data=pd.read_csv('SMSSpamCollection.txt', sep='\t') sms_data.head() # create a new column with inferred class def f(row): if row['Label'] == "ham": val = 1 else: val = 0 return val sms_data['Class'] = sms_data.apply(f, axis=1) sms_data.head() vectorizer = CountVectorizer( analyzer = 'word', lowercase = True, ) features = vectorizer.fit_transform( sms_data['Text'] ) # split X and Y X = features.toarray() Y= sms_data['Class'] # split training and testing X_train, X_test, Y_train, Y_test = train_test_split(X, Y,test_size=0.20, random_state=1) log_model = LogisticRegression(penalty='l2', solver='lbfgs', class_weight='balanced') log_model = log_model.fit(X_train, Y_train) # make predictions Y_pred = log_model.predict(X_test) # make predictions pred_df = pd.DataFrame({'Actual': Y_test, 'Predicted': Y_pred.flatten()}) pred_df.head() # compute accuracy of the spam filter print(accuracy_score(Y_test, Y_pred)) # compute precision and recall average_precision = average_precision_score(Y_test, Y_pred) print('Average precision-recall score: {0:0.2f}'.format( average_precision)) # precision-recall curve disp = plot_precision_recall_curve(log_model, X_test, Y_test) disp.ax_.set_title('2-class Precision-Recall curve: ' 'AP={0:0.2f}'.format(average_precision)) # look at the words learnt and their coefficients coeff_df = pd.DataFrame({'coeffs': log_model.coef_.flatten(), 'Words': vectorizer.get_feature_names()}, ) # Words with highest coefficients -> predictive of 'Ham' coeff_df.nlargest(10, 'coeffs') # Words with highest coefficients -> predictive of 'Spam' coeff_df.nsmallest(10, 'coeffs') ``` # Upload review dataset ``` # import data from TSV rev_data=pd.read_csv('book_reviews.csv') rev_data.head() # fix issues with format text reviews = rev_data['reviewText'].apply(lambda x: np.str_(x)) # create a new column with inferred class # count words in texts # split X and Y # split training and testing # fit model (this takes a while) # make predictions # compute accuracy of the sentiment analysis # compute precision and recall # precision-recall curve # look at the words learnt and their coefficients coeff_df = pd.DataFrame({'coeffs': log_model.coef_.flatten(), 'Words': vectorizer.get_feature_names()}, ) # Words with highest coefficients -> predictive of 'good reviews' coeff_df.nlargest(10, 'coeffs') # Words with highest coefficients -> predictive of 'bad reviews' coeff_df.nsmallest(10, 'coeffs') ```
true
code
0.541348
null
null
null
null
<a href="https://colab.research.google.com/github/iamsoroush/DeepEEGAbstractor/blob/master/cv_hmdd_4s_proposed_gap.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ``` #@title # Clone the repository and upgrade Keras {display-mode: "form"} !git clone https://github.com/iamsoroush/DeepEEGAbstractor.git !pip install --upgrade keras #@title # Imports {display-mode: "form"} import os import pickle import sys sys.path.append('DeepEEGAbstractor') import numpy as np from src.helpers import CrossValidator from src.models import SpatioTemporalWFB, TemporalWFB, TemporalDFB, SpatioTemporalDFB from src.dataset import DataLoader, Splitter, FixedLenGenerator from google.colab import drive drive.mount('/content/gdrive') #@title # Set data path {display-mode: "form"} #@markdown --- #@markdown Type in the folder in your google drive that contains numpy _data_ folder: parent_dir = 'soroush'#@param {type:"string"} gdrive_path = os.path.abspath(os.path.join('gdrive/My Drive', parent_dir)) data_dir = os.path.join(gdrive_path, 'data') cv_results_dir = os.path.join(gdrive_path, 'cross_validation') if not os.path.exists(cv_results_dir): os.mkdir(cv_results_dir) print('Data directory: ', data_dir) print('Cross validation results dir: ', cv_results_dir) #@title ## Set Parameters batch_size = 80 epochs = 50 k = 10 t = 10 instance_duration = 4 #@param {type:"slider", min:3, max:10, step:0.5} instance_overlap = 1 #@param {type:"slider", min:0, max:3, step:0.5} sampling_rate = 256 #@param {type:"number"} n_channels = 20 #@param {type:"number"} task = 'hmdd' data_mode = 'cross_subject' #@title ## Spatio-Temporal WFB model_name = 'ST-WFB-GAP' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = SpatioTemporalWFB(input_shape, model_name=model_name) scores = validator.do_cv(model_obj, data, labels) #@title ## Temporal WFB model_name = 'T-WFB-GAP' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = TemporalWFB(input_shape, model_name=model_name) scores = validator.do_cv(model_obj, data, labels) #@title ## Spatio-Temporal DFB model_name = 'ST-DFB-GAP' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = SpatioTemporalDFB(input_shape, model_name=model_name) scores = validator.do_cv(model_obj, data, labels) #@title ## Spatio-Temporal DFB (Normalized Kernels) model_name = 'ST-DFB-NK-GAP' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = SpatioTemporalDFB(input_shape, model_name=model_name, normalize_kernels=True) scores = validator.do_cv(model_obj, data, labels) #@title ## Temporal DFB model_name = 'T-DFB-GAP' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = TemporalDFB(input_shape, model_name=model_name) scores = validator.do_cv(model_obj, data, labels) #@title ## Temporal DFB (Normalized Kernels) model_name = 'T-DFB-NK-GAP' train_generator = FixedLenGenerator(batch_size=batch_size, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=True) test_generator = FixedLenGenerator(batch_size=8, duration=instance_duration, overlap=instance_overlap, sampling_rate=sampling_rate, is_train=False) params = {'task': task, 'data_mode': data_mode, 'main_res_dir': cv_results_dir, 'model_name': model_name, 'epochs': epochs, 'train_generator': train_generator, 'test_generator': test_generator, 't': t, 'k': k, 'channel_drop': True} validator = CrossValidator(**params) dataloader = DataLoader(data_dir, task, data_mode, sampling_rate, instance_duration, instance_overlap) data, labels = dataloader.load_data() input_shape = (sampling_rate * instance_duration, n_channels) model_obj = TemporalDFB(input_shape, model_name=model_name, normalize_kernels=True) scores = validator.do_cv(model_obj, data, labels) ```
true
code
0.63077
null
null
null
null
# Sonic The Hedgehog 1 with Advantage Actor Critic ## Step 1: Import the libraries ``` import time import retro import random import torch import numpy as np from collections import deque import matplotlib.pyplot as plt from IPython.display import clear_output import math %matplotlib inline import sys sys.path.append('../../') from algos.agents import A2CAgent from algos.models import ActorCnn, CriticCnn from algos.preprocessing.stack_frame import preprocess_frame, stack_frame ``` ## Step 2: Create our environment Initialize the environment in the code cell below. ``` env = retro.make(game='SonicTheHedgehog-Genesis', state='GreenHillZone.Act1', scenario='contest') env.seed(0) # if gpu is to be used device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print("Device: ", device) ``` ## Step 3: Viewing our Enviroment ``` print("The size of frame is: ", env.observation_space.shape) print("No. of Actions: ", env.action_space.n) env.reset() plt.figure() plt.imshow(env.reset()) plt.title('Original Frame') plt.show() possible_actions = { # No Operation 0: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # Left 1: [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], # Right 2: [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], # Left, Down 3: [0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0], # Right, Down 4: [0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0], # Down 5: [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], # Down, B 6: [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], # B 7: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] } ``` ### Execute the code cell below to play Pong with a random policy. ``` def random_play(): score = 0 env.reset() for i in range(200): env.render() action = possible_actions[np.random.randint(len(possible_actions))] state, reward, done, _ = env.step(action) score += reward if done: print("Your Score at end of game is: ", score) break env.reset() env.render(close=True) random_play() ``` ## Step 4:Preprocessing Frame ``` plt.figure() plt.imshow(preprocess_frame(env.reset(), (1, -1, -1, 1), 84), cmap="gray") plt.title('Pre Processed image') plt.show() ``` ## Step 5: Stacking Frame ``` def stack_frames(frames, state, is_new=False): frame = preprocess_frame(state, (1, -1, -1, 1), 84) frames = stack_frame(frames, frame, is_new) return frames ``` ## Step 6: Creating our Agent ``` INPUT_SHAPE = (4, 84, 84) ACTION_SIZE = len(possible_actions) SEED = 0 GAMMA = 0.99 # discount factor ALPHA= 0.0001 # Actor learning rate BETA = 0.0005 # Critic learning rate UPDATE_EVERY = 100 # how often to update the network agent = A2CAgent(INPUT_SHAPE, ACTION_SIZE, SEED, device, GAMMA, ALPHA, BETA, UPDATE_EVERY, ActorCnn, CriticCnn) ``` ## Step 7: Watching untrained agent play ``` env.viewer = None # watch an untrained agent state = stack_frames(None, env.reset(), True) for j in range(200): env.render(close=False) action, _, _ = agent.act(state) next_state, reward, done, _ = env.step(possible_actions[action]) state = stack_frames(state, next_state, False) if done: env.reset() break env.render(close=True) ``` ## Step 8: Loading Agent Uncomment line to load a pretrained agent ``` start_epoch = 0 scores = [] scores_window = deque(maxlen=20) ``` ## Step 9: Train the Agent with Actor Critic ``` def train(n_episodes=1000): """ Params ====== n_episodes (int): maximum number of training episodes """ for i_episode in range(start_epoch + 1, n_episodes+1): state = stack_frames(None, env.reset(), True) score = 0 # Punish the agent for not moving forward prev_state = {} steps_stuck = 0 timestamp = 0 while timestamp < 10000: action, log_prob, entropy = agent.act(state) next_state, reward, done, info = env.step(possible_actions[action]) score += reward timestamp += 1 # Punish the agent for standing still for too long. if (prev_state == info): steps_stuck += 1 else: steps_stuck = 0 prev_state = info if (steps_stuck > 20): reward -= 1 next_state = stack_frames(state, next_state, False) agent.step(state, log_prob, entropy, reward, done, next_state) state = next_state if done: break scores_window.append(score) # save most recent score scores.append(score) # save most recent score clear_output(True) fig = plt.figure() ax = fig.add_subplot(111) plt.plot(np.arange(len(scores)), scores) plt.ylabel('Score') plt.xlabel('Episode #') plt.show() print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_window)), end="") return scores scores = train(1000) fig = plt.figure() ax = fig.add_subplot(111) plt.plot(np.arange(len(scores)), scores) plt.ylabel('Score') plt.xlabel('Episode #') plt.show() ``` ## Step 10: Watch a Smart Agent! ``` env.viewer = None # watch an untrained agent state = stack_frames(None, env.reset(), True) for j in range(10000): env.render(close=False) action, _, _ = agent.act(state) next_state, reward, done, _ = env.step(possible_actions[action]) state = stack_frames(state, next_state, False) if done: env.reset() break env.render(close=True) ```
true
code
0.522811
null
null
null
null
# Objected-Oriented Simulation Up to this point we have been using Python generators and shared resources as the building blocks for simulations of complex systems. This can be effective, particularly if the individual agents do not require access to the internal state of other agents. But there are situations where the action of an agent depends on the state or properties of another agent in the simulation. For example, consider this discussion question from the Grocery store checkout example: >Suppose we were to change one or more of the lanes to a express lanes which handle only with a small number of items, say five or fewer. How would you expect this to change average waiting time? This is a form of prioritization ... are there other prioritizations that you might consider? The customer action depends the item limit parameter associated with a checkout lane. This is a case where the action of one agent depends on a property of another. The shared resources builtin to the SimPy library provide some functionality in this regard, but how do add this to the simulations we write? The good news is that Python offers a rich array of object oriented programming features well suited to this purpose. The SymPy documentation provides excellent examples of how to create Python objects for use in SymPy. The bad news is that object oriented programming in Python -- while straightforward compared to many other programming languages -- constitutes a steep learning curve for students unfamiliar with the core concepts. Fortunately, since the introduction of Python 3.7 in 2018, the standard libraries for Python have included a simplified method for creating and using Python classes. Using [dataclass](https://realpython.com/python-data-classes/), it easy to create objects for SymPy simulations that retain the benefits of object oriented programming without all of the coding overhead. The purpose of this notebook is to introduce the use of `dataclass` in creating SymPy simulations. To the best of the author's knowledge, this is a novel use of `dataclass` and the only example of which the author is aware. ## Installations and imports ``` !pip install sympy %matplotlib inline import matplotlib.pyplot as plt import numpy as np import random import simpy import pandas as pd from dataclasses import dataclass import sys print(sys.version) ``` Additional imports are from the `dataclasses` library that has been part of the standard Python distribution since version 3.7. Here we import `dataclass` and `field`. ``` from dataclasses import dataclass, field ``` ## Introduction to `dataclass` Tutorials and additional documentation: * [The Ultimate Guide to Data Classes in Python 3.7](https://realpython.com/python-data-classes/): Tutorial article from ReaalPython.com * [dataclasses — Data Classes](https://docs.python.org/3/library/dataclasses.html): Official Python documentation. * [Data Classes in Python](https://towardsdatascience.com/data-classes-in-python-8d1a09c1294b): Tutorial from TowardsDataScience.com ### Creating a `dataclass` A `dataclass` defines a new class of Python objects. A `dataclass` object takes care of several routine things that you would otherwise have to code, such as creating instances of an object, testing for equality, and other aspects. As an example, the following cell shows how to define a dataclass corresponding to a hypothetical Student object. The Student object maintains data associated with instances of a student. The dataclass also defines a function associated with the object. ``` from dataclasses import dataclass @dataclass class Student(): name: str graduation_class: int dorm: str def print_name(self): print(f"{self.name} (Class of {self.graduation_class})") ``` Let's create an instance of the Student object. ``` sam = Student("Sam Jones", 2024, "Alumni") ``` Let's see how the `print_name()` function works. ``` sam.print_name() ``` The next cell shows how to create a list of students, and how to iterate over a list of students. ``` # create a list of students students = [ Student("Sam Jones", 2024, "Alumni"), Student("Becky Smith", 2023, "Howard"), ] # iterate over the list of students to print all of their names for student in students: student.print_name() print(student.dorm) ``` Here are a few details you need to use `dataclass` effectively: * The `class` statement is standard statement for creating a new class of Python objects. The preceding `@dataclass` is a Python 'decorator'. Decorators are Python functions that modify the behavior of subsequent statements. In this case, the `@dataclass` decorator modifies `class` to provide a streamlined syntax for implementing classes. * A Python class names begin with a capital letter. In this case `Student` is the class name. * The lines following the the class statement declare parameters that will be used by the new class. The parameters can be specified when you create an instance of the dataclass. * Each paraameter is followed by type 'hint'. Commonly used type hints are `int`, `float`, `bool`, and `str`. Use the keyword `any` you don't know or can't specify a particular type. Type hints are actually used by type-checking tools and ignored by the python interpreter. * Following the parameters, write any functions or generators that you may wish to define for the new class. To access variables unique to an instance of the class, preceed the parameter name with `self`. ### Specifying parameter values There are different ways of specifying the parameter values assigned to an instance of a dataclass. Here are three particular methods: * Specify the parameter value when creating a new instance. This is what was done in the Student example above. * Provide a default values determined when the dataclass is defined. * Provide a default_factory method to create a parameter value when an instance of the dataclass is created. #### Specifying a parameter value when creating a new instance Parameter values can be specified when creating an instance of a dataclass. The parameter values can be specified by position or by name as shown below. ``` from dataclasses import dataclass @dataclass class Student(): name: str graduation_year: int dorm: str def print_name(self): print(f"{self.name} (Class of {self.graduation_year})") sam = Student("Sam Jones", 2031, "Alumni") sam.print_name() gilda = Student(name="Gilda Radner", graduation_year=2030, dorm="Howard") gilda.print_name() ``` #### Setting default parameter values Setting a default value for a parameter can save extra typing or coding. More importantly, setting default values makes it easier to maintain and adapt code for other applications, and is a convenient way to handle missing data. There are two ways to set default parameter values. For str, int, float, bool, tuple (the immutable types in Python), a default value can be set using `=` as shown in the next cell. ``` from dataclasses import dataclass @dataclass class Student(): name: str = None graduation_year: int = None dorm: str = None def print_name(self): print(f"{self.name} (Class of {self.graduation_year})") jdoe = Student(name="John Doe", dorm="Alumni") jdoe.print_name() ``` Default parameter values are restricted to 'immutable' types. This technical restriction eliminiates the error-prone practice of use mutable objects, such as lists, as defaults. The difficulty with setting defaults for mutable objects is that all instances of the dataclass share the same value. If one instance of the object changes that value, then all other instances are affected. This leads to unpredictable behavior, and is a particularly nasty bug to uncover and fix. There are two ways to provide defaults for mutable parameters such as lists, sets, dictionaries, or arbitrary Python objects. The more direct way is to specify a function for constucting the default parameter value using the `field` statement with the `default_factory` option. The default_factory is called when a new instance of the dataclass is created. The function must take no arguments and must return a value that will be assigned to the designated parameter. Here's an example. ``` from dataclasses import dataclass @dataclass class Student(): name: str = None graduation_year: int = None dorm: str = None majors: list = field(default_factory=list) def print_name(self): print(f"{self.name} (Class of {self.graduation_year})") def print_majors(self): for n, major in enumerate(self.majors): print(f" {n+1}. {major}") jdoe = Student(name="John Doe", dorm="Alumni", majors=["Math", "Chemical Engineering"]) jdoe.print_name() jdoe.print_majors() Student().print_majors() ``` #### Initializing a dataclass with __post_init__(self) Frequently there are additional steps to complete when creating a new instance of a dataclass. For that purpose, a dataclass may contain an optional function with the special name `__post_init__(self)`. If present, that function is run automatically following the creation of a new instance. This feature will be demonstrated in following reimplementation of the grocery store checkout operation. ## Using `dataclass` with Simpy ### Step 0. A simple model To demonstrate the use of classes in SimPy simulations, let's begin with a simple model of a clock using generators. ``` import simpy def clock(id="", t_step=1.0): while True: print(id, env.now) yield env.timeout(t_step) env = simpy.Environment() env.process(clock("A")) env.process(clock("B", 1.5)) env.run(until=5.0) ``` ### Step 1. Embed the generator inside of a class As a first step, we rewrite the generator as a Python dataclass named `Clock`. The parameters are given default values, and the generator is incorporated within the Clock object. Note the use of `self` to refer to parameters specific to an instance of the class. ``` import simpy from dataclasses import dataclass @dataclass class Clock(): id: str = "" t_step: float = 1.0 def process(self): while True: print(self.id, env.now) yield env.timeout(self.t_step) env = simpy.Environment() env.process(Clock("A").process()) env.process(Clock("B", 1.5).process()) env.run(until=5) ``` ### Step 2. Eliminate (if possible) global variables Our definition of clock requires the simulation environment to have a specific name `env`, and assumes env is a global variable. That's generally not a good coding practice because it imposes an assumption on any user of the class, and exposes the internal coding of the class. A much better practice is to use class parameters to pass this data through a well defined interface to the class. ``` import simpy from dataclasses import dataclass @dataclass class Clock(): env: simpy.Environment id: str = "" t_step: float = 1.0 def process(self): while True: print(self.id, self.env.now) yield self.env.timeout(self.t_step) env = simpy.Environment() env.process(Clock(env, "A").process()) env.process(Clock(env, "B", 1.5).process()) env.run(until=10) ``` ### Step 3. Encapsulate initializations inside __post_init__ ``` import simpy from dataclasses import dataclass @dataclass class Clock(): env: simpy.Environment id: str = "" t_step: float = 1.0 def __post_init__(self): self.env.process(self.process()) def process(self): while True: print(self.id, self.env.now) yield self.env.timeout(self.t_step) env = simpy.Environment() Clock(env, "A") Clock(env, "B", 1.5) env.run(until=5) ``` ## Grocery Store Model Let's review our model for the grocery store checkout operations. There are multiple checkout lanes, each with potentially different characteristics. With generators we were able to implement differences in the time required to scan items. But another parameter, a limit on number of items that could be checked out in a lane, required a new global list. The reason was the need to access that parameter, something that a generator doesn't allow. This is where classes become important building blocks in creating more complex simulations. Our new strategy will be encapsulate the generator inside of a dataclass object. Here's what we'll ask each class definition to do: * Create a parameter corresponding to the simulation environment. This makes our classes reusable in other simulations by eliminating a reference to a globall variable. * Create parameters with reasonable defaults values. * Initialize any objects used within the class. * Register the class generator with the simulation environment. ``` from dataclasses import dataclass # create simulation models @dataclass class Checkout(): env: simpy.Environment lane: simpy.Store = None t_item: float = 1/10 item_limit: int = 25 t_payment: float = 2.0 def __post_init__(self): self.lane = simpy.Store(self.env) self.env.process(self.process()) def process(self): while True: customer_id, cart, enter_time = yield self.lane.get() wait_time = env.now - enter_time yield env.timeout(self.t_payment + cart*self.t_item) customer_log.append([customer_id, cart, enter_time, wait_time, env.now]) @dataclass class CustomerGenerator(): env: simpy.Environment rate: float = 1.0 customer_id: int = 1 def __post_init__(self): self.env.process(self.process()) def process(self): while True: yield env.timeout(random.expovariate(self.rate)) cart = random.randint(1, 25) available_checkouts = [checkout for checkout in checkouts if cart <= checkout.item_limit] checkout = min(available_checkouts, key=lambda checkout: len(checkout.lane.items)) yield checkout.lane.put([self.customer_id, cart, env.now]) self.customer_id += 1 def lane_logger(t_sample=0.1): while True: lane_log.append([env.now] + [len(checkout.lane.items) for checkout in checkouts]) yield env.timeout(t_sample) # create simulation environment env = simpy.Environment() # create simulation objects (agents) CustomerGenerator(env) checkouts = [ Checkout(env, t_item=1/5, item_limit=25), Checkout(env, t_item=1/5, item_limit=25), Checkout(env, item_limit=5), Checkout(env), Checkout(env), ] env.process(lane_logger()) # run process customer_log = [] lane_log = [] env.run(until=600) def visualize(): # extract lane data lane_df = pd.DataFrame(lane_log, columns = ["time"] + [f"lane {n}" for n in range(0, len(checkouts))]) lane_df = lane_df.set_index("time") customer_df = pd.DataFrame(customer_log, columns = ["customer id", "cart items", "enter", "wait", "leave"]) customer_df["elapsed"] = customer_df["leave"] - customer_df["enter"] # compute kpi's print(f"Average waiting time = {customer_df['wait'].mean():5.2f} minutes") print(f"\nAverage lane queue \n{lane_df.mean()}") print(f"\nOverall aaverage lane queue \n{lane_df.mean().mean():5.4f}") # plot results fig, ax = plt.subplots(3, 1, figsize=(12, 7)) ax[0].plot(lane_df) ax[0].set_xlabel("time / min") ax[0].set_title("length of checkout lanes") ax[0].legend(lane_df.columns) ax[1].bar(customer_df["customer id"], customer_df["wait"]) ax[1].set_xlabel("customer id") ax[1].set_ylabel("minutes") ax[1].set_title("customer waiting time") ax[2].bar(customer_df["customer id"], customer_df["elapsed"]) ax[2].set_xlabel("customer id") ax[2].set_ylabel("minutes") ax[2].set_title("total elapsed time") plt.tight_layout() visualize() ``` ## Customers as agents ``` from dataclasses import dataclass # create simulation models @dataclass class Checkout(): env: simpy.Environment lane: simpy.Store = None t_item: float = 1/10 item_limit: int = 25 t_payment: float = 2.0 def __post_init__(self): self.lane = simpy.Store(self.env) self.env.process(self.process()) def process(self): while True: customer_id, cart, enter_time = yield self.lane.get() wait_time = env.now - enter_time yield env.timeout(self.t_payment + cart*self.t_item) customer_log.append([customer_id, cart, enter_time, wait_time, env.now]) @dataclass class CustomerGenerator(): env: simpy.Environment rate: float = 1.0 customer_id: int = 1 def __post_init__(self): self.env.process(self.process()) def process(self): while True: yield env.timeout(random.expovariate(self.rate)) Customer(self.env, self.customer_id) self.customer_id += 1 @dataclass class Customer(): env: simpy.Environment id: int = 0 def __post_init__(self): self.cart = random.randint(1, 25) self.env.process(self.process()) def process(self): available_checkouts = [checkout for checkout in checkouts if self.cart <= checkout.item_limit] checkout = min(available_checkouts, key=lambda checkout: len(checkout.lane.items)) yield checkout.lane.put([self.id, self.cart, env.now]) def lane_logger(t_sample=0.1): while True: lane_log.append([env.now] + [len(checkout.lane.items) for checkout in checkouts]) yield env.timeout(t_sample) # create simulation environment env = simpy.Environment() # create simulation objects (agents) CustomerGenerator(env) checkouts = [ Checkout(env, t_item=1/5, item_limit=25), Checkout(env, t_item=1/5, item_limit=25), Checkout(env, item_limit=5), Checkout(env), Checkout(env), ] env.process(lane_logger()) # run process customer_log = [] lane_log = [] env.run(until=600) visualize() ``` ## Creating Smart Objects ``` from dataclasses import dataclass, field import pandas as pd # create simulation models @dataclass class Checkout(): lane: simpy.Store t_item: float = 1/10 item_limit: int = 25 def process(self): while True: customer_id, cart, enter_time = yield self.lane.get() wait_time = env.now - enter_time yield env.timeout(t_payment + cart*self.t_item) customer_log.append([customer_id, cart, enter_time, wait_time, env.now]) @dataclass class CustomerGenerator(): rate: float = 1.0 customer_id: int = 1 def process(self): while True: yield env.timeout(random.expovariate(self.rate)) cart = random.randint(1, 25) available_checkouts = [checkout for checkout in checkouts if cart <= checkout.item_limit] checkout = min(available_checkouts, key=lambda checkout: len(checkout.lane.items)) yield checkout.lane.put([self.customer_id, cart, env.now]) self.customer_id += 1 @dataclass class LaneLogger(): lane_log: list = field(default_factory=list) # this creates a variable that can be modified t_sample: float = 0.1 lane_df: pd.DataFrame = field(default_factory=pd.DataFrame) def process(self): while True: self.lane_log.append([env.now] + [len(checkout.lane.items) for checkout in checkouts]) yield env.timeout(self.t_sample) def report(self): self.lane_df = pd.DataFrame(self.lane_log, columns = ["time"] + [f"lane {n}" for n in range(0, N)]) self.lane_df = self.lane_df.set_index("time") print(f"\nAverage lane queue \n{self.lane_df.mean()}") print(f"\nOverall average lane queue \n{self.lane_df.mean().mean():5.4f}") def plot(self): self.lane_df = pd.DataFrame(self.lane_log, columns = ["time"] + [f"lane {n}" for n in range(0, N)]) self.lane_df = self.lane_df.set_index("time") fig, ax = plt.subplots(1, 1, figsize=(12, 3)) ax.plot(self.lane_df) ax.set_xlabel("time / min") ax.set_title("length of checkout lanes") ax.legend(self.lane_df.columns) # create simulation environment env = simpy.Environment() # create simulation objects (agents) customer_generator = CustomerGenerator() checkouts = [ Checkout(simpy.Store(env), t_item=1/5), Checkout(simpy.Store(env), t_item=1/5), Checkout(simpy.Store(env), item_limit=5), Checkout(simpy.Store(env)), Checkout(simpy.Store(env)), ] lane_logger = LaneLogger() # register agents env.process(customer_generator.process()) for checkout in checkouts: env.process(checkout.process()) env.process(lane_logger.process()) # run process env.run(until=600) # plot results lane_logger.report() lane_logger.plot() ```
true
code
0.40536
null
null
null
null
# 01 - Introduction to numpy: why does numpy exist? You might have read somewhere that Python is "slow" in comparison to some other languages. While generally true, this statement has only little meaning without context. As a scripting language (e.g. simplify tasks such as file renaming, data download, etc.), python is fast enough. For *numerical computations* (like the computations done by an atmospheric model or by a machine learning algorithm), "pure" Python is very slow indeed. Fortunately, there is a way to overcome this problem! In this chapter we are going to explain why the [numpy](http://numpy.org) library was created. Numpy is the fundamental library which transformed the general purpose python language into a scientific language like Matlab, R or IDL. Before introducing numpy, we will discuss some of the differences between python and compiled languages widely used in scientific software development (like C and FORTRAN). ## Why is python "slow"? In the next unit about numbers, we'll learn that the memory consumption of a python ``int`` is larger than the memory needed to store the binary number alone. This overhead in memory consumption is due to the nature of python data types, which are all **objects**. We've already learned that these objects come with certain "services". Everything is an object in Python. Yes, even functions are objects! Let me prove it to you: ``` def useful_function(a, b): """This function adds two objects together. Parameters ---------- a : an object b : another object Returns ------- The sum of the two """ return a + b type(useful_function) print(useful_function.__doc__) ``` Functions are objects of type ``function``, and one of their attributes (``__doc__``) gives us access to their **docstring**. During the course of the semester you are going to learn how to use more and more of these object features, and hopefully you are going to like them more and more (at least this is what happened to me). Now, why does this make python "slow"? Well, in simple terms, these "services" tend to increase the complexity and the number of operations an interpreter has to perform when running a program. More specialized languages will be less flexible than python, but will be faster at running specialized operations and be less memory hungry (because they don't need this overhead of flexible memory on top of every object). Python's high-level of abstraction (i.e. python's flexibility) makes it slower than its lower-level counterparts like C or FORTRAN. But, why is that so? ## Dynamically versus statically typed languages Python is a so-called **dynamically typed** language, which means that the **type** of a variable is determined by the interpreter *at run time*. To understand what that means in practice, let's have a look at the following code snippet: ``` a = 2 b = 3 c = a + b ``` The line ``c = a + b`` is valid python syntax. The *operation* that has to be applied by the ``+`` operator, however, depends on the type of the variables to be added. Remember what happens when adding two lists for example: ``` a = [2] b = [3] a + b ``` In this simple example it would be theoretically possible for the interpreter to predict which operation to apply beforehand (by parsing all lines of code prior to the action). In most cases, however, this is impossible: for example, a function taking arguments does not know beforehand the type of the arguments it will receive. Languages which assess the type of variables *at run time* are called [dynamically typed programming languages](https://en.wikipedia.org/wiki/Category:Dynamically_typed_programming_languages). Matlab, Python or R are examples falling in this category. **Statically typed languages**, however, require the *programmer* to provide the type of variables while writing the code. Here is an example of a program written in C: ```c #include <stdio.h> int main () { int a = 2; int b = 3; int c = a + b; printf ("Sum of two numbers : %d \n", c); } ``` The major difference with the Python code above is that the programmer indicated the type of the variables when they are assigned. Variable type definition in the code script is an integral part of the C syntax. This applies to the variables themselves, but also to the output of computations. This is a fundamental difference to python, and comes with several advantages. Static typing usually results in code that executes faster: since the program knows the exact data types that are in use, it can predict the memory consumption of operations beforehand and produce optimized machine code. Another advantage is code documentation: the statement ``int c = a + b`` makes it clear that we are adding two numbers while the python equivalent ``c = a + b`` could produce a number, a string, a list, etc. ## Compiled versus interpreted languages Statically typed languages often require **compilation**. To run the C code snippet I had to create a new text file (``example.c``), write the code, compile it (``$ gcc -o myprogram example.c``), before finally being able to execute it (``$ ./myprogram``). [gcc](https://en.wikipedia.org/wiki/GNU_Compiler_Collection) is the compiler I used to translate the C source code (a text file) to a low level language (machine code) in order to create an **executable** (``myprogram``). Later changes to the source code require a new compilation step for the changes to take effect. Because of this "edit-compile-run" cycle, compiled languages are not interactive: in the C language, there is no equivalent to python's command line interpreter. Compiling complex programs can take up to several hours in some extreme cases. This compilation time, however, is usually associated with faster execution times: as mentioned earlier, the compiler's task is to optimize the program for memory consumption by source code analysis. Often, a compiled program is optimized for the machine architecture it is compiled onto. Like interpreters, there can be different compilers for the same language. They differ in the optimization steps they undertake to make the program faster, and in their support of various hardware architectures. **Interpreters** do not require compilation: they analyze the code at run time. The following code for example is syntactically correct: ``` def my_func(a, b): return a + b ``` but the *execution* of this code results in a `TypeError` when the variables have the wrong type: ``` my_func(1, '2') ``` The interpreter cannot detect these errors before runtime: they happen when the variables are finally added together, not when they are created. **Parenthesis I: python bytecode** When executing a python program from the command line, the CPython interpreter creates a hidden directory called ``__pycache__``. This directory contains [bytecode](https://en.wikipedia.org/wiki/Bytecode) files, which are your python source code files translated to binary files. This is an optimization step which makes subsequent executions of the program run faster. While this conversion step is sometimes called "compilation", it should not be mistaken with a C-program compilation: indeed, python bytecode still needs an interpreter to run, while compiled executables can be run without C interpreter. **Parenthesis II: static typing and compilation** Statically typed languages are often compiled, and dynamically typed languages are often interpreted. While this is a good rule of thumb, this is not always true and the vast landscape of programming languages contains many exceptions. This lecture is only a very short introduction to these concepts: you'll have to refer to more advanced computer science lectures if you want to learn about these topics in more detail. ## Here comes numpy Let's summarize the two previous chapters: - Python is flexible, interactive and slow - C is less flexible, non-interactive and fast This is a simplification, but not far from the truth. Now, let's add another obstacle to using python for science: the built-in `list` data type in python is mostly useless for arithmetics or vector computations. Indeed, to add two lists together element-wise (a behavior that you would expect as a scientist), you must write: ``` def add_lists(A, B): """Element-wise addition of two lists.""" return [a + b for a, b in zip(A, B)] add_lists([1, 2, 3], [4, 5, 6]) ``` The numpy equivalent is much more intuitive and straightforward: ``` import numpy as np def add_arrays(A, B): return np.add(A, B) add_arrays([1, 2, 3], [4, 5, 6]) ``` Let's see which of the two functions runs faster: ``` n = 10 A = np.random.randn(n) B = np.random.randn(n) %timeit add_lists(A, B) %timeit add_arrays(A, B) ``` Numpy is approximately 5-6 times faster. ```{exercise} Repeat the performance test with n=100 and n=10000. How does the performance scale with the size of the array? Now repeat the test but make the input arguments ``A`` and ``B`` *lists* instead of numpy arrays. How is the performance comparison in this case? Why? ``` Why is numpy so much faster than pure python? One of the major reasons is **vectorization**, which is the process of applying mathematical operations to *all* elements of an array ("vector") at once instead of looping through them like we would do in pure python. "for loops" in python are slow because for each addition, python has to: - access the elements a and b in the lists A and B - check the type of both a and b - apply the ``+`` operator on the data they store - store the result. Numpy skips the first two steps and does them only once before the actual operation. What does numpy know about the addition operation that the pure python version can't infer? - the type of all numbers to add - the type of the output - the size of the output array (same as input) Numpy can use this information to optimize the computation, but this isn't possible without trade-offs. See the following for example: ``` add_lists([1, 'foo'], [3, 'bar']) # works fine add_arrays([1, 'foo'], [3, 'bar']) # raises a TypeError ``` $\rightarrow$ **numpy can only be that fast because the input and output data types are uniform and known before the operation**. Internally, numpy achieves vectorization by relying on a lower-level, statically typed and compiled language: C! At the time of writing, about 35% of the [numpy codebase](https://github.com/numpy/numpy) is written in C/C++. The rest of the codebase offers an interface (a "layer") between python and the internal C code. As a result, numpy has to be *compiled* at installation. Most users do not notice this compilation step anymore (recent pip and conda installations are shipped with pre-compiled binaries), but installing numpy used to require several minutes on my laptop when I started to learn python myself. ## Take home points - The process of "type checking" may occur either at compile-time (statically typed language) or at runtime (dynamically typed language). These terms are not usually used in a strict sense. - Statically typed languages are often compiled, while dynamically typed languages are interpreted. - There is a trade-off between the flexibility of a language and its speed: static typing allows programs to be optimized at compilation time, thus allowing them to run faster. But writing code in a statically typed language is slower, especially for interactive data exploration (not really possible in fact). - When speed matters, python allows to use compiled libraries under a python interface. numpy is using C under the hood to optimize its computations. - numpy arrays use a continuous block of memory of homogenous data type. This allows for faster memory access and easy vectorization of mathematical operations. ## Further reading I highly recommend to have a look at the first part of Jake Vanderplas' blog post, [Why python is slow](https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/) (up to the "hacking" part). It provides more details and a good visual illustration of the ``c = a + b`` example. The second part is a more involved read, but very interesting too! ## Addendum: is python really *that* slow? The short answer is: yes, python is slower than a number of other languages. You'll find many benchmarks online illustrating it. Is it bad? No. Jake Vanderplas (a well known contributor of the scientific python community) [writes](https://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/#So-Why-Use-Python?): *As well, it comes down to this: dynamic typing makes Python easier to use than C. It's extremely flexible and forgiving, this flexibility leads to efficient use of development time, and on those occasions that you really need the optimization of C or Fortran, Python offers easy hooks into compiled libraries. It's why Python use within many scientific communities has been continually growing. With all that put together, Python ends up being an extremely efficient language for the overall task of doing science with code.* It's the flexibility and readability of python that makes it so popular. Python is the language of choice for major actors like [instagram](https://www.youtube.com/watch?v=66XoCk79kjM) or [spotify](https://labs.spotify.com/2013/03/20/how-we-use-python-at-spotify/), and it has become the high-level interface to highly optimized machine learning libraries like [TensorFlow](https://github.com/tensorflow/tensorflow) or [Torch](http://pytorch.org/). For a scientist, writing code efficiently is *much* more important than writing efficient code. Or [is it](https://xkcd.com/1205/)?
true
code
0.868465
null
null
null
null
# Prescient Tutorial ## Getting Started This is a tutorial to demonstration the basic functionality of Prescient. Please follow the installation instructions in the [README](https://github.com/grid-parity-exchange/Prescient/blob/master/README.md) before proceeding. This tutorial will assume we are using the CBC MIP solver, however, we will point out where one could use a different solver (CPLEX, Gurobi, Xpress). ## RTS-GMLC We will use the RTS-GMLC test system as a demonstration. Prescient comes included with a translator for the RTS-GMLC system data, which is publically available [here](https://github.com/GridMod/RTS-GMLC). To find out more about the RTS-GMLC system, or if you use the RTS-GMLC system in published research, please see or cite the [RTS-GMLC paper](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8753693&isnumber=4374138&tag=1). ## IMPORTANT NOTE In the near future, the dev-team will allow more-direct reading of data in the "RTS-GMLC" format directly into the simulator. In the past, we have created one-off scripts for each data set to put then in the format required by the populator. ### Downloading the RTS-GMLC data ``` # first, we'll use the built-in function to download the RTS-GMLC system to Prescicent/downloads/rts_gmlc import prescient.downloaders.rts_gmlc as rts_downloader # the download function has the path Prescient/downloads/rts_gmlc hard-coded. # All it does is a 'git clone' of the RTS-GMLC repo rts_downloader.download() # we should be able to see the RTS-GMLC data now import os rts_gmlc_dir = rts_downloader.rts_download_path+os.sep+'RTS-GMLC' print(rts_gmlc_dir) os.listdir(rts_gmlc_dir) ``` ### Converting RTS-GMLC data into the format for the "populator" ``` # first thing we'll do is to create a *.dat file template for the "static" data, e.g., # branches, buses, generators, to Prescicent/downloads/rts_gmlc/templates/rts_with_network_template_hotstart.dat from prescient.downloaders.rts_gmlc_prescient.rtsgmlc_to_dat import write_template write_template(rts_gmlc_dir=rts_gmlc_dir, file_name=rts_downloader.rts_download_path+os.sep+'templates'+os.sep+'rts_with_network_template_hotstart.dat') # next, we'll convert the included time-series data into input for the populator # (this step can take a while because we set up an entire year's worth of data) from prescient.downloaders.rts_gmlc_prescient.process_RTS_GMLC_data import create_timeseries create_timeseries(rts_downloader.rts_download_path) # Lastly, Prescient comes with some pre-made scripts and templates to help get up-and-running with RTS-GMLC. # This function just puts those in rts_downloader.rts_download_path from # Prescient/prescient/downloaders/rts_gmlc_prescient/runners rts_downloader.copy_templates() os.listdir(rts_downloader.rts_download_path) ``` NOTE: the above steps are completely automated in the `__main__` function of Prescient/prescient/downloaders/rts_gmlc.py ### Running the populator Below we'll show how the populator is set-up by the scripts above an subsequently run. ``` # we'll work in the directory we've set up now for # running the populator and simulator # If prescient is properly installed, this could be # a directory anywhere on your system os.chdir(rts_downloader.rts_download_path) os.getcwd() # helper for displaying *.txt files in jupyter def print_file(file_n): '''prints file contents to the screen''' with open(file_n, 'r') as f: for l in f: print(l.strip()) ``` Generally, one would call `runner.py populate_with_network_deterministic.txt` to set-up the data for the simulator. We'll give a brief overview below as to how that is orchestrated. ``` print_file('populate_with_network_deterministic.txt') ``` First, notice the `command/exec` line, which tells `runner.py` which command to execute. These `*.txt` files could be replaced with bash scripts, or run from the command line directly. In this case, `populator.py --start-date 2020-07-10 --end-date 2020-07-16 --source-file sources_with_network.txt --output-directory deterministic_with_network_scenarios --scenario-creator-options-file deterministic_scenario_creator_with_network.txt --traceback` would give the same result. The use of the `*.txt` files enables saving these complex commands in a cross-platform compatable manner. The `--start-date` and `--end-date` specify the date range for which we'll generate simulator input. The `--ouput-directory` gives the path (relative in this case) where the simulator input (the output of this script) should go. The `--sources-file` and `--scenario-creator-options-file` point to other `*.txt` files. #### --scenario-creator-options-file ``` print_file('deterministic_scenario_creator_with_network.txt') ``` This file points the `scenario_creator` to the templates created/copied above, which store the "static" prescient data, e.g., `--sceneario-template-file` points to the bus/branch/generator data. The `--tree-template-file` is depreciated at this point, pending re-introdcution of stochastic unit commitment capabilities. ``` # This prints out the files entire contents, just to look at. # See if you can find the set "NondispatchableGenerators" print_file('templates/rts_with_network_template_hotstart.dat') ``` #### --sources-file ``` print_file('sources_with_network.txt') ``` This file connects each "Source" (e.g., `122_HYDRO_1`) in the file `templates/rts_with_network_template_hotstart.dat` to the `*.csv` files generated above for both load and renewable generation. Other things controlled here are whether a renewable resource is dispatchable at all. ``` # You could also run 'runner.py populate_with_network_deterministic.txt' from the command line import prescient.scripts.runner as runner runner.run('populate_with_network_deterministic.txt') ``` This creates the "input deck" for July 10, 2020 -- July 16, 2020 for the simulator in the ouput directory `determinstic_with_network_scenarios`. ``` sorted(os.listdir('deterministic_with_network_scenarios'+os.sep+'pyspdir_twostage')) ``` Inside each of these directories are the `*.dat` files specifying the simulation for each day. ``` sorted(os.listdir('deterministic_with_network_scenarios'+os.sep+'pyspdir_twostage'+os.sep+'2020-07-10')) ``` `Scenario_actuals.dat` contains the "actuals" for the day, which is used for the SCED problems, and `Scenario_forecast.dat` contains the "forecasts" for the day. The other `*.dat` files are hold-overs from stochastic mode. `scenarios.csv` has forecast and actuals data for every uncertain generator in an easy-to-process format. ### Running the simulator Below we show how to set-up and run the simulator. Below is the contents of the included `simulate_with_network_deterministic.txt`: ``` print_file('simulate_with_network_deterministic.txt') ``` Description of the options included are as follows: - `--data-directory`: Where the source data is (same as outputs for the populator). - `--simulate-out-of-sample`: This option directs the simulator to use different forecasts from actuals. Without it, the simulation is run with forecasts equal to actuals - `--run-sced-with-persistent-forecast-errors`: This option directs the simulator to use forecasts (adjusted by the current forecast error) for sced look-ahead periods, instead of using the actuals for sced look-ahead periods. - `--output-directory`: Where to write the output data. - `--run-deterministic-ruc`: Directs the simualtor to run a deterministic (as opposed to stochastic) unit commitment problem. Required for now as stochastic unit commitment is currently deprecated. - `--start-date`: Day to start the simulation on. Must be in the data-directory. - `--num-days`: Number of days to simulate, including the start date. All days must be included in the data-directory. - `--sced-horizon`: Number of look-ahead periods (in hours) for the real-time economic dispatch problem. - `--traceback`: If enabled, the simulator will print a trace if it failed. - `--random-seed`: Unused currently. - `--output-sced-initial-conditions`: Prints the initial conditions for the economic dispatch problem to the screen. - `--output-sced-demands`: Prints the demands for the economic dispatch problem to the screen. - `--output-sced-solutions`: Prints the solution for the economic dispatch problem to the screen. - `--output-ruc-initial-conditions`: Prints the initial conditions for the unit commitment problem to the screen. - `--output-ruc-solutions`: Prints the commitment solution for the unit commitment problem to the screen. - `--output-ruc-dispatches`: Prints the dispatch solution for the unit commitment problem to the screen. - `--output-solver-logs`: Prints the logs from the optimization solver (CBC, CPLEX, Gurobi, Xpress) to the screen. - `--ruc-mipgap`: Optimality gap to use for the unit commitment problem. Default is 1% used here -- can often be tighted for commerical solvers. - `--symbolic-solver-labels`: If set, `symbolic_solver_labels` is used when writing optimization models from Pyomo to the solver. Only useful for low-level debugging. - `--reserve-factor`: If set, overwrites any basic reserve factor included in the test data. - `--deterministic-ruc-solver`: The optimization solver ('cbc', 'cplex', 'gurobi', 'xpress') used for the unit commitment problem. - `--sced-solver`: The optimization solver ('cbc', 'cplex', 'gurobi', 'xpress') used for the economic dispatch problem. Other options not included in this file, which may be useful: - `--compute-market-settlements`: (True/False) If enabled, solves a day-ahead pricing problem (in addition to the real-time pricing problem) and computes generator revenue based on day-ahead and real-time prices. - `--day-ahead-pricing`: ('LMP', 'ELMP', 'aCHP') Specifies the type of day-ahead price to use. Default is 'aCHP'. - `--price-threashold`: The maximum value for the energy price ($/MWh). Useful for when market settlements are computed to avoid very large LMP values when load shedding occurs. - `--reserve-price-threashold`: The maximum value for the reserve price (\$/MW). Useful for when market settlements are computed to avoid very large LMP values when reserve shortfall occurs. - `--deterministic-ruc-solver-options`: Options to pass into the unit commitment solver (specific to the solver used) for every unit commitment solve. - `--sced-solver-options`: Options to pass into the economic dispatch solve (specific to the solver used) for every economic dispatch solve. - `--plugin`: Path to a Python module to modify Prescient behavior. ``` # You could also run 'runner.py simulate_with_network_deterministic.txt' from the command line # This runs a week of RTS-GMLC, which with the open-source cbc solver will take several (~12) minutes import prescient.scripts.runner as runner runner.run('simulate_with_network_deterministic.txt') ``` ### Analyzing results Summary and detailed `*.csv` files are written to the specified output directory (in this case, `deterministic_with_network_simulation_output`). ``` sorted(os.listdir('deterministic_with_network_simulation_output/')) ``` Below we give a breif description of the contents of each file. - `bus_detail.csv`: Detailed results (demand, LMP, etc.) by bus. - `daily_summary.csv`: Summary results by day. Demand, renewables data, costs, load shedding/over generation, etc. - `hourly_gen_summary.csv`: Gives total thermal headroom and data on reserves (shortfall, price) by hour. - `hourly_summary.csv`: Summary results by hour. Similar to `daily_summary.csv`. - `line_detail.csv`: Detailed results (flow in MW) by bus. - `overall_simulation_output.csv`: Summary results for the entire simulation run. Similar to `daily_summary.csv`. - `plots`: Directory containing stackgraphs for every day of the simulation. - `renewables_detail.csv`: Detailed results (output, curtailment) by renewable generator. - `runtimes.csv`: Runtimes for each economic dispatch problem. - `thermal_detail.csv`: Detailed results (dispatch, commitment, costs) per thermal generator. Generally, the first think to look at, as a sanity check is the stackgraphs: ``` dates = [f'2020-07-1{i}' for i in range(0,7)] from IPython.display import Image for date in dates: display(Image('deterministic_with_network_simulation_output'+os.sep+'plots'+os.sep+'stackgraph_'+date+'.png', width=500)) ``` Due to the non-deterministic nature of most MIP solvers, your results may be slightly different than mine. For my simulation, two things stand out: 1. The load-shedding at the end of the day (hour 23) on July 12th. 2. The renewables curtailed the evening of July 15th into the morning of July 16th. For this tutorial, let's hypothesize about the cause of (2). Often renewables are curtailed either because of a binding transmission constraint, or because some or all of the thermal generators are operating at minimum power. Let's investigate the first possibility. #### Examining Loaded Transmission Lines ``` import pandas as pd # load in the output data for the lines line_flows = pd.read_csv('deterministic_with_network_simulation_output'+os.sep+'line_detail.csv', index_col=[0,1,2,3]) # load in the source data for the lines line_attributes = pd.read_csv('RTS-GMLC'+os.sep+'RTS_Data'+os.sep+'SourceData'+os.sep+'branch.csv', index_col=0) # get the line limits line_limits = line_attributes['Cont Rating'] # get a series of flows line_flows = line_flows['Flow'] line_flows # rename the line_limits to match the # index of line_flows line_limits.index.name = "Line" line_limits lines_relative_flow = line_flows/line_limits lines_near_limits_time = lines_relative_flow[ (lines_relative_flow > 0.99) | (lines_relative_flow < -0.99) ] lines_near_limits_time ``` As we can see, near the end of the day on July 15th and the beginning of the day July 16th, several transmission constraints are binding, which correspond exactly to the periods of renewables curtailment in the stackgraphs above.
true
code
0.257812
null
null
null
null
# Prédiction à l'aide de forêts aléatoires Les forêts aléatoires sont des modèles de bagging ne nécessitant pas beaucoup de *fine tuning* pour obtenir des performances correctes. De plus, ces méthodes sont plus résitances au surapprentissage par rapport à d'autres méthodes. ``` from google.colab import drive drive.mount('/content/drive') dossier_donnees = "/content/drive/My Drive/projet_info_Ensae" import pandas as pd from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import RandomizedSearchCV from sklearn import metrics from sklearn.model_selection import GridSearchCV import numpy as np from matplotlib import pyplot as plt ``` ## Lecture des données de train et validation ``` donnees = pd.read_csv(dossier_donnees + "/donnees_model/donnees_train.csv", index_col = 1) donnees_validation = pd.read_csv(dossier_donnees + "/donnees_model/donnees_validation.csv", index_col = 1) donnees.drop(columns= "Unnamed: 0", inplace = True) donnees_validation.drop(columns= "Unnamed: 0", inplace = True) ``` On va faire quelques petites modifications sur les donnees : - Les variables `arrondissement`, `pp`, `mois` vont être considérées comme variable catégorielle - Les variables `datemut` vont être supprimées - La variable `sbati_squa` est retirée en suivant les recommandations de Maître Wenceslas Sanchez. ``` donnees["arrondissement"] = donnees["arrondissement"].astype("object") donnees["pp"] = donnees["pp"].astype("object") donnees["mois"] = donnees["datemut"].str[5:7].astype("object") donnees_train = donnees.drop(columns = ["nblot", "nbpar", "nblocmut", "nblocdep","datemut","sbati_squa"]) donnees_validation["arrondissement"] = donnees_validation["arrondissement"].astype("object") donnees_validation["pp"] = donnees_validation["pp"].astype("object") donnees_validation["mois"] = donnees_validation["datemut"].str[5:7].astype("object") donnees_validation.drop(columns = ["nblot", "nbpar", "nblocmut", "nblocdep","datemut","sbati_squa"], inplace = True) donnees_train.rename(columns = {"valfoncact2" : "valfoncact"}, inplace = True) donnees_validation.rename(columns = {"valfoncact2" : "valfoncact"}, inplace = True) def preparation(table): #Restriction à certains biens table = table[(table["valfoncact"] > 1e5) & (table["valfoncact"] < 3*(1e6))] #Ajout données brut men_brut = table.loc[:, "Men":"Men_mais"].apply(lambda x : x*table["Men"], axis = 0).add_suffix("_brut") ind_brut = table.loc[:, "Ind_0_3":"Ind_80p"].apply(lambda x : x*table["Ind"], axis = 0).add_suffix("_brut") table = pd.concat([table, men_brut, ind_brut],axis = 1) table_X = table.drop(columns = ["valfoncact"]).to_numpy() table_Y = table["valfoncact"].to_numpy() nom = table.drop(columns = ["valfoncact"]).columns return(table_X,table_Y,nom) donnees_validation_prep_X,donnees_validation_prep_Y,nom = preparation(donnees_validation) donnees_train_prep_X,donnees_train_prep_Y,nom = preparation(donnees_train) ``` ## Modélisation ``` rf = RandomForestRegressor(random_state=42,n_jobs = -1) ``` Pour le choix du nombre de variables testés à chaque split, Breiman [2000] recommande qu'utiliser dans les problèmes de régression $\sqrt{p}$ comme valeur où p désigne le nombre de covariables. Ici $p$ vaut 67. On prendra donc $p = 8$ ainsi que $6$ et $16$. Le nombre d'arbres (`n_estimators`) n'est *a priori* pas le critère le plus déterminant dans la performance des forêts aléatoires au delà d'un certain seuil. Nous essayons ici des valeurs *conventionnelles*. Pour contrôler la profondeur des feuilles de chaque arbre CART, nous utilisons le nombre d'individus minimums dans chaque feuille de l'arbre. Plus il est grand, plus l'arbre sera petit. Notons que les arbres ne sont pas élagués ici. ``` param_grid = { 'n_estimators': [100,200,500,1000], 'max_features': [6,8,16], 'min_samples_leaf' : [1,2,5,10] } rf_grid_search = GridSearchCV(estimator = rf, param_grid = param_grid,cv = 3, verbose=2, n_jobs = -1) rf_grid_search.fit(donnees_train_prep_X, donnees_train_prep_Y) print(rf_grid_search.best_params_) rf2 = RandomForestRegressor(random_state=42,n_jobs = -1, max_features = 16, min_samples_leaf= 2, n_estimators= 1000) rf2.fit(donnees_train_prep_X,donnees_train_prep_Y) pred = rf2.predict(donnees_validation_prep_X) np.sqrt(metrics.mean_squared_error(donnees_validation_prep_Y,pred)) ``` ## Visualisation de l'importance des variables Afin de savoir quelles sont les variables les plus importantes dans la prédiction, nous allons utiliser l'importance des variables. Il s'agit ici d'une importance basée sur la diminution de l'indice de Gini. ``` sorted_idx = rf2.feature_importances_.argsort() plt.figure(figsize=(10,15)) plt.barh(nom[sorted_idx], rf2.feature_importances_[sorted_idx]) plt.xlabel("Random Forest Feature Importance") ``` On note que les variables les plus importantes pour la prédiction sont : - sbati : la surface du bien - pp : le nombre de pièces - nv_par_hab : le niveau de vie par habitant du carreaux de 200 mètres dans lequel le bien se situe - Men_mai : Part de ménages en maison - arrondissement : Arrondissement dans lequel se situe le bien - Men_prop : Part de ménages propriétaires - Ind_80p : Part de plus de 80 ans - Ind_65_79 : Part d'individus âgés entre 65 et 79 ans - Men_mai_brut : Nombre bruts de ménages en maison
true
code
0.41049
null
null
null
null
# 🌋 Quick Feature Tour [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/RelevanceAI/RelevanceAI-readme-docs/blob/v2.0.0/docs/getting-started/_notebooks/RelevanceAI-ReadMe-Quick-Feature-Tour.ipynb) ### 1. Set up Relevance AI Get started using our RelevanceAI SDK and use of [Vectorhub](https://hub.getvectorai.com/)'s [CLIP model](https://hub.getvectorai.com/model/text_image%2Fclip) for encoding. ``` # remove `!` if running the line in a terminal !pip install -U RelevanceAI[notebook]==2.0.0 # remove `!` if running the line in a terminal !pip install -U vectorhub[clip] ``` Follow the signup flow and get your credentials below otherwise, you can sign up/login and find your credentials in the settings [here](https://auth.relevance.ai/signup/?callback=https%3A%2F%2Fcloud.relevance.ai%2Flogin%3Fredirect%3Dcli-api) ![](https://drive.google.com/uc?id=131M2Kpz5s9GmhNRnqz6b0l0Pw9DHVRWs) ``` from relevanceai import Client """ You can sign up/login and find your credentials here: https://cloud.relevance.ai/sdk/api Once you have signed up, click on the value under `Activation token` and paste it here """ client = Client() ``` ![](https://drive.google.com/uc?id=1owtvwZKTTcrOHBlgKTjqiMOvrN3DGrF6) ### 2. Create a dataset and insert data Use one of our sample datasets to upload into your own project! ``` import pandas as pd from relevanceai.utils.datasets import get_ecommerce_dataset_clean # Retrieve our sample dataset. - This comes in the form of a list of documents. documents = get_ecommerce_dataset_clean() pd.DataFrame.from_dict(documents).head() ds = client.Dataset("quickstart") ds.insert_documents(documents) ``` See your dataset in the dashboard ![](https://drive.google.com/uc?id=1nloY4S8R1B8GY2_QWkb0BGY3bLrG-8D-) ### 3. Encode data and upload vectors into your new dataset Encode a new product image vector using [Vectorhub's](https://hub.getvectorai.com/) `Clip2Vec` models and update your dataset with the resulting vectors. Please refer to [Vectorhub](https://github.com/RelevanceAI/vectorhub) for more details. ``` from vectorhub.bi_encoders.text_image.torch import Clip2Vec model = Clip2Vec() # Set the default encode to encoding an image model.encode = model.encode_image documents = model.encode_documents(fields=["product_image"], documents=documents) ds.upsert_documents(documents=documents) ds.schema ``` Monitor your vectors in the dashboard ![](https://drive.google.com/uc?id=1d2jhjhwvPucfebUphIiqGVmR1Td2uYzM) ### 4. Run clustering on your vectors Run clustering on your vectors to better understand your data! You can view your clusters in our clustering dashboard following the link which is provided after the clustering is finished! ``` from sklearn.cluster import KMeans cluster_model = KMeans(n_clusters=10) ds.cluster(cluster_model, ["product_image_clip_vector_"]) ``` You can see the new `_cluster_` field that is added to your document schema. Clustering results are uploaded back to the dataset as an additional field. The default `alias` of the cluster will be the `kmeans_<k>`. ``` ds.schema ``` See your cluster centers in the dashboard ![](https://drive.google.com/uc?id=1P0ZJcTd-Kl7TUwzFHEe3JuJpf_cTTP6J) ### 4. Run a vector search Encode your query and find your image results! Here our query is just a simple vector query, but our search comes with out of the box support for features such as multi-vector, filters, facets and traditional keyword matching to combine with your vector search. You can read more about how to construct a multivector query with those features [here](https://docs.relevance.ai/docs/vector-search-prerequisites). See your search results on the dashboard here https://cloud.relevance.ai/sdk/search. ``` query = "gifts for the holidays" query_vector = model.encode(query) multivector_query = [{"vector": query_vector, "fields": ["product_image_clip_vector_"]}] results = ds.vector_search(multivector_query=multivector_query, page_size=10) ``` See your multi-vector search results in the dashboard ![](https://drive.google.com/uc?id=1qpc7oK0uxj2IRm4a9giO5DBey8sm8GP8) Want to quickly create some example applications with Relevance AI? Check out some other guides below! - [Text-to-image search with OpenAI's CLIP](https://docs.relevance.ai/docs/quickstart-text-to-image-search) - [Hybrid Text search with Universal Sentence Encoder using Vectorhub](https://docs.relevance.ai/docs/quickstart-text-search) - [Text search with Universal Sentence Encoder Question Answer from Google](https://docs.relevance.ai/docs/quickstart-question-answering)
true
code
0.63023
null
null
null
null
# CHEM 1000 - Spring 2022 Prof. Geoffrey Hutchison, University of Pittsburgh ## 1. Functions and Coordinate Sets Chapter 1 in [*Mathematical Methods for Chemists*](http://sites.bu.edu/straub/mathematical-methods-for-molecular-science/) By the end of this session, you should be able to: - Handle 2D polar and 3D spherical coordinates - Understand area elements in 2D polar coordinates - Understand volume eleements in 3D spherical coordinates ### X/Y Cartesian 2D Coordinates We've already been using the x/y 2D Cartesian coordinate set to plot functions. Beyond `sympy`, we're going to use two new modules: - `numpy` which lets us create and handle arrays of numbers - `matplotlib` which lets us plot things It's a little bit more complicated. For now, you can just consider these as **demos**. We'll go into code (and make our own plots) in the next recitation period. ``` # import numpy # the "as np" part is giving a shortcut so we can write "np.function()" instead of "numpy.function()" # (saving typing is nice) import numpy as np # similarly, we import matplotlib's 'pyplot' module # and "as plt" means we can use "plt.show" instead of "matplotlib.pyplot.show()" import matplotlib.pyplot as plt # insert any graphs into our notebooks directly %matplotlib inline %config InlineBackend.figure_format = 'retina' # once we've done that import (once) - we just need to create our x/y values x = np.arange(0, 4*np.pi, 0.1) # start, stop, resolution y = np.sin(x) # creates an array with sin() of all the x values plt.plot(x,y) plt.show() ``` Sometimes, we need to get areas in the Cartesian xy system, but this is very easy - we simply multiply an increment in x ($dx$) and an increment in y ($dy$). (Image from [*Mathematical Methods for Chemists*](http://sites.bu.edu/straub/mathematical-methods-for-molecular-science/)) <img src="../images/cartesian-area.png" width="400" /> ### Polar (2D) Coordinates Of course, not all functions work well in xy Cartesian coordinates. A function should produce one y value for any x value. Thus, a circle isn't easily represented as $y = f(x)$. Instead, polar coordinates, use radius $r$ and angle $\theta$. (Image from [*Mathematical Methods for Chemists*](http://sites.bu.edu/straub/mathematical-methods-for-molecular-science/)) <img src="../images/cartesian-polar.png" width="343" /> As a reminder, we can interconvert x,y into r, theta: $$ r = \sqrt{x^2 + y^2} $$ $$ \theta = \arctan \frac{y}{x} = \tan^{-1} \frac{y}{x} $$ ``` x = 3.0 y = 1.0 r = np.sqrt(x**2 + y**2) theta = np.arctan(y / x) print('r =', round(r, 4), 'theta = ', round(theta, 4)) ``` Okay, we can't express a circle as an easy $y = f(x)$ expression. Can we do that in polar coordinates? Sure. The radius will be constant, and theta will go from $0 .. 2\pi$. ``` theta = np.arange(0, 2*np.pi, 0.01) # set up an array of radii from 0 to 2π with 0.01 rad # create a function r(theta) = 1.5 .. a constant r = np.full(theta.size, 1.5) # create a new polar plot ax = plt.subplot(111, projection='polar') ax.plot(theta, r, color='blue') ax.set_rmax(3) ax.set_rticks([1, 2]) # Less radial ticks ax.set_rlabel_position(22.5) # Move radial labels away from plotted line ax.grid(True) plt.show() ``` Anything else? Sure - we can create spirals, etc. that are parametric functions in the XY Cartesian coordinates. ``` r = np.arange(0, 2, 0.01) # set up an array of radii from 0 to 2 with 0.01 resolution # this is a function theta(r) = 2π * r theta = 2 * np.pi * r # set up an array of theta angles - spiraling outward .. from 0 to 2*2pi = 4pi # create a polar plot ax = plt.subplot(111, projection='polar') ax.plot(theta, r, color='red') ax.set_rmax(3) ax.set_rticks([1, 2]) # Less radial ticks ax.set_rlabel_position(22.5) # Move radial labels away from plotted line ax.grid(True) plt.show() ``` Just like with xy Cartesian, we will eventually need to consider the area of functions in polar coordinates. (Image from [*Mathematical Methods for Chemists*](http://sites.bu.edu/straub/mathematical-methods-for-molecular-science/)) <img src="../images/polar_area.png" width=375 /> Note that the area depends on the radius. Even if we sweep out the same $\Delta r$ and $\Delta \theta$ an area further out from the center is larger: ``` # create a polar plot ax = plt.subplot(111, projection='polar') # first arc at r = 1.0 r1 = np.full(20, 1.0) theta1 = np.linspace(1.0, 1.3, 20) ax.plot(theta1, r1) # second arc at r = 1.2 r2 = np.full(20, 1.2) theta2 = np.linspace(1.0, 1.3, 20) ax.plot(theta2, r2) # first radial line at theta = 1.0 radians r3 = np.linspace(1.0, 1.2, 20) theta3 = np.full(20, 1.0) ax.plot(theta3, r3) # first radial line at theta = 1.3 radians r4 = np.linspace(1.0, 1.2, 20) theta4 = np.full(20, 1.3) ax.plot(theta4, r4) # smaller box # goes from r = 0.4-> 0.6 # sweeps out theta = 1.0-1.3 radians r5 = np.full(20, 0.4) r6 = np.full(20, 0.6) r7 = np.linspace(0.4, 0.6, 20) r8 = np.linspace(0.4, 0.6, 20) ax.plot(theta1, r5) ax.plot(theta2, r6) ax.plot(theta3, r7) ax.plot(theta4, r8) ax.set_rmax(1.5) ax.set_rticks([0.5, 1, 1.5]) # Less radial ticks ax.set_rlabel_position(-22.5) # Move radial labels away from plotted line ax.grid(True) plt.show() ``` Thus the area element will be $r dr d\theta$. While it's not precisely rectangular, the increments are very small and it's a reasonable approximation. ### 3D Cartesian Coordinates Of course there are many times when we need to express functions like: $$ z = f(x,y) $$ These are a standard extension of 2D Cartesian coordinates, and so the volume is simply defined as that of a rectangular solid. <img src="../images/cartesian-volume.png" width="360" /> ``` from sympy import symbols from sympy.plotting import plot3d x, y = symbols('x y') plot3d(-0.5 * (x**2 + y**2), (x, -3, 3), (y, -3, 3)) ``` ### 3D Spherical Coordinates Much like two dimensions we sometimes need to use spherical coordinates — atoms are spherical, after all. <div class="alert alert-block alert-danger"> **WARNING** Some math courses use a different [convention](https://en.wikipedia.org/wiki/Spherical_coordinate_system#Conventions) than chemistry and physics. - Physics and chemistry use $(r, \theta, \varphi)$ where $\theta$ is the angle down from the z-axis (e.g., latitude) - Some math courses use $\theta$ as the angle in the XY 2D plane. </div> (Image from [*Mathematical Methods for Chemists*](http://sites.bu.edu/straub/mathematical-methods-for-molecular-science/)) <img src="../images/spherical.png" width="330" /> Where: - $r$ is the radius, from 0 to $\infty$ - $\theta$ is the angle down from the z-axis - e.g., think of N/S latitude on the Earth's surface) from 0° at the N pole to 90° (π/2) at the equator and 180° (π) at the S pole - $\varphi$ is the angle in the $xy$ plane - e.g., think of E/W longitude on the Earth), from 0 to 360° / 0..2π We can interconvert xyz and $r\theta\varphi$ $$x = r\sin \theta \cos \varphi$$ $$y = r\sin \theta \sin \varphi$$ $$z = r \cos \theta$$ Or vice-versa: $$ \begin{array}{l}r=\sqrt{x^{2}+y^{2}+z^{2}} \\ \theta=\arccos \left(\frac{z}{r}\right)=\cos ^{-1}\left(\frac{z}{r}\right) \\ \varphi=\tan ^{-1}\left(\frac{y}{x}\right)\end{array} $$ The code below might look a little complicated. That's okay. I've added comments for the different sections and each line. You don't need to understand all of it - it's intended to plot the function: $$ r = |\cos(\theta^2) | $$ ``` # import some matplotlib modules for 3D and color scales import mpl_toolkits.mplot3d.axes3d as axes3d import matplotlib.colors as mcolors cmap = plt.get_cmap('jet') # pick a red-to-blue color map fig = plt.figure() # create a figure ax = fig.add_subplot(1,1,1, projection='3d') # set up some axes for a 3D projection # We now set up the grid for evaluating our function # particularly the angle portion of the spherical coordinates theta = np.linspace(0, np.pi, 100) phi = np.linspace(0, 2*np.pi, 100) THETA, PHI = np.meshgrid(theta, phi) # here's the function to plot R = np.abs(np.cos(THETA**2)) # now convert R(phi, theta) to x, y, z coordinates to plot X = R * np.sin(THETA) * np.cos(PHI) Y = R * np.sin(THETA) * np.sin(PHI) Z = R * np.cos(THETA) # set up some colors based on the Z range .. from red to blue norm = mcolors.Normalize(vmin=Z.min(), vmax=Z.max()) # plot the surface plot = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=cmap(norm(Z)), linewidth=0, antialiased=True, alpha=0.4) # no lines, smooth graphics, semi-transparent plt.show() ``` The volume element in spherical coordinates is a bit tricky, since the distances depend on the radius and angles: (Image from [*Mathematical Methods for Chemists*](http://sites.bu.edu/straub/mathematical-methods-for-molecular-science/)) $$ dV = r^2 dr \sin \theta d\theta d\phi$$ <img src="../images/spherical-volume.png" width="414" /> ------- This notebook is from Prof. Geoffrey Hutchison, University of Pittsburgh https://github.com/ghutchis/chem1000 <a rel="license" href="http://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by/4.0/88x31.png" /></a>
true
code
0.716454
null
null
null
null
# Zipline Pipeline ### Introduction On any given trading day, the entire universe of stocks consists of thousands of securities. Usually, you will not be interested in investing in all the stocks in the entire universe, but rather, you will likely select only a subset of these to invest. For example, you may only want to invest in stocks that have a 10-day average closing price of \$10.00 or less. Or you may only want to invest in the top 500 securities ranked by some factor. In order to avoid spending a lot of time doing data wrangling to select only the securities you are interested in, people often use **pipelines**. In general, a pipeline is a placeholder for a series of data operations used to filter and rank data according to some factor or factors. In this notebook, you will learn how to work with the **Zipline Pipeline**. Zipline is an open-source algorithmic trading simulator developed by *Quantopian*. We will learn how to use the Zipline Pipeline to filter stock data according to factors. ### Install Packages ``` conda install -c Quantopian zipline import sys !{sys.executable} -m pip install -r requirements.txt ``` # Loading Data with Zipline Before we build our pipeline with Zipline, we will first see how we can load the stock data we are going to use into Zipline. Zipline uses **Data Bundles** to make it easy to use different data sources. A data bundle is a collection of pricing data, adjustment data, and an asset database. Zipline employs data bundles to preload data used to run backtests and store data for future runs. Zipline comes with a few data bundles by default but it also has the ability to ingest new bundles. The first step to using a data bundle is to ingest the data. Zipline's ingestion process will start by downloading the data or by loading data files from your local machine. It will then pass the data to a set of writer objects that converts the original data to Zipline’s internal format (`bcolz` for pricing data, and `SQLite` for split/merger/dividend data) that hs been optimized for speed. This new data is written to a standard location that Zipline can find. By default, the new data is written to a subdirectory of `ZIPLINE_ROOT/data/<bundle>`, where `<bundle>` is the name given to the bundle ingested and the subdirectory is named with the current date. This allows Zipline to look at older data and run backtests on older copies of the data. Running a backtest with an old ingestion makes it easier to reproduce backtest results later. In this notebook, we will be using stock data from **Quotemedia**. In the Udacity Workspace you will find that the stock data from Quotemedia has already been ingested into Zipline. Therefore, in the code below we will use Zipline's `bundles.load()` function to load our previously ingested stock data from Quotemedia. In order to use the `bundles.load()` function we first need to do a couple of things. First, we need to specify the name of the bundle previously ingested. In this case, the name of the Quotemedia data bundle is `eod-quotemedia`: ``` # Specify the bundle name bundle_name = 'eod-quotemedia' ``` Second, we need to register the data bundle and its ingest function with Zipline, using the `bundles.register()` function. The ingest function is responsible for loading the data into memory and passing it to a set of writer objects provided by Zipline to convert the data to Zipline’s internal format. Since the original Quotemedia data was contained in `.csv` files, we will use the `csvdir_equities()` function to generate the ingest function for our Quotemedia data bundle. In addition, since Quotemedia's `.csv` files contained daily stock data, we will set the time frame for our ingest function, to `daily`. ``` from zipline.data import bundles from zipline.data.bundles.csvdir import csvdir_equities # Create an ingest function ingest_func = csvdir_equities(['daily'], bundle_name) # Register the data bundle and its ingest function bundles.register(bundle_name, ingest_func); ``` Once our data bundle and ingest function are registered, we can load our data using the `bundles.load()` function. Since this function loads our previously ingested data, we need to set `ZIPLINE_ROOT` to the path of the most recent ingested data. The most recent data is located in the `cwd/../../data/project_4_eod/` directory, where `cwd` is the current working directory. We will specify this location using the `os.environ[]` command. ``` import os # Set environment variable 'ZIPLINE_ROOT' to the path where the most recent data is located os.environ['ZIPLINE_ROOT'] = os.path.join(os.getcwd(),'project_4_eod') # Load the data bundle bundle_data = bundles.load(bundle_name) ``` # Building an Empty Pipeline Once we have loaded our data, we can start building our Zipline pipeline. We begin by creating an empty Pipeline object using Zipline's `Pipeline` class. A Pipeline object represents a collection of named expressions to be compiled and executed by a Pipeline Engine. The `Pipeline(columns=None, screen=None)` class takes two optional parameters, `columns` and `screen`. The `columns` parameter is a dictionary used to indicate the intial columns to use, and the `screen` parameter is used to setup a screen to exclude unwanted data. In the code below we will create a `screen` for our pipeline using Zipline's built-in `.AverageDollarVolume()` class. We will use the `.AverageDollarVolume()` class to produce a 60-day Average Dollar Volume of closing prices for every stock in our universe. We then use the `.top(10)` attribute to specify that we want to filter down our universe each day to just the top 10 assets. Therefore, this screen will act as a filter to exclude data from our stock universe each day. The average dollar volume is a good first pass filter to avoid illiquid assets. ``` from zipline.pipeline import Pipeline from zipline.pipeline.factors import AverageDollarVolume # Create a screen for our Pipeline universe = AverageDollarVolume(window_length = 60).top(10) # Create an empty Pipeline with the given screen pipeline = Pipeline(screen = universe) ``` In the code above we have named our Pipeline object `pipeline` so that we can identify it later when we make computations. Remember a Pipeline is an object that represents computations we would like to perform every day. A freshly-constructed pipeline, like the one we just created, is empty. This means it doesn’t yet know how to compute anything, and it won’t produce any values if we ask for its outputs. In the sections below, we will see how to provide our Pipeline with expressions to compute. # Factors and Filters The `.AverageDollarVolume()` class used above is an example of a factor. In this section we will take a look at two types of computations that can be expressed in a pipeline: **Factors** and **Filters**. In general, factors and filters represent functions that produce a value from an asset in a moment in time, but are distinguished by the types of values they produce. Let's start by looking at factors. ### Factors In general, a **Factor** is a function from an asset at a particular moment of time to a numerical value. A simple example of a factor is the most recent price of a security. Given a security and a specific moment in time, the most recent price is a number. Another example is the 10-day average trading volume of a security. Factors are most commonly used to assign values to securities which can then be combined with filters or other factors. The fact that you can combine multiple factors makes it easy for you to form new custom factors that can be as complex as you like. For example, constructing a Factor that computes the average of two other Factors can be simply illustrated usingthe pseudocode below: ```python f1 = factor1(...) f2 = factor2(...) average = (f1 + f2) / 2.0 ``` ### Filters In general, a **Filter** is a function from an asset at a particular moment in time to a boolean value (True of False). An example of a filter is a function indicating whether a security's price is below \$5. Given a security and a specific moment in time, this evaluates to either **True** or **False**. Filters are most commonly used for selecting sets of securities to include or exclude from your stock universe. Filters are usually applied using comparison operators, such as <, <=, !=, ==, >, >=. # Viewing the Pipeline as a Diagram Zipline's Pipeline class comes with the attribute `.show_graph()` that allows you to render the Pipeline as a Directed Acyclic Graph (DAG). This graph is specified using the DOT language and consequently we need a DOT graph layout program to view the rendered image. In the code below, we will use the Graphviz pakage to render the graph produced by the `.show_graph()` attribute. Graphviz is an open-source package for drawing graphs specified in DOT language scripts. ``` import graphviz # Render the pipeline as a DAG pipeline.show_graph() ``` Right now, our pipeline is empty and it only contains a screen. Therefore, when we rendered our `pipeline`, we only see the diagram of our `screen`: ```python AverageDollarVolume(window_length = 60).top(10) ``` By default, the `.AverageDollarVolume()` class uses the `USEquityPricing` dataset, containing daily trading prices and volumes, to compute the average dollar volume: ```python average_dollar_volume = np.nansum(close_price * volume, axis=0) / len(close_price) ``` The top of the diagram reflects the fact that the `.AverageDollarVolume()` class gets its inputs (closing price and volume) from the `USEquityPricing` dataset. The bottom of the diagram shows that the output is determined by the expression `x_0 <= 10`. This expression reflects the fact that we used `.top(10)` as a filter in our `screen`. We refer to each box in the diagram as a Term. # Datasets and Dataloaders One of the features of Zipline's Pipeline is that it separates the actual source of the stock data from the abstract description of that dataset. Therefore, Zipline employs **DataSets** and **Loaders** for those datasets. `DataSets` are just abstract collections of sentinel values describing the columns/types for a particular dataset. While a `loader` is an object which, given a request for a particular chunk of a dataset, can actually get the requested data. For example, the loader used for the `USEquityPricing` dataset, is the `USEquityPricingLoader` class. The `USEquityPricingLoader` class will delegate the loading of baselines and adjustments to lower-level subsystems that know how to get the pricing data in the default formats used by Zipline (`bcolz` for pricing data, and `SQLite` for split/merger/dividend data). As we saw in the beginning of this notebook, data bundles automatically convert the stock data into `bcolz` and `SQLite` formats. It is important to note that the `USEquityPricingLoader` class can also be used to load daily OHLCV data from other datasets, not just from the `USEquityPricing` dataset. Simliarly, it is also possible to write different loaders for the same dataset and use those instead of the default loader. Zipline contains lots of other loaders to allow you to load data from different datasets. In the code below, we will use `USEquityPricingLoader(BcolzDailyBarWriter, SQLiteAdjustmentWriter)` to create a loader from a `bcolz` equity pricing directory and a `SQLite` adjustments path. Both the `BcolzDailyBarWriter` and `SQLiteAdjustmentWriter` determine the path of the pricing and adjustment data. Since we will be using the Quotemedia data bundle, we will use the `bundle_data.equity_daily_bar_reader` and the `bundle_data.adjustment_reader` as our `BcolzDailyBarWriter` and `SQLiteAdjustmentWriter`, respectively. ``` from zipline.pipeline.loaders import USEquityPricingLoader # Set the dataloader pricing_loader = USEquityPricingLoader(bundle_data.equity_daily_bar_reader, bundle_data.adjustment_reader) ``` # Pipeline Engine Zipline employs computation engines for executing Pipelines. In the code below we will use Zipline's `SimplePipelineEngine()` class as the engine to execute our pipeline. The `SimplePipelineEngine(get_loader, calendar, asset_finder)` class associates the chosen data loader with the corresponding dataset and a trading calendar. The `get_loader` parameter must be a callable function that is given a loadable term and returns a `PipelineLoader` to use to retrieve the raw data for that term in the pipeline. In our case, we will be using the `pricing_loader` defined above, we therefore, create a function called `choose_loader` that returns our `pricing_loader`. The function also checks that the data that is being requested corresponds to OHLCV data, otherwise it retunrs an error. The `calendar` parameter must be a `DatetimeIndex` array of dates to consider as trading days when computing a range between a fixed `start_date` and `end_date`. In our case, we will be using the same trading days as those used in the NYSE. We will use Zipline's `get_calendar('NYSE')` function to retrieve the trading days used by the NYSE. We then use the `.all_sessions` attribute to get the `DatetimeIndex` from our `trading_calendar` and pass it to the `calendar` parameter. Finally, the `asset_finder` parameter determines which assets are in the top-level universe of our stock data at any point in time. Since we are using the Quotemedia data bundle, we set this parameter to the `bundle_data.asset_finder`. ``` from zipline.utils.calendars import get_calendar from zipline.pipeline.data import USEquityPricing from zipline.pipeline.engine import SimplePipelineEngine # Define the function for the get_loader parameter def choose_loader(column): if column not in USEquityPricing.columns: raise Exception('Column not in USEquityPricing') return pricing_loader # Set the trading calendar trading_calendar = get_calendar('NYSE') # Create a Pipeline engine engine = SimplePipelineEngine(get_loader = choose_loader, calendar = trading_calendar.all_sessions, asset_finder = bundle_data.asset_finder) ``` # Running a Pipeline Once we have chosen our engine we are ready to run or execute our pipeline. We can run our pipeline by using the `.run_pipeline()` attribute of the `SimplePipelineEngine` class. In particular, the `SimplePipelineEngine.run_pipeline(pipeline, start_date, end_date)` implements the following algorithm for executing pipelines: 1. Build a dependency graph of all terms in the `pipeline`. In this step, the graph is sorted topologically to determine the order in which we can compute the terms. 2. Ask our AssetFinder for a “lifetimes matrix”, which should contain, for each date between `start_date` and `end_date`, a boolean value for each known asset indicating whether the asset existed on that date. 3. Compute each term in the dependency order determined in step 1, caching the results in a a dictionary so that they can be fed into future terms. 4. For each date, determine the number of assets passing the `pipeline` screen. The sum, $N$, of all these values is the total number of rows in our output Pandas Dataframe, so we pre-allocate an output array of length $N$ for each factor in terms. 5. Fill in the arrays allocated in step 4 by copying computed values from our output cache into the corresponding rows. 6. Stick the values computed in step 5 into a Pandas DataFrame and return it. In the code below, we run our pipeline for a single day, so our `start_date` and `end_date` will be the same. We then print some information about our `pipeline_output`. ``` import pandas as pd # Set the start and end dates start_date = pd.Timestamp('2016-01-05', tz = 'utc') end_date = pd.Timestamp('2016-01-05', tz = 'utc') # Run our pipeline for the given start and end dates pipeline_output = engine.run_pipeline(pipeline, start_date, end_date) # We print information about the pipeline output print('The pipeline output has type:', type(pipeline_output), '\n') # We print whether the pipeline output is a MultiIndex Dataframe print('Is the pipeline output a MultiIndex Dataframe:', isinstance(pipeline_output.index, pd.core.index.MultiIndex), '\n') # If the pipeline output is a MultiIndex Dataframe we print the two levels of the index if isinstance(pipeline_output.index, pd.core.index.MultiIndex): # We print the index level 0 print('Index Level 0:\n\n', pipeline_output.index.get_level_values(0), '\n') # We print the index level 1 print('Index Level 1:\n\n', pipeline_output.index.get_level_values(1), '\n') ``` We can see above that the return value of `.run_pipeline()` is a `MultiIndex` Pandas DataFrame containing a row for each asset that passed our pipeline’s screen. We can also see that the 0th level of the index contains the date and the 1st level of the index contains the tickers. In general, the returned Pandas DataFrame will also contain a column for each factor and filter we add to the pipeline using `Pipeline.add()`. At this point we haven't added any factors or filters to our pipeline, consequently, the Pandas Dataframe will have no columns. In the following sections we will see how to add factors and filters to our pipeline. # Get Tickers We saw in the previous section, that the tickers of the stocks that passed our pipeline’s screen are contained in the 1st level of the index. Therefore, we can use the Pandas `.get_level_values(1).values.tolist()` method to get the tickers of those stocks and save them to a list. ``` # Get the values in index level 1 and save them to a list universe_tickers = pipeline_output.index.get_level_values(1).values.tolist() # Display the tickers universe_tickers ``` # Get Data Now that we have the tickers for the stocks that passed our pipeline’s screen, we can get the historical stock data for those tickers from our data bundle. In order to get the historical data we need to use Zipline's `DataPortal` class. A `DataPortal` is an interface to all of the data that a Zipline simulation needs. In the code below, we will create a `DataPortal` and `get_pricing` function to get historical stock prices for our tickers. We have already seen most of the parameters used below when we create the `DataPortal`, so we won't explain them again here. The only new parameter is `first_trading_day`. The `first_trading_day` parameter is a `pd.Timestamp` indicating the first trading day for the simulation. We will set the first trading day to the first trading day in the data bundle. For more information on the `DataPortal` class see the [Zipline documentation](https://www.zipline.io/appendix.html?highlight=dataportal#zipline.data.data_portal.DataPortal) ``` from zipline.data.data_portal import DataPortal # Create a data portal data_portal = DataPortal(bundle_data.asset_finder, trading_calendar = trading_calendar, first_trading_day = bundle_data.equity_daily_bar_reader.first_trading_day, equity_daily_reader = bundle_data.equity_daily_bar_reader, adjustment_reader = bundle_data.adjustment_reader) ``` Now that we have created a `data_portal` we will create a helper function, `get_pricing`, that gets the historical data from the `data_portal` for a given set of `start_date` and `end_date`. The `get_pricing` function takes various parameters: ```python def get_pricing(data_portal, trading_calendar, assets, start_date, end_date, field='close') ``` The first two parameters, `data_portal` and `trading_calendar`, have already been defined above. The third paramter, `assets`, is a list of tickers. In our case we will use the tickers from the output of our pipeline, namely, `universe_tickers`. The fourth and fifth parameters are strings specifying the `start_date` and `end_date`. The function converts these two strings into Timestamps with a Custom Business Day frequency. The last parameter, `field`, is a string used to indicate which field to return. In our case we want to get the closing price, so we set `field='close`. The function returns the historical stock price data using the `.get_history_window()` attribute of the `DataPortal` class. This attribute returns a Pandas Dataframe containing the requested history window with the data fully adjusted. The `bar_count` parameter is an integer indicating the number of days to return. The number of days determines the number of rows of the returned dataframe. Both the `frequency` and `data_frequency` parameters are strings that indicate the frequency of the data to query, *i.e.* whether the data is in `daily` or `minute` intervals. ``` def get_pricing(data_portal, trading_calendar, assets, start_date, end_date, field='close'): # Set the given start and end dates to Timestamps. The frequency string C is used to # indicate that a CustomBusinessDay DateOffset is used end_dt = pd.Timestamp(end_date, tz='UTC', freq='C') start_dt = pd.Timestamp(start_date, tz='UTC', freq='C') # Get the locations of the start and end dates end_loc = trading_calendar.closes.index.get_loc(end_dt) start_loc = trading_calendar.closes.index.get_loc(start_dt) # return the historical data for the given window return data_portal.get_history_window(assets=assets, end_dt=end_dt, bar_count=end_loc - start_loc, frequency='1d', field=field, data_frequency='daily') # Get the historical data for the given window historical_data = get_pricing(data_portal, trading_calendar, universe_tickers, start_date='2011-01-05', end_date='2016-01-05') # Display the historical data historical_data ``` # Date Alignment When pipeline returns with a date of, e.g., `2016-01-07` this includes data that would be known as of before the **market open** on `2016-01-07`. As such, if you ask for latest known values on each day, it will return the closing price from the day before and label the date `2016-01-07`. All factor values assume to be run prior to the open on the labeled day with data known before that point in time. # Adding Factors and Filters Now that you know how build a pipeline and execute it, in this section we will see how we can add factors and filters to our pipeline. These factors and filters will determine the computations we want our pipeline to compute each day. We can add both factors and filters to our pipeline using the `.add(column, name)` method of the `Pipeline` class. The `column` parameter represetns the factor or filter to add to the pipeline. The `name` parameter is a string that determines the name of the column in the output Pandas Dataframe for that factor of fitler. As mentioned earlier, each factor and filter will appear as a column in the output dataframe of our pipeline. Let's start by adding a factor to our pipeline. ### Factors In the code below, we will use Zipline's built-in `SimpleMovingAverage` factor to create a factor that computes the 15-day mean closing price of securities. We will then add this factor to our pipeline and use `.show_graph()` to see a diagram of our pipeline with the factor added. ``` from zipline.pipeline.factors import SimpleMovingAverage # Create a factor that computes the 15-day mean closing price of securities mean_close_15 = SimpleMovingAverage(inputs = [USEquityPricing.close], window_length = 15) # Add the factor to our pipeline pipeline.add(mean_close_15, '15 Day MCP') # Render the pipeline as a DAG pipeline.show_graph() ``` In the diagram above we can clearly see the factor we have added. Now, we can run our pipeline again and see its output. The pipeline is run in exactly the same way we did before. ``` # Set starting and end dates start_date = pd.Timestamp('2014-01-06', tz='utc') end_date = pd.Timestamp('2016-01-05', tz='utc') # Run our pipeline for the given start and end dates output = engine.run_pipeline(pipeline, start_date, end_date) # Display the pipeline output output.head() ``` We can see that now our output dataframe contains a column with the name `15 Day MCP`, which is the name we gave to our factor before. This ouput dataframe from our pipeline gives us the 15-day mean closing price of the securities that passed our `screen`. ### Filters Filters are created and added to the pipeline in the same way as factors. In the code below, we create a filter that returns `True` whenever the 15-day average closing price is above \$100. Remember, a filter produces a `True` or `False` value for each security every day. We will then add this filter to our pipeline and use `.show_graph()` to see a diagram of our pipeline with the filter added. ``` # Create a Filter that returns True whenever the 15-day average closing price is above $100 high_mean = mean_close_15 > 100 # Add the filter to our pipeline pipeline.add(high_mean, 'High Mean') # Render the pipeline as a DAG pipeline.show_graph() ``` In the diagram above we can clearly see the fiter we have added. Now, we can run our pipeline again and see its output. The pipeline is run in exactly the same way we did before. ``` # Set starting and end dates start_date = pd.Timestamp('2014-01-06', tz='utc') end_date = pd.Timestamp('2016-01-05', tz='utc') # Run our pipeline for the given start and end dates output = engine.run_pipeline(pipeline, start_date, end_date) # Display the pipeline output output.head() ``` We can see that now our output dataframe contains a two columns, one for the filter and one for the factor. The new column has the name `High Mean`, which is the name we gave to our filter before. Notice that the filter column only contains Boolean values, where only the securities with a 15-day average closing price above \$100 have `True` values.
true
code
0.582907
null
null
null
null
# Machine Learning for Telecom with Naive Bayes # Introduction Machine Learning for CallDisconnectReason is a notebook which demonstrates exploration of dataset and CallDisconnectReason classification with Spark ml Naive Bayes Algorithm. ``` from pyspark.sql.types import * from pyspark.sql import SparkSession from sagemaker import get_execution_role import sagemaker_pyspark role = get_execution_role() # Configure Spark to use the SageMaker Spark dependency jars jars = sagemaker_pyspark.classpath_jars() classpath = ":".join(sagemaker_pyspark.classpath_jars()) spark = SparkSession.builder.config("spark.driver.extraClassPath", classpath)\ .master("local[*]").getOrCreate() ``` Using S3 Select, enables applications to retrieve only a subset of data from an object by using simple SQL expressions. By using S3 Select to retrieve only the data, you can achieve drastic performance increases – in many cases you can get as much as a 400% improvement. - _We first read a parquet compressed format of CDR dataset using s3select which has already been processed by Glue._ ``` cdr_start_loc = "<%CDRStartFile%>" cdr_stop_loc = "<%CDRStopFile%>" cdr_start_sample_loc = "<%CDRStartSampleFile%>" cdr_stop_sample_loc = "<%CDRStopSampleFile%>" df = spark.read.format("s3select").parquet(cdr_stop_sample_loc) df.createOrReplaceTempView("cdr") durationDF = spark.sql("SELECT _c13 as CallServiceDuration FROM cdr where _c0 = 'STOP'") durationDF.count() ``` # Exploration of Data - _We see how we can explore and visualize the dataset used for processing. Here we create a bar chart representation of CallServiceDuration from CDR dataset._ ``` import matplotlib.pyplot as plt durationpd = durationDF.toPandas().astype(int) durationpd.plot(kind='bar',stacked=True,width=1) ``` - _We can represent the data and visualize with a box plot. The box extends from the lower to upper quartile values of the data, with a line at the median._ ``` color = dict(boxes='DarkGreen', whiskers='DarkOrange', medians='DarkBlue', caps='Gray') durationpd.plot.box(color=color, sym='r+') from pyspark.sql.functions import col durationDF = durationDF.withColumn("CallServiceDuration", col("CallServiceDuration").cast(DoubleType())) ``` - _We can represent the data and visualize the data with histograms partitioned in different bins._ ``` import matplotlib.pyplot as plt bins, counts = durationDF.select('CallServiceDuration').rdd.flatMap(lambda x: x).histogram(durationDF.count()) plt.hist(bins[:-1], bins=bins, weights=counts,color=['green']) sqlDF = spark.sql("SELECT _c2 as Accounting_ID, _c19 as Calling_Number,_c20 as Called_Number, _c14 as CallDisconnectReason FROM cdr where _c0 = 'STOP'") sqlDF.show() ``` # Featurization ``` from pyspark.ml.feature import StringIndexer accountIndexer = StringIndexer(inputCol="Accounting_ID", outputCol="AccountingIDIndex") accountIndexer.setHandleInvalid("skip") tempdf1 = accountIndexer.fit(sqlDF).transform(sqlDF) callingNumberIndexer = StringIndexer(inputCol="Calling_Number", outputCol="Calling_NumberIndex") callingNumberIndexer.setHandleInvalid("skip") tempdf2 = callingNumberIndexer.fit(tempdf1).transform(tempdf1) calledNumberIndexer = StringIndexer(inputCol="Called_Number", outputCol="Called_NumberIndex") calledNumberIndexer.setHandleInvalid("skip") tempdf3 = calledNumberIndexer.fit(tempdf2).transform(tempdf2) from pyspark.ml.feature import StringIndexer # Convert target into numerical categories labelIndexer = StringIndexer(inputCol="CallDisconnectReason", outputCol="label") labelIndexer.setHandleInvalid("skip") from pyspark.sql.functions import rand trainingFraction = 0.75; testingFraction = (1-trainingFraction); seed = 1234; trainData, testData = tempdf3.randomSplit([trainingFraction, testingFraction], seed=seed); # CACHE TRAIN AND TEST DATA trainData.cache() testData.cache() trainData.count(),testData.count() ``` # Analyzing the label distribution - We analyze the distribution of our target labels using a histogram where 16 represents Normal_Call_Clearing. ``` import matplotlib.pyplot as plt negcount = trainData.filter("CallDisconnectReason != 16").count() poscount = trainData.filter("CallDisconnectReason == 16").count() negfrac = 100*float(negcount)/float(negcount+poscount) posfrac = 100*float(poscount)/float(poscount+negcount) ind = [0.0,1.0] frac = [negfrac,posfrac] width = 0.35 plt.title('Label Distribution') plt.bar(ind, frac, width, color='r') plt.xlabel("CallDisconnectReason") plt.ylabel('Percentage share') plt.xticks(ind,['0.0','1.0']) plt.show() import matplotlib.pyplot as plt negcount = testData.filter("CallDisconnectReason != 16").count() poscount = testData.filter("CallDisconnectReason == 16").count() negfrac = 100*float(negcount)/float(negcount+poscount) posfrac = 100*float(poscount)/float(poscount+negcount) ind = [0.0,1.0] frac = [negfrac,posfrac] width = 0.35 plt.title('Label Distribution') plt.bar(ind, frac, width, color='r') plt.xlabel("CallDisconnectReason") plt.ylabel('Percentage share') plt.xticks(ind,['0.0','1.0']) plt.show() from pyspark.ml.feature import VectorAssembler from pyspark.ml.feature import VectorAssembler vecAssembler = VectorAssembler(inputCols=["AccountingIDIndex","Calling_NumberIndex", "Called_NumberIndex"], outputCol="features") ``` __Spark ML Naive Bayes__: Naive Bayes is a simple multiclass classification algorithm with the assumption of independence between every pair of features. Naive Bayes can be trained very efficiently. Within a single pass to the training data, it computes the conditional probability distribution of each feature given label, and then it applies Bayes’ theorem to compute the conditional probability distribution of label given an observation and use it for prediction. - _We use Spark ML Naive Bayes Algorithm and spark Pipeline to train the data set._ ``` from pyspark.ml.classification import NaiveBayes from pyspark.ml.clustering import KMeans from pyspark.ml import Pipeline # Train a NaiveBayes model nb = NaiveBayes(smoothing=1.0, modelType="multinomial") # Chain labelIndexer, vecAssembler and NBmodel in a pipeline = Pipeline(stages=[labelIndexer,vecAssembler, nb]) # Run stages in pipeline and train model model = pipeline.fit(trainData) # Run inference on the test data and show some results predictions = model.transform(testData) predictions.printSchema() predictions.show() predictiondf = predictions.select("label", "prediction", "probability") pddf_pred = predictions.toPandas() pddf_pred ``` - _We use Scatter plot for visualization and represent the dataset._ ``` import matplotlib.pyplot as plt import numpy as np # Set the size of the plot plt.figure(figsize=(14,7)) # Create a colormap colormap = np.array(['red', 'lime', 'black']) # Plot CDR plt.subplot(1, 2, 1) plt.scatter(pddf_pred.Calling_NumberIndex, pddf_pred.Called_NumberIndex, c=pddf_pred.prediction) plt.title('CallDetailRecord') plt.show() ``` # Evaluation ``` from pyspark.ml.evaluation import MulticlassClassificationEvaluator evaluator = MulticlassClassificationEvaluator(labelCol="label", predictionCol="prediction", metricName="accuracy") accuracy = evaluator.evaluate(predictiondf) print(accuracy) ``` # Confusion Matrix ``` from sklearn.metrics import confusion_matrix import pandas as pd import matplotlib.pyplot as plt import seaborn as sn outdataframe = predictiondf.select("prediction", "label") pandadf = outdataframe.toPandas() npmat = pandadf.values labels = npmat[:,0] predicted_label = npmat[:,1] cnf_matrix = confusion_matrix(labels, predicted_label) import numpy as np def plot_confusion_matrix(cm, target_names, title='Confusion matrix', cmap=None, normalize=True): import matplotlib.pyplot as plt import numpy as np import itertools accuracy = np.trace(cm) / float(np.sum(cm)) misclass = 1 - accuracy if cmap is None: cmap = plt.get_cmap('Blues') plt.figure(figsize=(8, 6)) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() if target_names is not None: tick_marks = np.arange(len(target_names)) plt.xticks(tick_marks, target_names, rotation=45) plt.yticks(tick_marks, target_names) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] thresh = cm.max() / 1.5 if normalize else cm.max() / 2 for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): if normalize: plt.text(j, i, "{:0.4f}".format(cm[i, j]), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") else: plt.text(j, i, "{:,}".format(cm[i, j]), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('label') plt.xlabel('Predicted \naccuracy={:0.4f}; misclass={:0.4f}'.format(accuracy, misclass)) plt.show() plot_confusion_matrix(cnf_matrix, normalize = False, target_names = ['Positive', 'Negative'], title = "Confusion Matrix") from pyspark.mllib.evaluation import MulticlassMetrics # Create (prediction, label) pairs predictionAndLabel = predictiondf.select("prediction", "label").rdd # Generate confusion matrix metrics = MulticlassMetrics(predictionAndLabel) print(metrics.confusionMatrix()) ``` # Cross Validation ``` from pyspark.ml.tuning import ParamGridBuilder, CrossValidator # Create ParamGrid and Evaluator for Cross Validation paramGrid = ParamGridBuilder().addGrid(nb.smoothing, [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]).build() cvEvaluator = MulticlassClassificationEvaluator(metricName="accuracy") # Run Cross-validation cv = CrossValidator(estimator=pipeline, estimatorParamMaps=paramGrid, evaluator=cvEvaluator) cvModel = cv.fit(trainData) # Make predictions on testData. cvModel uses the bestModel. cvPredictions = cvModel.transform(testData) cvPredictions.select("label", "prediction", "probability").show() # Evaluate bestModel found from Cross Validation evaluator.evaluate(cvPredictions) ```
true
code
0.648188
null
null
null
null
# Recommending products with RetailRocket event logs This IPython notebook illustrates the usage of the [ctpfrec](https://github.com/david-cortes/ctpfrec/) Python package for _Collaborative Topic Poisson Factorization_ in recommender systems based on sparse count data using the [RetailRocket](https://www.kaggle.com/retailrocket/ecommerce-dataset) dataset, consisting of event logs (view, add to cart, purchase) from an online catalog of products plus anonymized text descriptions of items. Collaborative Topic Poisson Factorization is a probabilistic model that tries to jointly factorize the user-item interaction matrix along with item-word text descriptions (as bag-of-words) of the items by the product of lower dimensional matrices. The package can also extend this model to add user attributes in the same format as the items’. Compared to competing methods such as BPR (Bayesian Personalized Ranking) or weighted-implicit NMF (non-negative matrix factorization of the non-probabilistic type that uses squared loss), it only requires iterating over the data for which an interaction was observed and not over data for which no interaction was observed (i.e. it doesn’t iterate over items not clicked by a user), thus being more scalable, and at the same time producing better results when fit to sparse count data (in general). Same for the word counts of items. The implementation here is based on the paper _Content-based recommendations with poisson factorization (Gopalan, P.K., Charlin, L. and Blei, D., 2014)_. For a similar package for explicit feedback data see also [cmfrec](https://github.com/david-cortes/cmfrec/). For Poisson factorization without side information see [hpfrec](https://github.com/david-cortes/hpfrec/). **Small note: if the TOC here is not clickable or the math symbols don't show properly, try visualizing this same notebook from nbviewer following [this link](http://nbviewer.jupyter.org/github/david-cortes/ctpfrec/blob/master/example/ctpfrec_retailrocket.ipynb).** ** * ## Sections * [1. Model description](#p1) * [2. Loading and processing the dataset](#p2) * [3. Fitting the model](#p3) * [4. Common sense checks](#p4) * [5. Comparison to model without item information](#p5) * [6. Making recommendations](#p6) * [7. References](#p7) ** * <a id="p1"></a> ## 1. Model description The model consists in producing a low-rank non-negative matrix factorization of the item-word matrix (a.k.a. bag-of-words, a matrix where each row represents an item and each column a word, with entries containing the number of times each word appeared in an item’s text, ideally with some pre-processing on the words such as stemming or lemmatization) by the product of two lower-rank matrices $$ W_{iw} \approx \Theta_{ik} \beta_{wk}^T $$ along with another low-rank matrix factorization of the user-item activity matrix (a matrix where each entry corresponds to how many times each user interacted with each item) that shares the same item-factor matrix above plus an offset based on user activity and not based on items’ words $$ Y_{ui} \approx \eta_{uk} (\Theta_{ik} + \epsilon_{ik})^T $$ These matrices are assumed to come from a generative process as follows: * Items: $$ \beta_{wk} \sim Gamma(a,b) $$ $$ \Theta_{ik} \sim Gamma(c,d)$$ $$ W_{iw} \sim Poisson(\Theta_{ik} \beta_{wk}^T) $$ _(Where $W$ is the item-word count matrix, $k$ is the number of latent factors, $i$ is the number of items, $w$ is the number of words)_ * User-Item interactions $$ \eta_{uk} \sim Gamma(e,f) $$ $$ \epsilon_{ik} \sim Gamma(g,h) $$ $$ Y_{ui} \sim Poisson(\eta_{uk} (\Theta_{ik} + \epsilon_{ik})^T) $$ _(Where $u$ is the number of users, $Y$ is the user-item interaction matrix)_ The model is fit using mean-field variational inference with coordinate ascent. For more details see the paper in the references. ** * <a id="p2"></a> ## 2. Loading and processing the data Reading and concatenating the data. First the event logs: ``` import numpy as np, pandas as pd events = pd.read_csv("events.csv") events.head() events.event.value_counts() ``` In order to put all user-item interactions in one scale, I will arbitrarily assign values as follows: * View: +1 * Add to basket: +3 * Purchase: +3 Thus, if a user clicks an item, that `(user, item)` pair will have `value=1`, if she later adds it to cart and purchases it, will have `value=7` (plus any other views of the same item), and so on. The reasoning behind this scale is because the distributions of counts and sums of counts seem to still follow a nice exponential distribution with these values, but different values might give better results in terms of models fit to them. ``` %matplotlib inline equiv = { 'view':1, 'addtocart':3, 'transaction':3 } events['count']=events.event.map(equiv) events.groupby('visitorid')['count'].sum().value_counts().hist(bins=200) events = events.groupby(['visitorid','itemid'])['count'].sum().to_frame().reset_index() events.rename(columns={'visitorid':'UserId', 'itemid':'ItemId', 'count':'Count'}, inplace=True) events.head() ``` Now creating a train and test split. For simplicity purposes and in order to be able to make a fair comparison with a model that doesn't use item descriptions, I will try to only take users that had >= 3 items in the training data, and items that had >= 3 users. Given the lack of user attributes and the fact that it will be compared later to a model without side information, the test set will only have users from the training data, but it's also possible to use user attributes if they follow the same format as the items', in which case the model can also recommend items to new users. In order to compare it later to a model without items' text, I will also filter out the test set to have only items that were in the training set. **This is however not a model limitation, as it can also recommend items that have descriptions but no user interactions**. ``` from sklearn.model_selection import train_test_split events_train, events_test = train_test_split(events, test_size=.2, random_state=1) del events ## In order to find users and items with at least 3 interactions each, ## it's easier and faster to use a simple heuristic that first filters according to one criteria, ## then, according to the other, and repeats. ## Finding a real subset of the data in which each item has strictly >= 3 users, ## and each user has strictly >= 3 items, is a harder graph partitioning or optimization ## problem. For a similar example of finding such subsets see also: ## http://nbviewer.ipython.org/github/david-cortes/datascienceprojects/blob/master/optimization/dataset_splitting.ipynb users_filter_out = events_train.groupby('UserId')['ItemId'].agg(lambda x: len(tuple(x))) users_filter_out = np.array(users_filter_out.index[users_filter_out < 3]) items_filter_out = events_train.loc[~np.in1d(events_train.UserId, users_filter_out)].groupby('ItemId')['UserId'].agg(lambda x: len(tuple(x))) items_filter_out = np.array(items_filter_out.index[items_filter_out < 3]) users_filter_out = events_train.loc[~np.in1d(events_train.ItemId, items_filter_out)].groupby('UserId')['ItemId'].agg(lambda x: len(tuple(x))) users_filter_out = np.array(users_filter_out.index[users_filter_out < 3]) events_train = events_train.loc[~np.in1d(events_train.UserId.values, users_filter_out)] events_train = events_train.loc[~np.in1d(events_train.ItemId.values, items_filter_out)] events_test = events_test.loc[np.in1d(events_test.UserId.values, events_train.UserId.values)] events_test = events_test.loc[np.in1d(events_test.ItemId.values, events_train.ItemId.values)] print(events_train.shape) print(events_test.shape) ``` Now processing the text descriptions of the items: ``` iteminfo = pd.read_csv("item_properties_part1.csv") iteminfo2 = pd.read_csv("item_properties_part2.csv") iteminfo = iteminfo.append(iteminfo2, ignore_index=True) iteminfo.head() ``` The item's description contain many fields and have a mixture of words and numbers. The numeric variables, as per the documentation, are prefixed with an "n" and have three digits decimal precision - I will exclude them here since this model is insensitive to numeric attributes such as price. The words are already lemmazed, and since we only have their IDs, it's not possible to do any other pre-processing on them. Although the descriptions don't say anything about it, looking at the contents and the lengths of the different fields, here I will assume that the field $283$ is the product title and the field $888$ is the product description. I will just concatenate them to obtain an overall item text, but there might be better ways of doing this (such as having different IDs for the same word when it appears in the title or the body, or multiplying those in the title by some number, etc.) As the descriptions vary over time, I will only take the most recent version for each item: ``` iteminfo = iteminfo.loc[iteminfo.property.isin(('888','283'))] iteminfo = iteminfo.loc[iteminfo.groupby(['itemid','property'])['timestamp'].idxmax()] iteminfo.reset_index(drop=True, inplace=True) iteminfo.head() ``` **Note that for simplicity I am completely ignoring the categories (these are easily incorporated e.g. by adding a count of +1 for each category to which an item belongs) and important factors such as the price. I am also completely ignoring all the other fields.** ``` from sklearn.feature_extraction.text import CountVectorizer from scipy.sparse import coo_matrix import re def concat_fields(x): x = list(x) out = x[0] for i in x[1:]: out += " " + i return out class NonNumberTokenizer(object): def __init__(self): pass def __call__(self, txt): return [i for i in txt.split(" ") if bool(re.search("^\d", i))] iteminfo = iteminfo.groupby('itemid')['value'].agg(lambda x: concat_fields(x)) t = CountVectorizer(tokenizer=NonNumberTokenizer(), stop_words=None, dtype=np.int32, strip_accents=None, lowercase=False) bag_of_words = t.fit_transform(iteminfo) bag_of_words = coo_matrix(bag_of_words) bag_of_words = pd.DataFrame({ 'ItemId' : iteminfo.index[bag_of_words.row], 'WordId' : bag_of_words.col, 'Count' : bag_of_words.data }) del iteminfo bag_of_words.head() ``` In this case, I will not filter it out by only items that were in the training set, as other items can still be used to get better latent factors. ** * <a id="p3"></a> ## 3. Fitting the model Fitting the model - note that I'm using some enhancements (passed as arguments to the class constructor) over the original version in the paper: * Standardizing item counts so as not to favor items with longer descriptions. * Initializing $\Theta$ and $\beta$ through hierarchical Poisson factorization instead of latent Dirichlet allocation. * Using a small step size for the updates for the parameters obtained from hierarchical Poisson factorization at the beginning, which then grows to one with increasing iteration numbers (informally, this achieves to somehwat "preserve" these fits while the user parameters are adjusted to these already-fit item parameters - then as the user parameters are already defined towards them, the item and word parameters start changing too). I'll be also fitting two slightly different models: one that takes (and can make recommendations for) all the items for which there are either descriptions or user clicks, and another that uses all the items for which there are descriptions to initialize the item-related parameters but discards the ones without clicks (can only make recommendations for items that users have clicked). For more information about the parameters and what they do, see the online documentation: [http://ctpfrec.readthedocs.io](http://ctpfrec.readthedocs.io) ``` print(events_train.shape) print(events_test.shape) print(bag_of_words.shape) %%time from ctpfrec import CTPF recommender_all_items = CTPF(k=70, step_size=lambda x: 1-1/np.sqrt(x+1), standardize_items=True, initialize_hpf=True, reindex=True, missing_items='include', allow_inconsistent_math=True, random_seed=1) recommender_all_items.fit(counts_df=events_train.copy(), words_df=bag_of_words.copy()) %%time recommender_clicked_items_only = CTPF(k=70, step_size=lambda x: 1-1/np.sqrt(x+1), standardize_items=True, initialize_hpf=True, reindex=True, missing_items='exclude', allow_inconsistent_math=True, random_seed=1) recommender_clicked_items_only.fit(counts_df=events_train.copy(), words_df=bag_of_words.copy()) ``` Most of the time here was spent in fitting the model to items that no user in the training set had clicked. If using instead a random initialization, it would have taken a lot less time to fit this model (there would be only a fraction of the items - see above time spent in each procedure), but the results are slightly worse. _Disclaimer: this notebook was run on a Google cloud server with Skylake CPU using 8 cores, and memory usage tops at around 6GB of RAM for the first model (including all the objects loaded before). In a desktop computer, it would take a bit longer to fit._ ** * <a id="p4"></a> ## 4. Common sense checks There are many different metrics to evaluate recommendation quality in implicit datasets, but all of them have their drawbacks. The idea of this notebook is to illustrate the package usage and not to introduce and compare evaluation metrics, so I will only perform some common sense checks on the test data. For implementations of evaluation metrics for implicit recommendations see other packages such as [lightFM](https://github.com/lyst/lightfm). As some common sense checks, the predictions should: * Be higher for this non-zero hold-out sample than for random items. * Produce a good discrimination between random items and those in the hold-out sample (very related to the first point). * Be correlated with the numer of events per user-item pair in the hold-out sample. * Follow an exponential distribution rather than a normal or some other symmetric distribution. Here I'll check these four conditions: #### Model with all items ``` events_test['Predicted'] = recommender_all_items.predict(user=events_test.UserId, item=events_test.ItemId) events_test['RandomItem'] = np.random.choice(events_train.ItemId.unique(), size=events_test.shape[0]) events_test['PredictedRandom'] = recommender_all_items.predict(user=events_test.UserId, item=events_test.RandomItem) print("Average prediction for combinations in test set: ", events_test.Predicted.mean()) print("Average prediction for random combinations: ", events_test.PredictedRandom.mean()) from sklearn.metrics import roc_auc_score was_clicked = np.r_[np.ones(events_test.shape[0]), np.zeros(events_test.shape[0])] score_model = np.r_[events_test.Predicted.values, events_test.PredictedRandom.values] roc_auc_score(was_clicked[~np.isnan(score_model)], score_model[~np.isnan(score_model)]) np.corrcoef(events_test.Count[~events_test.Predicted.isnull()], events_test.Predicted[~events_test.Predicted.isnull()])[0,1] import matplotlib.pyplot as plt %matplotlib inline _ = plt.hist(events_test.Predicted, bins=200) plt.xlim(0,5) plt.show() ``` #### Model with clicked items only ``` events_test['Predicted'] = recommender_clicked_items_only.predict(user=events_test.UserId, item=events_test.ItemId) events_test['PredictedRandom'] = recommender_clicked_items_only.predict(user=events_test.UserId, item=events_test.RandomItem) print("Average prediction for combinations in test set: ", events_test.Predicted.mean()) print("Average prediction for random combinations: ", events_test.PredictedRandom.mean()) was_clicked = np.r_[np.ones(events_test.shape[0]), np.zeros(events_test.shape[0])] score_model = np.r_[events_test.Predicted.values, events_test.PredictedRandom.values] roc_auc_score(was_clicked, score_model) np.corrcoef(events_test.Count, events_test.Predicted)[0,1] _ = plt.hist(events_test.Predicted, bins=200) plt.xlim(0,5) plt.show() ``` ** * <a id="p5"></a> ## 5. Comparison to model without item information A natural benchmark to compare this model is to is a Poisson factorization model without any item side information - here I'll do the comparison with a _Hierarchical Poisson factorization_ model with the same metrics as above: ``` %%time from hpfrec import HPF recommender_no_sideinfo = HPF(k=70) recommender_no_sideinfo.fit(events_train.copy()) events_test_comp = events_test.copy() events_test_comp['Predicted'] = recommender_no_sideinfo.predict(user=events_test_comp.UserId, item=events_test_comp.ItemId) events_test_comp['PredictedRandom'] = recommender_no_sideinfo.predict(user=events_test_comp.UserId, item=events_test_comp.RandomItem) print("Average prediction for combinations in test set: ", events_test_comp.Predicted.mean()) print("Average prediction for random combinations: ", events_test_comp.PredictedRandom.mean()) was_clicked = np.r_[np.ones(events_test_comp.shape[0]), np.zeros(events_test_comp.shape[0])] score_model = np.r_[events_test_comp.Predicted.values, events_test_comp.PredictedRandom.values] roc_auc_score(was_clicked, score_model) np.corrcoef(events_test_comp.Count, events_test_comp.Predicted)[0,1] ``` As can be seen, adding the side information and widening the catalog to include more items using only their text descriptions (no clicks) results in an improvemnet over all 3 metrics, especially correlation with number of clicks. More important than that however, is its ability to make recommendations from a far wider catalog of items, which in practice can make a much larger difference in recommendation quality than improvement in typicall offline metrics. ** * <a id="p6"></a> ## 6. Making recommendations The package provides a simple API for making predictions and Top-N recommended lists. These Top-N lists can be made among all items, or across some user-provided subset only, and you can choose to discard items with which the user had already interacted in the training set. Here I will: * Pick a random user with a reasonably long event history. * See which items would the model recommend to them among those which he has not yet clicked. * Compare it with the recommended list from the model without item side information. Unfortunately, since all the data is anonymized, it's not possible to make a qualitative evaluation of the results by looking at the recommended lists as it is in other datasets. ``` users_many_events = events_train.groupby('UserId')['ItemId'].agg(lambda x: len(tuple(x))) users_many_events = np.array(users_many_events.index[users_many_events > 20]) np.random.seed(1) chosen_user = np.random.choice(users_many_events) chosen_user %%time recommender_all_items.topN(chosen_user, n=20) ``` *(These numbers represent the IDs of the items being recommended as they appeared in the `events_train` data frame)* ``` %%time recommender_clicked_items_only.topN(chosen_user, n=20) %%time recommender_no_sideinfo.topN(chosen_user, n=20) ``` ** * <a id="p7"></a> ## 7. References * Gopalan, Prem K., Laurent Charlin, and David Blei. "Content-based recommendations with poisson factorization." Advances in Neural Information Processing Systems. 2014.
true
code
0.496338
null
null
null
null
# Continuous Control --- In this notebook, you will learn how to use the Unity ML-Agents environment for the second project of the [Deep Reinforcement Learning Nanodegree](https://www.udacity.com/course/deep-reinforcement-learning-nanodegree--nd893) program. ### 1. Start the Environment We begin by importing the necessary packages. If the code cell below returns an error, please revisit the project instructions to double-check that you have installed [Unity ML-Agents](https://github.com/Unity-Technologies/ml-agents/blob/master/docs/Installation.md) and [NumPy](http://www.numpy.org/). ``` import torch import numpy as np import pandas as pd from collections import deque from unityagents import UnityEnvironment import random import matplotlib.pyplot as plt %matplotlib inline from ddpg_agent import Agent ``` Next, we will start the environment! **_Before running the code cell below_**, change the `file_name` parameter to match the location of the Unity environment that you downloaded. - **Mac**: `"path/to/Reacher.app"` - **Windows** (x86): `"path/to/Reacher_Windows_x86/Reacher.exe"` - **Windows** (x86_64): `"path/to/Reacher_Windows_x86_64/Reacher.exe"` - **Linux** (x86): `"path/to/Reacher_Linux/Reacher.x86"` - **Linux** (x86_64): `"path/to/Reacher_Linux/Reacher.x86_64"` - **Linux** (x86, headless): `"path/to/Reacher_Linux_NoVis/Reacher.x86"` - **Linux** (x86_64, headless): `"path/to/Reacher_Linux_NoVis/Reacher.x86_64"` For instance, if you are using a Mac, then you downloaded `Reacher.app`. If this file is in the same folder as the notebook, then the line below should appear as follows: ``` env = UnityEnvironment(file_name="Reacher.app") ``` ``` env = UnityEnvironment(file_name="Reacher1.app") ``` Environments contain **_brains_** which are responsible for deciding the actions of their associated agents. Here we check for the first brain available, and set it as the default brain we will be controlling from Python. ``` # get the default brain brain_name = env.brain_names[0] brain = env.brains[brain_name] ``` ### 2. Examine the State and Action Spaces In this environment, a double-jointed arm can move to target locations. A reward of `+0.1` is provided for each step that the agent's hand is in the goal location. Thus, the goal of your agent is to maintain its position at the target location for as many time steps as possible. The observation space consists of `33` variables corresponding to position, rotation, velocity, and angular velocities of the arm. Each action is a vector with four numbers, corresponding to torque applicable to two joints. Every entry in the action vector must be a number between `-1` and `1`. Run the code cell below to print some information about the environment. ``` # reset the environment env_info = env.reset(train_mode=True)[brain_name] # number of agents num_agents = len(env_info.agents) print('Number of agents:', num_agents) # size of each action action_size = brain.vector_action_space_size print('Size of each action:', action_size) # examine the state space states = env_info.vector_observations state_size = states.shape[1] print('There are {} agents. Each observes a state with length: {}'.format(states.shape[0], state_size)) print('The state for the first agent looks like:', states[0]) ``` ### 3. Take Random Actions in the Environment In the next code cell, you will learn how to use the Python API to control the agent and receive feedback from the environment. Once this cell is executed, you will watch the agent's performance, if it selects an action at random with each time step. A window should pop up that allows you to observe the agent, as it moves through the environment. Of course, as part of the project, you'll have to change the code so that the agent is able to use its experience to gradually choose better actions when interacting with the environment! ``` env_info = env.reset(train_mode=False)[brain_name] # reset the environment states = env_info.vector_observations # get the current state (for each agent) scores = np.zeros(num_agents) # initialize the score (for each agent) while True: actions = np.random.randn(num_agents, action_size) # select an action (for each agent) actions = np.clip(actions, -1, 1) # all actions between -1 and 1 env_info = env.step(actions)[brain_name] # send all actions to tne environment next_states = env_info.vector_observations # get next state (for each agent) rewards = env_info.rewards # get reward (for each agent) dones = env_info.local_done # see if episode finished scores += env_info.rewards # update the score (for each agent) states = next_states # roll over states to next time step if np.any(dones): # exit loop if episode finished break print('Total score (averaged over agents) this episode: {}'.format(np.mean(scores))) ``` ### 4. It's Your Turn! Now it's your turn to train your own agent to solve the environment! When training the environment, set `train_mode=True`, so that the line for resetting the environment looks like the following: ```python env_info = env.reset(train_mode=True)[brain_name] ``` ``` agent = Agent(state_size=state_size, action_size=action_size, n_agents=num_agents, random_seed=42) def plot_scores(scores, rolling_window=10, save_fig=False): """Plot scores and optional rolling mean using specified window.""" fig = plt.figure() ax = fig.add_subplot(111) plt.plot(np.arange(len(scores)), scores) plt.ylabel('Score') plt.xlabel('Episode #') plt.title(f'scores') rolling_mean = pd.Series(scores).rolling(rolling_window).mean() plt.plot(rolling_mean); if save_fig: plt.savefig(f'figures_scores.png', bbox_inches='tight', pad_inches=0) def ddpg(n_episodes=10000, max_t=1000, print_every=100): scores_deque = deque(maxlen=print_every) scores = [] for i_episode in range(1, n_episodes+1): env_info = env.reset(train_mode=True)[brain_name] states = env_info.vector_observations agent.reset() score = np.zeros(num_agents) for t in range(max_t): actions = agent.act(states) env_info = env.step(actions)[brain_name] next_states = env_info.vector_observations # get next state (for each agent) rewards = env_info.rewards # get reward (for each agent) dones = env_info.local_done # see if episode finished agent.step(states, actions, rewards, next_states, dones) states = next_states score += rewards if any(dones): break scores_deque.append(np.mean(score)) scores.append(np.mean(score)) print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_deque)), end="") torch.save(agent.actor_local.state_dict(), './weights/checkpoint_actor.pth') torch.save(agent.critic_local.state_dict(), './weights/checkpoint_critic.pth') if i_episode % print_every == 0: print('\rEpisode {}\tAverage Score: {:.2f}'.format(i_episode, np.mean(scores_deque))) plot_scores(scores) if np.mean(scores_deque) >= 30.0: print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(i_episode - print_every, np.mean(scores_deque))) torch.save(agent.actor_local.state_dict(), './weights/checkpoint_actor.pth') torch.save(agent.critic_local.state_dict(), './weights/checkpoint_critic.pth') break return scores scores = ddpg() fig = plt.figure() ax = fig.add_subplot(111) plt.plot(np.arange(1, len(scores)+1), scores) plt.ylabel('Score') plt.xlabel('Episode #') plt.show() plot_scores(scores) ``` When finished, you can close the environment. ``` env.close() ```
true
code
0.679737
null
null
null
null
<a href="https://colab.research.google.com/github/Eurus-Holmes/PyTorch-Tutorials/blob/master/Training_a__Classifier.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ``` %matplotlib inline ``` Training a Classifier ===================== This is it. You have seen how to define neural networks, compute loss and make updates to the weights of the network. Now you might be thinking, What about data? ---------------- Generally, when you have to deal with image, text, audio or video data, you can use standard python packages that load data into a numpy array. Then you can convert this array into a ``torch.*Tensor``. - For images, packages such as Pillow, OpenCV are useful - For audio, packages such as scipy and librosa - For text, either raw Python or Cython based loading, or NLTK and SpaCy are useful Specifically for vision, we have created a package called ``torchvision``, that has data loaders for common datasets such as Imagenet, CIFAR10, MNIST, etc. and data transformers for images, viz., ``torchvision.datasets`` and ``torch.utils.data.DataLoader``. This provides a huge convenience and avoids writing boilerplate code. For this tutorial, we will use the CIFAR10 dataset. It has the classes: ‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’. The images in CIFAR-10 are of size 3x32x32, i.e. 3-channel color images of 32x32 pixels in size. Training an image classifier ---------------------------- We will do the following steps in order: 1. Load and normalizing the CIFAR10 training and test datasets using ``torchvision`` 2. Define a Convolution Neural Network 3. Define a loss function 4. Train the network on the training data 5. Test the network on the test data 1. Loading and normalizing CIFAR10 ---------------------------- # 1. Loading and normalizing CIFAR10 Using ``torchvision``, it’s extremely easy to load CIFAR10. ``` import torch import torchvision import torchvision.transforms as transforms ``` The output of torchvision datasets are PILImage images of range [0, 1]. We transform them to Tensors of normalized range [-1, 1]. ``` transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform) testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') ``` Let us show some of the training images, for fun. ``` import matplotlib.pyplot as plt import numpy as np # functions to show an image def imshow(img): img = img / 2 + 0.5 # unnormalize npimg = img.numpy() plt.imshow(np.transpose(npimg, (1, 2, 0))) # get some random training images dataiter = iter(trainloader) images, labels = dataiter.next() # show images imshow(torchvision.utils.make_grid(images)) # print labels print(' '.join('%5s' % classes[labels[j]] for j in range(4))) ``` # 2. Define a Convolution Neural Network ---- Copy the neural network from the Neural Networks section before and modify it to take 3-channel images (instead of 1-channel images as it was defined). ``` import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x net = Net() ``` # 3. Define a Loss function and optimizer ---- Let's use a Classification Cross-Entropy loss and SGD with momentum. ``` import torch.optim as optim criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9) ``` # 4. Train the network ---- This is when things start to get interesting. We simply have to loop over our data iterator, and feed the inputs to the network and optimize. ``` for epoch in range(2): # loop over the dataset multiple times running_loss = 0.0 for i, data in enumerate(trainloader, 0): # get the inputs inputs, labels = data # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() # print statistics running_loss += loss.item() if i % 2000 == 1999: # print every 2000 mini-batches print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000)) running_loss = 0.0 print('Finished Training') ``` # 5. Test the network on the test data ---- We have trained the network for 2 passes over the training dataset. But we need to check if the network has learnt anything at all. We will check this by predicting the class label that the neural network outputs, and checking it against the ground-truth. If the prediction is correct, we add the sample to the list of correct predictions. Okay, first step. Let us display an image from the test set to get familiar. ``` dataiter = iter(testloader) images, labels = dataiter.next() # print images imshow(torchvision.utils.make_grid(images)) print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4))) ``` Okay, now let us see what the neural network thinks these examples above are: ``` outputs = net(images) ``` The outputs are energies for the 10 classes. Higher the energy for a class, the more the network thinks that the image is of the particular class. So, let's get the index of the highest energy: ``` _, predicted = torch.max(outputs, 1) print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4))) ``` The results seem pretty good. Let us look at how the network performs on the whole dataset. ``` correct = 0 total = 0 with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: %d %%' % ( 100 * correct / total)) ``` That looks waaay better than chance, which is 10% accuracy (randomly picking a class out of 10 classes). Seems like the network learnt something. Hmmm, what are the classes that performed well, and the classes that did not perform well: ``` class_correct = list(0. for i in range(10)) class_total = list(0. for i in range(10)) with torch.no_grad(): for data in testloader: images, labels = data outputs = net(images) _, predicted = torch.max(outputs, 1) c = (predicted == labels).squeeze() for i in range(4): label = labels[i] class_correct[label] += c[i].item() class_total[label] += 1 for i in range(10): print('Accuracy of %5s : %2d %%' % ( classes[i], 100 * class_correct[i] / class_total[i])) ``` Okay, so what next? How do we run these neural networks on the GPU? Training on GPU ---------------- Just like how you transfer a Tensor on to the GPU, you transfer the neural net onto the GPU. Let's first define our device as the first visible cuda device if we have CUDA available: ``` device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # Assume that we are on a CUDA machine, then this should print a CUDA device: print(device) ``` The rest of this section assumes that `device` is a CUDA device. Then these methods will recursively go over all modules and convert their parameters and buffers to CUDA tensors: `net.to(device)` Remember that you will have to send the inputs and targets at every step to the GPU too: `inputs, labels = inputs.to(device), labels.to(device)` Why dont I notice MASSIVE speedup compared to CPU? Because your network is realllly small. **Exercise:** Try increasing the width of your network (argument 2 of the first ``nn.Conv2d``, and argument 1 of the second ``nn.Conv2d`` – they need to be the same number), see what kind of speedup you get. **Goals achieved**: - Understanding PyTorch's Tensor library and neural networks at a high level. - Train a small neural network to classify images Training on multiple GPUs ------------------------- If you want to see even more MASSIVE speedup using all of your GPUs, please check out :doc:`data_parallel_tutorial`. Where do I go next? ------------------- - `Train neural nets to play video games` - `Train a state-of-the-art ResNet network on imagenet` - `Train a face generator using Generative Adversarial Networks` - `Train a word-level language model using Recurrent LSTM networks` - `More examples` - `More tutorials` - `Discuss PyTorch on the Forums` - `Chat with other users on Slack`
true
code
0.77994
null
null
null
null
# Direct Outcome Prediction Model Also known as standardization ``` %matplotlib inline from sklearn.linear_model import LinearRegression from sklearn.ensemble import GradientBoostingRegressor from causallib.datasets import load_smoking_weight from causallib.estimation import Standardization, StratifiedStandardization from causallib.evaluation import OutcomeEvaluator ``` #### Data: The effect of quitting to smoke on weight loss. Data example is taken from [Hernan and Robins Causal Inference Book](https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/) ``` data = load_smoking_weight() data.X.join(data.a).join(data.y).head() ``` ## "Standard" Standardization A single model is trained with the treatment assignment as an additional feature. During inference, the model assigns a treatment value for all samples, thus predicting the potential outcome of all samples. ``` std = Standardization(LinearRegression()) std.fit(data.X, data.a, data.y) ``` ##### Outcome Prediction The model can be used to predict individual outcomes: The potential outcome under each intervention ``` ind_outcomes = std.estimate_individual_outcome(data.X, data.a) ind_outcomes.head() ``` The model can be used to predict population outcomes, By aggregating the individual outcome prediction (e.g., mean or median). Providing `agg_func` which is defaulted to `'mean'` ``` median_pop_outcomes = std.estimate_population_outcome(data.X, data.a, agg_func="median") median_pop_outcomes.rename("median", inplace=True) mean_pop_outcomes = std.estimate_population_outcome(data.X, data.a, agg_func="mean") mean_pop_outcomes.rename("mean", inplace=True) pop_outcomes = mean_pop_outcomes.to_frame().join(median_pop_outcomes) pop_outcomes ``` ##### Effect Estimation Similarly, Effect estimation can be done on either individual or population level, depending on the outcomes provided. Population level effect using population outcomes: ``` std.estimate_effect(mean_pop_outcomes[1], mean_pop_outcomes[0]) ``` Population level effect using individual outcome, but asking for aggregation (default behaviour): ``` std.estimate_effect(ind_outcomes[1], ind_outcomes[0], agg="population") ``` Individual level effect using inidiviual outcomes: Since we're using a binary treatment with logistic regression on a standard model, the difference is same for all individuals, and is equal to the coefficient of the treatment varaible ``` print(std.learner.coef_[0]) std.estimate_effect(ind_outcomes[1], ind_outcomes[0], agg="individual").head() ``` Multiple types of effect are also supported: ``` std.estimate_effect(ind_outcomes[1], ind_outcomes[0], agg="individual", effect_types=["diff", "ratio"]).head() ``` ### Treament one-hot encoded For multi-treatment cases, where treatments are coded as 0, 1, 2, ... but have no ordinal interpretation, It is possible to make the model encode the treatment assignment vector as one hot matrix. ``` std = Standardization(LinearRegression(), encode_treatment=True) std.fit(data.X, data.a, data.y) pop_outcomes = std.estimate_population_outcome(data.X, data.a, agg_func="mean") std.estimate_effect(mean_pop_outcomes[1], mean_pop_outcomes[0]) ``` ## Stratified Standarziation While standardization can be viewed as a **"complete pooled"** estimator, as it includes both treatment groups together, Stratified Standardization can viewed as **"complete unpooled"** one, as it completly stratifies the dataset by treatment values and learns a different model for each treatment group. ``` std = StratifiedStandardization(LinearRegression()) std.fit(data.X, data.a, data.y) ``` Checking the core `learner` we can see that it actually has two models, indexed by the treatment value: ``` std.learner ``` We can apply same analysis as above. ``` pop_outcomes = std.estimate_population_outcome(data.X, data.a, agg_func="mean") std.estimate_effect(mean_pop_outcomes[1], mean_pop_outcomes[0]) ``` We can see that internally, when asking for some potential outcome, the model simply applies the model trained on the group of that treatment: ``` potential_outcome = std.estimate_individual_outcome(data.X, data.a)[1] direct_prediction = std.learner[1].predict(data.X) (potential_outcome == direct_prediction).all() ``` #### Providing complex scheme of learners When supplying a single learner to the standardization above, the model simply duplicates it for each treatment value. However, it is possible to specify a different model for each treatment value explicitly. For example, in cases where the treated are more complex than the untreated (because, say, background of those choosed to be treated), it is possible to specify them with a more expressive model: ``` learner = {0: LinearRegression(), 1: GradientBoostingRegressor()} std = StratifiedStandardization(learner) std.fit(data.X, data.a, data.y) std.learner ind_outcomes = std.estimate_individual_outcome(data.X, data.a) ind_outcomes.head() std.estimate_effect(ind_outcomes[1], ind_outcomes[0]) ``` ## Evaluation #### Simple evaluation ``` plots = ["common_support", "continuous_accuracy"] evaluator = OutcomeEvaluator(std) evaluator._regression_metrics.pop("msle") # We have negative values and this is log transforms results = evaluator.evaluate_simple(data.X, data.a, data.y, plots=plots) ``` Results show the results for each treatment group separetly and also combined: ``` results.scores ``` #### Thorough evaluation ``` plots=["common_support", "continuous_accuracy", "residuals"] evaluator = OutcomeEvaluator(Standardization(LinearRegression())) results = evaluator.evaluate_cv(data.X, data.a, data.y, plots=plots) results.scores results.models ```
true
code
0.674908
null
null
null
null
# Accessing data in a DataSet After a measurement is completed all the acquired data and metadata around it is accessible via a `DataSet` object. This notebook presents the useful methods and properties of the `DataSet` object which enable convenient access to the data, parameters information, and more. For general overview of the `DataSet` class, refer to [DataSet class walkthrough](DataSet-class-walkthrough.ipynb). ## Preparation: a DataSet from a dummy Measurement In order to obtain a `DataSet` object, we are going to run a `Measurement` storing some dummy data (see [Dataset Context Manager](Dataset%20Context%20Manager.ipynb) notebook for more details). ``` import tempfile import os import numpy as np import qcodes from qcodes import initialise_or_create_database_at, \ load_or_create_experiment, Measurement, Parameter, \ Station from qcodes.dataset.plotting import plot_dataset db_path = os.path.join(tempfile.gettempdir(), 'data_access_example.db') initialise_or_create_database_at(db_path) exp = load_or_create_experiment(experiment_name='greco', sample_name='draco') x = Parameter(name='x', label='Voltage', unit='V', set_cmd=None, get_cmd=None) t = Parameter(name='t', label='Time', unit='s', set_cmd=None, get_cmd=None) y = Parameter(name='y', label='Voltage', unit='V', set_cmd=None, get_cmd=None) y2 = Parameter(name='y2', label='Current', unit='A', set_cmd=None, get_cmd=None) q = Parameter(name='q', label='Qredibility', unit='$', set_cmd=None, get_cmd=None) meas = Measurement(exp=exp, name='fresco') meas.register_parameter(x) meas.register_parameter(t) meas.register_parameter(y, setpoints=(x, t)) meas.register_parameter(y2, setpoints=(x, t)) meas.register_parameter(q) # a standalone parameter x_vals = np.linspace(-4, 5, 50) t_vals = np.linspace(-500, 1500, 25) with meas.run() as datasaver: for xv in x_vals: for tv in t_vals: yv = np.sin(2*np.pi*xv)*np.cos(2*np.pi*0.001*tv) + 0.001*tv y2v = np.sin(2*np.pi*xv)*np.cos(2*np.pi*0.001*tv + 0.5*np.pi) - 0.001*tv datasaver.add_result((x, xv), (t, tv), (y, yv), (y2, y2v)) q_val = np.max(yv) - np.min(y2v) # a meaningless value datasaver.add_result((q, q_val)) dataset = datasaver.dataset ``` For the sake of demonstrating what kind of data we've produced, let's use `plot_dataset` to make some default plots of the data. ``` plot_dataset(dataset) ``` ## DataSet indentification Before we dive into what's in the `DataSet`, let's briefly note how a `DataSet` is identified. ``` dataset.captured_run_id dataset.exp_name dataset.sample_name dataset.name ``` ## Parameters in the DataSet In this section we are getting information about the parameters stored in the given `DataSet`. > Why is that important? Let's jump into *data*! As it turns out, just "arrays of numbers" are not enough to reason about a given `DataSet`. Even comping up with a reasonable deafult plot, which is what `plot_dataset` does, requires information on `DataSet`'s parameters. In this notebook, we first have a detailed look at what is stored about parameters and how to work with this information. After that, we will cover data access methods. ### Run description Every dataset comes with a "description" (aka "run description"): ``` dataset.description ``` The description, an instance of `RunDescriber` object, is intended to describe the details of a dataset. In the future releases of QCoDeS it will likely be expanded. At the moment, it only contains an `InterDependencies_` object under its `interdeps` attribute - which stores all the information about the parameters of the `DataSet`. Let's look into this `InterDependencies_` object. ### Interdependencies `Interdependencies_` object inside the run description contains information about all the parameters that are stored in the `DataSet`. Subsections below explain how the individual information about the parameters as well as their relationships are captured in the `Interdependencies_` object. ``` interdeps = dataset.description.interdeps interdeps ``` #### Dependencies, inferences, standalones Information about every parameter is stored in the form of `ParamSpecBase` objects, and the releationship between parameters is captured via `dependencies`, `inferences`, and `standalones` attributes. For example, the dataset that we are inspecting contains no inferences, and one standalone parameter `q`, and two dependent parameters `y` and `y2`, which both depend on independent `x` and `t` parameters: ``` interdeps.inferences interdeps.standalones interdeps.dependencies ``` `dependencies` is a dictionary of `ParamSpecBase` objects. The keys are dependent parameters (those which depend on other parameters), and the corresponding values in the dictionary are tuples of independent parameters that the dependent parameter in the key depends on. Coloquially, each key-value pair of the `dependencies` dictionary is sometimes referred to as "parameter tree". `inferences` follows the same structure as `dependencies`. `standalones` is a set - an unordered collection of `ParamSpecBase` objects representing "standalone" parameters, the ones which do not depend on other parameters, and no other parameter depends on them. #### ParamSpecBase objects `ParamSpecBase` object contains all the necessary information about a given parameter, for example, its `name` and `unit`: ``` ps = list(interdeps.dependencies.keys())[0] print(f'Parameter {ps.name!r} is in {ps.unit!r}') ``` `paramspecs` property returns a tuple of `ParamSpecBase`s for all the parameters contained in the `Interdependencies_` object: ``` interdeps.paramspecs ``` Here's a trivial example of iterating through dependent parameters of the `Interdependencies_` object and extracting information about them from the `ParamSpecBase` objects: ``` for d in interdeps.dependencies.keys(): print(f'Parameter {d.name!r} ({d.label}, {d.unit}) depends on:') for i in interdeps.dependencies[d]: print(f'- {i.name!r} ({i.label}, {i.unit})') ``` #### Other useful methods and properties `Interdependencies_` object has a few useful properties and methods which make it easy to work it and with other `Interdependencies_` and `ParamSpecBase` objects. For example, `non_dependencies` returns a tuple of all dependent parameters together with standalone parameters: ``` interdeps.non_dependencies ``` `what_depends_on` method allows to find what parameters depend on a given parameter: ``` t_ps = interdeps.paramspecs[2] t_deps = interdeps.what_depends_on(t_ps) print(f'Following parameters depend on {t_ps.name!r} ({t_ps.label}, {t_ps.unit}):') for t_dep in t_deps: print(f'- {t_dep.name!r} ({t_dep.label}, {t_dep.unit})') ``` ### Shortcuts to important parameters For the frequently needed groups of parameters, `DataSet` object itself provides convenient methods and properties. For example, use `dependent_parameters` property to get only dependent parameters of a given `DataSet`: ``` dataset.dependent_parameters ``` This is equivalent to: ``` tuple(dataset.description.interdeps.dependencies.keys()) ``` ### Note on inferences Inferences between parameters is a feature that has not been used yet within QCoDeS. The initial concepts around `DataSet` included it in order to link parameters that are not directly dependent on each other as "dependencies" are. It is very likely that "inferences" will be eventually deprecated and removed. ### Note on ParamSpec's > `ParamSpec`s originate from QCoDeS versions prior to `0.2.0` and for now are kept for backwards compatibility. `ParamSpec`s are completely superseded by `InterDependencies_`/`ParamSpecBase` bundle and will likely be deprecated in future versions of QCoDeS together with the `DataSet` methods/properties that return `ParamSpec`s objects. In addition to the `Interdependencies_` object, `DataSet` also holds `ParamSpec` objects (not to be confused with `ParamSpecBase` objects from above). Similar to `Interdependencies_` object, the `ParamSpec` objects hold information about parameters and their interdependencies but in a different way: for a given parameter, `ParamSpec` object itself contains information on names of parameters that it depends on, while for the `InterDependencies_`/`ParamSpecBase`s this information is stored only in the `InterDependencies_` object. `DataSet` exposes `paramspecs` property and `get_parameters()` method, both of which return `ParamSpec` objects of all the parameters of the dataset, and are not recommended for use: ``` dataset.paramspecs dataset.get_parameters() dataset.parameters ``` To give an example of what it takes to work with `ParamSpec` objects as opposed to `Interdependencies_` object, here's a function that one needs to write in order to find standalone `ParamSpec`s from a given list of `ParamSpec`s: ``` def get_standalone_parameters(paramspecs): all_independents = set(spec.name for spec in paramspecs if len(spec.depends_on_) == 0) used_independents = set(d for spec in paramspecs for d in spec.depends_on_) standalones = all_independents.difference(used_independents) return tuple(ps for ps in paramspecs if ps.name in standalones) all_parameters = dataset.get_parameters() standalone_parameters = get_standalone_parameters(all_parameters) standalone_parameters ``` ## Getting data from DataSet In this section methods for retrieving the actual data from the `DataSet` are discussed. ### `get_parameter_data` - the powerhorse `DataSet` provides one main method of accessing data - `get_parameter_data`. It returns data for groups of dependent-parameter-and-its-independent-parameters in a form of a nested dictionary of `numpy` arrays: ``` dataset.get_parameter_data() ``` #### Avoid excessive calls to loading data Note that this call actually reads the data of the `DataSet` and in case of a `DataSet` with a lot of data can take noticable amount of time. Hence, it is recommended to limit the number of times the same data gets loaded in order to speed up the user's code. #### Loading data of selected parameters Sometimes data only for a particular parameter or parameters needs to be loaded. For example, let's assume that after inspecting the `InterDependencies_` object from `dataset.description.interdeps`, we concluded that we want to load data of the `q` parameter and the `y2` parameter. In order to do that, we just pass the names of these parameters, or their `ParamSpecBase`s to `get_parameter_data` call: ``` q_param_spec = list(interdeps.standalones)[0] q_param_spec y2_param_spec = interdeps.non_dependencies[-1] y2_param_spec dataset.get_parameter_data(q_param_spec, y2_param_spec) ``` ### `get_data_as_pandas_dataframe` - for `pandas` fans `DataSet` provides one main method of accessing data - `get_data_as_pandas_dataframe`. It returns data for groups of dependent-parameter-and-its-independent-parameters in a form of a dictionary of `pandas.DataFrame` s: ``` dfs = dataset.get_data_as_pandas_dataframe() # For the sake of making this article more readable, # we will print the contents of the `dfs` dictionary # manually by calling `.head()` on each of the DataFrames for parameter_name, df in dfs.items(): print(f"DataFrame for parameter {parameter_name}") print("-----------------------------") print(f"{df.head()!r}") print("") ``` Similar to `get_parameter_data`, `get_data_as_pandas_dataframe` also supports retrieving data for a given parameter(s), as well as `start`/`stop` arguments. `get_data_as_pandas_dataframe` is implemented based on `get_parameter_data`, hence the performance considerations mentioned above for `get_parameter_data` apply to `get_data_as_pandas_dataframe` as well. For more details on `get_data_as_pandas_dataframe` refer to [Working with pandas and xarray article](Working-With-Pandas-and-XArray.ipynb). ### Data extraction into "other" formats If the user desires to export a QCoDeS `DataSet` into a format that is not readily supported by `DataSet` methods, we recommend to use `get_data_as_pandas_dataframe` first, and then convert the resulting `DataFrame` s into a the desired format. This is becuase `pandas` package already implements converting `DataFrame` to various popular formats including comma-separated text file (`.csv`), HDF (`.hdf5`), xarray, Excel (`.xls`, `.xlsx`), and more; refer to [Working with pandas and xarray article](Working-With-Pandas-and-XArray.ipynb), and [`pandas` documentation](https://pandas.pydata.org/pandas-docs/stable/reference/frame.html#serialization-io-conversion) for more information. Nevertheless, `DataSet` also provides the following convenient methods: * `DataSet.write_data_to_text_file` Refer to the docstrings of those methods for more information on how to use them. ### Not recommended data access methods The following tree methods of accessing data in a dataset are not recommended for use, and will be deprecated soon: * `DataSet.get_data` * `DataSet.get_values` * `DataSet.get_setpoints`
true
code
0.402187
null
null
null
null
``` from fastai.vision.all import * from moving_mnist.models.conv_rnn import * from moving_mnist.data import * if torch.cuda.is_available(): torch.cuda.set_device(1) print(torch.cuda.get_device_name()) ``` # Train Example: We wil predict: - `n_in`: 5 images - `n_out`: 5 images - `n_obj`: up to 3 objects ``` DATA_PATH = Path.cwd()/'data' ds = MovingMNIST(DATA_PATH, n_in=5, n_out=5, n_obj=[1,2,3]) train_tl = TfmdLists(range(7500), ImageTupleTransform(ds)) valid_tl = TfmdLists(range(100), ImageTupleTransform(ds)) dls = DataLoaders.from_dsets(train_tl, valid_tl, bs=32, after_batch=[Normalize.from_stats(imagenet_stats[0][0], imagenet_stats[1][0])]).cuda() loss_func = StackLoss(MSELossFlat()) ``` Left: Input, Right: Target ``` dls.show_batch() b = dls.one_batch() explode_types(b) ``` `StackUnstack` takes cares of stacking the list of images into a fat tensor, and unstacking them at the end, we will need to modify our loss function to take a list of tensors as input and target. ## Simple model ``` model = StackUnstack(SimpleModel()) ``` As the `ImageSeq` is a `tuple` of images, we will need to stack them to compute loss. ``` learn = Learner(dls, model, loss_func=loss_func, cbs=[]).to_fp16() ``` I have a weird bug that if I use `nn.LeakyReLU` after doing `learn.lr_find()` the model does not train (the loss get stucked). ``` x,y = dls.one_batch() learn.lr_find() learn.fit_one_cycle(10, 1e-4) p,t = learn.get_preds() ``` As you can see, the results is a list of 5 tensors with 100 samples each. ``` len(p), p[0].shape def show_res(t, idx): im_seq = ImageSeq.create([t[i][idx] for i in range(5)]) im_seq.show(figsize=(8,4)); k = random.randint(0,100) show_res(t,k) show_res(p,k) ``` ## A bigger Decoder We will pass: - `blur`: to use blur on the upsampling path (this is done by using and a poolling layer and a replication) - `attn`: to include a self attention layer on the decoder ``` model2 = StackUnstack(SimpleModel(szs=[16,64,96], act=partial(nn.LeakyReLU, 0.2, inplace=True),blur=True, attn=True)) ``` We have to reduce batch size as the self attention layer is heavy. ``` dls = DataLoaders.from_dsets(train_tl, valid_tl, bs=8, after_batch=[Normalize.from_stats(imagenet_stats[0][0], imagenet_stats[1][0])]).cuda() learn2 = Learner(dls, model2, loss_func=loss_func, cbs=[]).to_fp16() learn2.lr_find() learn2.fit_one_cycle(10, 1e-4) p,t = learn2.get_preds() ``` As you can see, the results is a list of 5 tensors with 100 samples each. ``` len(p), p[0].shape def show_res(t, idx): im_seq = ImageSeq.create([t[i][idx] for i in range(5)]) im_seq.show(figsize=(8,4)); k = random.randint(0,100) show_res(t,k) show_res(p,k) ```
true
code
0.793506
null
null
null
null
*** *** # Introduction to Gradient Descent The Idea Behind Gradient Descent 梯度下降 *** *** <img src='./img/stats/gradient_descent.gif' align = "middle" width = '400px'> <img align="left" style="padding-right:10px;" width ="400px" src="./img/stats/gradient2.png"> **如何找到最快下山的路?** - 假设此时山上的浓雾很大,下山的路无法确定; - 假设你摔不死! - 你只能利用自己周围的信息去找到下山的路径。 - 以你当前的位置为基准,寻找这个位置最陡峭的方向,从这个方向向下走。 <img style="padding-right:10px;" width ="500px" src="./img/stats/gradient.png" align = 'right'> **Gradient is the vector of partial derivatives** One approach to maximizing a function is to - pick a random starting point, - compute the gradient, - take a small step in the direction of the gradient, and - repeat with a new staring point. <img src='./img/stats/gd.webp' width = '700' align = 'middle'> Let's represent parameters as $\Theta$, learning rate as $\alpha$, and gradient as $\bigtriangledown J(\Theta)$, To the find the best model is an optimization problem - “minimizes the error of the model” - “maximizes the likelihood of the data.” We’ll frequently need to maximize (or minimize) functions. - to find the input vector v that produces the largest (or smallest) possible value. # Mathematics behind Gradient Descent A simple mathematical intuition behind one of the commonly used optimisation algorithms in Machine Learning. https://www.douban.com/note/713353797/ The cost or loss function: $$Cost = \frac{1}{N} \sum_{i = 1}^N (Y' -Y)^2$$ <img src='./img/stats/x2.webp' width = '700' align = 'center'> Parameters with small changes: $$ m_1 = m_0 - \delta m, b_1 = b_0 - \delta b$$ The cost function J is a function of m and b: $$J_{m, b} = \frac{1}{N} \sum_{i = 1}^N (Y' -Y)^2 = \frac{1}{N} \sum_{i = 1}^N Error_i^2$$ $$\frac{\partial J}{\partial m} = 2 Error \frac{\partial}{\partial m}Error$$ $$\frac{\partial J}{\partial b} = 2 Error \frac{\partial}{\partial b}Error$$ Let's fit the data with linear regression: $$\frac{\partial}{\partial m}Error = \frac{\partial}{\partial m}(Y' - Y) = \frac{\partial}{\partial m}(mX + b - Y)$$ Since $X, b, Y$ are constant: $$\frac{\partial}{\partial m}Error = X$$ $$\frac{\partial}{\partial b}Error = \frac{\partial}{\partial b}(Y' - Y) = \frac{\partial}{\partial b}(mX + b - Y)$$ Since $X, m, Y$ are constant: $$\frac{\partial}{\partial m}Error = 1$$ Thus: $$\frac{\partial J}{\partial m} = 2 * Error * X$$ $$\frac{\partial J}{\partial b} = 2 * Error$$ Let's get rid of the constant 2 and multiplying the learning rate $\alpha$, who determines how large a step to take: $$\frac{\partial J}{\partial m} = Error * X * \alpha$$ $$\frac{\partial J}{\partial b} = Error * \alpha$$ Since $ m_1 = m_0 - \delta m, b_1 = b_0 - \delta b$: $$ m_1 = m_0 - Error * X * \alpha$$ $$b_1 = b_0 - Error * \alpha$$ **Notice** that the slope b can be viewed as the beta value for X = 1. Thus, the above two equations are in essence the same. Let's represent parameters as $\Theta$, learning rate as $\alpha$, and gradient as $\bigtriangledown J(\Theta)$, we have: $$\Theta_1 = \Theta_0 - \alpha \bigtriangledown J(\Theta)$$ <img src='./img/stats/gd.webp' width = '800' align = 'center'> Hence,to solve for the gradient, we iterate through our data points using our new $m$ and $b$ values and compute the partial derivatives. This new gradient tells us - the slope of our cost function at our current position - the direction we should move to update our parameters. - The size of our update is controlled by the learning rate. ``` import numpy as np # Size of the points dataset. m = 20 # Points x-coordinate and dummy value (x0, x1). X0 = np.ones((m, 1)) X1 = np.arange(1, m+1).reshape(m, 1) X = np.hstack((X0, X1)) # Points y-coordinate y = np.array([3, 4, 5, 5, 2, 4, 7, 8, 11, 8, 12, 11, 13, 13, 16, 17, 18, 17, 19, 21]).reshape(m, 1) # The Learning Rate alpha. alpha = 0.01 def error_function(theta, X, y): '''Error function J definition.''' diff = np.dot(X, theta) - y return (1./2*m) * np.dot(np.transpose(diff), diff) def gradient_function(theta, X, y): '''Gradient of the function J definition.''' diff = np.dot(X, theta) - y return (1./m) * np.dot(np.transpose(X), diff) def gradient_descent(X, y, alpha): '''Perform gradient descent.''' theta = np.array([1, 1]).reshape(2, 1) gradient = gradient_function(theta, X, y) while not np.all(np.absolute(gradient) <= 1e-5): theta = theta - alpha * gradient gradient = gradient_function(theta, X, y) return theta # source:https://www.jianshu.com/p/c7e642877b0e optimal = gradient_descent(X, y, alpha) print('Optimal parameters Theta:', optimal[0][0], optimal[1][0]) print('Error function:', error_function(optimal, X, y)[0,0]) ``` # This is the End! # Estimating the Gradient If f is a function of one variable, its derivative at a point x measures how f(x) changes when we make a very small change to x. > It is defined as the limit of the difference quotients: 差商(difference quotient)就是因变量的改变量与自变量的改变量两者相除的商。 ``` def difference_quotient(f, x, h): return (f(x + h) - f(x)) / h ``` For many functions it’s easy to exactly calculate derivatives. For example, the square function: def square(x): return x * x has the derivative: def derivative(x): return 2 * x ``` def square(x): return x * x def derivative(x): return 2 * x derivative_estimate = lambda x: difference_quotient(square, x, h=0.00001) def sum_of_squares(v): """computes the sum of squared elements in v""" return sum(v_i ** 2 for v_i in v) # plot to show they're basically the same import matplotlib.pyplot as plt x = range(-10,10) plt.plot(x, list(map(derivative, x)), 'rx') # red x plt.plot(x, list(map(derivative_estimate, x)), 'b+') # blue + plt.show() ``` When f is a function of many variables, it has multiple partial derivatives. ``` def partial_difference_quotient(f, v, i, h): # add h to just the i-th element of v w = [v_j + (h if j == i else 0) for j, v_j in enumerate(v)] return (f(w) - f(v)) / h def estimate_gradient(f, v, h=0.00001): return [partial_difference_quotient(f, v, i, h) for i, _ in enumerate(v)] ``` # Using the Gradient ``` def step(v, direction, step_size): """move step_size in the direction from v""" return [v_i + step_size * direction_i for v_i, direction_i in zip(v, direction)] def sum_of_squares_gradient(v): return [2 * v_i for v_i in v] from collections import Counter from linear_algebra import distance, vector_subtract, scalar_multiply from functools import reduce import math, random print("using the gradient") # generate 3 numbers v = [random.randint(-10,10) for i in range(3)] print(v) tolerance = 0.0000001 n = 0 while True: gradient = sum_of_squares_gradient(v) # compute the gradient at v if n%50 ==0: print(v, sum_of_squares(v)) next_v = step(v, gradient, -0.01) # take a negative gradient step if distance(next_v, v) < tolerance: # stop if we're converging break v = next_v # continue if we're not n += 1 print("minimum v", v) print("minimum value", sum_of_squares(v)) ``` # Choosing the Right Step Size Although the rationale for moving against the gradient is clear, - how far to move is not. - Indeed, choosing the right step size is more of an art than a science. Methods: 1. Using a fixed step size 1. Gradually shrinking the step size over time 1. At each step, choosing the step size that minimizes the value of the objective function ``` step_sizes = [100, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001] ``` It is possible that certain step sizes will result in invalid inputs for our function. So we’ll need to create a “safe apply” function - returns infinity for invalid inputs: - which should never be the minimum of anything ``` def safe(f): """define a new function that wraps f and return it""" def safe_f(*args, **kwargs): try: return f(*args, **kwargs) except: return float('inf') # this means "infinity" in Python return safe_f ``` # Putting It All Together - **target_fn** that we want to minimize - **gradient_fn**. For example, the target_fn could represent the errors in a model as a function of its parameters, To choose a starting value for the parameters `theta_0`. ``` def minimize_batch(target_fn, gradient_fn, theta_0, tolerance=0.000001): """use gradient descent to find theta that minimizes target function""" step_sizes = [100, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001] theta = theta_0 # set theta to initial value target_fn = safe(target_fn) # safe version of target_fn value = target_fn(theta) # value we're minimizing while True: gradient = gradient_fn(theta) next_thetas = [step(theta, gradient, -step_size) for step_size in step_sizes] # choose the one that minimizes the error function next_theta = min(next_thetas, key=target_fn) next_value = target_fn(next_theta) # stop if we're "converging" if abs(value - next_value) < tolerance: return theta else: theta, value = next_theta, next_value # minimize_batch" v = [random.randint(-10,10) for i in range(3)] v = minimize_batch(sum_of_squares, sum_of_squares_gradient, v) print("minimum v", v) print("minimum value", sum_of_squares(v)) ``` Sometimes we’ll instead want to maximize a function, which we can do by minimizing its negative ``` def negate(f): """return a function that for any input x returns -f(x)""" return lambda *args, **kwargs: -f(*args, **kwargs) def negate_all(f): """the same when f returns a list of numbers""" return lambda *args, **kwargs: [-y for y in f(*args, **kwargs)] def maximize_batch(target_fn, gradient_fn, theta_0, tolerance=0.000001): return minimize_batch(negate(target_fn), negate_all(gradient_fn), theta_0, tolerance) ``` Using the batch approach, each gradient step requires us to make a prediction and compute the gradient for the whole data set, which makes each step take a long time. Error functions are additive - The predictive error on the whole data set is simply the sum of the predictive errors for each data point. When this is the case, we can instead apply a technique called **stochastic gradient descent** - which computes the gradient (and takes a step) for only one point at a time. - It cycles over our data repeatedly until it reaches a stopping point. # Stochastic Gradient Descent During each cycle, we’ll want to iterate through our data in a random order: ``` def in_random_order(data): """generator that returns the elements of data in random order""" indexes = [i for i, _ in enumerate(data)] # create a list of indexes random.shuffle(indexes) # shuffle them for i in indexes: # return the data in that order yield data[i] ``` This approach avoids circling around near a minimum forever - whenever we stop getting improvements we’ll decrease the step size and eventually quit. ``` def minimize_stochastic(target_fn, gradient_fn, x, y, theta_0, alpha_0=0.01): data = list(zip(x, y)) theta = theta_0 # initial guess alpha = alpha_0 # initial step size min_theta, min_value = None, float("inf") # the minimum so far iterations_with_no_improvement = 0 # if we ever go 100 iterations with no improvement, stop while iterations_with_no_improvement < 100: value = sum( target_fn(x_i, y_i, theta) for x_i, y_i in data ) if value < min_value: # if we've found a new minimum, remember it # and go back to the original step size min_theta, min_value = theta, value iterations_with_no_improvement = 0 alpha = alpha_0 else: # otherwise we're not improving, so try shrinking the step size iterations_with_no_improvement += 1 alpha *= 0.9 # and take a gradient step for each of the data points for x_i, y_i in in_random_order(data): gradient_i = gradient_fn(x_i, y_i, theta) theta = vector_subtract(theta, scalar_multiply(alpha, gradient_i)) return min_theta def maximize_stochastic(target_fn, gradient_fn, x, y, theta_0, alpha_0=0.01): return minimize_stochastic(negate(target_fn), negate_all(gradient_fn), x, y, theta_0, alpha_0) print("using minimize_stochastic_batch") x = list(range(101)) y = [3*x_i + random.randint(-10, 20) for x_i in x] theta_0 = random.randint(-10,10) v = minimize_stochastic(sum_of_squares, sum_of_squares_gradient, x, y, theta_0) print("minimum v", v) print("minimum value", sum_of_squares(v)) ``` Scikit-learn has a Stochastic Gradient Descent module http://scikit-learn.org/stable/modules/sgd.html
true
code
0.702938
null
null
null
null
# *Quick, Draw!* GAN In this notebook, we use Generative Adversarial Network code (adapted from [Rowel Atienza's](https://github.com/roatienza/Deep-Learning-Experiments/blob/master/Experiments/Tensorflow/GAN/dcgan_mnist.py) under [MIT License](https://github.com/roatienza/Deep-Learning-Experiments/blob/master/LICENSE)) to create sketches in the style of humans who have played the [*Quick, Draw!* game](https://quickdraw.withgoogle.com) (data available [here](https://github.com/googlecreativelab/quickdraw-dataset) under [Creative Commons Attribution 4.0 license](https://creativecommons.org/licenses/by/4.0/)). #### Load dependencies ``` # for data input and output: import numpy as np import os # for deep learning: import keras from keras.models import Model from keras.layers import Input, Dense, Conv2D, Dropout from keras.layers import BatchNormalization, Flatten from keras.layers import Activation from keras.layers import Reshape # new! from keras.layers import Conv2DTranspose, UpSampling2D # new! from keras.optimizers import RMSprop # new! # for plotting: import pandas as pd from matplotlib import pyplot as plt %matplotlib inline ``` #### Load data NumPy bitmap files are [here](https://console.cloud.google.com/storage/browser/quickdraw_dataset/full/numpy_bitmap) -- pick your own drawing category -- you don't have to pick *apples* :) ``` input_images = "../quickdraw_data/apple.npy" data = np.load(input_images) # 28x28 (sound familiar?) grayscale bitmap in numpy .npy format; images are centered data.shape data[4242] data = data/255 data = np.reshape(data,(data.shape[0],28,28,1)) # fourth dimension is color img_w,img_h = data.shape[1:3] data.shape data[4242] plt.imshow(data[4242,:,:,0], cmap='Greys') ``` #### Create discriminator network ``` def build_discriminator(depth=64, p=0.4): # Define inputs image = Input((img_w,img_h,1)) # Convolutional layers conv1 = Conv2D(depth*1, 5, strides=2, padding='same', activation='relu')(image) conv1 = Dropout(p)(conv1) conv2 = Conv2D(depth*2, 5, strides=2, padding='same', activation='relu')(conv1) conv2 = Dropout(p)(conv2) conv3 = Conv2D(depth*4, 5, strides=2, padding='same', activation='relu')(conv2) conv3 = Dropout(p)(conv3) conv4 = Conv2D(depth*8, 5, strides=1, padding='same', activation='relu')(conv3) conv4 = Flatten()(Dropout(p)(conv4)) # Output layer prediction = Dense(1, activation='sigmoid')(conv4) # Model definition model = Model(inputs=image, outputs=prediction) return model discriminator = build_discriminator() discriminator.summary() discriminator.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=0.0008, decay=6e-8, clipvalue=1.0), metrics=['accuracy']) ``` #### Create generator network ``` z_dimensions = 32 def build_generator(latent_dim=z_dimensions, depth=64, p=0.4): # Define inputs noise = Input((latent_dim,)) # First dense layer dense1 = Dense(7*7*depth)(noise) dense1 = BatchNormalization(momentum=0.9)(dense1) # default momentum for moving average is 0.99 dense1 = Activation(activation='relu')(dense1) dense1 = Reshape((7,7,depth))(dense1) dense1 = Dropout(p)(dense1) # De-Convolutional layers conv1 = UpSampling2D()(dense1) conv1 = Conv2DTranspose(int(depth/2), kernel_size=5, padding='same', activation=None,)(conv1) conv1 = BatchNormalization(momentum=0.9)(conv1) conv1 = Activation(activation='relu')(conv1) conv2 = UpSampling2D()(conv1) conv2 = Conv2DTranspose(int(depth/4), kernel_size=5, padding='same', activation=None,)(conv2) conv2 = BatchNormalization(momentum=0.9)(conv2) conv2 = Activation(activation='relu')(conv2) conv3 = Conv2DTranspose(int(depth/8), kernel_size=5, padding='same', activation=None,)(conv2) conv3 = BatchNormalization(momentum=0.9)(conv3) conv3 = Activation(activation='relu')(conv3) # Output layer image = Conv2D(1, kernel_size=5, padding='same', activation='sigmoid')(conv3) # Model definition model = Model(inputs=noise, outputs=image) return model generator = build_generator() generator.summary() ``` #### Create adversarial network ``` z = Input(shape=(z_dimensions,)) img = generator(z) discriminator.trainable = False pred = discriminator(img) adversarial_model = Model(z, pred) adversarial_model.compile(loss='binary_crossentropy', optimizer=RMSprop(lr=0.0004, decay=3e-8, clipvalue=1.0), metrics=['accuracy']) ``` #### Train! ``` def train(epochs=2000, batch=128, z_dim=z_dimensions): d_metrics = [] a_metrics = [] running_d_loss = 0 running_d_acc = 0 running_a_loss = 0 running_a_acc = 0 for i in range(epochs): # sample real images: real_imgs = np.reshape( data[np.random.choice(data.shape[0], batch, replace=False)], (batch,28,28,1)) # generate fake images: fake_imgs = generator.predict( np.random.uniform(-1.0, 1.0, size=[batch, z_dim])) # concatenate images as discriminator inputs: x = np.concatenate((real_imgs,fake_imgs)) # assign y labels for discriminator: y = np.ones([2*batch,1]) y[batch:,:] = 0 # train discriminator: d_metrics.append( discriminator.train_on_batch(x,y) ) running_d_loss += d_metrics[-1][0] running_d_acc += d_metrics[-1][1] # adversarial net's noise input and "real" y: noise = np.random.uniform(-1.0, 1.0, size=[batch, z_dim]) y = np.ones([batch,1]) # train adversarial net: a_metrics.append( adversarial_model.train_on_batch(noise,y) ) running_a_loss += a_metrics[-1][0] running_a_acc += a_metrics[-1][1] # periodically print progress & fake images: if (i+1)%100 == 0: print('Epoch #{}'.format(i)) log_mesg = "%d: [D loss: %f, acc: %f]" % \ (i, running_d_loss/i, running_d_acc/i) log_mesg = "%s [A loss: %f, acc: %f]" % \ (log_mesg, running_a_loss/i, running_a_acc/i) print(log_mesg) noise = np.random.uniform(-1.0, 1.0, size=[16, z_dim]) gen_imgs = generator.predict(noise) plt.figure(figsize=(5,5)) for k in range(gen_imgs.shape[0]): plt.subplot(4, 4, k+1) plt.imshow(gen_imgs[k, :, :, 0], cmap='gray') plt.axis('off') plt.tight_layout() plt.show() return a_metrics, d_metrics a_metrics_complete, d_metrics_complete = train() ax = pd.DataFrame( { 'Adversarial': [metric[0] for metric in a_metrics_complete], 'Discriminator': [metric[0] for metric in d_metrics_complete], } ).plot(title='Training Loss', logy=True) ax.set_xlabel("Epochs") ax.set_ylabel("Loss") ax = pd.DataFrame( { 'Adversarial': [metric[1] for metric in a_metrics_complete], 'Discriminator': [metric[1] for metric in d_metrics_complete], } ).plot(title='Training Accuracy') ax.set_xlabel("Epochs") ax.set_ylabel("Accuracy") ```
true
code
0.655942
null
null
null
null
# Tutorial 3 of 3: Advanced Topics and Usage **Learning Outcomes** * Use different methods to add boundary pores to a network * Manipulate network topology by adding and removing pores and throats * Explore the ModelsDict design, including copying models between objects, and changing model parameters * Write a custom pore-scale model and a custom Phase * Access and manipulate objects associated with the network * Combine multiple algorithms to predict relative permeability ## Build and Manipulate Network Topology For the present tutorial, we'll keep the topology simple to help keep the focus on other aspects of OpenPNM. ``` import warnings import numpy as np import scipy as sp import openpnm as op %matplotlib inline np.random.seed(10) ws = op.Workspace() ws.settings['loglevel'] = 40 np.set_printoptions(precision=4) pn = op.network.Cubic(shape=[10, 10, 10], spacing=0.00006, name='net') ``` ## Adding Boundary Pores When performing transport simulations it is often useful to have 'boundary' pores attached to the surface(s) of the network where boundary conditions can be applied. When using the **Cubic** class, two methods are available for doing this: ``add_boundaries``, which is specific for the **Cubic** class, and ``add_boundary_pores``, which is a generic method that can also be used on other network types and which is inherited from **GenericNetwork**. The first method automatically adds boundaries to ALL six faces of the network and offsets them from the network by 1/2 of the value provided as the network ``spacing``. The second method provides total control over which boundary pores are created and where they are positioned, but requires the user to specify to which pores the boundary pores should be attached to. Let's explore these two options: ``` pn.add_boundary_pores(labels=['top', 'bottom']) ``` Let's quickly visualize this network with the added boundaries: ``` #NBVAL_IGNORE_OUTPUT fig = op.topotools.plot_connections(pn, c='r') fig = op.topotools.plot_coordinates(pn, c='b', fig=fig) fig.set_size_inches([10, 10]) ``` ### Adding and Removing Pores and Throats OpenPNM uses a list-based data storage scheme for all properties, including topological connections. One of the benefits of this approach is that adding and removing pores and throats from the network is essentially as simple as adding or removing rows from the data arrays. The one exception to this 'simplicity' is that the ``'throat.conns'`` array must be treated carefully when trimming pores, so OpenPNM provides the ``extend`` and ``trim`` functions for adding and removing, respectively. To demonstrate, let's reduce the coordination number of the network to create a more random structure: ``` Ts = np.random.rand(pn.Nt) < 0.1 # Create a mask with ~10% of throats labeled True op.topotools.trim(network=pn, throats=Ts) # Use mask to indicate which throats to trim ``` When the ``trim`` function is called, it automatically checks the health of the network afterwards, so logger messages might appear on the command line if problems were found such as isolated clusters of pores or pores with no throats. This health check is performed by calling the **Network**'s ``check_network_health`` method which returns a **HealthDict** containing the results of the checks: ``` a = pn.check_network_health() print(a) ``` The **HealthDict** contains several lists including things like duplicate throats and isolated pores, but also a suggestion of which pores to trim to return the network to a healthy state. Also, the **HealthDict** has a ``health`` attribute that is ``False`` is any checks fail. ``` op.topotools.trim(network=pn, pores=a['trim_pores']) ``` Let's take another look at the network to see the trimmed pores and throats: ``` #NBVAL_IGNORE_OUTPUT fig = op.topotools.plot_connections(pn, c='r') fig = op.topotools.plot_coordinates(pn, c='b', fig=fig) fig.set_size_inches([10, 10]) ``` ## Define Geometry Objects The boundary pores we've added to the network should be treated a little bit differently. Specifically, they should have no volume or length (as they are not physically representative of real pores). To do this, we create two separate **Geometry** objects, one for internal pores and one for the boundaries: ``` Ps = pn.pores('*boundary', mode='not') Ts = pn.throats('*boundary', mode='not') geom = op.geometry.StickAndBall(network=pn, pores=Ps, throats=Ts, name='intern') Ps = pn.pores('*boundary') Ts = pn.throats('*boundary') boun = op.geometry.Boundary(network=pn, pores=Ps, throats=Ts, name='boun') ``` The **StickAndBall** class is preloaded with the pore-scale models to calculate all the necessary size information (pore diameter, pore.volume, throat lengths, throat.diameter, etc). The **Boundary** class is speciall and is only used for the boundary pores. In this class, geometrical properties are set to small fixed values such that they don't affect the simulation results. ## Define Multiple Phase Objects In order to simulate relative permeability of air through a partially water-filled network, we need to create each **Phase** object. OpenPNM includes pre-defined classes for each of these common fluids: ``` air = op.phases.Air(network=pn) water = op.phases.Water(network=pn) water['throat.contact_angle'] = 110 water['throat.surface_tension'] = 0.072 ``` ### Aside: Creating a Custom Phase Class In many cases you will want to create your own fluid, such as an oil or brine, which may be commonly used in your research. OpenPNM cannot predict all the possible scenarios, but luckily it is easy to create a custom **Phase** class as follows: ``` from openpnm.phases import GenericPhase class Oil(GenericPhase): def __init__(self, **kwargs): super().__init__(**kwargs) self.add_model(propname='pore.viscosity', model=op.models.misc.polynomial, prop='pore.temperature', a=[1.82082e-2, 6.51E-04, -3.48E-7, 1.11E-10]) self['pore.molecular_weight'] = 116 # g/mol ``` * Creating a **Phase** class basically involves placing a series of ``self.add_model`` commands within the ``__init__`` section of the class definition. This means that when the class is instantiated, all the models are added to *itself* (i.e. ``self``). * ``**kwargs`` is a Python trick that captures all arguments in a *dict* called ``kwargs`` and passes them to another function that may need them. In this case they are passed to the ``__init__`` method of **Oil**'s parent by the ``super`` function. Specifically, things like ``name`` and ``network`` are expected. * The above code block also stores the molecular weight of the oil as a constant value * Adding models and constant values in this way could just as easily be done in a run script, but the advantage of defining a class is that it can be saved in a file (i.e. 'my_custom_phases') and reused in any project. ``` oil = Oil(network=pn) print(oil) ``` ## Define Physics Objects for Each Geometry and Each Phase In the tutorial #2 we created two **Physics** object, one for each of the two **Geometry** objects used to handle the stratified layers. In this tutorial, the internal pores and the boundary pores each have their own **Geometry**, but there are two **Phases**, which also each require a unique **Physics**: ``` phys_water_internal = op.physics.GenericPhysics(network=pn, phase=water, geometry=geom) phys_air_internal = op.physics.GenericPhysics(network=pn, phase=air, geometry=geom) phys_water_boundary = op.physics.GenericPhysics(network=pn, phase=water, geometry=boun) phys_air_boundary = op.physics.GenericPhysics(network=pn, phase=air, geometry=boun) ``` > To reiterate, *one* **Physics** object is required for each **Geometry** *AND* each **Phase**, so the number can grow to become annoying very quickly Some useful tips for easing this situation are given below. ### Create a Custom Pore-Scale Physics Model Perhaps the most distinguishing feature between pore-network modeling papers is the pore-scale physics models employed. Accordingly, OpenPNM was designed to allow for easy customization in this regard, so that you can create your own models to augment or replace the ones included in the OpenPNM *models* libraries. For demonstration, let's implement the capillary pressure model proposed by [Mason and Morrow in 1994](http://dx.doi.org/10.1006/jcis.1994.1402). They studied the entry pressure of non-wetting fluid into a throat formed by spheres, and found that the converging-diverging geometry increased the capillary pressure required to penetrate the throat. As a simple approximation they proposed $P_c = -2 \sigma \cdot cos(2/3 \theta) / R_t$ Pore-scale models are written as basic function definitions: ``` def mason_model(target, diameter='throat.diameter', theta='throat.contact_angle', sigma='throat.surface_tension', f=0.6667): proj = target.project network = proj.network phase = proj.find_phase(target) Dt = network[diameter] theta = phase[theta] sigma = phase[sigma] Pc = 4*sigma*np.cos(f*np.deg2rad(theta))/Dt return Pc[phase.throats(target.name)] ``` Let's examine the components of above code: * The function receives a ``target`` object as an argument. This indicates which object the results will be returned to. * The ``f`` value is a scale factor that is applied to the contact angle. Mason and Morrow suggested a value of 2/3 as a decent fit to the data, but we'll make this an adjustable parameter with 2/3 as the default. * Note the ``pore.diameter`` is actually a **Geometry** property, but it is retrieved via the network using the data exchange rules outlined in the second tutorial. * All of the calculations are done for every throat in the network, but this pore-scale model may be assigned to a ``target`` like a **Physics** object, that is a subset of the full domain. As such, the last line extracts values from the ``Pc`` array for the location of ``target`` and returns just the subset. * The actual values of the contact angle, surface tension, and throat diameter are NOT sent in as numerical arrays, but rather as dictionary keys to the arrays. There is one very important reason for this: if arrays had been sent, then re-running the model would use the same arrays and hence not use any updated values. By having access to dictionary keys, the model actually looks up the current values in each of the arrays whenever it is run. * It is good practice to include the dictionary keys as arguments, such as ``sigma = 'throat.contact_angle'``. This way the user can control where the contact angle could be stored on the ``target`` object. ### Copy Models Between Physics Objects As mentioned above, the need to specify a separate **Physics** object for each **Geometry** and **Phase** can become tedious. It is possible to *copy* the pore-scale models assigned to one object onto another object. First, let's assign the models we need to ``phys_water_internal``: ``` mod = op.models.physics.hydraulic_conductance.hagen_poiseuille phys_water_internal.add_model(propname='throat.hydraulic_conductance', model=mod) phys_water_internal.add_model(propname='throat.entry_pressure', model=mason_model) ``` Now make a copy of the ``models`` on ``phys_water_internal`` and apply it all the other water **Physics** objects: ``` phys_water_boundary.models = phys_water_internal.models ``` The only 'gotcha' with this approach is that each of the **Physics** objects must be *regenerated* in order to place numerical values for all the properties into the data arrays: ``` phys_water_boundary.regenerate_models() phys_air_internal.regenerate_models() phys_air_internal.regenerate_models() ``` ### Adjust Pore-Scale Model Parameters The pore-scale models are stored in a **ModelsDict** object that is itself stored under the ``models`` attribute of each object. This arrangement is somewhat convoluted, but it enables integrated storage of models on the object's wo which they apply. The models on an object can be inspected with ``print(phys_water_internal)``, which shows a list of all the pore-scale properties that are computed by a model, and some information about the model's *regeneration* mode. Each model in the **ModelsDict** can be individually inspected by accessing it using the dictionary key corresponding to *pore-property* that it calculates, i.e. ``print(phys_water_internal)['throat.capillary_pressure'])``. This shows a list of all the parameters associated with that model. It is possible to edit these parameters directly: ``` phys_water_internal.models['throat.entry_pressure']['f'] = 0.75 # Change value phys_water_internal.regenerate_models() # Regenerate model with new 'f' value ``` More details about the **ModelsDict** and **ModelWrapper** classes can be found in :ref:`models`. ## Perform Multiphase Transport Simulations ### Use the Built-In Drainage Algorithm to Generate an Invading Phase Configuration ``` inv = op.algorithms.Porosimetry(network=pn) inv.setup(phase=water) inv.set_inlets(pores=pn.pores(['top', 'bottom'])) inv.run() ``` * The inlet pores were set to both ``'top'`` and ``'bottom'`` using the ``pn.pores`` method. The algorithm applies to the entire network so the mapping of network pores to the algorithm pores is 1-to-1. * The ``run`` method automatically generates a list of 25 capillary pressure points to test, but you can also specify more pores, or which specific points to tests. See the methods documentation for the details. * Once the algorithm has been run, the resulting capillary pressure curve can be viewed with ``plot_drainage_curve``. If you'd prefer a table of data for plotting in your software of choice you can use ``get_drainage_data`` which prints a table in the console. ### Set Pores and Throats to Invaded After running, the ``mip`` object possesses an array containing the pressure at which each pore and throat was invaded, stored as ``'pore.inv_Pc'`` and ``'throat.inv_Pc'``. These arrays can be used to obtain a list of which pores and throats are invaded by water, using Boolean logic: ``` Pi = inv['pore.invasion_pressure'] < 5000 Ti = inv['throat.invasion_pressure'] < 5000 ``` The resulting Boolean masks can be used to manually adjust the hydraulic conductivity of pores and throats based on their phase occupancy. The following lines set the water filled throats to near-zero conductivity for air flow: ``` Ts = phys_water_internal.map_throats(~Ti, origin=water) phys_water_internal['throat.hydraulic_conductance'][Ts] = 1e-20 ``` * The logic of these statements implicitly assumes that transport between two pores is only blocked if the throat is filled with the other phase, meaning that both pores could be filled and transport is still permitted. Another option would be to set the transport to near-zero if *either* or *both* of the pores are filled as well. * The above approach can get complicated if there are several **Geometry** objects, and it is also a bit laborious. There is a pore-scale model for this under **Physics.models.multiphase** called ``conduit_conductance``. The term conduit refers to the path between two pores that includes 1/2 of each pores plus the connecting throat. ### Calculate Relative Permeability of Each Phase We are now ready to calculate the relative permeability of the domain under partially flooded conditions. Instantiate an **StokesFlow** object: ``` water_flow = op.algorithms.StokesFlow(network=pn, phase=water) water_flow.set_value_BC(pores=pn.pores('left'), values=200000) water_flow.set_value_BC(pores=pn.pores('right'), values=100000) water_flow.run() Q_partial, = water_flow.rate(pores=pn.pores('right')) ``` The *relative* permeability is the ratio of the water flow through the partially water saturated media versus through fully water saturated media; hence we need to find the absolute permeability of water. This can be accomplished by *regenerating* the ``phys_water_internal`` object, which will recalculate the ``'throat.hydraulic_conductance'`` values and overwrite our manually entered near-zero values from the ``inv`` simulation using ``phys_water_internal.models.regenerate()``. We can then re-use the ``water_flow`` algorithm: ``` phys_water_internal.regenerate_models() water_flow.run() Q_full, = water_flow.rate(pores=pn.pores('right')) ``` And finally, the relative permeability can be found from: ``` K_rel = Q_partial/Q_full print(f"Relative permeability: {K_rel:.5f}") ``` * The ratio of the flow rates gives the normalized relative permeability since all the domain size, viscosity and pressure differential terms cancel each other. * To generate a full relative permeability curve the above logic would be placed inside a for loop, with each loop increasing the pressure threshold used to obtain the list of invaded throats (``Ti``). * The saturation at each capillary pressure can be found be summing the pore and throat volume of all the invaded pores and throats using ``Vp = geom['pore.volume'][Pi]`` and ``Vt = geom['throat.volume'][Ti]``.
true
code
0.572902
null
null
null
null
<a href="https://colab.research.google.com/github/DingLi23/s2search/blob/pipelining/pipelining/exp-cshc/exp-cshc_cshc_1w_ale_plotting.ipynb" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ### Experiment Description > This notebook is for experiment \<exp-cshc\> and data sample \<cshc\>. ### Initialization ``` %load_ext autoreload %autoreload 2 import numpy as np, sys, os in_colab = 'google.colab' in sys.modules # fetching code and data(if you are using colab if in_colab: !rm -rf s2search !git clone --branch pipelining https://github.com/youyinnn/s2search.git sys.path.insert(1, './s2search') %cd s2search/pipelining/exp-cshc/ pic_dir = os.path.join('.', 'plot') if not os.path.exists(pic_dir): os.mkdir(pic_dir) ``` ### Loading data ``` sys.path.insert(1, '../../') import numpy as np, sys, os, pandas as pd from getting_data import read_conf from s2search_score_pdp import pdp_based_importance sample_name = 'cshc' f_list = [ 'title', 'abstract', 'venue', 'authors', 'year', 'n_citations' ] ale_xy = {} ale_metric = pd.DataFrame(columns=['feature_name', 'ale_range', 'ale_importance', 'absolute mean']) for f in f_list: file = os.path.join('.', 'scores', f'{sample_name}_1w_ale_{f}.npz') if os.path.exists(file): nparr = np.load(file) quantile = nparr['quantile'] ale_result = nparr['ale_result'] values_for_rug = nparr.get('values_for_rug') ale_xy[f] = { 'x': quantile, 'y': ale_result, 'rug': values_for_rug, 'weird': ale_result[len(ale_result) - 1] > 20 } if f != 'year' and f != 'n_citations': ale_xy[f]['x'] = list(range(len(quantile))) ale_xy[f]['numerical'] = False else: ale_xy[f]['xticks'] = quantile ale_xy[f]['numerical'] = True ale_metric.loc[len(ale_metric.index)] = [f, np.max(ale_result) - np.min(ale_result), pdp_based_importance(ale_result, f), np.mean(np.abs(ale_result))] # print(len(ale_result)) print(ale_metric.sort_values(by=['ale_importance'], ascending=False)) print() ``` ### ALE Plots ``` import matplotlib.pyplot as plt import seaborn as sns from matplotlib.ticker import MaxNLocator categorical_plot_conf = [ { 'xlabel': 'Title', 'ylabel': 'ALE', 'ale_xy': ale_xy['title'] }, { 'xlabel': 'Abstract', 'ale_xy': ale_xy['abstract'] }, { 'xlabel': 'Authors', 'ale_xy': ale_xy['authors'], # 'zoom': { # 'inset_axes': [0.3, 0.3, 0.47, 0.47], # 'x_limit': [89, 93], # 'y_limit': [-1, 14], # } }, { 'xlabel': 'Venue', 'ale_xy': ale_xy['venue'], # 'zoom': { # 'inset_axes': [0.3, 0.3, 0.47, 0.47], # 'x_limit': [89, 93], # 'y_limit': [-1, 13], # } }, ] numerical_plot_conf = [ { 'xlabel': 'Year', 'ylabel': 'ALE', 'ale_xy': ale_xy['year'], # 'zoom': { # 'inset_axes': [0.15, 0.4, 0.4, 0.4], # 'x_limit': [2019, 2023], # 'y_limit': [1.9, 2.1], # }, }, { 'xlabel': 'Citations', 'ale_xy': ale_xy['n_citations'], # 'zoom': { # 'inset_axes': [0.4, 0.65, 0.47, 0.3], # 'x_limit': [-1000.0, 12000], # 'y_limit': [-0.1, 1.2], # }, }, ] def pdp_plot(confs, title): fig, axes_list = plt.subplots(nrows=1, ncols=len(confs), figsize=(20, 5), dpi=100) subplot_idx = 0 plt.suptitle(title, fontsize=20, fontweight='bold') # plt.autoscale(False) for conf in confs: axes = axes if len(confs) == 1 else axes_list[subplot_idx] sns.rugplot(conf['ale_xy']['rug'], ax=axes, height=0.02) axes.axhline(y=0, color='k', linestyle='-', lw=0.8) axes.plot(conf['ale_xy']['x'], conf['ale_xy']['y']) axes.grid(alpha = 0.4) # axes.set_ylim([-2, 20]) axes.xaxis.set_major_locator(MaxNLocator(integer=True)) axes.yaxis.set_major_locator(MaxNLocator(integer=True)) if ('ylabel' in conf): axes.set_ylabel(conf.get('ylabel'), fontsize=20, labelpad=10) # if ('xticks' not in conf['ale_xy'].keys()): # xAxis.set_ticklabels([]) axes.set_xlabel(conf['xlabel'], fontsize=16, labelpad=10) if not (conf['ale_xy']['weird']): if (conf['ale_xy']['numerical']): axes.set_ylim([-1.5, 1.5]) pass else: axes.set_ylim([-7, 20]) pass if 'zoom' in conf: axins = axes.inset_axes(conf['zoom']['inset_axes']) axins.xaxis.set_major_locator(MaxNLocator(integer=True)) axins.yaxis.set_major_locator(MaxNLocator(integer=True)) axins.plot(conf['ale_xy']['x'], conf['ale_xy']['y']) axins.set_xlim(conf['zoom']['x_limit']) axins.set_ylim(conf['zoom']['y_limit']) axins.grid(alpha=0.3) rectpatch, connects = axes.indicate_inset_zoom(axins) connects[0].set_visible(False) connects[1].set_visible(False) connects[2].set_visible(True) connects[3].set_visible(True) subplot_idx += 1 pdp_plot(categorical_plot_conf, f"ALE for {len(categorical_plot_conf)} categorical features") # plt.savefig(os.path.join('.', 'plot', f'{sample_name}-1wale-categorical.png'), facecolor='white', transparent=False, bbox_inches='tight') pdp_plot(numerical_plot_conf, f"ALE for {len(numerical_plot_conf)} numerical features") # plt.savefig(os.path.join('.', 'plot', f'{sample_name}-1wale-numerical.png'), facecolor='white', transparent=False, bbox_inches='tight') ```
true
code
0.484563
null
null
null
null
# (Optional) Testing the Function Endpoint with your Own Audio Clips Instead of using pre-recorded clips we show you in this notebook how to invoke the deployed Function with your **own** audio clips. In the cells below, we will use the [PyAudio library](https://pypi.org/project/PyAudio/) to record a short 1 second clip. we will then submit that short clip to the Function endpoint on Oracle Functions. **Make sure PyAudio is installed on your laptop** before running this notebook. The helper function defined below will record a 1-sec audio clip when executed. Speak into the microphone of your computer and say one of the words `cat`, `eight`, `right`. I'd recommend double-checking that you are not muted and that you are using the internal computer mic. No headset. ``` # we will use pyaudio and wave in the # bottom half of this notebook. import pyaudio import wave print(pyaudio.__version__) def record_wave(duration=1.0, output_wave='./output.wav'): """Using the pyaudio library, this function will record a video clip of a given duration. Args: - duration (float): duration of the recording in seconds - output_wave (str) : filename of the wav file that contains your recording Returns: - frames : a list containing the recorded waveform """ # number of frames per buffer frames_perbuff = 2048 # 16 bit int format = pyaudio.paInt16 # mono sound channels = 1 # Sampling rate -- CD quality (44.1 kHz). Standard # for most recording devices. sampling_rate = 44100 # frames contain the waveform data: frames = [] # number of buffer chunks: nchunks = int(duration * sampling_rate / frames_perbuff) p = pyaudio.PyAudio() stream = p.open(format=format, channels=channels, rate=sampling_rate, input=True, frames_per_buffer=frames_perbuff) print("RECORDING STARTED ") for i in range(0, nchunks): data = stream.read(frames_perbuff) frames.append(data) print("RECORDING ENDED") stream.stop_stream() stream.close() p.terminate() # Write the audio clip to disk as a .wav file: wf = wave.open(output_wave, 'wb') wf.setnchannels(channels) wf.setsampwidth(p.get_sample_size(format)) wf.setframerate(sampling_rate) wf.writeframes(b''.join(frames)) wf.close() # let's record your own, 1-sec clip my_own_clip = "./my_clip.wav" frames = record_wave(output_wave=my_own_clip) # Playback ipd.Audio("./my_clip.wav") ``` Looks good? Now let's try to send that clip to our model API endpoint. We will repeat the same process we adopted when we submitted pre-recorded clips. ``` # oci: import oci from oci.config import from_file from oci import pagination import oci.functions as functions from oci.functions import FunctionsManagementClient, FunctionsInvokeClient # Lets specify the location of our OCI configuration file: oci_config = from_file("/home/datascience/block_storage/.oci/config") # Lets specify the compartment OCID, and the application + function names: compartment_id = 'ocid1.compartment.oc1..aaaaaaaafl3avkal72rrwuy4m5rumpwh7r4axejjwq5hvwjy4h4uoyi7kzyq' app_name = 'machine-learning-models' fn_name = 'speech-commands' fn_management_client = FunctionsManagementClient(oci_config) app_result = pagination.list_call_get_all_results( fn_management_client.list_applications, compartment_id, display_name=app_name ) fn_result = pagination.list_call_get_all_results( fn_management_client.list_functions, app_result.data[0].id, display_name=fn_name ) invoke_client = FunctionsInvokeClient(oci_config, service_endpoint=fn_result.data[0].invoke_endpoint) # here we need to be careful. `my_own_clip` was recorded at a 44.1 kHz sampling rate. # Yet the training sample has data at a 16 kHz rate. To ensure that we feed data of the same # size, we will downsample the data to a 16 kHz rate (sr=16000) waveform, _ = librosa.load(my_own_clip, mono=True, sr=16000) ``` Below we call the deployed Function. Note that the first call could take 60 sec. or more. This is due to the cold start problem of Function. Subsequent calls are much faster. Typically < 1 sec. ``` %%time resp = invoke_client.invoke_function(fn_result.data[0].id, invoke_function_body=json.dumps({"input": waveform.tolist()})) print(resp.data.text) ```
true
code
0.672224
null
null
null
null
![Logo_unad](https://upload.wikimedia.org/wikipedia/commons/5/5f/Logo_unad.png) <font size=3 color="midnightblue" face="arial"> <h1 align="center">Escuela de Ciencias Básicas, Tecnología e Ingeniería</h1> </font> <font size=3 color="navy" face="arial"> <h1 align="center">ECBTI</h1> </font> <font size=2 color="darkorange" face="arial"> <h1 align="center">Curso:</h1> </font> <font size=2 color="navy" face="arial"> <h1 align="center">Introducción al lenguaje de programación Python</h1> </font> <font size=1 color="darkorange" face="arial"> <h1 align="center">Febrero de 2020</h1> </font> <h2 align="center">Sesión 08 - Manipulación de archivos JSON</h2> ## Introducción `JSON` (*JavaScript Object Notation*) es un formato ligero de intercambio de datos que los humanos pueden leer y escribir fácilmente. También es fácil para las computadoras analizar y generar. `JSON` se basa en el lenguaje de programación [JavaScript](https://www.javascript.com/ 'JavaScript'). Es un formato de texto que es independiente del lenguaje y se puede usar en `Python`, `Perl`, entre otros idiomas. Se utiliza principalmente para transmitir datos entre un servidor y aplicaciones web. `JSON` se basa en dos estructuras: - Una colección de pares nombre / valor. Esto se realiza como un objeto, registro, diccionario, tabla hash, lista con clave o matriz asociativa. - Una lista ordenada de valores. Esto se realiza como una matriz, vector, lista o secuencia. ## JSON en Python Hay una serie de paquetes que admiten `JSON` en `Python`, como [metamagic.json](https://pypi.org/project/metamagic.json/ 'metamagic.json'), [jyson](http://opensource.xhaus.com/projects/jyson/wiki 'jyson'), [simplejson](https://simplejson.readthedocs.io/en/latest/ 'simplejson'), [Yajl-Py](http://pykler.github.io/yajl-py/ 'Yajl-Py'), [ultrajson](https://github.com/esnme/ultrajson 'ultrajson') y [json](https://docs.python.org/3.6/library/json.html 'json'). En este curso, utilizaremos [json](https://docs.python.org/3.6/library/json.html 'json'), que es compatible de forma nativa con `Python`. Podemos usar [este sitio](https://jsonlint.com/ 'jsonlint') que proporciona una interfaz `JSON` para verificar nuestros datos `JSON`. A continuación se muestra un ejemplo de datos `JSON`. ``` { "nombre": "Jaime", "apellido": "Perez", "aficiones": ["correr", "ciclismo", "caminar"], "edad": 35, "hijos": [ { "nombre": "Pedro", "edad": 6 }, { "nombre": "Alicia", "edad": 8 } ] } ``` Como puede verse, `JSON` admite tanto tipos primitivos, cadenas de caracteres y números, como listas y objetos anidados. Notamos que la representación de datos es muy similar a los diccionarios de `Python` ``` { "articulo": [ { "id":"01", "lenguaje": "JSON", "edicion": "primera", "autor": "Derrick Mwiti" }, { "id":"02", "lenguaje": "Python", "edicion": "segunda", "autor": "Derrick Mwiti" } ], "blog":[ { "nombre": "Datacamp", "URL":"datacamp.com" } ] } ``` Reescribámoslo en una forma más familiar ``` {"articulo":[{"id":"01","lenguaje": "JSON","edicion": "primera","author": "Derrick Mwiti"}, {"id":"02","lenguaje": "Python","edicion": "segunda","autor": "Derrick Mwiti"}], "blog":[{"nombre": "Datacamp","URL":"datacamp.com"}]} ``` ## `JSON` nativo en `Python` `Python` viene con un paquete incorporado llamado `json` para codificar y decodificar datos `JSON`. ``` import json ``` ## Un poco de vocabulario El proceso de codificación de `JSON` generalmente se llama serialización. Este término se refiere a la transformación de datos en una serie de bytes (por lo tanto, en serie) para ser almacenados o transmitidos a través de una red. También puede escuchar el término de clasificación, pero esa es otra discusión. Naturalmente, la deserialización es el proceso recíproco de decodificación de datos que se ha almacenado o entregado en el estándar `JSON`. De lo que estamos hablando aquí es leer y escribir. Piénselo así: la codificación es para escribir datos en el disco, mientras que la decodificación es para leer datos en la memoria. ### Serialización en `JSON` ¿Qué sucede después de que una computadora procesa mucha información? Necesita tomar un volcado de datos. En consecuencia, la biblioteca `json` expone el método `dump()` para escribir datos en archivos. También hay un método `dumps()` (pronunciado como "*dump-s*") para escribir en una cadena de `Python`. Los objetos simples de `Python` se traducen a `JSON` de acuerdo con una conversión bastante intuitiva. Comparemos los tipos de datos en `Python` y `JSON`. |**Python** | **JSON** | |:---------:|:----------------:| |dict |object | |list|array | |tuple| array| |str| string| |int| number| |float| number| |True| true| |False| false| |None| null| ### Serialización, ejemplo tenemos un objeto `Python` en la memoria que se parece a algo así: ``` data = { "president": { "name": "Zaphod Beeblebrox", "species": "Betelgeusian" } } print(type(data)) ``` Es fundamental que se guarde esta información en el disco, por lo que la tarea es escribirla en un archivo. Con el administrador de contexto de `Python`, puede crear un archivo llamado `data_file.json` y abrirlo en modo de escritura. (Los archivos `JSON` terminan convenientemente en una extensión `.json`). ``` with open("data_file.json", "w") as write_file: json.dump(data, write_file) ``` Tenga en cuenta que `dump()` toma dos argumentos posicionales: 1. el objeto de datos que se va a serializar y 2. el objeto tipo archivo en el que se escribirán los bytes. O, si estaba tan inclinado a seguir usando estos datos `JSON` serializados en su programa, podría escribirlos en un objeto `str` nativo de `Python`. ``` json_string = json.dumps(data) print(type(json_string)) ``` Tenga en cuenta que el objeto similar a un archivo está ausente ya que no está escribiendo en el disco. Aparte de eso, `dumps()` es como `dump()`. Se ha creado un objeto `JSON` y está listo para trabajarlo. ### Algunos argumentos útiles de palabras clave Recuerde, `JSON` está destinado a ser fácilmente legible por los humanos, pero la sintaxis legible no es suficiente si se aprieta todo junto. Además, probablemente tenga un estilo de programación diferente a éste presentado, y puede que le resulte más fácil leer el código cuando está formateado a su gusto. ***NOTA:*** Los métodos `dump()` y `dumps()` usan los mismos argumentos de palabras clave. La primera opción que la mayoría de la gente quiere cambiar es el espacio en blanco. Puede usar el argumento de sangría de palabras clave para especificar el tamaño de sangría para estructuras anidadas. Compruebe la diferencia por sí mismo utilizando los datos, que definimos anteriormente, y ejecutando los siguientes comandos en una consola: ``` json.dumps(data) json.dumps(data, indent=4) ``` Otra opción de formato es el argumento de palabra clave de separadores. Por defecto, esta es una tupla de 2 de las cadenas de separación (`","`, `": "`), pero una alternativa común para `JSON` compacto es (`","`, `":"`). observe el ejemplo `JSON` nuevamente para ver dónde entran en juego estos separadores. Hay otros, como `sort_keys`. Puede encontrar una lista completa en la [documentación](https://docs.python.org/3/library/json.html#basic-usage) oficial. ### Deserializando JSON Hemos trabajado un poco de `JSON` muy básico, ahora es el momento de ponerlo en forma. En la biblioteca `json`, encontrará `load()` y `loads()` para convertir datos codificados con `JSON` en objetos de `Python`. Al igual que la serialización, hay una tabla de conversión simple para la deserialización, aunque probablemente ya puedas adivinar cómo se ve. |**JSON** | **Python** | |:---------:|:----------------:| |object |dict | |array |list| |array|tuple | |string|str | |number|int | |number|float | |true|True | |false|False | |null|None | Técnicamente, esta conversión no es un inverso perfecto a la tabla de serialización. Básicamente, eso significa que si codifica un objeto de vez en cuando y luego lo decodifica nuevamente más tarde, es posible que no recupere exactamente el mismo objeto. Me imagino que es un poco como teletransportación: descomponga mis moléculas aquí y vuelva a unirlas allí. ¿Sigo siendo la misma persona? En realidad, probablemente sea más como hacer que un amigo traduzca algo al japonés y que otro amigo lo traduzca nuevamente al inglés. De todos modos, el ejemplo más simple sería codificar una tupla y recuperar una lista después de la decodificación, así: ``` blackjack_hand = (8, "Q") encoded_hand = json.dumps(blackjack_hand) decoded_hand = json.loads(encoded_hand) blackjack_hand == decoded_hand type(blackjack_hand) type(decoded_hand) blackjack_hand == tuple(decoded_hand) ``` ### Deserialización, ejemplo Esta vez, imagine que tiene algunos datos almacenados en el disco que le gustaría manipular en la memoria. Todavía usará el administrador de contexto, pero esta vez abrirá el archivo de datos existente `archivo_datos.json` en modo de lectura. ``` with open("data_file.json", "r") as read_file: data = json.load(read_file) ``` Hasta ahora las cosas son bastante sencillas, pero tenga en cuenta que el resultado de este método podría devolver cualquiera de los tipos de datos permitidos de la tabla de conversión. Esto solo es importante si está cargando datos que no ha visto antes. En la mayoría de los casos, el objeto raíz será un diccionario o una lista. Si ha extraído datos `JSON` de otro programa o ha obtenido una cadena de datos con formato `JSON` en `Python`, puede deserializarlo fácilmente con `loads()`, que naturalmente se carga de una cadena: ``` my_json_string = """{ "article": [ { "id":"01", "language": "JSON", "edition": "first", "author": "Derrick Mwiti" }, { "id":"02", "language": "Python", "edition": "second", "author": "Derrick Mwiti" } ], "blog":[ { "name": "Datacamp", "URL":"datacamp.com" } ] } """ to_python = json.loads(my_json_string) print(type(to_python)) ``` Ahora ya estamos trabajando con `JSON` puro. Lo que se hará de ahora en adelante dependerá del usuario, por lo que hay qué estar muy atentos con lo que se quiere hacer, se hace, y el resultado que se obtiene. ## Un ejemplo real Para este ejemplo introductorio, utilizaremos [JSONPlaceholder](https://jsonplaceholder.typicode.com/ "JSONPlaceholder"), una excelente fuente de datos `JSON` falsos para fines prácticos. Primero cree un archivo de script llamado `scratch.py`, o como desee llamarlo. Deberá realizar una solicitud de `API` al servicio `JSONPlaceholder`, así que solo use el paquete de solicitudes para realizar el trabajo pesado. Agregue estas importaciones en la parte superior de su archivo: ``` import json import requests ``` Ahora haremos una solicitud a la `API` `JSONPlaceholder`, si no está familiarizado con las solicitudes, existe un práctico método `json()` que hará todo el trabajo, pero puede practicar el uso de la biblioteca `json` para deserializar el atributo de texto del objeto de respuesta. Debería verse más o menos así: ``` response = requests.get("https://jsonplaceholder.typicode.com/todos") todos = json.loads(response.text) ``` Para saber si lo anterior funcionó (por lo menos no sacó ningún error), verifique el tipo de `todos` y luego hacer una consulta a los 10 primeros elementos de la lista. ``` todos == response.json() type(todos) todos[:10] len(todos) ``` Puede ver la estructura de los datos visualizando el archivo en un navegador, pero aquí hay un ejemplo de parte de él: ``` # parte del archivo JSON - TODO { "userId": 1, "id": 1, "title": "delectus aut autem", "completed": false } ``` Hay varios usuarios, cada uno con un ID de usuario único, y cada tarea tiene una propiedad booleana completada. ¿Puedes determinar qué usuarios han completado la mayoría de las tareas? ``` # Mapeo de userID para la cantidad completa de TODOS para cada usuario todos_by_user = {} # Incrementa el recuento completo de TODOs para cada usuario. for todo in todos: if todo["completed"]: try: # Incrementa el conteo del usuario existente. todos_by_user[todo["userId"]] += 1 except KeyError: # Este usuario no ha sido visto, se inicia su conteo en 1. todos_by_user[todo["userId"]] = 1 # Crea una lista ordenada de pares (userId, num_complete). top_users = sorted(todos_by_user.items(), key=lambda x: x[1], reverse=True) # obtiene el número máximo completo de TODO max_complete = top_users[0][1] # Cree una lista de todos los usuarios que hayan completado la cantidad máxima de TODO users = [] for user, num_complete in top_users: if num_complete < max_complete: break users.append(str(user)) max_users = " y ".join(users) ``` Ahora se pueden manipular los datos `JSON` como un objeto `Python` normal. Al ejecutar el script se obtienen los siguientes resultados: ``` s = "s" if len(users) > 1 else "" print(f"usuario{s} {max_users} completaron {max_complete} TODOs") ``` Continuando, se creará un archivo `JSON` que contiene los *TODO* completos para cada uno de los usuarios que completaron el número máximo de *TODO*. Todo lo que necesita hacer es filtrar todos y escribir la lista resultante en un archivo. llamaremos al archivo de salida `filter_data_file.json`. Hay muchas maneras de hacerlo, pero aquí hay una: ``` # Defina una función para filtrar TODO completos de usuarios con TODOS máximos completados. def keep(todo): is_complete = todo["completed"] has_max_count = str(todo["userId"]) in users return is_complete and has_max_count # Escriba el filtrado de TODO a un archivo. with open("filtered_data_file.json", "w") as data_file: filtered_todos = list(filter(keep, todos)) json.dump(filtered_todos, data_file, indent=2) ``` Se han filtrado todos los datos que no se necesitan y se han guardado los necesarios en un archivo nuevo! Vuelva a ejecutar el script y revise `filter_data_file.json` para verificar que todo funcionó. Estará en el mismo directorio que `scratch.py` cuando lo ejecutes. ``` s = "s" if len(users) > 1 else "" print(f"usuario{s} {max_users} completaron {max_complete} TODOs") ``` Por ahora estamos viendo los aspectos básicos de la manipulación de datos en `JSON`. Ahora vamos a tratar de avanzar un poco más en profundidad. ## Codificación y decodificación de objetos personalizados de `Python` Veamos un ejemplo de una clase de un juego muy famoso (Dungeons & Dragons) ¿Qué sucede cuando intentamos serializar la clase `Elf` de esa aplicación? ``` class Elf: def __init__(self, level, ability_scores=None): self.level = level self.ability_scores = { "str": 11, "dex": 12, "con": 10, "int": 16, "wis": 14, "cha": 13 } if ability_scores is None else ability_scores self.hp = 10 + self.ability_scores["con"] elf = Elf(level=4) json.dumps(elf) ``` `Python` indica que `Elf` no es serializable Aunque el módulo `json` puede manejar la mayoría de los tipos de `Python` integrados, no comprende cómo codificar los tipos de datos personalizados de forma predeterminada. Es como tratar de colocar una clavija cuadrada en un orificio redondo: necesita una sierra circular y la supervisión de los padres. ## Simplificando las estructuras de datos cómo lidiar con estructuras de datos más complejas?. Se podría intentar codificar y decodificar el `JSON` "*manualmente*", pero hay una solución un poco más inteligente que ahorrará algo de trabajo. En lugar de pasar directamente del tipo de datos personalizado a `JSON`, puede lanzar un paso intermedio. Todo lo que se necesita hacer es representar los datos en términos de los tipos integrados que `json` ya comprende. Esencialmente, traduce el objeto más complejo en una representación más simple, que el módulo `json` luego traduce a `JSON`. Es como la propiedad transitiva en matemáticas: si `A = B` y `B = C`, entonces `A = C`. Para entender esto, necesitarás un objeto complejo con el que jugar. Puede usar cualquier clase personalizada que desee, pero `Python` tiene un tipo incorporado llamado `complex` para representar números complejos, y no es serializable por defecto. ``` z = 3 + 8j type(z) json.dumps(z) ``` Una buena pregunta que debe hacerse al trabajar con tipos personalizados es ¿Cuál es la cantidad mínima de información necesaria para recrear este objeto? En el caso de números complejos, solo necesita conocer las partes real e imaginaria, a las que puede acceder como atributos en el objeto `complex`: ``` z.real z.imag ``` Pasar los mismos números a un constructor `complex` es suficiente para satisfacer el operador de comparación `__eq__`: ``` complex(3, 8) == z ``` Desglosar los tipos de datos personalizados en sus componentes esenciales es fundamental para los procesos de serialización y deserialización. ## Codificación de tipos personalizados Para traducir un objeto personalizado a `JSON`, todo lo que necesita hacer es proporcionar una función de codificación al parámetro predeterminado del método `dump()`. El módulo `json` llamará a esta función en cualquier objeto que no sea serializable de forma nativa. Aquí hay una función de decodificación simple que puede usar para practicar ([aquí](https://www.programiz.com/python-programming/methods/built-in/isinstance "isinstance") encontrará información acerca de la función `isinstance`): ``` def encode_complex(z): if isinstance(z, complex): return (z.real, z.imag) else: type_name = z.__class__.__name__ raise TypeError(f"Object of type '{type_name}' is not JSON serializable") ``` Tenga en cuenta que se espera que genere un `TypeError` si no obtiene el tipo de objeto que esperaba. De esta manera, se evita serializar accidentalmente a cualquier `Elfo`. Ahora ya podemos intentar codificar objetos complejos. ``` json.dumps(9 + 5j, default=encode_complex) json.dumps(elf, default=encode_complex) ``` ¿Por qué codificamos el número complejo como una tupla? es la única opción, es la mejor opción? Qué pasaría si necesitáramos decodificar el objeto más tarde? El otro enfoque común es subclasificar el `JSONEncoder` estándar y anular el método `default()`: ``` class ComplexEncoder(json.JSONEncoder): def default(self, z): if isinstance(z, complex): return (z.real, z.imag) else: return super().default(z) ``` En lugar de subir el `TypeError` usted mismo, simplemente puede dejar que la clase base lo maneje. Puede usar esto directamente en el método `dump()` a través del parámetro `cls` o creando una instancia del codificador y llamando a su método `encode()`: ``` json.dumps(2 + 5j, cls=ComplexEncoder) encoder = ComplexEncoder() encoder.encode(3 + 6j) ``` ## Decodificación de tipos personalizados Si bien las partes reales e imaginarias de un número complejo son absolutamente necesarias, en realidad no son suficientes para recrear el objeto. Esto es lo que sucede cuando intenta codificar un número complejo con `ComplexEncoder` y luego decodifica el resultado: ``` complex_json = json.dumps(4 + 17j, cls=ComplexEncoder) json.loads(complex_json) ``` Todo lo que se obtiene es una lista, y se tendría que pasar los valores a un constructor complejo si se quiere ese objeto complejo nuevamente. Recordemos el comentario sobre *teletransportación*. Lo que falta son metadatos o información sobre el tipo de datos que está codificando. La pregunta que realmente debería hacerse es ¿Cuál es la cantidad mínima de información necesaria y suficiente para recrear este objeto? El módulo `json` espera que todos los tipos personalizados se expresen como objetos en el estándar `JSON`. Para variar, puede crear un archivo `JSON` esta vez llamado `complex_data.json` y agregar el siguiente objeto que representa un número complejo: ``` # JSON { "__complex__": true, "real": 42, "imag": 36 } ``` ¿Ves la parte inteligente? Esa clave "`__complex__`" son los metadatos de los que acabamos de hablar. Realmente no importa cuál sea el valor asociado. Para que este pequeño truco funcione, todo lo que necesitas hacer es verificar que exista la clave: ``` def decode_complex(dct): if "__complex__" in dct: return complex(dct["real"], dct["imag"]) return dct ``` Si "`__complex__`" no está en el diccionario, puede devolver el objeto y dejar que el decodificador predeterminado se encargue de él. Cada vez que el método `load()` intenta analizar un objeto, se le da la oportunidad de interceder antes de que el decodificador predeterminado se adapte a los datos. Puede hacerlo pasando su función de decodificación al parámetro `object_hook`. Ahora regresemos a lo de antes ``` with open("complex_data.json") as complex_data: data = complex_data.read() z = json.loads(data, object_hook=decode_complex) type(z) ``` Si bien `object_hook` puede parecer la contraparte del parámetro predeterminado del método `dump()`, la analogía realmente comienza y termina allí. ``` # JSON [ { "__complex__":true, "real":42, "imag":36 }, { "__complex__":true, "real":64, "imag":11 } ] ``` Esto tampoco funciona solo con un objeto. Intente poner esta lista de números complejos en `complex_data.json` y vuelva a ejecutar el script: ``` with open("complex_data.json") as complex_data: data = complex_data.read() numbers = json.loads(data, object_hook=decode_complex) ``` Si todo va bien, obtendrá una lista de objetos complejos: ``` type(z) numbers ``` ## Finalizando... Ahora puede ejercer el poderoso poder de JSON para todas y cada una de las necesidades de `Python`. Si bien los ejemplos con los que ha trabajado aquí son ciertamente demasiado simplistas, ilustran un flujo de trabajo que puede aplicar a tareas más generales: - Importa el paquete json. - Lea los datos con `load()` o `loads()`. - Procesar los datos. - Escriba los datos alterados con `dump()` o `dumps()`. Lo que haga con los datos una vez que se hayan cargado en la memoria dependerá de su caso de uso. En general, el objetivo será recopilar datos de una fuente, extraer información útil y transmitir esa información o mantener un registro de la misma.
true
code
0.249379
null
null
null
null
## Import a model from ONNX and run using PyTorch We demonstrate how to import a model from ONNX and convert to PyTorch #### Imports ``` import os import operator as op import warnings; warnings.simplefilter(action='ignore', category=FutureWarning) import numpy as np import torch from torch import nn from torch.nn import functional as F from torch.autograd import Variable import onnx import gamma from gamma import convert, protobuf, utils ``` #### 1: Download the model ``` fpath = utils.get_file('https://s3.amazonaws.com/download.onnx/models/squeezenet.tar.gz') onnx_model = onnx.load(os.path.join(fpath, 'squeezenet/model.onnx')) inputs = [i.name for i in onnx_model.graph.input if i.name not in {x.name for x in onnx_model.graph.initializer}] outputs = [o.name for o in onnx_model.graph.output] ``` #### 2: Import into Gamma ``` graph = convert.from_onnx(onnx_model) constants = {k for k, (v, i) in graph.items() if v['type'] == 'Constant'} utils.draw(gamma.strip(graph, constants)) ``` #### 3: Convert to PyTorch ``` make_node = gamma.make_node_attr def torch_padding(params): padding = params.get('pads', [0,0,0,0]) assert (padding[0] == padding[2]) and (padding[1] == padding[3]) return (padding[0], padding[1]) torch_ops = { 'Add': lambda params: op.add, 'Concat': lambda params: (lambda *xs: torch.cat(xs, dim=params['axis'])), 'Constant': lambda params: nn.Parameter(torch.FloatTensor(params['value'])), 'Dropout': lambda params: nn.Dropout(params.get('ratio', 0.5)).eval(), #.eval() sets to inference mode. where should this logic live? 'GlobalAveragePool': lambda params: nn.AdaptiveAvgPool2d(1), 'MaxPool': lambda params: nn.MaxPool2d(params['kernel_shape'], stride=params.get('strides', [1,1]), padding=torch_padding(params), dilation=params.get('dilations', [1,1])), 'Mul': lambda params: op.mul, 'Relu': lambda params: nn.ReLU(), 'Softmax': lambda params: nn.Softmax(dim=params.get('axis', 1)), } def torch_op(node, inputs): if node['type'] in torch_ops: op = torch_ops[node['type']](node['params']) return make_node('Torch_op', {'op': op}, inputs) return (node, inputs) def torch_conv_node(params, x, w, b): ko, ki, kh, kw = w.shape group = params.get('group', 1) ki *= group conv = nn.Conv2d(ki, ko, (kh,kw), stride=tuple(params.get('strides', [1,1])), padding=torch_padding(params), dilation=tuple(params.get('dilations', [1,1])), groups=group) conv.weight = nn.Parameter(torch.FloatTensor(w)) conv.bias = nn.Parameter(torch.FloatTensor(b)) return make_node('Torch_op', {'op': conv}, [x]) def convert_to_torch(graph): v, _ = gamma.var, gamma.Wildcard conv_pattern = { v('conv'): make_node('Conv', v('params'), [v('x'), v('w'), v('b')]), v('w'): make_node('Constant', {'value': v('w_val')}, []), v('b'): make_node('Constant', {'value': v('b_val')}, []) } matches = gamma.search(conv_pattern, graph) g = gamma.union(graph, {m[v('conv')]: torch_conv_node(m[v('params')], m[v('x')], m[v('w_val')], m[v('b_val')]) for m in matches}) remove = {m[x] for m in matches for x in (v('w'), v('b'))} g = {k: torch_op(v, i) for k, (v, i) in g.items() if k not in remove} return g def torch_graph(graph): return gamma.FuncCache(lambda k: graph[k][0]['params']['op'](*[tg[x] for x in graph[k][1]])) g = convert_to_torch(graph) utils.draw(g) ``` #### 4: Load test example and check PyTorch output ``` def load_onnx_tensor(fname): tensor = onnx.TensorProto() with open(fname, 'rb') as f: tensor.ParseFromString(f.read()) return protobuf.unwrap(tensor) input_0 = load_onnx_tensor(os.path.join(fpath, 'squeezenet/test_data_set_0/input_0.pb')) output_0 = load_onnx_tensor(os.path.join(fpath, 'squeezenet/test_data_set_0/output_0.pb')) tg = torch_graph(g) tg[inputs[0]] = Variable(torch.Tensor(input_0)) torch_outputs = tg[outputs[0]] np.testing.assert_almost_equal(output_0, torch_outputs.data.numpy(), decimal=5) print('Success!') ```
true
code
0.679019
null
null
null
null
``` from PIL import Image import numpy as np import matplotlib.pyplot as plt from scipy import stats import math %matplotlib inline ``` # Volunteer 1 ## 3M Littmann Data ``` image = Image.open('3Ms.bmp') image x = image.size[0] y = image.size[1] print(x) print(y) matrix = [] points = [] integrated_density = 0 for i in range(x): matrix.append([]) for j in range(y): matrix[i].append(image.getpixel((i,j))) #integrated_density += image.getpixel((i,j))[1] #points.append(image.getpixel((i,j))[1]) ``` ### Extract Red Line Position ``` redMax = 0 xStore = 0 yStore = 0 for xAxis in range(x): for yAxis in range(y): currentPoint = matrix[xAxis][yAxis] if currentPoint[0] ==255 and currentPoint[1] < 10 and currentPoint[2] < 10: redMax = currentPoint[0] xStore = xAxis yStore = yAxis print(xStore, yStore) ``` - The redline position is located at y = 252. ### Extract Blue Points ``` redline_pos = 51 absMax = 0 littmannArr = [] points_vertical = [] theOne = 0 for xAxis in range(x): for yAxis in range(y): currentPoint = matrix[xAxis][yAxis] # Pickup Blue points if currentPoint[2] == 255 and currentPoint[0] < 220 and currentPoint[1] < 220: points_vertical.append(yAxis) #print(points_vertical) # Choose the largest amplitude for item in points_vertical: if abs(item-redline_pos) > absMax: absMax = abs(item-redline_pos) theOne = item littmannArr.append((theOne-redline_pos)*800) absMax = 0 theOne = 0 points_vertical = [] fig = plt.figure() s = fig.add_subplot(111) s.plot(littmannArr, linewidth=0.6, color='blue') ``` # Ascul Pi Data ``` pathBase = 'C://Users//triti//OneDrive//Dowrun//Text//Manuscripts//Data//YangChuan//AusculPi//' filename = 'Numpy_Array_File_2020-06-21_07_54_16.npy' line = pathBase + filename arr = np.load(line) arr arr.shape fig = plt.figure() s = fig.add_subplot(111) s.plot(arr[0], linewidth=1.0, color='black') fig = plt.figure() s = fig.add_subplot(111) s.plot(arr[:,100], linewidth=1.0, color='black') start = 1830 end = 2350 start_adj = int(start * 2583 / 3000) end_adj = int(end * 2583 / 3000) fig = plt.figure() s = fig.add_subplot(111) s.plot(arr[start_adj:end_adj,460], linewidth=0.6, color='black') fig = plt.figure() s = fig.add_subplot(111) s.plot(littmannArr, linewidth=0.6, color='blue') asculArr = arr[start_adj:end_adj,460] ``` ## Preprocess the two array ``` asculArr_processed = [] littmannArr_processed = [] for item in asculArr: asculArr_processed.append(abs(item)) for item in littmannArr: littmannArr_processed.append(abs(item)) fig = plt.figure() s = fig.add_subplot(111) s.plot(asculArr_processed, linewidth=0.6, color='black') fig = plt.figure() s = fig.add_subplot(111) s.plot(littmannArr_processed, linewidth=0.6, color='blue') fig = plt.figure() s = fig.add_subplot(111) s.plot(asculArr_processed[175:375], linewidth=1.0, color='black') fig = plt.figure() s = fig.add_subplot(111) s.plot(littmannArr_processed[:200], linewidth=1.0, color='blue') len(littmannArr) len(asculArr) ``` ### Coeffient ``` stats.pearsonr(asculArr_processed, littmannArr_processed) stats.pearsonr(asculArr_processed[176:336], littmannArr_processed[:160]) fig = plt.figure() s = fig.add_subplot(111) s.plot(arr[start_adj:end_adj,460][176:336], linewidth=0.6, color='black') fig = plt.figure() s = fig.add_subplot(111) s.plot(littmannArr[:160], linewidth=0.6, color='blue') ``` ### Fitness ``` stats.chisquare(asculArr_processed[174:334], littmannArr_processed[:160]) def cosCalculate(a, b): l = len(a) sumXY = 0 sumRootXSquare = 0 sumRootYSquare = 0 for i in range(l): sumXY = sumXY + a[i]*b[i] sumRootXSquare = sumRootXSquare + math.sqrt(a[i]**2) sumRootYSquare = sumRootYSquare + math.sqrt(b[i]**2) cosValue = sumXY / (sumRootXSquare * sumRootYSquare) return cosValue cosCalculate(asculArr_processed[175:335], littmannArr_processed[:160]) ```
true
code
0.313617
null
null
null
null
# How do distributions transform under a change of variables ? Kyle Cranmer, March 2016 ``` %pylab inline --no-import-all ``` We are interested in understanding how distributions transofrm under a change of variables. Let's start with a simple example. Think of a spinner like on a game of twister. <!--<img src="http://cdn.krrb.com/post_images/photos/000/273/858/DSCN3718_large.jpg?1393271975" width=300 />--> We flick the spinner and it stops. Let's call the angle of the pointer $x$. It seems a safe assumption that the distribution of $x$ is uniform between $[0,2\pi)$... so $p_x(x) = 1/\sqrt{2\pi}$ Now let's say that we change variables to $y=\cos(x)$ (sorry if the names are confusing here, don't think about x- and y-coordinates, these are just names for generic variables). The question is this: **what is the distribution of y?** Let's call it $p_y(y)$ Well it's easy to do with a simulation, let's try it out ``` # generate samples for x, evaluate y=cos(x) n_samples = 100000 x = np.random.uniform(0,2*np.pi,n_samples) y = np.cos(x) # make a histogram of x n_bins = 50 counts, bins, patches = plt.hist(x, bins=50, density=True, alpha=0.3) plt.plot([0,2*np.pi], (1./2/np.pi, 1./2/np.pi), lw=2, c='r') plt.xlim(0,2*np.pi) plt.xlabel('x') plt.ylabel('$p_x(x)$') ``` Ok, now let's make a histogram for $y=\cos(x)$ ``` counts, y_bins, patches = plt.hist(y, bins=50, density=True, alpha=0.3) plt.xlabel('y') plt.ylabel('$p_y(y)$') ``` It's not uniform! Why is that? Let's look at the $x-y$ relationship ``` # make a scatter of x,y plt.scatter(x[:300],y[:300]) #just the first 300 points xtest = .2 plt.plot((-1,xtest),(np.cos(xtest),np.cos(xtest)), c='r') plt.plot((xtest,xtest),(-1.5,np.cos(xtest)), c='r') xtest = xtest+.1 plt.plot((-1,xtest),(np.cos(xtest),np.cos(xtest)), c='r') plt.plot((xtest,xtest),(-1.5,np.cos(xtest)), c='r') xtest = 2*np.pi-xtest plt.plot((-1,xtest),(np.cos(xtest),np.cos(xtest)), c='g') plt.plot((xtest,xtest),(-1.5,np.cos(xtest)), c='g') xtest = xtest+.1 plt.plot((-1,xtest),(np.cos(xtest),np.cos(xtest)), c='g') plt.plot((xtest,xtest),(-1.5,np.cos(xtest)), c='g') xtest = np.pi/2 plt.plot((-1,xtest),(np.cos(xtest),np.cos(xtest)), c='r') plt.plot((xtest,xtest),(-1.5,np.cos(xtest)), c='r') xtest = xtest+.1 plt.plot((-1,xtest),(np.cos(xtest),np.cos(xtest)), c='r') plt.plot((xtest,xtest),(-1.5,np.cos(xtest)), c='r') xtest = 2*np.pi-xtest plt.plot((-1,xtest),(np.cos(xtest),np.cos(xtest)), c='g') plt.plot((xtest,xtest),(-1.5,np.cos(xtest)), c='g') xtest = xtest+.1 plt.plot((-1,xtest),(np.cos(xtest),np.cos(xtest)), c='g') plt.plot((xtest,xtest),(-1.5,np.cos(xtest)), c='g') plt.ylim(-1.5,1.5) plt.xlim(-1,7) ``` The two sets of vertical lines are both separated by $0.1$. The probability $P(a < x < b)$ must equal the probability of $P( cos(b) < y < cos(a) )$. In this example there are two different values of $x$ that give the same $y$ (see green and red lines), so we need to take that into account. For now, let's just focus on the first part of the curve with $x<\pi$. So we can write (this is the important equation): \begin{equation} \int_a^b p_x(x) dx = \int_{y_b}^{y_a} p_y(y) dy \end{equation} where $y_a = \cos(a)$ and $y_b = \cos(b)$. and we can re-write the integral on the right by using a change of variables (pure calculus) \begin{equation} \int_a^b p_x(x) dx = \int_{y_b}^{y_a} p_y(y) dy = \int_a^b p_y(y(x)) \left| \frac{dy}{dx}\right| dx \end{equation} notice that the limits of integration and integration variable are the same for the left and right sides of the equation, so the integrands must be the same too. Therefore: \begin{equation} p_x(x) = p_y(y) \left| \frac{dy}{dx}\right| \end{equation} and equivalently \begin{equation} p_y(y) = p_x(x) \,/ \,\left| \, {dy}/{dx}\, \right | \end{equation} The factor $\left|\frac{dy}{dx} \right|$ is called a Jacobian. When it is large it is stretching the probability in $x$ over a large range of $y$, so it makes sense that it is in the denominator. ``` plt.plot((0.,1), (0,.3)) plt.plot((0.,1), (0,0), lw=2) plt.plot((1.,1), (0,.3)) plt.ylim(-.1,.4) plt.xlim(-.1,1.6) plt.text(0.5,0.2, '1', color='b') plt.text(0.2,0.03, 'x', color='black') plt.text(0.5,-0.05, 'y=cos(x)', color='g') plt.text(1.02,0.1, '$\sin(x)=\sqrt{1-y^2}$', color='r') ``` In our case: \begin{equation} \left|\frac{dy}{dx} \right| = \sin(x) \end{equation} Looking at the right-triangle above you can see $\sin(x)=\sqrt{1-y^2}$ and finally there will be an extra factor of 2 for $p_y(y)$ to take into account $x>\pi$. So we arrive at \begin{equation} p_y(y) = 2 \times \frac{1}{2 \pi} \frac{1}{\sin(x)} = \frac{1}{\pi} \frac{1}{\sin(\arccos(y))} = \frac{1}{\pi} \frac{1}{\sqrt{1-y^2}} \end{equation} Notice that when $y=\pm 1$ the pdf is diverging. This is called a [caustic](http://www.phikwadraat.nl/huygens_cusp_of_tea/) and you see them in your coffee and rainbows! | | | |---|---| | <img src="http://www.nanowerk.com/spotlight/id19915_1.jpg" size=200 /> | <img src="http://www.ams.org/featurecolumn/images/february2009/caustic.gif" size=200> | **Let's check our prediction** ``` counts, y_bins, patches = plt.hist(y, bins=50, density=True, alpha=0.3) pdf_y = (1./np.pi)/np.sqrt(1.-y_bins**2) plt.plot(y_bins, pdf_y, c='r', lw=2) plt.ylim(0,5) plt.xlabel('y') plt.ylabel('$p_y(y)$') ``` Perfect! ## A trick using the cumulative distribution function (cdf) to generate random numbers Let's consider a different variable transformation now -- it is a special one that we can use to our advantage. \begin{equation} y(x) = \textrm{cdf}(x) = \int_{-\infty}^x p_x(x') dx' \end{equation} Here's a plot of a distribution and cdf for a Gaussian. (NOte: the axes are different for the pdf and the cdf http://matplotlib.org/examples/api/two_scales.html ``` from scipy.stats import norm x_for_plot = np.linspace(-3,3, 30) fig, ax1 = plt.subplots() ax1.plot(x_for_plot, norm.pdf(x_for_plot), c='b') ax1.set_ylabel('p(x)', color='b') for tl in ax1.get_yticklabels(): tl.set_color('b') ax2 = ax1.twinx() ax2.plot(x_for_plot, norm.cdf(x_for_plot), c='r') ax2.set_ylabel('cdf(x)', color='r') for tl in ax2.get_yticklabels(): tl.set_color('r') ``` Ok, so let's use our result about how distributions transform under a change of variables to predict the distribution of $y=cdf(x)$. We need to calculate \begin{equation} \frac{dy}{dx} = \frac{d}{dx} \int_{-\infty}^x p_x(x') dx' \end{equation} Just like particles and anti-particles, when derivatives meet anti-derivatives they annihilate. So $\frac{dy}{dx} = p_x(x)$, which shouldn't be a surprise.. the slope of the cdf is the pdf. So putting these together we find the distribution for $y$ is: \begin{equation} p_y(y) = p_x(x) \, / \, \frac{dy}{dx} = p_x(x) /p_x(x) = 1 \end{equation} So it's just a uniform distribution from $[0,1]$, which is perfect for random numbers. We can turn this around and generate a uniformly random number between $[0,1]$, take the inverse of the cdf and we should have the distribution we want for $x$. Let's try it for a Gaussian. The inverse of the cdf for a Gaussian is called [ppf](http://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.stats.norm.html) ``` norm.ppf.__doc__ #check it out norm.cdf(0), norm.ppf(0.5) ``` Ok, let's use CDF trick to generate Normally-distributed (aka Gaussian-distributed) random numbers ``` rand_cdf = np.random.uniform(0,1,10000) rand_norm = norm.ppf(rand_cdf) _ = plt.hist(rand_norm, bins=30, density=True, alpha=0.3) plt.xlabel('x') ``` **Pros**: The great thing about this technique is it is very efficient. You only generate one random number per random $x$. **Cons**: the downside is you need to know how to compute the inverse cdf for $p_x(x)$ and that can be difficult. It works for a distribution like a Gaussian, but for some random distribution this might be even more computationally expensive than the accept/reject approach. This approach also doesn't really work if your distribution is for more than one variable. ## Going full circle Ok, let's try it for our distribution of $y=\cos(x)$ above. We found \begin{equation} p_y(y) = \frac{1}{\pi} \frac{1}{\sqrt{1-y^2}} \end{equation} So the CDF is (see Wolfram alpha for [integral](http://www.wolframalpha.com/input/?i=integrate%5B1%2Fsqrt%5B1-x%5E2%5D%2FPi%5D) ) \begin{equation} cdf(y') = \int_{-1}^{y'} \frac{1}{\pi} \frac{1}{\sqrt{1-y^2}} = \frac{1}{\pi}\arcsin(y') + C \end{equation} and we know that for $y=-1$ the CDF must be 0, so the constant is $1/2$ and by looking at the plot or remembering some trig you know that it's also $cdf(y') = (1/\pi) \arccos(y')$. So to apply the trick, we need to generate uniformly random variables $z$ between 0 and 1, and then take the inverse of the cdf to get $y$. Ok, so what would that be: \begin{equation} y = \textrm{cdf}^{-1}(z) = \cos(\pi z) \end{equation} **Of course!** that's how we started in the first place, we started with a uniform $x$ in $[0,2\pi]$ and then defined $y=\cos(x)$. So we just worked backwards to get where we started. The only difference here is that we only evaluate the first half: $\cos(x < \pi)$
true
code
0.608652
null
null
null
null
# Distributed Training with Keras ## Import dependencies ``` import tensorflow_datasets as tfds import tensorflow as tf from tensorflow import keras import os print(tf.__version__) ``` ## Dataset - Fashion MNIST ``` #datasets, info = tfds.load(name='mnist', with_info=True, as_supervised=True) #mnist_train, mnist_test = datasets['train'], datasets['test'] fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() ``` ## Define a distribution Strategy ``` strategy = tf.distribute.MirroredStrategy() print('Number of devices: {}'.format(strategy.num_replicas_in_sync)) num_train_examples = len(train_images)#info.splits['train'].num_examples print(num_train_examples) num_test_examples = len(test_images) #info.splits['test'].num_examples print(num_test_examples) BUFFER_SIZE = 10000 BATCH_SIZE_PER_REPLICA = 64 BATCH_SIZE = BATCH_SIZE_PER_REPLICA * strategy.num_replicas_in_sync #train_dataset = train_images.map(scale).cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE) #eval_dataset = test_images.map(scale).batch(BATCH_SIZE) class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot'] with strategy.scope(): model = keras.Sequential([ keras.layers.Flatten(input_shape=(28, 28)), keras.layers.Dense(128, activation='relu'), keras.layers.Dense(10) ]) model.compile(loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), optimizer='adam', metrics=['accuracy']) # Define the checkpoint directory to store the checkpoints checkpoint_dir = './training_checkpoints' # Name of the checkpoint files checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt_{epoch}") # Function for decaying the learning rate. # You can define any decay function you need. def decay(epoch): if epoch < 3: return 1e-3 elif epoch >= 3 and epoch < 7: return 1e-4 else: return 1e-5 class PrintLR(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): print('\nLearning rate for epoch {} is {}'.format(epoch + 1, model.optimizer.lr.numpy())) from tensorflow.keras.callbacks import ModelCheckpoint #checkpoint = ModelCheckpoint(ckpt_model, # monitor='val_accuracy', # verbose=1, # save_best_only=True, # mode='max') callbacks = [ tf.keras.callbacks.TensorBoard(log_dir='./logs'), tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix, save_weights_only=True), tf.keras.callbacks.LearningRateScheduler(decay), PrintLR() ] #model.fit(train_dataset, epochs=12, callbacks=callbacks) history = model.fit(train_images, train_labels,validation_data=(test_images, test_labels), epochs=15,callbacks=callbacks) history.history.keys import matplotlib.pyplot as plt %matplotlib inline plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('Model Accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'test']) plt.show() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('Model Loss') plt.ylabel('Loss') plt.xlabel('epoch') plt.legend(['train', 'test']) plt.show() ```
true
code
0.779574
null
null
null
null
``` import matplotlib.pyplot as plt import numpy as np import pandas as pd ``` Manually Principal Component Analysis ``` #Reading wine data df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/' 'machine-learning-databases/wine/wine.data', header=None) # in the data first column is class label and rest # 13 columns are different features X,y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values #Splitting Data into training set and test set #using scikit-learn from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = \ train_test_split(X, y, test_size=0.3, stratify=y, random_state=0) #Standardarising all the columns from sklearn.preprocessing import StandardScaler sc = StandardScaler() X_train_std = sc.fit_transform(X_train) X_test_std = sc.transform(X_test) # covariance matrix using numpy cov_mat = np.cov(X_train_std.T) # eigen pair eigen_vals, eigen_vecs = np.linalg.eig(cov_mat) print('\nEigenvalues \n%s' % eigen_vecs[:3]) # only three rows are printed # representing relative importance of features tot = eigen_vals.sum() var_exp = [(i/tot) for i in sorted(eigen_vals, reverse=True)] cum_var_exp = np.cumsum(var_exp) import matplotlib.pyplot as plt plt.bar(range(1,14), var_exp, alpha=0.5, align='center', label='Individual explained variance') plt.step(range(1,14), cum_var_exp, where='mid', label='CUmmulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal component index') plt.legend(loc='best') plt.tight_layout() plt.show() # plots explained variance ration of the features # Explained variance is variance of one feature / sum of all the variances # sorting the eigenpairs by decreasing order of the eigenvalues: # list of (eigenvalue, eigenvector) tuples eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:, i]) for i in range(len(eigen_vals))] # Sort the (eigenvalue, eigenvector) tuples from high to low eigen_pairs.sort(key=lambda k:k[0], reverse=True) # We take first two features which account for about 60% of variance w = np.hstack((eigen_pairs[0][1][:, np.newaxis], eigen_pairs[1][1][:, np.newaxis])) # w is projection matrix print('Matrix W:\n', w) # converting 13 feature data to 2 feature data X_train_pca = X_train_std.dot(w) # Plotting the features on colors = ['r', 'b', 'g'] markers = ['s', 'x', 'o'] for l,c,m in zip(np.unique(y_train), colors, markers): plt.scatter(X_train_pca[y_train==l, 0], X_train_pca[y_train==l, 1], c = c, label=l, marker = m) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='best') plt.tight_layout() plt.show() ``` Using Scikit Learn ``` # Class to plot decision region from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): markers = ('s', 'x', 'o', '^', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) x1_min, x1_max = X[:, 0].min()-1, X[:, 0].max()+1 x2_min, x2_max = X[:, 1].min()-1, X[:, 1].max()+1 xx1,xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) Z = Z.reshape(xx1.shape) plt.contourf(xx1,xx2,Z, alpha=0.4, cmap=cmap) plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) for idx, cl in enumerate(np.unique(y)): plt.scatter(x = X[y==cl, 0], y = X[y==cl, 1], alpha = 0.6, color = cmap(idx), edgecolor='black', marker=markers[idx], label=cl) # Plotting decision region of training set after applying PCA from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA pca = PCA(n_components=2) lr = LogisticRegression(multi_class='ovr', random_state=1, solver = 'lbfgs') X_train_pca = pca.fit_transform(X_train_std) X_test_pca = pca.transform(X_test_std) lr.fit(X_train_pca, y_train) plot_decision_regions(X_train_pca, y_train, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() # plotting decision regions of test data set after applying PCA plot_decision_regions(X_test_pca, y_test, classifier=lr) plt.xlabel('PC 1') plt.ylabel('PC 2') plt.legend(loc='lower left') plt.tight_layout() plt.show() # finding explained variance ratio using scikit learn pca1 = PCA(n_components=None) X_train_pca1 = pca1.fit_transform(X_train_std) pca1.explained_variance_ratio_ ```
true
code
0.664268
null
null
null
null
### 6. Python API Training - Continuous Model Training [Solution] <b>Author:</b> Thodoris Petropoulos <br> <b>Contributors:</b> Rajiv Shah This is the 6th exercise to complete in order to finish your `Python API Training for DataRobot` course! This exercise teaches you how to deploy a trained model, make predictions (**Warning**: Multiple ways of getting predictions out of DataRobot), and monitor drift to replace a model. Here are the actual sections of the notebook alongside time to complete: 1. Connect to DataRobot. [3min]<br> 2. Retrieve the first project created in `Exercise 4 - Model Factory`. [5min] 3. Search for the `recommended for deployment` model and deploy it as a rest API. [20min] 4. Create a scoring procedure using dataset (1) that will force data drift on that deployment. [25min] 5. Check data drift. Does it look like data is drifting?. [3min] 6. Create a new project using data (2). [5min] 7. Replace the previously deployed model with the new `recommended for deployment` model from the new project. [10min] Each section will have specific instructions so do not worry if things are still blurry! As always, consult: - [API Documentation](https://datarobot-public-api-client.readthedocs-hosted.com) - [Samples](https://github.com/datarobot-community/examples-for-data-scientists) - [Tutorials](https://github.com/datarobot-community/tutorials-for-data-scientists) The last two links should provide you with the snippets you need to complete most of these exercises. <b>Data</b> (1) The dataset we will be using throughout these exercises is the well-known `readmissions dataset`. You can access it or directly download it through DataRobot's public S3 bucket [here](https://s3.amazonaws.com/datarobot_public_datasets/10k_diabetes.csv). (2) This dataset will be used to retrain the model. It can be accessed [here](https://s3.amazonaws.com/datarobot_public_datasets/10k_diabetes_scoring.csv) through DataRobot's public S3 bucket. ### Import Libraries Import libraries here as you start finding out what libraries are needed. The DataRobot package is already included for your convenience. ``` import datarobot as dr #Proposed Libraries needed import pandas as pd ``` ### 1. Connect to DataRobot [3min] ``` #Possible solution dr.Client(config_path='../../github/config.yaml') ``` ### 2. Retrieve the first project created in `Exercise 4 - Model Factory` . [5min] This should be the first project created during the exercise. Not one of the projects created using a sample of `readmission_type_id`. ``` #Proposed Solution project = dr.Project.get('YOUR_PROJECT_ID') ``` ### 3. Search for the `recommended for deployment` model and deploy it as a rest API. [10min] **Hint**: The recommended model can be found using the `DataRobot.ModelRecommendation` method. **Hint 2**: Use the `update_drift_tracking_settings` method on the DataRobot Deployment object to enable data drift tracking. ``` # Proposed Solution #Find the recommended model recommended_model = dr.ModelRecommendation.get(project.id).get_model() #Deploy the model prediction_server = dr.PredictionServer.list()[0] deployment = dr.Deployment.create_from_learning_model(recommended_model.id, label='Readmissions Deployment', default_prediction_server_id=prediction_server.id) deployment.update_drift_tracking_settings(feature_drift_enabled=True) ``` ### 4. Create a scoring procedure using dataset (1) that will force data drift on that deployment. [25min] **Instructions** 1. Take the first 100 rows of dataset (1) and save them to a Pandas DataFrame 2. Score 5 times using these observations to force drift. 3. Use the deployment you created during `question 3`. **Hint**: The easiest way to score using a deployed model in DataRobot is to go to the `Deployments` page within DataRobot and navigate to the `Integrations` and `scoring code` tab. There you will find sample code for Python that you can use to score. **Hint 2**: The only thing you will have to change for the code to work is change the filename variable to point to the csv file to be scored and create a for loop. ``` # Proposed Solution #Save the dataset that is going to be scored as a csv file scoring_dataset = pd.read_csv('https://s3.amazonaws.com/datarobot_public_datasets/10k_diabetes.csv').head(100) scoring_dataset.to_csv('scoring_dataset.csv', index=False) #This has been copied from the `integrations` tab. #The only thing you actually have to do is change the filename variable in the bottom of the script and #create the for loop. """ Usage: python datarobot-predict.py <input-file.csv> This example uses the requests library which you can install with: pip install requests We highly recommend that you update SSL certificates with: pip install -U urllib3[secure] certifi """ import sys import json import requests DATAROBOT_KEY = '' API_KEY = '' USERNAME = '' DEPLOYMENT_ID = '' MAX_PREDICTION_FILE_SIZE_BYTES = 52428800 # 50 MB class DataRobotPredictionError(Exception): """Raised if there are issues getting predictions from DataRobot""" def make_datarobot_deployment_predictions(data, deployment_id): """ Make predictions on data provided using DataRobot deployment_id provided. See docs for details: https://app.eu.datarobot.com/docs/users-guide/predictions/api/new-prediction-api.html Parameters ---------- data : str Feature1,Feature2 numeric_value,string deployment_id : str The ID of the deployment to make predictions with. Returns ------- Response schema: https://app.eu.datarobot.com/docs/users-guide/predictions/api/new-prediction-api.html#response-schema Raises ------ DataRobotPredictionError if there are issues getting predictions from DataRobot """ # Set HTTP headers. The charset should match the contents of the file. headers = {'Content-Type': 'text/plain; charset=UTF-8', 'datarobot-key': DATAROBOT_KEY} url = 'https://cfds.orm.eu.datarobot.com/predApi/v1.0/deployments/{deployment_id}/'\ 'predictions'.format(deployment_id=deployment_id) # Make API request for predictions predictions_response = requests.post( url, auth=(USERNAME, API_KEY), data=data, headers=headers, ) _raise_dataroboterror_for_status(predictions_response) # Return a Python dict following the schema in the documentation return predictions_response.json() def _raise_dataroboterror_for_status(response): """Raise DataRobotPredictionError if the request fails along with the response returned""" try: response.raise_for_status() except requests.exceptions.HTTPError: err_msg = '{code} Error: {msg}'.format( code=response.status_code, msg=response.text) raise DataRobotPredictionError(err_msg) def main(filename, deployment_id): """ Return an exit code on script completion or error. Codes > 0 are errors to the shell. Also useful as a usage demonstration of `make_datarobot_deployment_predictions(data, deployment_id)` """ if not filename: print( 'Input file is required argument. ' 'Usage: python datarobot-predict.py <input-file.csv>') return 1 data = open(filename, 'rb').read() data_size = sys.getsizeof(data) if data_size >= MAX_PREDICTION_FILE_SIZE_BYTES: print( 'Input file is too large: {} bytes. ' 'Max allowed size is: {} bytes.' ).format(data_size, MAX_PREDICTION_FILE_SIZE_BYTES) return 1 try: predictions = make_datarobot_deployment_predictions(data, deployment_id) except DataRobotPredictionError as exc: print(exc) return 1 print(json.dumps(predictions, indent=4)) return 0 for i in range(0,5): filename = 'scoring_dataset.csv' main(filename, DEPLOYMENT_ID) ``` ### 5. Check data drift. Does it look like data is drifting?. [3min] Check data drift from within the `Deployments` page in the UI. Is data drift marked as red? ### 6. Create a new project using data (2). [5min] Link to data: https://s3.amazonaws.com/datarobot_public_datasets/10k_diabetes_scoring.csv ``` #Proposed solution new_project = dr.Project.create(sourcedata = 'https://s3.amazonaws.com/datarobot_public_datasets/10k_diabetes_scoring.csv', project_name = '06_New_Project') new_project.set_target(target = 'readmitted', mode = 'quick', worker_count = -1) new_project.wait_for_autopilot() ``` ### 7. Replace the previously deployed model with the new `recommended for deployment` model from the new project. [10min] **Hint**: You will have to provide a reason why you are replacing the model. Try: `dr.enums.MODEL_REPLACEMENT_REASON.DATA_DRIFT`. ``` #Proposed Solution new_recommended_model = dr.ModelRecommendation.get(new_project.id).get_model() deployment.replace_model(new_recommended_model.id, dr.enums.MODEL_REPLACEMENT_REASON.DATA_DRIFT) ```
true
code
0.67077
null
null
null
null
# Lightweight python components Lightweight python components do not require you to build a new container image for every code change. They're intended to use for fast iteration in notebook environment. **Building a lightweight python component** To build a component just define a stand-alone python function and then call kfp.components.func_to_container_op(func) to convert it to a component that can be used in a pipeline. There are several requirements for the function: - The function should be stand-alone. It should not use any code declared outside of the function definition. Any imports should be added inside the main function. Any helper functions should also be defined inside the main function. - The function can only import packages that are available in the base image. If you need to import a package that's not available you can try to find a container image that already includes the required packages. (As a workaround you can use the module subprocess to run pip install for the required package. There is an example below in my_divmod function.) - If the function operates on numbers, the parameters need to have type hints. Supported types are [int, float, bool]. Everything else is passed as string. - To build a component with multiple output values, use the typing.NamedTuple type hint syntax: NamedTuple('MyFunctionOutputs', [('output_name_1', type), ('output_name_2', float)]) ``` # Install the dependency packages !pip install --upgrade pip !pip install numpy tensorflow kfp-tekton ``` **Important**: If you are running this notebook using the Kubeflow Jupyter Server, you need to restart the Python **Kernel** because the packages above overwrited some default packages inside the Kubeflow Jupyter image. ``` import kfp import kfp.components as comp ``` Simple function that just add two numbers: ``` #Define a Python function def add(a: float, b: float) -> float: '''Calculates sum of two arguments''' return a + b ``` Convert the function to a pipeline operation ``` add_op = comp.func_to_container_op(add) ``` A bit more advanced function which demonstrates how to use imports, helper functions and produce multiple outputs. ``` #Advanced function #Demonstrates imports, helper functions and multiple outputs from typing import NamedTuple def my_divmod(dividend: float, divisor:float) -> NamedTuple('MyDivmodOutput', [('quotient', float), ('remainder', float), ('mlpipeline_ui_metadata', 'UI_metadata'), ('mlpipeline_metrics', 'Metrics')]): '''Divides two numbers and calculate the quotient and remainder''' #Pip installs inside a component function. #NOTE: installs should be placed right at the beginning to avoid upgrading a package # after it has already been imported and cached by python import sys, subprocess; subprocess.run([sys.executable, '-m', 'pip', 'install', 'tensorflow==1.8.0']) #Imports inside a component function: import numpy as np #This function demonstrates how to use nested functions inside a component function: def divmod_helper(dividend, divisor): return np.divmod(dividend, divisor) (quotient, remainder) = divmod_helper(dividend, divisor) from tensorflow.python.lib.io import file_io import json # Exports a sample tensorboard: metadata = { 'outputs' : [{ 'type': 'tensorboard', 'source': 'gs://ml-pipeline-dataset/tensorboard-train', }] } # Exports two sample metrics: metrics = { 'metrics': [{ 'name': 'quotient', 'numberValue': float(quotient), },{ 'name': 'remainder', 'numberValue': float(remainder), }]} from collections import namedtuple divmod_output = namedtuple('MyDivmodOutput', ['quotient', 'remainder', 'mlpipeline_ui_metadata', 'mlpipeline_metrics']) return divmod_output(quotient, remainder, json.dumps(metadata), json.dumps(metrics)) ``` Test running the python function directly ``` my_divmod(100, 7) ``` #### Convert the function to a pipeline operation You can specify an alternative base container image (the image needs to have Python 3.5+ installed). ``` divmod_op = comp.func_to_container_op(my_divmod, base_image='tensorflow/tensorflow:1.11.0-py3') ``` #### Define the pipeline Pipeline function has to be decorated with the `@dsl.pipeline` decorator ``` import kfp.dsl as dsl @dsl.pipeline( name='Calculation pipeline', description='A toy pipeline that performs arithmetic calculations.' ) # Currently kfp-tekton doesn't support pass parameter to the pipelinerun yet, so we hard code the number here def calc_pipeline( a='7', b='8', c='17', ): #Passing pipeline parameter and a constant value as operation arguments add_task = add_op(a, 4) #Returns a dsl.ContainerOp class instance. #Passing a task output reference as operation arguments #For an operation with a single return value, the output reference can be accessed using `task.output` or `task.outputs['output_name']` syntax divmod_task = divmod_op(add_task.output, b) #For an operation with a multiple return values, the output references can be accessed using `task.outputs['output_name']` syntax result_task = add_op(divmod_task.outputs['quotient'], c) ``` Compile and run the pipeline into Tekton yaml using kfp-tekton SDK ``` # Specify pipeline argument values arguments = {'a': '7', 'b': '8'} # Specify Kubeflow Pipeline Host host=None # Submit a pipeline run using the KFP Tekton client. from kfp_tekton import TektonClient TektonClient(host=host).create_run_from_pipeline_func(calc_pipeline, arguments=arguments) # For Argo users, submit the pipeline run using the below client. # kfp.Client(host=host).create_run_from_pipeline_func(calc_pipeline, arguments=arguments) ```
true
code
0.71729
null
null
null
null
<a href="https://colab.research.google.com/github/JoanesMiranda/Machine-learning/blob/master/Autoenconder.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ### Importando as bibliotecas necessárias ``` import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.datasets import mnist ``` ### Carregando a base de dados ``` (x_train, y_train),(x_test, y_test) = mnist.load_data() ``` ### Plotando uma amostra das imagens ``` plt.imshow(x_train[10], cmap="gray") ``` ### Aplicando normalização nos dados de treino e teste ``` x_train = x_train / 255.0 x_test = x_test / 255.0 print(x_train.shape) print(x_test.shape) ``` ### Adicionando ruido a base de treino ``` noise = 0.3 noise_x_train = [] for img in x_train: noisy_image = img + noise * np.random.randn(*img.shape) noisy_image = np.clip(noisy_image, 0., 1.) noise_x_train.append(noisy_image) noise_x_train = np.array(noise_x_train) print(noise_x_train.shape) ``` ### Plotando uma amostra da imagem com o ruido aplicado ``` plt.imshow(noise_x_train[10], cmap="gray") ``` ### Adicionando ruido a base de teste ``` noise = 0.3 noise_x_test = [] for img in x_train: noisy_image = img + noise * np.random.randn(*img.shape) noisy_image = np.clip(noisy_image, 0., 1.) noise_x_test.append(noisy_image) noise_x_test = np.array(noise_x_test) print(noise_x_test.shape) ``` ### Plotando uma amostra da imagem com o ruido aplicado ``` plt.imshow(noise_x_test[10], cmap="gray") noise_x_train = np.reshape(noise_x_train,(-1, 28, 28, 1)) noise_x_test = np.reshape(noise_x_test,(-1, 28, 28, 1)) print(noise_x_train.shape) print(noise_x_test.shape) ``` ### Autoencoder ``` x_input = tf.keras.layers.Input((28,28,1)) # encoder x = tf.keras.layers.Conv2D(filters=16, kernel_size=3, strides=2, padding='same')(x_input) x = tf.keras.layers.Conv2D(filters=8, kernel_size=3, strides=2, padding='same')(x) # decoder x = tf.keras.layers.Conv2DTranspose(filters=16, kernel_size=3, strides=2, padding='same')(x) x = tf.keras.layers.Conv2DTranspose(filters=1, kernel_size=3, strides=2, activation='sigmoid', padding='same')(x) model = tf.keras.models.Model(inputs=x_input, outputs=x) model.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=0.001)) model.summary() ``` ### Treinando os dados ``` model.fit(noise_x_train, x_train, batch_size=100, validation_split=0.1, epochs=10) ``` ### Realizando a predição das imagens usando os dados de teste com o ruido aplicado ``` predicted = model.predict(noise_x_test) predicted ``` ### Plotando as imagens com ruido e depois de aplicar o autoencoder ``` fig, axes = plt.subplots(nrows=2, ncols=10, sharex=True, sharey=True, figsize=(20,4)) for images, row in zip([noise_x_test[:10], predicted], axes): for img, ax in zip(images, row): ax.imshow(img.reshape((28, 28)), cmap='Greys_r') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ```
true
code
0.685265
null
null
null
null
# Explicit Feedback Neural Recommender Systems Goals: - Understand recommender data - Build different models architectures using Keras - Retrieve Embeddings and visualize them - Add metadata information as input to the model ``` %matplotlib inline import matplotlib.pyplot as plt import numpy as np import os.path as op from zipfile import ZipFile try: from urllib.request import urlretrieve except ImportError: # Python 2 compat from urllib import urlretrieve ML_100K_URL = "http://files.grouplens.org/datasets/movielens/ml-100k.zip" ML_100K_FILENAME = ML_100K_URL.rsplit('/', 1)[1] ML_100K_FOLDER = 'ml-100k' if not op.exists(ML_100K_FILENAME): print('Downloading %s to %s...' % (ML_100K_URL, ML_100K_FILENAME)) urlretrieve(ML_100K_URL, ML_100K_FILENAME) if not op.exists(ML_100K_FOLDER): print('Extracting %s to %s...' % (ML_100K_FILENAME, ML_100K_FOLDER)) ZipFile(ML_100K_FILENAME).extractall('.') ``` ### Ratings file Each line contains a rated movie: - a user - an item - a rating from 1 to 5 stars ``` import pandas as pd raw_ratings = pd.read_csv(op.join(ML_100K_FOLDER, 'u.data'), sep='\t', names=["user_id", "item_id", "rating", "timestamp"]) raw_ratings.head() ``` ### Item metadata file The item metadata file contains metadata like the name of the movie or the date it was released. The movies file contains columns indicating the movie's genres. Let's only load the first five columns of the file with `usecols`. ``` m_cols = ['item_id', 'title', 'release_date', 'video_release_date', 'imdb_url'] items = pd.read_csv(op.join(ML_100K_FOLDER, 'u.item'), sep='|', names=m_cols, usecols=range(5), encoding='latin-1') items.head() ``` Let's write a bit of Python preprocessing code to extract the release year as an integer value: ``` def extract_year(release_date): if hasattr(release_date, 'split'): components = release_date.split('-') if len(components) == 3: return int(components[2]) # Missing value marker return 1920 items['release_year'] = items['release_date'].map(extract_year) items.hist('release_year', bins=50); ``` Enrich the raw ratings data with the collected items metadata: ``` all_ratings = pd.merge(items, raw_ratings) all_ratings.head() ``` ### Data preprocessing To understand well the distribution of the data, the following statistics are computed: - the number of users - the number of items - the rating distribution - the popularity of each movie ``` max_user_id = all_ratings['user_id'].max() max_user_id max_item_id = all_ratings['item_id'].max() max_item_id all_ratings['rating'].describe() ``` Let's do a bit more pandas magic compute the popularity of each movie (number of ratings): ``` popularity = all_ratings.groupby('item_id').size().reset_index(name='popularity') items = pd.merge(popularity, items) items.nlargest(10, 'popularity') ``` Enrich the ratings data with the popularity as an additional metadata. ``` all_ratings = pd.merge(popularity, all_ratings) all_ratings.head() ``` Later in the analysis we will assume that this popularity does not come from the ratings themselves but from an external metadata, e.g. box office numbers in the month after the release in movie theaters. Let's split the enriched data in a train / test split to make it possible to do predictive modeling: ``` from sklearn.model_selection import train_test_split ratings_train, ratings_test = train_test_split( all_ratings, test_size=0.2, random_state=0) user_id_train = np.array(ratings_train['user_id']) item_id_train = np.array(ratings_train['item_id']) rating_train = np.array(ratings_train['rating']) user_id_test = np.array(ratings_test['user_id']) item_id_test = np.array(ratings_test['item_id']) rating_test = np.array(ratings_test['rating']) ``` # Explicit feedback: supervised ratings prediction For each pair of (user, item) try to predict the rating the user would give to the item. This is the classical setup for building recommender systems from offline data with explicit supervision signal. ## Predictive ratings as a regression problem The following code implements the following architecture: <img src="images/rec_archi_1.svg" style="width: 600px;" /> ``` from tensorflow.keras.layers import Embedding, Flatten, Dense, Dropout from tensorflow.keras.layers import Dot from tensorflow.keras.models import Model # For each sample we input the integer identifiers # of a single user and a single item class RegressionModel(Model): def __init__(self, embedding_size, max_user_id, max_item_id): super().__init__() self.user_embedding = Embedding(output_dim=embedding_size, input_dim=max_user_id + 1, input_length=1, name='user_embedding') self.item_embedding = Embedding(output_dim=embedding_size, input_dim=max_item_id + 1, input_length=1, name='item_embedding') # The following two layers don't have parameters. self.flatten = Flatten() self.dot = Dot(axes=1) def call(self, inputs): user_inputs = inputs[0] item_inputs = inputs[1] user_vecs = self.flatten(self.user_embedding(user_inputs)) item_vecs = self.flatten(self.item_embedding(item_inputs)) y = self.dot([user_vecs, item_vecs]) return y model = RegressionModel(30, max_user_id, max_item_id) model.compile(optimizer='adam', loss='mae') # Useful for debugging the output shape of model initial_train_preds = model.predict([user_id_train, item_id_train]) initial_train_preds.shape ``` ### Model error Using `initial_train_preds`, compute the model errors: - mean absolute error - mean squared error Converting a pandas Series to numpy array is usually implicit, but you may use `rating_train.values` to do so explicitly. Be sure to monitor the shapes of each object you deal with by using `object.shape`. ``` # %load solutions/compute_errors.py squared_differences = np.square(initial_train_preds[:,0] - rating_train) absolute_differences = np.abs(initial_train_preds[:,0] - rating_train) print("Random init MSE: %0.3f" % np.mean(squared_differences)) print("Random init MAE: %0.3f" % np.mean(absolute_differences)) # You may also use sklearn metrics to do so using scikit-learn: from sklearn.metrics import mean_squared_error, mean_absolute_error print("Random init MSE: %0.3f" % mean_squared_error(initial_train_preds, rating_train)) print("Random init MAE: %0.3f" % mean_absolute_error(initial_train_preds, rating_train)) ``` ### Monitoring runs Keras enables to monitor various variables during training. `history.history` returned by the `model.fit` function is a dictionary containing the `'loss'` and validation loss `'val_loss'` after each epoch ``` %%time # Training the model history = model.fit([user_id_train, item_id_train], rating_train, batch_size=64, epochs=6, validation_split=0.1, shuffle=True) plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='validation') plt.ylim(0, 2) plt.legend(loc='best') plt.title('Loss'); ``` **Questions**: - Why is the train loss higher than the first loss in the first few epochs? - Why is Keras not computing the train loss on the full training set at the end of each epoch as it does on the validation set? Now that the model is trained, the model MSE and MAE look nicer: ``` from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error test_preds = model.predict([user_id_test, item_id_test]) print("Final test MSE: %0.3f" % mean_squared_error(test_preds, rating_test)) print("Final test MAE: %0.3f" % mean_absolute_error(test_preds, rating_test)) train_preds = model.predict([user_id_train, item_id_train]) print("Final train MSE: %0.3f" % mean_squared_error(train_preds, rating_train)) print("Final train MAE: %0.3f" % mean_absolute_error(train_preds, rating_train)) ``` ## A Deep recommender model Using a similar framework as previously, the following deep model described in the course was built (with only two fully connected) <img src="images/rec_archi_2.svg" style="width: 600px;" /> To build this model we will need a new kind of layer: ``` from tensorflow.keras.layers import Concatenate ``` ### Exercise - The following code has **4 errors** that prevent it from working correctly. **Correct them and explain** why they are critical. ``` # For each sample we input the integer identifiers # of a single user and a single item class DeepRegressionModel(Model): def __init__(self, embedding_size, max_user_id, max_item_id): super().__init__() self.user_embedding = Embedding(output_dim=embedding_size, input_dim=max_user_id + 1, input_length=1, name='user_embedding') self.item_embedding = Embedding(output_dim=embedding_size, input_dim=max_item_id + 1, input_length=1, name='item_embedding') # The following two layers don't have parameters. self.flatten = Flatten() self.concat = Concatenate() self.dropout = Dropout(0.99) self.dense1 = Dense(64, activation="relu") self.dense2 = Dense(2, activation="tanh") def call(self, inputs): user_inputs = inputs[0] item_inputs = inputs[1] user_vecs = self.flatten(self.user_embedding(user_inputs)) item_vecs = self.flatten(self.item_embedding(item_inputs)) input_vecs = self.concat([user_vecs, item_vecs]) y = self.dropout(input_vecs) y = self.dense1(y) y = self.dense2(y) return y model = DeepRegressionModel(30, max_user_id, max_item_id) model.compile(optimizer='adam', loss='binary_crossentropy') initial_train_preds = model.predict([user_id_train, item_id_train]) # %load solutions/deep_explicit_feedback_recsys.py # For each sample we input the integer identifiers # of a single user and a single item class DeepRegressionModel(Model): def __init__(self, embedding_size, max_user_id, max_item_id): super().__init__() self.user_embedding = Embedding(output_dim=embedding_size, input_dim=max_user_id + 1, input_length=1, name='user_embedding') self.item_embedding = Embedding(output_dim=embedding_size, input_dim=max_item_id + 1, input_length=1, name='item_embedding') # The following two layers don't have parameters. self.flatten = Flatten() self.concat = Concatenate() ## Error 1: Dropout was too high, preventing any training self.dropout = Dropout(0.5) self.dense1 = Dense(64, activation="relu") ## Error 2: output dimension was 2 where we predict only 1-d rating ## Error 3: tanh activation squashes the outputs between -1 and 1 ## when we want to predict values between 1 and 5 self.dense2 = Dense(1) def call(self, inputs): user_inputs = inputs[0] item_inputs = inputs[1] user_vecs = self.flatten(self.user_embedding(user_inputs)) item_vecs = self.flatten(self.item_embedding(item_inputs)) input_vecs = self.concat([user_vecs, item_vecs]) y = self.dropout(input_vecs) y = self.dense1(y) y = self.dense2(y) return y model = DeepRegressionModel(30, max_user_id, max_item_id) ## Error 4: A binary crossentropy loss is only useful for binary ## classification, while we are in regression (use mse or mae) model.compile(optimizer='adam', loss='mae') initial_train_preds = model.predict([user_id_train, item_id_train]) %%time history = model.fit([user_id_train, item_id_train], rating_train, batch_size=64, epochs=5, validation_split=0.1, shuffle=True) plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='validation') plt.ylim(0, 2) plt.legend(loc='best') plt.title('Loss'); train_preds = model.predict([user_id_train, item_id_train]) print("Final train MSE: %0.3f" % mean_squared_error(train_preds, rating_train)) print("Final train MAE: %0.3f" % mean_absolute_error(train_preds, rating_train)) test_preds = model.predict([user_id_test, item_id_test]) print("Final test MSE: %0.3f" % mean_squared_error(test_preds, rating_test)) print("Final test MAE: %0.3f" % mean_absolute_error(test_preds, rating_test)) ``` ### Home assignment: - Add another layer, compare train/test error - What do you notice? - Try adding more dropout and modifying layer sizes: should you increase or decrease the number of parameters ### Model Embeddings - It is possible to retrieve the embeddings by simply using the Keras function `model.get_weights` which returns all the model learnable parameters. - The weights are returned the same order as they were build in the model - What is the total number of parameters? ``` # weights and shape weights = model.get_weights() [w.shape for w in weights] # Solution: model.summary() user_embeddings = weights[0] item_embeddings = weights[1] print("First item name from metadata:", items["title"][1]) print("Embedding vector for the first item:") print(item_embeddings[1]) print("shape:", item_embeddings[1].shape) ``` ### Finding most similar items Finding k most similar items to a point in embedding space - Write in numpy a function to compute the cosine similarity between two points in embedding space - Write a function which computes the euclidean distance between a point in embedding space and all other points - Write a most similar function, which returns the k item names with lowest euclidean distance - Try with a movie index, such as 181 (Return of the Jedi). What do you observe? Don't expect miracles on such a small training set. Notes: - you may use `np.linalg.norm` to compute the norm of vector, and you may specify the `axis=` - the numpy function `np.argsort(...)` enables to compute the sorted indices of a vector - `items["name"][idxs]` returns the names of the items indexed by array idxs ``` # %load solutions/similarity.py EPSILON = 1e-07 def cosine(x, y): dot_pdt = np.dot(x, y.T) norms = np.linalg.norm(x) * np.linalg.norm(y) return dot_pdt / (norms + EPSILON) # Computes cosine similarities between x and all item embeddings def cosine_similarities(x): dot_pdts = np.dot(item_embeddings, x) norms = np.linalg.norm(x) * np.linalg.norm(item_embeddings, axis=1) return dot_pdts / (norms + EPSILON) # Computes euclidean distances between x and all item embeddings def euclidean_distances(x): return np.linalg.norm(item_embeddings - x, axis=1) # Computes top_n most similar items to an idx, def most_similar(idx, top_n=10, mode='euclidean'): sorted_indexes=0 if mode == 'euclidean': dists = euclidean_distances(item_embeddings[idx]) sorted_indexes = np.argsort(dists) idxs = sorted_indexes[0:top_n] return list(zip(items["title"][idxs], dists[idxs])) else: sims = cosine_similarities(item_embeddings[idx]) # [::-1] makes it possible to reverse the order of a numpy # array, this is required because most similar items have # a larger cosine similarity value sorted_indexes = np.argsort(sims)[::-1] idxs = sorted_indexes[0:top_n] return list(zip(items["title"][idxs], sims[idxs])) # sanity checks: print("cosine of item 1 and item 1: %0.3f" % cosine(item_embeddings[1], item_embeddings[1])) euc_dists = euclidean_distances(item_embeddings[1]) print(euc_dists.shape) print(euc_dists[1:5]) print() # Test on movie 181: Return of the Jedi print("Items closest to 'Return of the Jedi':") for title, dist in most_similar(181, mode="euclidean"): print(title, dist) # We observe that the embedding is poor at representing similarities # between movies, as most distance/similarities are very small/big # One may notice a few clusters though # it's interesting to plot the following distributions # plt.hist(euc_dists) # The reason for that is that the number of ratings is low and the embedding # does not automatically capture semantic relationships in that context. # Better representations arise with higher number of ratings, and less overfitting # in models or maybe better loss function, such as those based on implicit # feedback. ``` ### Visualizing embeddings using TSNE - we use scikit learn to visualize items embeddings - Try different perplexities, and visualize user embeddings as well - What can you conclude ? ``` from sklearn.manifold import TSNE item_tsne = TSNE(perplexity=30).fit_transform(item_embeddings) import matplotlib.pyplot as plt plt.figure(figsize=(10, 10)) plt.scatter(item_tsne[:, 0], item_tsne[:, 1]); plt.xticks(()); plt.yticks(()); plt.show() ``` Alternatively with [Uniform Manifold Approximation and Projection](https://github.com/lmcinnes/umap): ``` !pip install umap-learn import umap item_umap = umap.UMAP().fit_transform(item_embeddings) plt.figure(figsize=(10, 10)) plt.scatter(item_umap[:, 0], item_umap[:, 1]); plt.xticks(()); plt.yticks(()); plt.show() ``` ## Using item metadata in the model Using a similar framework as previously, we will build another deep model that can also leverage additional metadata. The resulting system is therefore an **Hybrid Recommender System** that does both **Collaborative Filtering** and **Content-based recommendations**. <img src="images/rec_archi_3.svg" style="width: 600px;" /> ``` from sklearn.preprocessing import QuantileTransformer meta_columns = ['popularity', 'release_year'] scaler = QuantileTransformer() item_meta_train = scaler.fit_transform(ratings_train[meta_columns]) item_meta_test = scaler.transform(ratings_test[meta_columns]) class HybridModel(Model): def __init__(self, embedding_size, max_user_id, max_item_id): super().__init__() self.user_embedding = Embedding(output_dim=embedding_size, input_dim=max_user_id + 1, input_length=1, name='user_embedding') self.item_embedding = Embedding(output_dim=embedding_size, input_dim=max_item_id + 1, input_length=1, name='item_embedding') # The following two layers don't have parameters. self.flatten = Flatten() self.concat = Concatenate() self.dense1 = Dense(64, activation="relu") self.dropout = Dropout(0.5) self.dense2 = Dense(32, activation='relu') self.dense3 = Dense(2, activation="tanh") def call(self, inputs): user_inputs = inputs[0] item_inputs = inputs[1] meta_inputs = inputs[2] user_vecs = self.flatten(self.user_embedding(user_inputs)) item_vecs = self.flatten(self.item_embedding(item_inputs)) input_vecs = self.concat([user_vecs, item_vecs, meta_inputs]) y = self.dense1(input_vecs) y = self.dropout(y) y = self.dense2(y) y = self.dense3(y) return y model = DeepRecoModel(30, max_user_id, max_item_id) model.compile(optimizer='adam', loss='mae') initial_train_preds = model.predict([user_id_train, item_id_train, item_meta_train]) %%time history = model.fit([user_id_train, item_id_train, item_meta_train], rating_train, batch_size=64, epochs=15, validation_split=0.1, shuffle=True) test_preds = model.predict([user_id_test, item_id_test, item_meta_test]) print("Final test MSE: %0.3f" % mean_squared_error(test_preds, rating_test)) print("Final test MAE: %0.3f" % mean_absolute_error(test_preds, rating_test)) ``` The additional metadata seem to improve the predictive power of the model a bit at least in terms of MAE. ### A recommendation function for a given user Once the model is trained, the system can be used to recommend a few items for a user, that he/she hasn't already seen: - we use the `model.predict` to compute the ratings a user would have given to all items - we build a reco function that sorts these items and exclude those the user has already seen ``` indexed_items = items.set_index('item_id') def recommend(user_id, top_n=10): item_ids = range(1, max_item_id) seen_mask = all_ratings["user_id"] == user_id seen_movies = set(all_ratings[seen_mask]["item_id"]) item_ids = list(filter(lambda x: x not in seen_movies, item_ids)) print("User %d has seen %d movies, including:" % (user_id, len(seen_movies))) for title in all_ratings[seen_mask].nlargest(20, 'popularity')['title']: print(" ", title) print("Computing ratings for %d other movies:" % len(item_ids)) item_ids = np.array(item_ids) user_ids = np.zeros_like(item_ids) user_ids[:] = user_id items_meta = scaler.transform(indexed_items[meta_columns].loc[item_ids]) rating_preds = model.predict([user_ids, item_ids, items_meta]) item_ids = np.argsort(rating_preds[:, 0])[::-1].tolist() rec_items = item_ids[:top_n] return [(items["title"][movie], rating_preds[movie][0]) for movie in rec_items] for title, pred_rating in recommend(5): print(" %0.1f: %s" % (pred_rating, title)) ``` ### Home assignment: Predicting ratings as a classification problem In this dataset, the ratings all belong to a finite set of possible values: ``` import numpy as np np.unique(rating_train) ``` Maybe we can help the model by forcing it to predict those values by treating the problem as a multiclassification problem. The only required changes are: - setting the final layer to output class membership probabities using a softmax activation with 5 outputs; - optimize the categorical cross-entropy classification loss instead of a regression loss such as MSE or MAE. ``` # %load solutions/classification.py class ClassificationModel(Model): def __init__(self, embedding_size, max_user_id, max_item_id): super().__init__() self.user_embedding = Embedding(output_dim=embedding_size, input_dim=max_user_id + 1, input_length=1, name='user_embedding') self.item_embedding = Embedding(output_dim=embedding_size, input_dim=max_item_id + 1, input_length=1, name='item_embedding') # The following two layers don't have parameters. self.flatten = Flatten() self.concat = Concatenate() self.dropout1 = Dropout(0.5) self.dense1 = Dense(128, activation="relu") self.dropout2 = Dropout(0.2) self.dense2 = Dense(128, activation='relu') self.dense3 = Dense(5, activation="softmax") def call(self, inputs): user_inputs = inputs[0] item_inputs = inputs[1] user_vecs = self.flatten(self.user_embedding(user_inputs)) item_vecs = self.flatten(self.item_embedding(item_inputs)) input_vecs = self.concat([user_vecs, item_vecs]) y = self.dropout1(input_vecs) y = self.dense1(y) y = self.dropout2(y) y = self.dense2(y) y = self.dense3(y) return y model = ClassificationModel(16, max_user_id, max_item_id) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy') initial_train_preds = model.predict([user_id_train, item_id_train]).argmax(axis=1) + 1 print("Random init MSE: %0.3f" % mean_squared_error(initial_train_preds, rating_train)) print("Random init MAE: %0.3f" % mean_absolute_error(initial_train_preds, rating_train)) history = model.fit([user_id_train, item_id_train], rating_train - 1, batch_size=64, epochs=15, validation_split=0.1, shuffle=True) plt.plot(history.history['loss'], label='train') plt.plot(history.history['val_loss'], label='validation') plt.ylim(0, 2) plt.legend(loc='best') plt.title('loss'); test_preds = model.predict([user_id_test, item_id_test]).argmax(axis=1) + 1 print("Final test MSE: %0.3f" % mean_squared_error(test_preds, rating_test)) print("Final test MAE: %0.3f" % mean_absolute_error(test_preds, rating_test)) ```
true
code
0.60212
null
null
null
null
``` """The purpose of this tutorial is to introduce you to: (1) how gradient-based optimization of neural networks operates in concrete practice, and (2) how different forms of learning rules lead to more or less efficient learning as a function of the shape of the optimization landscape This tutorial should be used in conjunction with the lecture: http://cs375.stanford.edu/lectures/lecture6_optimization.pdf """; %matplotlib inline import matplotlib import matplotlib.pyplot as plt #the above imports the plotting library matplotlib #standard imports import time import numpy as np import h5py #We're not using the GPU here, so we set the #"CUDA_VISIBLE_DEVICES" environment variable to -1 #which tells tensorflow to only use the CPU import os os.environ["CUDA_VISIBLE_DEVICES"]="-1" import tensorflow as tf ``` ## Gradient Descent ``` #let's define a model which "believes" that the output data #is scalar power of a scalar input, e.g. : # y ~ x^p #defining the scalar input data variable batch_size = 200 #the "placeholder" mechanis is similar in effect to # x = tf.get_variable('x', shape=(batch_size,), dtype=tf.float32) #except we don't have to define a fixed name "x" x = tf.placeholder(shape=(batch_size,), dtype=tf.float32) #define the scalar power variable initial_power = tf.zeros(shape=()) power = tf.get_variable('pow', initializer=initial_power, dtype=tf.float32) #define the model model = x**power #the output data needs a variable too y = tf.placeholder(shape=(batch_size,), dtype=tf.float32) #the error rate of the model is mean L2 distance across #the batch of data power_loss = tf.reduce_mean((model - y)**2) #now, our goal is to use gradient descent to #figure out the parameter of our model -- namely, the power variable grad = tf.gradients(power_loss, power)[0] #Let's fit (optimize) the model. #to do that we'll have to first of course define a tensorflow session sess = tf.Session() #... and initialize the power variable initializer = tf.global_variables_initializer() sess.run(initializer) #ok ... so let's test the case where the true input-output relationship #is x --> x^2 xval = np.arange(0, 2, .01) yval = np.arange(0, 2, .01)**2 #OK initial_guess = 0 assign_op = tf.assign(power, initial_guess) sess.run(assign_op) gradval = sess.run(grad, feed_dict={x: xval, y: yval}) gradval #ok so this is telling us to do: new_guess = initial_guess + -1 * (gradval) print(new_guess) #ok so let's assign the new guess to the power variable assign_op = tf.assign(power, new_guess) sess.run(assign_op) #... and get the gradient again gradval = sess.run(grad, feed_dict={x: xval, y: yval}) gradval new_guess = new_guess + -1 * (gradval) print(new_guess) #... and one more time ... assign_op = tf.assign(power, new_guess) sess.run(assign_op) #... get the gradient again gradval = sess.run(grad, feed_dict={x: xval, y: yval}) print('gradient: %.3f', gradval) #... do the update new_guess = new_guess + -1 * (gradval) print('power: %.3f', new_guess) #ok so we're hovering back and forth around guess of 2.... which is right! #OK let's do this in a real loop and keep track of useful stuff along the way xval = np.arange(0, 2, .01) yval = np.arange(0, 2, .01)**2 #start the guess off at 0 again assign_op = tf.assign(power, 0) sess.run(assign_op) #let's keep track of the guess along the way powers = [] #and the loss, which should go down losses = [] #and the grads just for luck grads = [] #let's iterate the gradient descent process 20 timesteps num_iterations = 20 #for each timestep ... for i in range(num_iterations): #... get the current derivative (grad), the current guess of "power" #and the loss, given the input and output training data (xval & yval) cur_power, cur_loss, gradval = sess.run([power, power_loss, grad], feed_dict={x: xval, y: yval}) #... keep track of interesting stuff along the way powers.append(cur_power) losses.append(cur_loss) grads.append(gradval) #... now do the gradient descent step new_power = cur_power - gradval #... and actually update the value of the power variable assign_op = tf.assign(power, new_power) sess.run(assign_op) #and then, the loop runs again plt.plot(powers, label='estimated power') plt.plot(losses, label='loss') plt.plot(grads, label='gradients') plt.xlabel('iterations') plt.legend(loc='lower right') plt.title('Estimating a quadratic') ##ok now let's try that again except where y ~ x^3 #all we need to do is change the data xval = np.arange(0, 2, .01) yval = np.arange(0, 2, .01)**3 #The rest of the code remains the same assign_op = tf.assign(power, 0) sess.run(assign_op) powers = [] losses = [] grads = [] num_iterations = 20 for i in range(num_iterations): cur_power, cur_loss, gradval = sess.run([power, power_loss, grad], feed_dict={x: xval, y: yval}) powers.append(cur_power) losses.append(cur_loss) grads.append(gradval) new_power = cur_power - gradval assign_op = tf.assign(power, new_power) sess.run(assign_op) plt.plot(powers, label='estimated power') plt.plot(losses, label='loss') plt.xlabel('iterations') plt.legend(loc='center right') plt.title('Failing to estimate a cubic') #wait ... this did *not* work. why? #whoa ... the loss must have diverged to infinity (or close) really early losses #why? #let's look at the gradients grads #hm. the gradient was getting big at the end. #after all, the taylor series only works in the close-to-the-value limit. #we must have been been taking too big steps. #how do we fix this? ``` ### With Learning Rate ``` def gradient_descent(loss, target, initial_guess, learning_rate, training_data, num_iterations): #assign initial value to the target initial_op = tf.assign(target, initial_guess) #get the gradient grad = tf.gradients(loss, target)[0] #actually do the gradient descent step directly in tensorflow newval = tf.add(target, tf.multiply(-grad, learning_rate)) #the optimizer step actually performs the parameter update optimizer_op = tf.assign(target, newval) #NB: none of the four steps above are actually running anything yet #They are just formal graph computations. #to actually do anything, you have to run stuff in a session. #set up containers for stuff we want to keep track of targetvals = [] losses = [] gradvals = [] #first actually run the initialization operation sess.run(initial_op) #now take gradient steps in a loop for i in range(num_iterations): #just by virtue of calling "run" on the "optimizer" op, #the optimization occurs ... output = sess.run({'opt': optimizer_op, 'grad': grad, 'target': target, 'loss': loss }, feed_dict=training_data) targetvals.append(output['target']) losses.append(output['loss']) gradvals.append(output['grad']) return losses, targetvals, gradvals xval = np.arange(0, 2, .01) yval = np.arange(0, 2, .01)**3 data_dict = {x: xval, y:yval} losses, powers, grads = gradient_descent(loss=power_loss, target=power, initial_guess=0, learning_rate=.25, #chose learning rate < 1 training_data=data_dict, num_iterations=20) plt.plot(powers, label='estimated power') plt.plot(losses, label='loss') plt.legend(loc='upper right') plt.title('Estimating a cubic') #ok -- now the result stably converges! #and also for a higher power .... xval = np.arange(0, 2, .01) yval = np.arange(0, 2, .01)**4 data_dict = {x: xval, y:yval} losses, powers, grads = gradient_descent(loss=power_loss, target=power, initial_guess=0, learning_rate=0.1, training_data=data_dict, num_iterations=100) plt.plot(powers, label='estimated power') plt.plot(losses, label='loss') plt.legend(loc='upper right') plt.title('Estimating a quartic') #what about when the data is actually not of the right form? xval = np.arange(0, 2, .01) yval = np.sin(xval) data_dict = {x: xval, y:yval} losses, powers, grads = gradient_descent(loss=power_loss, target=power, initial_guess=0, learning_rate=0.1, training_data=data_dict, num_iterations=20) plt.plot(powers, label='estimated power') plt.plot(losses, label='loss') plt.legend(loc='center right') plt.title('Estimating sine with a power, not converged yet') #doesn't look like it's converged yet -- maybe we need to run it longer? #sine(x) now with more iterations xval = np.arange(0, 2, .01) yval = np.sin(xval) data_dict = {x: xval, y:yval} losses, powers, grads = gradient_descent(loss=power_loss, target=power, initial_guess=0, learning_rate=0.1, training_data=data_dict, num_iterations=100) #<-- more iterations plt.plot(powers, label='estimated power') plt.plot(losses, label='loss') plt.legend(loc='center right') plt.title('Estimating sine with a power (badly)') #ok it's converged but not to a great loss. This is unsurprising #since x^p is a bad model for sine(x) #how should we improve? #THE MACHINE LEARNING ANSWER: well, let's have more parameters in our model! #actually, let's write a model using the Taylor series idea more explicitly: # y ~ sum_i a_i x^i #for some coefficients a_i that we have to learn #let's go out to x^5, so approx_order = 7 (remember, we're 0-indexing in python) approximation_order = 6 #ok so now let's define the variabe we'll be using #instead of "power" this will be coefficients of the powers #with one coefficient for each power from 0 to approximation_order-1 coefficients = tf.get_variable('coefficients', initializer = tf.zeros(shape=(approximation_order,)), dtype=tf.float32) #gotta run the initializer again b/c we just defined a new trainable variable initializer = tf.global_variables_initializer() sess.run(initializer) sess.run(coefficients) #Ok let's define the model #here's the vector of exponents powervec = tf.range(0, approximation_order, dtype=tf.float32) #we want to do essentially: # sum_i coefficient_i * x^powervec[i] #but to do x^powervec, we need to create an additional dimension on x x_expanded = tf.expand_dims(x, axis=1) #ok, now we can actually do x^powervec x_exponentiated = x_expanded**powervec #now multiply by the coefficient variable x_multiplied_by_coefficients = coefficients * x_exponentiated #and add up over the 1st dimension e.g. dong the sum_i polynomial_model = tf.reduce_sum(x_multiplied_by_coefficients, axis=1) #the loss is again l2 difference between prediction and desired output polynomial_loss = tf.reduce_mean((polynomial_model - y)**2) xval = np.arange(-2, 2, .02) yval = np.sin(xval) data_dict = {x: xval, y:yval} #starting out at 0 since the coefficients were all intialized to 0 sess.run(polynomial_model, feed_dict=data_dict) #ok let's try it losses, coefvals, grads = gradient_descent(loss=polynomial_loss, target=coefficients, initial_guess=np.zeros(approximation_order), learning_rate=0.1, training_data=data_dict, num_iterations=100) #ok, so for each timstep we have 6 values -- the coefficients print(len(coefvals)) coefvals[-1].shape #here's the last set of coefficients learned coefvals[-1] #whoa -- what's going on? #let's lower the learning rate losses, coefvals, grads = gradient_descent(loss=polynomial_loss, target=coefficients, initial_guess=np.zeros(approximation_order), learning_rate=0.005, #<-- lowered learning rate training_data=data_dict, num_iterations=100) #ok not quite as bad coefvals[-1] #let's visualize what we learned x0 = coefvals[-1] assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.plot(xval, yval) plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval})) #ok, fine, but not great #what if we let it run longer? losses, coefvals, grads = gradient_descent(loss=polynomial_loss, target=coefficients, initial_guess=np.zeros(approximation_order), learning_rate=0.005, training_data=data_dict, num_iterations=5000) #<-- more iterations x0 = coefvals[-1] assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.figure(figsize=(10, 3)) plt.subplot(1, 2, 1) plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval})) plt.plot(xval, yval) plt.subplot(1, 2, 2) plt.plot(losses) plt.xlabel('iterations') plt.ylabel('loss') plt.title('Loss with Gradient Descent') #ok much better coefvals[-1] tf.Variable(np.zeros(6)) ``` ### With momentum ``` def gradient_descent_with_momentum(loss, target, initial_guess, learning_rate, momentum, training_data, num_iterations): #set target to initial guess initial_op = tf.assign(target, initial_guess) #get gradient grad = tf.gradients(loss, target)[0] #set up the variable for the gradient accumulation grad_shp = grad.shape.as_list() #needs to be specified as float32 to interact properly with other things (but numpy defaults to float64) grad_accum = tf.Variable(np.zeros(grad_shp).astype(np.float32)) #gradplus = grad + momentum * grad_accum gradplus = tf.add(grad, tf.multiply(grad_accum, momentum)) #newval = oldval - learning_rate * gradplus newval = tf.add(target, tf.multiply(-gradplus, learning_rate)) #the optimizer step actually performs the parameter update optimizer_op = tf.assign(target, newval) #this step updates grad_accum update_accum = tf.assign(grad_accum, gradplus) #run initialization sess.run(initial_op) #necessary b/c we've defined a new variable ("grad_accum") above init_op = tf.global_variables_initializer() sess.run(init_op) #run the loop targetvals = [] losses = [] gradvals = [] times = [] for i in range(num_iterations): t0 = time.time() output = sess.run({'opt': optimizer_op, #have to have this for optimization to occur 'accum': update_accum, #have to have this for grad_accum to update 'grad': grad, #the rest of these are just for keeping track 'target': target, 'loss': loss }, feed_dict=training_data) times.append(time.time() - t0) targetvals.append(output['target']) losses.append(output['loss']) gradvals.append(output['grad']) print('Average time per iteration --> %.5f' % np.mean(times)) return losses, targetvals, gradvals losses, coefvals, grads = gradient_descent_with_momentum(loss=polynomial_loss, target=coefficients, initial_guess=np.zeros(approximation_order), learning_rate=0.01, #<-- can use higher learning rate! momentum=0.9, training_data=data_dict, num_iterations=250) #<-- can get away from fewer iterations! x0 = coefvals[-1] assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.figure(figsize=(10, 3)) plt.subplot(1, 2, 1) plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval})) plt.plot(xval, yval) plt.subplot(1, 2, 2) plt.plot(losses) plt.xlabel('iterations') plt.ylabel('loss') plt.title('Loss with Gradient Descent') #so momentum is really useful ``` ### Tensorflow's Built-In Optimizers ``` def tf_builtin_optimization(loss, optimizer_class, target, training_data, num_iterations, optimizer_args=(), optimizer_kwargs={}, ): #construct the optimizer optimizer = optimizer_class(*optimizer_args, **optimizer_kwargs) #formal tensorflow optimizers will always have a "minimize" method #this is how you actually get the optimizer op optimizer_op = optimizer.minimize(loss) init_op = tf.global_variables_initializer() sess.run(init_op) targetvals = [] losses = [] times = [] for i in range(num_iterations): t0 = time.time() output = sess.run({'opt': optimizer_op, 'target': target, 'loss': loss}, feed_dict=training_data) times.append(time.time() - t0) targetvals.append(output['target']) losses.append(output['loss']) print('Average time per iteration --> %.5f' % np.mean(times)) return np.array(losses), targetvals xval = np.arange(-2, 2, .02) yval = np.sin(xval) data_dict = {x: xval, y:yval} losses, coefvals = tf_builtin_optimization(loss=polynomial_loss, optimizer_class=tf.train.GradientDescentOptimizer, target=coefficients, training_data=data_dict, num_iterations=5000, optimizer_args=(0.005,), ) #<-- more iterations x0 = coefvals[-1] assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.figure(figsize=(10, 3)) plt.subplot(1, 2, 1) plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval})) plt.plot(xval, yval) plt.subplot(1, 2, 2) plt.plot(losses) plt.xlabel('iterations') plt.ylabel('loss') plt.title('Loss with Gradient Descent') #right ok, we recovered what we did before by hand, now using #the standard tensorflow tools #Let's use the Momentum Optimizer. standard parameters for learning #are learning_rate = 0.01 and momentum = 0.9 xval = np.arange(-2, 2, .02) yval = np.sin(xval ) data_dict = {x: xval, y:yval} losses, coefvals = tf_builtin_optimization(loss=polynomial_loss, optimizer_class=tf.train.MomentumOptimizer, target=coefficients, training_data=data_dict, num_iterations=250, optimizer_kwargs={'learning_rate': 0.01, 'momentum': 0.9}) x0 = coefvals[-1] assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.figure(figsize=(10, 3)) plt.subplot(1, 2, 1) plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval})) plt.plot(xval, yval) plt.subplot(1, 2, 2) plt.plot(losses) plt.xlabel('iterations') plt.ylabel('loss') plt.title('Loss with Momentum Optimizer') #again reproducing what we see before by hand #and we can try some other stuff, such as the Adam Optimizer losses, coefvals = tf_builtin_optimization(loss=polynomial_loss, optimizer_class=tf.train.AdamOptimizer, target=coefficients, training_data=data_dict, num_iterations=500, optimizer_kwargs={'learning_rate': 0.01}) x0 = coefvals[-1] assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.figure(figsize=(10, 3)) plt.subplot(1, 2, 1) plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval})) plt.plot(xval, yval) plt.subplot(1, 2, 2) plt.plot(losses) plt.xlabel('iterations') plt.ylabel('loss') plt.title('Loss with Adam optimizer') #Adam as usualy requires a bit more steps than Momentum -- but the advantage of Adam #is that sometimes Momentum blows up and Adam is usually more stable #(compare the loss traces! even though Momentum didn't below up above, it's #loss is much more jaggedy -- signs up potential blowup) #so hm ... maybe because Adam is more stable we can jack up the #initial learning rate and thus converge even faster than with Momentum losses, coefvals = tf_builtin_optimization(loss=polynomial_loss, optimizer_class=tf.train.AdamOptimizer, target=coefficients, training_data=data_dict, num_iterations=150, optimizer_kwargs={'learning_rate': 0.5}) x0 = coefvals[-1] assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.figure(figsize=(10, 3)) plt.subplot(1, 2, 1) plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval})) plt.plot(xval, yval) plt.subplot(1, 2, 2) plt.plot(losses) plt.xlabel('iterations') plt.ylabel('loss') plt.title('Loss with Adam optimizer\nhigh initial learning rate') #indeed we can! ``` ### Newton's Method (Second Order) ``` def newtons_method(loss, target, initial_guess, training_data, num_iterations, grad2clip=1.): #create initialization operation initial_op = tf.assign(target, initial_guess) grad = tf.gradients(loss, target)[0] #to actually compute the second order correction #we split the one-variable and multi-variable cases up -- for ease of working if len(target.shape) == 0: #one-variable case #actually get the second derivative grad2 = tf.gradients(grad, target)[0] #now morally we want to compute: # newval = target - grad / grad2 #BUT there is often numerical instability caused by dividing #by grad2 if grad2 is small... so we have to clip grad2 by a clip value clippedgrad2 = tf.maximum(grad2, grad2clip) #and now we can do the newton's formula update newval = tf.add(target, -tf.divide(grad, clippedgrad2)) else: #in the multi-variable case, we first compute the hessian matrix #thank gosh tensorflow has this built in finally! hess = tf.hessians(loss, target)[0] #now we take it's inverse hess_inv = tf.matrix_inverse(hess) #now we get H^{-1} grad, e.g. multiple the matrix by the vector hess_inv_grad = tf.tensordot(hess_inv, grad, 1) #again we have to clip for numerical stability hess_inv_grad = tf.clip_by_value(hess_inv_grad, -grad2clip, grad2clip) #and get the new value for the parameters newval = tf.add(target, -hess_inv_grad) #the rest of the code is just as in the gradient descent case optimizer_op = tf.assign(target, newval) targetvals = [] losses = [] gradvals = [] sess.run(initial_op) for i in range(num_iterations): output = sess.run({'opt': optimizer_op, 'grad': grad, 'target': target, 'loss': loss}, feed_dict=training_data) targetvals.append(output['target']) losses.append(output['loss']) gradvals.append(output['grad']) return losses, targetvals, gradvals xval = np.arange(0, 2, .01) yval = np.arange(0, 2, .01)**2 data_dict = {x: xval, y:yval} losses, powers, grads = newtons_method(loss=power_loss, target=power, initial_guess=0, training_data=data_dict, num_iterations=20, grad2clip=1) plt.plot(powers, label='estimated power') plt.plot(losses, label='loss') plt.legend(loc='upper right') plt.title("Newton's Method on Quadractic") #whoa -- much faster than before xval = np.arange(0, 2, .01) yval = np.arange(0, 2, .01)**3 data_dict = {x: xval, y:yval} losses, powers, grads = newtons_method(loss=power_loss, target=power, initial_guess=0, training_data=data_dict, num_iterations=20, grad2clip=1) plt.plot(powers, label='estimated power') plt.plot(losses, label='loss') plt.legend(loc='upper right') plt.title("Newton's Method on a Cubic") xval = np.arange(-2, 2, .02) yval = np.sin(xval) data_dict = {x: xval, y:yval} losses, coefvals, grads = newtons_method(loss=polynomial_loss, target=coefficients, initial_guess=np.zeros(approximation_order), training_data=data_dict, num_iterations=2) x0 = coefvals[-1] assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.figure(figsize=(10, 3)) plt.subplot(1, 2, 1) plt.plot(xval, yval) plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval})) plt.subplot(1, 2, 2) plt.plot(losses) plt.xlabel('iterations') plt.ylabel('loss') #no joke -- the error goes to 0 after 1 update step #let's try something a little more complicated xval = np.arange(-2, 2, .02) yval = np.cos(2 * xval) + np.sin(xval + 1) data_dict = {x: xval, y:yval} losses, coefvals, grads = newtons_method(loss=polynomial_loss, target=coefficients, initial_guess=np.zeros(approximation_order), training_data=data_dict, num_iterations=5) x0 = coefvals[-1] assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.figure(figsize=(10, 3)) plt.subplot(1, 2, 1) plt.plot(xval, yval) plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval})) plt.subplot(1, 2, 2) plt.plot(losses) plt.xlabel('iterations') plt.ylabel('loss') #really fast -- actually Newton's method always converges this fast if #the model is polynomial #just to put the above in context, let's compare to momentum xval = np.arange(-2, 2, .02) yval = np.cos(2 * xval) + np.sin(xval + 1) data_dict = {x: xval, y:yval} losses, coefvals = tf_builtin_optimization(loss=polynomial_loss, optimizer_class=tf.train.MomentumOptimizer, target=coefficients, training_data=data_dict, num_iterations=200, optimizer_kwargs={'learning_rate': 0.01, 'momentum': 0.9}, ) x0 = coefvals[-1] assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.figure(figsize=(10, 3)) plt.subplot(1, 2, 1) plt.plot(xval, yval) plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval})) plt.subplot(1, 2, 2) plt.plot(losses) plt.xlabel('iterations') plt.ylabel('loss') ``` ### Using External Optimizers ``` #actually, let's use an *external* optimizer -- not do #the optimization itself in tensorflow from scipy.optimize import minimize #you can see all the methods for optimization here: # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize #Ok here's the model we want to learn xval = np.arange(-2, 2, .02) yval = np.cosh(2 * xval) + np.sin(xval + 1) plt.plot(xval, yval) plt.title("Target to Learn") polynomial_loss #we need to make a python function from our tensorflow model #(actually we could simply write the model directly in numpy #but ... since we already have it in Tensorflow might as well use it def func_loss(vals): data_dict = {x: xval, y: yval, coefficients: vals} lossval = sess.run(polynomial_loss, feed_dict=data_dict) losses.append(lossval) return lossval #Ok, so let's use a method that doesn't care about the derivative #specifically "Nelder-Mead" -- this is a simplex-based method losses = [] result = minimize(func_loss, x0=np.zeros(6), method='Nelder-Mead') x0 = result.x assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.figure(figsize=(10, 3)) plt.subplot(1, 2, 1) plt.plot(xval, yval, label='True') plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval}), label='Appox.') plt.legend(loc='upper center') plt.subplot(1, 2, 2) plt.plot(losses) plt.xlabel('iterations') plt.ylabel('loss') plt.title('Loss with Nelder-Mead') #OK now let's try a method that *does* care about the derivative #specifically, a method called L-BFGS -- this is basically #an approximate version of the newton's method. #It's called a "quasi-second-order" method because it uses only #first derivatives to get an approximation to the second derivative #to use it, we need *do* need to calculate the derivative #... and here's why tensorflow STILL matters even if we're using #an external optimizer polynomial_grad = tf.gradients(polynomial_loss, coefficients)[0] #we need to create a function that returns loss and loss derivative def func_loss_with_grad(vals): data_dict = {x: xval, y:yval, coefficients: vals} lossval, g = sess.run([polynomial_loss, polynomial_grad], feed_dict=data_dict) losses.append(lossval) return lossval, g.astype(np.float64) #Ok, so let's see what happens with L-BFGS losses = [] result = minimize(func_loss_with_grad, x0=np.zeros(6), method='L-BFGS-B', #approximation of newton's method jac=True #<-- meaning, we're telling minimizer #to use the derivative info -- the so-called #"jacobian" ) x0 = result.x assign_op = tf.assign(coefficients, x0) sess.run(assign_op) plt.figure(figsize=(10, 3)) plt.subplot(1, 2, 1) plt.plot(xval, yval, label='True') plt.plot(xval, sess.run(polynomial_model, feed_dict={x:xval}), label='Appox.') plt.legend(loc='upper center') plt.subplot(1, 2, 2) plt.plot(losses) plt.xlabel('iterations') plt.ylabel('loss') plt.title('Loss with L-BFGS') #substantially better than the non-derivative-based method #-- fewer interations are needed, loss curve is stabler, and final #results are better ``` ## Deploying it in a real case ``` #ok let's load the neural data DATA_PATH = "/home/chengxuz/Class/psych253_2018/data/ventral_neural_data.hdf5" Ventral_Dataset = h5py.File(DATA_PATH) categories = Ventral_Dataset['image_meta']['category'][:] #array of category labels for all images --> shape == (5760,) unique_categories = np.unique(categories) #array of unique category labels --> shape == (8,) var_levels = Ventral_Dataset['image_meta']['variation_level'][:] Neural_Data = Ventral_Dataset['time_averaged_trial_averaged'][:] num_neurons = Neural_Data.shape[1] num_categories = 8 categories[:10] #we'll construct 8 one-vs-all vectors with {-1, 1} values category_matrix = np.array([2 * (categories == c) - 1 for c in unique_categories]).T.astype(int) category_matrix[0] sess = tf.Session() #first, get initializers for W and b initial_weights = tf.random_uniform(shape=(num_neurons, num_categories), minval=-1, maxval=1, seed=0) initial_bias = tf.zeros(shape=(num_categories,)) #now construct the TF variables weights = tf.get_variable('weights', dtype=tf.float32, initializer=initial_weights) bias = tf.get_variable('bias', dtype=tf.float32, initializer=initial_bias)#initialize variables init_op = tf.global_variables_initializer() sess.run(init_op) #input slots for data and labels #note the batch size is "None" -- effectively meaning batches of #varying sizes can be used neural_data = tf.placeholder(shape=(None, num_neurons), dtype=tf.float32) category_labels = tf.placeholder(shape=(None, num_categories), dtype=tf.float32) #now construct margins margins = tf.matmul(neural_data, weights) + bias #the hinge loss hinge_loss = tf.maximum(0., 1. - category_labels * margins) #and take the mean of the loss over the batch hinge_loss_mean = tf.reduce_mean(hinge_loss) #simple interface for using tensorflow built-in optimizer #as seen yesterclass def tf_optimize(loss, optimizer_class, target, training_data, num_iterations, optimizer_args=(), optimizer_kwargs=None, sess=None, initial_guesses=None): if sess is None: sess = tf.Session() if optimizer_kwargs is None: optimizer_kwargs = {} #construct the optimizer optimizer = optimizer_class(*optimizer_args, **optimizer_kwargs) optimizer_op = optimizer.minimize(loss) #initialize variables init_op = tf.global_variables_initializer() sess.run(init_op) if initial_guesses is not None: for k, v in initial_guesses.items(): op = tf.assign(k, v) sess.run(op) targetvals = [] losses = [] times = [] for i in range(num_iterations): t0 = time.time() output = sess.run({'opt': optimizer_op, 'target': target, 'loss': loss}, feed_dict=training_data) times.append(time.time() - t0) targetvals.append(output['target']) losses.append(output['loss']) print('Average time per iteration --> %.5f' % np.mean(times)) return np.array(losses), targetvals #let's just focus on one batch of data for the moment batch_size = 640 data_batch = Neural_Data[0: batch_size] label_batch = category_matrix[0: batch_size] data_dict = {neural_data: data_batch, category_labels: label_batch} #let's look at the weights and biases before training weight_vals, bias_vals = sess.run([weights, bias]) #right, it's num_neurons x num_categories print('weights shape:', weight_vals.shape) #let's look at some of the weights plt.hist(weight_vals[:, 0]) plt.xlabel('Weight Value') plt.ylabel('Neuron Count') plt.title('Weights for Animals vs All') print('biases:', bias_vals) #ok so we'll use the Momentum optimizer to find weights and bias #for this classification problem losses, targs = tf_optimize(loss=hinge_loss_mean, optimizer_class=tf.train.MomentumOptimizer, target=[], training_data=data_dict, num_iterations=100, optimizer_kwargs={'learning_rate': 1, 'momentum': 0.9}, sess=sess) #losses decrease almost to 0 plt.plot(losses) weight_vals, bias_vals = sess.run([weights, bias]) #right, it's num_neurons x num_categories weight_vals.shape #let's look at some of the weights plt.hist(weight_vals[:, 2]) plt.xlabel('Weight Value') plt.ylabel('Neuron Count') plt.title('Weights for Faces vs All') print('biases:', bias_vals) #ok so things have been learned! #how good are the results on training? #actually get the predictions by first getting the margins margin_vals = sess.run(margins, feed_dict = data_dict) #now taking the argmax across categories pred_inds = margin_vals.argmax(axis=1) #compare prediction to actual correct = pred_inds == label_batch.argmax(axis=1) pct = correct.sum() / float(len(correct)) * 100 print('Training accuracy: %.2f%%' % pct) #Right, very accurate on training ``` ### Stochastic Gradient Descent ``` class BatchReader(object): def __init__(self, data_dict, batch_size, shuffle=True, shuffle_seed=0, pad=True): self.data_dict = data_dict self.batch_size = batch_size _k = data_dict.keys()[0] self.data_length = data_dict[_k].shape[0] self.total_batches = (self.data_length - 1) // self.batch_size + 1 self.curr_batch_num = 0 self.curr_epoch = 1 self.pad = pad self.shuffle = shuffle self.shuffle_seed = shuffle_seed if self.shuffle: self.rng = np.random.RandomState(seed=self.shuffle_seed) self.perm = self.rng.permutation(self.data_length) def __iter__(self): return self def next(self): return self.get_next_batch() def get_next_batch(self): data = self.get_batch(self.curr_batch_num) self.increment_batch_num() return data def increment_batch_num(self): m = self.total_batches if (self.curr_batch_num >= m - 1): self.curr_epoch += 1 if self.shuffle: self.perm = self.rng.permutation(self.data_length) self.curr_batch_num = (self.curr_batch_num + 1) % m def get_batch(self, cbn): data = {} startv = cbn * self.batch_size endv = (cbn + 1) * self.batch_size if self.pad and endv > self.data_length: startv = self.data_length - self.batch_size endv = startv + self.batch_size for k in self.data_dict: if self.shuffle: data[k] = self.data_dict[k][self.perm[startv: endv]] else: data[k] = self.data_dict[k][startv: endv] return data class TF_Optimizer(object): """Make the tensorflow SGD-style optimizer into a scikit-learn compatible class Uses BatchReader for stochastically getting data batches. model_func: function which returns tensorflow nodes for predictions, data_input loss_func: function which takes model_func prediction output node and returns tensorflow nodes for loss, label_input optimizer_class: which tensorflow optimizer class to when learning the model parameters batch_size: which batch size to use in training train_iterations: how many iterations to run the optimizer for --> this should really be picked automatically by like when the training error plateaus model_kwargs: dictionary of additional arguments for the model_func loss_kwargs: dictionary of additional arguments for the loss_func optimizer_args, optimizer_kwargs: additional position and keyword args for the optimizer class sess: tf session to use (will be constructed if not passed) train_shuffle: whether to shuffle example order during training """ def __init__(self, model_func, loss_func, optimizer_class, batch_size, train_iterations, model_kwargs=None, loss_kwargs=None, optimizer_args=(), optimizer_kwargs=None, sess=None, train_shuffle=False ): self.model_func = model_func if model_kwargs is None: model_kwargs = {} self.model_kwargs = model_kwargs self.loss_func = loss_func if loss_kwargs is None: loss_kwargs = {} self.loss_kwargs = loss_kwargs self.train_shuffle=train_shuffle self.train_iterations = train_iterations self.batch_size = batch_size if sess is None: sess = tf.Session() self.sess = sess if optimizer_kwargs is None: optimizer_kwargs = {} self.optimizer = optimizer_class(*optimizer_args, **optimizer_kwargs) def fit(self, train_data, train_labels): self.model, self.data_holder = self.model_func(**self.model_kwargs) self.loss, self.labels_holder = self.loss_func(self.model, **self.loss_kwargs) self.optimizer_op = self.optimizer.minimize(self.loss) data_dict = {self.data_holder: train_data, self.labels_holder: train_labels} train_data = BatchReader(data_dict=data_dict, batch_size=self.batch_size, shuffle=self.train_shuffle, shuffle_seed=0, pad=True) init_op = tf.global_variables_initializer() sess.run(init_op) self.losses = [] for i in range(self.train_iterations): data_batch = train_data.next() output = self.sess.run({'opt': self.optimizer_op, 'loss': self.loss}, feed_dict=data_batch) self.losses.append(output['loss']) def predict(self, test_data): data_dict = {self.data_holder: test_data} test_data = BatchReader(data_dict=data_dict, batch_size=self.batch_size, shuffle=False, pad=False) preds = [] for i in range(test_data.total_batches): data_batch = test_data.get_batch(i) pred_batch = self.sess.run(self.model, feed_dict=data_batch) preds.append(pred_batch) return np.row_stack(preds) def binarize_labels(labels): """takes discrete-valued labels and binarizes them into {-1, 1}-value format returns: binarized_labels: of shape (num_stimuli, num_categories) unique_labels: actual labels indicating order of first axis in binarized_labels """ unique_labels = np.unique(labels) num_classes = len(unique_labels) binarized_labels = np.array([2 * (labels == c) - 1 for c in unique_labels]).T.astype(int) return binarized_labels, unique_labels class TF_OVA_Classifier(TF_Optimizer): """ Subclass of TFOptimizer for use with categorizers. Basically, this class handles data binarization (in the fit method) and un-binarization (in the predict method), so that we can use the class with the function: train_and_test_scikit_classifier that we've previously defined. The predict method here implements a one-vs-all approach for multi-class problems. """ def fit(self, train_data, train_labels): #binarize labels num_features = train_data.shape[1] binarized_labels, classes_ = binarize_labels(train_labels) #set .classes_ attribute, since this is needed by train_and_test_scikit_classifier self.classes_ = classes_ num_classes = len(classes_) #pass number of features and classes to the model construction #function that will be called when the fit method is called self.model_kwargs['num_features'] = num_features self.model_kwargs['num_classes'] = num_classes #now actually call the optimizer fit method TF_Optimizer.fit(self, train_data=train_data, train_labels=binarized_labels) def decision_function(self, test_data): #returns what are effectively the margins (for a linear classifier) return TF_Optimizer.predict(self, test_data) def predict(self, test_data): #use the one-vs-all rule for multiclass prediction. preds = self.decision_function(test_data) preds = np.argmax(preds, axis=1) classes_ = self.classes_ return classes_[preds] def linear_classifier(num_features, num_classes): """generic form of a linear classifier, e.g. the model margins = np.dot(data, weight) + bias """ initial_weights = tf.zeros(shape=(num_features, num_classes), dtype=tf.float32) weights = tf.Variable(initial_weights, dtype=tf.float32, name='weights') initial_bias = tf.zeros(shape=(num_classes,)) bias = tf.Variable(initial_bias, dtype=tf.float32, name='bias') data = tf.placeholder(shape=(None, num_features), dtype=tf.float32, name='data') margins = tf.add(tf.matmul(data, weights), bias, name='margins') return margins, data def hinge_loss(margins): """standard SVM hinge loss """ num_classes = margins.shape.as_list()[1] category_labels = tf.placeholder(shape=(None, num_classes), dtype=tf.float32, name='labels') h = tf.maximum(0., 1. - category_labels * margins, name='hinge_loss') hinge_loss_mean = tf.reduce_mean(h, name='hinge_loss_mean') return hinge_loss_mean, category_labels #construct the classifier instance ... just like with scikit-learn cls = TF_OVA_Classifier(model_func=linear_classifier, loss_func=hinge_loss, batch_size=2500, train_iterations=1000, train_shuffle=True, optimizer_class=tf.train.MomentumOptimizer, optimizer_kwargs = {'learning_rate':10., 'momentum': 0.99 }, sess=sess ) #ok let's try out our classifier on medium-variation data data_subset = Neural_Data[var_levels=='V3'] categories_subset = categories[var_levels=='V3'] cls.fit(data_subset, categories_subset) plt.plot(cls.losses) plt.xlabel('number of iterations') plt.ylabel('Hinge loss') #ok how good was the actual training accuracy? preds = cls.predict(data_subset) acc = (preds == categories_subset).sum() pct = acc / float(len(preds)) * 100 print('Training accuracy was %.2f%%' % pct) ``` #### Side note on getting relevant tensors ``` #here's the linear mode constructed above: lin_model = cls.model print(lin_model) #suppose we want to access the weights / bias used in this model? #these can be accessed by the "op.inputs" attribute in TF #first, we see that this is the stage of the caluation #where the linear model (the margins) is put together by adding #the result of the matrix multiplication ("MatMul_[somenumber]") #to the bias list(lin_model.op.inputs) #so bias is just the first of these inputs bias_tensor = lin_model.op.inputs[1] bias_tensor #if we follow up the calculation graph by taking apart #whatever was the inputs to the matmul stage, we see #the data and the weights matmul_tensor = lin_model.op.inputs[0] list(matmul_tensor.op.inputs) #so the weights tensor is just the first of *these* inputs weights_tensor = matmul_tensor.op.inputs[1] weights_tensor #putting this together, we could have done: weights_tensor = lin_model.op.inputs[0].op.inputs[1] weights_tensor ``` #### Regularization ``` #we can define other loss functions -- such as L2 regularization def hinge_loss_l2reg(margins, C, square=False): #starts off the same as regular hinge loss num_classes = margins.shape.as_list()[1] category_labels = tf.placeholder(shape=(None, num_classes), dtype=tf.float32, name='labels') h = tf.maximum(0., 1 - category_labels * margins) #allows for squaring the hinge_loss optionally, as done in sklearn if square: h = h**2 hinge_loss = tf.reduce_mean(h) #but how let's get the weights from the margins, #using the method just explored above weights = margins.op.inputs[0].op.inputs[1] #and get sum-square of the weights -- the 0.5 is for historical reasons reg_loss = 0.5*tf.reduce_mean(weights**2) #total up the loss from the two terms with constant C for weighting total_loss = C * hinge_loss + reg_loss return total_loss, category_labels cls = TF_OVA_Classifier(model_func=linear_classifier, loss_func=hinge_loss_l2reg, loss_kwargs={'C':1}, batch_size=2500, train_iterations=1000, train_shuffle=True, optimizer_class=tf.train.MomentumOptimizer, optimizer_kwargs = {'learning_rate':10., 'momentum': 0.99 }, sess=sess, ) data_subset = Neural_Data[var_levels=='V3'] categories_subset = categories[var_levels=='V3'] cls.fit(data_subset, categories_subset) plt.plot(cls.losses) plt.xlabel('number of iterations') plt.ylabel('Regularized Hinge loss') preds = cls.predict(data_subset) acc = (preds == categories_subset).sum() pct = acc / float(len(preds)) * 100 print('Regularized training accuracy was %.2f%%' % pct) #unsuprisingly training accuracy goes down a bit with regularization #compared to before w/o regularization ``` ### Integrating with cross validation tools ``` import cross_validation as cv meta_array = np.core.records.fromarrays(Ventral_Dataset['image_meta'].values(), names=Ventral_Dataset['image_meta'].keys()) #the whole point of creating the TF_OVA_Classifier above #was that we could simply stick it into the cross-validation regime #that we'd previously set up for scikit-learn style classifiers #so now let's test it out #create some train/test splits splits = cv.get_splits(meta_array, lambda x: x['object_name'], #we're balancing splits by object 5, 5, 35, train_filter=lambda x: (x['variation_level'] == 'V3'), test_filter=lambda x: (x['variation_level'] == 'V3'),) #here are the arguments to the classifier model_args = {'model_func': linear_classifier, 'loss_func': hinge_loss_l2reg, 'loss_kwargs': {'C':5e-2, #<-- a good regularization value }, 'batch_size': 2500, 'train_iterations': 1000, #<-- about the right number of steps 'train_shuffle': True, 'optimizer_class':tf.train.MomentumOptimizer, 'optimizer_kwargs': {'learning_rate':.1, 'momentum': 0.9}, 'sess': sess} #so now it should work just like before res = cv.train_and_test_scikit_classifier(features=Neural_Data, labels=categories, splits=splits, model_class=TF_OVA_Classifier, model_args=model_args) #yep! res[0]['test']['mean_accuracy'] #### Logistic Regression with Softmax loss def softmax_loss_l2reg(margins, C): """this shows how to write softmax logistic regression using tensorflow """ num_classes = margins.shape.as_list()[1] category_labels = tf.placeholder(shape=(None, num_classes), dtype=tf.float32, name='labels') #get the softmax from the margins probs = tf.nn.softmax(margins) #extract just the prob value for the correct category #(we have the (cats + 1)/2 thing because the category_labels #come in as {-1, +1} values but we need {0,1} for this purpose) probs_cat_vec = probs * ((category_labels + 1.) / 2.) #sum up over categories (actually only one term, that for #the correct category, contributes on each row) probs_cat = tf.reduce_mean(probs_cat_vec, axis=1) #-log neglogprob = -tf.log(probs_cat) #average over the batch log_loss = tf.reduce_mean(neglogprob) weights = cls.model.op.inputs[0].op.inputs[1] reg_loss = 0.5*tf.reduce_mean(tf.square(weights)) total_loss = C * log_loss + reg_loss return total_loss, category_labels model_args={'model_func': linear_classifier, 'model_kwargs': {}, 'loss_func': softmax_loss_l2reg, 'loss_kwargs': {'C': 5e-3}, 'batch_size': 2500, 'train_iterations': 1000, 'train_shuffle': True, 'optimizer_class':tf.train.MomentumOptimizer, 'optimizer_kwargs': {'learning_rate': 1., 'momentum': 0.9 }, 'sess': sess} res = cv.train_and_test_scikit_classifier(features=Neural_Data, labels=categories, splits=splits, model_class=TF_OVA_Classifier, model_args=model_args) res[0]['test']['mean_accuracy'] #ok works reasonably well ```
true
code
0.766076
null
null
null
null
## Problem Statement An experimental drug was tested on 2100 individual in a clinical trial. The ages of participants ranged from thirteen to hundred. Half of the participants were under the age of 65 years old, the other half were 65 years or older. Ninety five percent patients that were 65 years or older experienced side effects. Ninety five percent patients under 65 years experienced no side effects. You have to build a program that takes the age of a participant as input and predicts whether this patient has suffered from a side effect or not. Steps: • Generate a random dataset that adheres to these statements • Divide the dataset into Training (90%) and Validation (10%) set • Build a Simple Sequential Model • Train and Validate the Model on the dataset • Randomly choose 20% data from dataset as Test set • Plot predictions made by the Model on Test set ## Generating Dataset ``` import numpy as np from random import randint from sklearn.utils import shuffle from sklearn.preprocessing import MinMaxScaler train_labels = [] # one means side effect experienced, zero means no side effect experienced train_samples = [] for i in range(50): # The 5% of younger individuals who did experience side effects random_younger = randint(13, 64) train_samples.append(random_younger) train_labels.append(1) # The 5% of older individuals who did not experience side effects random_older = randint(65, 100) train_samples.append(random_older) train_labels.append(0) for i in range(1000): # The 95% of younger individuals who did not experience side effects random_younger = randint(13, 64) train_samples.append(random_younger) train_labels.append(0) # The 95% of older individuals who did experience side effects random_older = randint(65, 100) train_samples.append(random_older) train_labels.append(1) train_labels = np.array(train_labels) train_samples = np.array(train_samples) train_labels, train_samples = shuffle(train_labels, train_samples) # randomly shuffles each individual array, removing any order imposed on the data set during the creation process scaler = MinMaxScaler(feature_range = (0, 1)) # specifying scale (range: 0 to 1) scaled_train_samples = scaler.fit_transform(train_samples.reshape(-1,1)) # transforms our data scale (range: 13 to 100) into the one specified above (range: 0 to 1), we use the reshape fucntion as fit_transform doesnot accept 1-D data by default hence we need to reshape accordingly here ``` ## Building a Sequential Model ``` import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Activation, Dense from tensorflow.keras.optimizers import Adam from tensorflow.keras.metrics import categorical_crossentropy model = Sequential([ Dense(units = 16, input_shape = (1,), activation = 'relu'), Dense(units = 32, activation = 'relu'), Dense(units = 2, activation = 'softmax') ]) model.summary() ``` ## Training the Model ``` model.compile(optimizer = Adam(learning_rate = 0.0001), loss = 'sparse_categorical_crossentropy', metrics = ['accuracy']) model.fit(x = scaled_train_samples, y = train_labels, validation_split = 0.1, batch_size = 10, epochs = 30, shuffle = True, verbose = 2) ``` ## Preprocessing Test Data ``` test_labels = [] test_samples = [] for i in range(10): # The 5% of younger individuals who did experience side effects random_younger = randint(13, 64) test_samples.append(random_younger) test_labels.append(1) # The 5% of older individuals who did not experience side effects random_older = randint(65, 100) test_samples.append(random_older) test_labels.append(0) for i in range(200): # The 95% of younger individuals who did not experience side effects random_younger = randint(13, 64) test_samples.append(random_younger) test_labels.append(0) # The 95% of older individuals who did experience side effects random_older = randint(65, 100) test_samples.append(random_older) test_labels.append(1) test_labels = np.array(test_labels) test_samples = np.array(test_samples) test_labels, test_samples = shuffle(test_labels, test_samples) scaled_test_samples = scaler.fit_transform(test_samples.reshape(-1,1)) ``` ## Testing the Model using Predictions ``` predictions = model.predict(x = scaled_test_samples, batch_size = 10, verbose = 0) rounded_predictions = np.argmax(predictions, axis = -1) ``` ## Preparing Confusion Matrix ``` from sklearn.metrics import confusion_matrix import itertools import matplotlib.pyplot as plt cm = confusion_matrix(y_true = test_labels, y_pred = rounded_predictions) # This function has been taken from the website of scikit Learn. link: https://scikit-learn.org/0.18/auto_examples/model_selection/plot_confusion_matrix.html def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') ``` ## Plotting Predictions using Confusion Matrix ``` cm_plot_labels = ['no_side_effects', 'had_side_effects'] plot_confusion_matrix(cm = cm, classes = cm_plot_labels, title = 'Confusion Matrix') ```
true
code
0.614568
null
null
null
null
# Riemannian Optimisation with Pymanopt for Inference in MoG models The Mixture of Gaussians (MoG) model assumes that datapoints $\mathbf{x}_i\in\mathbb{R}^d$ follow a distribution described by the following probability density function: $p(\mathbf{x}) = \sum_{m=1}^M \pi_m p_\mathcal{N}(\mathbf{x};\mathbf{\mu}_m,\mathbf{\Sigma}_m)$ where $\pi_m$ is the probability that the data point belongs to the $m^\text{th}$ mixture component and $p_\mathcal{N}(\mathbf{x};\mathbf{\mu}_m,\mathbf{\Sigma}_m)$ is the probability density function of a multivariate Gaussian distribution with mean $\mathbf{\mu}_m \in \mathbb{R}^d$ and psd covariance matrix $\mathbf{\Sigma}_m \in \{\mathbf{M}\in\mathbb{R}^{d\times d}: \mathbf{M}\succeq 0\}$. As an example consider the mixture of three Gaussians with means $\mathbf{\mu}_1 = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$, $\mathbf{\mu}_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\mathbf{\mu}_3 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, covariances $\mathbf{\Sigma}_1 = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$, $\mathbf{\Sigma}_2 = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$ and $\mathbf{\Sigma}_3 = \begin{bmatrix} 0.5 & 0 \\ 0 & 0.5 \end{bmatrix}$ and mixture probability vector $\boldsymbol{\pi}=\left[0.1, 0.6, 0.3\right]^\top$. Let's generate $N=1000$ samples of that MoG model and scatter plot the samples: ``` import autograd.numpy as np np.set_printoptions(precision=2) import matplotlib.pyplot as plt %matplotlib inline # Number of data points N = 1000 # Dimension of each data point D = 2 # Number of clusters K = 3 pi = [0.1, 0.6, 0.3] mu = [np.array([-4, 1]), np.array([0, 0]), np.array([2, -1])] Sigma = [np.array([[3, 0],[0, 1]]), np.array([[1, 1.], [1, 3]]), 0.5 * np.eye(2)] components = np.random.choice(K, size=N, p=pi) samples = np.zeros((N, D)) # For each component, generate all needed samples for k in range(K): # indices of current component in X indices = k == components # number of those occurrences n_k = indices.sum() if n_k > 0: samples[indices, :] = np.random.multivariate_normal(mu[k], Sigma[k], n_k) colors = ['r', 'g', 'b', 'c', 'm'] for k in range(K): indices = k == components plt.scatter(samples[indices, 0], samples[indices, 1], alpha=0.4, color=colors[k%K]) plt.axis('equal') plt.show() ``` Given a data sample the de facto standard method to infer the parameters is the [expectation maximisation](https://en.wikipedia.org/wiki/Expectation-maximization_algorithm) (EM) algorithm that, in alternating so-called E and M steps, maximises the log-likelihood of the data. In [arXiv:1506.07677](http://arxiv.org/pdf/1506.07677v1.pdf) Hosseini and Sra propose Riemannian optimisation as a powerful counterpart to EM. Importantly, they introduce a reparameterisation that leaves local optima of the log-likelihood unchanged while resulting in a geodesically convex optimisation problem over a product manifold $\prod_{m=1}^M\mathcal{PD}^{(d+1)\times(d+1)}$ of manifolds of $(d+1)\times(d+1)$ symmetric positive definite matrices. The proposed method is on par with EM and shows less variability in running times. The reparameterised optimisation problem for augmented data points $\mathbf{y}_i=[\mathbf{x}_i^\top, 1]^\top$ can be stated as follows: $$\min_{(\mathbf{S}_1, ..., \mathbf{S}_m, \boldsymbol{\nu}) \in \mathcal{D}} -\sum_{n=1}^N\log\left( \sum_{m=1}^M \frac{\exp(\nu_m)}{\sum_{k=1}^M\exp(\nu_k)} q_\mathcal{N}(\mathbf{y}_n;\mathbf{S}_m) \right)$$ where * $\mathcal{D} := \left(\prod_{m=1}^M \mathcal{PD}^{(d+1)\times(d+1)}\right)\times\mathbb{R}^{M-1}$ is the search space * $\mathcal{PD}^{(d+1)\times(d+1)}$ is the manifold of symmetric positive definite $(d+1)\times(d+1)$ matrices * $\mathcal{\nu}_m = \log\left(\frac{\alpha_m}{\alpha_M}\right), \ m=1, ..., M-1$ and $\nu_M=0$ * $q_\mathcal{N}(\mathbf{y}_n;\mathbf{S}_m) = 2\pi\exp\left(\frac{1}{2}\right) |\operatorname{det}(\mathbf{S}_m)|^{-\frac{1}{2}}(2\pi)^{-\frac{d+1}{2}} \exp\left(-\frac{1}{2}\mathbf{y}_i^\top\mathbf{S}_m^{-1}\mathbf{y}_i\right)$ **Optimisation problems like this can easily be solved using Pymanopt – even without the need to differentiate the cost function manually!** So let's infer the parameters of our toy example by Riemannian optimisation using Pymanopt: ``` import sys sys.path.insert(0,"../..") import autograd.numpy as np from autograd.scipy.special import logsumexp import pymanopt from pymanopt.manifolds import Product, Euclidean, SymmetricPositiveDefinite from pymanopt import Problem from pymanopt.solvers import SteepestDescent # (1) Instantiate the manifold manifold = Product([SymmetricPositiveDefinite(D+1, k=K), Euclidean(K-1)]) # (2) Define cost function # The parameters must be contained in a list theta. @pymanopt.function.Autograd def cost(S, v): # Unpack parameters nu = np.append(v, 0) logdetS = np.expand_dims(np.linalg.slogdet(S)[1], 1) y = np.concatenate([samples.T, np.ones((1, N))], axis=0) # Calculate log_q y = np.expand_dims(y, 0) # 'Probability' of y belonging to each cluster log_q = -0.5 * (np.sum(y * np.linalg.solve(S, y), axis=1) + logdetS) alpha = np.exp(nu) alpha = alpha / np.sum(alpha) alpha = np.expand_dims(alpha, 1) loglikvec = logsumexp(np.log(alpha) + log_q, axis=0) return -np.sum(loglikvec) problem = Problem(manifold=manifold, cost=cost, verbosity=1) # (3) Instantiate a Pymanopt solver solver = SteepestDescent() # let Pymanopt do the rest Xopt = solver.solve(problem) ``` Once Pymanopt has finished the optimisation we can obtain the inferred parameters as follows: ``` mu1hat = Xopt[0][0][0:2,2:3] Sigma1hat = Xopt[0][0][:2, :2] - mu1hat.dot(mu1hat.T) mu2hat = Xopt[0][1][0:2,2:3] Sigma2hat = Xopt[0][1][:2, :2] - mu2hat.dot(mu2hat.T) mu3hat = Xopt[0][2][0:2,2:3] Sigma3hat = Xopt[0][2][:2, :2] - mu3hat.dot(mu3hat.T) pihat = np.exp(np.concatenate([Xopt[1], [0]], axis=0)) pihat = pihat / np.sum(pihat) ``` And convince ourselves that the inferred parameters are close to the ground truth parameters. The ground truth parameters $\mathbf{\mu}_1, \mathbf{\Sigma}_1, \mathbf{\mu}_2, \mathbf{\Sigma}_2, \mathbf{\mu}_3, \mathbf{\Sigma}_3, \pi_1, \pi_2, \pi_3$: ``` print(mu[0]) print(Sigma[0]) print(mu[1]) print(Sigma[1]) print(mu[2]) print(Sigma[2]) print(pi[0]) print(pi[1]) print(pi[2]) ``` And the inferred parameters $\hat{\mathbf{\mu}}_1, \hat{\mathbf{\Sigma}}_1, \hat{\mathbf{\mu}}_2, \hat{\mathbf{\Sigma}}_2, \hat{\mathbf{\mu}}_3, \hat{\mathbf{\Sigma}}_3, \hat{\pi}_1, \hat{\pi}_2, \hat{\pi}_3$: ``` print(mu1hat) print(Sigma1hat) print(mu2hat) print(Sigma2hat) print(mu3hat) print(Sigma3hat) print(pihat[0]) print(pihat[1]) print(pihat[2]) ``` Et voilà – this was a brief demonstration of how to do inference for MoG models by performing Manifold optimisation using Pymanopt. ## When Things Go Astray A well-known problem when fitting parameters of a MoG model is that one Gaussian may collapse onto a single data point resulting in singular covariance matrices (cf. e.g. p. 434 in Bishop, C. M. "Pattern Recognition and Machine Learning." 2001). This problem can be avoided by the following heuristic: if a component's covariance matrix is close to being singular we reset its mean and covariance matrix. Using Pymanopt this can be accomplished by using an appropriate line search rule (based on [LineSearchBackTracking](https://github.com/pymanopt/pymanopt/blob/master/pymanopt/solvers/linesearch.py)) -- here we demonstrate this approach: ``` class LineSearchMoG: """ Back-tracking line-search that checks for close to singular matrices. """ def __init__(self, contraction_factor=.5, optimism=2, suff_decr=1e-4, maxiter=25, initial_stepsize=1): self.contraction_factor = contraction_factor self.optimism = optimism self.suff_decr = suff_decr self.maxiter = maxiter self.initial_stepsize = initial_stepsize self._oldf0 = None def search(self, objective, manifold, x, d, f0, df0): """ Function to perform backtracking line-search. Arguments: - objective objective function to optimise - manifold manifold to optimise over - x starting point on the manifold - d tangent vector at x (descent direction) - df0 directional derivative at x along d Returns: - stepsize norm of the vector retracted to reach newx from x - newx next iterate suggested by the line-search """ # Compute the norm of the search direction norm_d = manifold.norm(x, d) if self._oldf0 is not None: # Pick initial step size based on where we were last time. alpha = 2 * (f0 - self._oldf0) / df0 # Look a little further alpha *= self.optimism else: alpha = self.initial_stepsize / norm_d alpha = float(alpha) # Make the chosen step and compute the cost there. newx, newf, reset = self._newxnewf(x, alpha * d, objective, manifold) step_count = 1 # Backtrack while the Armijo criterion is not satisfied while (newf > f0 + self.suff_decr * alpha * df0 and step_count <= self.maxiter and not reset): # Reduce the step size alpha = self.contraction_factor * alpha # and look closer down the line newx, newf, reset = self._newxnewf(x, alpha * d, objective, manifold) step_count = step_count + 1 # If we got here without obtaining a decrease, we reject the step. if newf > f0 and not reset: alpha = 0 newx = x stepsize = alpha * norm_d self._oldf0 = f0 return stepsize, newx def _newxnewf(self, x, d, objective, manifold): newx = manifold.retr(x, d) try: newf = objective(newx) except np.linalg.LinAlgError: replace = np.asarray([np.linalg.matrix_rank(newx[0][k, :, :]) != newx[0][0, :, :].shape[0] for k in range(newx[0].shape[0])]) x[0][replace, :, :] = manifold.rand()[0][replace, :, :] return x, objective(x), True return newx, newf, False ```
true
code
0.633212
null
null
null
null
# Programming_Assingment17 ``` Question1. Create a function that takes three arguments a, b, c and returns the sum of the numbers that are evenly divided by c from the range a, b inclusive. Examples evenly_divisible(1, 10, 20) ➞ 0 # No number between 1 and 10 can be evenly divided by 20. evenly_divisible(1, 10, 2) ➞ 30 # 2 + 4 + 6 + 8 + 10 = 30 evenly_divisible(1, 10, 3) ➞ 18 # 3 + 6 + 9 = 18 def sumDivisibles(a, b, c): sum = 0 for i in range(a, b + 1): if (i % c == 0): sum += i return sum a = int(input('Enter a : ')) b = int(input('Enter b : ')) c = int(input('Enter c : ')) print(sumDivisibles(a, b, c)) ``` ### Question2. Create a function that returns True if a given inequality expression is correct and False otherwise. Examples correct_signs("3 > 7 < 11") ➞ True correct_signs("13 > 44 > 33 > 1") ➞ False correct_signs("1 < 2 < 6 < 9 > 3") ➞ True ``` def correct_signs ( txt ) : return eval ( txt ) print(correct_signs("3 > 7 < 11")) print(correct_signs("13 > 44 > 33 > 1")) print(correct_signs("1 < 2 < 6 < 9 > 3")) ``` ### Question3. Create a function that replaces all the vowels in a string with a specified character. Examples replace_vowels('the aardvark, '#') ➞ 'th# ##rdv#rk' replace_vowels('minnie mouse', '?') ➞ 'm?nn?? m??s?' replace_vowels('shakespeare', '*') ➞ 'sh*k*sp**r*' ``` def replace_vowels(str, s): vowels = 'AEIOUaeiou' for ele in vowels: str = str.replace(ele, s) return str input_str = input("enter a string : ") s = input("enter a vowel replacing string : ") print("\nGiven Sting:", input_str) print("Given Specified Character:", s) print("Afer replacing vowels with the specified character:",replace_vowels(input_str, s)) ``` ### Question4. Write a function that calculates the factorial of a number recursively. Examples factorial(5) ➞ 120 factorial(3) ➞ 6 factorial(1) ➞ 1 factorial(0) ➞ 1 ``` def factorial(n): if n == 0: return 1 return n * factorial(n-1) num = int(input('enter a number :')) print("Factorial of", num, "is", factorial(num)) ``` ### Question 5 Hamming distance is the number of characters that differ between two strings. To illustrate: String1: 'abcbba' String2: 'abcbda' Hamming Distance: 1 - 'b' vs. 'd' is the only difference. Create a function that computes the hamming distance between two strings. Examples hamming_distance('abcde', 'bcdef') ➞ 5 hamming_distance('abcde', 'abcde') ➞ 0 hamming_distance('strong', 'strung') ➞ 1 ``` def hamming_distance(str1, str2): i = 0 count = 0 while(i < len(str1)): if(str1[i] != str2[i]): count += 1 i += 1 return count # Driver code str1 = "abcde" str2 = "bcdef" # function call print(hamming_distance(str1, str2)) print(hamming_distance('strong', 'strung')) hamming_distance('abcde', 'abcde') ```
true
code
0.550184
null
null
null
null
# Simulating a Predator and Prey Relationship Without a predator, rabbits will reproduce until they reach the carrying capacity of the land. When coyotes show up, they will eat the rabbits and reproduce until they can't find enough rabbits. We will explore the fluctuations in the two populations over time. # Using Lotka-Volterra Model ## Part 1: Rabbits without predators According to [Mother Earth News](https://www.motherearthnews.com/homesteading-and-livestock/rabbits-on-pasture-intensive-grazing-with-bunnies-zbcz1504), a rabbit eats six square feet of pasture per day. Let's assume that our rabbits live in a five acre clearing in a forest: 217,800 square feet/6 square feet = 36,300 rabbit-days worth of food. For simplicity, let's assume the grass grows back in two months. Thus, the carrying capacity of five acres is 36,300/60 = 605 rabbits. Female rabbits reproduce about six to seven times per year. They have six to ten children in a litter. According to [Wikipedia](https://en.wikipedia.org/wiki/Rabbit), a wild rabbit reaches sexual maturity when it is about six months old and typically lives one to two years. For simplicity, let's assume that in the presence of unlimited food, a rabbit lives forever, is immediately sexually mature, and has 1.5 children every month. For our purposes, then, let $x_t$ be the number of rabbits in our five acre clearing on month $t$. $$ \begin{equation*} R_t = R_{t-1} + 1.5\frac{605 - R_{t-1}}{605} R_{t-1} \end{equation*} $$ The formula could be put into general form $$ \begin{equation*} R_t = R_{t-1} + growth_{R} \times \big( \frac{capacity_{R} - R_{t-1}}{capacity_{R}} \big) R_{t-1} \end{equation*} $$ By doing this, we allow users to interact with growth rate and the capacity value visualize different interaction ``` from __future__ import print_function from ipywidgets import interact, interactive, fixed, interact_manual from IPython.display import display, clear_output import ipywidgets as widgets import matplotlib.pyplot as plt import numpy as np %matplotlib inline style = {'description_width': 'initial'} capacity_R = widgets.FloatText(description="Capacity", value=605) growth_rate_R = widgets.FloatText(description="Growth rate", value=1.5) initial_R = widgets.FloatText(description="Initial population",style=style, value=1) button_R = widgets.Button(description="Plot Graph") display(initial_R, capacity_R, growth_rate_R, button_R) def plot_graph_r(b): print("helo") clear_output() display(initial_R, capacity_R, growth_rate_R, button_R) fig = plt.figure() ax = fig.add_subplot(111) t = np.arange(0, 20, 1) s = np.zeros(t.shape) R = initial_R.value for i in range(t.shape[0]): s[i] = R R = R + growth_rate_R.value * (capacity_R.value - R)/(capacity_R.value) * R if R < 0.0: R = 0.0 ax.plot(t, s) ax.set(xlabel='time (months)', ylabel='number of rabbits', title='Rabbits Without Predators') ax.grid() button_R.on_click(plot_graph_r) ``` **Exercise 1** (1 point). Complete the following functions, find the number of rabbits at time 5, given $x_0$ = 10, population capcity =100, and growth rate = 0.8 ``` R_i = 10 for i in range(5): R_i = int(R_i + 0.8 * (100 - R_i)/(100) * R_i) print(f'There are {R_i} rabbits in the system at time 5') ``` ## Tweaking the Growth Function The growth is regulated by this part of the formula: $$ \begin{equation*} \frac{capacity_{R} - R_{t-1}}{capacity_{R}} \end{equation*} $$ That is, this fraction (and thus growth) goes to zero when the land is at capacity. As the number of rabbits goes to zero, this fraction goes to 1.0, so growth is at its highest speed. We could substitute in another function that has the same values at zero and at capacity, but has a different shape. For example, $$ \begin{equation*} \left( \frac{capacity_{R} - R_{t-1}}{capacity_{R}} \right)^{\beta} \end{equation*} $$ where $\beta$ is a positive number. For example, if $\beta$ is 1.3, it indicates that the rabbits can sense that food supplies are dwindling and pre-emptively slow their reproduction. ``` #### %matplotlib inline import math style = {'description_width': 'initial'} capacity_R_2 = widgets.FloatText(description="Capacity", value=605) growth_rate_R_2 = widgets.FloatText(description="Growth rate", value=1.5) initial_R_2 = widgets.FloatText(description="Initial population",style=style, value=1) shaping_R_2 = widgets.FloatText(description="Shaping", value=1.3) button_R_2 = widgets.Button(description="Plot Graph") display(initial_R_2, capacity_R_2, growth_rate_R_2, shaping_R_2, button_R_2) def plot_graph_r(b): clear_output() display(initial_R_2, capacity_R_2, growth_rate_R_2, shaping_R_2, button_R_2) fig = plt.figure() ax = fig.add_subplot(111) t = np.arange(0, 20, 1) s = np.zeros(t.shape) R = initial_R_2.value beta = float(shaping_R_2.value) for i in range(t.shape[0]): s[i] = R reserve_ratio = (capacity_R_2.value - R)/capacity_R_2.value if reserve_ratio > 0.0: R = R + R * growth_rate_R_2.value * reserve_ratio**beta else: R = R - R * growth_rate_R_2.value * (-1.0 * reserve_ratio)**beta if R < 0.0: R = 0 ax.plot(t, s) ax.set(xlabel='time (months)', ylabel='number of rabbits', title='Rabbits Without Predators (Shaped)') ax.grid() button_R_2.on_click(plot_graph_r) ``` **Exercise 2** (1 point). Repeat Exercise 1, with $\beta$ = 1.5 Complete the following functions, find the number of rabbits at time 5. Should we expect to see more rabbits or less? ``` R_i = 10 b=1.5 for i in range(5): R_i = int(R_i + 0.8 * ((100 - R_i)/(100))**b * R_i) print(f'There are {R_i} rabbits in the system at time 5, less rabbits compare to exercise 1, where beta = 1') ``` ## Part 2: Coyotes without Prey According to [Huntwise](https://www.besthuntingtimes.com/blog/2020/2/3/why-you-should-coyote-hunt-how-to-get-started), coyotes need to consume about 2-3 pounds of food per day. Their diet is 90 percent mammalian. The perfect adult cottontail rabbits weigh 2.6 pounds on average. Thus, we assume the coyote eats one rabbit per day. For coyotes, the breeding season is in February and March. According to [Wikipedia](https://en.wikipedia.org/wiki/Coyote#Social_and_reproductive_behaviors), females have a gestation period of 63 days, with an average litter size of 6, though the number fluctuates depending on coyote population density and the abundance of food. By fall, the pups are old enough to hunt for themselves. In the absence of rabbits, the number of coyotes will drop, as their food supply is scarce. The formula could be put into general form: $$ \begin{align*} C_t & \sim (1 - death_{C}) \times C_{t-1}\\ &= C_{t-1} - death_{C} \times C_{t-1} \end{align*} $$ ``` %matplotlib inline style = {'description_width': 'initial'} initial_C=widgets.FloatText(description="Initial Population",style=style,value=200.0) declining_rate_C=widgets.FloatText(description="Death rate",value=0.5) button_C=widgets.Button(description="Plot Graph") display(initial_C, declining_rate_C, button_C) def plot_graph_c(b): clear_output() display(initial_C, declining_rate_C, button_C) fig = plt.figure() ax = fig.add_subplot(111) t1 = np.arange(0, 20, 1) s1 = np.zeros(t1.shape) C = initial_C.value for i in range(t1.shape[0]): s1[i] = C C = (1 - declining_rate_C.value)*C ax.plot(t1, s1) ax.set(xlabel='time (months)', ylabel='number of coyotes', title='Coyotes Without Prey') ax.grid() button_C.on_click(plot_graph_c) ``` **Exercise 3** (1 point). Assume the system has 100 coyotes at time 0, the death rate is 0.5 if there are no prey. At what point in time, coyotes become extinct. ``` ti = 0 coyotes_init = 100 c_i = coyotes_init d_r = 0.5 while c_i > 10: c_i= int((1 - d_r)*c_i) ti =ti + 1 print(f'At time t={ti}, the coyotes become extinct') ``` ## Part 3: Interaction Between Coyotes and Rabbit With the simple interaction from the first two parts, now we can combine both interaction and come out with simple interaction. $$ \begin{align*} R_t &= R_{t-1} + growth_{R} \times \big( \frac{capacity_{R} - R_{t-1}}{capacity_{R}} \big) R_{t-1} - death_{R}(C_{t-1})\times R_{t-1}\\\\ C_t &= C_{t-1} - death_{C} \times C_{t-1} + growth_{C}(R_{t-1}) \times C_{t-1} \end{align*} $$ In equations above, death rate of rabbit is a function parameterized by the amount of coyote. Similarly, the growth rate of coyotes is a function parameterized by the amount of the rabbit. The death rate of the rabbit should be $0$ if there are no coyotes, while it should approach $1$ if there are many coyotes. One of the formula fulfilling this characteristics is hyperbolic function. $$ \begin{equation} death_R(C) = 1 - \frac{1}{xC + 1} \end{equation} $$ where $x$ determines how quickly $death_R$ increases as the number of coyotes ($C$) increases. Similarly, the growth rate of the coyotes should be $0$ if there are no rabbits, while it should approach infinity if there are many rabbits. One of the formula fulfilling this characteristics is a linear function. $$ \begin{equation} growth_C(R) = yC \end{equation} $$ where $y$ determines how quickly $growth_C$ increases as number of rabbit ($R$) increases. Putting all together, the final equtions are $$ \begin{align*} R_t &= R_{t-1} + growth_{R} \times \big( \frac{capacity_{R} - R_{t-1}}{capacity_{R}} \big) R_{t-1} - \big( 1 - \frac{1}{xC_{t-1} + 1} \big)\times R_{t-1}\\\\ C_t &= C_{t-1} - death_{C} \times C_{t-1} + yR_{t-1}C_{t-1} \end{align*} $$ **Exercise 4** (3 point). The model we have created above is a variation of the Lotka-Volterra model, which describes various forms of predator-prey interactions. Complete the following functions, which should generate the state variables plotted over time. Blue = prey, Orange = predators. ``` %matplotlib inline initial_rabbit = widgets.FloatText(description="Initial Rabbit",style=style, value=1) initial_coyote = widgets.FloatText(description="Initial Coyote",style=style, value=1) capacity = widgets.FloatText(description="Capacity rabbits", style=style,value=5) growth_rate = widgets.FloatText(description="Growth rate rabbits", style=style,value=1) death_rate = widgets.FloatText(description="Death rate coyotes", style=style,value=1) x = widgets.FloatText(description="Death rate ratio due to coyote",style=style, value=1) y = widgets.FloatText(description="Growth rate ratio due to rabbit",style=style, value=1) button = widgets.Button(description="Plot Graph") display(initial_rabbit, initial_coyote, capacity, growth_rate, death_rate, x, y, button) def plot_graph(b): clear_output() display(initial_rabbit, initial_coyote, capacity, growth_rate, death_rate, x, y, button) fig = plt.figure() ax = fig.add_subplot(111) t = np.arange(0, 20, 0.5) s = np.zeros(t.shape) p = np.zeros(t.shape) R = initial_rabbit.value C = initial_coyote.value for i in range(t.shape[0]): s[i] = R p[i] = C R = R + growth_rate.value * (capacity.value - R)/(capacity.value) * R - (1 - 1/(x.value*C + 1))*R C = C - death_rate.value * C + y.value*s[i]*C ax.plot(t, s, label="rabit") ax.plot(t, p, label="coyote") ax.set(xlabel='time (months)', ylabel='population size', title='Coyotes-Rabbit (Predator-Prey) Relationship') ax.grid() ax.legend() button.on_click(plot_graph) ``` The system shows an oscillatory behavior. Let's try to verify the nonlinear oscillation in phase space visualization. ## Part 4: Trajectories and Direction Fields for a system of equations To further demonstrate the predator numbers rise and fall cyclically with their preferred prey, we will be using the Lotka-Volterra equations, which is based on differential equations. The Lotka-Volterra Prey-Predator model involves two equations, one describes the changes in number of preys and the second one decribes the changes in number of predators. The dynamics of the interaction between a rabbit population $R_t$ and a coyotes $C_t$ is described by the following differential equations: $$ \begin{align*} \frac{dR}{dt} = aR_t - bR_tC_t \end{align*} $$ $$ \begin{align*} \frac{dC}{dt} = bdR_tC_t - cC_t \end{align*} $$ with the following notations: R$_t$: number of preys(rabbits) C$_t$: number of predators(coyotes) a: natural growing rate of rabbits, when there is no coyotes b: natural dying rate of rabbits, which is killed by coyotes per unit of time c: natural dying rate of coyotes, when ther is not rabbits d: natural growing rate of coyotes with which consumed prey is converted to predator We start from defining the system of ordinary differential equations, and then find the equilibrium points for our system. Equilibrium occurs when the frowth rate is 0, and we can see that we have two equilibrium points in our example, the first one happens when theres no preys or predators, which represents the extinction of both species, the second equilibrium happens when $R_t=\frac{c}{b d}$ $C_t=\frac{a}{b}$. Move on, we will use the scipy to help us integrate the differential equations, and generate the plot of evolution for both species: **Exercise 5** (3 point). As we can tell from the simulation results of predator-prey model, the system shows an oscillatory behavior. Find the equilibrium points of the system and generate the phase space visualization to demonstrate the oscillation seen previously is nonlinear with distorted orbits. ``` from scipy import integrate #using the same input number from the previous example input_a = widgets.FloatText(description="a",style=style, value=1) input_b = widgets.FloatText(description="b",style=style, value=1) input_c = widgets.FloatText(description="c",style=style, value=1) input_d = widgets.FloatText(description="d",style=style, value=1) # Define the system of ODEs # P[0] is prey, P[1] is predator def dP_dt(P,t=0): return np.array([a*P[0]-b*P[0]*P[1], d*b*P[0]*P[1]-c*P[1]]) button_draw_trajectories = widgets.Button(description="Plot Graph") display(input_a, input_b, input_c, input_d, button_draw_trajectories) def plot_trajectories(graph): global a, b, c, d, eq1, eq2 clear_output() display(input_a, input_b, input_c, input_d, button_draw_trajectories) a = input_a.value b = input_b.value c = input_c.value d = input_d.value # Define the Equilibrium points eq1 = np.array([0. , 0.]) eq2 = np.array([c/(d*b),a/b]) values = np.linspace(0.1, 3, 10) # Colors for each trajectory vcolors = plt.cm.autumn_r(np.linspace(0.1, 1., len(values))) f = plt.figure(figsize=(10,6)) t = np.linspace(0, 150, 1000) for v, col in zip(values, vcolors): # Starting point P0 = v*eq2 P = integrate.odeint(dP_dt, P0, t) plt.plot(P[:,0], P[:,1], lw= 1.5*v, # Different line width for different trajectories color=col, label='P0=(%.f, %.f)' % ( P0[0], P0[1]) ) ymax = plt.ylim(bottom=0)[1] xmax = plt.xlim(left=0)[1] nb_points = 20 x = np.linspace(0, xmax, nb_points) y = np.linspace(0, ymax, nb_points) X1,Y1 = np.meshgrid(x, y) DX1, DY1 = dP_dt([X1, Y1]) M = (np.hypot(DX1, DY1)) M[M == 0] = 1. DX1 /= M DY1 /= M plt.title('Trajectories and direction fields') Q = plt.quiver(X1, Y1, DX1, DY1, M, pivot='mid', cmap=plt.cm.plasma) plt.xlabel('Number of rabbits') plt.ylabel('Number of coyotes') plt.legend() plt.grid() plt.xlim(0, xmax) plt.ylim(0, ymax) print(f"\n\nThe equilibrium pointsof the system are:", list(eq1), list(eq2)) plt.show() button_draw_trajectories.on_click(plot_trajectories) ``` The model here is described in continuous differential equations, thus there is no jump or intersections between the trajectories. ## Part 5: Multiple Predators and Preys Relationship The previous relationship could be extended to multiple predators and preys relationship **Exercise 6** (3 point). Develop a discrete-time mathematical model of four species, and each two of them competing for the same resource, and simulate its behavior. Plot the simulation results. ``` %matplotlib inline initial_rabbit2 = widgets.FloatText(description="Initial Rabbit", style=style,value=2) initial_coyote2 = widgets.FloatText(description="Initial Coyote",style=style, value=2) initial_deer2 = widgets.FloatText(description="Initial Deer", style=style,value=1) initial_wolf2 = widgets.FloatText(description="Initial Wolf", style=style,value=1) population_capacity = widgets.FloatText(description="capacity",style=style, value=10) population_capacity_rabbit = widgets.FloatText(description="capacity rabbit",style=style, value=3) growth_rate_rabbit = widgets.FloatText(description="growth rate rabbit",style=style, value=1) death_rate_coyote = widgets.FloatText(description="death rate coyote",style=style, value=1) growth_rate_deer = widgets.FloatText(description="growth rate deer",style=style, value=1) death_rate_wolf = widgets.FloatText(description="death rate wolf",style=style, value=1) x1 = widgets.FloatText(description="death rate ratio due to coyote",style=style, value=1) y1 = widgets.FloatText(description="growth rate ratio due to rabbit", style=style,value=1) x2 = widgets.FloatText(description="death rate ratio due to wolf",style=style, value=1) y2 = widgets.FloatText(description="growth rate ratio due to deer", style=style,value=1) plot2 = widgets.Button(description="Plot Graph") display(initial_rabbit2, initial_coyote2,initial_deer2, initial_wolf2, population_capacity, population_capacity_rabbit, growth_rate_rabbit, growth_rate_deer, death_rate_coyote,death_rate_wolf, x1, y1,x2, y2, plot2) def plot_graph(b): clear_output() display(initial_rabbit2, initial_coyote2,initial_deer2, initial_wolf2, population_capacity, population_capacity_rabbit, growth_rate_rabbit, growth_rate_deer, death_rate_coyote,death_rate_wolf, x1, y1,x2, y2, plot2) fig = plt.figure() ax = fig.add_subplot(111) t_m = np.arange(0, 20, 0.5) r_m = np.zeros(t_m.shape) c_m = np.zeros(t_m.shape) d_m = np.zeros(t_m.shape) w_m = np.zeros(t_m.shape) R_m = initial_rabbit2.value C_m = initial_coyote2.value D_m = initial_deer2.value W_m = initial_wolf2.value population_capacity_deer = population_capacity.value - population_capacity_rabbit.value for i in range(t_m.shape[0]): r_m[i] = R_m c_m[i] = C_m d_m[i] = D_m w_m[i] = W_m R_m = R_m + growth_rate_rabbit.value * (population_capacity_rabbit.value - R_m)\ /(population_capacity_rabbit.value) * R_m - (1 - 1/(x1.value*C_m + 1))*R_m - (1 - 1/(x2.value*W_m + 1))*R_m D_m = D_m + growth_rate_deer.value * (population_capacity_deer - D_m) \ /(population_capacity_deer) * D_m - (1 - 1/(x1.value*C_m + 1))*D_m - (1 - 1/(x2.value*W_m + 1))*D_m C_m = C_m - death_rate_coyote.value * C_m + y1.value*r_m[i]*C_m + y2.value*d_m[i]*C_m W_m = W_m - death_rate_wolf.value * W_m + y1.value*r_m[i]*W_m + y2.value*d_m[i]*W_m ax.plot(t_m, r_m, label="rabit") ax.plot(t_m, c_m, label="coyote") ax.plot(t_m, d_m, label="deer") ax.plot(t_m, w_m, label="wolf") ax.set(xlabel='time (months)', ylabel='population', title='Multiple Predator Prey Relationship') ax.grid() ax.legend() plot2.on_click(plot_graph) ```
true
code
0.723786
null
null
null
null
## Imports ``` from __future__ import print_function, division import pandas as pd import numpy as np import statsmodels.api as sm import statsmodels.formula.api as smf import patsy import seaborn as sns import matplotlib.pyplot as plt import scipy.stats as stats %matplotlib inline from sklearn.linear_model import LinearRegression from sklearn.linear_model import RidgeCV from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import make_pipeline from sklearn.pipeline import Pipeline from sklearn import cross_validation from sklearn.cross_validation import train_test_split from sklearn.cross_validation import cross_val_score from sklearn.model_selection import KFold from sklearn.linear_model import Ridge from sklearn.linear_model import ElasticNet from sklearn.linear_model import Lasso from sklearn.linear_model import ElasticNetCV from sklearn.linear_model import LassoCV from sklearn.linear_model import RidgeCV from sklearn.metrics import mean_squared_error as MSE ``` ## Reading and preparing the df ``` horsey = pd.read_csv('finalmerged_clean').drop('Unnamed: 0', axis=1) ``` #### Smaller data set (maiden females) ``` MaidenFems = horsey.iloc[42:49] MaidenFems ``` #### Larger data set (without maiden females) ``` horse_fast = horsey.drop(horsey.index[42:49]).reset_index(drop=True) horse_fast horse_fast = horse_fast.drop('Final_Time',1).drop('Horse Name',1) horse_fast ``` ## Splitting into Master Test-Train ``` ttest = horse_fast.iloc[[1,5,10,15,20,25,30,35,40,45,50]].reset_index(drop=True) ttrain = horse_fast.drop(axis = 0, index = [1,5,10,15,20,25,30,35,40,45,50]).sample(frac=1).reset_index(drop=True) ttrain y_ttrain = ttrain['Final_Time_Hund'] y_ttest = ttest['Final_Time_Hund'] #extract dependent variable X_ttrain = ttrain.drop('Final_Time_Hund',1) X_ttest = ttest.drop('Final_Time_Hund',1) # Get rid of ind. variables ``` ## Testing Assumptions Didn't complete for sake of time #### Assumption 1 ``` XAssum = X_ttrain yAssum = y_ttrain XAssum_train, XAssum_test, yAssum_train, yAssum_test = train_test_split(XAssum, yAssum, test_size=0.2) def diagnostic_plot(x, y): plt.figure(figsize=(20,5)) rgr = LinearRegression() rgr.fit(XAssum_train, yAssum_train) pred = rgr.predict(XAssum_test, yAssum_test) #Regression plot plt.subplot(1, 3, 1) plt.scatter(XAssum_train,yAssum_train) plt.plot(XAssum_train, pred, color='blue',linewidth=1) plt.title("Regression fit") plt.xlabel("x") plt.ylabel("y") #Residual plot (true minus predicted) plt.subplot(1, 3, 2) res = yAssum_train - pred plt.scatter(pred, res) plt.title("Residual plot") plt.xlabel("prediction") plt.ylabel("residuals") #A Q-Q plot (for the scope of today), it's a percentile, percentile plot. When the predicted and actual distributions #are the same, they Q-Q plot has a diagonal 45degree line. When stuff diverges, the kertosis between predicted and actual are different, #your line gets wonky. plt.subplot(1, 3, 3) #Generates a probability plot of sample data against the quantiles of a # specified theoretical distribution stats.probplot(res, dist="norm", plot=plt) plt.title("Normal Q-Q plot") diagnostic_plot(XAssum_train, yAssum_train) modelA = ElasticNet(1, l1_ratio=.5) fit = modelA.fit(XAssum_train, yAssum_train) rsq = fit.score(XAssum_train, yAssum_train) adj_rsq = 1 - (1-rsq)*(len(yAssum_train)-1)/(len(yAssum_train)-XAssum_train.shape[1]-1) print(rsq) print(adj_rsq) ``` #### Assumption 2 ``` # develop OLS with Sklearn X = ttrain[1:] y = ttrain[0] # predictor lr = LinearRegression() fit = lr.fit(X,y) t['predict']=fit.predict(X) data['resid']=data.cnt-data.predict with sns.axes_style('white'): plot=data.plot(kind='scatter', x='predict',y='resid',alpha=0.2,figsize=(10,6)) ``` ## Model 0 - Linear Regression Working with the training data that doesn't include the maiden-filly race. ``` horsey = ttrain Xlin = X_ttrain ylin = y_ttrain ``` #### Regplots ``` sns.regplot('Gender','Final_Time_Hund', data=horsey); #Makes sense! Male horses tend to be a little faster. sns.regplot('Firsts','Final_Time_Hund', data=horsey); #Makes sense! Horses that have won more races tend to be faster. sns.regplot('Seconds','Final_Time_Hund', data=horsey); #Similar to the result for "firsts", but slightly less apparent. sns.regplot('Thirds','Final_Time_Hund', data=horsey); #Similar to the results above. sns.regplot('PercentWin','Final_Time_Hund', data=horsey); #Not a great correlation... sns.regplot('Starts','Final_Time_Hund', data=horsey); #This seems pretty uncorrelated... sns.regplot('Date','Final_Time_Hund', data=horsey); #Horses with more practice have faster times. But pretty uncorrelated... sns.regplot('ThreeF','Final_Time_Hund', data=horsey); #Really no correlation! sns.regplot('FourF','Final_Time_Hund', data=horsey); #Huh, not great either. sns.regplot('FiveF','Final_Time_Hund', data=horsey); #Slower practice time means slower finaltime. But yeah... pretty uncorrelated... ``` #### Correlations ``` horsey.corr() %matplotlib inline import matplotlib matplotlib.rcParams["figure.figsize"] = (12, 10) sns.heatmap(horsey.corr(), vmin=-1,vmax=1,annot=True, cmap='seismic'); ``` Pretty terrible... but it seems like FiveF, Date, Gender and Percent win are the best... (in that order). ``` sns.pairplot(horsey, size = 1.2, aspect=1.5); plt.hist(horsey.Final_Time_Hund); ``` #### Linear Regression (All inputs) ``` #Gotta add the constant... without it my r^2 was 1.0! Xlin = sm.add_constant(Xlin) #Creating the model lin_model = sm.OLS(ylin,Xlin) # Fitting the model to the training set fit_lin = lin_model.fit() # Print summary statistics of the model's performance fit_lin.summary() ``` - r2 could be worse... - adj r2 also could be worse... - Inputs that seem significant based on pvalue : Gender... that's about it! The other lowests are Firsts, seconds and date (though they're quite crappy). But I guess if 70% of data lies within the level of confidence... that's better than none... ** TESTING! ** ``` Xlin = X_ttrain ylin = y_ttrain lr_train = LinearRegression() lr_fit = lr_train.fit(Xlin, ylin) r2_training = lr_train.score(Xlin, ylin) r2adj_training = 1 - (1-r2_training)*(len(ylin)-1)/(len(ylin)-Xlin.shape[1]-1) preds = lr_fit.predict(X_ttest) rmse = np.sqrt(MSE(y_ttest, preds)) print('R2:', r2_training) print('R2 Adjusted:', r2adj_training) print('Output Predictions', preds) print('RMSE:', rmse) ``` #### Linear Regression (Updated Inputs) Below is the best combination of features to drop: Thirds, ThreeF & PrecentWin ``` Xlin2 = Xlin.drop(labels ='Thirds', axis = 1).drop(labels ='ThreeF', axis = 1).drop(labels ='PercentWin', axis = 1) ylin2 = y_ttrain #Gotta add the constant... without it my r^2 was 1.0! Xlin2 = sm.add_constant(Xlin2) #Creating the model lin_model = sm.OLS(ylin,Xlin2) # Fitting the model to the training set fit_lin = lin_model.fit() # Print summary statistics of the model's performance fit_lin.summary() ``` Slightly better... ## Model A - Elastic Net (no frills) ``` ## Establishing x and y XA = X_ttrain yA = y_ttrain #Checking the predictability of the model with this alpha = 1 modelA = ElasticNet(1, l1_ratio=.5) fit = modelA.fit(XA, yA) rsq = fit.score(XA, yA) adj_rsq = 1 - (1-rsq)*(len(yA)-1)/(len(yA)-XA.shape[1]-1) print(rsq) print(adj_rsq) ``` ** 0.3073 ** not great... but not terrible. 30% of the variance is explained by the model. ``` #Let's see if I play around with the ratios of L1 and L2 modelA = ElasticNet(1, l1_ratio=.2) fit = modelA.fit(XA, yA) rsq = fit.score(XA, yA) adj_rsq = 1 - (1-rsq)*(len(yA)-1)/(len(yA)-XA.shape[1]-1) print(rsq) print(adj_rsq) ``` ** Looks slightly worse. I guess there wasn't much need to compress complexity, or fix colinearity. ** ``` #Let's check it in the other direction, with L1 getting more weight. modelA = ElasticNet(1, l1_ratio=.98) fit = modelA.fit(XA, yA) rsq = fit.score(XA, yA) adj_rsq = 1 - (1-rsq)*(len(yA)-1)/(len(yA)-XA.shape[1]-1) print(rsq) print(adj_rsq) ``` ** Seems like l1 of 0.98 really takes the cake! Let's check out alpha... Might be worth it to switch to a Lasso model... something to keep in mind** ``` #Let's see if we can find a better alpha... kf = KFold(n_splits=5, shuffle = True, random_state = 40 ) alphas = [1e-9,1e-8,1e-7,1e-6,1e-5,1e-4,1e-3,1e-2,1e-1,1,10,100,1000,10000, 100000, 1000000] #alphas = [0,.001,.01,.1,.2,.5,.9,1,5,10,50,100,1000,10000] errors = [] for i in alphas: err_list = [] for train_index, test_index in kf.split(XA): #print("TRAIN:", train_index, "TEST:", test_index) #This gives the index of the rows you're training and testing. XA_train, XA_test = XA.loc[train_index], XA.loc[test_index] yA_train, yA_test = yA[train_index], yA[test_index] ef = ElasticNet(i, l1_ratio = 0.5) ef.fit(XA_train,yA_train) #print(ef.coef_) #This prints the coefficients of each of the input variables. preds = ef.predict(XA_test) #Predictions for the y value. error = np.sqrt(MSE(preds,yA_test)) err_list.append(error) error = np.mean(err_list) errors.append(error) print("The RMSE for alpha = {0} is {1}".format(i,error)) ``` ** Looks like the best alpha is around 1000! Lets see if we can get even more granular. ** ``` kf = KFold(n_splits=5, shuffle = True, random_state = 40) alphas = [500, 600, 800, 900, 1000, 1500, 2000, 3000] #alphas = [0,.001,.01,.1,.2,.5,.9,1,5,10,50,100,1000,10000] errors = [] for i in alphas: err_list = [] for train_index, test_index in kf.split(XA): #print("TRAIN:", train_index, "TEST:", test_index) #This gives the index of the rows you're training and testing. XA_train, XA_test = XA.loc[train_index], XA.loc[test_index] yA_train, yA_test = yA[train_index], yA[test_index] ef = ElasticNet(i) ef.fit(XA_train,yA_train) #print(ef.coef_) #This prints the coefficients of each of the input variables. preds = ef.predict(XA_test) #Predictions for the y value. error = np.sqrt(MSE(preds,yA_test)) err_list.append(error) error = np.mean(err_list) errors.append(error) print("The RMSE for alpha = {0} is {1}".format(i,error)) ``` ** I'm going to settle on an alpha of 800 ** ``` #Checking the predictability of the model again with the new alpha of 90. modelA = ElasticNet(alpha = 800) fit = modelA.fit(XA, yA) fit.score(XA, yA) ``` Hm. Not really sure what that did, but definitely didn't work... ** TESTING ** Doing ElasticNetCV (withouth any modifications) ``` ## Letting it do it's thing on it's own. encvA = ElasticNetCV() fitA = encvA.fit(XA, yA) r2_training = encvA.score(XA, yA) y= np.trim_zeros(encvA.fit(XA,yA).coef_) #r2adj_training = 1 - (1-r2_training)*(XA.shape[1]-1)/(XA.shape[1]-len(y)-1) adj_rsq = 1 - (1-r2_training)*(len(XA)-1)/(len(XA)-XA.shape[1]-len(y)-1) preds = fitA.predict(X_ttest) rmse = np.sqrt(MSE(preds, y_ttest)) print('R2:', r2_training) print('R2 Adjusted:', adj_rsq) print('Output Predictions', preds) print('RMSE:', rmse) print('Alpha:',encvA.alpha_) print('L1:',encvA.l1_ratio_) print('Coefficients:',fitA.coef_) elastic_coef = encvA.fit(XA, yA).coef_ _ = plt.bar(range(len(XA.columns)), elastic_coef) _ = plt.xticks(range(len(XA.columns)), XA.columns, rotation=45) _ = plt.ylabel('Coefficients') plt.show() ``` Doing ElasticNet CV - changing the l1 ratio ``` encvA2 = ElasticNetCV(l1_ratio = .99) fitA2 = encvA2.fit(XA, yA) r2_training = encvA2.score(XA, yA) y= np.trim_zeros(encvA2.fit(XA,yA).coef_) adj_rsq = 1 - (1-r2_training)*(len(XA)-1)/(len(XA)-XA.shape[1]-len(y)-1) preds = fitA2.predict(X_ttest) rmse = np.sqrt(MSE(y_ttest, preds)) print('R2:', r2_training) print('R2 Adjusted:', adj_rsq) print('Output Predictions', preds) print('RMSE:', rmse) print('Alpha:',encvA2.alpha_) print('L1:',encvA2.l1_ratio_) print('Coefficients:',fitA.coef_) elastic_coef = encvA2.fit(XA, yA).coef_ _ = plt.bar(range(len(XA.columns)), elastic_coef) _ = plt.xticks(range(len(XA.columns)), XA.columns, rotation=45) _ = plt.ylabel('Coefficients') plt.show() ``` ### Extras ``` ## L1 is 0.98 encvA2 = ElasticNetCV(l1_ratio = 0.98) fitA2 = encvA2.fit(XA_train, yA_train) rsq = fitA2.score(XA_test, yA_test) adj_rsq = 1 - (1-rsq)*(len(yA)-1)/(len(yA)-XA.shape[1]-1) preds = fitA2.predict(XA_test) mserror = np.sqrt(MSE(preds,yA_test)) print(rsq) print(adj_rsq) print(preds) print(mserror) print(encvA2.alpha_) print(encvA2.l1_ratio_) ``` Still weird... ``` ## Trying some alphas... encvA3 = ElasticNetCV(alphas = [80,800,1000]) fitA3 = encvA3.fit(XA_train, yA_train) rsq = fitA3.score(XA_test, yA_test) adj_rsq = 1 - (1-rsq)*(len(yA)-1)/(len(yA)-XA.shape[1]-1) preds = fitA3.predict(XA_test) mserror = np.sqrt(MSE(preds,yA_test)) print(rsq) print(adj_rsq) print(preds) print(mserror) print(encvA3.alpha_) print(encvA3.l1_ratio_) ``` Still confused... ## Model B - Elastic Net (polynomial transformation) ``` ## Establishing x and y XB = X_ttrain yB = y_ttrain ModelB = make_pipeline(PolynomialFeatures(2), LinearRegression()) fit = ModelB.fit(XB, yB) rsq = fit.score(XB, yB) adj_rsq = 1 - (1-rsq)*(len(yA)-1)/(len(yB)-XB.shape[1]-1) print(rsq) print(adj_rsq) ModelB = make_pipeline(PolynomialFeatures(3), ElasticNetCV(l1_ratio = .5)) fit = ModelB.fit(XB, yB) rsq = fit.score(XB, yB) adj_rsq = 1 - (1-rsq)*(len(yA)-1)/(len(yB)-XB.shape[1]-1) print(rsq) print(adj_rsq) ``` ... Hm ... Not great. But we'll test it anyway. ** TESTING ** ``` encvB = make_pipeline(PolynomialFeatures(2), LinearRegression()) fitB = encvB.fit(XB, yB) r2_training = encvB.score(X_ttest, y_ttest) #y= np.trim_zeros(encvB.fit(XB,yB).coef_) #r2adj_training = 1 - (1-r2_training)*(XB.shape[1]-1)/(XB.shape[1]-len(y)-1) preds = fitB.predict(X_ttest) rmse = np.sqrt(MSE(y_ttest, preds)) print('R2:', r2_training) print('R2 Adjusted:', r2adj_training) print('Output Predictions', preds) print('RMSE:', rmse) print('Alpha:',encvB_steps.elasticnetcv.alpha_) print('L1:',encvB.named_steps.elasticnetcv.l1_ratio_) #Testing the predictability of the model with this alpha = 0.5 XB_train, XB_test, yB_train, yB_test = train_test_split(XB, yB, test_size=0.2) modelB = make_pipeline(PolynomialFeatures(2), ElasticNetCV(l1_ratio = .5)) modelB.fit(XB_train, yB_train) rsq = modelB.score(XB_train,yB_train) adj_rsq = 1 - (1-rsq)*(len(yB_train)-1)/(len(yB_train)-XB_train.shape[1]-1) preds = fitA3.predict(XB_test) mserror = np.sqrt(MSE(preds,yB_test)) print(rsq) print(adj_rsq) print(preds) print(mserror) print(modelB.named_steps.elasticnetcv.alpha_) print(modelB.named_steps.elasticnetcv.l1_ratio_) ``` ## Model C - Elastic Net CV with transformations On second review, none of the inputs would benefit from transformations ``` C_train = ttrain C_train['new_firsts_log']=np.log(C_train.Firsts) C_train #C_train.new_firsts_log.str.replace('-inf', '0') ``` ## Predicting Today's Race! ``` todays_race = pd.read_csv('big_race_day').drop('Unnamed: 0', axis = 1).drop('Horse Name', axis =1) ## today_race acting as testing x todays_race ``` ### Maiden Fems Prediction ``` ym_train = MaidenFems['Final_Time_Hund'] xm_train = MaidenFems.drop('Final_Time_Hund',1).drop('Horse Name',1).drop('Final_Time',1) enMaid = ElasticNetCV(.90) fitMaid = enMaid.fit(xm_train, ym_train) preds = fitMaid.predict(todays_race) r2_training = enMaid.score(xm_train, ym_train) y= np.trim_zeros(enMaid.fit(xm_train,ym_train).coef_) adj_rsq = 1 - (1-r2_training)*(len(xm_train)-1)/(len(xm_train)-xm_train.shape[1]-len(y)-1) print('Output Predictions', preds) print('R2:', r2_training) print('R2 Adjusted:', adj_rsq) print('Alpha:',enMaid.alpha_) print('L1:',enMaid.l1_ratio_) print('Coefficients:',fitMaid.coef_) elastic_coef = enMaid.fit(xm_train, ym_train).coef_ _ = plt.bar(range(len(xm_train.columns)), elastic_coef) _ = plt.xticks(range(len(xm_train.columns)), xm_train.columns, rotation=45) _ = plt.ylabel('Coefficients') plt.show() finalguesses_Maiden = [{'Horse Name': 'Lady Lemon Drop' ,'Maiden Horse Guess': 10116.53721999}, {'Horse Name': 'Curlins Prize' ,'Maiden Horse Guess': 10097.09521978}, {'Horse Name': 'Luminoso' ,'Maiden Horse Guess':10063.11500294}, {'Horse Name': 'Party Dancer' ,'Maiden Horse Guess': 10069.32339855}, {'Horse Name': 'Bring on the Band' ,'Maiden Horse Guess': 10054.64900894}, {'Horse Name': 'Rockin Ready' ,'Maiden Horse Guess': 10063.67940254}, {'Horse Name': 'Rattle' ,'Maiden Horse Guess': 10073.93665433}, {'Horse Name': 'Curlins Journey' ,'Maiden Horse Guess': 10072.45966259}, {'Horse Name': 'Heaven Escape' ,'Maiden Horse Guess':10092.43120946}] ``` ### EN-CV prediction ``` encvL = ElasticNetCV(l1_ratio = 0.99) fiten = encvL.fit(X_ttrain, y_ttrain) preds = fiten.predict(todays_race) r2_training = encvL.score(X_ttrain, y_ttrain) y = np.trim_zeros(encvL.fit(X_ttrain,y_ttrain).coef_) adj_rsq = 1 - (1-r2_training)*(len(X_ttrain)-1)/(len(X_ttrain)-X_ttrain.shape[1]-len(y)-1) print('Output Predictions', preds) print('R2:', r2_training) print('R2 Adjusted:', adj_rsq) print('Alpha:',encv.alpha_) print('L1:',encv.l1_ratio_) print('Coefficients:',fiten.coef_) elastic_coef = encvL.fit(X_ttrain, y_ttrain).coef_ _ = plt.bar(range(len(X_ttrain.columns)), elastic_coef) _ = plt.xticks(range(len(X_ttrain.columns)), X_ttrain.columns, rotation=45) _ = plt.ylabel('Coefficients') plt.show() finalguesses_EN = [{'Horse Name': 'Lady Lemon Drop' ,'Guess': 9609.70585871}, {'Horse Name': 'Curlins Prize' ,'Guess': 9645.82659915}, {'Horse Name': 'Luminoso' ,'Guess':9558.93257549}, {'Horse Name': 'Party Dancer' ,'Guess': 9564.01963654}, {'Horse Name': 'Bring on the Band' ,'Guess': 9577.9212198}, {'Horse Name': 'Rockin Ready' ,'Guess': 9556.46879067}, {'Horse Name': 'Rattle' ,'Guess': 9549.09508205}, {'Horse Name': 'Curlins Journey' ,'Guess': 9546.58621572}, {'Horse Name': 'Heaven Escape' ,'Guess':9586.917829}] ``` ### Linear Regression prediction ``` Xlin = X_ttrain ylin = y_ttrain lr = LinearRegression() lrfit = lr.fit(Xlin, ylin) preds = lrfit.predict(todays_race) r2_training = lr.score(Xlin, ylin) r2adj_training = 1 - (1-r2_training)*(len(ylin)-1)/(len(ylin)-Xlin.shape[1]-1) print('Output Predictions', preds) print('R2:', r2_training) print('R2 Adjusted:', r2adj_training) elastic_coef = lrfit.fit(Xlin, ylin).coef_ _ = plt.bar(range(len(Xlin.columns)), elastic_coef) _ = plt.xticks(range(len(Xlin.columns)), Xlin.columns, rotation=45) _ = plt.ylabel('Coefficients') plt.show() finalguesses_Lin = [{'Horse Name': 'Lady Lemon Drop' ,'Guess': 9720.65585682}, {'Horse Name': 'Curlins Prize' ,'Guess': 9746.17852003}, {'Horse Name': 'Luminoso' ,'Guess':9608.10444379}, {'Horse Name': 'Party Dancer' ,'Guess': 9633.58532183}, {'Horse Name': 'Bring on the Band' ,'Guess': 9621.04698335}, {'Horse Name': 'Rockin Ready' ,'Guess': 9561.82026773}, {'Horse Name': 'Rattle' ,'Guess': 9644.13062968}, {'Horse Name': 'Curlins Journey' ,'Guess': 9666.24092249}, {'Horse Name': 'Heaven Escape' ,'Guess':9700.56665335}] ``` ### Setting the data frames ``` GuessLin = pd.DataFrame(finalguesses_Lin) GuessMaid = pd.DataFrame(finalguesses_Maiden) GuessEN = pd.DataFrame(finalguesses_EN) GuessLin.sort_values('Guess') GuessMaid.sort_values('Maiden Horse Guess') GuessEN.sort_values('Guess') ```
true
code
0.737158
null
null
null
null
``` from sympy import pi, cos, sin, symbols from sympy.utilities.lambdify import implemented_function import pytest from sympde.calculus import grad, dot from sympde.calculus import laplace from sympde.topology import ScalarFunctionSpace from sympde.topology import element_of from sympde.topology import NormalVector from sympde.topology import Square from sympde.topology import Union from sympde.expr import BilinearForm, LinearForm, integral from sympde.expr import Norm from sympde.expr import find, EssentialBC from sympde.expr.expr import linearize from psydac.fem.basic import FemField from psydac.api.discretization import discretize x,y,z = symbols('x1, x2, x3') ``` # Non-Linear Poisson in 2D In this section, we consider the non-linear Poisson problem: $$ -\nabla \cdot \left( (1+u^2) \nabla u \right) = f, \Omega \\ u = 0, \partial \Omega $$ where $\Omega$ denotes the unit square. For testing, we shall take a function $u$ that fulfills the boundary condition, the compute $f$ as $$ f(x,y) = -\nabla^2 u - F(u) $$ The weak formulation is $$ \int_{\Omega} (1+u^2) \nabla u \cdot \nabla v ~ d\Omega = \int_{\Omega} f v ~d\Omega, \quad \forall v \in \mathcal{V} $$ For the sack of generality, we shall consider the linear form $$ G(v;u,w) := \int_{\Omega} (1+w^2) \nabla u \cdot \nabla v ~ d\Omega, \quad \forall u,v,w \in \mathcal{V} $$ Our problem is then $$ \mbox{Find } u \in \mathcal{V}, \mbox{such that}\\ G(v;u,u) = l(v), \quad \forall v \in \mathcal{V} $$ where $$ l(v) := \int_{\Omega} f v ~d\Omega, \quad \forall v \in \mathcal{V} $$ #### Topological domain ``` domain = Square() B_dirichlet_0 = domain.boundary ``` #### Function Space ``` V = ScalarFunctionSpace('V', domain) ``` #### Defining the Linear form $G$ ``` u = element_of(V, name='u') v = element_of(V, name='v') w = element_of(V, name='w') # Linear form g: V --> R g = LinearForm(v, integral(domain, (1+w**2)*dot(grad(u), grad(v)))) ``` #### Defining the Linear form L ``` solution = sin(pi*x)*sin(pi*y) f = 2*pi**2*(sin(pi*x)**2*sin(pi*y)**2 + 1)*sin(pi*x)*sin(pi*y) - 2*pi**2*sin(pi*x)**3*sin(pi*y)*cos(pi*y)**2 - 2*pi**2*sin(pi*x)*sin(pi*y)**3*cos(pi*x)**2 # Linear form l: V --> R l = LinearForm(v, integral(domain, f * v)) ``` ### Picard Method $$ \mbox{Find } u_{n+1} \in \mathcal{V}_h, \mbox{such that}\\ G(v;u_{n+1},u_n) = l(v), \quad \forall v \in \mathcal{V}_h $$ ### Newton Method Let's define $$ F(v;u) := G(v;u,u) -l(v), \quad \forall v \in \mathcal{V} $$ Newton method writes $$ \mbox{Find } u_{n+1} \in \mathcal{V}_h, \mbox{such that}\\ F^{\prime}(\delta u,v; u_n) = - F(v;u_n), \quad \forall v \in \mathcal{V} \\ u_{n+1} := u_{n} + \delta u, \quad \delta u \in \mathcal{V} $$ #### Computing $F^{\prime}$ the derivative of $F$ **SymPDE** allows you to linearize a linear form and get a bilinear form, using the function **linearize** ``` F = LinearForm(v, g(v,w=u)-l(v)) du = element_of(V, name='du') Fprime = linearize(F, u, trials=du) ``` ## Picard Method #### Abstract Model ``` un = element_of(V, name='un') # Bilinear form a: V x V --> R a = BilinearForm((u, v), g(v, u=u,w=un)) # Dirichlet boundary conditions bc = [EssentialBC(u, 0, B_dirichlet_0)] # Variational problem equation = find(u, forall=v, lhs=a(u, v), rhs=l(v), bc=bc) # Error norms error = u - solution l2norm = Norm(error, domain, kind='l2') ``` #### Discretization ``` # Create computational domain from topological domain domain_h = discretize(domain, ncells=[16,16], comm=None) # Discrete spaces Vh = discretize(V, domain_h, degree=[2,2]) # Discretize equation using Dirichlet bc equation_h = discretize(equation, domain_h, [Vh, Vh]) # Discretize error norms l2norm_h = discretize(l2norm, domain_h, Vh) ``` #### Picard solver ``` def picard(niter=10): Un = FemField( Vh, Vh.vector_space.zeros() ) for i in range(niter): Un = equation_h.solve(un=Un) # Compute error norms l2_error = l2norm_h.assemble(u=Un) print('l2_error = ', l2_error) return Un Un = picard(niter=5) from matplotlib import pyplot as plt from utilities.plot import plot_field_2d nbasis = [w.nbasis for w in Vh.spaces] p1,p2 = Vh.degree x = Un.coeffs._data[p1:-p1,p2:-p2] u = x.reshape(nbasis) plot_field_2d(Vh.knots, Vh.degree, u) ; plt.colorbar() ``` ## Newton Method #### Abstract Model ``` # Dirichlet boundary conditions bc = [EssentialBC(du, 0, B_dirichlet_0)] # Variational problem equation = find(du, forall=v, lhs=Fprime(du, v,u=un), rhs=-F(v,u=un), bc=bc) ``` #### Discretization ``` # Create computational domain from topological domain domain_h = discretize(domain, ncells=[16,16], comm=None) # Discrete spaces Vh = discretize(V, domain_h, degree=[2,2]) # Discretize equation using Dirichlet bc equation_h = discretize(equation, domain_h, [Vh, Vh]) # Discretize error norms l2norm_h = discretize(l2norm, domain_h, Vh) ``` #### Newton Solver ``` def newton(niter=10): Un = FemField( Vh, Vh.vector_space.zeros() ) for i in range(niter): delta_x = equation_h.solve(un=Un) Un = FemField( Vh, delta_x.coeffs + Un.coeffs ) # Compute error norms l2_error = l2norm_h.assemble(u=Un) print('l2_error = ', l2_error) return Un un = newton(niter=5) nbasis = [w.nbasis for w in Vh.spaces] p1,p2 = Vh.degree x = un.coeffs._data[p1:-p1,p2:-p2] u = x.reshape(nbasis) plot_field_2d(Vh.knots, Vh.degree, u) ; plt.colorbar() ```
true
code
0.679046
null
null
null
null
# A simple DNN model built in Keras. Let's start off with the Python imports that we need. ``` import os, json, math import numpy as np import shutil import tensorflow as tf print(tf.__version__) ``` ## Locating the CSV files We will start with the CSV files that we wrote out in the [first notebook](../01_explore/taxifare.iypnb) of this sequence. Just so you don't have to run the notebook, we saved a copy in ../data ``` !ls -l ../data/*.csv ``` ## Use tf.data to read the CSV files We wrote these cells in the [third notebook](../03_tfdata/input_pipeline.ipynb) of this sequence. ``` CSV_COLUMNS = ['fare_amount', 'pickup_datetime', 'pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count', 'key'] LABEL_COLUMN = 'fare_amount' DEFAULTS = [[0.0],['na'],[0.0],[0.0],[0.0],[0.0],[0.0],['na']] def features_and_labels(row_data): for unwanted_col in ['pickup_datetime', 'key']: row_data.pop(unwanted_col) label = row_data.pop(LABEL_COLUMN) return row_data, label # features, label # load the training data def load_dataset(pattern, batch_size=1, mode=tf.estimator.ModeKeys.EVAL): dataset = (tf.data.experimental.make_csv_dataset(pattern, batch_size, CSV_COLUMNS, DEFAULTS) .map(features_and_labels) # features, label .cache()) if mode == tf.estimator.ModeKeys.TRAIN: dataset = dataset.shuffle(1000).repeat() dataset = dataset.prefetch(1) # take advantage of multi-threading; 1=AUTOTUNE return dataset ## Build a simple Keras DNN using its Functional API def rmse(y_true, y_pred): return tf.sqrt(tf.reduce_mean(tf.square(y_pred - y_true))) def build_dnn_model(): INPUT_COLS = ['pickup_longitude', 'pickup_latitude', 'dropoff_longitude', 'dropoff_latitude', 'passenger_count'] # input layer inputs = { colname : tf.keras.layers.Input(name=colname, shape=(), dtype='float32') for colname in INPUT_COLS } feature_columns = { colname : tf.feature_column.numeric_column(colname) for colname in INPUT_COLS } # the constructor for DenseFeatures takes a list of numeric columns # The Functional API in Keras requires that you specify: LayerConstructor()(inputs) dnn_inputs = tf.keras.layers.DenseFeatures(feature_columns.values())(inputs) # two hidden layers of [32, 8] just in like the BQML DNN h1 = tf.keras.layers.Dense(32, activation='relu', name='h1')(dnn_inputs) h2 = tf.keras.layers.Dense(8, activation='relu', name='h2')(h1) # final output is a linear activation because this is regression output = tf.keras.layers.Dense(1, activation='linear', name='fare')(h2) model = tf.keras.models.Model(inputs, output) model.compile(optimizer='adam', loss='mse', metrics=[rmse, 'mse']) return model model = build_dnn_model() print(model.summary()) tf.keras.utils.plot_model(model, 'dnn_model.png', show_shapes=False, rankdir='LR') ``` ## Train model To train the model, call model.fit() ``` TRAIN_BATCH_SIZE = 32 NUM_TRAIN_EXAMPLES = 10000 * 5 # training dataset repeats, so it will wrap around NUM_EVALS = 5 # how many times to evaluate NUM_EVAL_EXAMPLES = 10000 # enough to get a reasonable sample, but not so much that it slows down trainds = load_dataset('../data/taxi-train*', TRAIN_BATCH_SIZE, tf.estimator.ModeKeys.TRAIN) evalds = load_dataset('../data/taxi-valid*', 1000, tf.estimator.ModeKeys.EVAL).take(NUM_EVAL_EXAMPLES//1000) steps_per_epoch = NUM_TRAIN_EXAMPLES // (TRAIN_BATCH_SIZE * NUM_EVALS) history = model.fit(trainds, validation_data=evalds, epochs=NUM_EVALS, steps_per_epoch=steps_per_epoch) # plot import matplotlib.pyplot as plt nrows = 1 ncols = 2 fig = plt.figure(figsize=(10, 5)) for idx, key in enumerate(['loss', 'rmse']): ax = fig.add_subplot(nrows, ncols, idx+1) plt.plot(history.history[key]) plt.plot(history.history['val_{}'.format(key)]) plt.title('model {}'.format(key)) plt.ylabel(key) plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left'); ``` ## Predict with model This is how you'd predict with this model. ``` model.predict({ 'pickup_longitude': tf.convert_to_tensor([-73.982683]), 'pickup_latitude': tf.convert_to_tensor([40.742104]), 'dropoff_longitude': tf.convert_to_tensor([-73.983766]), 'dropoff_latitude': tf.convert_to_tensor([40.755174]), 'passenger_count': tf.convert_to_tensor([3.0]), }) ``` Of course, this is not realistic, because we can't expect client code to have a model object in memory. We'll have to export our model to a file, and expect client code to instantiate the model from that exported file. ## Export model Let's export the model to a TensorFlow SavedModel format. Once we have a model in this format, we have lots of ways to "serve" the model, from a web application, from JavaScript, from mobile applications, etc. ``` # This doesn't work yet. shutil.rmtree('./export/savedmodel', ignore_errors=True) tf.keras.experimental.export_saved_model(model, './export/savedmodel') # Recreate the exact same model new_model = tf.keras.experimental.load_from_saved_model('./export/savedmodel') # try predicting with this model new_model.predict({ 'pickup_longitude': tf.convert_to_tensor([-73.982683]), 'pickup_latitude': tf.convert_to_tensor([40.742104]), 'dropoff_longitude': tf.convert_to_tensor([-73.983766]), 'dropoff_latitude': tf.convert_to_tensor([40.755174]), 'passenger_count': tf.convert_to_tensor([3.0]), }) ``` In the next notebook, we will improve this model through feature engineering. Copyright 2019 Google Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
true
code
0.580233
null
null
null
null
# Multivariate Dependencies Beyond Shannon Information This is a companion Jupyter notebook to the work *Multivariate Dependencies Beyond Shannon Information* by Ryan G. James and James P. Crutchfield. This worksheet was written by Ryan G. James. It primarily makes use of the ``dit`` package for information theory calculations. ## Basic Imports We first import basic functionality. Further functionality will be imported as needed. ``` import numpy as np import matplotlib.pyplot as plt %matplotlib inline from dit import ditParams, Distribution from dit.distconst import uniform ditParams['repr.print'] = ditParams['print.exact'] = True ``` ## Distributions Here we define the two distributions to be compared. ``` from dit.example_dists.mdbsi import dyadic, triadic dists = [('dyadic', dyadic), ('triadic', triadic)] ``` ## I-Diagrams and X-Diagrams Here we construct the I- and X-Diagrams of both distributions. The I-Diagram is constructed by considering how the entropies of each variable interact. The X-Diagram is similar, but considers how the extropies of each variable interact. ``` from dit.profiles import ExtropyPartition, ShannonPartition def print_partition(dists, partition): ps = [str(partition(dist)).split('\n') for _, dist in dists ] print('\t' + '\t\t\t\t'.join(name for name, _ in dists)) for lines in zip(*ps): print('\t\t'.join(lines)) print_partition(dists, ShannonPartition) ``` Both I-Diagrams are the same. This implies that *no* Shannon measure (entropy, mutual information, conditional mutual information [including the transfer entropy], co-information, etc) can differentiate these patterns of dependency. ``` print_partition(dists, ExtropyPartition) ``` Similarly, the X-Diagrams are identical and so no extropy-based measure can differentiate the distributions. ## Measures of Mutual and Common Information We now compute several measures of mutual and common information: ``` from prettytable import PrettyTable from dit.multivariate import (entropy, coinformation, total_correlation, dual_total_correlation, independent_information, caekl_mutual_information, interaction_information, intrinsic_total_correlation, gk_common_information, wyner_common_information, exact_common_information, functional_common_information, mss_common_information, tse_complexity, ) from dit.other import (extropy, disequilibrium, perplexity, LMPR_complexity, renyi_entropy, tsallis_entropy, ) def print_table(title, table, dists): pt = PrettyTable(field_names = [''] + [name for name, _ in table]) for name, _ in table: pt.float_format[name] = ' 5.{0}'.format(3) for name, dist in dists: pt.add_row([name] + [measure(dist) for _, measure in table]) print("\n{}".format(title)) print(pt.get_string()) ``` ### Entropies Entropies generally capture the uncertainty contained in a distribution. Here, we compute the Shannon entropy, the Renyi entropy of order 2 (also known as the collision entropy), and the Tsallis entropy of order 2. Though we only compute the order 2 values, any order will produce values identical for both distributions. ``` entropies = [('H', entropy), ('Renyi (α=2)', lambda d: renyi_entropy(d, 2)), ('Tsallis (q=2)', lambda d: tsallis_entropy(d, 2)), ] print_table('Entropies', entropies, dists) ``` The entropies for both distributions are indentical. This is not surprising: they have the same probability mass function. ### Mutual Informations Mutual informations are multivariate generalizations of the standard Shannon mutual information. By far, the most widely used (and often simply assumed to be the only) generalization is the total correlation, sometimes called the multi-information. It is defined as: $$ T[\mathbf{X}] = \sum H[X_i] - H[\mathbf{X}] = \sum p(\mathbf{x}) \log_2 \frac{p(\mathbf{x})}{p(x_1)p(x_2)\ldots p(x_n)} $$ Other generalizations exist, though, including the co-information, the dual total correlation, and the CAEKL mutual information. ``` mutual_informations = [('I', coinformation), ('T', total_correlation), ('B', dual_total_correlation), ('J', caekl_mutual_information), ('II', interaction_information), ] print_table('Mutual Informations', mutual_informations, dists) ``` The equivalence of all these generalizations is not surprising: Each of them can be defined as a function of the I-diagram, and so must be identical here. ### Common Informations Common informations are generally defined using an auxilliary random variable which captures some amount of information shared by the variables of interest. For all but the Gács-Körner common information, that shared information is the dual total correlation. ``` common_informations = [('K', gk_common_information), ('C', lambda d: wyner_common_information(d, niter=1, polish=False)), ('G', lambda d: exact_common_information(d, niter=1, polish=False)), ('F', functional_common_information), ('M', mss_common_information), ] print_table('Common Informations', common_informations, dists) ``` As it turns out, only the Gács-Körner common information, `K`, distinguishes the two. ### Other Measures Here we list a variety of other information measures. ``` other_measures = [('IMI', lambda d: intrinsic_total_correlation(d, d.rvs[:-1], d.rvs[-1])), ('X', extropy), ('R', independent_information), ('P', perplexity), ('D', disequilibrium), ('LMRP', LMPR_complexity), ('TSE', tse_complexity), ] print_table('Other Measures', other_measures, dists) ``` Several other measures fail to differentiate our two distributions. For many of these (`X`, `P`, `D`, `LMRP`) this is because they are defined relative to the probability mass function. For the others, it is due to the equality of the I-diagrams. Only the intrinsic mutual information, `IMI`, can distinguish the two. ## Information Profiles Lastly, we consider several "profiles" of the information. ``` from dit.profiles import * def plot_profile(dists, profile): n = len(dists) plt.figure(figsize=(8*n, 6)) ent = max(entropy(dist) for _, dist in dists) for i, (name, dist) in enumerate(dists): ax = plt.subplot(1, n, i+1) profile(dist).draw(ax=ax) if profile not in [EntropyTriangle, EntropyTriangle2]: ax.set_ylim((-0.1, ent + 0.1)) ax.set_title(name) ``` ### Complexity Profile ``` plot_profile(dists, ComplexityProfile) ``` Once again, these two profiles are identical due to the I-Diagrams being identical. The complexity profile incorrectly suggests that there is no information at the scale of 3 variables. ### Marginal Utility of Information ``` plot_profile(dists, MUIProfile) ``` The marginal utility of information is based on a linear programming problem with constrains related to values from the I-Diagram, and so here again the two distributions are undifferentiated. ### Connected Informations ``` plot_profile(dists, SchneidmanProfile) ``` The connected informations are based on differences between maximum entropy distributions with differing $k$-way marginal distributions fixed. Here, the two distributions are differentiated ### Multivariate Entropy Triangle ``` plot_profile(dists, EntropyTriangle) ``` Both distributions are at an idential location in the multivariate entropy triangle. ## Partial Information We next consider a variety of partial information decompositions. ``` from dit.pid.helpers import compare_measures for name, dist in dists: compare_measures(dist, name=name) ``` Here we see that the PID determines that in dyadic distribution two random variables uniquely contribute a bit of information to the third, whereas in the triadic distribution two random variables redundantly influene the third with one bit, and synergistically with another. ## Multivariate Extensions ``` from itertools import product outcomes_a = [ (0,0,0,0), (0,2,3,2), (1,0,2,1), (1,2,1,3), (2,1,3,3), (2,3,0,1), (3,1,1,2), (3,3,2,0), ] outcomes_b = [ (0,0,0,0), (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (1,1,0,0), (1,1,1,1), ] outcomes = [ tuple([2*a+b for a, b in zip(a_, b_)]) for a_, b_ in product(outcomes_a, outcomes_b) ] quadradic = uniform(outcomes) dyadic2 = uniform([(4*a+2*c+e, 4*a+2*d+f, 4*b+2*c+f, 4*b+2*d+e) for a, b, c, d, e, f in product([0,1], repeat=6)]) dists2 = [('dyadic2', dyadic2), ('quadradic', quadradic)] print_partition(dists2, ShannonPartition) print_partition(dists2, ExtropyPartition) print_table('Entropies', entropies, dists2) print_table('Mutual Informations', mutual_informations, dists2) print_table('Common Informations', common_informations, dists2) print_table('Other Measures', other_measures, dists2) plot_profile(dists2, ComplexityProfile) plot_profile(dists2, MUIProfile) plot_profile(dists2, SchneidmanProfile) plot_profile(dists2, EntropyTriangle) ```
true
code
0.445107
null
null
null
null
``` import numpy as np import torch import torchvision import torch.nn as nn import torch.optim as optim from nn_interpretability.interpretation.lrp.lrp_0 import LRP0 from nn_interpretability.interpretation.lrp.lrp_eps import LRPEpsilon from nn_interpretability.interpretation.lrp.lrp_gamma import LRPGamma from nn_interpretability.interpretation.lrp.lrp_ab import LRPAlphaBeta from nn_interpretability.interpretation.lrp.lrp_composite import LRPMix from nn_interpretability.model.model_trainer import ModelTrainer from nn_interpretability.model.model_repository import ModelRepository from nn_interpretability.visualization.mnist_visualizer import MnistVisualizer from nn_interpretability.dataset.mnist_data_loader import MnistDataLoader model_name = 'model_cnn.pt' train = False mnist_data_loader = MnistDataLoader() MnistVisualizer.show_dataset_examples(mnist_data_loader.trainloader) model = ModelRepository.get_general_mnist_cnn(model_name) if train: criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.0005) model.train() ModelTrainer.train(model, criterion, optimizer, mnist_data_loader.trainloader) ModelRepository.save(model, model_name) ``` # I. LRP-0 ``` images = [] for i in range(10): img = mnist_data_loader.get_image_for_class(i) # LRP0(model, target_class, transforms, visualize_layer) interpretor = LRP0(model, i, None, 0) endpoint = interpretor.interpret(img) images.append(endpoint[0].detach().cpu().numpy().sum(axis=0)) MnistVisualizer.display_heatmap_for_each_class(images) ``` ## Comparison between LRP gradient and LRP convolution transpose implementation For **convolution layers** there is no difference, we will obtain the same numerical results with either approach. However, for **pooling layers** the result from convolution transpose approach is **4^(n)** as large as for those from gradient approach, where n is the number of pooling layers. The reason is because in every average unpooling operation, s will be unpooled directly without multiplying any scaling factor. For gradient approach, every input activation influence the output equally therefore the gradient for every activation entrices is 0.25. The operation is an analog of first unpooling and then multiplying a scale of 0.25 to s. The gradient approach will be more reasonable to the equation described in Montavon's paper. As we treat pooling layers like convolutional layers, the scaling factor 0.25 from pooling should be considered in the steps that we multiply weights in convolutional layers (step1 and step3). # II. LRP-ε ``` images = [] for i in range(10): img = mnist_data_loader.get_image_for_class(i) # LRPEpsilon(model, target_class, transforms, visualize_layer) interpretor = LRPEpsilon(model, i, None, 0) endpoint = interpretor.interpret(img) images.append(endpoint[0].detach().cpu().numpy().sum(axis=0)) MnistVisualizer.display_heatmap_for_each_class(images) ``` # III. LRP- γ ``` images = [] for i in range(10): img = mnist_data_loader.get_image_for_class(i) # LRPGamma(model, target_class, transforms, visualize_layer) interpretor = LRPGamma(model, i, None, 0) endpoint = interpretor.interpret(img) images.append(endpoint[0].detach().cpu().numpy().sum(axis=0)) MnistVisualizer.display_heatmap_for_each_class(images) ``` # IV. LRP-αβ ## 1. LPP-α1β0 ``` images = [] for i in range(10): img = mnist_data_loader.get_image_for_class(i) # LRPAlphaBeta(model, target_class, transforms, alpha, beta, visualize_layer) interpretor = LRPAlphaBeta(model, i, None, 1, 0, 0) endpoint = interpretor.interpret(img) images.append(endpoint[0].detach().cpu().numpy().sum(axis=0)) MnistVisualizer.display_heatmap_for_each_class(images) ``` ## 2. LPP-α2β1 ``` images = [] img_shape = (28, 28) for i in range(10): img = mnist_data_loader.get_image_for_class(i) # LRPAlphaBeta(model, target_class, transforms, alpha, beta, visualize_layer) interpretor = LRPAlphaBeta(model, i, None, 2, 1, 0) endpoint = interpretor.interpret(img) images.append(endpoint[0].detach().cpu().numpy().sum(axis=0)) MnistVisualizer.display_heatmap_for_each_class(images) ``` # IV. Composite LRP ``` images = [] img_shape = (28, 28) for i in range(10): img = mnist_data_loader.get_image_for_class(i) # LRPMix(model, target_class, transforms, alpha, beta, visualize_layer) interpretor = LRPMix(model, i, None, 1, 0, 0) endpoint = interpretor.interpret(img) images.append(endpoint[0].detach().cpu().numpy().sum(axis=0)) MnistVisualizer.display_heatmap_for_each_class(images) ```
true
code
0.642825
null
null
null
null
# Project 1: Linear Regression Model This is the first project of our data science fundamentals. This project is designed to solidify your understanding of the concepts we have learned in Regression and to test your knowledge on regression modelling. There are four main objectives of this project. 1\. Build Linear Regression Models * Use closed form solution to estimate parameters * Use packages of choice to estimate parameters<br> 2\. Model Performance Assessment * Provide an analytical rationale with choice of model * Visualize the Model performance * MSE, R-Squared, Train and Test Error <br> 3\. Model Interpretation * Intepret the results of your model * Intepret the model assement <br> 4\. Model Dianostics * Does the model meet the regression assumptions #### About this Notebook 1\. This notebook should guide you through this project and provide started code 2\. The dataset used is the housing dataset from Seattle homes 3\. Feel free to consult online resources when stuck or discuss with data science team members Let's get started. ### Packages Importing the necessary packages for the analysis ``` # Necessary Packages import numpy as np import pandas as pd import matplotlib.pyplot as plt # Model and data preprocessing from sklearn import linear_model from sklearn.model_selection import train_test_split from sklearn.svm import SVR from sklearn.feature_selection import RFE from sklearn import preprocessing %matplotlib inline ``` Now that you have imported your packages, let's read the data that we are going to be using. The dataset provided is a titled *housing_data.csv* and contains housing prices and information about the features of the houses. Below, read the data into a variable and visualize the top 8 rows of the data. ``` # Initiliazing seed np.random.seed(42) data1 = pd.read_csv('housing_data.csv') data = pd.read_csv('housing_data_2.csv') data.head(8) ``` ### Split data into train and test In the code below, we need to split the data into the train and test for modeling and validation of our models. We will cover the Train/Validation/Test as we go along in the project. Fill the following code. 1\. Subset the features to the variable: features <br> 2\. Subset the target variable: target <br> 3\. Set the test size in proportion in to a variable: test_size <br> ``` features = data[['lot_area', 'firstfloor_sqft', 'living_area', 'bath', 'garage_area', 'price']] target = data['price'] test_size = .33 x_train, x_test, y_train, y_test = train_test_split(features, target, test_size=test_size, random_state=42) ``` ### Data Visualization The best way to explore the data we have is to build some plots that can help us determine the relationship of the data. We can use a scatter matrix to explore all our variables. Below is some starter code to build the scatter matrix ``` features = pd.plotting.scatter_matrix(x_train, figsize=(14,8), alpha=1, diagonal='kde') #columns = pd.plotting.scatter_matrix(columns, figsize=(14,8), alpha=1, diagonal='kde') ``` Based on the scatter matrix above, write a brief description of what you observe. In thinking about the description, think about the relationship and whether linear regression is an appropriate choice for modelling this data. #### a. lot_area My initial intutions tell me that lot_area would be the best indicator of price; that being said, there is a weak correlation between lot_area and the other features, which is a good sign! However, the distribution is dramatically skewed-right indicating that the mean lot_area is greater than the median. This tells me that lot_area stays around the same size while price increases. In turn, that tells me that some other feature is helping determine the price bceause if lot_area we're determining the increase in price, we'd see a linear distribution. In determining the best feature for my linear regression model, I think lot_area may be one of the least fitting to use. #### b. firstfloor_sqft There is a stronger correlation between firstfloor_sqft and the other features. The distrubution is still skewed-right making the median a better measure of center. firstfloor_sqft would be a good candidate for the linear regression model becuse of the stronger correlation and wider distribution; however, there appears to be a overly strong, linear correlation between firstfloor_sqft and living_area. Given that this linear correlation goes against the Regression Assumption that "all inputs are linearly independent," I would not consider using both in my model. I could, however, use one or the other. #### c. living_area There is a similarly strong correlation between living_area (as compared to firstfloor_sqft) and the other features, but these plots are better distributed than firstfloor_sqft. A right skew still exists, but less so than the firstfloor_sqft. However, the observation of a strong, linear correlation between firstfloor_sqft and living_area (or living_area and firstfloor_sqft) is reinforced here. Thus, I would not use both of these in my final model and having to choose between the two, I will likely choose living_area since it appears to be more well-distributed. #### d. bath Baths are static numbers, so the plots are much less distributed; however, the length and the clustering of the bath to living_area & bath to garage_area may indicate a correlation. Since I cannot use both living_area and firstfloor_sqft, and I think living_area has a better distribution, I would consider using bath in conjunction with living_area. #### e. garage_area Garage_area appears to be well-distributed with the lowest correlation between the other features. This could make it a great fit for the final regression model. It's also the least skewed right distribution. #### Correlation Matrix In the code below, compute the correlation matrix and write a few thoughts about the observations. In doing so, consider the interplay in the features and how their correlation may affect your modeling. The correlation matrix below is in-line with my thought process. Lot_area has the lowest correlation between it and the other features, but it's not well distributed. firstfloor_sqft has a strong correlation between it and living_area. Given that the correlation is just over 0.5, both features may be able to be used in the model given that the correlation isn't overly strong; however, to be most accurate, I plan to leave out one of them (likely firstfloor_sqft). living_area also reflects this strong correlation between it and firstfloor_sqft. Surprisingly, there is a strong correlation between living_area and bath. Looking solely at the scatter matrix, I did not see this strong correlation. This changes my approach slighltly, which I will outline below. garage_area, again, has the lowest correlations while being the most well-distributed. #### Approach Given this new correlation information, I will approach the regression model in one of the following ways: 1. Leave out bath as a feature and use living_area + garage_area. 2. Swap firstfloor_sqft for living_area and include bath + garage area. #### Conclusion I'm not 100% sure if more features are better than less in this situation; however, I am sure that I want linearly independet features. ``` # Use pandas correlation function x_train.corr(method='pearson').style.format("{:.2}").background_gradient(cmap=plt.get_cmap('coolwarm'), axis=1) ``` ## 1. Build Your Model Now that we have explored the data at a high level, let's build our model. From our sessions, we have discussed both closed form solution, gradient descent and using packages. In this section you will create your own estimators. Starter code is provided to makes this easier. #### 1.1. Closed Form Solution Recall: <br> $$\beta_0 = \bar {y} - \beta_1 \bar{x}$$ <br> $$\beta_1 = \frac {cov(x, y)} {var(x)}$$ <br> Below, let's define functions that will compute these parameters ``` # Pass the necessary arguments in the function to calculate the coefficients def compute_estimators(feature, target): n1 = np.sum(feature*target) - np.mean(target)*np.sum(feature) d1 = np.sum(feature*feature) - np.mean(feature)*np.sum(feature) # Compute the Intercept and Slope beta1 = n1/d1 beta0 = np.mean(target) - beta1*np.mean(feature) return beta0, beta1 # Return the Intercept and Slope ``` Run the compute estimators function above and display the estimated coefficients for any of the predictors/input variables. ``` # Remember to pass the correct arguments x_array = np.array(data1['living_area']) normalized_X = preprocessing.normalize([x_array]) beta0, beta1 = compute_estimators(normalized_X, data1['price']) print(beta0, beta1) #### Computing coefficients for our model by hand using the actual mathematical equations #y = beta1x + beta0 #print(y) ``` #### 1.2. sklearn solution Now that we know how to compute the estimators, let's leverage the sklearn module to compute the metrics for us. We have already imported the linear model, let's initialize the model and compute the coefficients for the model with the input above. ``` # Initilize the linear Regression model here model = linear_model.LinearRegression() # Pass in the correct inputs model.fit(data1[['living_area']], data1['price']) # Print the coefficients print("This is beta0:", model.intercept_) print("This is beta1:", model.coef_) #### Computing coefficients for our model using the sklearn package ``` Do the results from the cell above and your implementation match? They should be very close to each other. #### Yes!! They match! ### 2. Model Evaluation Now that we have estimated our single model. We are going to compute the coefficients for all the inputs. We can use a for loop for multiple model estimation. However, we need to create a few functions: 1\. Prediction function: Functions to compute the predictions <br> 2\. MSE: Function to compute Mean Square Error <br> ``` #Function that computes predictions of our model using the betas above + the feature data we've been using def model_predictions(intercept, slope, feature): """ Compute Model Predictions """ y_hat = intercept+(slope*feature) return y_hat y_hat = model_predictions(beta0, beta1, data1['living_area']) #Function to compute MSE which determines the total loss for each predicted data point in our model def mean_square_error(y_outcome, predictions): """ Compute the mean square error """ mse = (np.sum((y_outcome - predictions) ** 2))/np.size(predictions) return mse mse = mean_square_error(target, y_hat) print(mse) ``` The last function we need is a plotting function to visualize our predictions relative to our data. ``` #Function used to plot the data def plotting_model(feature, target, predictions, name): """ Create a scatter and predictions """ fig = plt.figure(figsize=(10,8)) plot_model = model.fit(feature, target) plt.scatter(x=feature, y=target, color='blue') plt.plot(feature, predictions, color='red') plt.xlabel(name) plt.ylabel('Price') return model model = plotting_model(data1[['living_area']], data1['price'], y_hat, data1['living_area'].name) ``` ## Considerations/Reasoning #### Data Integrity After my inital linear model based on the feature "living area," I've eliminated 8 data points. If you look at the graph above, there are 4 outliers that are clear, and at least 4 others that follow a similar trend based on the x, y relationship. I used ~3500 sqft of living area as my cutoff for being not predictive of the model, and any price above 600000. Given the way these data points skew the above model, they intuitively appear to be outliers with high leverage. I determined this by comparing these high leverag points with points similar to it in someway and determined whether it was an outlier (i.e. if point A's price was abnormally high, I found a point (B) with living area at or close to point A's living area and compared the price. vice versa if living area was abnormally high). #### Inital Feature Analysis - "Best" Feature (a priori) Living area is the best metric to use to train the linear model because it incorporates multiple of the other features within it: first floor living space & bath. Living area has a high correlation with both first floor sq ft (0.53) and baths (0.63). Based on the other correlations, these are the two highest, and thus should immediately be eliminated. Additionally, based on initial intuition, one would assume that an increase in the metric "firstfloor sqft" will lead to an increase in the "living area" metric; if both firstfloor sqft and overall living area are increased, the "bath" metric will likely also increase to accommodate the additional living area/sqft in a home. Thus, I will not need to use them in my model because these can be accurately represented by the feature "living area." ### Single Feature Assessment ``` #Running each feature through to determine which has best linear fit features = data[['living_area', 'garage_area', 'lot_area', 'firstfloor_sqft', 'bath']] count = 0 for feature in features: feature = features.iloc[:, count] # Compute the Coefficients beta0, beta1 = compute_estimators(feature, target) count+=1 # Print the Intercept and Slope print(feature.name) print('beta0:', beta0) print('beta1:', beta1) # Compute the Train and Test Predictions y_hat = model_predictions(beta0, beta1, feature) # Plot the Model Scatter name = feature.name model = plotting_model(feature.values.reshape(-1, 1), target, y_hat, name) # Compute the MSE mse = mean_square_error(target, y_hat) print('mean squared error:', mse) print() ``` #### Analysis of Feature Linear Models After eliminating these 8 data points, MSE for Living Area drop significantly from 8957196059.803959 to 2815789647.7664313. In fact, Living Area has the lowest MSE 2815789647.7664313 of all the individual models, and the best linear fit. Garage Area is the next lowest MSE 3466639234.8407283, and the model is mostly linear; however, the bottom left of the model is concerning. You'll notice that a large number of data points go vertically upward indicating an increase in price with 0 garage area. That says to me that garage area isn't predicting the price of these homes, which indicates that it may be a good feature to use in conjunction with another feature (i.e. Living Area) or since those data points do not fit in with the rest of the population, they may need to be removed. #### Run Model Assessment Now that we have our functions ready, we can build individual models, compute preductions, plot our model results and determine our MSE. Notice that we compute our MSE on the test set and not the train set ### Dot Product (multiple feature) Assessment ``` #Models Living Area alone and compares it to the Dot Product of Living Area with each other feature ##Determining if a MLR would be a better way to visualize the data features = data[['living_area', 'garage_area', 'lot_area', 'firstfloor_sqft', 'bath']] count = 0 for feature in features: feature = features.iloc[:, count] #print(feature.head(0)) if feature.name == 'living_area': x = data['living_area'] else: x = feature * data['living_area'] # Compute the Coefficients beta0, beta1 = compute_estimators(x, target) # Print the Intercept and Slope if feature.name == 'living_area': print('living_area') print('beta0:', beta0) print('beta1:', beta1) else: print(feature.name, "* living_area") print('beta0:', beta0) print('beta1:', beta1) # Compute the Train and Test Predictions y_hat = model_predictions(beta0, beta1, x) # Plot the Model Scatter if feature.name == 'living_area': name = 'living_area' else: name = feature.name + " " + "* living_area" model = plotting_model(x.values.reshape(-1, 1), target, y_hat, name) # Compute the MSE mse = mean_square_error(target, y_hat) print('mean squared error:', mse) print() count+=1 ``` ## Analysis Based on the models, it appears that two of the dot products provide a more accurate model: 1. Living Area * First Floor SqFt 2. Living Area * Garage Area These two dot products provide a lower MSE and thus lowers the loss per prediction point. #1. My intuition says that since Living Area, as a feature, will include First Floor SqFt in its data. The FirstFloor SqFt can be captured by Living Area, so it can be left out. Additionally, since one is included within the other, we cannot say anything in particular about Living Area or FirstFloor SqFt individually. Also, the correlation (Ln 24 & Out 24) between Living Area and FirstFloor SqFt is 0.53, which is the highest apart from Bath. This correlation is low in comparison to the "standard;" however, that standard is arbitrary. I've lowered it to be in context with data sets I'm working with in this notebook. #2. The dot product of Living Area & Garage Area provides doesn't allow us to make a statement about each individually, unless we provide a model of each, which I will do below. This dot product is a better model. Garage Area is advertised as 'bonus' space and CANNOT be included in the overall square footage of the home (i.e. living area). Thus, garage area vector will not be included as an implication within the living area vector making them linearly independent. Garage Area can be a sought after feature depending on a buyer's desired lifestlye; more garage space would be sought after by buyers with more cars, which allows us to draw a couple possible inferences about the buyers: 1. enough net worth/monthly to make payments on multiple vehicles plus make payments on a house/garage 2. enough disposable income to outright buy multiple vehicles plus make payments on a house/garage Additionally, it stands to reason that garage area would scale with living area for pragmatic reasons (more living area implies more people and potentially more vehicles) and for aesthetic reasons (more living area makes home look larger and would need larger garage). Homes with more living area and garage area may be sought after by buyers with the ability to spend more on a home, and thus the market would bear a higher price for those homes, which helps explain why living area * garage area is a better indicator of home price. #### Conclusion Combining living area with other features lowered the MSE for each. The lowest MSE is living area * garage area, which confirms my hypothesis: Living Area is the best feature to predict price, and garage area is good when used in conjunction. ``` #Modeling Living Area & Garage Area separately. features = data[['living_area', 'garage_area']] count = 0 for feature in features: feature = features.iloc[:, count] if feature.name == 'living_area': x = data['living_area'] elif feature.name == 'garage_area': x = data['garage_area'] beta0, beta1 = compute_estimators(x, target) count+=1 if feature.name == 'living_area': print('living_area') print('beta0:', beta0) print('beta1:', beta1) elif feature.name == 'garage_area': print('garage_area') print('beta0:', beta0) print('beta1:', beta1) y_hat = model_predictions(beta0, beta1, x) if feature.name == 'living_area': name = 'living_area' elif feature.name == 'garage_area': name = 'garage_area' model = plotting_model(x.values.reshape(-1, 1), target, y_hat, name) mse = mean_square_error(target, y_hat) print('mean squared error:', mse) print() #Modeling dot product of Living Area * Garage Area features = data[['living_area']] x = features.iloc[:, 0] x2 = x * data['garage_area'] #x3 = x2 * data['bath'] # Compute the Coefficients beta0, beta1 = compute_estimators(x2, target) # Print the Intercept and Slope print('Name: garage_area * living_area') print('beta0:', beta0) print('beta1:', beta1) # Compute the Train and Test Predictions y_hat_1 = model_predictions(beta0, beta1, x2) # Plot the Model Scatter name = 'garage_area * living_area' model = plotting_model(x2.values.reshape(-1, 1), target, y_hat_1, name) # Compute the MSE mse = mean_square_error(target, y_hat_1) print('mean squared error:', mse) print() ``` ## Reasoning Above, I modeled both living area and garage area by themselves then the dot product of Living Area * Garage Area to highlight the MSE of each vs. the MSE of the dot product. Garage Area, much more so than Living Area, has a high MSE indicating that on its own, Garage Area isn't the best predictor of a home's price; we must take the data in context with reality, and intuitively speaking, one wouldn't assume that the garage area, on its own, would be a feature indicative of price. This fact combined with the assumption/implication that garage may scale with living area implies some correlation between the features, which would go against the linear assumption of feature independence. As a matter of fact, there is a correlation between them (Ln 24 & Out 24) of 0.44; however, this isn't problematic for two reasons: 1. 0.44 is quite low in regard to typical correlation standards. 2. Data must be seen in context. #1. Although I eliminated First Floor SqFt due, in part, to a high correlation and that correclation is only 0.09 points lower. The main reason why First Floor SqFt is eliminated is due to its inclusion within the living area vector. Additionally, the main reason why I'm including garage area is because it is not included with the living area vector. #2. Similar to my #1 explanation, knowing that garage area is 'bonus space' and, as such, is NOT included in a home's advertised square feet indicates that it isn't within the Living Area data set in the same way FF SqFt or Baths would be. It will most likely to scale with the living area independently of the living area making it a good fit for a MLR. ### 3. Model Interpretation Now that you have calculated all the individual models in the dataset, provide an analytics rationale for which model has performed best. To provide some additional assessment metrics, let's create a function to compute the R-Squared. #### Mathematically: $$R^2 = \frac {SS_{Regression}}{SS_{Total}} = 1 - \frac {SS_{Error}}{SS_{Total}}$$<br> where:<br> $SS_{Regression} = \sum (\widehat {y_i} - \bar {y_i})^2$<br> $SS_{Total} = \sum ({y_i} - \bar {y_i})^2$<br> $SS_{Error} = \sum ({y_i} - \widehat {y_i})^2$ ``` #ssr = sum of squares of regression --> variance of prediction from the mean #sst = sum of squares total --> variance of the actuals from the prediction #sse = sume of squares error --> variance of the atuals from the mean def r_squared(y_outcome, predictions): """ Compute the R Squared """ ssr = np.sum((predictions - np.mean(y_outcome))**2) sst = np.sum((y_outcome - np.mean(y_outcome))**2) sse = np.sum((y_outcome - predictions)**2) # print(sse, "/", sst) print("1 - SSE/SST =", round((1 - (sse/sst))*100), "%") rss = (ssr/sst) * 100 return rss ``` Now that you we have R Squared calculated, evaluate the R Squared for the test group across all models and determine what model explains the data best. ``` rss = r_squared(target, y_hat_1) print("R-Squared =", round(rss), "%") count += 1 ``` ### R-Squared Adjusted $R^2-adjusted = 1 - \frac {(1-R^2)(n-1)}{n-k-1}$ ``` def r_squared_adjusted(rss, sample_size, regressors): n = np.size(sample_size) k = regressors numerator = (1-rss)*(n) denominator = n-k-1 rssAdj = 1 - (numerator / denominator) return rssAdj rssAdj = r_squared_adjusted(rss, y_hat_1, 2) print(round(rssAdj), "%") ``` ### 4. Model Diagnostics Linear regressions depends on meetings assumption in the model. While we have not yet talked about the assumptions, you goal is to research and develop an intuitive understanding of why the assumptions make sense. We will walk through this portion on Multiple Linear Regression Project
true
code
0.631708
null
null
null
null
[SCEC BP3-QD](https://strike.scec.org/cvws/seas/download/SEAS_BP3.pdf) document is here. # [DRAFT] Quasidynamic thrust fault earthquake cycles (plane strain) ## Summary * Most of the code here follows almost exactly from [the previous section on strike-slip/antiplane earthquake cycles](c1qbx/part6_qd). * Since the fault motion is in the same plane as the fault normal vectors, we are no longer operating in an antiplane approximation. Instead, we use plane strain elasticity, a different 2D reduction of full 3D elasticity. * One key difference is the vector nature of the displacement and the tensor nature of the stress. We must always make sure we are dealing with tractions on the correct surface. * We construct a mesh, build our discrete boundary integral operators, step through time and then compare against other benchmark participants' results. Does this section need detailed explanation or is it best left as lonely code? Most of the explanation would be redundant with the antiplane QD document. ``` from tectosaur2.nb_config import setup setup() import sympy as sp import numpy as np import matplotlib.pyplot as plt from tectosaur2 import gauss_rule, refine_surfaces, integrate_term, panelize_symbolic_surface from tectosaur2.elastic2d import elastic_t, elastic_h from tectosaur2.rate_state import MaterialProps, qd_equation, solve_friction, aging_law surf_half_L = 1000000 fault_length = 40000 max_panel_length = 400 n_fault = 400 mu = shear_modulus = 3.2e10 nu = 0.25 quad_rule = gauss_rule(6) sp_t = sp.var("t") angle_rad = sp.pi / 6 sp_x = (sp_t + 1) / 2 * sp.cos(angle_rad) * fault_length sp_y = -(sp_t + 1) / 2 * sp.sin(angle_rad) * fault_length fault = panelize_symbolic_surface( sp_t, sp_x, sp_y, quad_rule, n_panels=n_fault ) free = refine_surfaces( [ (sp_t, -sp_t * surf_half_L, 0 * sp_t) # free surface ], quad_rule, control_points = [ # nearfield surface panels and fault panels will be limited to 200m # at 200m per panel, we have ~40m per solution node because the panels # have 5 nodes each (0, 0, 1.5 * fault_length, max_panel_length), (0, 0, 0.2 * fault_length, 1.5 * fault_length / (n_fault)), # farfield panels will be limited to 200000 m per panel at most (0, 0, surf_half_L, 50000), ] ) print( f"The free surface mesh has {free.n_panels} panels with a total of {free.n_pts} points." ) print( f"The fault mesh has {fault.n_panels} panels with a total of {fault.n_pts} points." ) plt.plot(free.pts[:,0]/1000, free.pts[:,1]/1000, 'k-o') plt.plot(fault.pts[:,0]/1000, fault.pts[:,1]/1000, 'r-o') plt.xlabel(r'$x ~ \mathrm{(km)}$') plt.ylabel(r'$y ~ \mathrm{(km)}$') plt.axis('scaled') plt.xlim([-100, 100]) plt.ylim([-80, 20]) plt.show() ``` And, to start off the integration, we'll construct the operators necessary for solving for free surface displacement from fault slip. ``` singularities = np.array( [ [-surf_half_L, 0], [surf_half_L, 0], [0, 0], [float(sp_x.subs(sp_t,1)), float(sp_y.subs(sp_t,1))], ] ) (free_disp_to_free_disp, fault_slip_to_free_disp), report = integrate_term( elastic_t(nu), free.pts, free, fault, singularities=singularities, safety_mode=True, return_report=True ) fault_slip_to_free_disp = fault_slip_to_free_disp.reshape((-1, 2 * fault.n_pts)) free_disp_to_free_disp = free_disp_to_free_disp.reshape((-1, 2 * free.n_pts)) free_disp_solve_mat = ( np.eye(free_disp_to_free_disp.shape[0]) + free_disp_to_free_disp ) from tectosaur2.elastic2d import ElasticH (free_disp_to_fault_stress, fault_slip_to_fault_stress), report = integrate_term( ElasticH(nu, d_cutoff=8.0), # elastic_h(nu), fault.pts, free, fault, tol=1e-12, safety_mode=True, singularities=singularities, return_report=True, ) fault_slip_to_fault_stress *= shear_modulus free_disp_to_fault_stress *= shear_modulus ``` **We're not achieving the tolerance we asked for!!** Hypersingular integrals can be tricky but I think this is solvable. ``` report['integration_error'].max() A = -fault_slip_to_fault_stress.reshape((-1, 2 * fault.n_pts)) B = -free_disp_to_fault_stress.reshape((-1, 2 * free.n_pts)) C = fault_slip_to_free_disp Dinv = np.linalg.inv(free_disp_solve_mat) total_fault_slip_to_fault_stress = A - B.dot(Dinv.dot(C)) nx = fault.normals[:, 0] ny = fault.normals[:, 1] normal_mult = np.transpose(np.array([[nx, 0 * nx, ny], [0 * nx, ny, nx]]), (2, 0, 1)) total_fault_slip_to_fault_traction = np.sum( total_fault_slip_to_fault_stress.reshape((-1, 3, fault.n_pts, 2))[:, None, :, :, :] * normal_mult[:, :, :, None, None], axis=2, ).reshape((-1, 2 * fault.n_pts)) ``` ## Rate and state friction ``` siay = 31556952 # seconds in a year density = 2670 # rock density (kg/m^3) cs = np.sqrt(shear_modulus / density) # Shear wave speed (m/s) Vp = 1e-9 # Rate of plate motion sigma_n0 = 50e6 # Normal stress (Pa) # parameters describing "a", the coefficient of the direct velocity strengthening effect a0 = 0.01 amax = 0.025 H = 15000 h = 3000 fx = fault.pts[:, 0] fy = fault.pts[:, 1] fd = -np.sqrt(fx ** 2 + fy ** 2) a = np.where( fd > -H, a0, np.where(fd > -(H + h), a0 + (amax - a0) * (fd + H) / -h, amax) ) mp = MaterialProps(a=a, b=0.015, Dc=0.008, f0=0.6, V0=1e-6, eta=shear_modulus / (2 * cs)) plt.figure(figsize=(3, 5)) plt.plot(mp.a, fd/1000, label='a') plt.plot(np.full(fy.shape[0], mp.b), fd/1000, label='b') plt.xlim([0, 0.03]) plt.ylabel('depth') plt.legend() plt.show() mesh_L = np.max(np.abs(np.diff(fd))) Lb = shear_modulus * mp.Dc / (sigma_n0 * mp.b) hstar = (np.pi * shear_modulus * mp.Dc) / (sigma_n0 * (mp.b - mp.a)) mesh_L, Lb, np.min(hstar[hstar > 0]) ``` ## Quasidynamic earthquake cycle derivatives ``` from scipy.optimize import fsolve import copy init_state_scalar = fsolve(lambda S: aging_law(mp, Vp, S), 0.7)[0] mp_amax = copy.copy(mp) mp_amax.a=amax tau_amax = -qd_equation(mp_amax, sigma_n0, 0, Vp, init_state_scalar) init_state = np.log((2*mp.V0/Vp)*np.sinh((tau_amax - mp.eta*Vp) / (mp.a*sigma_n0))) * mp.a init_tau = np.full(fault.n_pts, tau_amax) init_sigma = np.full(fault.n_pts, sigma_n0) init_slip_deficit = np.zeros(fault.n_pts) init_conditions = np.concatenate((init_slip_deficit, init_state)) class SystemState: V_old = np.full(fault.n_pts, Vp) state = None def calc(self, t, y, verbose=False): # Separate the slip_deficit and state sub components of the # time integration state. slip_deficit = y[: init_slip_deficit.shape[0]] state = y[init_slip_deficit.shape[0] :] # If the state values are bad, then the adaptive integrator probably # took a bad step. if np.any((state < 0) | (state > 2.0)): print("bad state") return False # The big three lines solving for quasistatic shear stress, slip rate # and state evolution sd_vector = np.stack((slip_deficit * -ny, slip_deficit * nx), axis=1).ravel() traction = total_fault_slip_to_fault_traction.dot(sd_vector).reshape((-1, 2)) delta_sigma_qs = np.sum(traction * np.stack((nx, ny), axis=1), axis=1) delta_tau_qs = -np.sum(traction * np.stack((-ny, nx), axis=1), axis=1) tau_qs = init_tau + delta_tau_qs sigma_qs = init_sigma + delta_sigma_qs V = solve_friction(mp, sigma_qs, tau_qs, self.V_old, state) if not V[2]: print("convergence failed") return False V=V[0] if not np.all(np.isfinite(V)): print("infinite V") return False dstatedt = aging_law(mp, V, state) self.V_old = V slip_deficit_rate = Vp - V out = ( slip_deficit, state, delta_sigma_qs, sigma_qs, delta_tau_qs, tau_qs, V, slip_deficit_rate, dstatedt, ) self.data = out return self.data def plot_system_state(t, SS, xlim=None): """This is just a helper function that creates some rough plots of the current state to help with debugging""" ( slip_deficit, state, delta_sigma_qs, sigma_qs, delta_tau_qs, tau_qs, V, slip_deficit_rate, dstatedt, ) = SS slip = Vp * t - slip_deficit fd = -np.linalg.norm(fault.pts, axis=1) plt.figure(figsize=(15, 9)) plt.suptitle(f"t={t/siay}") plt.subplot(3, 3, 1) plt.title("slip") plt.plot(fd, slip) plt.xlim(xlim) plt.subplot(3, 3, 2) plt.title("slip deficit") plt.plot(fd, slip_deficit) plt.xlim(xlim) # plt.subplot(3, 3, 2) # plt.title("slip deficit rate") # plt.plot(fd, slip_deficit_rate) # plt.xlim(xlim) # plt.subplot(3, 3, 2) # plt.title("strength") # plt.plot(fd, tau_qs/sigma_qs) # plt.xlim(xlim) plt.subplot(3, 3, 3) # plt.title("log V") # plt.plot(fd, np.log10(V)) plt.title("V") plt.plot(fd, V) plt.xlim(xlim) plt.subplot(3, 3, 4) plt.title(r"$\sigma_{qs}$") plt.plot(fd, sigma_qs) plt.xlim(xlim) plt.subplot(3, 3, 5) plt.title(r"$\tau_{qs}$") plt.plot(fd, tau_qs, 'k-o') plt.xlim(xlim) plt.subplot(3, 3, 6) plt.title("state") plt.plot(fd, state) plt.xlim(xlim) plt.subplot(3, 3, 7) plt.title(r"$\Delta\sigma_{qs}$") plt.plot(fd, delta_sigma_qs) plt.hlines([0], [fd[-1]], [fd[0]]) plt.xlim(xlim) plt.subplot(3, 3, 8) plt.title(r"$\Delta\tau_{qs}$") plt.plot(fd, delta_tau_qs) plt.hlines([0], [fd[-1]], [fd[0]]) plt.xlim(xlim) plt.subplot(3, 3, 9) plt.title("dstatedt") plt.plot(fd, dstatedt) plt.xlim(xlim) plt.tight_layout() plt.show() def calc_derivatives(state, t, y): """ This helper function calculates the system state and then extracts the relevant derivatives that the integrator needs. It also intentionally returns infinite derivatives when the `y` vector provided by the integrator is invalid. """ if not np.all(np.isfinite(y)): return np.inf * y state_vecs = state.calc(t, y) if not state_vecs: return np.inf * y derivatives = np.concatenate((state_vecs[-2], state_vecs[-1])) return derivatives ``` ## Integrating through time ``` %%time from scipy.integrate import RK23, RK45 # We use a 5th order adaptive Runge Kutta method and pass the derivative function to it # the relative tolerance will be 1e-11 to make sure that even state = SystemState() derivs = lambda t, y: calc_derivatives(state, t, y) integrator = RK45 atol = Vp * 1e-6 rtol = 1e-11 rk = integrator(derivs, 0, init_conditions, 1e50, atol=atol, rtol=rtol) # Set the initial time step to one day. rk.h_abs = 60 * 60 * 24 # Integrate for 1000 years. max_T = 1000 * siay n_steps = 500000 t_history = [0] y_history = [init_conditions.copy()] for i in range(n_steps): # Take a time step and store the result if rk.step() != None: raise Exception("TIME STEPPING FAILED") t_history.append(rk.t) y_history.append(rk.y.copy()) # Print the time every 5000 steps if i % 5000 == 0: print(f"step={i}, time={rk.t / siay} yrs, step={(rk.t - t_history[-2]) / siay}") if rk.t > max_T: break y_history = np.array(y_history) t_history = np.array(t_history) ``` ## Plotting the results Now that we've solved for 1000 years of fault slip evolution, let's plot some of the results. I'll start with a super simple plot of the maximum log slip rate over time. ``` derivs_history = np.diff(y_history, axis=0) / np.diff(t_history)[:, None] max_vel = np.max(np.abs(derivs_history), axis=1) plt.plot(t_history[1:] / siay, np.log10(max_vel)) plt.xlabel('$t ~~ \mathrm{(yrs)}$') plt.ylabel('$\log_{10}(V)$') plt.show() ``` And next, we'll make the classic plot showing the spatial distribution of slip over time: - the blue lines show interseismic slip evolution and are plotted every fifteen years - the red lines show evolution during rupture every three seconds. ``` plt.figure(figsize=(10, 4)) last_plt_t = -1000 last_plt_slip = init_slip_deficit event_times = [] for i in range(len(y_history) - 1): y = y_history[i] t = t_history[i] slip_deficit = y[: init_slip_deficit.shape[0]] should_plot = False # Plot a red line every three second if the slip rate is over 0.1 mm/s. if ( max_vel[i] >= 0.0001 and t - last_plt_t > 3 ): if len(event_times) == 0 or t - event_times[-1] > siay: event_times.append(t) should_plot = True color = "r" # Plot a blue line every fifteen years during the interseismic period if t - last_plt_t > 15 * siay: should_plot = True color = "b" if should_plot: # Convert from slip deficit to slip: slip = -slip_deficit + Vp * t plt.plot(slip, fd / 1000.0, color + "-", linewidth=0.5) last_plt_t = t last_plt_slip = slip plt.xlim([0, np.max(last_plt_slip)]) plt.ylim([-40, 0]) plt.ylabel(r"$\textrm{z (km)}$") plt.xlabel(r"$\textrm{slip (m)}$") plt.tight_layout() plt.savefig("halfspace.png", dpi=300) plt.show() ``` And a plot of recurrence interval: ``` plt.title("Recurrence interval") plt.plot(np.diff(event_times) / siay, "k-*") plt.xticks(np.arange(0, 10, 1)) plt.yticks(np.arange(75, 80, 0.5)) plt.xlabel("Event number") plt.ylabel("Time between events (yr)") plt.show() ``` ## Comparison against SCEC SEAS results ``` ozawa_data = np.loadtxt("ozawa7500.txt") ozawa_slip_rate = 10 ** ozawa_data[:, 2] ozawa_stress = ozawa_data[:, 3] t_start_idx = np.argmax(max_vel > 1e-4) t_end_idx = np.argmax(max_vel[t_start_idx:] < 1e-6) n_steps = t_end_idx - t_start_idx t_chunk = t_history[t_start_idx : t_end_idx] shear_chunk = [] slip_rate_chunk = [] for i in range(n_steps): system_state = SystemState().calc(t_history[t_start_idx + i], y_history[t_start_idx + i]) slip_deficit, state, delta_sigma_qs, sigma_qs, delta_tau_qs, tau_qs, V, slip_deficit_rate, dstatedt = system_state shear_chunk.append((tau_qs - mp.eta * V)) slip_rate_chunk.append(V) shear_chunk = np.array(shear_chunk) slip_rate_chunk = np.array(slip_rate_chunk) fault_idx = np.argmax((-7450 > fd) & (fd > -7550)) VAvg = np.mean(slip_rate_chunk[:, fault_idx:(fault_idx+2)], axis=1) SAvg = np.mean(shear_chunk[:, fault_idx:(fault_idx+2)], axis=1) fault_idx t_align = t_chunk[np.argmax(VAvg > 0.2)] ozawa_t_align = np.argmax(ozawa_slip_rate > 0.2) for lims in [(-1, 1), (-15, 30)]: plt.figure(figsize=(12, 8)) plt.subplot(2, 1, 1) plt.plot(t_chunk - t_align, SAvg / 1e6, "k-o", markersize=0.5, linewidth=0.5, label='here') plt.plot( ozawa_data[:, 0] - ozawa_data[ozawa_t_align, 0], ozawa_stress, "b-*", markersize=0.5, linewidth=0.5, label='ozawa' ) plt.legend() plt.xlim(lims) plt.xlabel("Time (s)") plt.ylabel("Shear Stress (MPa)") # plt.show() plt.subplot(2, 1, 2) plt.plot(t_chunk - t_align, VAvg, "k-o", markersize=0.5, linewidth=0.5, label='here') plt.plot( ozawa_data[:, 0] - ozawa_data[ozawa_t_align, 0], ozawa_slip_rate[:], "b-*", markersize=0.5, linewidth=0.5, label='ozawa' ) plt.legend() plt.xlim(lims) plt.xlabel("Time (s)") plt.ylabel("Slip rate (m/s)") plt.tight_layout() plt.show() ```
true
code
0.591959
null
null
null
null
# BLU02 - Learning Notebook - Data wrangling workflows - Part 2 of 3 ``` import matplotlib.pyplot as plt import pandas as pd import os ``` # 2 Combining dataframes in Pandas ## 2.1 How many programs are there per season? How many different programs does the NYP typically present per season? Programs are under `/data/programs/` which contains a file per Season. ### Concatenate To analyze how many programs there are per season, over time, we need a single dataframe containing *all* seasons. Concatenation means, in short, to unite multiple dataframes (or series) in one. The `pd.concat()` function performs concatenation operations along an axis (`axis=0` for index and `axis=1` for columns). ``` season_0 = pd.read_csv('./data/programs/1842-43.csv') season_1 = pd.read_csv('./data/programs/1843-44.csv') seasons = [season_0, season_1] pd.concat(seasons, axis=1) ``` Concatenating like this makes no sense, as we no longer have a single observation per row. What we want to do instead is to concatenate the dataframe along the index. ``` pd.concat(seasons, axis=0) ``` This dataframe looks better, but there's something weird with the index: it's not unique anymore. Different observations share the same index. Not cool. For dataframes that don't have a meaningful index, you may wish to ignore the indexes altogether. ``` pd.concat(seasons, axis=0, ignore_index=True) ``` Now, let's try something different. Let's try to change the name of the columns, so that each dataframe has different ones, before concatenating. ``` season_0_ = season_0.copy() season_0_.columns = [0, 1, 2, 'Season'] seasons_ = [season_0_, season_1] pd.concat(seasons_, axis=0) ``` What a mess! What did we learn? * When the dataframes have different columns, `pd.concat()` will take the union of all dataframes by default (no information loss) * Concatenation will fill columns that are not present for specific dataframes with `np.NaN` (missing values). The good news is that you can set how you want to glue the dataframes in regards to the other axis, the one not being concatenated. Setting `join='inner'` will take the intersection, i.e., the columns that are present in all dataframes. ``` pd.concat(seasons_, axis=0, join='inner') ``` There you go. Concatenation complete. ### Append The method `df.append()` is a shortcut for `pd.concat()`, that can be called on either a `pd.DataFrame` or a `pd.Series`. ``` season_0.append(season_1) ``` It can take multiple objects to concatenate as well. Please note the `ignore_index=True`. ``` season_2 = pd.read_csv('./data/programs/1844-45.csv') more_seasons = [season_1, season_2] season_0.append(more_seasons, ignore_index=True) ``` We are good to go. Let's use `pd.concat` to combine all seasons into a great dataframe. ``` def read_season(file): path = os.path.join('.', 'data', 'programs', file) return pd.read_csv(path) files = os.listdir('./data/programs/') files = [f for f in files if '.csv' in f] ``` A logical approach would be to iterate over all files and appending all of them to a single dataframe. ``` %%timeit programs = pd.DataFrame() for file in files: season = read_season(file) programs = programs.append(season, ignore_index=True) ``` It is worth noting that both `pd.concat()` and `df.append()` make a full copy of the data and continually reusing this function can create a significant performance hit. Instead, use a list comprehension if you need to use the operation several times. This way, you only call `pd.concat()` or `df.append()` once. ``` %%timeit seasons = [read_season(f) for f in files if '.csv' in f] programs = pd.concat(seasons, axis=0, ignore_index=True) seasons = [read_season(f) for f in files if '.csv' in f] programs = pd.concat(seasons, axis=0, ignore_index=True) ``` Now that we have the final `programs` dataframe, we can see how the number of distinct programs changes over time. ``` programs['Season'] = pd.to_datetime(programs['Season'].str[:4]) (programs.groupby('Season') .size() .plot(legend=False, use_index=True, figsize=(10, 7), title='Number of programs per season (from 1842-43 to 2016-17)')); ``` The NYP appears to be investing in increasing the number of distinct programs per season since '95. ## 2.2 How many concerts are there per season? What about the number of concerts? The first thing we need to do is to import the `concerts.csv` data. ``` concerts = pd.read_csv('./data/concerts.csv') concerts.head() ``` We will use the Leon Levy Digital Archives ID (`GUID`) to identify each program. Now, we have information regarding all the concerts that took place and the season for each program. The problem? Information about the concert and the season are in different tables, and the program is the glue between the two. Familiar? ### Merge Pandas provides high-performance join operations, very similar to SQL. The method `df.merge()` method provides an interface for all database-like join methods. ``` ?pd.merge ``` We can call `pd.merge` to join both tables on the `GUID` (and the `ProgramID`, that provides similar info). ``` # Since GUID and ProgramID offer similar info, we will drop the later. programs = programs.drop(columns='ProgramID') df = pd.merge(programs, concerts, on='GUID') df.head() ``` Or, alternatively, we can call `merge()` directly on the dataframe. ``` df_ = programs.merge(concerts, on='GUID') df_.head() ``` The critical parameter here is the `how`. Since we are not explicitly using it, the merge default to `inner` (for inner-join) by default. But, in fact, you can use any join, just like you did in SQL: `left`, `right`, `outer` and `inner`. Remember? ![](../media/types_of_joins.jpg) *Fig. 1 - Types of joins in SQL, note how left, right, outer and inner translate directly to Pandas.* A refresher on different types of joins, all supported by Pandas: | Pandas | SQL | What it does | | ---------------------------------------------- | ---------------- | ----------------------------------------- | | `pd.merge(right, left, on='key', how='left')` | LEFT OUTER JOIN | Use all keys from left frame only | | `pd.merge(right, left, on='key', how='right')` | RIGHT OUTER JOIN | Use all keys from right frame only | | `pd.merge(right, left, on='key', how='outer')` | FULL OUTER JOIN | Use union of keys from both frames | | `pd.merge(right, left, on='key', how='inner')` | INNER JOIN | Use intersection of keys from both frames | In this particular case, we have: * A one-to-many relationship (i.e., one program to many concerts) * Since every single show in `concerts` has a match in `programs`, the type of join we use doesn't matter. We can use the `validate` argument to automatically check whether there are unexpected duplicates in the merge keys and check their uniqueness. ``` df__ = pd.merge(programs, concerts, on='GUID', how='outer', validate="one_to_many") assert(concerts.shape[0] == df_.shape[0] == df__.shape[0]) ``` Back to our question, how is the number of concerts per season evolving? ``` (programs.merge(concerts, on='GUID') .groupby('Season') .size() .plot(legend=False, use_index=True, figsize=(10, 7), title='Number of concerts per season (from 1842-43 to 2016-17)')); ``` Likewise, the number of concerts seems to be trending upwards since about 1995, which could be a sign of growing interest in the genre. ### Join Now, we want the top-3 composer in total appearances. Without surprise, we start by importing `works.csv`. ``` works = pd.read_csv('./data/works.csv',index_col='GUID') ``` Alternatively, we can use `df.join()` instead of `df.merge()`. There are, however, differences in the default behavior: for example `df.join` uses `how='left'` by default. Let's try to perform the merge. ``` (programs.merge(works, on="GUID") .head(n=3)) programs.merge(works, on="GUID").shape (programs.join(works, on='GUID') .head(n=3)) # equivalent to # pd.merge(programs, works, left_on='GUID', right_index=True, # how='left').head(n=3) programs.join(works, on="GUID").shape ``` We noticed that the shape of the results is diferent, we have a different number of lines in each one of the methods. Typically, you would use `df.join()` when you want to do a left join or when you want to join on the index of the dataframe on the right. Now for our goal: what are the top-3 composers? ``` (programs.join(works, on='GUID') .groupby('ComposerName') .size() .nlargest(n=3)) ``` Wagner wins! What about the top-3 works? ``` (programs.join(works, on='GUID') .groupby(['ComposerName', 'WorkTitle']) .size() .nlargest(n=3)) ``` Wagner wins three times!
true
code
0.228974
null
null
null
null
Wayne H Nixalo - 09 Aug 2017 This JNB is an attempt to do the neural artistic style transfer and super-resolution examples done in class, on a GPU using PyTorch for speed. Lesson NB: [neural-style-pytorch](https://github.com/fastai/courses/blob/master/deeplearning2/neural-style-pytorch.ipynb) ## Neural Style Transfer Style Transfer / Super Resolution Implementation in PyTorch ``` %matplotlib inline import importlib import os, sys; sys.path.insert(1, os.path.join('../utils')) from utils2 import * import torch, torch.nn as nn, torch.nn.functional as F, torch.optim as optim from torch.autograd import Variable from torch.utils.serialization import load_lua from torch.utils.data import DataLoader from torchvision import transforms, models, datasets ``` ### Setup ``` path = '../data/nst/' fnames = pickle.load(open(path+'fnames.pkl','rb')) img = Image.open(path + fnames[0]); img rn_mean = np.array([123.68, 116.779, 103.939], dtype=np.float32).reshape((1,1,1,3)) preproc = lambda x: (x - rn_mean)[:,:,:,::-1] img_arr = preproc(np.expand_dims(np.array(img),0)) shp = img_arr.shape deproc = lambda x: x[:,:,:,::-1] + rn_mena ``` ### Create Model ``` def download_convert_vgg16_model(): model_url = 'http://cs.stanford.edu/people/jcjohns/fast-neural-style/models/vgg16.t7' file = get_file(model_url, cache_subdir='models') vgglua = load_lua(file).parameters() vgg = models.VGGFeature() for (src, dst) in zip(vgglua[0], vgg.parameters()): dst[:] = src[:] torch.save(vgg.state_dict(), path + 'vgg16_feature.pth') url = 'https://s3-us-west-2.amazonaws.com/jcjohns-models/' fname = 'vgg16-00b39a1b.pth' file = get_file(fname, url+fname, cache_subdir='models') vgg = models.vgg.vgg16() vgg.load_state_dict(torch.load(file)) optimizer = optim.Adam(vgg.parameters()) vgg.cuda(); arr_lr = bcolz.open(path + 'trn_resized_72.bc')[:] arr_hr = bcolz.open(path + 'trn_resized_288.bc')[:] arr = bcolz.open(dpath + 'trn_resized.bc')[:] x = Variable(arr[0]) y = model(x) url = 'http://www.files.fast.ai/models/' fname = 'imagenet_class_index.json' fpath = get_file(fname, url + fname, cache_subdir='models') class ResidualBlock(nn.Module): def __init__(self, num): super(ResideualBlock, self).__init__() self.c1 = nn.Conv2d(num, num, kernel_size=3, stride=1, padding=1) self.c2 = nn.Conv2d(num, num, kernel_size=3, stride=1, padding=1) self.b1 = nn.BatchNorm2d(num) self.b2 = nn.BatchNorm2d(num) def forward(self, x): h = F.relu(self.b1(self.c1(x))) h = self.b2(self.c2(h)) return h + x class FastStyleNet(nn.Module): def __init__(self): super(FastStyleNet, self).__init__() self.cs = [nn.Conv2d(3, 32, kernel_size=9, stride=1, padding=4), nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding1)] self.b1s = [nn.BatchNorm2d(i) for i in [32, 64, 128]] self.rs = [ResidualBlock(128) for i in range(5)] self.ds = [nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1), nn.ConvTranspose2d(64, 32, kernel_size=4, stride=2, padding=1)] self.b2s = [nn.BatchNorm2d(i) for i in [64, 32]] self.d3 = nn.Conv2d(32, 3, kernel_size=9, stride=1, padding=4) def forward(self, h): for i in range(3): h = F.relu(self.b1s[i](self.cs[i](x))) for r in self.rs: h = r(h) for i in range(2): h = F.relu(self.b2s[i](self.ds[i](x))) return self.d3(h) ``` ### Loss Functions and Processing
true
code
0.773799
null
null
null
null
<a href="https://colab.research.google.com/github/gabilodeau/INF6804/blob/master/FeatureVectorsComp.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> INF6804 Vision par ordinateur Polytechnique Montréal Distances entre histogrammes (L1, L2, MDPA, Bhattacharyya) ``` import numpy as np import cv2 import matplotlib.pyplot as plt from sklearn.metrics.pairwise import cosine_similarity ``` Fonction pour calculer la distance MDPA ``` def distMDPA(V1, V2): Dist=0; for i in range(0,len(V1)): dint=0; for j in range(0,i): dint=dint+V1[j]-V2[j] Dist=Dist+abs(dint) return Dist; ``` Création de 5 vecteurs. On comparera avec Vecteur1 comme base. ``` Vecteur1 = np.array([3.0, 4.0, 3.0, 1.0, 6.0]) Vecteur2 = np.array([2.0, 5.0, 3.0, 1.0, 6.0]) Vecteur3 = np.array([2.0, 4.0, 3.0, 1.0, 7.0]) Vecteur4 = np.array([1.0, 5.0, 4.0, 1.0, 6.0]) Vecteur5 = np.array([3.0, 5.0, 2.0, 2.0, 5.0]) ``` Distance ou norme L1. Les résultats seront affichés sur un graphique. ``` dist1 = cv2.norm(Vecteur1, Vecteur2, cv2.NORM_L1) dist2 = cv2.norm(Vecteur1, Vecteur3, cv2.NORM_L1) dist3 = cv2.norm(Vecteur1, Vecteur4, cv2.NORM_L1) dist4 = cv2.norm(Vecteur1, Vecteur5, cv2.NORM_L1) #Pour affichage... x = [0, 0.1, 0.2, 0.3] color = ['r','g','b','k'] dist = [dist1, dist2, dist3, dist4] ``` Distance ou norme L2. ``` dist1 = cv2.norm(Vecteur1, Vecteur2, cv2.NORM_L2) dist2 = cv2.norm(Vecteur1, Vecteur3, cv2.NORM_L2) dist3 = cv2.norm(Vecteur1, Vecteur4, cv2.NORM_L2) dist4 = cv2.norm(Vecteur1, Vecteur5, cv2.NORM_L2) x = x + [1, 1.1, 1.2, 1.3] dist = dist + [dist1, dist2, dist3, dist4] color = color + ['r','g','b','k'] ``` Distance MDPA (Maximum distance of pair assignments). ``` dist1 = distMDPA(Vecteur1, Vecteur2) dist2 = distMDPA(Vecteur1, Vecteur3) dist3 = distMDPA(Vecteur1, Vecteur4) dist4 = distMDPA(Vecteur1, Vecteur5) x = x + [2, 2.1, 2.2, 2.3] dist = dist + [dist1, dist2, dist3, dist4] color = color + ['r','g','b','k'] ``` Distance de Bhattacharyya avec les valeurs normalisées entre 0 et 1. ``` Vecteur1 = Vecteur1/np.sum(Vecteur1) Vecteur2 = Vecteur2/np.sum(Vecteur2) Vecteur3 = Vecteur3/np.sum(Vecteur3) Vecteur4 = Vecteur4/np.sum(Vecteur3) dist1 = cv2.compareHist(Vecteur1.transpose().astype('float32'), Vecteur2.transpose().astype('float32'), cv2.HISTCMP_BHATTACHARYYA) dist2 = cv2.compareHist(Vecteur1.transpose().astype('float32'), Vecteur3.transpose().astype('float32'), cv2.HISTCMP_BHATTACHARYYA) dist3 = cv2.compareHist(Vecteur1.transpose().astype('float32'), Vecteur4.transpose().astype('float32'), cv2.HISTCMP_BHATTACHARYYA) dist4 = cv2.compareHist(Vecteur1.transpose().astype('float32'), Vecteur5.transpose().astype('float32'), cv2.HISTCMP_BHATTACHARYYA) x = x + [3, 3.1, 3.2, 3.3] dist = dist + [dist1, dist2, dist3, dist4] color = color + ['r','g','b', 'k'] ``` Similarité cosinus. ``` dist1 = cosine_similarity(Vecteur1.reshape(1, -1), Vecteur2.reshape(1, -1)) dist2 = cosine_similarity(Vecteur1.reshape(1, -1), Vecteur3.reshape(1, -1)) dist3 = cosine_similarity(Vecteur1.reshape(1, -1), Vecteur4.reshape(1, -1)) dist4 = cosine_similarity(Vecteur1.reshape(1, -1), Vecteur5.reshape(1, -1)) x = x + [4, 4.1, 4.2, 4.3] dist = dist + [dist1, dist2, dist3, dist4] color = color + ['r','g','b', 'k'] ``` Affichage des distances. ``` plt.scatter(x, dist, c = color) plt.text(0,0, 'Distance L1') plt.text(0.8,1, 'Distance L2') plt.text(1.6,0, 'Distance MDPA') plt.text(2.6,0.5, 'Bhattacharyya') plt.text(3.8,0.3, 'Similarité\n cosinus') plt.show() ```
true
code
0.473353
null
null
null
null
<a href="https://colab.research.google.com/github/kuriousk516/HIST4916a-Stolen_Bronzes/blob/main/Stolen_Bronzes.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # Stolen Bronzes: Western Museums and Repatriation ## Introduction >"*Walk into any European museum today and you will see the curated spoils of Empire. They sit behind plate glass: dignified, tastefully lit. Accompanying pieces of card offer a name, date and place of origin. They do not mention that the objects are all stolen*." > > 'Radicals in Conversation': The Brutish Museums Public history and digital humanities offers a locus point of contending with difficult pasts. Museums, often considered bastions of knowledge, learning, and public good have fallen under an increasingly critical gaze -- and rightfully so. Public museums have been tools of colonialism, racism, and superiority centred around the supremacy of the west and its history. Digital repositories of museum archives and websites can be used to subvert the exclusionary practices employed by museums and provide tools for marginalized peoples --. The purpose of this notebook is to act as a digital tool for real life change, and it is focused on Dan Hick's [Tweet](https://twitter.com/profdanhicks/status/1375421209265983488) and book, *The Brutish Museum*. ``` %%html <iframe src="https://drive.google.com/file/d/1txSH3UkjJgLTeQW47MGLfrht7AHCEkGC/preview" width="640" height="480"></iframe> ``` What I read in Dan Hicks' Tweet was a call to action. Not necessarily for the average citizen to take the bronzes back, but to start an important discussion about the nature of artifact aqcuisition and confronting how museums procure these items in the first place. The appendix' list is a small fraction of the stolen artifacts found in hundreds of museums all over the world but it is a powerful point of focus. I want to create something, however small, that can give others the tools to have a visual representation of stolen artifacts distribution and interrogate why (mostly) western museums are the institutions holding these artifacts, what effect this has, and what's being done with them. Can anyone own art? Who has the power to decide? How do we give that power back to those who were stolen from? To learn more about the Benin bronzes and their history, a good place to start is with the ['Radicals in Conversation'](https://www.plutobooks.com/blog/podcast-brutish-museums-benin-bronzes-decolonisation/) podcast. And now, what I have here is a helpful tool for all of us to answer, **"*How close are you right this second to a looted Benin Bronze*?"** # Data I have compiled a dataframe of all the museums listed in Hicks' appendix'; you can see the original above in his Tweet. The data is in a .CSV file stored in my [GitHub repository](https://github.com/kuriousk516/HIST4916a-Stolen_Bronzes), and you can also find screenshots of the errors I encountered and advice I recieved through the HIST4916a Discord server, some of which I will reference here when discussing data limitations. ## Mapping with Folium Folium seemed the best choice for this project since it doesn't rely on Google Maps for the map itself or the data entry process. [This is the tutorial](https://craftingdh.netlify.app/tutorials/folium/) that I used for the majority of the data coding, and this is the [Point Map alternative](https://handsondataviz.org/mymaps.html) I considered but decided against. ``` import lxml import pandas as pd pd.set_option("max_rows", 400) pd.set_option("max_colwidth", 400) import pandas, os os.listdir() ['.config', 'benin_bronze_locations2.csv', 'sample_data'] ``` Here is where I ran into some trouble. I was having great difficulty in loading my .CSV file into the notebook, so I uploaded the file from my computer. Here is the alternative code to upload it using the RAW link from GitHub: url = 'copied_raw_GH_link' df1 = pd.read_csv(url) If you have another (simpler) way of getting the job done, I fully encourage you altering the code to make it happen. ``` from google.colab import files uploaded = files.upload() ``` In the .CSV file, I only had the name of the museums, cities, and countries. Manually inputting the necessary data for plotting the locations would be time-consuming and tedious, but I have an example using geopy and Nomatim to pull individual location info for the cases when "NaN" pops up when expanding the entire dataframe. ``` df1=pandas.read_csv('benin_bronze_locations2.csv', encoding = "ISO-8859-1", engine ='python') df1 !pip install geopy from geopy.geocoders import Nominatim geolocator = Nominatim(user_agent="BENIN-BRONZES", timeout=2) location = geolocator.geocode("Ulster Museum United Kingdom") location ``` Great! Now we have the means of finding the relevant map information for individual entires. But to process the large amount of data, I followed [this YouTube tutorial](https://www.youtube.com/watch?v=0IjdfgmWzMk) for some extra help. ``` def find_location(row): place = row['place'] location = geolocator.geocode(place) if location != None: return location.address, location.latitude, location.longitude, location.raw['importance'] else: return "Not Found", "Not Found", "Not Found", "Not Found" ``` To expand on my data, I needed to add a new column to my dataframe -- the addresses of the museums. ``` df1["Address"]=df1["Place"]+", "+df1["City"]+", "+df1["Country"] df1 #Then I added this string to the geocode to create a coordinates column. df1["Coordinates"]=df1["Address"].apply(geolocator.geocode) df1 ``` After compiling the addresses and coordinates, the dataframe needed the latitude and longitudes for Folium to plot the locations on the map. ``` df1["Latitude"]=df1["Coordinates"].apply(lambda x: x.latitude if x !=None else None) df1["Longitude"]=df1["Coordinates"].apply(lambda x: x.longitude if x !=None else None) df1 !pip install folium import folium beninbronze_map = folium.Map(location=[6.3350, 5.6037], zoom_start=7) beninbronze_map ``` I want Benin City to be the centre of this map, a rough point of origin. The Kingdom of Benin existed in modern day Nigeria, and it's where the looted bronzes belong. Only *nine* locations in Nigeria have collections of the bronzes, as opposed to the 152 others all over Europe, America, Canada, Russia, and Japan. Nigeria needs to be the centre of the conversation of the looted bronzes and repatriation, and so it is the centre of the map being created. ``` def create_map_markers(row, beninbronze_map): folium.Marker(location=[row['lat'], row['lon']], popup=row['place']).add_to(beninbronze_map) folium.Marker(location=[6.3350, 5.6037], popup="Send the bronzes home").add_to(beninbronze_map) beninbronze_map def create_map_markers(row, beninbronze_map): folium.Marker(location=[row['Latitude'], row['Longitude']], popup=row['Place']).add_to(beninbronze_map) ``` Many of the data entries came up as "NaN" when the code was trying to find their latitude and longitude. It's an invalid entry and needs to be dropped in order for the map markers to function. This is very important to note: out of the 156 data entries, only 86 were plotted on the map. The missing coordinates need to be added to the dataframe, but that's a bit beyond the scope of this project. I invite anyone with the time to complete the map markers using the code examples above. ``` df1.dropna(subset = ["Latitude"], inplace=True) df1.dropna(subset = ["Longitude"], inplace=True) nan_value = float("NaN") df1.replace("",nan_value, inplace=True) df1.dropna(subset = ["Latitude"], inplace=True) df1.dropna(subset = ["Longitude"], inplace=True) df1 df1.apply(lambda row:folium.CircleMarker(location=[row["Latitude"], row["Longitude"]]).add_to(beninbronze_map), axis=1) beninbronze_map beninbronze_map.save("stolen-bronzes-map.html") ``` # Conclusion Now we have a map showing (some of) the locations of the looted Benin bronzes. It needs to be expanded to include the other locations, but I hope it helped you to think about what Dan Hicks' asked: how close are you, right this minute, to a looted Benin bronze? # Recommended Reading and Points of Reference Abt, Jeffrey. “The Origins of the Public Museum.” In A Companion to Museum Studies, 115–134. Malden, MA, USA: Blackwell Publishing Ltd, 2006. Bennett, Tony. 1990. “The Political Rationality of the Museum,” Continuum: The Australian Journal of Media and Culture 2, no. 1 (1990). Bivens, Joy, and Ben Garcia, Porchia Moore, nikhil trivedi, Aletheia Wittman. 2019. ‘Collections: How We Hold the Stuff We Hold in Trust’ in MASSAction, Museums As Site for Social Action, toolkit, https://static1.squarespace.com/static/58fa685dff7c50f78be5f2b2/t/59dcdd27e5dd5b5a1b51d9d8/1507646780650/TOOLKIT_10_2017.pdf DW.com. "'A matter of fairness': New debate about Benin Bronzes in Germany." Published March 26, 2021. https://www.dw.com/en/a-matter-of-fairness-new-debate-about-benin-bronzes-in-germany/a-57013604 Hudson, David J. 2016. “On Dark Continents and Digital Divides: Information Inequality and the Reproduction of Racial Otherness in Library and Information Studies” https://atrium.lib.uoguelph.ca/xmlui/handle/10214/9862. Kreps, Christina. 2008. ‘Non-western Models of Museums and Curation in Cross-cultural Perspective’in Sharon Macdonald, ed. ‘Companion to Museum Studies’. MacDonald, Sharon. 2008. “Collecting Practices” in Sharon Macdonald, ed. ‘Companion to Museum Studies’. Sentance, Nathan mudyi. 2018. “Why Do We Collect,” Archival Decolonist blog, August 18, 2018, https://archivaldecolonist.com/2018/08/18/why-do-we-collect/ https://www.danhicks.uk/brutishmuseums https://www.plutobooks.com/blog/podcast-brutish-museums-benin-bronzes-decolonisation/
true
code
0.312232
null
null
null
null
##### Copyright 2020 The OpenFermion Developers ``` ``` # Introduction to OpenFermion <table class="tfo-notebook-buttons" align="left"> <td> <a target="_blank" href="https://quantumai.google/openfermion/tutorials/intro_to_openfermion"><img src="https://quantumai.google/site-assets/images/buttons/quantumai_logo_1x.png" />View on QuantumAI</a> </td> <td> <a target="_blank" href="https://colab.research.google.com/github/quantumlib/OpenFermion/blob/master/docs/tutorials/intro_to_openfermion.ipynb"><img src="https://quantumai.google/site-assets/images/buttons/colab_logo_1x.png" />Run in Google Colab</a> </td> <td> <a target="_blank" href="https://github.com/quantumlib/OpenFermion/blob/master/docs/tutorials/intro_to_openfermion.ipynb"><img src="https://quantumai.google/site-assets/images/buttons/github_logo_1x.png" />View source on GitHub</a> </td> <td> <a href="https://storage.googleapis.com/tensorflow_docs/OpenFermion/docs/tutorials/intro_to_openfermion.ipynb"><img src="https://quantumai.google/site-assets/images/buttons/download_icon_1x.png" />Download notebook</a> </td> </table> Note: The examples below must be run sequentially within a section. ## Setup Install the OpenFermion package: ``` try: import openfermion except ImportError: !pip install git+https://github.com/quantumlib/OpenFermion.git@master#egg=openfermion ``` ## Initializing the FermionOperator data structure Fermionic systems are often treated in second quantization where arbitrary operators can be expressed using the fermionic creation and annihilation operators, $a^\dagger_k$ and $a_k$. The fermionic ladder operators play a similar role to their qubit ladder operator counterparts, $\sigma^+_k$ and $\sigma^-_k$ but are distinguished by the canonical fermionic anticommutation relations, $\{a^\dagger_i, a^\dagger_j\} = \{a_i, a_j\} = 0$ and $\{a_i, a_j^\dagger\} = \delta_{ij}$. Any weighted sums of products of these operators are represented with the FermionOperator data structure in OpenFermion. The following are examples of valid FermionOperators: $$ \begin{align} & a_1 \nonumber \\ & 1.7 a^\dagger_3 \nonumber \\ &-1.7 \, a^\dagger_3 a_1 \nonumber \\ &(1 + 2i) \, a^\dagger_4 a^\dagger_3 a_9 a_1 \nonumber \\ &(1 + 2i) \, a^\dagger_4 a^\dagger_3 a_9 a_1 - 1.7 \, a^\dagger_3 a_1 \nonumber \end{align} $$ The FermionOperator class is contained in $\textrm{ops/_fermion_operator.py}$. In order to support fast addition of FermionOperator instances, the class is implemented as hash table (python dictionary). The keys of the dictionary encode the strings of ladder operators and values of the dictionary store the coefficients. The strings of ladder operators are encoded as a tuple of 2-tuples which we refer to as the "terms tuple". Each ladder operator is represented by a 2-tuple. The first element of the 2-tuple is an int indicating the tensor factor on which the ladder operator acts. The second element of the 2-tuple is Boole: 1 represents raising and 0 represents lowering. For instance, $a^\dagger_8$ is represented in a 2-tuple as $(8, 1)$. Note that indices start at 0 and the identity operator is an empty list. Below we give some examples of operators and their terms tuple: $$ \begin{align} I & \mapsto () \nonumber \\ a_1 & \mapsto ((1, 0),) \nonumber \\ a^\dagger_3 & \mapsto ((3, 1),) \nonumber \\ a^\dagger_3 a_1 & \mapsto ((3, 1), (1, 0)) \nonumber \\ a^\dagger_4 a^\dagger_3 a_9 a_1 & \mapsto ((4, 1), (3, 1), (9, 0), (1, 0)) \nonumber \end{align} $$ Note that when initializing a single ladder operator one should be careful to add the comma after the inner pair. This is because in python ((1, 2)) = (1, 2) whereas ((1, 2),) = ((1, 2),). The "terms tuple" is usually convenient when one wishes to initialize a term as part of a coded routine. However, the terms tuple is not particularly intuitive. Accordingly, OpenFermion also supports another user-friendly, string notation below. This representation is rendered when calling "print" on a FermionOperator. $$ \begin{align} I & \mapsto \textrm{""} \nonumber \\ a_1 & \mapsto \textrm{"1"} \nonumber \\ a^\dagger_3 & \mapsto \textrm{"3^"} \nonumber \\ a^\dagger_3 a_1 & \mapsto \textrm{"3^}\;\textrm{1"} \nonumber \\ a^\dagger_4 a^\dagger_3 a_9 a_1 & \mapsto \textrm{"4^}\;\textrm{3^}\;\textrm{9}\;\textrm{1"} \nonumber \end{align} $$ Let's initialize our first term! We do it two different ways below. ``` from openfermion.ops import FermionOperator my_term = FermionOperator(((3, 1), (1, 0))) print(my_term) my_term = FermionOperator('3^ 1') print(my_term) ``` The preferred way to specify the coefficient in openfermion is to provide an optional coefficient argument. If not provided, the coefficient defaults to 1. In the code below, the first method is preferred. The multiplication in the second method actually creates a copy of the term, which introduces some additional cost. All inplace operands (such as +=) modify classes whereas binary operands such as + create copies. Important caveats are that the empty tuple FermionOperator(()) and the empty string FermionOperator('') initializes identity. The empty initializer FermionOperator() initializes the zero operator. ``` good_way_to_initialize = FermionOperator('3^ 1', -1.7) print(good_way_to_initialize) bad_way_to_initialize = -1.7 * FermionOperator('3^ 1') print(bad_way_to_initialize) identity = FermionOperator('') print(identity) zero_operator = FermionOperator() print(zero_operator) ``` Note that FermionOperator has only one attribute: .terms. This attribute is the dictionary which stores the term tuples. ``` my_operator = FermionOperator('4^ 1^ 3 9', 1. + 2.j) print(my_operator) print(my_operator.terms) ``` ## Manipulating the FermionOperator data structure So far we have explained how to initialize a single FermionOperator such as $-1.7 \, a^\dagger_3 a_1$. However, in general we will want to represent sums of these operators such as $(1 + 2i) \, a^\dagger_4 a^\dagger_3 a_9 a_1 - 1.7 \, a^\dagger_3 a_1$. To do this, just add together two FermionOperators! We demonstrate below. ``` from openfermion.ops import FermionOperator term_1 = FermionOperator('4^ 3^ 9 1', 1. + 2.j) term_2 = FermionOperator('3^ 1', -1.7) my_operator = term_1 + term_2 print(my_operator) my_operator = FermionOperator('4^ 3^ 9 1', 1. + 2.j) term_2 = FermionOperator('3^ 1', -1.7) my_operator += term_2 print('') print(my_operator) ``` The print function prints each term in the operator on a different line. Note that the line my_operator = term_1 + term_2 creates a new object, which involves a copy of term_1 and term_2. The second block of code uses the inplace method +=, which is more efficient. This is especially important when trying to construct a very large FermionOperator. FermionOperators also support a wide range of builtins including, str(), repr(), ==, !=, *=, *, /, /=, +, +=, -, -=, - and **. Note that since FermionOperators involve floats, == and != check for (in)equality up to numerical precision. We demonstrate some of these methods below. ``` term_1 = FermionOperator('4^ 3^ 9 1', 1. + 2.j) term_2 = FermionOperator('3^ 1', -1.7) my_operator = term_1 - 33. * term_2 print(my_operator) my_operator *= 3.17 * (term_2 + term_1) ** 2 print('') print(my_operator) print('') print(term_2 ** 3) print('') print(term_1 == 2.*term_1 - term_1) print(term_1 == my_operator) ``` Additionally, there are a variety of methods that act on the FermionOperator data structure. We demonstrate a small subset of those methods here. ``` from openfermion.utils import commutator, count_qubits, hermitian_conjugated from openfermion.transforms import normal_ordered # Get the Hermitian conjugate of a FermionOperator, count its qubit, check if it is normal-ordered. term_1 = FermionOperator('4^ 3 3^', 1. + 2.j) print(hermitian_conjugated(term_1)) print(term_1.is_normal_ordered()) print(count_qubits(term_1)) # Normal order the term. term_2 = normal_ordered(term_1) print('') print(term_2) print(term_2.is_normal_ordered()) # Compute a commutator of the terms. print('') print(commutator(term_1, term_2)) ``` ## The QubitOperator data structure The QubitOperator data structure is another essential part of openfermion. As the name suggests, QubitOperator is used to store qubit operators in almost exactly the same way that FermionOperator is used to store fermion operators. For instance $X_0 Z_3 Y_4$ is a QubitOperator. The internal representation of this as a terms tuple would be $((0, \textrm{"X"}), (3, \textrm{"Z"}), (4, \textrm{"Y"}))$. Note that one important difference between QubitOperator and FermionOperator is that the terms in QubitOperator are always sorted in order of tensor factor. In some cases, this enables faster manipulation. We initialize some QubitOperators below. ``` from openfermion.ops import QubitOperator my_first_qubit_operator = QubitOperator('X1 Y2 Z3') print(my_first_qubit_operator) print(my_first_qubit_operator.terms) operator_2 = QubitOperator('X3 Z4', 3.17) operator_2 -= 77. * my_first_qubit_operator print('') print(operator_2) ``` ## Jordan-Wigner and Bravyi-Kitaev openfermion provides functions for mapping FermionOperators to QubitOperators. ``` from openfermion.ops import FermionOperator from openfermion.transforms import jordan_wigner, bravyi_kitaev from openfermion.utils import hermitian_conjugated from openfermion.linalg import eigenspectrum # Initialize an operator. fermion_operator = FermionOperator('2^ 0', 3.17) fermion_operator += hermitian_conjugated(fermion_operator) print(fermion_operator) # Transform to qubits under the Jordan-Wigner transformation and print its spectrum. jw_operator = jordan_wigner(fermion_operator) print('') print(jw_operator) jw_spectrum = eigenspectrum(jw_operator) print(jw_spectrum) # Transform to qubits under the Bravyi-Kitaev transformation and print its spectrum. bk_operator = bravyi_kitaev(fermion_operator) print('') print(bk_operator) bk_spectrum = eigenspectrum(bk_operator) print(bk_spectrum) ``` We see that despite the different representation, these operators are iso-spectral. We can also apply the Jordan-Wigner transform in reverse to map arbitrary QubitOperators to FermionOperators. Note that we also demonstrate the .compress() method (a method on both FermionOperators and QubitOperators) which removes zero entries. ``` from openfermion.transforms import reverse_jordan_wigner # Initialize QubitOperator. my_operator = QubitOperator('X0 Y1 Z2', 88.) my_operator += QubitOperator('Z1 Z4', 3.17) print(my_operator) # Map QubitOperator to a FermionOperator. mapped_operator = reverse_jordan_wigner(my_operator) print('') print(mapped_operator) # Map the operator back to qubits and make sure it is the same. back_to_normal = jordan_wigner(mapped_operator) back_to_normal.compress() print('') print(back_to_normal) ``` ## Sparse matrices and the Hubbard model Often, one would like to obtain a sparse matrix representation of an operator which can be analyzed numerically. There is code in both openfermion.transforms and openfermion.utils which facilitates this. The function get_sparse_operator converts either a FermionOperator, a QubitOperator or other more advanced classes such as InteractionOperator to a scipy.sparse.csc matrix. There are numerous functions in openfermion.utils which one can call on the sparse operators such as "get_gap", "get_hartree_fock_state", "get_ground_state", etc. We show this off by computing the ground state energy of the Hubbard model. To do that, we use code from the openfermion.hamiltonians module which constructs lattice models of fermions such as Hubbard models. ``` from openfermion.hamiltonians import fermi_hubbard from openfermion.linalg import get_sparse_operator, get_ground_state from openfermion.transforms import jordan_wigner # Set model. x_dimension = 2 y_dimension = 2 tunneling = 2. coulomb = 1. magnetic_field = 0.5 chemical_potential = 0.25 periodic = 1 spinless = 1 # Get fermion operator. hubbard_model = fermi_hubbard( x_dimension, y_dimension, tunneling, coulomb, chemical_potential, magnetic_field, periodic, spinless) print(hubbard_model) # Get qubit operator under Jordan-Wigner. jw_hamiltonian = jordan_wigner(hubbard_model) jw_hamiltonian.compress() print('') print(jw_hamiltonian) # Get scipy.sparse.csc representation. sparse_operator = get_sparse_operator(hubbard_model) print('') print(sparse_operator) print('\nEnergy of the model is {} in units of T and J.'.format( get_ground_state(sparse_operator)[0])) ``` ## Hamiltonians in the plane wave basis A user can write plugins to openfermion which allow for the use of, e.g., third-party electronic structure package to compute molecular orbitals, Hamiltonians, energies, reduced density matrices, coupled cluster amplitudes, etc using Gaussian basis sets. We may provide scripts which interface between such packages and openfermion in future but do not discuss them in this tutorial. When using simpler basis sets such as plane waves, these packages are not needed. openfermion comes with code which computes Hamiltonians in the plane wave basis. Note that when using plane waves, one is working with the periodized Coulomb operator, best suited for condensed phase calculations such as studying the electronic structure of a solid. To obtain these Hamiltonians one must choose to study the system without a spin degree of freedom (spinless), one must the specify dimension in which the calculation is performed (n_dimensions, usually 3), one must specify how many plane waves are in each dimension (grid_length) and one must specify the length scale of the plane wave harmonics in each dimension (length_scale) and also the locations and charges of the nuclei. One can generate these models with plane_wave_hamiltonian() found in openfermion.hamiltonians. For simplicity, below we compute the Hamiltonian in the case of zero external charge (corresponding to the uniform electron gas, aka jellium). We also demonstrate that one can transform the plane wave Hamiltonian using a Fourier transform without effecting the spectrum of the operator. ``` from openfermion.hamiltonians import jellium_model from openfermion.utils import Grid from openfermion.linalg import eigenspectrum from openfermion.transforms import jordan_wigner, fourier_transform # Let's look at a very small model of jellium in 1D. grid = Grid(dimensions=1, length=3, scale=1.0) spinless = True # Get the momentum Hamiltonian. momentum_hamiltonian = jellium_model(grid, spinless) momentum_qubit_operator = jordan_wigner(momentum_hamiltonian) momentum_qubit_operator.compress() print(momentum_qubit_operator) # Fourier transform the Hamiltonian to the position basis. position_hamiltonian = fourier_transform(momentum_hamiltonian, grid, spinless) position_qubit_operator = jordan_wigner(position_hamiltonian) position_qubit_operator.compress() print('') print (position_qubit_operator) # Check the spectra to make sure these representations are iso-spectral. spectral_difference = eigenspectrum(momentum_qubit_operator) - eigenspectrum(position_qubit_operator) print('') print(spectral_difference) ``` ## Basics of MolecularData class Data from electronic structure calculations can be saved in an OpenFermion data structure called MolecularData, which makes it easy to access within our library. Often, one would like to analyze a chemical series or look at many different Hamiltonians and sometimes the electronic structure calculations are either expensive to compute or difficult to converge (e.g. one needs to mess around with different types of SCF routines to make things converge). Accordingly, we anticipate that users will want some way to automatically database the results of their electronic structure calculations so that important data (such as the SCF integrals) can be looked up on-the-fly if the user has computed them in the past. OpenFermion supports a data provenance strategy which saves key results of the electronic structure calculation (including pointers to files containing large amounts of data, such as the molecular integrals) in an HDF5 container. The MolecularData class stores information about molecules. One initializes a MolecularData object by specifying parameters of a molecule such as its geometry, basis, multiplicity, charge and an optional string describing it. One can also initialize MolecularData simply by providing a string giving a filename where a previous MolecularData object was saved in an HDF5 container. One can save a MolecularData instance by calling the class's .save() method. This automatically saves the instance in a data folder specified during OpenFermion installation. The name of the file is generated automatically from the instance attributes and optionally provided description. Alternatively, a filename can also be provided as an optional input if one wishes to manually name the file. When electronic structure calculations are run, the data files for the molecule can be automatically updated. If one wishes to later use that data they either initialize MolecularData with the instance filename or initialize the instance and then later call the .load() method. Basis functions are provided to initialization using a string such as "6-31g". Geometries can be specified using a simple txt input file (see geometry_from_file function in molecular_data.py) or can be passed using a simple python list format demonstrated below. Atoms are specified using a string for their atomic symbol. Distances should be provided in angstrom. Below we initialize a simple instance of MolecularData without performing any electronic structure calculations. ``` from openfermion.chem import MolecularData # Set parameters to make a simple molecule. diatomic_bond_length = .7414 geometry = [('H', (0., 0., 0.)), ('H', (0., 0., diatomic_bond_length))] basis = 'sto-3g' multiplicity = 1 charge = 0 description = str(diatomic_bond_length) # Make molecule and print out a few interesting facts about it. molecule = MolecularData(geometry, basis, multiplicity, charge, description) print('Molecule has automatically generated name {}'.format( molecule.name)) print('Information about this molecule would be saved at:\n{}\n'.format( molecule.filename)) print('This molecule has {} atoms and {} electrons.'.format( molecule.n_atoms, molecule.n_electrons)) for atom, atomic_number in zip(molecule.atoms, molecule.protons): print('Contains {} atom, which has {} protons.'.format( atom, atomic_number)) ``` If we had previously computed this molecule using an electronic structure package, we can call molecule.load() to populate all sorts of interesting fields in the data structure. Though we make no assumptions about what electronic structure packages users might install, we assume that the calculations are saved in OpenFermion's MolecularData objects. Currently plugins are available for [Psi4](http://psicode.org/) [(OpenFermion-Psi4)](http://github.com/quantumlib/OpenFermion-Psi4) and [PySCF](https://github.com/sunqm/pyscf) [(OpenFermion-PySCF)](http://github.com/quantumlib/OpenFermion-PySCF), and there may be more in the future. For the purposes of this example, we will load data that ships with OpenFermion to make a plot of the energy surface of hydrogen. Note that helper functions to initialize some interesting chemical benchmarks are found in openfermion.utils. ``` # Set molecule parameters. basis = 'sto-3g' multiplicity = 1 bond_length_interval = 0.1 n_points = 25 # Generate molecule at different bond lengths. hf_energies = [] fci_energies = [] bond_lengths = [] for point in range(3, n_points + 1): bond_length = bond_length_interval * point bond_lengths += [bond_length] description = str(round(bond_length,2)) print(description) geometry = [('H', (0., 0., 0.)), ('H', (0., 0., bond_length))] molecule = MolecularData( geometry, basis, multiplicity, description=description) # Load data. molecule.load() # Print out some results of calculation. print('\nAt bond length of {} angstrom, molecular hydrogen has:'.format( bond_length)) print('Hartree-Fock energy of {} Hartree.'.format(molecule.hf_energy)) print('MP2 energy of {} Hartree.'.format(molecule.mp2_energy)) print('FCI energy of {} Hartree.'.format(molecule.fci_energy)) print('Nuclear repulsion energy between protons is {} Hartree.'.format( molecule.nuclear_repulsion)) for orbital in range(molecule.n_orbitals): print('Spatial orbital {} has energy of {} Hartree.'.format( orbital, molecule.orbital_energies[orbital])) hf_energies += [molecule.hf_energy] fci_energies += [molecule.fci_energy] # Plot. import matplotlib.pyplot as plt %matplotlib inline plt.figure(0) plt.plot(bond_lengths, fci_energies, 'x-') plt.plot(bond_lengths, hf_energies, 'o-') plt.ylabel('Energy in Hartree') plt.xlabel('Bond length in angstrom') plt.show() ``` The geometry data needed to generate MolecularData can also be retreived from the PubChem online database by inputting the molecule's name. ``` from openfermion.chem import geometry_from_pubchem methane_geometry = geometry_from_pubchem('methane') print(methane_geometry) ``` ## InteractionOperator and InteractionRDM for efficient numerical representations Fermion Hamiltonians can be expressed as $H = h_0 + \sum_{pq} h_{pq}\, a^\dagger_p a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} \, a^\dagger_p a^\dagger_q a_r a_s$ where $h_0$ is a constant shift due to the nuclear repulsion and $h_{pq}$ and $h_{pqrs}$ are the famous molecular integrals. Since fermions interact pairwise, their energy is thus a unique function of the one-particle and two-particle reduced density matrices which are expressed in second quantization as $\rho_{pq} = \left \langle p \mid a^\dagger_p a_q \mid q \right \rangle$ and $\rho_{pqrs} = \left \langle pq \mid a^\dagger_p a^\dagger_q a_r a_s \mid rs \right \rangle$, respectively. Because the RDMs and molecular Hamiltonians are both compactly represented and manipulated as 2- and 4- index tensors, we can represent them in a particularly efficient form using similar data structures. The InteractionOperator data structure can be initialized for a Hamiltonian by passing the constant $h_0$ (or 0), as well as numpy arrays representing $h_{pq}$ (or $\rho_{pq}$) and $h_{pqrs}$ (or $\rho_{pqrs}$). Importantly, InteractionOperators can also be obtained by calling MolecularData.get_molecular_hamiltonian() or by calling the function get_interaction_operator() (found in openfermion.transforms) on a FermionOperator. The InteractionRDM data structure is similar but represents RDMs. For instance, one can get a molecular RDM by calling MolecularData.get_molecular_rdm(). When generating Hamiltonians from the MolecularData class, one can choose to restrict the system to an active space. These classes inherit from the same base class, PolynomialTensor. This data structure overloads the slice operator [] so that one can get or set the key attributes of the InteractionOperator: $\textrm{.constant}$, $\textrm{.one_body_coefficients}$ and $\textrm{.two_body_coefficients}$ . For instance, InteractionOperator[(p, 1), (q, 1), (r, 0), (s, 0)] would return $h_{pqrs}$ and InteractionRDM would return $\rho_{pqrs}$. Importantly, the class supports fast basis transformations using the method PolynomialTensor.rotate_basis(rotation_matrix). But perhaps most importantly, one can map the InteractionOperator to any of the other data structures we've described here. Below, we load MolecularData from a saved calculation of LiH. We then obtain an InteractionOperator representation of this system in an active space. We then map that operator to qubits. We then demonstrate that one can rotate the orbital basis of the InteractionOperator using random angles to obtain a totally different operator that is still iso-spectral. ``` from openfermion.chem import MolecularData from openfermion.transforms import get_fermion_operator, jordan_wigner from openfermion.linalg import get_ground_state, get_sparse_operator import numpy import scipy import scipy.linalg # Load saved file for LiH. diatomic_bond_length = 1.45 geometry = [('Li', (0., 0., 0.)), ('H', (0., 0., diatomic_bond_length))] basis = 'sto-3g' multiplicity = 1 # Set Hamiltonian parameters. active_space_start = 1 active_space_stop = 3 # Generate and populate instance of MolecularData. molecule = MolecularData(geometry, basis, multiplicity, description="1.45") molecule.load() # Get the Hamiltonian in an active space. molecular_hamiltonian = molecule.get_molecular_hamiltonian( occupied_indices=range(active_space_start), active_indices=range(active_space_start, active_space_stop)) # Map operator to fermions and qubits. fermion_hamiltonian = get_fermion_operator(molecular_hamiltonian) qubit_hamiltonian = jordan_wigner(fermion_hamiltonian) qubit_hamiltonian.compress() print('The Jordan-Wigner Hamiltonian in canonical basis follows:\n{}'.format(qubit_hamiltonian)) # Get sparse operator and ground state energy. sparse_hamiltonian = get_sparse_operator(qubit_hamiltonian) energy, state = get_ground_state(sparse_hamiltonian) print('Ground state energy before rotation is {} Hartree.\n'.format(energy)) # Randomly rotate. n_orbitals = molecular_hamiltonian.n_qubits // 2 n_variables = int(n_orbitals * (n_orbitals - 1) / 2) numpy.random.seed(1) random_angles = numpy.pi * (1. - 2. * numpy.random.rand(n_variables)) kappa = numpy.zeros((n_orbitals, n_orbitals)) index = 0 for p in range(n_orbitals): for q in range(p + 1, n_orbitals): kappa[p, q] = random_angles[index] kappa[q, p] = -numpy.conjugate(random_angles[index]) index += 1 # Build the unitary rotation matrix. difference_matrix = kappa + kappa.transpose() rotation_matrix = scipy.linalg.expm(kappa) # Apply the unitary. molecular_hamiltonian.rotate_basis(rotation_matrix) # Get qubit Hamiltonian in rotated basis. qubit_hamiltonian = jordan_wigner(molecular_hamiltonian) qubit_hamiltonian.compress() print('The Jordan-Wigner Hamiltonian in rotated basis follows:\n{}'.format(qubit_hamiltonian)) # Get sparse Hamiltonian and energy in rotated basis. sparse_hamiltonian = get_sparse_operator(qubit_hamiltonian) energy, state = get_ground_state(sparse_hamiltonian) print('Ground state energy after rotation is {} Hartree.'.format(energy)) ``` ## Quadratic Hamiltonians and Slater determinants The general electronic structure Hamiltonian $H = h_0 + \sum_{pq} h_{pq}\, a^\dagger_p a_q + \frac{1}{2} \sum_{pqrs} h_{pqrs} \, a^\dagger_p a^\dagger_q a_r a_s$ contains terms that act on up to 4 sites, or is quartic in the fermionic creation and annihilation operators. However, in many situations we may fruitfully approximate these Hamiltonians by replacing these quartic terms with terms that act on at most 2 fermionic sites, or quadratic terms, as in mean-field approximation theory. These Hamiltonians have a number of special properties one can exploit for efficient simulation and manipulation of the Hamiltonian, thus warranting a special data structure. We refer to Hamiltonians which only contain terms that are quadratic in the fermionic creation and annihilation operators as quadratic Hamiltonians, and include the general case of non-particle conserving terms as in a general Bogoliubov transformation. Eigenstates of quadratic Hamiltonians can be prepared efficiently on both a quantum and classical computer, making them amenable to initial guesses for many more challenging problems. A general quadratic Hamiltonian takes the form $$H = \sum_{p, q} (M_{pq} - \mu \delta_{pq}) a^\dagger_p a_q + \frac{1}{2} \sum_{p, q} (\Delta_{pq} a^\dagger_p a^\dagger_q + \Delta_{pq}^* a_q a_p) + \text{constant},$$ where $M$ is a Hermitian matrix, $\Delta$ is an antisymmetric matrix, $\delta_{pq}$ is the Kronecker delta symbol, and $\mu$ is a chemical potential term which we keep separate from $M$ so that we can use it to adjust the expectation of the total number of particles. In OpenFermion, quadratic Hamiltonians are conveniently represented and manipulated using the QuadraticHamiltonian class, which stores $M$, $\Delta$, $\mu$ and the constant. It is specialized to exploit the properties unique to quadratic Hamiltonians. Like InteractionOperator and InteractionRDM, it inherits from the PolynomialTensor class. The BCS mean-field model of superconductivity is a quadratic Hamiltonian. The following code constructs an instance of this model as a FermionOperator, converts it to a QuadraticHamiltonian, and then computes its ground energy: ``` from openfermion.hamiltonians import mean_field_dwave from openfermion.transforms import get_quadratic_hamiltonian # Set model. x_dimension = 2 y_dimension = 2 tunneling = 2. sc_gap = 1. periodic = True # Get FermionOperator. mean_field_model = mean_field_dwave( x_dimension, y_dimension, tunneling, sc_gap, periodic=periodic) # Convert to QuadraticHamiltonian quadratic_hamiltonian = get_quadratic_hamiltonian(mean_field_model) # Compute the ground energy ground_energy = quadratic_hamiltonian.ground_energy() print(ground_energy) ``` Any quadratic Hamiltonian may be rewritten in the form $$H = \sum_p \varepsilon_p b^\dagger_p b_p + \text{constant},$$ where the $b_p$ are new annihilation operators that satisfy the fermionic anticommutation relations, and which are linear combinations of the old creation and annihilation operators. This form of $H$ makes it easy to deduce its eigenvalues; they are sums of subsets of the $\varepsilon_p$, which we call the orbital energies of $H$. The following code computes the orbital energies and the constant: ``` orbital_energies, constant = quadratic_hamiltonian.orbital_energies() print(orbital_energies) print() print(constant) ``` Eigenstates of quadratic hamiltonians are also known as fermionic Gaussian states, and they can be prepared efficiently on a quantum computer. One can use OpenFermion to obtain circuits for preparing these states. The following code obtains the description of a circuit which prepares the ground state (operations that can be performed in parallel are grouped together), along with a description of the starting state to which the circuit should be applied: ``` from openfermion.circuits import gaussian_state_preparation_circuit circuit_description, start_orbitals = gaussian_state_preparation_circuit(quadratic_hamiltonian) for parallel_ops in circuit_description: print(parallel_ops) print('') print(start_orbitals) ``` In the circuit description, each elementary operation is either a tuple of the form $(i, j, \theta, \varphi)$, indicating the operation $\exp[i \varphi a_j^\dagger a_j]\exp[\theta (a_i^\dagger a_j - a_j^\dagger a_i)]$, which is a Givens rotation of modes $i$ and $j$, or the string 'pht', indicating the particle-hole transformation on the last fermionic mode, which is the operator $\mathcal{B}$ such that $\mathcal{B} a_N \mathcal{B}^\dagger = a_N^\dagger$ and leaves the rest of the ladder operators unchanged. Operations that can be performed in parallel are grouped together. In the special case that a quadratic Hamiltonian conserves particle number ($\Delta = 0$), its eigenstates take the form $$\lvert \Psi_S \rangle = b^\dagger_{1}\cdots b^\dagger_{N_f}\lvert \text{vac} \rangle,\qquad b^\dagger_{p} = \sum_{k=1}^N Q_{pq}a^\dagger_q,$$ where $Q$ is an $N_f \times N$ matrix with orthonormal rows. These states are also known as Slater determinants. OpenFermion also provides functionality to obtain circuits for preparing Slater determinants starting with the matrix $Q$ as the input.
true
code
0.795906
null
null
null
null
**Pix-2-Pix Model using TensorFlow and Keras** A port of pix-2-pix model built using TensorFlow's high level `tf.keras` API. Note: GPU is required to make this model train quickly. Otherwise it could take hours. Original : https://www.kaggle.com/vikramtiwari/pix-2-pix-model-using-tensorflow-and-keras/notebook ## Installations ``` requirements = """ tensorflow drawSvg matplotlib numpy scipy pillow #urllib #skimage scikit-image #gzip #pickle """ %store requirements > requirements.txt !pip install -r requirements.txt ``` ## Data Import ``` # !mkdir datasets # URL="https://people.eecs.berkeley.edu/~tinghuiz/projects/pix2pix/datasets/facade.tar.gz" # TAR_FILE="./datasets/facade.tar.gz" # TARGET_DIR="./datasets/facade/" # !wget -N URL -O TAR_FILE # !mkdir TARGET_DIR # !tar -zxvf TAR_FILE -C ./datasets/ # !rm TAR_FILE #_URL = 'https://drive.google.com/uc?export=download&id=1dnLTTT19YROjpjwZIZpJ1fxAd91cGBJv' #path_to_zip = tf.keras.utils.get_file('pix2pix.zip', origin=_URL,extract=True) #PATH = os.path.join(os.path.dirname(path_to_zip), 'pix2pix/') ``` ## Imports ``` import os import datetime import imageio import skimage import scipy # # from PIL import Image as Img import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from glob import glob from IPython.display import Image tf.logging.set_verbosity(tf.logging.ERROR) datafolderpath = "/content/drive/My Drive/ToDos/Research/MidcurveNN/code/data/" datasetpath = datafolderpath+ "pix2pix/datasets/pix2pix/" # # datasetpath = "./" # Run this cell to mount your Google Drive. from google.colab import drive drive.mount('/content/drive') !ls $datafolderpath class DataLoader(): def __init__(self, dataset_name, img_res=(256, 256)): self.dataset_name = dataset_name self.img_res = img_res def binarize(self, image): h, w = image.shape for i in range(h): for j in range(w): if image[i][j] < 195: image[i][j] = 0 return image def load_data(self, batch_size=1, is_testing=False): data_type = "train" if not is_testing else "test" path = glob(datafolderpath+'%s/datasets/%s/%s/*' % (self.dataset_name, self.dataset_name, data_type)) #path = glob(PATH + '%s/*' % (data_type)) batch_images = np.random.choice(path, size=batch_size) imgs_A = [] imgs_B = [] for img_path in batch_images: img = self.imread(img_path) img = self.binarize(img) img = np.expand_dims(img, axis=-1) h, w, _ = img.shape _w = int(w/2) img_A, img_B = img[:, :_w, :], img[:, _w:, :] # img_A = scipy.misc.imresize(img_A, self.img_res) # img_A = np.array(Img.fromarray(img_A).resize(self.img_res)) #img_A = np.array(skimage.transform.resize(img_A,self.img_res)) # img_B = scipy.misc.imresize(img_B, self.img_res) # img_B = np.array(Img.fromarray(img_B).resize(self.img_res)) #img_B = np.array(skimage.transform.resize(img_B,self.img_res)) # If training => do random flip if not is_testing and np.random.random() < 0.5: img_A = np.fliplr(img_A) img_B = np.fliplr(img_B) imgs_A.append(img_A) imgs_B.append(img_B) imgs_A = np.array(imgs_A)/127.5 - 1. imgs_B = np.array(imgs_B)/127.5 - 1. return imgs_A, imgs_B def load_batch(self, batch_size=1, is_testing=False): data_type = "train" if not is_testing else "val" path = glob(datafolderpath+'%s/datasets/%s/%s/*' % (self.dataset_name, self.dataset_name, data_type)) #path = glob(PATH + '%s/*' % (data_type)) self.n_batches = int(len(path) / batch_size) for i in range(self.n_batches-1): batch = path[i*batch_size:(i+1)*batch_size] imgs_A, imgs_B = [], [] for img in batch: img = self.imread(img) img = self.binarize(img) img = np.expand_dims(img, axis=-1) h, w, _ = img.shape half_w = int(w/2) img_A = img[:, :half_w, :] img_B = img[:, half_w:, :] # img_A = scipy.misc.imresize(img_A, self.img_res) # img_A = np.array(Img.fromarray(img_A).resize(self.img_res)) #img_A = np.array(skimage.transform.resize(img_A,self.img_res)) # img_B = scipy.misc.imresize(img_B, self.img_res) # img_B = np.array(Img.fromarray(img_B).resize(self.img_res)) #img_B = np.array(skimage.transform.resize(img_B,self.img_res)) if not is_testing and np.random.random() > 0.5: img_A = np.fliplr(img_A) img_B = np.fliplr(img_B) imgs_A.append(img_A) imgs_B.append(img_B) imgs_A = np.array(imgs_A)/127.5 - 1. imgs_B = np.array(imgs_B)/127.5 - 1. yield imgs_A, imgs_B def imread(self, path): return imageio.imread(path).astype(np.float) class Pix2Pix(): def __init__(self): # Input shape self.img_rows = 256 self.img_cols = 256 self.channels = 1 self.img_shape = (self.img_rows, self.img_cols, self.channels) # Configure data loader self.dataset_name = 'pix2pix' self.data_loader = DataLoader(dataset_name=self.dataset_name, img_res=(self.img_rows, self.img_cols)) # Calculate output shape of D (PatchGAN) patch = int(self.img_rows / 2**4) self.disc_patch = (patch, patch, 1) # Number of filters in the first layer of G and D self.gf = int(self.img_rows/4) # 64 self.df = int(self.img_rows/4) # 64 optimizer = tf.keras.optimizers.Adam(0.0002, 0.5) # Build and compile the discriminator self.discriminator = self.build_discriminator() self.discriminator.compile(loss='mse', optimizer=optimizer, metrics=['accuracy']) #------------------------- # Construct Computational # Graph of Generator #------------------------- # Build the generator self.generator = self.build_generator() # Input images and their conditioning images img_A = tf.keras.layers.Input(shape=self.img_shape) img_B = tf.keras.layers.Input(shape=self.img_shape) # By conditioning on B generate a fake version of A #fake_A = self.generator(img_B) #By conditioning on A generate a fake version of B fake_B = self.generator(img_A) # For the combined model we will only train the generator self.discriminator.trainable = False # Discriminators determines validity of translated images / condition pairs #valid = self.discriminator([fake_A, img_B]) valid = self.discriminator([img_A, fake_B]) self.combined = tf.keras.models.Model(inputs=[img_A, img_B], outputs=[valid, fake_B]) self.combined.compile(loss=['mse', 'mae'], loss_weights=[1, 100], optimizer=optimizer) def build_generator(self): """U-Net Generator""" def conv2d(layer_input, filters, f_size=4, bn=True): """Layers used during downsampling""" d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) if bn: d = tf.keras.layers.BatchNormalization(momentum=0.8)(d) return d def deconv2d(layer_input, skip_input, filters, f_size=4, dropout_rate=0): """Layers used during upsampling""" u = tf.keras.layers.UpSampling2D(size=2)(layer_input) u = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=1, padding='same', activation='relu')(u) if dropout_rate: u = tf.keras.layers.Dropout(dropout_rate)(u) u = tf.keras.layers.BatchNormalization(momentum=0.8)(u) u = tf.keras.layers.Concatenate()([u, skip_input]) return u # Image input d0 = tf.keras.layers.Input(shape=self.img_shape) # Downsampling d1 = conv2d(d0, self.gf, bn=False) d2 = conv2d(d1, self.gf*2) d3 = conv2d(d2, self.gf*4) d4 = conv2d(d3, self.gf*8) d5 = conv2d(d4, self.gf*8) d6 = conv2d(d5, self.gf*8) d7 = conv2d(d6, self.gf*8) # Upsampling u1 = deconv2d(d7, d6, self.gf*8) u2 = deconv2d(u1, d5, self.gf*8) u3 = deconv2d(u2, d4, self.gf*8) u4 = deconv2d(u3, d3, self.gf*4) u5 = deconv2d(u4, d2, self.gf*2) u6 = deconv2d(u5, d1, self.gf) u7 = tf.keras.layers.UpSampling2D(size=2)(u6) output_img = tf.keras.layers.Conv2D(self.channels, kernel_size=4, strides=1, padding='same', activation='tanh')(u7) return tf.keras.models.Model(d0, output_img) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, bn=True): """Discriminator layer""" d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) if bn: d = tf.keras.layers.BatchNormalization(momentum=0.8)(d) return d img_A = tf.keras.layers.Input(shape=self.img_shape) img_B = tf.keras.layers.Input(shape=self.img_shape) # Concatenate image and conditioning image by channels to produce input combined_imgs = tf.keras.layers.Concatenate(axis=-1)([img_A, img_B]) d1 = d_layer(combined_imgs, self.df, bn=False) d2 = d_layer(d1, self.df*2) d3 = d_layer(d2, self.df*4) d4 = d_layer(d3, self.df*8) validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return tf.keras.models.Model([img_A, img_B], validity) def train(self, epochs, batch_size=1, sample_interval=50): start_time = datetime.datetime.now() # Adversarial loss ground truths valid = np.ones((batch_size,) + self.disc_patch) fake = np.zeros((batch_size,) + self.disc_patch) for epoch in range(epochs): for batch_i, (imgs_A, imgs_B) in enumerate(self.data_loader.load_batch(batch_size)): # --------------------- # Train Discriminator # --------------------- # Condition on B and generate a translated version #fake_A = self.generator.predict(imgs_B) #Condition on A and generate a translated version fake_B = self.generator.predict(imgs_A) # Train the discriminators (original images = real / generated = Fake) d_loss_real = self.discriminator.train_on_batch([imgs_A, imgs_B], valid) d_loss_fake = self.discriminator.train_on_batch([imgs_A, fake_B], fake) d_loss = 0.5 * np.add(d_loss_real, d_loss_fake) # ----------------- # Train Generator # ----------------- # Train the generators g_loss = self.combined.train_on_batch([imgs_A, imgs_B], [valid, imgs_B]) elapsed_time = datetime.datetime.now() - start_time # Plot the progress print ("[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %3d%%] [G loss: %f] time: %s" % (epoch, epochs, batch_i, self.data_loader.n_batches, d_loss[0], 100*d_loss[1], g_loss[0], elapsed_time)) # If at save interval => save generated image samples if batch_i % sample_interval == 0: self.sample_images(epoch, batch_i) def sample_images(self, epoch, batch_i): os.makedirs(datafolderpath+'images/%s' % self.dataset_name, exist_ok=True) r, c = 3, 3 imgs_A, imgs_B = self.data_loader.load_data(batch_size=3, is_testing=True) fake_B = self.generator.predict(imgs_A) gen_imgs = np.concatenate([imgs_A, fake_B, imgs_B]) # Rescale images 0 - 1 gen_imgs = 0.5 * gen_imgs + 0.5 titles = ['Condition', 'Generated', 'Original'] fig, axs = plt.subplots(r, c, figsize=(15,15)) cnt = 0 for i in range(r): for j in range(c): axs[i,j].imshow(gen_imgs[cnt][:,:,0], cmap='gray') axs[i, j].set_title(titles[i]) axs[i,j].axis('off') cnt += 1 fig.savefig(datafolderpath+"images/%s/%d_%d.png" % (self.dataset_name, epoch, batch_i)) plt.close() gan = Pix2Pix() # gan.train(epochs=200, batch_size=1, sample_interval=200) gan.train(epochs=2, batch_size=1, sample_interval=200) # training logs are hidden in published notebook ``` Let's see how our model performed over time. ``` from PIL import Image as Img Image('/content/drive/My Drive/ToDos/Research/MidcurveNN/code/data/images/pix2pix/0_0.png') Img('/content/drive/My Drive/ToDos/Research/MidcurveNN/code/data/images/pix2pix/0_200.png') ``` This is the result of 2 iterations. You can train the model for more than 2 iterations and it will produce better results. Also, try this model with different datasets. ``` ```
true
code
0.562777
null
null
null
null
<a href="https://colab.research.google.com/github/lucianaribeiro/filmood/blob/master/SentimentDetectionRNN.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ``` # Installing Tensorflow ! pip install --upgrade tensorflow # Installing Keras ! pip install --upgrade keras # Install other packages ! pip install --upgrade pip nltk numpy # Importing the libraries from keras.datasets import imdb from keras.preprocessing import sequence from keras import Sequential from keras.layers import Embedding, LSTM, Dense, Dropout from numpy import array # Disable tensor flow warnings for better view from tensorflow.python.util import deprecation deprecation._PRINT_DEPRECATION_WARNINGS = False # Loading dataset from IMDB vocabulary_size = 10000 (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words = vocabulary_size) # Inspect a sample review and its label print('Review') print(X_train[6]) print('Label') print(y_train[6]) # Review back to the original words word2id = imdb.get_word_index() id2word = {i: word for word, i in word2id.items()} print('Review with words') print([id2word.get(i, ' ') for i in X_train[6]]) print('Label') print(y_train[6]) # Ensure that all sequences in a list have the same length X_train = sequence.pad_sequences(X_train, maxlen=500) X_test = sequence.pad_sequences(X_test, maxlen=500) # Initialising the RNN regressor=Sequential() # Adding a first Embedding layer and some Dropout regularization regressor.add(Embedding(vocabulary_size, 32, input_length=500)) regressor.add(Dropout(0.2)) # Adding a second LSTM layer and some Dropout regularization regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.2)) # Adding a third LSTM layer and some Dropout regularization regressor.add(LSTM(units = 50, return_sequences = True)) regressor.add(Dropout(0.2)) # Adding a fourth LSTM layer and some Dropout regularization regressor.add(LSTM(units = 50)) regressor.add(Dropout(0.2)) # Adding the output layer regressor.add(Dense(1, activation='sigmoid')) # Compiling the RNN regressor.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) X_valid, y_valid = X_train[:64], y_train[:64] X_train2, y_train2 = X_train[64:], y_train[64:] regressor.fit(X_train2, y_train2, validation_data=(X_valid, y_valid), batch_size=64, epochs=25) ! pip install --upgrade nltk import nltk nltk.download('punkt') from nltk import word_tokenize # A value close to 0 means the sentiment was negative and a value close to 1 means its a positive review word2id = imdb.get_word_index() test=[] for word in word_tokenize("this is simply one of the best films ever made"): test.append(word2id[word]) test=sequence.pad_sequences([test],maxlen=500) regressor.predict(test) # A value close to 0 means the sentiment was negative and a value close to 1 means its a positive review word2id = imdb.get_word_index() test=[] for word in word_tokenize( "the script is a real insult to the intelligence of those watching"): test.append(word2id[word]) test=sequence.pad_sequences([test],maxlen=500) regressor.predict(test) ```
true
code
0.660665
null
null
null
null
## Prediction sine wave function using Gaussian Process An example for Gaussian process algorithm to predict sine wave function. This example is from ["Gaussian Processes regression: basic introductory example"](http://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gp_regression.html). ``` import numpy as np from sklearn.gaussian_process import GaussianProcess from matplotlib import pyplot as pl %matplotlib inline np.random.seed(1) # The function to predict def f(x): return x*np.sin(x) # -------------------------- # First the noiseless case # -------------------------- # Obervations X = np.atleast_2d([0., 1., 2., 3., 5., 6., 7., 8., 9.5]).T y = f(X).ravel() #X = np.atleast_2d(np.linspace(0, 100, 200)).T # Mesh the input space for evaluations of the real function, the prediction and its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='cubic', theta0=1e-2, thetaL=1e-4, thetaU=1e-1, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.plot(X, y, 'r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') # now the noisy case X = np.linspace(0.1, 9.9, 20) X = np.atleast_2d(X).T # Observations and noise y = f(X).ravel() dy = 0.5 + 1.0 * np.random.random(y.shape) noise = np.random.normal(0, dy) y += noise # Mesh the input space for evaluations of the real function, the prediction and # its MSE x = np.atleast_2d(np.linspace(0, 10, 1000)).T # Instanciate a Gaussian Process model gp = GaussianProcess(corr='squared_exponential', theta0=1e-1, thetaL=1e-3, thetaU=1, nugget=(dy / y) ** 2, random_start=100) # Fit to data using Maximum Likelihood Estimation of the parameters gp.fit(X, y) # Make the prediction on the meshed x-axis (ask for MSE as well) y_pred, MSE = gp.predict(x, eval_MSE=True) sigma = np.sqrt(MSE) # Plot the function, the prediction and the 95% confidence interval based on # the MSE fig = pl.figure() pl.plot(x, f(x), 'r:', label=u'$f(x) = x\,\sin(x)$') pl.errorbar(X.ravel(), y, dy, fmt='r.', markersize=10, label=u'Observations') pl.plot(x, y_pred, 'b-', label=u'Prediction') pl.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred - 1.9600 * sigma, (y_pred + 1.9600 * sigma)[::-1]]), alpha=.5, fc='b', ec='None', label='95% confidence interval') pl.xlabel('$x$') pl.ylabel('$f(x)$') pl.ylim(-10, 20) pl.legend(loc='upper left') pl.show() ```
true
code
0.77694
null
null
null
null
### Convolutional autoencoder Since our inputs are images, it makes sense to use convolutional neural networks (convnets) as encoders and decoders. In practical settings, autoencoders applied to images are always convolutional autoencoders --they simply perform much better. Let's implement one. The encoder will consist in a stack of Conv2D and MaxPooling2D layers (max pooling being used for spatial down-sampling), while the decoder will consist in a stack of Conv2D and UpSampling2D layers. ``` from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D from keras.models import Model from keras import backend as K import numpy as np from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D from keras.models import Model from keras import backend as K input_img = Input(shape=(32, 32, 3)) # adapt this if using `channels_first` image data format x1 = Conv2D(16, (3, 3), activation='relu', padding='same')(input_img) x2 = MaxPooling2D((2, 2), padding='same')(x1) x3 = Conv2D(8, (6, 6), activation='relu', padding='same')(x2) x4 = MaxPooling2D((2, 2), padding='same')(x3) x5 = Conv2D(8, (9, 9), activation='relu', padding='same')(x4) encoded = MaxPooling2D((2, 2), padding='same')(x5) # at this point the representation is (4, 4, 8) i.e. 128-dimensional x6 = Conv2D(8, (9, 9), activation='relu', padding='same')(encoded) x7 = UpSampling2D((2, 2))(x6) x8 = Conv2D(8, (6, 6), activation='relu', padding='same')(x7) x9 = UpSampling2D((2, 2))(x8) x10 = Conv2D(16, (3, 3), activation='relu', padding='same')(x9) x11 = UpSampling2D((2, 2))(x10) decoded = Conv2D(3, (3, 3), activation='sigmoid', padding='same')(x11) autoencoder = Model(input_img, decoded) autoencoder.compile(optimizer='adagrad', loss='binary_crossentropy') from keras.datasets import cifar10 import numpy as np (x_train, _), (x_test, _) = cifar10.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = np.reshape(x_train, (len(x_train), 32, 32, 3)) # adapt this if using `channels_first` image data format x_test = np.reshape(x_test, (len(x_test), 32, 32, 3)) # adapt this if using `channels_first` image data format autoencoder.fit(x_train, x_train, epochs=50, batch_size=128, shuffle=True, validation_data=(x_test, x_test)) from keras.models import load_model #autoencoder.save('cifar10_autoencoders.h5') # creates a HDF5 file 'my_model.h5' #del model # deletes the existing model. # returns a compiled model # identical to the previous one autoencoder = load_model('cifar10_autoencoders.h5') import matplotlib.pyplot as plt decoded_imgs = autoencoder.predict(x_test) n = 10 plt.figure(figsize=(20, 4)) for i in range(n): # display original ax = plt.subplot(2, n, i + 1) plt.imshow(x_test[i].reshape(32, 32, 3)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # display reconstruction ax = plt.subplot(2, n, i + n + 1) plt.imshow(decoded_imgs[i].reshape(32, 32, 3)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() ``` ### Plotting the weights from the first layer ``` import matplotlib.pyplot as plt n = 8 for i in range(n): fig = plt.figure(figsize=(1,1)) conv_1 = np.asarray(autoencoder.layers[1].get_weights())[0][:,:,0,i] ax = fig.add_subplot(111) plt.imshow(conv_1.transpose(), cmap = 'gray') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() autoencoder.layers[3].get_weights() from keras import backend as K # K.learning_phase() is a flag that indicates if the network is in training or # predict phase. It allow layer (e.g. Dropout) to only be applied during training inputs = [K.learning_phase()] + autoencoder.inputs _layer1_f = K.function(inputs, [x2]) def convout1_f(X): # The [0] is to disable the training phase flag return _layer1_f([0] + [X]) #_lay_f = K.function(inputs, [x1]) #def convout1_f(X): # The [0] is to disable the training phase flag # return _layer1_f([0] + [X]) _layer2_f = K.function(inputs, [x4]) def convout2_f(X): # The [0] is to disable the training phase flag return _layer2_f([0] + [X]) _layer3_f = K.function(inputs, [encoded]) def convout3_f(X): # The [0] is to disable the training phase flag return _layer3_f([0] + [X]) _up_layer1_f = K.function(inputs, [x6]) def convout4_f(X): # The [0] is to disable the training phase flag return _up_layer1_f([0] + [X]) _up_layer2_f = K.function(inputs, [x8]) def convout5_f(X): # The [0] is to disable the training phase flag return _up_layer2_f([0] + [X]) _up_layer3_f = K.function(inputs, [x10]) def convout6_f(X): # The [0] is to disable the training phase flag return _up_layer3_f([0] + [X]) _up_layer4_f = K.function(inputs, [decoded]) def convout7_f(X): # The [0] is to disable the training phase flag return _up_layer4_f([0] + [X]) x2 i = 1 x = x_test[i:i+1] ``` ### Visualizing the first convnet/output layer_1 with sample first test image ``` np.squeeze(np.squeeze(np.array(convout1_f(x)),0),0).shape #Plotting conv_1 for i in range(4): #i = 3 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout1_f(x)),0),0) temp = x[0,:,:,:] fig, axes = plt.subplots(1, 1, figsize=(3, 3)) plt.imshow(temp) plt.show() k = 0 while k < check.shape[2]: #plt.figure() #plt.subplot(231 + i) fig, axes = plt.subplots(4, 4, figsize=(5, 5)) for i in range(4): for j in range(4): axes[i,j].imshow(check[:,:,k], cmap = 'gray') k += 1 #axes[0, 0].imshow(R, cmap='jet') #plt.imshow(check[:,:,i]) plt.show() check.shape ``` ### Visualizing the second convnet/output layer_2 with sample test image ``` i = 3 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout2_f(x)),0),0) check.shape #Plotting conv_2 for i in range(4): #i = 3 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout1_f(x)),0),0) temp = x[0,:,:,:] fig, axes = plt.subplots(1, 1, figsize=(3, 3)) plt.imshow(temp) plt.show() k = 0 while k < check.shape[2]: #plt.figure() #plt.subplot(231 + i) fig, axes = plt.subplots(2, 4, figsize=(5, 5)) for i in range(2): for j in range(4): axes[i,j].imshow(check[:,:,k]) k += 1 #axes[0, 0].imshow(R, cmap='jet') #plt.imshow(check[:,:,i]) plt.show() ``` ### Plotting the third convnet/output layer_3 with sample test image ``` i = 3 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout3_f(x)),0),0) check.shape #Plotting conv_3 for i in range(4): #i = 3 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout1_f(x)),0),0) temp = x[0,:,:,:] fig, axes = plt.subplots(1, 1, figsize=(3, 3)) plt.imshow(temp) plt.show() k = 0 while k < check.shape[2]: #plt.figure() #plt.subplot(231 + i) fig, axes = plt.subplots(2, 4, figsize=(5, 5)) for i in range(2): for j in range(4): axes[i,j].imshow(check[:,:,k]) k += 1 #axes[0, 0].imshow(R, cmap='jet') #plt.imshow(check[:,:,i]) plt.show() ``` ### Visualizing the fourth convnet/decoded/output layer_4 with sample test image ``` i = 3 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout4_f(x)),0),0) check.shape #Plotting conv_4 for i in range(4): #i = 3 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout1_f(x)),0),0) temp = x[0,:,:,:] fig, axes = plt.subplots(1, 1, figsize=(3, 3)) plt.imshow(temp) plt.show() k = 0 while k < check.shape[2]: #plt.figure() #plt.subplot(231 + i) fig, axes = plt.subplots(2, 4, figsize=(5, 5)) for i in range(2): for j in range(4): axes[i,j].imshow(check[:,:,k]) k += 1 #axes[0, 0].imshow(R, cmap='jet') #plt.imshow(check[:,:,i]) plt.show() ``` ### Visualizing the fifth convnet/decoded/output layer_5 with sample test image ``` i = 3 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout5_f(x)),0),0) check.shape #Plotting conv_5 for i in range(4): #i = 3 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout1_f(x)),0),0) temp = x[0,:,:,:] fig, axes = plt.subplots(1, 1, figsize=(3, 3)) plt.imshow(temp) plt.show() k = 0 while k < check.shape[2]: #plt.figure() #plt.subplot(231 + i) fig, axes = plt.subplots(2, 4, figsize=(5, 5)) for i in range(2): for j in range(4): axes[i,j].imshow(check[:,:,k]) k += 1 #axes[0, 0].imshow(R, cmap='jet') #plt.imshow(check[:,:,i]) plt.show() ``` ### Visualizing the sixth convnet/decoded/output layer_6 with sample test image ``` i = 3 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout6_f(x)),0),0) check.shape #Plotting conv_6 for i in range(4): #i = 3 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout1_f(x)),0),0) temp = x[0,:,:,:] fig, axes = plt.subplots(1, 1, figsize=(3, 3)) plt.imshow(temp) plt.show() k = 0 while k < check.shape[2]: #plt.figure() #plt.subplot(231 + i) fig, axes = plt.subplots(4, 4, figsize=(5, 5)) for i in range(4): for j in range(4): axes[i,j].imshow(check[:,:,k]) k += 1 #axes[0, 0].imshow(R, cmap='jet') #plt.imshow(check[:,:,i]) plt.show() ``` ### Visualizing the final decoded/output layer with sample test image ``` i = 1 x = x_test[i:i+1] check = np.squeeze(np.squeeze(np.array(convout7_f(x)),0),0) check.shape #Plot final decoded layer decoded_imgs = autoencoder.predict(x_test) n = 4 plt.figure(figsize=(20, 4)) for i in range(n): # display original ax = plt.subplot(2, n, i + 1) plt.imshow(x_test[i].reshape(32, 32, 3)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # display reconstruction ax = plt.subplot(2, n, i + n + 1) plt.imshow(decoded_imgs[i].reshape(32, 32, 3)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() ```
true
code
0.834693
null
null
null
null
``` %matplotlib inline ``` Sequence-to-Sequence Modeling with nn.Transformer and TorchText =============================================================== This is a tutorial on how to train a sequence-to-sequence model that uses the `nn.Transformer <https://pytorch.org/docs/master/nn.html?highlight=nn%20transformer#torch.nn.Transformer>`__ module. PyTorch 1.2 release includes a standard transformer module based on the paper `Attention is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`__. The transformer model has been proved to be superior in quality for many sequence-to-sequence problems while being more parallelizable. The ``nn.Transformer`` module relies entirely on an attention mechanism (another module recently implemented as `nn.MultiheadAttention <https://pytorch.org/docs/master/nn.html?highlight=multiheadattention#torch.nn.MultiheadAttention>`__) to draw global dependencies between input and output. The ``nn.Transformer`` module is now highly modularized such that a single component (like `nn.TransformerEncoder <https://pytorch.org/docs/master/nn.html?highlight=nn%20transformerencoder#torch.nn.TransformerEncoder>`__ in this tutorial) can be easily adapted/composed. ![](../_static/img/transformer_architecture.jpg) Define the model ---------------- In this tutorial, we train ``nn.TransformerEncoder`` model on a language modeling task. The language modeling task is to assign a probability for the likelihood of a given word (or a sequence of words) to follow a sequence of words. A sequence of tokens are passed to the embedding layer first, followed by a positional encoding layer to account for the order of the word (see the next paragraph for more details). The ``nn.TransformerEncoder`` consists of multiple layers of `nn.TransformerEncoderLayer <https://pytorch.org/docs/master/nn.html?highlight=transformerencoderlayer#torch.nn.TransformerEncoderLayer>`__. Along with the input sequence, a square attention mask is required because the self-attention layers in ``nn.TransformerEncoder`` are only allowed to attend the earlier positions in the sequence. For the language modeling task, any tokens on the future positions should be masked. To have the actual words, the output of ``nn.TransformerEncoder`` model is sent to the final Linear layer, which is followed by a log-Softmax function. ``` import math import torch import torch.nn as nn import torch.nn.functional as F class TransformerModel(nn.Module): def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5): super(TransformerModel, self).__init__() from torch.nn import TransformerEncoder, TransformerEncoderLayer self.model_type = 'Transformer' self.pos_encoder = PositionalEncoding(ninp, dropout) encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout) self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers) self.encoder = nn.Embedding(ntoken, ninp) self.ninp = ninp self.decoder = nn.Linear(ninp, ntoken) self.init_weights() def generate_square_subsequent_mask(self, sz): mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1) mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) return mask def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, src, src_mask): src = self.encoder(src) * math.sqrt(self.ninp) src = self.pos_encoder(src) output = self.transformer_encoder(src, src_mask) output = self.decoder(output) return output ``` ``PositionalEncoding`` module injects some information about the relative or absolute position of the tokens in the sequence. The positional encodings have the same dimension as the embeddings so that the two can be summed. Here, we use ``sine`` and ``cosine`` functions of different frequencies. ``` class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) ``` Load and batch data ------------------- This tutorial uses ``torchtext`` to generate Wikitext-2 dataset. The vocab object is built based on the train dataset and is used to numericalize tokens into tensors. Starting from sequential data, the ``batchify()`` function arranges the dataset into columns, trimming off any tokens remaining after the data has been divided into batches of size ``batch_size``. For instance, with the alphabet as the sequence (total length of 26) and a batch size of 4, we would divide the alphabet into 4 sequences of length 6: \begin{align}\begin{bmatrix} \text{A} & \text{B} & \text{C} & \ldots & \text{X} & \text{Y} & \text{Z} \end{bmatrix} \Rightarrow \begin{bmatrix} \begin{bmatrix}\text{A} \\ \text{B} \\ \text{C} \\ \text{D} \\ \text{E} \\ \text{F}\end{bmatrix} & \begin{bmatrix}\text{G} \\ \text{H} \\ \text{I} \\ \text{J} \\ \text{K} \\ \text{L}\end{bmatrix} & \begin{bmatrix}\text{M} \\ \text{N} \\ \text{O} \\ \text{P} \\ \text{Q} \\ \text{R}\end{bmatrix} & \begin{bmatrix}\text{S} \\ \text{T} \\ \text{U} \\ \text{V} \\ \text{W} \\ \text{X}\end{bmatrix} \end{bmatrix}\end{align} These columns are treated as independent by the model, which means that the dependence of ``G`` and ``F`` can not be learned, but allows more efficient batch processing. ``` import io import torch from torchtext.utils import download_from_url, extract_archive from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator url = 'https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-v1.zip' test_filepath, valid_filepath, train_filepath = extract_archive(download_from_url(url)) tokenizer = get_tokenizer('basic_english') vocab = build_vocab_from_iterator(map(tokenizer, iter(io.open(train_filepath, encoding="utf8")))) def data_process(raw_text_iter): data = [torch.tensor([vocab[token] for token in tokenizer(item)], dtype=torch.long) for item in raw_text_iter] return torch.cat(tuple(filter(lambda t: t.numel() > 0, data))) train_data = data_process(iter(io.open(train_filepath, encoding="utf8"))) val_data = data_process(iter(io.open(valid_filepath, encoding="utf8"))) test_data = data_process(iter(io.open(test_filepath, encoding="utf8"))) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def batchify(data, bsz): # Divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() return data.to(device) batch_size = 20 eval_batch_size = 10 train_data = batchify(train_data, batch_size) val_data = batchify(val_data, eval_batch_size) test_data = batchify(test_data, eval_batch_size) ``` Functions to generate input and target sequence ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ``get_batch()`` function generates the input and target sequence for the transformer model. It subdivides the source data into chunks of length ``bptt``. For the language modeling task, the model needs the following words as ``Target``. For example, with a ``bptt`` value of 2, we’d get the following two Variables for ``i`` = 0: ![](../_static/img/transformer_input_target.png) It should be noted that the chunks are along dimension 0, consistent with the ``S`` dimension in the Transformer model. The batch dimension ``N`` is along dimension 1. ``` bptt = 35 def get_batch(source, i): seq_len = min(bptt, len(source) - 1 - i) data = source[i:i+seq_len] target = source[i+1:i+1+seq_len].reshape(-1) return data, target ``` Initiate an instance -------------------- The model is set up with the hyperparameter below. The vocab size is equal to the length of the vocab object. ``` ntokens = len(vocab.stoi) # the size of vocabulary emsize = 200 # embedding dimension nhid = 200 # the dimension of the feedforward network model in nn.TransformerEncoder nlayers = 2 # the number of nn.TransformerEncoderLayer in nn.TransformerEncoder nhead = 2 # the number of heads in the multiheadattention models dropout = 0.2 # the dropout value model = TransformerModel(ntokens, emsize, nhead, nhid, nlayers, dropout).to(device) ``` Run the model ------------- `CrossEntropyLoss <https://pytorch.org/docs/master/nn.html?highlight=crossentropyloss#torch.nn.CrossEntropyLoss>`__ is applied to track the loss and `SGD <https://pytorch.org/docs/master/optim.html?highlight=sgd#torch.optim.SGD>`__ implements stochastic gradient descent method as the optimizer. The initial learning rate is set to 5.0. `StepLR <https://pytorch.org/docs/master/optim.html?highlight=steplr#torch.optim.lr_scheduler.StepLR>`__ is applied to adjust the learn rate through epochs. During the training, we use `nn.utils.clip_grad_norm\_ <https://pytorch.org/docs/master/nn.html?highlight=nn%20utils%20clip_grad_norm#torch.nn.utils.clip_grad_norm_>`__ function to scale all the gradient together to prevent exploding. ``` criterion = nn.CrossEntropyLoss() lr = 5.0 # learning rate optimizer = torch.optim.SGD(model.parameters(), lr=lr) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95) import time def train(): model.train() # Turn on the train mode total_loss = 0. start_time = time.time() src_mask = model.generate_square_subsequent_mask(bptt).to(device) for batch, i in enumerate(range(0, train_data.size(0) - 1, bptt)): data, targets = get_batch(train_data, i) optimizer.zero_grad() if data.size(0) != bptt: src_mask = model.generate_square_subsequent_mask(data.size(0)).to(device) output = model(data, src_mask) loss = criterion(output.view(-1, ntokens), targets) loss.backward() torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) optimizer.step() total_loss += loss.item() log_interval = 200 if batch % log_interval == 0 and batch > 0: cur_loss = total_loss / log_interval elapsed = time.time() - start_time print('| epoch {:3d} | {:5d}/{:5d} batches | ' 'lr {:02.2f} | ms/batch {:5.2f} | ' 'loss {:5.2f} | ppl {:8.2f}'.format( epoch, batch, len(train_data) // bptt, scheduler.get_lr()[0], elapsed * 1000 / log_interval, cur_loss, math.exp(cur_loss))) total_loss = 0 start_time = time.time() def evaluate(eval_model, data_source): eval_model.eval() # Turn on the evaluation mode total_loss = 0. src_mask = model.generate_square_subsequent_mask(bptt).to(device) with torch.no_grad(): for i in range(0, data_source.size(0) - 1, bptt): data, targets = get_batch(data_source, i) if data.size(0) != bptt: src_mask = model.generate_square_subsequent_mask(data.size(0)).to(device) output = eval_model(data, src_mask) output_flat = output.view(-1, ntokens) total_loss += len(data) * criterion(output_flat, targets).item() return total_loss / (len(data_source) - 1) ``` Loop over epochs. Save the model if the validation loss is the best we've seen so far. Adjust the learning rate after each epoch. ``` best_val_loss = float("inf") epochs = 3 # The number of epochs best_model = None for epoch in range(1, epochs + 1): epoch_start_time = time.time() train() val_loss = evaluate(model, val_data) print('-' * 89) print('| end of epoch {:3d} | time: {:5.2f}s | valid loss {:5.2f} | ' 'valid ppl {:8.2f}'.format(epoch, (time.time() - epoch_start_time), val_loss, math.exp(val_loss))) print('-' * 89) if val_loss < best_val_loss: best_val_loss = val_loss best_model = model scheduler.step() ``` Evaluate the model with the test dataset ------------------------------------- Apply the best model to check the result with the test dataset. ``` test_loss = evaluate(best_model, test_data) print('=' * 89) print('| End of training | test loss {:5.2f} | test ppl {:8.2f}'.format( test_loss, math.exp(test_loss))) print('=' * 89) ```
true
code
0.807271
null
null
null
null
# Plus proches voisins - évaluation Comment évaluer la pertinence d'un modèle des plus proches voisins. ``` %matplotlib inline from papierstat.datasets import load_wines_dataset df = load_wines_dataset() X = df.drop(['quality', 'color'], axis=1) y = df['quality'] from sklearn.neighbors import KNeighborsRegressor knn = KNeighborsRegressor(n_neighbors=1) knn.fit(X, y) prediction = knn.predict(X) ``` Le modèle ne fait pas d'erreur sur tous les exemples de la base de vins. C'est normal puisque le plus proche voisin d'un vin est nécessairement lui-même, la note prédite et la sienne. ``` min(prediction - y), max(prediction - y) ``` Il est difficile dans ces conditions de dire si la prédiction et de bonne qualité. On pourrait estimer la qualité de la prédiction sur un vin nouveau mais il n'y en a aucun pour le moment et ce n'est pas l'ordinateur qui va les fabriquer. On peut peut-être regarder combien de fois le plus proche voisin d'un vin autre que le vin lui-même partage la même note. ``` from sklearn.neighbors import NearestNeighbors nn = NearestNeighbors(n_neighbors=2) nn.fit(X) distance, index = nn.kneighbors(X) proche = index[:, 1].ravel() note_proche = [y[i] for i in proche] ``` Il ne reste plus qu'à calculer la différence entre la note d'un vin et celle de son plus proche voisin autre que lui-même. ``` diff = y - note_proche ax = diff.hist(bins=20, figsize=(3,3)) ax.set_title('Histogramme des différences\nde prédiction') ``` Ca marche pour les deux tiers de la base, pour le tiers restant, les notes diffèrent. On peut maintenant regarder si la distance entre ces deux voisins pourrait être corrélée à cette différence. ``` import pandas dif = pandas.DataFrame(dict(dist=distance[:,1], diff=diff)) ax = dif.plot(x="dist", y="diff", kind='scatter', figsize=(3,3)) ax.set_title('Graphe XY - distance / différence'); ``` Ce n'est pas très lisible. Essayons un autre type de graphique. ``` from seaborn import violinplot, boxplot import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 2, figsize=(8,3)) violinplot(x="diff", y="dist", data=dif, ax=ax[0]) ax[0].set_ylim([0,25]) ax[0].set_title('Violons distribution\ndifférence / distance') boxplot(x="diff", y="dist", data=dif, ax=ax[1]) ax[1].set_title('Boxplots distribution\ndifférence / distance') ax[1].set_ylim([0,25]); ``` A priori le modèle n'est pas si mauvais, les voisins partageant la même note ont l'air plus proches que ceux qui ont des notes différentes. ``` import numpy dif['abs_diff'] = numpy.abs(dif['diff']) from seaborn import jointplot ax = jointplot("dist", "abs_diff", data=dif[dif.dist <= 10], kind="kde", space=0, color="g", size=4) ax.ax_marg_y.set_title('Heatmap distribution distance / différence'); ``` Les vins proches se ressemblent pour la plupart. C'est rassurant pour la suite. 61% des vins ont un voisin proche partageant la même note. ``` len(dif[dif['abs_diff'] == 0]) / dif.shape[0] ```
true
code
0.62498
null
null
null
null
# Introducción a Python: Sintaxis, Funciones y Booleanos <img style="float: right; margin: 0px 0px 15px 15px;" src="https://www.python.org/static/community_logos/python-logo.png" width="200px" height="200px" /> > Bueno, ya que sabemos qué es Python, y que ya tenemos las herramientas para trabajarlo, veremos cómo usarlo. Referencias: - https://www.kaggle.com/learn/python ___ # 1. Sintaxis básica ## 1.1 Hello, Python! ¿Qué mejor para empezar que analizar el siguiente pedazo de código? ``` work_hours = 0 print(work_hours) # ¡A trabajar! Como una hora, no menos, como cinco work_hours = work_hours + 5 if work_hours > 0: print("Mucho trabajo!") rihanna_song = "Work " * work_hours print(rihanna_song) ``` ¿Alguien adivina qué salida produce el código anterior? Bueno, veamos línea por línea qué está pasando: ``` work_hours = 0 ``` **Asignación de variable:** la línea anterior crea una variable llamada `work_hours` y le asigna el valor de `0` usando el símbolo `=`. A diferencia de otros lenguajes (como Java o `C++`), la asignación de variables en Python: - no necesita que la variable `work_hours` sea declarada antes de asignarle un valor; - no necesitamos decirle a Python qué tipo de valor tendrá la variable `work_hours` (int, float, str, list...). De hecho, podríamos luego asignarle a `work_hours` otro tipo de valor como un string (cadena de caracteres) o un booleano (`True` o `False`). ``` print(work_hours) ``` **Llamado a una función**: print es una función de Python que imprime el valor pasado a su argumento. Las funciones son llamadas poniendo paréntesis luego de su nombre, y escribiendo sus argumentos (entradas) dentro de dichos paréntesis. ``` # ¡A trabajar! Como una hora, no menos, como cinco work_hours = work_hours + 5 # work_hours += 5 # Esto es completamente equivalente a la linea de arriba print(work_hours) ``` La primer línea es un **comentario**, los cuales en Python comienzan con el símbolo `#`. A continuación se hace una reasignación. En este caso, estamos asignando a la variable `work_hours` un nuevo valor que involucra una operación aritmética en su propio valor previo. ``` if work_hours > 0: print("Mucho trabajo!") if work_hours > 10: print("Mucho trabajo!") ``` Todavía no es tiempo de ver **condicionales**, sin embargo, se puede adivinar fácilmente lo que este pedazo de código hace, ya que se puede leer casi literal. Notemos que la *indentación* es muy importante acá, y especifica qué parte del código pertenece al `if`. Lo que pertenece al `if` empieza por los dos puntos (`:`) y debe ir indentado en el renglón de abajo. Así que mucho cuidado con la indentación, sobretodo si han programado en otros lenguajes en los que este detalle no implica nada. Acá vemos un tipo de variable string (cadena de caracteres). Se especifica a Python un objeto tipo string poniendo doble comilla ("") o comilla simple (''). ``` "Work " == 'Work ' rihanna_song = "Work " * work_hours print(rihanna_song) a = 5 a type(a) a *= "A " a type(a) ``` El operador `*` puede ser usado para multiplicar dos números (`3 * 4 evalua en 12`), pero también podemos multiplicar strings por números enteros, y obtenemos un nuevo string que repite el primero esa cantidad de veces. En Python suceden muchas cosas de este estilo, muchos "truquillos" que ahorran mucho tiempo. ## 1.2 Tipos de números en Python y operaciones aritméticas Ya vimos un ejemplo de una variable que contenía un número: ``` work_hours = 0 ``` Sin embargo, hay varios tipos de "números". Si queremos ser más tecnicos, preguntémosle a Python qué tipo de variable es `work_hours`: ``` type(work_hours) ``` Vemos que es un entero (`int`). Hay otro tipo de número que encontramos en Python: ``` type(0.5) ``` Un número de punto flotante (float) es un número con decimales. Ya conocemos dos funciones estándar de Python: `print()` y `type()`. La última es bien útil para preguntarle a Python "¿Qué es esto?". Ahora veamos operaciones aritméticas: ``` # Operación suma(+)/resta(-) 5 + 8, 9 - 3 # Operación multiplicación(*) 5 * 8 # Operación división(/) 6 / 7 # Operación división entera(//) 5 // 2 # Operación módulo(%) 5 % 2 # Exponenciación(**) 2**5 # Bitwise XOR (^) ## 2 == 010 ## 5 == 101 ## 2^5 == 111 == 1 * 2**2 + 1 * 2**1 + 1 * 2**0 == 7 2^5 ``` El orden en que se efectúan las operaciones es justo como nos lo enseñaron en primaria/secundaria: - PEMDAS: Parentesis, Exponentes, Multiplicación/División, Adición/Sustracción. Ante la duda siempre usar paréntesis. ``` # Ejemplo de altura con sombrero altura_sombrero_cm = 20 mi_altura_cm = 183 # Que tan alto soy cuando me pongo sombrero? altura_total_metros = altura_sombrero_cm + mi_altura_cm / 100 print("Altura total en metros =", altura_total_metros, "?") # Que tan alto soy cuando me pongo sombrero? altura_total_metros = (altura_sombrero_cm + mi_altura_cm) / 100 print("Altura total en metros =", altura_total_metros) import this ``` ### 1.2.1 Funciones para trabajar con números `min()` y `max()` devuelven el mínimo y el máximo de sus argumentos, respectivamente... ``` # min min(1, 8, -5, 4.4, 4.89) # max max(1, 8, -5, 4.4, 4.89) ``` `abs()` devuelve el valor absoluto de su argumeto: ``` # abs abs(5), abs(-5) ``` Aparte de ser tipos de variable, `float()` e `int()` pueden ser usados como función para convertir su argumento al tipo especificado (esto lo veremos mejor cuando veamos programación orientada a objetos): ``` print(float(10)) print(int(3.33)) # They can even be called on strings! print(int('807') + 1) int(8.99999) ``` ___ # 2. Funciones y ayuda en Python ## 2.1 Pidiendo ayuda Ya vimos algunas funciones en la sección anterior (`print()`, `abs()`, `min()`, `max()`), pero, ¿y si se nos olvida que hace alguna de ellas? Que no pande el cúnico, ahí estará siempre la función `help()` para venir al rescate... ``` # Usar la función help sobre la función round help(round) help(max) # Función round round(8.99999) round(8.99999, 2) round(146, -2) ``` ### ¡CUIDADO! A la función `help()` se le pasa como argumento el nombre de la función, **no la función evaluada**. Si se le pasa la función evaluada, `help()` dará la ayuda sobre el resultado de la función y no sobre la función como tal. Por ejemplo, ``` # Help de una función help(round) a = round(10.85) type(a) # Help de una función evaluada help(round(10.85)) ``` Intenten llamar la función `help()` sobre otras funciones a ver si se encuentran algo interesante... ``` # Help sobre print help(print) # Print print(1, 'a', "Hola, ¿Cómo están?", sep="_este es un separador_", end=" ") print(56) ``` ## 2.2 Definiendo funciones Las funciones por defecto de Python son de mucha utilidad. Sin embargo, pronto nos daremos cuenta que sería más útil aún definir nuestras propias funciones para reutilizarlas cada vez que las necesitemos. Por ejemplo, creemos una función que dados tres números, devuelva la mínima diferencia absoluta entre ellos ``` # Explicar acá la forma de definir una función def diferencia_minima(a, b, c): diff1 = abs(a - b) diff2 = abs(a - c) diff3 = abs(b - c) return min(diff1, diff2, diff3) ``` Las funciones comienzan con la palabra clave `def`, y el código indentado luego de los dos puntos `:` se corre cuando la función es llamada. `return` es otra parablra clave que sólo se asocia con funciones. Cuando Python se encuentra un `return`, termina la función inmediatamente y devuelve el valor que hay seguido del `return`. ¿Qué hace específicamente la función que escribimos? ``` # Ejemplo: llamar la función unas 3 veces diferencia_minima(7, -5, 8) diferencia_minima(7.4, 7, 0) diferencia_minima(7, 6, 8) type(diferencia_minima) ``` Intentemos llamar `help` sobre la función ``` help(diferencia_minima) ``` Bueno, Python tampoco es tan listo como para leer código y entregar una buena descripción de la función. Esto es trabajo del diseñador de la función: incluir la documentación. ¿Cómo se hace? (Recordar añadir un ejemplo) ``` # Copiar y pegar la función, pero esta vez, incluir documentación de la misma def diferencia_minima(a, b, c): """ This function determines the minimum difference between the three arguments passed a, b, c. Example: >>> diferencia_minima(7, -5, 8) 1 """ diff1 = abs(a - b) diff2 = abs(a - c) diff3 = abs(b - c) return min(diff1, diff2, diff3) # Volver a llamar el help help(diferencia_minima) ``` Muy bien. Ahora, podemos observar que podemos llamar esta función sobre diferentes números, incluso de diferentes tipos: - Si todos son enteros, entonces nos retornará un entero. - Si hay algún float, nos retornará un float. ``` # Todos enteros diferencia_minima(1, 1, 4) # Uno o más floats diferencia_minima(0., 0., 1) ``` Sin embargo, no todas las entradas son válidas: ``` # String: TypeError diferencia_minima('a', 'b', 'c') ``` ### 2.2.1 Funciones que no devuelven ¿Qué pasa si no incluimos el `return` en nuestra función? ``` # Ejemplo de función sin return def imprimir(a): print(a) # Llamar la función un par de veces imprimir('Hola a todos') var = imprimir("Hola a todos") print(var) def write_file(a): with open("file.txt", 'w') as f: f.write(a) write_file("Hola a todos") ``` ### 2.2.2 Argumentos por defecto Modificar la función `saludo` para que tenga un argumento por defecto. ``` # Función saludo con argumento por defecto def greetings(name="Ashwin"): # print(f"Welcome, {name}!") # print("Welcome, " + name + "!") # print("Welcome, ", name, "!", sep="") print("Welcome, {}!".format(name)) # print("Welcome, %s!" %name) greetings("Alejandro") greetings() ``` ___ # 3. Booleanos y condicionales ## 3.1 Booleanos Python tiene un tipo de objetos de tipo `bool` los cuales pueden tomar uno de dos valores: `True` o `False`. Ejemplo: ``` x = True print(x) print(type(x)) ``` Normalmente no ponemos `True` o `False` directamente en nuestro código, sino que más bien los obtenemos luego de una operación booleana (operaciones que dan como resultado `True` o `False`). Ejemplos de operaciones: ``` # == 3 == 3. # != 2.99999 != 3 # < 8 < 5 # > 8 > 5 # <= 4 <= 4 # >= 5 >= 8 ``` **Nota:** hay una diferencia enorme entre `==` e `=`. Con el primero estamos preguntando acerca del valor (`n==2`: ¿es `n` igual a `2`?), mientras que con el segundo asignamos un valor (`n=2`: `n` guarda el valor de `2`). Ejemplo: escribir una función que dado un número nos diga si es impar ``` # Función para encontrar números impares def odd(num_int): return (num_int % 2) != 0 def odd(num_int): if (num_int % 2) != 0: return True return False # Probar la función odd(5), odd(32) (5, 4, 3) == ((5, 4, 3)) ``` ### 3.1.1 Combinando valores booleanos Python también nos provee operadores básicos para operar con valores booleanos: `and`, `or`, y `not`. Por ejemplo, podemos definir una función para ver si vale la pena llegar a la taquería de la esquina: ``` # Función: ¿vale la pena ir a la taquería? distancia, clima, paraguas ... def vale_la_pena_ir_taqueria(distancia, clima, paraguas): return (distancia <= 100) and (clima != 'lluvioso' or paraguas == True) # Probar función vale_la_pena_ir_taqueria(distancia=50, clima="soleado", paraguas=False) vale_la_pena_ir_taqueria(distancia=50, clima="lluvioso", paraguas=False) ``` También podemos combinar más de dos valores: ¿cuál es el resultado de la siguiente expresión? ``` (True or True) and False ``` Uno puede tratar de memorizarse el orden de las operaciones lógicas, así como el de las aritméticas. Sin embargo, en línea con la filosofía de Python, el uso de paréntesis enriquece mucho la legibilidad y no quedan lugares a dudas. Los siguientes códigos son equivalentes, pero, ¿cuál se lee mejor? ``` have_umbrella = True rain_level = 4 have_hood = True is_workday = False prepared_for_weather = have_umbrella or rain_level < 5 and have_hood or not rain_level > 0 and is_workday prepared_for_weather prepared_for_weather = have_umbrella or (rain_level < 5 and have_hood) or not (rain_level > 0 and is_workday) prepared_for_weather prepared_for_weather = have_umbrella or ((rain_level < 5) and have_hood) or (not (rain_level > 0 and is_workday)) prepared_for_weather prepared_for_weather = ( have_umbrella or ((rain_level < 5) and have_hood) or (not (rain_level > 0 and is_workday)) ) prepared_for_weather ``` ___ ## 3.2 Condicionales Aunque los booleanos son útiles en si, dan su verdadero salto a la fama cuando se combinan con cláusulas condicionales, usando las palabras clave `if`, `elif`, y `else`. Los condicionales nos permiten ejecutar ciertas partes de código dependiendo de alguna condición booleana: ``` # Función de inspección de un número def inspeccion(num): if num == 0: print('El numero', num, 'es cero') elif num > 0: print('El numero', num, 'es positivo') elif num < 0: print('El numero', num, 'es negativo') else: print('Nunca he visto un numero como', num) # Probar la función inspeccion(1), inspeccion(-1), inspeccion(0) ``` - `if` y `else` se utilizan justo como en otros lenguajes. - Por otra parte, la palabra clave `elif` es una contracción de "else if". - El uso de `elif` y de `else` son opcionales. - Adicionalmente, se pueden incluir tantos `elif` como se requieran. Como en las funciones, el bloque de código correspondiente al condicional empieza luego de los dos puntos (`:`), y lo que sigue está indentado 4 espacios (tabulador). Pertenece al condicional todo lo que esté indentado hasta que encontremos una línea sin indentación. Por ejemplo, analicemos la siguiente función: ``` def f(x): if x > 0: print("Only printed when x is positive; x =", x) print("Also only printed when x is positive; x =", x) print("Always printed, regardless of x's value; x =", x) f(-1) ``` ### 3.2.1 Conversión a booleanos Ya vimos que la función `int()` convierte sus argumentos en enteros, y `float()` los convierte en números de punto flotante. De manera similar `bool()` convierte sus argumentos en booleanos. ``` print(bool(1)) # Todos los números excepto el cero 0 se tratan como True print(bool(0)) print(bool("asf")) # Todos los strings excepto el string vacío "" se tratan como True print(bool("")) # No confundir el string vacío "" con un espacio " " bool(" ") ``` Por ejemplo, ¿qué imprime el siguiente código? ``` if 0: print(0) elif "tocino": print("tocino") ``` Las siguientes celdas son equivalentes. Sin embargo, por la legibilidad preferimos la primera: ``` x = 10 if x != 0: print('Estoy contento') else: print('No estoy tan contento') if x: print('Estoy contento') else: print('No estoy tan contento') ``` ### 3.2.2 Expresiones condicionales Es muy común que una variable pueda tener dos valores, dependiendo de alguna condición: ``` # Función para ver si pasó o no dependiendo de la nota def mensaje_calificacion(nota): """ Esta función imprime si pasaste o no de acuerdo a la nota obtenida. La minima nota aprobatoria es de 6. >>> mensaje_calificacion(9) Pasaste la materia, con una nota de 9 >>> mensaje_calificacion(5) Reprobaste la materia, con una nota de 5 """ if nota >= 6: print('Pasaste la materia, con una nota de', nota) else: print('Reprobaste la materia, con una nota de', nota) mensaje_calificacion(5) mensaje_calificacion(7) mensaje_calificacion(10) ``` Por otra parte, Python permite escribir este tipo de expresiones en una sola línea, lo que resulta muy últil y muy legible: ``` # Función para ver si pasó o no dependiendo de la nota def mensaje_calificacion(nota): """ Esta función imprime si pasaste o no de acuerdo a la nota obtenida. >>> mensaje_calificacion(9) Pasaste la materia, con una nota de 9 >>> mensaje_calificacion(5) Reprobaste la materia, con una nota de 5 """ resultado = 'Pasaste' if nota >= 6 else 'Reprobaste' print(resultado + ' la materia, con una nota de', nota) mensaje_calificacion(5) mensaje_calificacion(7) ``` ___ Hoy vimos: - La sintaxis básica de Python, los tipos de variable int, float y str, y algunas funciones básicas. - Cómo pedir ayuda de las funciones, y como construir nuestras propias funciones. - Variables Booleanas y condicionales. Para la próxima clase: - Tarea 1 para el miércoles (23:59). <script> $(document).ready(function(){ $('div.prompt').hide(); $('div.back-to-top').hide(); $('nav#menubar').hide(); $('.breadcrumb').hide(); $('.hidden-print').hide(); }); </script> <footer id="attribution" style="float:right; color:#808080; background:#fff;"> Created with Jupyter by jfraustro. </footer>
true
code
0.328775
null
null
null
null
## Assigning gender based on first name A straightforward task in natural language processing is to assign gender based on first name. Social scientists are often interested in gender inequalities and may have a dataset that lists name but not gender, such as a list of journal articles with authors in a study of gendered citation practices. Assigning gender based on name is usually done by comparing a given name with the name's gender distribution on official records, such as the US Social Security baby name list. While this works for most names, some names, such as Gershun or Hunna, are too rare to have reliable estimates based on most available official records. Other names, such as Jian or Blake, are common among both men and women. A fourth category of names are those which are dispropriately one gender or another, but do have non-trivial numbers of a different gender, such as Cody or Kyle. For both these names and androgynous names, their are often generational differences in the gendered distribution. The most efficient way to gender names in Python is with the `gender_guesser` library, which is based on Jörg Michael's multinational list of more than 48,000 names. The first time you use the library, you may need to install it: `%pip install gender_guesser` The `gender_guesser` library is set up so that first you import the gender function and then create a detector. In my case, the detector is named `d` and one parameter is passed, which instructors the detector to ignore capitalization. ``` import gender_guesser.detector as gender d = gender.Detector(case_sensitive=False) ``` When passed a name, the detector's `get_gender` returns either 'male', 'female', 'mostly_male', 'mostly_female', 'andy' (for androgenous names), or 'unknown' (for names not in the dataset). ``` d.get_gender("Barack") d.get_gender("Theresa") d.get_gender("JAMIE") d.get_gender("sidney") d.get_gender("Tal") ``` In almost all cases, you will want to analyze a large list of names, rather than a single name. For example, the University of North Carolina, Chapel Hill makes available salary information on employees. The dataset includes name, department, position salary and years of employment, but not gender. ``` import pandas as pd df = pd.read_csv("data/unc_salaries.csv") df.head(10) ``` A column with name-based gender assignment can be created by applying `d.get_gender` to the first name column. ``` df["Gender"] = df["First Name"].apply(d.get_gender) df["Gender"].value_counts(normalize=True) ``` For this dataset, the majority of the names can be gendered, while less than ten percent of names are not in the dataset. Selecting the rows in the dataframe where gender is unknown and the listing the values can be useful for inspecting cases and evaluating the gender-name assignment process. ``` cases = df["Gender"] == "unknown" df[cases]["First Name"].values ``` My quick interpreation of this list is that it names that are certainly rare in the US, and some are likely transliterated using a non-common English spelling. The name with missing gender are not-random and the process of creating missingness is likely correlated with other variables of interest, such as salary. This might impact a full-analysis of gender patterns, but I'll ignore that in the preliminary analysis. If you were conducted your analysis in another statistical package, you could export your dataframe with the new gender column. ``` df.to_csv("unc_salaries_gendered.csv") ``` You could also produce some summary statistics in your notebook. For example, the pandas `groupby` method can be used to estimate median salary by gender. ``` df.groupby("Gender")["Salary"].median() ``` Comparing the male and female-coded names, this shows evidence of a large salary gap based on gender. The "mostly" and unknown categories are in the middle, but interesting the androgynous names are associated with the lowest salaries. Grouping by gender and position may be useful in understanding the mechanisms that produce the gender gap. I also focus on just the individuals with names that are coded as male or female. ``` subset = df["Gender"].isin(["male", "female"]) df[subset].groupby(["Position", "Gender"])["Salary"].median() ``` This summary dataframe can also be plotted, which clearly shows that the median salary for male Assistant Professors is higher than the median salary of the higher ranked female Associate Professors. ``` %matplotlib inline df[subset].groupby(['Position','Gender'])['Salary'].median().plot(kind='barh'); ``` Sometimes the first name will not be it's own field, but included as part of the name column that includes the full name. In that case, you will need to create a function that extracts the first name. In this dataframe, the `name` column is the last name, followed by a comma, and then the first name and possibly a middle name or initial. A brief function extracts the first name, ``` def gender_name(name): """ Extracts and genders first name when the original name is formatted "Last, First M". Assumes a gender.Detector named `d` is already declared. """ first_name = name.split(", ")[-1] # grab the slide after the comma first_name = first_name.split(" ")[0] # remove middle name/initial gender = d.get_gender(first_name) return gender ``` This function can now be applied to the full name column. ``` df["Gender"] = df["Full Name"].apply(gender_name) df["Gender"].value_counts() ``` The results are the same as original gender column.
true
code
0.440048
null
null
null
null
# Day 1 ``` from sklearn.datasets import load_iris import pandas as pd import numpy as np iris = load_iris() df = pd.DataFrame(np.c_[iris['data'], iris['target']], columns = iris['feature_names'] + ['species']) df['species'] = df['species'].replace([0,1,2], iris.target_names) df.head() import numpy as np import matplotlib.pyplot as plt rng = np.random.RandomState(42) x = 10 * rng.rand(50) y = 2 * x - 1 + rng.randn(50) x plt.scatter(x, y) plt.show() # 1 from sklearn.linear_model import LinearRegression # 2 LinearRegression? model_lr = LinearRegression(fit_intercept=True) # 3 # x = data feature # y = data target x.shape x_matriks = x[:, np.newaxis] x_matriks.shape # 4 # model_lr.fit(input_data, output_data) model_lr.fit(x_matriks, y) # Testing x_test = np.linspace(10, 12, 15) x_test = x_test[:, np.newaxis] x_test # 5 y_test = model_lr.predict(x_test) y_test y_train = model_lr.predict(x_matriks) plt.scatter(x, y, color='r') plt.plot(x, y_train, label="Model Training") plt.plot(x_test, y_test, label="Test Result/hasil Prediksi") plt.legend() plt.show() ``` # Day 2 ``` from sklearn.datasets import load_iris import pandas as pd import numpy as np iris = load_iris() df = pd.DataFrame(np.c_[iris['data'], iris['target']], columns = iris['feature_names'] + ['species']) df.head() iris from scipy import stats z = stats.zscore(df) z print(np.where(z>3)) # import class model from sklearn.neighbors import KNeighborsClassifier z[15][1] # Membuat objek model dan memilih hyperparameter # KNeighborsClassifier? model_knn = KNeighborsClassifier(n_neighbors=6, weights='distance') # Memisahkan data feature dan target X = df.drop('species', axis=1) y = df['species'] X # Perintahkan model untuk mempelajari data dengan menggunakan method .fit() model_knn.fit(X, y) # predict x_new = np.array([ [2.5, 4, 3, 0.1], [1, 3.5, 1.7, 0.4], [4, 1, 3, 0.3] ]) y_new = model_knn.predict(x_new) y_new # 0 = sentosa # 1 = versicolor # 2 = virginica import numpy as np import matplotlib.pyplot as plt rng = np.random.RandomState(1) x = 10*rng.rand(50) y = 5*x + 10 + rng.rand(50) plt.scatter(x, y) plt.show() from sklearn.linear_model import LinearRegression model_lr = LinearRegression(fit_intercept=True) model_lr.fit(x[:, np.newaxis], y) y_predict = model_lr.predict(x[:, np.newaxis]) plt.plot(x, y_predict, color='r', label='Model Predicted Data') plt.scatter(x, y, label='Actual Data') plt.legend() plt.show() model_lr.coef_ model_lr.intercept_ # y = 5*x + 10 + rng.rand(50) x = rng.rand(50, 3) y = np.dot(x, [4, 2, 7]) + 20 # sama dengan x*4 + x*2 + x*7 + 20 x.shape y model_lr2 = LinearRegression(fit_intercept=True) model_lr2.fit(x, y) y_predict = model_lr2.predict(x) model_lr2.coef_ model_lr2.intercept_ ``` # Day 3 ``` from sklearn.neighbors import KNeighborsClassifier model_knn = KNeighborsClassifier(n_neighbors=2) x_train = df.drop('species', axis=1) y_train = df['species'] model_knn.fit(x_train, y_train) # cara salah dalam mengevaluasi model y_prediksi = model_knn.predict(x_train) from sklearn.metrics import accuracy_score score = accuracy_score(y_train, y_prediksi) score # cara yang benar x = df.drop('species', axis=1) y = df['species'] y.value_counts() from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=21, stratify=y) # x -> x_train, x_test -0.3-0.2 # y -> y_train, y_test -0.3-0.2 # valuenya sama karena stratify y_train.value_counts() print(x_train.shape) print(x_test.shape) model_knn = KNeighborsClassifier(n_neighbors=2) model_knn.fit(x_train, y_train) y_predik = model_knn.predict(x_test) from sklearn.metrics import accuracy_score score = accuracy_score(y_test, y_predik) score from sklearn.model_selection import cross_val_score model_knn = KNeighborsClassifier(n_neighbors=2) cv_result = cross_val_score(model_knn, x, y, cv=10) cv_result.mean() import pandas as pd import numpy as np colnames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] df = pd.read_csv('pima-indians-diabetes.csv', names=colnames) df.head() df['class'].value_counts() from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale X = df.drop('class', axis=1) Xs = scale(X) y = df['class'] X_train, X_test, y_train, y_test = train_test_split(Xs, y, random_state=21, stratify=y, test_size=0.2) model_lr = LogisticRegression(random_state=21) params_grid = { 'C':np.arange(0.1, 1, 0.1), 'class_weight':[{0:x, 1:1-x} for x in np.arange(0.1, 0.9, 0.1)] } gscv = GridSearchCV(model_lr, params_grid, cv=10, scoring='f1') gscv.fit(X_train, y_train) X_test y_pred = gscv.predict(X_test) y_pred from sklearn.metrics import confusion_matrix, classification_report confusion_matrix(y_test, y_pred, labels=[1, 0]) TP = 39 FN = 15 FP = 25 TN = 75 print(classification_report(y_test, y_pred)) # menghitung nilai precisi, recall, f-1 score dari model kita dalam memprediksi data yang positif precision = TP/(TP+FP) recall = TP/(TP+FN) f1score = 2 * precision * recall / (precision + recall) print(precision) print(recall) print(f1score) # menghitung nilai precisi, recall, f-1 score dari model kita dalam memprediksi data yang negatif precision = TN/(TN+FN) recall = TN/(TN+FP) f1score = (precision * recall * 2) / (precision + recall) print(precision) print(recall) print(f1score) ``` # Day 4 ``` from sklearn.datasets import load_iris import pandas as pd import numpy as np colnames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] df = pd.read_csv('pima-indians-diabetes.csv', names=colnames) df.head() from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import cross_validate, cross_val_score X = df.drop('class', axis=1) y = df['class'] model = KNeighborsClassifier(n_neighbors=5) cv_score1 = cross_validate(model, X, y, cv=10, return_train_score=True) cv_score2 = cross_val_score(model, X, y, cv=10) cv_score1 cv_score2 cv_score1['test_score'].mean() cv_score2.mean() def knn_predict(k): model = KNeighborsClassifier(n_neighbors=k) score = cross_validate(model, X, y, cv=10, return_train_score=True) train_score = score['train_score'].mean() test_score = score['test_score'].mean() return train_score, test_score train_scores = [] test_scores = [] for k in range(2, 100): # lakukan fitting # kemudian scoring train_score, test_score = knn_predict(k) train_scores.append(train_score) test_scores.append(test_score) train_scores import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(14, 8)) ax.plot(range(2, 100), train_scores, marker='x', color='b', label='Train Scores') ax.plot(range(2, 100), test_scores, marker='o', color='g', label='Test Scores') ax.set_xlabel('Nilai K') ax.set_ylabel('Score') fig.legend() plt.show() from sklearn.model_selection import GridSearchCV, RandomizedSearchCV model = KNeighborsClassifier() param_grid = {'n_neighbors':np.arange(5, 50), 'weights':['distance', 'uniform']} gscv = GridSearchCV(model, param_grid=param_grid, scoring='accuracy', cv=5) gscv.fit(X, y) gscv.best_params_ gscv.best_score_ rscv = RandomizedSearchCV(model, param_grid, n_iter=15, scoring='accuracy', cv=5) rscv.fit(X, y) rscv.best_params_ rscv.best_score_ ``` # Day 5 ``` data = { 'pendidikan_terakhir' : ['SD', 'SMP', 'SMA', 'SMP', 'SMP'], 'tempat_tinggal' : ['Bandung', 'Garut', 'Bandung', 'Cirebon', 'Jakarta'], 'status' : ['Menikah', 'Jomblo', 'Janda', 'Jomblo', 'Duda'], 'tingkat_ekonomi' : ['Kurang Mampu', 'Berkecukupan', 'Mampu', 'Sangat Mampu', 'Mampu'], 'jumlah_anak' : [1, 4, 2, 0, 3] } import pandas as pd df = pd.DataFrame(data) df.head() df = pd.get_dummies(df, columns=['tempat_tinggal', 'status']) df obj_dict = { 'Kurang Mampu' : 0, 'Berkecukupan' : 1, 'Mampu' : 2, 'Sangat Mampu' : 3 } df['tingkat_ekonomi'] = df['tingkat_ekonomi'].replace(obj_dict) df['tingkat_ekonomi'] import numpy as np data = { 'pendidikan_terakhir' : [np.nan, 'SMP', 'SD', 'SMP', 'SMP', 'SD', 'SMP', 'SMA', 'SD'], 'tingkat_ekonomi' : [0, 1, 2, 3, 2, 2, 1, 1, 3], # 'jumlah_anak' : [1, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, 1, 2] 'jumlah_anak' : [1, np.nan, np.nan, 1, 1, 1, 3, 1, 2] } data_ts = { 'Hari' : [1, 2, 3, 4, 5], 'Jumlah' : [12, 23, np.nan, 12, 20] } df = pd.DataFrame(data) df_ts = pd.DataFrame(data_ts) df ``` 5 Cara dalam menghandle missing value: 1. Drop missing value : Jumlah missing value data banyak 2. Filling with mean/median : berlaku untuk data yang bertipe numerik 3. Filling with modus : berlaku untuk data yang bertipe kategori 4. Filling with bffill atau ffill 5. KNN ``` 1. # drop berdasarkan row df.dropna(axis=0) # 1. drop berdasarkan column df.drop(['jumlah_anak'], axis=1) # 2 kelemahannya kurang akurat df['jumlah_anak'] = df['jumlah_anak'].fillna(df['jumlah_anak'].mean()) df['jumlah_anak'] df['jumlah_anak'] = df['jumlah_anak'].astype(int) df['jumlah_anak'] df # 3 df['pendidikan_terakhir'].value_counts() df['pendidikan_terakhir'] = df['pendidikan_terakhir'].fillna('SMP') df # 4 bfill nan diisi dengan nilai sebelumnya df_ts.fillna(method='bfill') # 4 ffill nan diisi dengan nilai sebelumnya df_ts.fillna(method='ffill') df from sklearn.impute import KNNImputer imp = KNNImputer(n_neighbors=5) # imp.fit_transform(df['jumlah_anak'][:, np.newaxis]) imp.fit_transform(df[['jumlah_anak', 'tingkat_ekonomi']]) import pandas as pd colnames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class'] df = pd.read_csv('pima-indians-diabetes.csv', names=colnames) df.head() df.describe() X = df.drop('class', axis=1) X.head() from sklearn.preprocessing import StandardScaler stdscalar = StandardScaler() datascale = stdscalar.fit_transform(X) colnames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age'] dfscale = pd.DataFrame(datascale, columns=colnames) dfscale dfscale.describe() from sklearn.preprocessing import Normalizer normscaler = Normalizer() datanorm = normscaler.fit_transform(X) colnames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age'] dfnorm = pd.DataFrame(datanorm, columns=colnames) dfnorm dfnorm.describe() ``` 1. Normalization digunakan ketika kita tidak tahu bahwa kita tidak harus memiliki asumsi bahwa data kita itu memiliki distribusi normal, dan kita memakai algoritma ML yang tidak harus mengasumsikan bentuk distribusi dari data... contohnya KNN, neural network, dll 2. Standardization apabila data kita berasumsi memiliki distribusi normal
true
code
0.617599
null
null
null
null
# Table of Contents <p><div class="lev1 toc-item"><a href="#Simulated-annealing-in-Python" data-toc-modified-id="Simulated-annealing-in-Python-1"><span class="toc-item-num">1&nbsp;&nbsp;</span>Simulated annealing in Python</a></div><div class="lev2 toc-item"><a href="#References" data-toc-modified-id="References-11"><span class="toc-item-num">1.1&nbsp;&nbsp;</span>References</a></div><div class="lev2 toc-item"><a href="#See-also" data-toc-modified-id="See-also-12"><span class="toc-item-num">1.2&nbsp;&nbsp;</span>See also</a></div><div class="lev2 toc-item"><a href="#About" data-toc-modified-id="About-13"><span class="toc-item-num">1.3&nbsp;&nbsp;</span>About</a></div><div class="lev2 toc-item"><a href="#Algorithm" data-toc-modified-id="Algorithm-14"><span class="toc-item-num">1.4&nbsp;&nbsp;</span>Algorithm</a></div><div class="lev2 toc-item"><a href="#Basic-but-generic-Python-code" data-toc-modified-id="Basic-but-generic-Python-code-15"><span class="toc-item-num">1.5&nbsp;&nbsp;</span>Basic but generic Python code</a></div><div class="lev2 toc-item"><a href="#Basic-example" data-toc-modified-id="Basic-example-16"><span class="toc-item-num">1.6&nbsp;&nbsp;</span>Basic example</a></div><div class="lev2 toc-item"><a href="#Visualizing-the-steps" data-toc-modified-id="Visualizing-the-steps-17"><span class="toc-item-num">1.7&nbsp;&nbsp;</span>Visualizing the steps</a></div><div class="lev2 toc-item"><a href="#More-visualizations" data-toc-modified-id="More-visualizations-18"><span class="toc-item-num">1.8&nbsp;&nbsp;</span>More visualizations</a></div> # Simulated annealing in Python This small notebook implements, in [Python 3](https://docs.python.org/3/), the [simulated annealing](https://en.wikipedia.org/wiki/Simulated_annealing) algorithm for numerical optimization. ## References - The Wikipedia page: [simulated annealing](https://en.wikipedia.org/wiki/Simulated_annealing). - It was implemented in `scipy.optimize` before version 0.14: [`scipy.optimize.anneal`](https://docs.scipy.org/doc/scipy-0.15.1/reference/generated/scipy.optimize.anneal.html). - [This blog post](http://apmonitor.com/me575/index.php/Main/SimulatedAnnealing). - These Stack Overflow questions: [15853513](https://stackoverflow.com/questions/15853513/) and [19757551](https://stackoverflow.com/questions/19757551/). ## See also - For a real-world use of simulated annealing, this Python module seems useful: [perrygeo/simanneal on GitHub](https://github.com/perrygeo/simanneal). ## About - *Date:* 20/07/2017. - *Author:* [Lilian Besson](https://GitHub.com/Naereen), (C) 2017. - *Licence:* [MIT Licence](http://lbesson.mit-license.org). ---- > This notebook should be compatible with both Python versions, [2](https://docs.python.org/2/) and [3](https://docs.python.org/3/). ``` from __future__ import print_function, division # Python 2 compatibility if needed import numpy as np import numpy.random as rn import matplotlib.pyplot as plt # to plot import matplotlib as mpl from scipy import optimize # to compare import seaborn as sns sns.set(context="talk", style="darkgrid", palette="hls", font="sans-serif", font_scale=1.05) FIGSIZE = (19, 8) #: Figure size, in inches! mpl.rcParams['figure.figsize'] = FIGSIZE ``` ---- ## Algorithm The following pseudocode presents the simulated annealing heuristic. - It starts from a state $s_0$ and continues to either a maximum of $k_{\max}$ steps or until a state with an energy of $e_{\min}$ or less is found. - In the process, the call $\mathrm{neighbour}(s)$ should generate a randomly chosen neighbour of a given state $s$. - The annealing schedule is defined by the call $\mathrm{temperature}(r)$, which should yield the temperature to use, given the fraction $r$ of the time budget that has been expended so far. > **Simulated Annealing**: > > - Let $s$ = $s_0$ > - For $k = 0$ through $k_{\max}$ (exclusive): > + $T := \mathrm{temperature}(k ∕ k_{\max})$ > + Pick a random neighbour, $s_{\mathrm{new}} := \mathrm{neighbour}(s)$ > + If $P(E(s), E(s_{\mathrm{new}}), T) \geq \mathrm{random}(0, 1)$: > * $s := s_{\mathrm{new}}$ > - Output: the final state $s$ ---- ## Basic but generic Python code Let us start with a very generic implementation: ``` def annealing(random_start, cost_function, random_neighbour, acceptance, temperature, maxsteps=1000, debug=True): """ Optimize the black-box function 'cost_function' with the simulated annealing algorithm.""" state = random_start() cost = cost_function(state) states, costs = [state], [cost] for step in range(maxsteps): fraction = step / float(maxsteps) T = temperature(fraction) new_state = random_neighbour(state, fraction) new_cost = cost_function(new_state) if debug: print("Step #{:>2}/{:>2} : T = {:>4.3g}, state = {:>4.3g}, cost = {:>4.3g}, new_state = {:>4.3g}, new_cost = {:>4.3g} ...".format(step, maxsteps, T, state, cost, new_state, new_cost)) if acceptance_probability(cost, new_cost, T) > rn.random(): state, cost = new_state, new_cost states.append(state) costs.append(cost) # print(" ==> Accept it!") # else: # print(" ==> Reject it...") return state, cost_function(state), states, costs ``` ---- ## Basic example We will use this to find the global minimum of the function $x \mapsto x^2$ on $[-10, 10]$. ``` interval = (-10, 10) def f(x): """ Function to minimize.""" return x ** 2 def clip(x): """ Force x to be in the interval.""" a, b = interval return max(min(x, b), a) def random_start(): """ Random point in the interval.""" a, b = interval return a + (b - a) * rn.random_sample() def cost_function(x): """ Cost of x = f(x).""" return f(x) def random_neighbour(x, fraction=1): """Move a little bit x, from the left or the right.""" amplitude = (max(interval) - min(interval)) * fraction / 10 delta = (-amplitude/2.) + amplitude * rn.random_sample() return clip(x + delta) def acceptance_probability(cost, new_cost, temperature): if new_cost < cost: # print(" - Acceptance probabilty = 1 as new_cost = {} < cost = {}...".format(new_cost, cost)) return 1 else: p = np.exp(- (new_cost - cost) / temperature) # print(" - Acceptance probabilty = {:.3g}...".format(p)) return p def temperature(fraction): """ Example of temperature dicreasing as the process goes on.""" return max(0.01, min(1, 1 - fraction)) ``` Let's try! ``` annealing(random_start, cost_function, random_neighbour, acceptance_probability, temperature, maxsteps=30, debug=True); ``` Now with more steps: ``` state, c, states, costs = annealing(random_start, cost_function, random_neighbour, acceptance_probability, temperature, maxsteps=1000, debug=False) state c ``` ---- ## Visualizing the steps ``` def see_annealing(states, costs): plt.figure() plt.suptitle("Evolution of states and costs of the simulated annealing") plt.subplot(121) plt.plot(states, 'r') plt.title("States") plt.subplot(122) plt.plot(costs, 'b') plt.title("Costs") plt.show() see_annealing(states, costs) ``` ---- ## More visualizations ``` def visualize_annealing(cost_function): state, c, states, costs = annealing(random_start, cost_function, random_neighbour, acceptance_probability, temperature, maxsteps=1000, debug=False) see_annealing(states, costs) return state, c visualize_annealing(lambda x: x**3) visualize_annealing(lambda x: x**2) visualize_annealing(np.abs) visualize_annealing(np.cos) visualize_annealing(lambda x: np.sin(x) + np.cos(x)) ``` In all these examples, the simulated annealing converges to a global minimum. It can be non-unique, but it is found. ---- > That's it for today, folks! More notebooks can be found on [my GitHub page](https://GitHub.com/Naereen/notebooks).
true
code
0.86511
null
null
null
null
# Hyper parameters The goal here is to demonstrate how to optimise hyper-parameters of various models The kernel is a short version of https://www.kaggle.com/mlisovyi/featureengineering-basic-model ``` max_events = None import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # needed for 3D scatter plots %matplotlib inline import seaborn as sns import gc import warnings warnings.filterwarnings("ignore") PATH='../input/' import os print(os.listdir(PATH)) ``` Read in data ``` train = pd.read_csv('{}/train.csv'.format(PATH), nrows=max_events) test = pd.read_csv('{}/test.csv'.format(PATH), nrows=max_events) y = train['Cover_Type'] train.drop('Cover_Type', axis=1, inplace=True) train.drop('Id', axis=1, inplace=True) test.drop('Id', axis=1, inplace=True) print('Train shape: {}'.format(train.shape)) print('Test shape: {}'.format(test.shape)) train.info(verbose=False) ``` ## OHE into LE Helper function to transfer One-Hot Encoding (OHE) into a Label Encoding (LE). It was taken from https://www.kaggle.com/mlisovyi/lighgbm-hyperoptimisation-with-f1-macro The reason to convert OHE into LE is that we plan to use a tree-based model and such models are dealing well with simple interger-label encoding. Note, that this way we introduce an ordering between categories, which is not there in reality, but in practice in most use cases GBMs handle it well anyway. ``` def convert_OHE2LE(df): tmp_df = df.copy(deep=True) for s_ in ['Soil_Type', 'Wilderness_Area']: cols_s_ = [f_ for f_ in df.columns if f_.startswith(s_)] sum_ohe = tmp_df[cols_s_].sum(axis=1).unique() #deal with those OHE, where there is a sum over columns == 0 if 0 in sum_ohe: print('The OHE in {} is incomplete. A new column will be added before label encoding' .format(s_)) # dummy colmn name to be added col_dummy = s_+'_dummy' # add the column to the dataframe tmp_df[col_dummy] = (tmp_df[cols_s_].sum(axis=1) == 0).astype(np.int8) # add the name to the list of columns to be label-encoded cols_s_.append(col_dummy) # proof-check, that now the category is complete sum_ohe = tmp_df[cols_s_].sum(axis=1).unique() if 0 in sum_ohe: print("The category completion did not work") tmp_df[s_ + '_LE'] = tmp_df[cols_s_].idxmax(axis=1).str.replace(s_,'').astype(np.uint16) tmp_df.drop(cols_s_, axis=1, inplace=True) return tmp_df def train_test_apply_func(train_, test_, func_): xx = pd.concat([train_, test_]) xx_func = func_(xx) train_ = xx_func.iloc[:train_.shape[0], :] test_ = xx_func.iloc[train_.shape[0]:, :] del xx, xx_func return train_, test_ train_x, test_x = train_test_apply_func(train, test, convert_OHE2LE) ``` One little caveat: looking through the OHE, `Soil_Type 7, 15`, are present in the test, but not in the training data The head of the training dataset ``` train_x.head() ``` # Let's do some feature engineering ``` def preprocess(df_): df_['fe_E_Min_02HDtH'] = (df_['Elevation']- df_['Horizontal_Distance_To_Hydrology']*0.2).astype(np.float32) df_['fe_Distance_To_Hydrology'] = np.sqrt(df_['Horizontal_Distance_To_Hydrology']**2 + df_['Vertical_Distance_To_Hydrology']**2).astype(np.float32) feats_sub = [('Elevation_Min_VDtH', 'Elevation', 'Vertical_Distance_To_Hydrology'), ('HD_Hydrology_Min_Roadways', 'Horizontal_Distance_To_Hydrology', 'Horizontal_Distance_To_Roadways'), ('HD_Hydrology_Min_Fire', 'Horizontal_Distance_To_Hydrology', 'Horizontal_Distance_To_Fire_Points')] feats_add = [('Elevation_Add_VDtH', 'Elevation', 'Vertical_Distance_To_Hydrology')] for f_new, f1, f2 in feats_sub: df_['fe_' + f_new] = (df_[f1] - df_[f2]).astype(np.float32) for f_new, f1, f2 in feats_add: df_['fe_' + f_new] = (df_[f1] + df_[f2]).astype(np.float32) # The feature is advertised in https://douglas-fraser.com/forest_cover_management.pdf df_['fe_Shade9_Mul_VDtH'] = (df_['Hillshade_9am'] * df_['Vertical_Distance_To_Hydrology']).astype(np.float32) # this mapping comes from https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.info climatic_zone = {} geologic_zone = {} for i in range(1,41): if i <= 6: climatic_zone[i] = 2 geologic_zone[i] = 7 elif i <= 8: climatic_zone[i] = 3 geologic_zone[i] = 5 elif i == 9: climatic_zone[i] = 4 geologic_zone[i] = 2 elif i <= 13: climatic_zone[i] = 4 geologic_zone[i] = 7 elif i <= 15: climatic_zone[i] = 5 geologic_zone[i] = 1 elif i <= 17: climatic_zone[i] = 6 geologic_zone[i] = 1 elif i == 18: climatic_zone[i] = 6 geologic_zone[i] = 7 elif i <= 21: climatic_zone[i] = 7 geologic_zone[i] = 1 elif i <= 23: climatic_zone[i] = 7 geologic_zone[i] = 2 elif i <= 34: climatic_zone[i] = 7 geologic_zone[i] = 7 else: climatic_zone[i] = 8 geologic_zone[i] = 7 df_['Climatic_zone_LE'] = df_['Soil_Type_LE'].map(climatic_zone).astype(np.uint8) df_['Geologic_zone_LE'] = df_['Soil_Type_LE'].map(geologic_zone).astype(np.uint8) return df_ train_x = preprocess(train_x) test_x = preprocess(test_x) ``` # Optimise various classifiers ``` from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn.metrics import accuracy_score, confusion_matrix, classification_report from sklearn.model_selection import train_test_split from sklearn.model_selection import RandomizedSearchCV, GridSearchCV from sklearn.linear_model import LogisticRegression import lightgbm as lgb ``` We subtract 1 to have the labels starting with 0, which is required for LightGBM ``` y = y-1 X_train, X_test, y_train, y_test = train_test_split(train_x, y, test_size=0.15, random_state=315, stratify=y) ``` Parameters to be used in optimisation for various models ``` def learning_rate_decay_power_0995(current_iter): base_learning_rate = 0.15 lr = base_learning_rate * np.power(.995, current_iter) return lr if lr > 1e-2 else 1e-2 clfs = {'rf': (RandomForestClassifier(n_estimators=200, max_depth=1, random_state=314, n_jobs=4), {'max_depth': [20,25,30,35,40,45,50]}, {}), 'xt': (ExtraTreesClassifier(n_estimators=200, max_depth=1, max_features='auto',random_state=314, n_jobs=4), {'max_depth': [20,25,30,35,40,45,50]}, {}), 'lgbm': (lgb.LGBMClassifier(max_depth=-1, min_child_samples=400, random_state=314, silent=True, metric='None', n_jobs=4, n_estimators=5000, learning_rate=0.1), {'colsample_bytree': [0.75], 'min_child_weight': [0.1,1,10], 'num_leaves': [18, 20,22], 'subsample': [0.75]}, {'eval_set': [(X_test, y_test)], 'eval_metric': 'multi_error', 'verbose':500, 'early_stopping_rounds':100, 'callbacks':[lgb.reset_parameter(learning_rate=learning_rate_decay_power_0995)]} ) } gss = {} for name, (clf, clf_pars, fit_pars) in clfs.items(): print('--------------- {} -----------'.format(name)) gs = GridSearchCV(clf, param_grid=clf_pars, scoring='accuracy', cv=5, n_jobs=1, refit=True, verbose=True) gs = gs.fit(X_train, y_train, **fit_pars) print('{}: train = {:.4f}, test = {:.4f}+-{:.4f} with best params {}'.format(name, gs.cv_results_['mean_train_score'][gs.best_index_], gs.cv_results_['mean_test_score'][gs.best_index_], gs.cv_results_['std_test_score'][gs.best_index_], gs.best_params_ )) print("Valid+-Std Train : Parameters") for i in np.argsort(gs.cv_results_['mean_test_score'])[-5:]: print('{1:.3f}+-{3:.3f} {2:.3f} : {0}'.format(gs.cv_results_['params'][i], gs.cv_results_['mean_test_score'][i], gs.cv_results_['mean_train_score'][i], gs.cv_results_['std_test_score'][i])) gss[name] = gs # gss = {} # for name, (clf, clf_pars, fit_pars) in clfs.items(): # if name == 'lgbm': # continue # print('--------------- {} -----------'.format(name)) # gs = GridSearchCV(clf, param_grid=clf_pars, # scoring='accuracy', # cv=5, # n_jobs=1, # refit=True, # verbose=True) # gs = gs.fit(X_train, y_train, **fit_pars) # print('{}: train = {:.4f}, test = {:.4f}+-{:.4f} with best params {}'.format(name, # gs.cv_results_['mean_train_score'][gs.best_index_], # gs.cv_results_['mean_test_score'][gs.best_index_], # gs.cv_results_['std_test_score'][gs.best_index_], # gs.best_params_ # )) # print("Valid+-Std Train : Parameters") # for i in np.argsort(gs.cv_results_['mean_test_score'])[-5:]: # print('{1:.3f}+-{3:.3f} {2:.3f} : {0}'.format(gs.cv_results_['params'][i], # gs.cv_results_['mean_test_score'][i], # gs.cv_results_['mean_train_score'][i], # gs.cv_results_['std_test_score'][i])) # gss[name] = gs ```
true
code
0.221624
null
null
null
null
<img src="data/photutils_banner.svg"> ## Photutils - Code: https://github.com/astropy/photutils - Documentation: http://photutils.readthedocs.org/en/stable/ - Issue Tracker: https://github.com/astropy/photutils/issues ## Photutils Overview - Background and background noise estimation - Source Detection and Extraction - DAOFIND and IRAF's starfind - **Image segmentation** - local peak finder - **Aperture photometry** - PSF photometry - PSF matching - Centroids - Morphological properties - Elliptical isophote analysis ## Preliminaries ``` # initial imports import numpy as np import matplotlib.pyplot as plt # change some default plotting parameters import matplotlib as mpl mpl.rcParams['image.origin'] = 'lower' mpl.rcParams['image.interpolation'] = 'nearest' mpl.rcParams['image.cmap'] = 'viridis' # Run the %matplotlib magic command to enable inline plotting # in the current notebook. Choose one of these: %matplotlib inline # %matplotlib notebook ``` ### Load the data We'll start by reading data and error arrays from FITS files. These are cutouts from the HST Extreme-Deep Field (XDF) taken with WFC3/IR in the F160W filter. ``` from astropy.io import fits sci_fn = 'data/xdf_hst_wfc3ir_60mas_f160w_sci.fits' rms_fn = 'data/xdf_hst_wfc3ir_60mas_f160w_rms.fits' sci_hdulist = fits.open(sci_fn) rms_hdulist = fits.open(rms_fn) sci_hdulist[0].header['BUNIT'] = 'electron/s' ``` Print some info about the data. ``` sci_hdulist.info() ``` Define the data and error arrays. ``` data = sci_hdulist[0].data.astype(np.float) error = rms_hdulist[0].data.astype(np.float) ``` Extract the data header and create a WCS object. ``` from astropy.wcs import WCS hdr = sci_hdulist[0].header wcs = WCS(hdr) ``` Display the data. ``` from astropy.visualization import simple_norm norm = simple_norm(data, 'sqrt', percent=99.5) plt.imshow(data, norm=norm) plt.title('XDF F160W Cutout') ``` ## Part 1: Aperture Photometry Photutils provides circular, elliptical, and rectangular aperture shapes (plus annulus versions of each). These are names of the aperture classes, defined in pixel coordinates: * `CircularAperture` * `CircularAnnulus` * `EllipticalAperture` * `EllipticalAnnulus` * `RectangularAperture` * `RectangularAnnulus` Along with variants of each, defined in celestial coordinates: * `SkyCircularAperture` * `SkyCircularAnnulus` * `SkyEllipticalAperture` * `SkyEllipticalAnnulus` * `SkyRectangularAperture` * `SkyRectangularAnnulus` ## Methods for handling aperture/pixel intersection In general, the apertures will only partially overlap some of the pixels in the data. There are three methods for handling the aperture overlap with the pixel grid of the data array. <img src="data/photutils_aperture_methods.svg"> NOTE: the `subpixels` keyword is ignored for the **'exact'** and **'center'** methods. ### Perform circular-aperture photometry on some sources in the XDF First, we define a circular aperture at a given position and radius (in pixels). ``` from photutils import CircularAperture position = (90.73, 59.43) # (x, y) pixel position radius = 5. # pixels aperture = CircularAperture(position, r=radius) aperture print(aperture) ``` We can plot the aperture on the data using the aperture `plot()` method: ``` plt.imshow(data, norm=norm) aperture.plot(color='red', lw=2) ``` Now let's perform photometry on the data using the `aperture_photometry()` function. **The default aperture method is 'exact'.** Also note that the input data is assumed to have zero background. If that is not the case, please see the documentation for the `photutils.background` subpackage for tools to help subtract the background. See the `photutils_local_background.ipynb` notebook for examples of local background subtraction. The background was already subtracted for our XDF example data. ``` from photutils import aperture_photometry phot = aperture_photometry(data, aperture) phot ``` The output is an Astropy `QTable` (Quantity Table) with sum of data values within the aperture (using the defined pixel overlap method). The table also contains metadata, which is accessed by the `meta` attribute of the table. The metadata is stored as a python (ordered) dictionary: ``` phot.meta phot.meta['version'] ``` Aperture photometry using the **'center'** method gives a slightly different (and less accurate) answer: ``` phot = aperture_photometry(data, aperture, method='center') phot ``` Now perform aperture photometry using the **'subpixel'** method with `subpixels=5`: These parameters are equivalent to SExtractor aperture photometry. ``` phot = aperture_photometry(data, aperture, method='subpixel', subpixels=5) phot ``` ## Photometric Errors We can also input an error array to get the photometric errors. ``` phot = aperture_photometry(data, aperture, error=error) phot ``` The error array in our XDF FITS file represents only the background error. If we want to include the Poisson error of the source we need to calculate the **total** error: $\sigma_{\mathrm{tot}} = \sqrt{\sigma_{\mathrm{b}}^2 + \frac{I}{g}}$ where $\sigma_{\mathrm{b}}$ is the background-only error, $I$ are the data values, and $g$ is the "effective gain". The "effective gain" is the value (or an array if it's variable across an image) needed to convert the data image to count units (e.g. electrons or photons), where Poisson statistics apply. Photutils provides a `calc_total_error()` function to perform this calculation. ``` # this time include the Poisson error of the source from photutils.utils import calc_total_error # our data array is in units of e-/s # so the "effective gain" should be the exposure time eff_gain = hdr['TEXPTIME'] tot_error = calc_total_error(data, error, eff_gain) phot = aperture_photometry(data, aperture, error=tot_error) phot ``` The total error increased only slightly because this is a small faint source. ## Units We can also input the data (and error) units via the `unit` keyword. ``` # input the data units import astropy.units as u unit = u.electron / u.s phot = aperture_photometry(data, aperture, error=tot_error, unit=unit) phot phot['aperture_sum'] ``` Instead of inputting units via the units keyword, `Quantity` inputs for data and error are also allowed. ``` phot = aperture_photometry(data * unit, aperture, error=tot_error * u.adu) phot ``` The `unit` will not override the data or error unit. ``` phot = aperture_photometry(data * unit, aperture, error=tot_error * u.adu, unit=u.photon) phot ``` ## Performing aperture photometry at multiple positions Now let's perform aperture photometry for three sources (all with the same aperture size). We simply define three (x, y) positions. ``` positions = [(90.73, 59.43), (73.63, 139.41), (43.62, 61.63)] radius = 5. apertures = CircularAperture(positions, r=radius) ``` Let's plot these three apertures on the data. ``` plt.imshow(data, norm=norm) apertures.plot(color='red', lw=2) ``` Now let's perform aperture photometry. ``` phot = aperture_photometry(data, apertures, error=tot_error, unit=unit) phot ``` Each source is a row in the table and is given a unique **id** (the first column). ## Adding columns to the photometry table We can add columns to the photometry table. Let's calculate the signal-to-noise (SNR) ratio of our sources and add it as a new column to the table. ``` snr = phot['aperture_sum'] / phot['aperture_sum_err'] # units will cancel phot['snr'] = snr phot ``` Now calculate the F160W AB magnitude and add it to the table. ``` f160w_zpt = 25.9463 # NOTE that the log10() function can be applied only to dimensionless quantities # so we use the value() method to get the number value of the aperture sum abmag = -2.5 * np.log10(phot['aperture_sum'].value) + f160w_zpt phot['abmag'] = abmag phot ``` Now, using the WCS defined above, calculate the sky coordinates for these objects and add it to the table. ``` from astropy.wcs.utils import pixel_to_skycoord # convert pixel positions to sky coordinates x, y = np.transpose(positions) coord = pixel_to_skycoord(x, y, wcs) # we can add the astropy SkyCoord object directly to the table phot['sky coord'] = coord phot ``` We can also add separate RA and Dec columns, if preferred. ``` phot['ra_icrs'] = coord.icrs.ra phot['dec_icrs'] = coord.icrs.dec phot ``` If we write the table to an ASCII file using the ECSV format we can read it back in preserving all of the units, metadata, and SkyCoord objects. ``` phot.write('my_photometry.txt', format='ascii.ecsv') # view the table on disk !cat my_photometry.txt ``` Now read the table in ECSV format. ``` from astropy.table import QTable tbl = QTable.read('my_photometry.txt', format='ascii.ecsv') tbl tbl.meta tbl['aperture_sum'] # Quantity array tbl['sky coord'] # SkyCoord array ``` ## Aperture photometry using Sky apertures First, let's define the sky coordinates by converting our pixel coordinates. ``` positions = [(90.73, 59.43), (73.63, 139.41), (43.62, 61.63)] x, y = np.transpose(positions) coord = pixel_to_skycoord(x, y, wcs) coord ``` Now define circular apertures in sky coordinates. For sky apertures, the aperture radius must be a `Quantity`, in either pixel or angular units. ``` from photutils import SkyCircularAperture radius = 5. * u.pix sky_apers = SkyCircularAperture(coord, r=radius) sky_apers.r radius = 0.5 * u.arcsec sky_apers = SkyCircularAperture(coord, r=radius) sky_apers.r ``` When using a sky aperture in angular units, `aperture_photometry` needs the WCS transformation, which can be provided in two ways. ``` # via the wcs keyword phot = aperture_photometry(data, sky_apers, wcs=wcs) phot # or via a FITS hdu (i.e. header and data) as the input "data" phot = aperture_photometry(sci_hdulist[0], sky_apers) phot ``` ## More on Aperture Photometry in the Extended notebook: - Bad pixel masking - Encircled flux - Aperture photometry at multiple positions using multiple apertures Also see the local background subtraction notebook (`photutils_local_backgrounds.ipynb`). ## Part 2: Image Segmentation Image segmentation is the process where sources are identified and labeled in an image. The sources are detected by using a S/N threshold level and defining the minimum number of pixels required within a source. First, let's define a threshold image at 2$\sigma$ (per pixel) above the background. ``` bkg = 0. # background level in this image nsigma = 2. threshold = bkg + (nsigma * error) # this should be background-only error ``` Now let's detect "8-connected" sources of minimum size 5 pixels where each pixel is 2$\sigma$ above the background. "8-connected" pixels touch along their edges or corners. "4-connected" pixels touch along their edges. For reference, SExtractor uses "8-connected" pixels. The result is a segmentation image (`SegmentationImage` object). The segmentation image is the isophotal footprint of each source above the threshold. ``` from photutils import detect_sources npixels = 5 segm = detect_sources(data, threshold, npixels) print('Found {0} sources'.format(segm.nlabels)) ``` Display the segmentation image. ``` from photutils.utils import random_cmap fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 8)) ax1.imshow(data, norm=norm) lbl1 = ax1.set_title('Data') ax2.imshow(segm, cmap=segm.cmap()) lbl2 = ax2.set_title('Segmentation Image') ``` It is better to filter (smooth) the data prior to source detection. Let's use a 5x5 Gaussian kernel with a FWHM of 2 pixels. ``` from astropy.convolution import Gaussian2DKernel from astropy.stats import gaussian_fwhm_to_sigma sigma = 2.0 * gaussian_fwhm_to_sigma # FWHM = 2 pixels kernel = Gaussian2DKernel(sigma, x_size=5, y_size=5) kernel.normalize() ssegm = detect_sources(data, threshold, npixels, filter_kernel=kernel) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 8)) ax1.imshow(segm, cmap=segm.cmap()) lbl1 = ax1.set_title('Original Data') ax2.imshow(ssegm, cmap=ssegm.cmap()) lbl2 = ax2.set_title('Smoothed Data') ``` ### Source deblending Note above that some of our detected sources were blended. We can deblend them using the `deblend_sources()` function, which uses a combination of multi-thresholding and watershed segmentation. ``` from photutils import deblend_sources segm2 = deblend_sources(data, ssegm, npixels, filter_kernel=kernel, contrast=0.001, nlevels=32) fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 8)) ax1.imshow(data, norm=norm) ax1.set_title('Data') ax2.imshow(ssegm, cmap=ssegm.cmap()) ax2.set_title('Original Segmentation Image') ax3.imshow(segm2, cmap=segm2.cmap()) ax3.set_title('Deblended Segmentation Image') print('Found {0} sources'.format(segm2.max)) ``` ## Measure the photometry and morphological properties of detected sources ``` from photutils import source_properties catalog = source_properties(data, segm2, error=error, wcs=wcs) ``` `catalog` is a `SourceCatalog` object. It behaves like a list of `SourceProperties` objects, one for each source. ``` catalog catalog[0] # the first source catalog[0].xcentroid # the xcentroid of the first source ``` Please go [here](http://photutils.readthedocs.org/en/latest/api/photutils.segmentation.SourceProperties.html#photutils.segmentation.SourceProperties) to see the complete list of available source properties. We can create a Table of isophotal photometry and morphological properties using the ``to_table()`` method of `SourceCatalog`: ``` tbl = catalog.to_table() tbl ``` Additional properties (not stored in the table) can be accessed directly via the `SourceCatalog` object. ``` # get a single object (id=12) obj = catalog[11] obj.id obj ``` Let's plot the cutouts of the data and error images for this source. ``` fig, ax = plt.subplots(figsize=(12, 8), ncols=3) ax[0].imshow(obj.make_cutout(segm2.data)) ax[0].set_title('Source id={} Segment'.format(obj.id)) ax[1].imshow(obj.data_cutout_ma) ax[1].set_title('Source id={} Data'.format(obj.id)) ax[2].imshow(obj.error_cutout_ma) ax[2].set_title('Source id={} Error'.format(obj.id)) ``` ## More on Image Segmentation in the Extended notebook: - Define a subset of source labels - Define a subset of source properties - Additional sources properties, such a cutout images - Define the approximate isophotal ellipses for each source ## Also see the two notebooks on Photutils PSF-fitting photometry: - `gaussian_psf_photometry.ipynb` - `image_psf_photometry_withNIRCam.ipynb`
true
code
0.69333
null
null
null
null
# cadCAD Tutorials: The Robot and the Marbles, part 3 In parts [1](../robot-marbles-part-1/robot-marbles-part-1.ipynb) and [2](../robot-marbles-part-2/robot-marbles-part-2.ipynb) we introduced the 'language' in which a system must be described in order for it to be interpretable by cadCAD and some of the basic concepts of the library: * State Variables * Timestep * State Update Functions * Partial State Update Blocks * Simulation Configuration Parameters * Policies In this notebook we'll look at how subsystems within a system can operate in different frequencies. But first let's copy the base configuration with which we ended Part 2. Here's the description of that system: __The robot and the marbles__ * Picture a box (`box_A`) with ten marbles in it; an empty box (`box_B`) next to the first one; and __two__ robot arms capable of taking a marble from any one of the boxes and dropping it into the other one. * The robots are programmed to take one marble at a time from the box containing the largest number of marbles and drop it in the other box. They repeat that process until the boxes contain an equal number of marbles. * The robots act simultaneously; in other words, they assess the state of the system at the exact same time, and decide what their action will be based on that information. ``` %%capture # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # List of all the state variables in the system and their initial values genesis_states = { 'box_A': 10, # as per the description of the example, box_A starts out with 10 marbles in it 'box_B': 0 # as per the description of the example, box_B starts out empty } # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # Settings of general simulation parameters, unrelated to the system itself # `T` is a range with the number of discrete units of time the simulation will run for; # `N` is the number of times the simulation will be run (Monte Carlo runs) # In this example, we'll run the simulation once (N=1) and its duration will be of 10 timesteps # We'll cover the `M` key in a future article. For now, let's omit it sim_config_dict = { 'T': range(10), 'N': 1, #'M': {} } # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # We specify the robot arm's logic in a Policy Function def robot_arm(params, step, sH, s): add_to_A = 0 if (s['box_A'] > s['box_B']): add_to_A = -1 elif (s['box_A'] < s['box_B']): add_to_A = 1 return({'add_to_A': add_to_A, 'add_to_B': -add_to_A}) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # We make the state update functions less "intelligent", # ie. they simply add the number of marbles specified in _input # (which, per the policy function definition, may be negative) def increment_A(params, step, sH, s, _input): y = 'box_A' x = s['box_A'] + _input['add_to_A'] return (y, x) def increment_B(params, step, sH, s, _input): y = 'box_B' x = s['box_B'] + _input['add_to_B'] return (y, x) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # In the Partial State Update Blocks, # the user specifies if state update functions will be run in series or in parallel # and the policy functions that will be evaluated in that block partial_state_update_blocks = [ { 'policies': { # The following policy functions will be evaluated and their returns will be passed to the state update functions 'robot_arm_1': robot_arm, 'robot_arm_2': robot_arm }, 'variables': { # The following state variables will be updated simultaneously 'box_A': increment_A, 'box_B': increment_B } } ] # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #imported some addition utilities to help with configuration set-up from cadCAD.configuration.utils import config_sim from cadCAD.configuration import Experiment from cadCAD import configs del configs[:] # Clear any prior configs exp = Experiment() c = config_sim(sim_config_dict) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # The configurations above are then packaged into a `Configuration` object exp.append_configs(initial_state=genesis_states, #dict containing variable names and initial values partial_state_update_blocks=partial_state_update_blocks, #dict containing state update functions sim_configs=c #preprocessed dictionaries containing simulation parameters ) from cadCAD.engine import ExecutionMode, ExecutionContext, Executor exec_mode = ExecutionMode() local_mode_ctx = ExecutionContext(exec_mode.local_mode) simulation = Executor(local_mode_ctx, configs) # Pass the configuration object inside an array raw_result, tensor, sessions = simulation.execute() # The `execute()` method returns a tuple; its first elements contains the raw results %matplotlib inline import pandas as pd df = pd.DataFrame(raw_result) df.plot('timestep', ['box_A', 'box_B'], grid=True, xticks=list(df['timestep'].drop_duplicates()), colormap = 'RdYlGn', yticks=list(range(1+(df['box_A']+df['box_B']).max()))); ``` # Asynchronous Subsystems We have defined that the robots operate simultaneously on the boxes of marbles. But it is often the case that agents within a system operate asynchronously, each having their own operation frequencies or conditions. Suppose that instead of acting simultaneously, the robots in our examples operated in the following manner: * Robot 1: acts once every 2 timesteps * Robot 2: acts once every 3 timesteps One way to simulate the system with this change is to introduce a check of the current timestep before the robots act, with the definition of separate policy functions for each robot arm. ``` %%capture # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # We specify each of the robots logic in a Policy Function robots_periods = [2,3] # Robot 1 acts once every 2 timesteps; Robot 2 acts once every 3 timesteps def get_current_timestep(cur_substep, s): if cur_substep == 1: return s['timestep']+1 return s['timestep'] def robot_arm_1(params, step, sH, s): _robotId = 1 if get_current_timestep(step, s)%robots_periods[_robotId-1]==0: # on timesteps that are multiple of 2, Robot 1 acts return robot_arm(params, step, sH, s) else: return({'add_to_A': 0, 'add_to_B': 0}) # for all other timesteps, Robot 1 doesn't interfere with the system def robot_arm_2(params, step, sH, s): _robotId = 2 if get_current_timestep(step, s)%robots_periods[_robotId-1]==0: # on timesteps that are multiple of 3, Robot 2 acts return robot_arm(params, step, sH, s) else: return({'add_to_A': 0, 'add_to_B': 0}) # for all other timesteps, Robot 2 doesn't interfere with the system # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # In the Partial State Update Blocks, # the user specifies if state update functions will be run in series or in parallel # and the policy functions that will be evaluated in that block partial_state_update_blocks = [ { 'policies': { # The following policy functions will be evaluated and their returns will be passed to the state update functions 'robot_arm_1': robot_arm_1, 'robot_arm_2': robot_arm_2 }, 'variables': { # The following state variables will be updated simultaneously 'box_A': increment_A, 'box_B': increment_B } } ] # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # del configs[:] # Clear any prior configs # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # The configurations above are then packaged into a `Configuration` object exp.append_configs(initial_state=genesis_states, #dict containing variable names and initial values partial_state_update_blocks=partial_state_update_blocks, #dict containing state update functions sim_configs=c #preprocessed dictionaries containing simulation parameters ) executor = Executor(local_mode_ctx, configs) # Pass the configuration object inside an array raw_result, tensor, sessions = executor.execute() # The `execute()` method returns a tuple; its first elements contains the raw results simulation_result = pd.DataFrame(raw_result) simulation_result.plot('timestep', ['box_A', 'box_B'], grid=True, xticks=list(simulation_result['timestep'].drop_duplicates()), yticks=list(range(1+max(simulation_result['box_A'].max(),simulation_result['box_B'].max()))), colormap = 'RdYlGn' ) ``` Let's take a step-by-step look at what the simulation tells us: * Timestep 1: the number of marbles in the boxes does not change, as none of the robots act * Timestep 2: Robot 1 acts, Robot 2 doesn't; resulting in one marble being moved from box A to box B * Timestep 3: Robot 2 acts, Robot 1 doesn't; resulting in one marble being moved from box A to box B * Timestep 4: Robot 1 acts, Robot 2 doesn't; resulting in one marble being moved from box A to box B * Timestep 5: the number of marbles in the boxes does not change, as none of the robots act * Timestep 6: Robots 1 __and__ 2 act, as 6 is a multiple of 2 __and__ 3; resulting in two marbles being moved from box A to box B and an equilibrium being reached.
true
code
0.371051
null
null
null
null
# Deep Convolutional Neural Networks In this assignment, we will be using the Keras library to build, train, and evaluate some *relatively simple* Convolutional Neural Networks to demonstrate how adding layers to a network can improve accuracy, yet are more computationally expensive. The purpose of this assignment is for you to demonstrate understanding of the appropriate structure of a convolutional neural network and to give you an opportunity to research any parameters or elements of CNNs that you don't fully understand. We will be using the cifar100 dataset for this assignment, however, in order to keep the dataset size small enough to be trained in a reasonable amount of time in a Google Colab, we will only be looking at two classes from the dataset - cats and dogs. ![CNN Structure Diagram](http://www.ryanleeallred.com/wp-content/uploads/2018/06/CNN-diagram.jpeg) ``` # Import important libraries and methods import matplotlib.pyplot as plt import numpy as np import keras from keras.datasets import cifar10 from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Activation from keras.layers.convolutional import Conv2D, MaxPooling2D from keras import backend as K if K.backend()=='tensorflow': K.set_image_dim_ordering("th") # input image dimensions img_rows, img_cols = 32, 32 # the data, shuffled and split between train and test sets (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Important Hyperparameters batch_size = 32 num_classes = 2 epochs = 100 # Plot sample image from each cifar10 class. class_names = ['airplane','automobile','bird','cat','deer','dog','frog','horse','shop','truck'] fig = plt.figure(figsize=(8,3)) for i in range(10): ax = fig.add_subplot(2, 5, 1 + i, xticks=[], yticks=[]) idx = np.where(y_train[:]==i)[0] features_idx = x_train[idx,::] img_num = np.random.randint(features_idx.shape[0]) im = np.transpose(features_idx[img_num,::],(1,2,0)) ax.set_title(class_names[i]) plt.imshow(im) plt.show() # Only look at cats [=3] and dogs [=5] train_picks = np.ravel(np.logical_or(y_train==3,y_train==5)) test_picks = np.ravel(np.logical_or(y_test==3,y_test==5)) y_train = np.array(y_train[train_picks]==5,dtype=int) y_test = np.array(y_test[test_picks]==5,dtype=int) x_train = x_train[train_picks] x_test = x_test[test_picks] # check for image_data format and format image shape accordingly if K.image_data_format() == 'channels_first': x_train = x_train.reshape(x_train.shape[0], 3, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 3, img_rows, img_cols) input_shape = (3, img_rows, img_cols) else: x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 3) x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 3) input_shape = (img_rows, img_cols, 3) # Normalize pixel values between 0 and 1 x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # Convert class vectors to binary class matrices y_train = keras.utils.to_categorical(np.ravel(y_train), num_classes) y_test = keras.utils.to_categorical(np.ravel(y_test), num_classes) # Check train and test lengths print('y_train length:', len(y_train)) print('x_train length:', len(x_train)) print('y_test length:', len(y_test)) print('x_test length:', len(x_test)) ``` # Model #1 This model will be almost as simple as we can make it. It should look something like: * Conv2D - kernel_size = (3,3) * Relu Activation * Conv2D - kernel_size = (3,3) * Relu Activation * Max Pooling - pool_size = (2,2) * Dropout - use .25 for all layers but the final dropout layer --- * Flatten * Fully-Connected (Dense) * Dropout - use .5 this time * Fully-Connected (Dense layer where # neurons = # final classes/labels) Then compile the model using categorical_crossentropy as your loss metric. Use the Adam optimizer, and accuracy as your overall scoring metric. If you're lost when you get to this point, make sure you look at the lecture colab for somewhat similar sample code. ``` x_train.shape model1 = Sequential() model1.add(Conv2D(8, (3,3), activation='relu', input_shape=(3, 32, 32))) model1.add(Dropout(.25)) model1.add(Conv2D(16, (3,3), activation='relu')) model1.add(Dropout(.25)) model1.add(MaxPooling2D((2,2))) model1.add(Flatten()) model1.add(Dense(64, activation='relu')) model1.add(Dropout(0.5)) model1.add(Dense(2, activation='softmax')) model1.summary() model1.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) ``` ## Fit your model Fit your model and save it to a new variable so that we can access the .history value to make a plot of our training and validation accuracies by epoch. ``` model1_training = model1.fit(x_train, y_train, epochs=50, batch_size=128, validation_split=0.1) ``` ## Plot Training and Validation Accuracies Use your matplotlib skills to give us a nice line graph of both training and validation accuracies as the number of epochs increases. Don't forget your legend, axis and plot title. ``` def train_val_metrics(epochs, model_training): epochs = range(1, epochs+1) metrics = model_training.history train_loss = metrics['loss'] train_acc = metrics['acc'] val_loss = metrics['val_loss'] val_acc = metrics['val_acc'] ax = plt.subplot(211) train, = ax.plot(epochs, train_loss) val, = ax.plot(epochs, val_loss) ax.legend([train, val], ['training', 'validation']) ax.set(xlabel='epochs', ylabel='categorical cross-entropy loss') ax2 = plt.subplot(212) train2, = ax2.plot(epochs, train_acc) val2, = ax2.plot(epochs, val_acc) ax2.legend([train2, val2], ['training', 'validation']) ax2.set(xlabel='epochs', ylabel='accuracy') train_val_metrics(50, model1_training) ``` The model begins to overfit around epoch 20 or so. Early stopping would be useful here. ![something a little deeper](http://www.ryanleeallred.com/wp-content/uploads/2018/06/a-little-deeper.gif) # Model #2 Lets add an additional set of convolutional->activation->pooling to this model: * Conv2D - kernel_size = (3,3) * Relu Activation * Conv2D - kernel_size = (3,3) * Relu Activation * Max Pooling - pool_size = (2,2) * Dropout - use .25 for all layers but the final layer --- * Conv2D - kernel_size = (3,3) * Relu Activation * Conv2D - kernel_size = (3,3) * Relu Activation * Max Pooling - pool_size = (2,2) * Dropout - use .25 for all layers but the final layer --- * Flatten * Fully-Connected (Dense) * Dropout - use .5 this time * Fully-Connected (Dense layer where # neurons = # final classes/labels) Again, compile the model using categorical_crossentropy as your loss metric and use the Adam optimizer, and accuracy as your overall scoring metric. ``` model2 = Sequential() model2.add(Conv2D(8, (3,3), activation='relu', input_shape=(3, 32, 32))) model2.add(Dropout(.25)) model2.add(Conv2D(16, (3,3), activation='relu')) model2.add(Dropout(.25)) model2.add(MaxPooling2D((2,2))) model2.add(Conv2D(16, (3,3), activation='relu', input_shape=(3, 32, 32))) model2.add(Dropout(.25)) model2.add(Conv2D(32, (3,3), activation='relu')) model2.add(Dropout(.25)) model2.add(MaxPooling2D((2,2))) model2.add(Flatten()) model2.add(Dense(64, activation='relu')) model2.add(Dropout(0.5)) model2.add(Dense(2, activation='softmax')) model2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model2.summary() ``` ## Fit your model Fit your model and save it to a new variable so that we can access the .history value to make a plot of our training and validation accuracies by epoch. ``` model2_training = model2.fit(x_train, y_train, epochs=50, batch_size=128, validation_split=0.1) ``` ## Plot Training and Validation Accuracies Use your matplotlib skills to give us a nice line graph of both training and validation accuracies as the number of epochs increases. Don't forget your legend, axis and plot title. ``` train_val_metrics(50, model2_training) ``` The model continues to find loss and accuracy improvements, suggesting that it could be trained for more epochs. ![We Need To Go Deeper](http://www.ryanleeallred.com/wp-content/uploads/2018/06/go-deeper.gif) # Model #3 Finally, one more set of convolutional/activation/pooling: * Conv2D - kernel_size = (3,3) * Relu Activation * Conv2D - kernel_size = (3,3) * Relu Activation * Max Pooling - pool_size = (2,2) * Dropout - use .25 for all layers but the final layer --- * Conv2D - kernel_size = (3,3) * Relu Activation * Conv2D - kernel_size = (3,3) * Relu Activation * Max Pooling - pool_size = (2,2) * Dropout - use .25 for all layers but the final layer --- * Conv2D - kernel_size = (3,3) * Relu Activation * Conv2D - kernel_size = (3,3) * Relu Activation * Max Pooling - pool_size = (2,2) * Dropout - use .25 for all layers but the final layer --- * Flatten * Fully-Connected (Dense) * Dropout - use .5 this time * Fully-Connected (Dense layer where # neurons = # final classes/labels) Again, compile the model using categorical_crossentropy as your loss metric and use the Adam optimizer, and accuracy as your overall scoring metric. ``` model3 = Sequential() model3.add(Conv2D(8, (3,3), activation='relu', input_shape=(3, 32, 32))) model3.add(Dropout(.25)) model3.add(Conv2D(16, (3,3), activation='relu')) model3.add(Dropout(.25)) model3.add(MaxPooling2D((2,2), strides=1)) model3.add(Conv2D(16, (3,3), activation='relu', input_shape=(3, 32, 32))) model3.add(Dropout(.25)) model3.add(Conv2D(32, (3,3), activation='relu')) model3.add(Dropout(.25)) model3.add(MaxPooling2D((2,2), strides=1)) model3.add(Conv2D(32, (3,3), activation='relu', input_shape=(3, 32, 32))) model3.add(Dropout(.25)) model3.add(Conv2D(64, (3,3), activation='relu')) model3.add(Dropout(.25)) model3.add(MaxPooling2D(2,2)) model3.add(Flatten()) model3.add(Dense(128, activation='relu')) model3.add(Dropout(0.5)) model3.add(Dense(2, activation='softmax')) model3.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) model3.summary() ``` ## Fit your model Fit your model and save it to a new variable so that we can access the .history value to make a plot of our training and validation accuracies by epoch. ``` model3_training = model3.fit(x_train, y_train, epochs=50, batch_size=128, validation_split=0.1) ``` ## Plot Training and Validation Accuracies Use your matplotlib skills to give us a nice line graph of both training and validation accuracies as the number of epochs increases. Don't forget your legend, axis and plot title. ``` train_val_metrics(50, model3_training) ``` # Stretch Goal: ## Use other classes from Cifar10 Try using different classes from the Cifar10 dataset or use all 10. You might need to sample the training data or limit the number of epochs if you decide to use the entire dataset due to processing constraints. ## Hyperparameter Tune Your Model If you have successfully complete shown how increasing the depth of a neural network can improve its accuracy, and you feel like you have a solid understanding of all of the different parts of CNNs, try hyperparameter tuning your strongest model to see how much additional accuracy you can squeeze out of it. This will also give you a chance to research the different hyperparameters as well as their significance/purpose. (There are lots and lots) --- Here's a helpful article that will show you how to get started using GridSearch to hyperaparameter tune your CNN. (should you desire to use that method): [Grid Search Hyperparameters for Deep Learning Models in Python With Keras](https://machinelearningmastery.com/grid-search-hyperparameters-deep-learning-models-python-keras/)
true
code
0.698329
null
null
null
null
<a href="https://colab.research.google.com/github/spyrosviz/Injury_Prediction_MidLong_Distance_Runners/blob/main/ML%20models/Models_Runners_Injury_Prediction.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ``` # Import Libraries import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.ensemble import GradientBoostingClassifier, BaggingClassifier from xgboost.sklearn import XGBClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, StratifiedKFold from sklearn.metrics import accuracy_score, confusion_matrix, roc_auc_score from sklearn.model_selection import cross_val_score from sklearn.preprocessing import MinMaxScaler import itertools from collections import Counter !pip install imbalanced-learn from imblearn.over_sampling import SMOTE, RandomOverSampler, ADASYN from imblearn.under_sampling import RandomUnderSampler, TomekLinks import tensorflow as tf ``` **Use the following split if you want to hold out a specified number of athletes for train and test set. The last 10 athletes instances were kept for test set.** ``` '''Import data and hold out a specified test set''' # Import data from excel, select the first 63 athletes events for train set and the last 10 athletes for test set df = pd.read_excel(r'/content/drive/MyDrive/Runners_Injury_MLproject/Daily_Injury_Clean.xlsx',index_col = [0]) df_train = df[df['Athlete ID'] <= 63] df_train.drop(['Date','Athlete ID'],axis=1,inplace=True) df_test = df[df['Athlete ID'] > 63] df_test.drop(['Date','Athlete ID'],axis=1,inplace=True) # Check if df_train has any equal instances with df_test. We expect to return an empty dataframe if they do not share common instances print(df_train[df_test.eq(df_train).all(axis=1)==True]) ''' Set y ''' y_train = df_train['injury'].values y_test = df_test['injury'].values ''' Set all columns for X except injury which is the target''' X_train = df_train.drop(['injury'],axis=1).values X_test = df_test.drop(['injury'],axis=1).values column_names = df_train.drop(['injury'],axis=1).columns #selected_features = ['Total Weekly Distance','Acute Load','Strain','Monotony','injury'] ''' Set X after dropping selected features ''' #X_test = df_test.drop(selected_features,axis=1).values #X_train = df_train.drop(selected_features,axis=1).values #column_names = df_train.drop(selected_features,axis=1).columns ''' Set selected features as X ''' #X_train = df_train.loc[:,selected_features].values #X_test = df_test.loc[:,selected_features].values #column_names = df_train.loc[:,selected_features].columns # Print dataframes shapes and respective number of healthy and injury events print(column_names) print(Counter(df_train['injury'].values)) print(Counter(df_test['injury'].values)) ``` **Use the following dataset split if you want to hold out 2000 random healthy instancies and 50 random injury instancies** ``` '''Import data and holdout a random test set''' # Import data from excel and drop Date and Athlete ID column df = pd.read_excel(r'/content/drive/MyDrive/Runners_Injury_MLproject/run_injur_with_acuteloads.xlsx',index_col = [0]) # Hold out a test set with 100 random injury events and 100 random healthy events df_copy = df.copy() df_copy.drop(['Date','Athlete ID'],axis=1,inplace=True) df_inj = df_copy[df_copy['injury']==1].sample(50,random_state=42) df_uninj = df_copy[df_copy['injury']==0].sample(2000,random_state=42) df_test = pd.concat([df_inj,df_uninj],ignore_index=True) # Drop the test set from the original dataframe df_train = pd.concat([df_copy,df_test],ignore_index=True).drop_duplicates(keep=False) # Set X and y y_train = df_train['injury'].values y_test = df_test['injury'].values selected_features = ['Total Weekly Distance','Acute Load','Strain','Monotony','injury'] X_test = df_test.drop(selected_features,axis=1).values X_train = df_train.drop(selected_features,axis=1).values #X_train = df_train.loc[:,selected_features].values #X_test = df_test.loc[:,selected_features].values # Check if df_train has any equal instances with df_test. We expect to return an empty dataframe if they do not share common instances # Print dataframe shapes and respective number of healthy and injury events print(df_train[df_test.eq(df_train).all(axis=1)==True]) #print(df_train.drop(['Acute Load','Total Weekly Distance','Monotony','Strain','injury'],axis=1).columns) print(df_train.shape) print(Counter(df_train['injury'].values)) print(df_test.shape) print(Counter(df_test['injury'].values)) class_imbalance = len(df_train[df_train['injury']==1].values)/len(df_train[df_train['injury']==0].values) print(f'Class imbalance is {class_imbalance}') ``` **Write a function to pretiffy confusion matrix results. The function was found from Daniel Bourke's Tensorflow course** ``` def plot_confusion_matrix(y_true,y_pred,class_names,figsize=(10,10),text_size=15): # create the confusion matrix cm = confusion_matrix(y_true,y_pred) cm_norm = cm.astype('float') / cm.sum(axis=1)[:,np.newaxis] # normalize confusion matrix n_classes = cm.shape[0] fig, ax = plt.subplots(figsize=figsize) matrix_plot = ax.matshow(cm, cmap=plt.cm.Blues) fig.colorbar(matrix_plot) # Set labels to be classes if class_names: labels = class_names else: labels = np.arange(cm.shape[0]) # Label the axes ax.set(title='Confusion Matrix', xlabel = 'Predicted Label', ylabel = 'True Label', xticks = np.arange(n_classes), yticks = np.arange(n_classes), xticklabels = labels, yticklabels = labels) # Set x axis labels to bottom ax.xaxis.set_label_position('bottom') ax.xaxis.tick_bottom() # Adjust label size ax.yaxis.label.set_size(text_size) ax.xaxis.label.set_size(text_size) ax.title.set_size(text_size) # Set threshold for different colors threshold = (cm.max() + cm.min()) / 2 # Plot the text on each cell for i, j in itertools.product(range(cm.shape[0]),range(cm.shape[1])): plt.text(j,i,f'{cm[i,j]} ({cm_norm[i,j] * 100:.1f}%)', horizontalalignment='center', color='white' if cm[i,j] > threshold else 'black', size = text_size) ``` Because there is very high class imbalance in the injury variable that we want to predict, we will try the following techniques to overcome this problem and see what works best: * **Weighted XGBoost** * **XGBoost with Smote algorithm for Resampling** * **XGBoost model with Random Resampling** * **Bagging XGBoost model with Random Resampling** * **Neural Networks model with Random Undersampling** ``` # Set X and y with different resampling methods '''SMOTE algorithm for oversampling 15% ratio and random undersampling 1-1 ratio''' # Oversample the minority class to have number of instances equal with the 15% of the majority class smote = SMOTE(sampling_strategy=0.15,random_state=1) X_sm,y_sm = smote.fit_resample(X_train,y_train) # Downsample the majority class to have number of instances equal with the minority class undersamp = RandomUnderSampler(sampling_strategy=1,random_state=1) X_smus,y_smus = undersamp.fit_resample(X_sm,y_sm) '''Random oversampling 10% ratio and random undersampling 1-1 ratio''' # Random over sampler for minority class to 1:10 class ratio ros = RandomOverSampler(sampling_strategy=0.1,random_state=21) X_ros,y_ros = ros.fit_resample(X_train,y_train) # Undersample the majority class to have number of instances equal with the minority class undersamp = RandomUnderSampler(sampling_strategy=1,random_state=21) X_rosus,y_rosus = undersamp.fit_resample(X_ros,y_ros) '''Random undersampling 1-1 ratio''' # Random under sampler for majority class to 1:1 class ratio rus = RandomUnderSampler(sampling_strategy=1,random_state=21) X_rus,y_rus = rus.fit_resample(X_train,y_train) '''Tomek Links Undersampling''' tmkl = TomekLinks() X_tmk, y_tmk = tmkl.fit_resample(X_train,y_train) '''ADASYN for oversampling 15% ratio and random undersampler 1-1 ratio''' # ADASYN oversample minority class to 15% of the majority class adasyn = ADASYN(sampling_strategy=0.15,random_state=21) X_ada, y_ada = adasyn.fit_resample(X_train,y_train) # Random undersample the majority class to have equal instances with minority class adarus = RandomUnderSampler(sampling_strategy=1,random_state=21) X_adarus,y_adarus = adarus.fit_resample(X_ada,y_ada) # Stratify crossvalidation cv = StratifiedKFold(n_splits=5,shuffle=True,random_state=21) ``` ## 1) Weighted XGBoost Model ``` '''Weighted XGBoost''' # We will use scale_pos_weight argument in xgboost algorithm which increases the error for wrong positive class prediction. # From xgboost documentation it's suggested that the optimal value for scale_pos_weight argument is usually around the # sum(negative instances)/sum(positive instances). We will use randomizedsearchcv to find optimal value xgb_weight = XGBClassifier() param_grid_weight = {"gamma":[0.01,0.1,1,10,50,100,1000],'reg_lambda':[1,5,10,20], 'learning_rate':np.arange(0.01,1,0.01),'eta':np.arange(0.1,1,0.1),'scale_pos_weight':[60,70,80,90,100]} gscv_weight = RandomizedSearchCV(xgb_weight,param_distributions=param_grid_weight,cv=cv,scoring='roc_auc') gscv_weight.fit(X_train,y_train) print("Best param is {}".format(gscv_weight.best_params_)) print("Best score is {}".format(gscv_weight.best_score_)) optimal_gamma = gscv_weight.best_params_['gamma'] optimal_reg_lambda = gscv_weight.best_params_['reg_lambda'] optim_lr = gscv_weight.best_params_['learning_rate'] optimal_eta = gscv_weight.best_params_['eta'] optimal_scale_pos_weight = gscv_weight.best_params_['scale_pos_weight'] tuned_xgb_weight = XGBClassifier(gamma=optimal_gamma,learning_rate=optim_lr,eta=optimal_eta,reg_lambda=optimal_reg_lambda,scale_pos_weight=optimal_scale_pos_weight, colsample_bytree=0.5,min_child_weight=90,objective='binary:logistic',subsample=0.5) tuned_xgb_weight.fit(X_train,y_train,early_stopping_rounds=10,eval_metric='auc',eval_set=[(X_test,y_test)]) # Evaluate model's performance on the test set, with AUC, confusion matrix, sensitivity and specificity y_pred = tuned_xgb_weight.predict(X_test) print(f'Area under curve score is {roc_auc_score(y_test,tuned_xgb_weight.predict_proba(X_test)[:,1])}') # Compute true positives, true neagatives, false negatives and false positives tp = confusion_matrix(y_test,y_pred)[1,1] tn = confusion_matrix(y_test,y_pred)[0,0] fn = confusion_matrix(y_test,y_pred)[1,0] fp = confusion_matrix(y_test,y_pred)[0,1] # Compute sensitivity and specificity sensitivity = tp / (tp + fn) specificity = tn / (tn + fp) print(f'Sensitivity is {sensitivity*100}% and specificity is {specificity*100}%') plot_confusion_matrix(y_true=y_test, y_pred=y_pred, class_names=['Healthy events','Injury events']) ``` ##2) XGBoost Model with SMOTE combined with Random Undersampling ``` '''XGBoost Classifier and SMOTE (Synthetic Minority Oversampling Technique) combined with Random Undersampling''' # Check the number of instances for each class before and after resampling print(Counter(y_train)) print(Counter(y_smus)) xgb_sm = XGBClassifier() param_grid_sm = {"gamma":[0.01,0.1,1,10,50,100,1000],'learning_rate':np.arange(0.01,1,0.01),'eta':np.arange(0.1,1,0.1),'reg_lambda':[1,5,10,20]} gscv_sm = RandomizedSearchCV(xgb_sm,param_distributions=param_grid_sm,cv=5,scoring='roc_auc') gscv_sm.fit(X_smus,y_smus) print("Best param is {}".format(gscv_sm.best_params_)) print("Best score is {}".format(gscv_sm.best_score_)) optimal_gamma = gscv_sm.best_params_['gamma'] optim_lr = gscv_sm.best_params_['learning_rate'] optimal_eta = gscv_sm.best_params_['eta'] optimal_lambda = gscv_sm.best_params_['reg_lambda'] tuned_xgb_sm = XGBClassifier(gamma=optimal_gamma,learning_rate=optim_lr,eta=optimal_eta,reg_lambda=optimal_lambda,subsample=0.4, colsample_bytree=0.6,min_child_weight=90,objective='binary:logistic') tuned_xgb_sm.fit(X_smus,y_smus,early_stopping_rounds=10,eval_metric='auc',eval_set=[(X_test,y_test)]) # Evaluate model's performance on the test set, with AUC, confusion matrix, sensitivity and specificity y_pred = tuned_xgb_sm.predict(X_test) print(f'Area under curve score is {roc_auc_score(y_test,tuned_xgb_sm.predict_proba(X_test)[:,1])}') # Compute true positives, true neagatives, false negatives and false positives tp = confusion_matrix(y_test,y_pred)[1,1] tn = confusion_matrix(y_test,y_pred)[0,0] fn = confusion_matrix(y_test,y_pred)[1,0] fp = confusion_matrix(y_test,y_pred)[0,1] # Compute sensitivity and specificity sensitivity = tp / (tp + fn) specificity = tn / (tn + fp) print(f'Sensitivity is {sensitivity*100}% and specificity is {specificity*100}%') plot_confusion_matrix(y_true=y_test, y_pred=y_pred, class_names=['Healthy events','Injury events']) ``` ## 3) XGBoost Model with Random Resampling ``` '''XGBoost Classifier and Random Undersampling''' # Check the number of instances for each class before and after resampling print(Counter(y_train)) print(Counter(y_rosus)) xgb_rus = XGBClassifier() param_grid_rus = {"gamma":[0.01,0.1,1,10,50,100,1000],'reg_lambda':[1,5,10,20],'learning_rate':np.arange(0.01,1,0.01),'eta':np.arange(0.1,1,0.1)} gscv_rus = RandomizedSearchCV(xgb_rus,param_distributions=param_grid_rus,cv=5,scoring='roc_auc') gscv_rus.fit(X_rosus,y_rosus) print("Best param is {}".format(gscv_rus.best_params_)) print("Best score is {}".format(gscv_rus.best_score_)) optimal_gamma = gscv_rus.best_params_['gamma'] optimal_reg_lambda = gscv_rus.best_params_['reg_lambda'] optim_lr = gscv_rus.best_params_['learning_rate'] optimal_eta = gscv_rus.best_params_['eta'] tuned_xgb_rus = XGBClassifier(gamma=optimal_gamma,reg_lambda=optimal_reg_lambda,learning_rate=optim_lr,eta=optimal_eta, colsample_bytree=0.7,min_child_weight=9,objective='binary:logistic',subsample=0.8) tuned_xgb_rus.fit(X_rosus,y_rosus,early_stopping_rounds=10,eval_metric='auc',eval_set=[(X_test,y_test)]) # Evaluate model's performance on the test set, with AUC, confusion matrix, sensitivity and specificity y_pred = tuned_xgb_rus.predict(X_test) print(f'Area under curve score is {roc_auc_score(y_test,tuned_xgb_rus.predict_proba(X_test)[:,1])}') # Compute true positives, true neagatives, false negatives and false positives tp = confusion_matrix(y_test,y_pred)[1,1] tn = confusion_matrix(y_test,y_pred)[0,0] fn = confusion_matrix(y_test,y_pred)[1,0] fp = confusion_matrix(y_test,y_pred)[0,1] # Compute sensitivity and specificity sensitivity = tp / (tp + fn) specificity = tn / (tn + fp) print(f'Sensitivity is {sensitivity*100}% and specificity is {specificity*100}%') plot_confusion_matrix(y_true=y_test, y_pred=y_pred, class_names=['Healthy events','Injury events']) ``` ## 4) Bagging Model with XGBoost base estimators and Random Resampling ``` '''Bagging Classifier with XGBoost base estimators and Random Undersampling with combined Oversampling''' # Check the number of instances for each class before and after resampling print(Counter(y_train)) print(Counter(y_rosus)) base_est = XGBClassifier(gamma=optimal_gamma,reg_lambda=optimal_reg_lambda,learning_rate=optim_lr,eta=optimal_eta, colsample_bytree=0.6,min_child_weight=90,objective='binary:logistic',subsample=0.8,n_estimators=11) # XGBoost base classifier #base_est = XGBClassifier(n_estimators=512,learning_rate=0.01,max_depth=3) # Bagging XGBoost Classifier bagg = BaggingClassifier(base_estimator=base_est,n_estimators=9,max_samples=2048,random_state=21) # Platt's Scaling to get probabilities outputs calib_clf = CalibratedClassifierCV(bagg,cv=5) # Evaluate model's performance on the test set, with AUC, confusion matrix, sensitivity and specificity # You can switch threshold prob in order to bias sensitivity at the cost of specificity. It is set to default 0.5 calib_clf.fit(X_rosus,y_rosus) y_pred_calib = calib_clf.predict_proba(X_test) threshold_prob = 0.5 y_pred = [] for y_hat in y_pred_calib: if y_hat[1] > threshold_prob: y_pred.append(1) else: y_pred.append(0) print(f'Area under curve score is {roc_auc_score(y_test,calib_clf.predict_proba(X_test)[:,1])}') # Compute true positives, true neagatives, false negatives and false positives tp = confusion_matrix(y_test,np.array(y_pred))[1,1] tn = confusion_matrix(y_test,np.array(y_pred))[0,0] fn = confusion_matrix(y_test,np.array(y_pred))[1,0] fp = confusion_matrix(y_test,np.array(y_pred))[0,1] # Compute sensitivity and specificity sensitivity = tp / (tp + fn) specificity = tn / (tn + fp) print(f'Sensitivity is {sensitivity*100}% and specificity is {specificity*100}%') # Plot confusion matrix plot_confusion_matrix(y_true=y_test, y_pred=np.array(y_pred), class_names=['Healthy events','Injury events']) ``` ## 5) Neural Networks Model ``` '''Neural Networks Model''' # Check the number of instances for each class before and after resampling print(Counter(y_train)) print(Counter(y_rus)) # Scale X data X_scaled_rus = MinMaxScaler().fit_transform(X_rus) X_scaled_test = MinMaxScaler().fit_transform(X_test) # set random seed for reproducibility tf.random.set_seed(24) # create model with 9 hidden layers with 50 neurons each and 1 output layer nn_model = tf.keras.Sequential([tf.keras.layers.Dense(128,activation="relu"), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(128,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(128,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(128,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(64,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(64,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(64,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(32,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(32,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(1,activation="sigmoid") ]) # compile model nn_model.compile(loss="binary_crossentropy", optimizer=tf.keras.optimizers.Adam(learning_rate=0.002), metrics=['AUC']) # set callback to stop after 10 epochs if model doesn't improve and fit training data callback = tf.keras.callbacks.EarlyStopping(monitor='loss',patience=3) history = nn_model.fit(X_scaled_rus,y_rus,epochs=10,batch_size=32,callbacks=[callback]) # Evaluate model performance on test set, with AUC, confusion matrix, sensitivity and specificity y_prob_pred = nn_model.predict(X_scaled_test) y_pred = [] for i in y_prob_pred: if i <=0.5: y_pred.append(0) else: y_pred.append(1) y_pred = np.array(y_pred) print(y_pred[y_pred>1]) # Compute true positives, true neagatives, false negatives and false positives tp = confusion_matrix(y_test,np.array(y_pred))[1,1] tn = confusion_matrix(y_test,np.array(y_pred))[0,0] fn = confusion_matrix(y_test,np.array(y_pred))[1,0] fp = confusion_matrix(y_test,np.array(y_pred))[0,1] # Compute sensitivity and specificity sensitivity = tp / (tp + fn) specificity = tn / (tn + fp) print(f'Sensitivity is {sensitivity*100}% and specificity is {specificity*100}%') # Plot confusion matrix plot_confusion_matrix(y_true=y_test, y_pred=np.array(y_pred), class_names=['Healthy events','Injury events']) # evaluate the model print(f'Area Under Curve is {nn_model.evaluate(X_scaled_test,y_test)[1]}') '''Find optimal Learning Rate for nn_model''' # set random seed for reproducibility tf.random.set_seed(24) # create model with 2 hidden layers and 1 output layer nn_model = tf.keras.Sequential([tf.keras.layers.Dense(128,activation="relu"), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(128,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(128,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(128,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(64,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(64,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(64,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(32,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(32,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(1,activation="sigmoid") ]) # compile model nn_model.compile(loss="binary_crossentropy", optimizer=tf.keras.optimizers.Adam(), metrics=["AUC"]) # set callback to stop after 5 epochs if model doesn't improve and fit training data lr_scheduler = tf.keras.callbacks.LearningRateScheduler(lambda epoch: 1e-4 * 10 ** (epoch/20)) history = nn_model.fit(X_scaled_rus,y_rus,epochs=30,callbacks=[lr_scheduler]) # plot accuracy vs learning rate to find optimal learning rate plt.figure(figsize=[10,10]) plt.semilogx(1e-4 * (10 ** (tf.range(30)/20)),history.history["loss"]) plt.ylabel("Loss") plt.title("Learning Rate vs Loss") plt.show() '''Crossvalidation on nn_model''' from keras.wrappers.scikit_learn import KerasClassifier tf.random.set_seed(24) def create_nn_model(): # create model with 2 hidden layers and 1 output layer nn_model = tf.keras.Sequential([tf.keras.layers.Dense(128,activation="relu"), tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(128,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(128,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(128,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(64,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(64,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(64,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(32,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(32,activation="relu"), #tf.keras.layers.Dropout(0.1), tf.keras.layers.Dense(1,activation="sigmoid") ]) # compile model nn_model.compile(loss="binary_crossentropy", optimizer=tf.keras.optimizers.Adam(learning_rate=0.002), metrics=["AUC"]) return nn_model neural_network = KerasClassifier(build_fn=create_nn_model, epochs=10) # Evaluate neural network using 5-fold cross-validation cv = StratifiedKFold(n_splits=5,shuffle=True,random_state=1) cross_val_score(neural_network, X_scaled_rus, y_rus, scoring='roc_auc', cv=cv) ```
true
code
0.5867
null
null
null
null
``` import pandas as pd import numpy as np from datetime import datetime import os ``` # Define Which Input Files to Use The default settings will use the input files recently produced in Step 1) using the notebook `get_eia_demand_data.ipynb`. For those interested in reproducing the exact results included in the repository, you will need to point to the files containing the original `raw` EIA demand data that we querried on 10 Sept 2019. ``` merge_with_step1_files = False # used to run step 2 on the most recent files merge_with_10sept2019_files = True # used to reproduce the documented results assert((merge_with_step1_files != merge_with_10sept2019_files) and (merge_with_step1_files == True or merge_with_10sept2019_files == True)), "One of these must be true: 'merge_with_step1_files' and 'merge_with_10sept2019_files'" if merge_with_step1_files: input_path = './data' if merge_with_10sept2019_files: # input_path is the path to the downloaded data from Zenodo: https://zenodo.org/record/3517197 input_path = '/BASE/PATH/TO/ZENODO' input_path += '/data/release_2019_Oct/original_eia_files' assert(os.path.exists(input_path)), f"You must set the base directory for the Zenodo data {input_path} does not exist" # If you did not run step 1, make the /data directory if not os.path.exists('./data'): os.mkdir('./data') ``` # Make the output directories ``` # Make output directories out_base = './data/final_results' if not os.path.exists(out_base): os.mkdir(out_base) for subdir in ['balancing_authorities', 'regions', 'interconnects', 'contiguous_US']: os.mkdir(f"{out_base}/{subdir}") print(f"Final results files will be located here: {out_base}/{subdir}") ``` # Useful functions ``` # All 56 balancing authorities that have demand (BA) def return_all_regions(): return [ 'AEC', 'AECI', 'CPLE', 'CPLW', 'DUK', 'FMPP', 'FPC', 'FPL', 'GVL', 'HST', 'ISNE', 'JEA', 'LGEE', 'MISO', 'NSB', 'NYIS', 'PJM', 'SC', 'SCEG', 'SOCO', 'SPA', 'SWPP', 'TAL', 'TEC', 'TVA', 'ERCO', 'AVA', 'AZPS', 'BANC', 'BPAT', 'CHPD', 'CISO', 'DOPD', 'EPE', 'GCPD', 'IID', 'IPCO', 'LDWP', 'NEVP', 'NWMT', 'PACE', 'PACW', 'PGE', 'PNM', 'PSCO', 'PSEI', 'SCL', 'SRP', 'TEPC', 'TIDC', 'TPWR', 'WACM', 'WALC', 'WAUW', 'OVEC', 'SEC', ] # All 54 "usable" balancing authorities (BA) (excludes OVEC and SEC) # These 2 have significant # enough reporting problems that we do not impute cleaned data for them. def return_usable_BAs(): return [ 'AEC', 'AECI', 'CPLE', 'CPLW', 'DUK', 'FMPP', 'FPC', 'FPL', 'GVL', 'HST', 'ISNE', 'JEA', 'LGEE', 'MISO', 'NSB', 'NYIS', 'PJM', 'SC', 'SCEG', 'SOCO', 'SPA', 'SWPP', 'TAL', 'TEC', 'TVA', 'ERCO', 'AVA', 'AZPS', 'BANC', 'BPAT', 'CHPD', 'CISO', 'DOPD', 'EPE', 'GCPD', 'IID', 'IPCO', 'LDWP', 'NEVP', 'NWMT', 'PACE', 'PACW', 'PGE', 'PNM', 'PSCO', 'PSEI', 'SCL', 'SRP', 'TEPC', 'TIDC', 'TPWR', 'WACM', 'WALC', 'WAUW', # 'OVEC', 'SEC', ] # mapping of each balancing authority (BA) to its associated # U.S. interconnect (IC). def return_ICs_from_BAs(): return { 'EASTERN_IC' : [ 'AEC', 'AECI', 'CPLE', 'CPLW', 'DUK', 'FMPP', 'FPC', 'FPL', 'GVL', 'HST', 'ISNE', 'JEA', 'LGEE', 'MISO', 'NSB', 'NYIS', 'PJM', 'SC', 'SCEG', 'SOCO', 'SPA', 'SWPP', 'TAL', 'TEC', 'TVA', 'OVEC', 'SEC', ], 'TEXAS_IC' : [ 'ERCO', ], 'WESTERN_IC' : [ 'AVA', 'AZPS', 'BANC', 'BPAT', 'CHPD', 'CISO', 'DOPD', 'EPE', 'GCPD', 'IID', 'IPCO', 'LDWP', 'NEVP', 'NWMT', 'PACE', 'PACW', 'PGE', 'PNM', 'PSCO', 'PSEI', 'SCL', 'SRP', 'TEPC', 'TIDC', 'TPWR', 'WACM', 'WALC', 'WAUW', ] } # Defines a mapping between the balancing authorities (BAs) # and their locally defined region based on EIA naming. # This uses a json file defining the mapping. def return_BAs_per_region_map(): regions = { 'CENT' : 'Central', 'MIDW' : 'Midwest', 'TEN' : 'Tennessee', 'SE' : 'Southeast', 'FLA' : 'Florida', 'CAR' : 'Carolinas', 'MIDA' : 'Mid-Atlantic', 'NY' : 'New York', 'NE' : 'New England', 'TEX' : 'Texas', 'CAL' : 'California', 'NW' : 'Northwest', 'SW' : 'Southwest' } rtn_map = {} for k, v in regions.items(): rtn_map[k] = [] # Load EIA's Blancing Authority Acronym table # https://www.eia.gov/realtime_grid/ df = pd.read_csv('data/balancing_authority_acronyms.csv', skiprows=1) # skip first row as it is source info # Loop over all rows and fill map for idx in df.index: # Skip Canada and Mexico if df.loc[idx, 'Region'] in ['Canada', 'Mexico']: continue reg_acronym = '' # Get region to acronym for k, v in regions.items(): if v == df.loc[idx, 'Region']: reg_acronym = k break assert(reg_acronym != '') rtn_map[reg_acronym].append(df.loc[idx, 'Code']) tot = 0 for k, v in rtn_map.items(): tot += len(v) print(f"Total US48 BAs mapped {tot}. Recall 11 are generation only.") return rtn_map # Assume the MICE results file is a subset of the original hours def trim_rows_to_match_length(mice, df): mice_start = mice.loc[0, 'date_time'] mice_end = mice.loc[len(mice.index)-1, 'date_time'] to_drop = [] for idx in df.index: if df.loc[idx, 'date_time'] != mice_start: to_drop.append(idx) else: # stop once equal break for idx in reversed(df.index): if df.loc[idx, 'date_time'] != mice_end: to_drop.append(idx) else: # stop once equal break df = df.drop(to_drop, axis=0) df = df.reset_index() assert(len(mice.index) == len(df.index)) return df # Load balancing authority files already containing the full MICE results. # Aggregate associated regions into regional, interconnect, or CONUS files. # Treat 'MISSING' and 'EMPTY' values as zeros when aggregating. def merge_BAs(region, bas, out_base, folder): print(region, bas) # Remove BAs which are generation only as well as SEC and OVEC. # See main README regarding SEC and OVEC. usable_BAs = return_usable_BAs() good_bas = [] for ba in bas: if ba in usable_BAs: good_bas.append(ba) first_ba = good_bas.pop() master = pd.read_csv(f'{out_base}/balancing_authorities/{first_ba}.csv', na_values=['MISSING', 'EMPTY']) master = master.fillna(0) master = master.drop(['category', 'forecast demand (MW)'], axis=1) for ba in good_bas: df = pd.read_csv(f'{out_base}/balancing_authorities/{ba}.csv', na_values=['MISSING', 'EMPTY']) df = df.fillna(0) master['raw demand (MW)'] += df['raw demand (MW)'] master['cleaned demand (MW)'] += df['cleaned demand (MW)'] master.to_csv(f'{out_base}/{folder}/{region}.csv', index=False) # Do both the distribution of balancing authority level results to new BA files # and generate regional, interconnect, and CONUS aggregate files. def distribute_MICE_results(raw_demand_file_loc, screening_file, mice_results_csv, out_base): # Load screening results screening = pd.read_csv(screening_file) # Load MICE results mice = pd.read_csv(mice_results_csv) screening = trim_rows_to_match_length(mice, screening) # Distribute to single BA results files first print("Distribute MICE results per-balancing authority:") for ba in return_usable_BAs(): print(ba) df = pd.read_csv(f"{raw_demand_file_loc}/{ba}.csv") df = trim_rows_to_match_length(mice, df) df_out = pd.DataFrame({ 'date_time': df['date_time'], 'raw demand (MW)': df['demand (MW)'], 'category': screening[f'{ba}_category'], 'cleaned demand (MW)': mice[ba], 'forecast demand (MW)': df['forecast demand (MW)'] }) df_out.to_csv(f'./{out_base}/balancing_authorities/{ba}.csv', index=False) # Aggregate balancing authority level results into EIA regions print("\nEIA regional aggregation:") for region, bas in return_BAs_per_region_map().items(): merge_BAs(region, bas, out_base, 'regions') # Aggregate balancing authority level results into CONUS interconnects print("\nCONUS interconnect aggregation:") for region, bas in return_ICs_from_BAs().items(): merge_BAs(region, bas, out_base, 'interconnects') # Aggregate balancing authority level results into CONUS total print("\nCONUS total aggregation:") merge_BAs('CONUS', return_usable_BAs(), out_base, 'contiguous_US') ``` # Run the distribution and aggregation ``` # The output file generated by Step 2 listing the categories for each time step screening_file = './data/csv_MASTER.csv' # The output file generated by Step 3 which runs the MICE algo and has the cleaned demand values mice_file = 'MICE_output/mean_impute_csv_MASTER.csv' distribute_MICE_results(input_path, screening_file, mice_file, out_base) ``` # Test distribution and aggregation This cell simply checks that the results all add up. ``` # Compare each value in the vectors def compare(vect1, vect2): cnt = 0 clean = True for v1, v2 in zip(vect1, vect2): if v1 != v2: print(f"Error at idx {cnt} {v1} != {v2}") clean = False cnt += 1 return clean def test_aggregation(raw_demand_file_loc, screening_file, mice_results_csv, out_base): # Load MICE results usable_BAs = return_usable_BAs() mice = pd.read_csv(mice_results_csv) # Sum all result BAs tot_imp = np.zeros(len(mice.index)) for col in mice.columns: if col not in usable_BAs: continue tot_imp += mice[col] # Sum Raw tot_raw = np.zeros(len(mice.index)) for ba in return_usable_BAs(): df = pd.read_csv(f"{raw_demand_file_loc}/{ba}.csv", na_values=['MISSING', 'EMPTY']) df = trim_rows_to_match_length(mice, df) df = df.fillna(0) tot_raw += df['demand (MW)'] # Check BA results distribution print("\nBA Distribution:") new_tot_raw = np.zeros(len(mice.index)) new_tot_clean = np.zeros(len(mice.index)) for ba in return_usable_BAs(): df = pd.read_csv(f"{out_base}/balancing_authorities/{ba}.csv", na_values=['MISSING', 'EMPTY']) df = df.fillna(0) new_tot_raw += df['raw demand (MW)'] new_tot_clean += df['cleaned demand (MW)'] assert(compare(tot_raw, new_tot_raw)), "Error in raw sums." assert(compare(tot_imp, new_tot_clean)), "Error in imputed values." print("BA Distribution okay!") # Check aggregate balancing authority level results into EIA regions print("\nEIA regional aggregation:") new_tot_raw = np.zeros(len(mice.index)) new_tot_clean = np.zeros(len(mice.index)) for region, bas in return_BAs_per_region_map().items(): df = pd.read_csv(f"{out_base}/regions/{region}.csv") new_tot_raw += df['raw demand (MW)'] new_tot_clean += df['cleaned demand (MW)'] assert(compare(tot_raw, new_tot_raw)), "Error in raw sums." assert(compare(tot_imp, new_tot_clean)), "Error in imputed values." print("Regional sums okay!") # Aggregate balancing authority level results into CONUS interconnects print("\nCONUS interconnect aggregation:") new_tot_raw = np.zeros(len(mice.index)) new_tot_clean = np.zeros(len(mice.index)) for region, bas in return_ICs_from_BAs().items(): df = pd.read_csv(f"{out_base}/interconnects/{region}.csv") new_tot_raw += df['raw demand (MW)'] new_tot_clean += df['cleaned demand (MW)'] assert(compare(tot_raw, new_tot_raw)), "Error in raw sums." assert(compare(tot_imp, new_tot_clean)), "Error in imputed values." print("Interconnect sums okay!") # Aggregate balancing authority level results into CONUS total print("\nCONUS total aggregation:") new_tot_raw = np.zeros(len(mice.index)) new_tot_clean = np.zeros(len(mice.index)) df = pd.read_csv(f"{out_base}/contiguous_US/CONUS.csv") new_tot_raw += df['raw demand (MW)'] new_tot_clean += df['cleaned demand (MW)'] assert(compare(tot_raw, new_tot_raw)), "Error in raw sums." assert(compare(tot_imp, new_tot_clean)), "Error in imputed values." print("CONUS sums okay!") test_aggregation(input_path, screening_file, mice_file, out_base) ```
true
code
0.31295
null
null
null
null
``` import torch from torch.distributions import Normal import math ``` Let us revisit the problem of predicting if a resident of Statsville is female based on the height. For this purpose, we have collected a set of height samples from adult female residents in Statsville. Unfortunately, due to unforseen circumstances we have collected a very small sample from the residents. Armed with our knowledge of Bayesian inference, we do not want to let this deter us from trying to build a model. From physical considerations, we can assume that the distribution of heights is Gaussian. Our goal is to estimate the parameters ($\mu$, $\sigma$) of this Gaussian. Let us first create the dataset by sampling 5 points from a Gaussian distribution with $\mu$=152 and $\sigma$=8. In real life scenarios, we do not know the mean and standard deviation of the true distribution. But for the sake of this example, let's assume that the mean height is 152cm and standard deviation is 8cm. ``` torch.random.manual_seed(0) num_samples = 5 true_dist = Normal(152, 8) X = true_dist.sample((num_samples, 1)) print('Dataset shape: {}'.format(X.shape)) ``` ### Maximum Likelihood Estimate If we relied on Maximum Likelihood estimation, our approach would be simply to compute the mean and standard deviation of the dataset, and use this normal distribution as our model. $$\mu_{MLE} = \frac{1}{N}\sum_{i=1}^nx_i$$ $$\sigma_{MLE} = \frac{1}{N}\sum_{i=1}^n(x_i - \mu)^2$$ Once we estimate the parameters, we can find out the probability that a sample lies in the range using the following formula $$ p(a < X <= b) = \int_{a}^b p(X) dX $$ However, when the amount of data is low, the MLE estimates are not as reliable. ``` mle_mu, mle_std = X.mean(), X.std() mle_dist = Normal(mle_mu, mle_std) print(f"MLE: mu {mle_mu:0.2f} std {mle_std:0.2f}") ``` ## Bayesian Inference Can we do better than MLE? One potential method to do this is to use Bayesian inference with a good prior. How does one go about selecting a good prior? Well, lets say from another survey, we know that the average and the standard deviation of height of adult female residents in Neighborville, the neighboring town. Additionally, we have no reason to believe that the distribution of heights at Statsville is significantly different. So we can use this information to "initialize" our prior. Lets say the the mean height of adult female resident in Neighborville is 150 cm with a standard deviation of 9 cm. We can use this information as our prior. The prior distribution encodes our beliefs on the parameter values. Given that we are dealing with an unknown mean, and unknown variance, we will model the prior as a Normal Gamma distribution. $$p\left( \theta \middle\vert X \right) = p \left( X \middle\vert \theta \right) p \left( \theta \right)\\ p\left( \theta \middle\vert X \right) = Normal-Gamma\left( \mu_{n}, \lambda_{n}, \alpha_{n}, \beta_{n} \right) \\ p \left( X \middle\vert \theta \right) = \mathbb{N}\left( \mu, \lambda^{ -\frac{1}{2} } \right) \\ p \left( \theta \right) = Normal-Gamma\left( \mu_{0}, \lambda_{0}, \alpha_{0}, \beta_{0} \right)$$ We will choose a prior, $p \left(\theta \right)$, such that $$ \mu_{0} = 150 \\ \lambda_{0} = 100 \\ \alpha_{0} = 100.5 \\ \beta_{0} = 8100 $$ $$p \left( \theta \right) = Normal-Gamma\left( 150, 100, 100.5 , 8100 \right)$$ We will compute the posterior, $p\left( \theta \middle\vert X \right)$, using Bayesian inference. $$\mu_{n} = \frac{ \left( n \bar{x} + \mu_{0} \lambda_{0} \right) }{ n + \lambda_{0} } \\ \lambda_{n} = n + \lambda_{0} \\ \alpha_{n} = \frac{n}{2} + \alpha_{0} \\ \beta_{n} = \frac{ ns }{ 2 } + \beta_{ 0 } + \frac{ n \lambda_{0} } { 2 \left( n + \lambda_{0} \right) } \left( \bar{x} - \mu_{0} \right)^{ 2 }$$ $$p\left( \theta \middle\vert X \right) = Normal-Gamma\left( \mu_{n}, \lambda_{n}, \alpha_{n}, \beta_{n} \right)$$ ``` class NormalGamma(): def __init__(self, mu_, lambda_, alpha_, beta_): self.mu_ = mu_ self.lambda_ = lambda_ self.alpha_ = alpha_ self.beta_ = beta_ @property def mean(self): return self.mu_, self.alpha_/ self.beta_ @property def mode(self): return self.mu_, (self.alpha_-0.5)/ self.beta_ def inference_unknown_mean_variance(X, prior_dist): mu_mle = X.mean() sigma_mle = X.std() n = X.shape[0] # Parameters of the prior mu_0 = prior_dist.mu_ lambda_0 = prior_dist.lambda_ alpha_0 = prior_dist.alpha_ beta_0 = prior_dist.beta_ # Parameters of posterior mu_n = (n * mu_mle + mu_0 * lambda_0) / (lambda_0 + n) lambda_n = n + lambda_0 alpha_n = n / 2 + alpha_0 beta_n = (n / 2 * sigma_mle ** 2) + beta_0 + (0.5* n * lambda_0 * (mu_mle - mu_0) **2 /(n + lambda_0)) posterior_dist = NormalGamma(mu_n, lambda_n, alpha_n, beta_n) return posterior_dist # Let us initialize the prior based on our beliefs prior_dist = NormalGamma(150, 100, 10.5, 810) # We compute the posterior distribution posterior_dist = inference_unknown_mean_variance(X, prior_dist) ``` How do we use the posterior distribution? Note that the posterior distribution is a distribution on the parameters $\mu$ and $\lambda$. It is important to note that the posterior and prior are distributions in the parameter space. The likelihood is a distribution on the data space. Once we learn the posterior distribution, one way to use the distribution is to look at the mode of the distribution i.e the parameter values which have the highest probability density. Using these point estimates leads us to Maximum A Posteriori / MAP estimation. As usual, we will obtain the maxima of the posterior probability density function $p\left( \mu, \sigma \middle\vert X \right) = Normal-Gamma\left( \mu, \sigma ; \;\; \mu_{n}, \lambda_{n}, \alpha_{n}, \beta_{n} \right) $. This function attains its maxima when $$\mu = \mu_{n} \\ \lambda = \frac{ \alpha_{n} - \frac{1}{2} } { \beta_{n} }$$ We notice that the MAP estimates for $\mu$ and $\sigma$ are better than the MLE estimates. ``` # With the Normal Gamma formulation, the unknown parameters are mu and precision map_mu, map_precision = posterior_dist.mode # We can compute the standard deviation using precision. map_std = math.sqrt(1 / map_precision) map_dist = Normal(map_mu, map_std) print(f"MAP: mu {map_mu:0.2f} std {map_std:0.2f}") ``` How did we arrive at the values of the parameters for the prior distribution? Let us consider the case when we have 0 data points. In this case, posterior will become equal to the prior. If we use the mode of this posterior for our MAP estimate, we see that the mu and std parameters are the same as the $\mu$ and $\sigma$ of adult female residents in Neighborville. ``` prior_mu, prior_precision = prior_dist.mode prior_std = math.sqrt(1 / prior_precision) print(f"Prior: mu {prior_mu:0.2f} std {prior_std:0.2f}") ``` ## Inference Let us say we want to find out the probability that a height between 150 and 155 belongs to an adult female resident. We can now use the the MAP estimates for $\mu$ and $\sigma$ to compute this value. Since our prior was good, we notice that the MAP serves as a better estimator than MLE at low values of n ``` a, b = torch.Tensor([150]), torch.Tensor([155]) true_prob = true_dist.cdf(b) - true_dist.cdf(a) print(f'True probability: {true_prob}') map_prob = map_dist.cdf(b) - map_dist.cdf(a) print(f'MAP probability: {map_prob}') mle_prob = mle_dist.cdf(b) - mle_dist.cdf(a) print('MLE probability: {}'.format(mle_prob)) ``` Let us say we receive more samples, how do we incorporate this information into our model? We can now set the prior to our current posterior and run inference again to obtain the new posterior. This process can be done interatively. $$ p \left( \theta \right)_{n} = p\left( \theta \middle\vert X \right)_{n-1}$$ $$ p\left( \theta \middle\vert X \right)_{n}=inference\_unknown\_mean\_variance(X_{n}, p \left( \theta \right)_{n})$$ We also notice that as the number of data points increases, the MAP starts to converge towards the true values of $\mu$ and $\sigma$ respectively ``` num_batches, batch_size = 20, 10 for i in range(num_batches): X_i = true_dist.sample((batch_size, 1)) prior_i = posterior_dist posterior_dist = inference_unknown_mean_variance(X_i, prior_i) map_mu, map_precision = posterior_dist.mode # We can compute the standard deviation using precision. map_std = math.sqrt(1 / map_precision) map_dist = Normal(map_mu, map_std) if i % 5 == 0: print(f"MAP at batch {i}: mu {map_mu:0.2f} std {map_std:0.2f}") print(f"MAP at batch {i}: mu {map_mu:0.2f} std {map_std:0.2f}") ```
true
code
0.86293
null
null
null
null
``` !pip install plotly -U import numpy as np import matplotlib.pyplot as plt from plotly import graph_objs as go import plotly as py from scipy import optimize print("hello") ``` Generate the data ``` m = np.random.rand() n = np.random.rand() num_of_points = 100 x = np.random.random(num_of_points) y = x*m + n + 0.15*np.random.random(num_of_points) fig = go.Figure(data=[go.Scatter(x=x, y=y, mode='markers', name='all points')], layout=go.Layout( xaxis=dict(range=[np.min(x), np.max(x)], autorange=False), yaxis=dict(range=[np.min(y), np.max(y)], autorange=False) ) ) fig.show() print("m=" + str(m) + " n=" + str(n) ) # fmin def stright_line_fmin(x,y): dist_func = lambda p: (((y-x*p[0]-p[1])**2).mean()) p_opt = optimize.fmin(dist_func, np.array([0,0])) return p_opt stright_line_fmin(x,y) # PCA def straight_line_pca(x,y): X = np.append(x-x.mean(),y-y.mean(), axis=1) # Data matrix X, assumes 0-centered n, m = X.shape # Compute covariance matrix C = np.dot(X.T, X) / (n-1) # Eigen decomposition eigen_vals, eigen_vecs = np.linalg.eig(C) # Project X onto PC space X_pca_inv = np.dot(np.array([[1,0],[-1,0]]), np.linalg.inv(eigen_vecs)) X_pca = np.dot(X, eigen_vecs) x_min = (x-x.mean()).min() x_max = (x-x.mean()).max() fig = go.Figure(data=[ go.Scatter(x=x.ravel(), y=y.ravel(), mode='markers', name='all points'), go.Scatter(x=X_pca_inv[:, 0]+x.mean(), y=X_pca_inv[:,1]+y.mean(), mode='lines', name='pca estimation')]) fig.show() return X_pca_inv[1, 1]/X_pca_inv[1, 0], y.mean() - x.mean()*X_pca_inv[1, 1]/X_pca_inv[1, 0] c = straight_line_pca(x[:, np.newaxis],y[:, np.newaxis]) c #leaset squares def least_square_fit(x, y): # model: y_i = h*x_i # cost: (Y-h*X)^T * (Y-h*X) # solution: h = (X^t *X)^-1 * X^t * Y return np.dot(np.linalg.inv(np.dot(x.transpose(), x)), np.dot(x.transpose() , y)) least_square_fit(np.append(x[:, np.newaxis], np.ones_like(x[:, np.newaxis]), axis=1), y) # SVd def svd_fit(x, y): # model: y_i = h*x_i # minimize: [x_0, 1, -y_0; x1, 1, -y_1; ...]*[h, 1] = Xh = 0 # do so by: eigenvector coresponds to smallest eigenvalue of X X = np.append(x, -y, axis=1) u, s, vh = np.linalg.svd(X) return vh[-1, :2]/vh[-1,-1] m_, n_ = svd_fit(np.append(x[:, np.newaxis], np.ones_like(x[:, np.newaxis]), axis=1), y[:, np.newaxis]) print(m_, n_) #Ransac def ransac(src_pnts, distance_func, model_func, num_of_points_to_determine_model, dist_th, inliers_ratio=0.7, p=0.95): """Summary or Description of the Function Parameters: src_pnt : data points used by Ransac to find the model distance_func : a function pointer to a distance function. The distance function takes a model and a point and calculate the cost p : success probabilaty Returns: int:Returning value """ min_x = src_pnts[:, 0].min() max_x = src_pnts[:, 0].max() print(min_x, max_x) num_of_points = src_pnts.shape[0] num_of_iter = int(np.ceil(np.log(1-p)/np.log(1-inliers_ratio**num_of_points_to_determine_model))) proposed_line = [] max_num_of_inliers = 0 for i in range(num_of_iter): indx = np.random.permutation(num_of_points)[:num_of_points_to_determine_model] curr_model = model_func(src_pnts[indx, :]) x=np.array([min_x, max_x]) y=curr_model(x) print(y) d = distance_func(curr_model, src_pnts) num_of_inliers = np.sum(d<dist_th) proposed_line.append((curr_model, x, y, indx, d, num_of_inliers)) if num_of_inliers > max_num_of_inliers: max_num_of_inliers = num_of_inliers best_model = curr_model return best_model, proposed_line def stright_line_from_two_points(pnts): m = (pnts[1, 1]-pnts[0,1])/(pnts[1,0]-pnts[0,0]) n = (pnts[1,0]*pnts[0,1]-pnts[0,0]*pnts[1,1])/(pnts[1,0]-pnts[0,0]) mod_func = lambda x : x*m + n return mod_func src_pnts = np.array([x, y]).transpose() distance_func = lambda model, pnts : (model(pnts[:, 0]) - pnts[:, 1])**2 model_func = stright_line_from_two_points num_of_points_to_determine_model = 2 dist_th = 0.2 best_model, ransac_run = ransac(src_pnts, distance_func, model_func, num_of_points_to_determine_model, dist_th) print(x.min()) print(x.max()) x_ransac = np.array([x.min(), x.max()]) y_ransac = best_model(x_ransac) print(y_ransac) scatter_xy = go.Scatter(x=x, y=y, mode='markers', name="all points") frames=[go.Frame( data=[scatter_xy, go.Scatter(x=x[item[3]], y=y[item[3]], mode='markers', line=dict(width=2, color="red"), name="selected points"), go.Scatter(x=item[1], y=item[2], mode='lines', name='current line')]) for item in ransac_run] fig = go.Figure( data=[go.Scatter(x=x, y=y, mode='markers', name='all points'), go.Scatter(x=x, y=y, mode='markers', name="selected points"), go.Scatter(x=x, y=y, mode='markers', name="current line"), go.Scatter(x=x_ransac, y=y_ransac, mode='lines', name="best selection")], layout=go.Layout( xaxis=dict(range=[np.min(x), np.max(x)], autorange=False), yaxis=dict(range=[np.min(y), np.max(y)], autorange=False), title="Ransac guesses", updatemenus=[dict( type="buttons", buttons=[dict(label="Play", method="animate", args=[None])])] ), frames=frames ) fig.show() ```
true
code
0.717804
null
null
null
null
# Cycle-GAN ## Model Schema Definition The purpose of this notebook is to create in a simple format the schema of the solution proposed to colorize pictures with a Cycle-GAN accelerated with FFT convolutions.<p>To create a simple model schema this notebook will present the code for a Cycle-GAN built as a MVP (Minimum Viable Product) that works with the problem proposed. ``` import re import os import urllib.request import numpy as np import random import pickle from PIL import Image from skimage import color import matplotlib.pyplot as plt from glob import glob from keras.preprocessing import image from keras.preprocessing.image import ImageDataGenerator from keras.models import Model from keras.layers import Conv2D, MaxPooling2D, Activation, BatchNormalization, UpSampling2D, Dropout, Flatten, Dense, Input, LeakyReLU, Conv2DTranspose,AveragePooling2D, Concatenate from keras.models import load_model from keras.optimizers import Adam from keras.models import Sequential from tensorflow.compat.v1 import set_random_seed import numpy as np import matplotlib.pyplot as plt import pickle import keras.backend as K import boto3 import time from copy import deepcopy %%time %matplotlib inline #import tqdm seperately and use jupyter notebooks %%capture %%capture from tqdm import tqdm_notebook as tqdm #enter your bucket name and use boto3 to identify your region if you don't know it bucket = None region = boto3.Session().region_name #add your bucket then creat the containers to download files and send to bucket role = get_execution_role() bucket = None # customize to your bucket containers = {'us-west-2': '433757028032.dkr.ecr.us-west-2.amazonaws.com/image-classification:latest', 'us-east-1': '811284229777.dkr.ecr.us-east-1.amazonaws.com/image-classification:latest', 'us-east-2': '825641698319.dkr.ecr.us-east-2.amazonaws.com/image-classification:latest', 'eu-west-1': '685385470294.dkr.ecr.eu-west-1.amazonaws.com/image-classification:latest'} training_image = containers[boto3.Session().region_name] def download(url): ''' Downloads the file of a given url ''' filename = url.split("/")[-1] if not os.path.exists(filename): urllib.request.urlretrieve(url, filename) def upload_to_s3(channel, file): ''' Save file in a given folder in the S3 bucket ''' s3 = boto3.resource('s3') data = open(file, "rb") key = channel + '/' + file s3.Bucket(bucket).put_object(Key=key, Body=data) # MPII Human Pose download('https://datasets.d2.mpi-inf.mpg.de/andriluka14cvpr/mpii_human_pose_v1.tar.gz') upload_to_s3('people', 'mpii_human_pose_v1.tar.gz') #untar the file !tar xvzf mpii_human_pose_v1.tar.gz #MIT coastal download('http://cvcl.mit.edu/scenedatabase/coast.zip') upload_to_s3('coast', 'coast.zip') #unzip the file !unzip coast.zip -d ./data def image_read(file, size=(256,256)): ''' This function loads and resizes the image to the passed size. Default image size is set to be 256x256 ''' image = image.load_img(file, target_size=size) image = image.img_to_array(img) return image def image_convert(file_paths,size=256,channels=3): ''' Redimensions images to Numpy arrays of a certain size and channels. Default values are set to 256x256x3 for coloured images. Parameters: file_paths: a path to the image files size: an int or a 2x2 tuple to define the size of an image channels: number of channels to define in the numpy array ''' # If size is an int if isinstance(size, int): # build a zeros matrix of the size of the image all_images_to_array = np.zeros((len(file_paths), size, size, channels), dtype='int64') for ind, i in enumerate(file_paths): # reads image img = image_read(i) all_images_to_array[ind] = img.astype('int64') print('All Images shape: {} size: {:,}'.format(all_images_to_array.shape, all_images_to_array.size)) else: all_images_to_array = np.zeros((len(file_paths), size[0], size[1], channels), dtype='int64') for ind, i in enumerate(file_paths): img = read_img(i) all_images_to_array[ind] = img.astype('int64') print('All Images shape: {} size: {:,}'.format(all_images_to_array.shape, all_images_to_array.size)) return all_images_to_array file_paths = glob(r'./images/*.jpg') X_train = image_convert(file_paths) def rgb_to_lab(img, l=False, ab=False): """ Takes in RGB channels in range 0-255 and outputs L or AB channels in range -1 to 1 """ img = img / 255 l = color.rgb2lab(img)[:,:,0] l = l / 50 - 1 l = l[...,np.newaxis] ab = color.rgb2lab(img)[:,:,1:] ab = (ab + 128) / 255 * 2 - 1 if l: return l else: return ab def lab_to_rgb(img): """ Takes in LAB channels in range -1 to 1 and out puts RGB chanels in range 0-255 """ new_img = np.zeros((256,256,3)) for i in range(len(img)): for j in range(len(img[i])): pix = img[i,j] new_img[i,j] = [(pix[0] + 1) * 50,(pix[1] +1) / 2 * 255 - 128,(pix[2] +1) / 2 * 255 - 128] new_img = color.lab2rgb(new_img) * 255 new_img = new_img.astype('uint8') return new_img L = np.array([rgb_to_lab(image,l=True)for image in X_train]) AB = np.array([rgb_to_lab(image,ab=True)for image in X_train]) L_AB_channels = (L,AB) with open('l_ab_channels.p','wb') as f: pickle.dump(L_AB_channels,f) def resnet_block(x ,num_conv=2, num_filters=512,kernel_size=(3,3),padding='same',strides=2): ''' This function defines a ResNet Block composed of two convolution layers and that returns the sum of the inputs and the convolution outputs. Parameters x: is the tensor which will be used as input to the convolution layer num_conv: is the number of convolutions inside the block num_filters: is an int that describes the number of output filters in the convolution kernel size: is an int or tuple that describes the size of the convolution window padding: padding with zeros the image so that the kernel fits the input image or not. Options: 'valid' or 'same' strides: is the number of pixels shifts over the input matrix. ''' input=x for i in num_conv: input=Conv2D(num_filters,kernel_size=kernel_size,padding=padding,strides=strides)(input) input=InstanceNormalization()(input) input=LeakyReLU(0.2)(input) return (input + x) ``` ### Generator ``` def generator(input,filters=64,num_enc_layers=4,num_resblock=4,name="Generator"): ''' The generator per se is an autoencoder built by a series of convolution layers that initially extract features of the input image. ''' # defining input input=Input(shape=(256,256,1)) x=input ''' Adding first layer of the encoder model: 64 filters, 5x5 kernel size, 2 so the input size is reduced to half, input size is the image size: (256,256,1), number of channels 1 for the luminosity channel. We will use InstanceNormalization through the model and Leaky Relu with and alfa of 0.2 as activation function for the encoder, while relu as activation for the decoder. between both of them, in the latent space we insert 4 resnet blocks. ''' for lay in num_enc_layers: x=Conv2D(filters*lay,(5,5),padding='same',strides=2,input_shape=(256,256,1))(x) x=InstanceNormalization()(x) x=LeakyReLU(0.2)(x) x=Conv2D(128,(3,3),padding='same',strides=2)(x) x=InstanceNormalization()(x) x=LeakyReLU(0.2)(x) x=Conv2D(256,(3,3),padding='same',strides=2)(x) x=InstanceNormalization()(x) x=LeakyReLU(0.2)(x) x=Conv2D(512,(3,3),padding='same',strides=2)(x) x=InstanceNormalization()(x) x=LeakyReLU(0.2)(x) ''' ----------------------------------LATENT SPACE--------------------------------------------- ''' for r in num_resblock: x=resnet_block(x) ''' ----------------------------------LATENT SPACE--------------------------------------------- ''' x=Conv2DTranspose(256,(3,3),padding='same',strides=2)(x) x=InstanceNormalization()(x) x=Activation('relu')(x) x=Conv2DTranspose(128,(3,3),padding='same',strides=2)(x) x=InstanceNormalization()(x) x=Activation('relu')(x) x=Conv2DTranspose(64,(3,3),padding='same',strides=2)(x) x=InstanceNormalization()(x) x=Activation('relu')(x) x=Conv2DTranspose(32,(5,5),padding='same',strides=2)(x) x=InstanceNormalization()(x) x=Activation('relu')(x) x=Conv2D(2,(3,3),padding='same')(x) output=Activation('tanh')(x) model=Model(input,output,name=name) return model ``` ## Discriminator ``` def discriminator(input,name="Discriminator"): # importing libraries from keras.layers import Conv2D, MaxPooling2D, Activation, BatchNormalization, UpSampling2D, Dropout, Flatten, Dense, Input, LeakyReLU, Conv2DTranspose,AveragePooling2D, Concatenate from tensorflow_addons import InstanceNormalization # defining input input=Input(shape=(256,256,2)) x=input x=Conv2D(32,(3,3), padding='same',strides=2,input_shape=(256,256,2))(x) x=LeakyReLU(0.2)(x) x=Dropout(0.25)(x) x=Conv2D(64,(3,3),padding='same',strides=2)(x) x=BatchNormalization() x=LeakyReLU(0.2)(x) x=Dropout(0.25)(x) x=Conv2D(128,(3,3), padding='same', strides=2)(x) x=BatchNormalization()(x) x=LeakyReLU(0.2)(x) x=Dropout(0.25)(x) x=Conv2D(256,(3,3), padding='same',strides=2)(x) x=BatchNormalization()(x) x=LeakyReLU(0.2)(x) x=Dropout(0.25)(x) x=Flatten()(x) x=Dense(1)(x) output=Activation('sigmoid')(x) model=Model(input,output,name=name) return model ``` ## Building GAN Model ``` # Building discriminators discriminator_A=discriminator(input_a,"discriminator_A") discriminator_B=discriminator(input_b,"discriminator_A") discriminator_A.trainable = False discriminator_B.trainable = False # Building generator generator_B = generator(input_a,"Generator_A_B") generator_A = generator(input_b,"Generator_B_A") decision_A=discriminator(generator_a,"Discriminator_A") decision_B=discriminator(generator_B,"Discriminator_B") cycle_A=generator(generator_b,"Generator_B_A") cycle_B=generator(generator_A,"Generator_A_B") #creates lists to log the losses and accuracy gen_losses = [] disc_real_losses = [] disc_fake_losses=[] disc_acc = [] #train the generator on a full set of 320 and the discriminator on a half set of 160 for each epoch #discriminator is given real and fake y's while generator is always given real y's n = 320 y_train_fake = np.zeros([160,1]) y_train_real = np.ones([160,1]) y_gen = np.ones([n,1]) #Optional label smoothing #y_train_real -= .1 #Pick batch size and number of epochs, number of epochs depends on the number of photos per epoch set above num_epochs=1500 batch_size=32 #run and train until photos meet expectations (stop & restart model with tweaks if loss goes to 0 in discriminator) for epoch in tqdm(range(1,num_epochs+1)): #shuffle L and AB channels then take a subset corresponding to each networks training size np.random.shuffle(X_train_L) l = X_train_L[:n] np.random.shuffle(X_train_AB) ab = X_train_AB[:160] fake_images = generator.predict(l[:160], verbose=1) #Train on Real AB channels d_loss_real = discriminator.fit(x=ab, y= y_train_real,batch_size=32,epochs=1,verbose=1) disc_real_losses.append(d_loss_real.history['loss'][-1]) #Train on fake AB channels d_loss_fake = discriminator.fit(x=fake_images,y=y_train_fake,batch_size=32,epochs=1,verbose=1) disc_fake_losses.append(d_loss_fake.history['loss'][-1]) #append the loss and accuracy and print loss disc_acc.append(d_loss_fake.history['acc'][-1]) #Train the gan by producing AB channels from L g_loss = combined_network.fit(x=l, y=y_gen,batch_size=32,epochs=1,verbose=1) #append and print generator loss gen_losses.append(g_loss.history['loss'][-1]) #every 50 epochs it prints a generated photo and every 100 it saves the model under that epoch if epoch % 50 == 0: print('Reached epoch:',epoch) pred = generator.predict(X_test_L[2].reshape(1,256,256,1)) img = lab_to_rgb(np.dstack((X_test_L[2],pred.reshape(256,256,2)))) plt.imshow(img) plt.show() if epoch % 100 == 0: generator.save('generator_' + str(epoch)+ '_v3.h5') img_height = 256 img_width = 256 img_layer = 3 img_size = img_height * img_width to_train = True to_test = False to_restore = False output_path = "./output" check_dir = "./output/checkpoints/" temp_check = 0 max_epoch = 1 max_images = 100 h1_size = 150 h2_size = 300 z_size = 100 batch_size = 1 pool_size = 50 sample_size = 10 save_training_images = True ngf = 32 ndf = 64 class CycleGAN(): def input_setup(self): ''' This function basically setup variables for taking image input. filenames_A/filenames_B -> takes the list of all training images self.image_A/self.image_B -> Input image with each values ranging from [-1,1] ''' filenames_A = tf.train.match_filenames_once("./input/horse2zebra/trainA/*.jpg") self.queue_length_A = tf.size(filenames_A) filenames_B = tf.train.match_filenames_once("./input/horse2zebra/trainB/*.jpg") self.queue_length_B = tf.size(filenames_B) filename_queue_A = tf.train.string_input_producer(filenames_A) filename_queue_B = tf.train.string_input_producer(filenames_B) image_reader = tf.WholeFileReader() _, image_file_A = image_reader.read(filename_queue_A) _, image_file_B = image_reader.read(filename_queue_B) self.image_A = tf.subtract(tf.div(tf.image.resize_images(tf.image.decode_jpeg(image_file_A),[256,256]),127.5),1) self.image_B = tf.subtract(tf.div(tf.image.resize_images(tf.image.decode_jpeg(image_file_B),[256,256]),127.5),1) def input_read(self, sess): ''' It reads the input into from the image folder. self.fake_images_A/self.fake_images_B -> List of generated images used for calculation of loss function of Discriminator self.A_input/self.B_input -> Stores all the training images in python list ''' # Loading images into the tensors coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) num_files_A = sess.run(self.queue_length_A) num_files_B = sess.run(self.queue_length_B) self.fake_images_A = np.zeros((pool_size,1,img_height, img_width, img_layer)) self.fake_images_B = np.zeros((pool_size,1,img_height, img_width, img_layer)) self.A_input = np.zeros((max_images, batch_size, img_height, img_width, img_layer)) self.B_input = np.zeros((max_images, batch_size, img_height, img_width, img_layer)) for i in range(max_images): image_tensor = sess.run(self.image_A) if(image_tensor.size() == img_size*batch_size*img_layer): self.A_input[i] = image_tensor.reshape((batch_size,img_height, img_width, img_layer)) for i in range(max_images): image_tensor = sess.run(self.image_B) if(image_tensor.size() == img_size*batch_size*img_layer): self.B_input[i] = image_tensor.reshape((batch_size,img_height, img_width, img_layer)) coord.request_stop() coord.join(threads) def model_setup(self): ''' This function sets up the model to train self.input_A/self.input_B -> Set of training images. self.fake_A/self.fake_B -> Generated images by corresponding generator of input_A and input_B self.lr -> Learning rate variable self.cyc_A/ self.cyc_B -> Images generated after feeding self.fake_A/self.fake_B to corresponding generator. This is use to calcualte cyclic loss ''' self.input_A = tf.placeholder(tf.float32, [batch_size, img_width, img_height, img_layer], name="input_A") self.input_B = tf.placeholder(tf.float32, [batch_size, img_width, img_height, img_layer], name="input_B") self.fake_pool_A = tf.placeholder(tf.float32, [None, img_width, img_height, img_layer], name="fake_pool_A") self.fake_pool_B = tf.placeholder(tf.float32, [None, img_width, img_height, img_layer], name="fake_pool_B") self.global_step = tf.Variable(0, name="global_step", trainable=False) self.num_fake_inputs = 0 self.lr = tf.placeholder(tf.float32, shape=[], name="lr") with tf.variable_scope("Model") as scope: self.fake_B = build_generator_resnet_9blocks(self.input_A, name="g_A") self.fake_A = build_generator_resnet_9blocks(self.input_B, name="g_B") self.rec_A = build_gen_discriminator(self.input_A, "d_A") self.rec_B = build_gen_discriminator(self.input_B, "d_B") scope.reuse_variables() self.fake_rec_A = build_gen_discriminator(self.fake_A, "d_A") self.fake_rec_B = build_gen_discriminator(self.fake_B, "d_B") self.cyc_A = build_generator_resnet_9blocks(self.fake_B, "g_B") self.cyc_B = build_generator_resnet_9blocks(self.fake_A, "g_A") scope.reuse_variables() self.fake_pool_rec_A = build_gen_discriminator(self.fake_pool_A, "d_A") self.fake_pool_rec_B = build_gen_discriminator(self.fake_pool_B, "d_B") def loss_calc(self): ''' In this function we are defining the variables for loss calcultions and traning model d_loss_A/d_loss_B -> loss for discriminator A/B g_loss_A/g_loss_B -> loss for generator A/B *_trainer -> Variaous trainer for above loss functions *_summ -> Summary variables for above loss functions''' cyc_loss = tf.reduce_mean(tf.abs(self.input_A-self.cyc_A)) + tf.reduce_mean(tf.abs(self.input_B-self.cyc_B)) disc_loss_A = tf.reduce_mean(tf.squared_difference(self.fake_rec_A,1)) disc_loss_B = tf.reduce_mean(tf.squared_difference(self.fake_rec_B,1)) g_loss_A = cyc_loss*10 + disc_loss_B g_loss_B = cyc_loss*10 + disc_loss_A d_loss_A = (tf.reduce_mean(tf.square(self.fake_pool_rec_A)) + tf.reduce_mean(tf.squared_difference(self.rec_A,1)))/2.0 d_loss_B = (tf.reduce_mean(tf.square(self.fake_pool_rec_B)) + tf.reduce_mean(tf.squared_difference(self.rec_B,1)))/2.0 optimizer = tf.train.AdamOptimizer(self.lr, beta1=0.5) self.model_vars = tf.trainable_variables() d_A_vars = [var for var in self.model_vars if 'd_A' in var.name] g_A_vars = [var for var in self.model_vars if 'g_A' in var.name] d_B_vars = [var for var in self.model_vars if 'd_B' in var.name] g_B_vars = [var for var in self.model_vars if 'g_B' in var.name] self.d_A_trainer = optimizer.minimize(d_loss_A, var_list=d_A_vars) self.d_B_trainer = optimizer.minimize(d_loss_B, var_list=d_B_vars) self.g_A_trainer = optimizer.minimize(g_loss_A, var_list=g_A_vars) self.g_B_trainer = optimizer.minimize(g_loss_B, var_list=g_B_vars) for var in self.model_vars: print(var.name) #Summary variables for tensorboard self.g_A_loss_summ = tf.summary.scalar("g_A_loss", g_loss_A) self.g_B_loss_summ = tf.summary.scalar("g_B_loss", g_loss_B) self.d_A_loss_summ = tf.summary.scalar("d_A_loss", d_loss_A) self.d_B_loss_summ = tf.summary.scalar("d_B_loss", d_loss_B) def save_training_images(self, sess, epoch): if not os.path.exists("./output/imgs"): os.makedirs("./output/imgs") for i in range(0,10): fake_A_temp, fake_B_temp, cyc_A_temp, cyc_B_temp = sess.run([self.fake_A, self.fake_B, self.cyc_A, self.cyc_B],feed_dict={self.input_A:self.A_input[i], self.input_B:self.B_input[i]}) imsave("./output/imgs/fakeB_"+ str(epoch) + "_" + str(i)+".jpg",((fake_A_temp[0]+1)*127.5).astype(np.uint8)) imsave("./output/imgs/fakeA_"+ str(epoch) + "_" + str(i)+".jpg",((fake_B_temp[0]+1)*127.5).astype(np.uint8)) imsave("./output/imgs/cycA_"+ str(epoch) + "_" + str(i)+".jpg",((cyc_A_temp[0]+1)*127.5).astype(np.uint8)) imsave("./output/imgs/cycB_"+ str(epoch) + "_" + str(i)+".jpg",((cyc_B_temp[0]+1)*127.5).astype(np.uint8)) imsave("./output/imgs/inputA_"+ str(epoch) + "_" + str(i)+".jpg",((self.A_input[i][0]+1)*127.5).astype(np.uint8)) imsave("./output/imgs/inputB_"+ str(epoch) + "_" + str(i)+".jpg",((self.B_input[i][0]+1)*127.5).astype(np.uint8)) def fake_image_pool(self, num_fakes, fake, fake_pool): ''' This function saves the generated image to corresponding pool of images. In starting. It keeps on feeling the pool till it is full and then randomly selects an already stored image and replace it with new one.''' if(num_fakes < pool_size): fake_pool[num_fakes] = fake return fake else : p = random.random() if p > 0.5: random_id = random.randint(0,pool_size-1) temp = fake_pool[random_id] fake_pool[random_id] = fake return temp else : return fake def train(self): ''' Training Function ''' # Load Dataset from the dataset folder self.input_setup() #Build the network self.model_setup() #Loss function calculations self.loss_calc() # Initializing the global variables init = tf.global_variables_initializer() saver = tf.train.Saver() with tf.Session() as sess: sess.run(init) #Read input to nd array self.input_read(sess) #Restore the model to run the model from last checkpoint if to_restore: chkpt_fname = tf.train.latest_checkpoint(check_dir) saver.restore(sess, chkpt_fname) writer = tf.summary.FileWriter("./output/2") if not os.path.exists(check_dir): os.makedirs(check_dir) # Training Loop for epoch in range(sess.run(self.global_step),100): print ("In the epoch ", epoch) saver.save(sess,os.path.join(check_dir,"cyclegan"),global_step=epoch) # Dealing with the learning rate as per the epoch number if(epoch < 100) : curr_lr = 0.0002 else: curr_lr = 0.0002 - 0.0002*(epoch-100)/100 if(save_training_images): self.save_training_images(sess, epoch) # sys.exit() for ptr in range(0,max_images): print("In the iteration ",ptr) print("Starting",time.time()*1000.0) # Optimizing the G_A network _, fake_B_temp, summary_str = sess.run([self.g_A_trainer, self.fake_B, self.g_A_loss_summ],feed_dict={self.input_A:self.A_input[ptr], self.input_B:self.B_input[ptr], self.lr:curr_lr}) writer.add_summary(summary_str, epoch*max_images + ptr) fake_B_temp1 = self.fake_image_pool(self.num_fake_inputs, fake_B_temp, self.fake_images_B) # Optimizing the D_B network _, summary_str = sess.run([self.d_B_trainer, self.d_B_loss_summ],feed_dict={self.input_A:self.A_input[ptr], self.input_B:self.B_input[ptr], self.lr:curr_lr, self.fake_pool_B:fake_B_temp1}) writer.add_summary(summary_str, epoch*max_images + ptr) # Optimizing the G_B network _, fake_A_temp, summary_str = sess.run([self.g_B_trainer, self.fake_A, self.g_B_loss_summ],feed_dict={self.input_A:self.A_input[ptr], self.input_B:self.B_input[ptr], self.lr:curr_lr}) writer.add_summary(summary_str, epoch*max_images + ptr) fake_A_temp1 = self.fake_image_pool(self.num_fake_inputs, fake_A_temp, self.fake_images_A) # Optimizing the D_A network _, summary_str = sess.run([self.d_A_trainer, self.d_A_loss_summ],feed_dict={self.input_A:self.A_input[ptr], self.input_B:self.B_input[ptr], self.lr:curr_lr, self.fake_pool_A:fake_A_temp1}) writer.add_summary(summary_str, epoch*max_images + ptr) self.num_fake_inputs+=1 sess.run(tf.assign(self.global_step, epoch + 1)) writer.add_graph(sess.graph) def test(self): ''' Testing Function''' print("Testing the results") self.input_setup() self.model_setup() saver = tf.train.Saver() init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) self.input_read(sess) chkpt_fname = tf.train.latest_checkpoint(check_dir) saver.restore(sess, chkpt_fname) if not os.path.exists("./output/imgs/test/"): os.makedirs("./output/imgs/test/") for i in range(0,100): fake_A_temp, fake_B_temp = sess.run([self.fake_A, self.fake_B],feed_dict={self.input_A:self.A_input[i], self.input_B:self.B_input[i]}) imsave("./output/imgs/test/fakeB_"+str(i)+".jpg",((fake_A_temp[0]+1)*127.5).astype(np.uint8)) imsave("./output/imgs/test/fakeA_"+str(i)+".jpg",((fake_B_temp[0]+1)*127.5).astype(np.uint8)) imsave("./output/imgs/test/inputA_"+str(i)+".jpg",((self.A_input[i][0]+1)*127.5).astype(np.uint8)) imsave("./output/imgs/test/inputB_"+str(i)+".jpg",((self.B_input[i][0]+1)*127.5).astype(np.uint8)) def main(): model = CycleGAN() if to_train: model.train() elif to_test: model.test() if __name__ == '__main__': main() ```
true
code
0.661595
null
null
null
null
**KNN model of 10k dataset** _using data found on kaggle from Goodreads_ _books.csv contains information for 10,000 books, such as ISBN, authors, title, year_ _ratings.csv is a collection of user ratings on these books, from 1 to 5 stars_ ``` # imports import numpy as pd import pandas as pd import pickle from sklearn.neighbors import NearestNeighbors from scipy.sparse import csr_matrix import re ``` **Books dataset** ``` books = pd.read_csv('https://raw.githubusercontent.com/zygmuntz/goodbooks-10k/master/books.csv') print(books.shape) books.head() ``` **Ratings dataset** ``` ratings = pd.read_csv('https://raw.githubusercontent.com/zygmuntz/goodbooks-10k/master/ratings.csv') print(ratings.shape) ratings.head() ``` **Trim down the data** _In order to make a user rating matrix we will only need bood_id and title._ ``` cols = ['book_id', 'title'] books = books[cols] books.head() ``` **Clean up book titles** _Book titles are messy, special characters, empty spaces, brackets clutter up the titles_ ``` def clean_book_titles(title): title = re.sub(r'\([^)]*\)', '', title) # handles brackets title = re.sub(' + ', ' ', title) #compresses multi spaces into a single space title = title.strip() # handles special characters return title books['title'] = books['title'].apply(clean_book_titles) books.head() ``` **neat-o** **Create feature matrix** _Combine datasets to get a new dataset of user ratings for each book_ ``` books_ratings = pd.merge(ratings, books, on='book_id') print(books_ratings.shape) books_ratings.head() ``` **Remove rows with same user_id and book title** ``` user_ratings = books_ratings.drop_duplicates(['user_id', 'title']) print(user_ratings.shape) user_ratings.head() ``` **Pivot table to create user_ratings matrix** _Each column is a user and each row is a book. The entries in the martix are the user's rating for that book._ ``` user_matrix = user_ratings.pivot(index='title', columns='user_id', values='rating').fillna(0) user_matrix.head() user_matrix.shape ``` **Compress the matrix since it is extremely sparse** _Whole lotta zeros_ _ ``` compressed = csr_matrix(user_matrix.values) # build and train knn # unsupervised learning # using cosine to measure space/distance knn = NearestNeighbors(algorithm='brute', metric='cosine') knn.fit(compressed) def get_recommendations(book_title, matrix=user_matrix, model=knn, topn=2): book_index = list(matrix.index).index(book_title) distances, indices = model.kneighbors(matrix.iloc[book_index,:].values.reshape(1,-1), n_neighbors=topn+1) print('Recommendations for {}:'.format(matrix.index[book_index])) for i in range(1, len(distances.flatten())): print('{}. {}, distance = {}'.format(i, matrix.index[indices.flatten()[i]], "%.3f"%distances.flatten()[i])) print() get_recommendations("Harry Potter and the Sorcerer's Stone") get_recommendations("Pride and Prejudice") get_recommendations("Matilda") pickle.dump(knn, open('knn_model.pkl','wb')) ```
true
code
0.439868
null
null
null
null
# Wind Statistics ### Introduction: The data have been modified to contain some missing values, identified by NaN. Using pandas should make this exercise easier, in particular for the bonus question. You should be able to perform all of these operations without using a for loop or other looping construct. 1. The data in 'wind.data' has the following format: ``` """ Yr Mo Dy RPT VAL ROS KIL SHA BIR DUB CLA MUL CLO BEL MAL 61 1 1 15.04 14.96 13.17 9.29 NaN 9.87 13.67 10.25 10.83 12.58 18.50 15.04 61 1 2 14.71 NaN 10.83 6.50 12.62 7.67 11.50 10.04 9.79 9.67 17.54 13.83 61 1 3 18.50 16.88 12.33 10.13 11.17 6.17 11.25 NaN 8.50 7.67 12.75 12.71 """ ``` The first three columns are year, month and day. The remaining 12 columns are average windspeeds in knots at 12 locations in Ireland on that day. More information about the dataset go [here](wind.desc). ### Step 1. Import the necessary libraries ``` import pandas as pd import datetime ``` ### Step 2. Import the dataset from this [address](https://github.com/guipsamora/pandas_exercises/blob/master/06_Stats/Wind_Stats/wind.data) ### Step 3. Assign it to a variable called data and replace the first 3 columns by a proper datetime index. ``` # parse_dates gets 0, 1, 2 columns and parses them as the index data_url = 'https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/06_Stats/Wind_Stats/wind.data' data = pd.read_csv(data_url, sep = "\s+", parse_dates = [[0,1,2]]) data.head() ``` ### Step 4. Year 2061? Do we really have data from this year? Create a function to fix it and apply it. ``` # The problem is that the dates are 2061 and so on... # function that uses datetime def fix_century(x): year = x.year - 100 if x.year > 1989 else x.year return datetime.date(year, x.month, x.day) # apply the function fix_century on the column and replace the values to the right ones data['Yr_Mo_Dy'] = data['Yr_Mo_Dy'].apply(fix_century) # data.info() data.head() ``` ### Step 5. Set the right dates as the index. Pay attention at the data type, it should be datetime64[ns]. ``` # transform Yr_Mo_Dy it to date type datetime64 data["Yr_Mo_Dy"] = pd.to_datetime(data["Yr_Mo_Dy"]) # set 'Yr_Mo_Dy' as the index data = data.set_index('Yr_Mo_Dy') data.head() # data.info() ``` ### Step 6. Compute how many values are missing for each location over the entire record. #### They should be ignored in all calculations below. ``` # "Number of non-missing values for each location: " data.isnull().sum() ``` ### Step 7. Compute how many non-missing values there are in total. ``` #number of columns minus the number of missing values for each location data.shape[0] - data.isnull().sum() #or data.notnull().sum() ``` ### Step 8. Calculate the mean windspeeds of the windspeeds over all the locations and all the times. #### A single number for the entire dataset. ``` data.sum().sum() / data.notna().sum().sum() ``` ### Step 9. Create a DataFrame called loc_stats and calculate the min, max and mean windspeeds and standard deviations of the windspeeds at each location over all the days #### A different set of numbers for each location. ``` data.describe(percentiles=[]) ``` ### Step 10. Create a DataFrame called day_stats and calculate the min, max and mean windspeed and standard deviations of the windspeeds across all the locations at each day. #### A different set of numbers for each day. ``` # create the dataframe day_stats = pd.DataFrame() # this time we determine axis equals to one so it gets each row. day_stats['min'] = data.min(axis = 1) # min day_stats['max'] = data.max(axis = 1) # max day_stats['mean'] = data.mean(axis = 1) # mean day_stats['std'] = data.std(axis = 1) # standard deviations day_stats.head() ``` ### Step 11. Find the average windspeed in January for each location. #### Treat January 1961 and January 1962 both as January. ``` data.loc[data.index.month == 1].mean() ``` ### Step 12. Downsample the record to a yearly frequency for each location. ``` data.groupby(data.index.to_period('A')).mean() ``` ### Step 13. Downsample the record to a monthly frequency for each location. ``` data.groupby(data.index.to_period('M')).mean() ``` ### Step 14. Downsample the record to a weekly frequency for each location. ``` data.groupby(data.index.to_period('W')).mean() ``` ### Step 15. Calculate the min, max and mean windspeeds and standard deviations of the windspeeds across all locations for each week (assume that the first week starts on January 2 1961) for the first 52 weeks. ``` # resample data to 'W' week and use the functions weekly = data.resample('W').agg(['min','max','mean','std']) # slice it for the first 52 weeks and locations weekly.loc[weekly.index[1:53], "RPT":"MAL"] .head(10) ```
true
code
0.57075
null
null
null
null
# Mark and Recapture Think Bayes, Second Edition Copyright 2020 Allen B. Downey License: [Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/) ``` # If we're running on Colab, install empiricaldist # https://pypi.org/project/empiricaldist/ import sys IN_COLAB = 'google.colab' in sys.modules if IN_COLAB: !pip install empiricaldist # Get utils.py import os if not os.path.exists('utils.py'): !wget https://github.com/AllenDowney/ThinkBayes2/raw/master/soln/utils.py from utils import set_pyplot_params set_pyplot_params() ``` This chapter introduces "mark and recapture" experiments, in which we sample individuals from a population, mark them somehow, and then take a second sample from the same population. Seeing how many individuals in the second sample are marked, we can estimate the size of the population. Experiments like this were originally used in ecology, but turn out to be useful in many other fields. Examples in this chapter include software engineering and epidemiology. Also, in this chapter we'll work with models that have three parameters, so we'll extend the joint distributions we've been using to three dimensions. But first, grizzly bears. ## The Grizzly Bear Problem In 1996 and 1997 researchers deployed bear traps in locations in British Columbia and Alberta, Canada, in an effort to estimate the population of grizzly bears. They describe the experiment in [this article](https://www.researchgate.net/publication/229195465_Estimating_Population_Size_of_Grizzly_Bears_Using_Hair_Capture_DNA_Profiling_and_Mark-Recapture_Analysis). The "trap" consists of a lure and several strands of barbed wire intended to capture samples of hair from bears that visit the lure. Using the hair samples, the researchers use DNA analysis to identify individual bears. During the first session, the researchers deployed traps at 76 sites. Returning 10 days later, they obtained 1043 hair samples and identified 23 different bears. During a second 10-day session they obtained 1191 samples from 19 different bears, where 4 of the 19 were from bears they had identified in the first batch. To estimate the population of bears from this data, we need a model for the probability that each bear will be observed during each session. As a starting place, we'll make the simplest assumption, that every bear in the population has the same (unknown) probability of being sampled during each session. With these assumptions we can compute the probability of the data for a range of possible populations. As an example, let's suppose that the actual population of bears is 100. After the first session, 23 of the 100 bears have been identified. During the second session, if we choose 19 bears at random, what is the probability that 4 of them were previously identified? I'll define * $N$: actual population size, 100. * $K$: number of bears identified in the first session, 23. * $n$: number of bears observed in the second session, 19 in the example. * $k$: number of bears in the second session that were previously identified, 4. For given values of $N$, $K$, and $n$, the probability of finding $k$ previously-identified bears is given by the [hypergeometric distribution](https://en.wikipedia.org/wiki/Hypergeometric_distribution): $$\binom{K}{k} \binom{N-K}{n-k}/ \binom{N}{n}$$ where the [binomial coefficient](https://en.wikipedia.org/wiki/Binomial_coefficient), $\binom{K}{k}$, is the number of subsets of size $k$ we can choose from a population of size $K$. To understand why, consider: * The denominator, $\binom{N}{n}$, is the number of subsets of $n$ we could choose from a population of $N$ bears. * The numerator is the number of subsets that contain $k$ bears from the previously identified $K$ and $n-k$ from the previously unseen $N-K$. SciPy provides `hypergeom`, which we can use to compute this probability for a range of values of $k$. ``` import numpy as np from scipy.stats import hypergeom N = 100 K = 23 n = 19 ks = np.arange(12) ps = hypergeom(N, K, n).pmf(ks) ``` The result is the distribution of $k$ with given parameters $N$, $K$, and $n$. Here's what it looks like. ``` import matplotlib.pyplot as plt from utils import decorate plt.bar(ks, ps) decorate(xlabel='Number of bears observed twice', ylabel='PMF', title='Hypergeometric distribution of k (known population 100)') ``` The most likely value of $k$ is 4, which is the value actually observed in the experiment. That suggests that $N=100$ is a reasonable estimate of the population, given this data. We've computed the distribution of $k$ given $N$, $K$, and $n$. Now let's go the other way: given $K$, $n$, and $k$, how can we estimate the total population, $N$? ## The Update As a starting place, let's suppose that, prior to this study, an expert estimates that the local bear population is between 50 and 500, and equally likely to be any value in that range. I'll use `make_uniform` to make a uniform distribution of integers in this range. ``` import numpy as np from utils import make_uniform qs = np.arange(50, 501) prior_N = make_uniform(qs, name='N') prior_N.shape ``` So that's our prior. To compute the likelihood of the data, we can use `hypergeom` with constants `K` and `n`, and a range of values of `N`. ``` Ns = prior_N.qs K = 23 n = 19 k = 4 likelihood = hypergeom(Ns, K, n).pmf(k) ``` We can compute the posterior in the usual way. ``` posterior_N = prior_N * likelihood posterior_N.normalize() ``` And here's what it looks like. ``` posterior_N.plot(color='C4') decorate(xlabel='Population of bears (N)', ylabel='PDF', title='Posterior distribution of N') ``` The most likely value is 109. ``` posterior_N.max_prob() ``` But the distribution is skewed to the right, so the posterior mean is substantially higher. ``` posterior_N.mean() ``` And the credible interval is quite wide. ``` posterior_N.credible_interval(0.9) ``` This solution is relatively simple, but it turns out we can do a little better if we model the unknown probability of observing a bear explicitly. ## Two Parameter Model Next we'll try a model with two parameters: the number of bears, `N`, and the probability of observing a bear, `p`. We'll assume that the probability is the same in both rounds, which is probably reasonable in this case because it is the same kind of trap in the same place. We'll also assume that the probabilities are independent; that is, the probability a bear is observed in the second round does not depend on whether it was observed in the first round. This assumption might be less reasonable, but for now it is a necessary simplification. Here are the counts again: ``` K = 23 n = 19 k = 4 ``` For this model, I'll express the data in a notation that will make it easier to generalize to more than two rounds: * `k10` is the number of bears observed in the first round but not the second, * `k01` is the number of bears observed in the second round but not the first, and * `k11` is the number of bears observed in both rounds. Here are their values. ``` k10 = 23 - 4 k01 = 19 - 4 k11 = 4 ``` Suppose we know the actual values of `N` and `p`. We can use them to compute the likelihood of this data. For example, suppose we know that `N=100` and `p=0.2`. We can use `N` to compute `k00`, which is the number of unobserved bears. ``` N = 100 observed = k01 + k10 + k11 k00 = N - observed k00 ``` For the update, it will be convenient to store the data as a list that represents the number of bears in each category. ``` x = [k00, k01, k10, k11] x ``` Now, if we know `p=0.2`, we can compute the probability a bear falls in each category. For example, the probability of being observed in both rounds is `p*p`, and the probability of being unobserved in both rounds is `q*q` (where `q=1-p`). ``` p = 0.2 q = 1-p y = [q*q, q*p, p*q, p*p] y ``` Now the probability of the data is given by the [multinomial distribution](https://en.wikipedia.org/wiki/Multinomial_distribution): $$\frac{N!}{\prod x_i!} \prod y_i^{x_i}$$ where $N$ is actual population, $x$ is a sequence with the counts in each category, and $y$ is a sequence of probabilities for each category. SciPy provides `multinomial`, which provides `pmf`, which computes this probability. Here is the probability of the data for these values of `N` and `p`. ``` from scipy.stats import multinomial likelihood = multinomial.pmf(x, N, y) likelihood ``` That's the likelihood if we know `N` and `p`, but of course we don't. So we'll choose prior distributions for `N` and `p`, and use the likelihoods to update it. ## The Prior We'll use `prior_N` again for the prior distribution of `N`, and a uniform prior for the probability of observing a bear, `p`: ``` qs = np.linspace(0, 0.99, num=100) prior_p = make_uniform(qs, name='p') ``` We can make a joint distribution in the usual way. ``` from utils import make_joint joint_prior = make_joint(prior_p, prior_N) joint_prior.shape ``` The result is a Pandas `DataFrame` with values of `N` down the rows and values of `p` across the columns. However, for this problem it will be convenient to represent the prior distribution as a 1-D `Series` rather than a 2-D `DataFrame`. We can convert from one format to the other using `stack`. ``` from empiricaldist import Pmf joint_pmf = Pmf(joint_prior.stack()) joint_pmf.head(3) type(joint_pmf) type(joint_pmf.index) joint_pmf.shape ``` The result is a `Pmf` whose index is a `MultiIndex`. A `MultiIndex` can have more than one column; in this example, the first column contains values of `N` and the second column contains values of `p`. The `Pmf` has one row (and one prior probability) for each possible pair of parameters `N` and `p`. So the total number of rows is the product of the lengths of `prior_N` and `prior_p`. Now we have to compute the likelihood of the data for each pair of parameters. ## The Update To allocate space for the likelihoods, it is convenient to make a copy of `joint_pmf`: ``` likelihood = joint_pmf.copy() ``` As we loop through the pairs of parameters, we compute the likelihood of the data as in the previous section, and then store the result as an element of `likelihood`. ``` observed = k01 + k10 + k11 for N, p in joint_pmf.index: k00 = N - observed x = [k00, k01, k10, k11] q = 1-p y = [q*q, q*p, p*q, p*p] likelihood[N, p] = multinomial.pmf(x, N, y) ``` Now we can compute the posterior in the usual way. ``` posterior_pmf = joint_pmf * likelihood posterior_pmf.normalize() ``` We'll use `plot_contour` again to visualize the joint posterior distribution. But remember that the posterior distribution we just computed is represented as a `Pmf`, which is a `Series`, and `plot_contour` expects a `DataFrame`. Since we used `stack` to convert from a `DataFrame` to a `Series`, we can use `unstack` to go the other way. ``` joint_posterior = posterior_pmf.unstack() ``` And here's what the result looks like. ``` from utils import plot_contour plot_contour(joint_posterior) decorate(title='Joint posterior distribution of N and p') ``` The most likely values of `N` are near 100, as in the previous model. The most likely values of `p` are near 0.2. The shape of this contour indicates that these parameters are correlated. If `p` is near the low end of the range, the most likely values of `N` are higher; if `p` is near the high end of the range, `N` is lower. Now that we have a posterior `DataFrame`, we can extract the marginal distributions in the usual way. ``` from utils import marginal posterior2_p = marginal(joint_posterior, 0) posterior2_N = marginal(joint_posterior, 1) ``` Here's the posterior distribution for `p`: ``` posterior2_p.plot(color='C1') decorate(xlabel='Probability of observing a bear', ylabel='PDF', title='Posterior marginal distribution of p') ``` The most likely values are near 0.2. Here's the posterior distribution for `N` based on the two-parameter model, along with the posterior we got using the one-parameter (hypergeometric) model. ``` posterior_N.plot(label='one-parameter model', color='C4') posterior2_N.plot(label='two-parameter model', color='C1') decorate(xlabel='Population of bears (N)', ylabel='PDF', title='Posterior marginal distribution of N') ``` With the two-parameter model, the mean is a little lower and the 90% credible interval is a little narrower. ``` print(posterior_N.mean(), posterior_N.credible_interval(0.9)) print(posterior2_N.mean(), posterior2_N.credible_interval(0.9)) ``` The two-parameter model yields a narrower posterior distribution for `N`, compared to the one-parameter model, because it takes advantage of an additional source of information: the consistency of the two observations. To see how this helps, consider a scenario where `N` is relatively low, like 138 (the posterior mean of the two-parameter model). ``` N1 = 138 ``` Given that we saw 23 bears during the first trial and 19 during the second, we can estimate the corresponding value of `p`. ``` mean = (23 + 19) / 2 p = mean/N1 p ``` With these parameters, how much variability do you expect in the number of bears from one trial to the next? We can quantify that by computing the standard deviation of the binomial distribution with these parameters. ``` from scipy.stats import binom binom(N1, p).std() ``` Now let's consider a second scenario where `N` is 173, the posterior mean of the one-parameter model. The corresponding value of `p` is lower. ``` N2 = 173 p = mean/N2 p ``` In this scenario, the variation we expect to see from one trial to the next is higher. ``` binom(N2, p).std() ``` So if the number of bears we observe is the same in both trials, that would be evidence for lower values of `N`, where we expect more consistency. If the number of bears is substantially different between the two trials, that would be evidence for higher values of `N`. In the actual data, the difference between the two trials is low, which is why the posterior mean of the two-parameter model is lower. The two-parameter model takes advantage of additional information, which is why the credible interval is narrower. ## Joint and Marginal Distributions Marginal distributions are called "marginal" because in a common visualization they appear in the margins of the plot. Seaborn provides a class called `JointGrid` that creates this visualization. The following function uses it to show the joint and marginal distributions in a single plot. ``` import pandas as pd from seaborn import JointGrid def joint_plot(joint, **options): """Show joint and marginal distributions. joint: DataFrame that represents a joint distribution options: passed to JointGrid """ # get the names of the parameters x = joint.columns.name x = 'x' if x is None else x y = joint.index.name y = 'y' if y is None else y # make a JointGrid with minimal data data = pd.DataFrame({x:[0], y:[0]}) g = JointGrid(x=x, y=y, data=data, **options) # replace the contour plot g.ax_joint.contour(joint.columns, joint.index, joint, cmap='viridis') # replace the marginals marginal_x = marginal(joint, 0) g.ax_marg_x.plot(marginal_x.qs, marginal_x.ps) marginal_y = marginal(joint, 1) g.ax_marg_y.plot(marginal_y.ps, marginal_y.qs) joint_plot(joint_posterior) ``` A `JointGrid` is a concise way to represent the joint and marginal distributions visually. ## The Lincoln Index Problem In [an excellent blog post](http://www.johndcook.com/blog/2010/07/13/lincoln-index/), John D. Cook wrote about the Lincoln index, which is a way to estimate the number of errors in a document (or program) by comparing results from two independent testers. Here's his presentation of the problem: > "Suppose you have a tester who finds 20 bugs in your program. You want to estimate how many bugs are really in the program. You know there are at least 20 bugs, and if you have supreme confidence in your tester, you may suppose there are around 20 bugs. But maybe your tester isn't very good. Maybe there are hundreds of bugs. How can you have any idea how many bugs there are? There's no way to know with one tester. But if you have two testers, you can get a good idea, even if you don't know how skilled the testers are." Suppose the first tester finds 20 bugs, the second finds 15, and they find 3 in common; how can we estimate the number of bugs? This problem is similar to the Grizzly Bear problem, so I'll represent the data in the same way. ``` k10 = 20 - 3 k01 = 15 - 3 k11 = 3 ``` But in this case it is probably not reasonable to assume that the testers have the same probability of finding a bug. So I'll define two parameters, `p0` for the probability that the first tester finds a bug, and `p1` for the probability that the second tester finds a bug. I will continue to assume that the probabilities are independent, which is like assuming that all bugs are equally easy to find. That might not be a good assumption, but let's stick with it for now. As an example, suppose we know that the probabilities are 0.2 and 0.15. ``` p0, p1 = 0.2, 0.15 ``` We can compute the array of probabilities, `y`, like this: ``` def compute_probs(p0, p1): """Computes the probability for each of 4 categories.""" q0 = 1-p0 q1 = 1-p1 return [q0*q1, q0*p1, p0*q1, p0*p1] y = compute_probs(p0, p1) y ``` With these probabilities, there is a 68% chance that neither tester finds the bug and a 3% chance that both do. Pretending that these probabilities are known, we can compute the posterior distribution for `N`. Here's a prior distribution that's uniform from 32 to 350 bugs. ``` qs = np.arange(32, 350, step=5) prior_N = make_uniform(qs, name='N') prior_N.head(3) ``` I'll put the data in an array, with 0 as a place-keeper for the unknown value `k00`. ``` data = np.array([0, k01, k10, k11]) ``` And here are the likelihoods for each value of `N`, with `ps` as a constant. ``` likelihood = prior_N.copy() observed = data.sum() x = data.copy() for N in prior_N.qs: x[0] = N - observed likelihood[N] = multinomial.pmf(x, N, y) ``` We can compute the posterior in the usual way. ``` posterior_N = prior_N * likelihood posterior_N.normalize() ``` And here's what it looks like. ``` posterior_N.plot(color='C4') decorate(xlabel='Number of bugs (N)', ylabel='PMF', title='Posterior marginal distribution of n with known p1, p2') print(posterior_N.mean(), posterior_N.credible_interval(0.9)) ``` With the assumption that `p0` and `p1` are known to be `0.2` and `0.15`, the posterior mean is 102 with 90% credible interval (77, 127). But this result is based on the assumption that we know the probabilities, and we don't. ## Three-parameter Model What we need is a model with three parameters: `N`, `p0`, and `p1`. We'll use `prior_N` again for the prior distribution of `N`, and here are the priors for `p0` and `p1`: ``` qs = np.linspace(0, 1, num=51) prior_p0 = make_uniform(qs, name='p0') prior_p1 = make_uniform(qs, name='p1') ``` Now we have to assemble them into a joint prior with three dimensions. I'll start by putting the first two into a `DataFrame`. ``` joint2 = make_joint(prior_p0, prior_N) joint2.shape ``` Now I'll stack them, as in the previous example, and put the result in a `Pmf`. ``` joint2_pmf = Pmf(joint2.stack()) joint2_pmf.head(3) ``` We can use `make_joint` again to add in the third parameter. ``` joint3 = make_joint(prior_p1, joint2_pmf) joint3.shape ``` The result is a `DataFrame` with values of `N` and `p0` in a `MultiIndex` that goes down the rows and values of `p1` in an index that goes across the columns. ``` joint3.head(3) ``` Now I'll apply `stack` again: ``` joint3_pmf = Pmf(joint3.stack()) joint3_pmf.head(3) ``` The result is a `Pmf` with a three-column `MultiIndex` containing all possible triplets of parameters. The number of rows is the product of the number of values in all three priors, which is almost 170,000. ``` joint3_pmf.shape ``` That's still small enough to be practical, but it will take longer to compute the likelihoods than in the previous examples. Here's the loop that computes the likelihoods; it's similar to the one in the previous section: ``` likelihood = joint3_pmf.copy() observed = data.sum() x = data.copy() for N, p0, p1 in joint3_pmf.index: x[0] = N - observed y = compute_probs(p0, p1) likelihood[N, p0, p1] = multinomial.pmf(x, N, y) ``` We can compute the posterior in the usual way. ``` posterior_pmf = joint3_pmf * likelihood posterior_pmf.normalize() ``` Now, to extract the marginal distributions, we could unstack the joint posterior as we did in the previous section. But `Pmf` provides a version of `marginal` that works with a `Pmf` rather than a `DataFrame`. Here's how we use it to get the posterior distribution for `N`. ``` posterior_N = posterior_pmf.marginal(0) ``` And here's what it looks look. ``` posterior_N.plot(color='C4') decorate(xlabel='Number of bugs (N)', ylabel='PDF', title='Posterior marginal distributions of N') posterior_N.mean() ``` The posterior mean is 105 bugs, which suggests that there are still many bugs the testers have not found. Here are the posteriors for `p0` and `p1`. ``` posterior_p1 = posterior_pmf.marginal(1) posterior_p2 = posterior_pmf.marginal(2) posterior_p1.plot(label='p1') posterior_p2.plot(label='p2') decorate(xlabel='Probability of finding a bug', ylabel='PDF', title='Posterior marginal distributions of p1 and p2') posterior_p1.mean(), posterior_p1.credible_interval(0.9) posterior_p2.mean(), posterior_p2.credible_interval(0.9) ``` Comparing the posterior distributions, the tester who found more bugs probably has a higher probability of finding bugs. The posterior means are about 23% and 18%. But the distributions overlap, so we should not be too sure. This is the first example we've seen with three parameters. As the number of parameters increases, the number of combinations increases quickly. The method we've been using so far, enumerating all possible combinations, becomes impractical if the number of parameters is more than 3 or 4. However there are other methods that can handle models with many more parameters, as we'll see in <<_MCMC>>. ## Summary The problems in this chapter are examples of [mark and recapture](https://en.wikipedia.org/wiki/Mark_and_recapture) experiments, which are used in ecology to estimate animal populations. They also have applications in engineering, as in the Lincoln index problem. And in the exercises you'll see that they are used in epidemiology, too. This chapter introduces two new probability distributions: * The hypergeometric distribution is a variation of the binomial distribution in which samples are drawn from the population without replacement. * The multinomial distribution is a generalization of the binomial distribution where there are more than two possible outcomes. Also in this chapter, we saw the first example of a model with three parameters. We'll see more in subsequent chapters. ## Exercises **Exercise:** [In an excellent paper](http://chao.stat.nthu.edu.tw/wordpress/paper/110.pdf), Anne Chao explains how mark and recapture experiments are used in epidemiology to estimate the prevalence of a disease in a human population based on multiple incomplete lists of cases. One of the examples in that paper is a study "to estimate the number of people who were infected by hepatitis in an outbreak that occurred in and around a college in northern Taiwan from April to July 1995." Three lists of cases were available: 1. 135 cases identified using a serum test. 2. 122 cases reported by local hospitals. 3. 126 cases reported on questionnaires collected by epidemiologists. In this exercise, we'll use only the first two lists; in the next exercise we'll bring in the third list. Make a joint prior and update it using this data, then compute the posterior mean of `N` and a 90% credible interval. The following array contains 0 as a place-holder for the unknown value of `k00`, followed by known values of `k01`, `k10`, and `k11`. ``` data2 = np.array([0, 73, 86, 49]) ``` These data indicate that there are 73 cases on the second list that are not on the first, 86 cases on the first list that are not on the second, and 49 cases on both lists. To keep things simple, we'll assume that each case has the same probability of appearing on each list. So we'll use a two-parameter model where `N` is the total number of cases and `p` is the probability that any case appears on any list. Here are priors you can start with (but feel free to modify them). ``` qs = np.arange(200, 500, step=5) prior_N = make_uniform(qs, name='N') prior_N.head(3) qs = np.linspace(0, 0.98, num=50) prior_p = make_uniform(qs, name='p') prior_p.head(3) # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here ``` **Exercise:** Now let's do the version of the problem with all three lists. Here's the data from Chou's paper: ``` Hepatitis A virus list P Q E Data 1 1 1 k111 =28 1 1 0 k110 =21 1 0 1 k101 =17 1 0 0 k100 =69 0 1 1 k011 =18 0 1 0 k010 =55 0 0 1 k001 =63 0 0 0 k000 =?? ``` Write a loop that computes the likelihood of the data for each pair of parameters, then update the prior and compute the posterior mean of `N`. How does it compare to the results using only the first two lists? Here's the data in a NumPy array (in reverse order). ``` data3 = np.array([0, 63, 55, 18, 69, 17, 21, 28]) ``` Again, the first value is a place-keeper for the unknown `k000`. The second value is `k001`, which means there are 63 cases that appear on the third list but not the first two. And the last value is `k111`, which means there are 28 cases that appear on all three lists. In the two-list version of the problem we computed `ps` by enumerating the combinations of `p` and `q`. ``` q = 1-p ps = [q*q, q*p, p*q, p*p] ``` We could do the same thing for the three-list version, computing the probability for each of the eight categories. But we can generalize it by recognizing that we are computing the cartesian product of `p` and `q`, repeated once for each list. And we can use the following function (based on [this StackOverflow answer](https://stackoverflow.com/questions/58242078/cartesian-product-of-arbitrary-lists-in-pandas/58242079#58242079)) to compute Cartesian products: ``` def cartesian_product(*args, **options): """Cartesian product of sequences. args: any number of sequences options: passes to `MultiIndex.from_product` returns: DataFrame with one column per sequence """ index = pd.MultiIndex.from_product(args, **options) return pd.DataFrame(index=index).reset_index() ``` Here's an example with `p=0.2`: ``` p = 0.2 t = (1-p, p) df = cartesian_product(t, t, t) df ``` To compute the probability for each category, we take the product across the columns: ``` y = df.prod(axis=1) y ``` Now you finish it off from there. ``` # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here # Solution goes here ```
true
code
0.791363
null
null
null
null
``` #hide #skip ! [ -e /content ] && pip install -Uqq fastai # upgrade fastai on colab # default_exp losses # default_cls_lvl 3 #export from fastai.imports import * from fastai.torch_imports import * from fastai.torch_core import * from fastai.layers import * #hide from nbdev.showdoc import * ``` # Loss Functions > Custom fastai loss functions ``` # export class BaseLoss(): "Same as `loss_cls`, but flattens input and target." activation=decodes=noops def __init__(self, loss_cls, *args, axis=-1, flatten=True, floatify=False, is_2d=True, **kwargs): store_attr("axis,flatten,floatify,is_2d") self.func = loss_cls(*args,**kwargs) functools.update_wrapper(self, self.func) def __repr__(self): return f"FlattenedLoss of {self.func}" @property def reduction(self): return self.func.reduction @reduction.setter def reduction(self, v): self.func.reduction = v def _contiguous(self,x): return TensorBase(x.transpose(self.axis,-1).contiguous()) if isinstance(x,torch.Tensor) else x def __call__(self, inp, targ, **kwargs): inp,targ = map(self._contiguous, (inp,targ)) if self.floatify and targ.dtype!=torch.float16: targ = targ.float() if targ.dtype in [torch.int8, torch.int16, torch.int32]: targ = targ.long() if self.flatten: inp = inp.view(-1,inp.shape[-1]) if self.is_2d else inp.view(-1) return self.func.__call__(inp, targ.view(-1) if self.flatten else targ, **kwargs) ``` Wrapping a general loss function inside of `BaseLoss` provides extra functionalities to your loss functions: - flattens the tensors before trying to take the losses since it's more convenient (with a potential tranpose to put `axis` at the end) - a potential `activation` method that tells the library if there is an activation fused in the loss (useful for inference and methods such as `Learner.get_preds` or `Learner.predict`) - a potential <code>decodes</code> method that is used on predictions in inference (for instance, an argmax in classification) The `args` and `kwargs` will be passed to `loss_cls` during the initialization to instantiate a loss function. `axis` is put at the end for losses like softmax that are often performed on the last axis. If `floatify=True`, the `targs` will be converted to floats (useful for losses that only accept float targets like `BCEWithLogitsLoss`), and `is_2d` determines if we flatten while keeping the first dimension (batch size) or completely flatten the input. We want the first for losses like Cross Entropy, and the second for pretty much anything else. ``` # export @delegates() class CrossEntropyLossFlat(BaseLoss): "Same as `nn.CrossEntropyLoss`, but flattens input and target." y_int = True @use_kwargs_dict(keep=True, weight=None, ignore_index=-100, reduction='mean') def __init__(self, *args, axis=-1, **kwargs): super().__init__(nn.CrossEntropyLoss, *args, axis=axis, **kwargs) def decodes(self, x): return x.argmax(dim=self.axis) def activation(self, x): return F.softmax(x, dim=self.axis) tst = CrossEntropyLossFlat() output = torch.randn(32, 5, 10) target = torch.randint(0, 10, (32,5)) #nn.CrossEntropy would fail with those two tensors, but not our flattened version. _ = tst(output, target) test_fail(lambda x: nn.CrossEntropyLoss()(output,target)) #Associated activation is softmax test_eq(tst.activation(output), F.softmax(output, dim=-1)) #This loss function has a decodes which is argmax test_eq(tst.decodes(output), output.argmax(dim=-1)) #In a segmentation task, we want to take the softmax over the channel dimension tst = CrossEntropyLossFlat(axis=1) output = torch.randn(32, 5, 128, 128) target = torch.randint(0, 5, (32, 128, 128)) _ = tst(output, target) test_eq(tst.activation(output), F.softmax(output, dim=1)) test_eq(tst.decodes(output), output.argmax(dim=1)) ``` [Focal Loss](https://arxiv.org/pdf/1708.02002.pdf) is the same as cross entropy except easy-to-classify observations are down-weighted in the loss calculation. The strength of down-weighting is proportional to the size of the `gamma` parameter. Put another way, the larger `gamma` the less the easy-to-classify observations contribute to the loss. ``` # export class FocalLossFlat(CrossEntropyLossFlat): """ Same as CrossEntropyLossFlat but with focal paramter, `gamma`. Focal loss is introduced by Lin et al. https://arxiv.org/pdf/1708.02002.pdf. Note the class weighting factor in the paper, alpha, can be implemented through pytorch `weight` argument in nn.CrossEntropyLoss. """ y_int = True @use_kwargs_dict(keep=True, weight=None, ignore_index=-100, reduction='mean') def __init__(self, *args, gamma=2, axis=-1, **kwargs): self.gamma = gamma self.reduce = kwargs.pop('reduction') if 'reduction' in kwargs else 'mean' super().__init__(*args, reduction='none', axis=axis, **kwargs) def __call__(self, inp, targ, **kwargs): ce_loss = super().__call__(inp, targ, **kwargs) pt = torch.exp(-ce_loss) fl_loss = (1-pt)**self.gamma * ce_loss return fl_loss.mean() if self.reduce == 'mean' else fl_loss.sum() if self.reduce == 'sum' else fl_loss #Compare focal loss with gamma = 0 to cross entropy fl = FocalLossFlat(gamma=0) ce = CrossEntropyLossFlat() output = torch.randn(32, 5, 10) target = torch.randint(0, 10, (32,5)) test_close(fl(output, target), ce(output, target)) #Test focal loss with gamma > 0 is different than cross entropy fl = FocalLossFlat(gamma=2) test_ne(fl(output, target), ce(output, target)) #In a segmentation task, we want to take the softmax over the channel dimension fl = FocalLossFlat(gamma=0, axis=1) ce = CrossEntropyLossFlat(axis=1) output = torch.randn(32, 5, 128, 128) target = torch.randint(0, 5, (32, 128, 128)) test_close(fl(output, target), ce(output, target), eps=1e-4) test_eq(fl.activation(output), F.softmax(output, dim=1)) test_eq(fl.decodes(output), output.argmax(dim=1)) # export @delegates() class BCEWithLogitsLossFlat(BaseLoss): "Same as `nn.BCEWithLogitsLoss`, but flattens input and target." @use_kwargs_dict(keep=True, weight=None, reduction='mean', pos_weight=None) def __init__(self, *args, axis=-1, floatify=True, thresh=0.5, **kwargs): if kwargs.get('pos_weight', None) is not None and kwargs.get('flatten', None) is True: raise ValueError("`flatten` must be False when using `pos_weight` to avoid a RuntimeError due to shape mismatch") if kwargs.get('pos_weight', None) is not None: kwargs['flatten'] = False super().__init__(nn.BCEWithLogitsLoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) self.thresh = thresh def decodes(self, x): return x>self.thresh def activation(self, x): return torch.sigmoid(x) tst = BCEWithLogitsLossFlat() output = torch.randn(32, 5, 10) target = torch.randn(32, 5, 10) #nn.BCEWithLogitsLoss would fail with those two tensors, but not our flattened version. _ = tst(output, target) test_fail(lambda x: nn.BCEWithLogitsLoss()(output,target)) output = torch.randn(32, 5) target = torch.randint(0,2,(32, 5)) #nn.BCEWithLogitsLoss would fail with int targets but not our flattened version. _ = tst(output, target) test_fail(lambda x: nn.BCEWithLogitsLoss()(output,target)) tst = BCEWithLogitsLossFlat(pos_weight=torch.ones(10)) output = torch.randn(32, 5, 10) target = torch.randn(32, 5, 10) _ = tst(output, target) test_fail(lambda x: nn.BCEWithLogitsLoss()(output,target)) #Associated activation is sigmoid test_eq(tst.activation(output), torch.sigmoid(output)) # export @use_kwargs_dict(weight=None, reduction='mean') def BCELossFlat(*args, axis=-1, floatify=True, **kwargs): "Same as `nn.BCELoss`, but flattens input and target." return BaseLoss(nn.BCELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) tst = BCELossFlat() output = torch.sigmoid(torch.randn(32, 5, 10)) target = torch.randint(0,2,(32, 5, 10)) _ = tst(output, target) test_fail(lambda x: nn.BCELoss()(output,target)) # export @use_kwargs_dict(reduction='mean') def MSELossFlat(*args, axis=-1, floatify=True, **kwargs): "Same as `nn.MSELoss`, but flattens input and target." return BaseLoss(nn.MSELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) tst = MSELossFlat() output = torch.sigmoid(torch.randn(32, 5, 10)) target = torch.randint(0,2,(32, 5, 10)) _ = tst(output, target) test_fail(lambda x: nn.MSELoss()(output,target)) #hide #cuda #Test losses work in half precision if torch.cuda.is_available(): output = torch.sigmoid(torch.randn(32, 5, 10)).half().cuda() target = torch.randint(0,2,(32, 5, 10)).half().cuda() for tst in [BCELossFlat(), MSELossFlat()]: _ = tst(output, target) # export @use_kwargs_dict(reduction='mean') def L1LossFlat(*args, axis=-1, floatify=True, **kwargs): "Same as `nn.L1Loss`, but flattens input and target." return BaseLoss(nn.L1Loss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) #export class LabelSmoothingCrossEntropy(Module): y_int = True def __init__(self, eps:float=0.1, weight=None, reduction='mean'): store_attr() def forward(self, output, target): c = output.size()[1] log_preds = F.log_softmax(output, dim=1) if self.reduction=='sum': loss = -log_preds.sum() else: loss = -log_preds.sum(dim=1) #We divide by that size at the return line so sum and not mean if self.reduction=='mean': loss = loss.mean() return loss*self.eps/c + (1-self.eps) * F.nll_loss(log_preds, target.long(), weight=self.weight, reduction=self.reduction) def activation(self, out): return F.softmax(out, dim=-1) def decodes(self, out): return out.argmax(dim=-1) lmce = LabelSmoothingCrossEntropy() output = torch.randn(32, 5, 10) target = torch.randint(0, 10, (32,5)) test_eq(lmce(output.flatten(0,1), target.flatten()), lmce(output.transpose(-1,-2), target)) ``` On top of the formula we define: - a `reduction` attribute, that will be used when we call `Learner.get_preds` - `weight` attribute to pass to BCE. - an `activation` function that represents the activation fused in the loss (since we use cross entropy behind the scenes). It will be applied to the output of the model when calling `Learner.get_preds` or `Learner.predict` - a <code>decodes</code> function that converts the output of the model to a format similar to the target (here indices). This is used in `Learner.predict` and `Learner.show_results` to decode the predictions ``` #export @delegates() class LabelSmoothingCrossEntropyFlat(BaseLoss): "Same as `LabelSmoothingCrossEntropy`, but flattens input and target." y_int = True @use_kwargs_dict(keep=True, eps=0.1, reduction='mean') def __init__(self, *args, axis=-1, **kwargs): super().__init__(LabelSmoothingCrossEntropy, *args, axis=axis, **kwargs) def activation(self, out): return F.softmax(out, dim=-1) def decodes(self, out): return out.argmax(dim=-1) ``` ## Export - ``` #hide from nbdev.export import * notebook2script() ```
true
code
0.799442
null
null
null
null
![qiskit_header.png](attachment:qiskit_header.png) # _*Qiskit Finance: Pricing Fixed-Income Assets*_ The latest version of this notebook is available on https://github.com/Qiskit/qiskit-iqx-tutorials. *** ### Contributors Stefan Woerner<sup>[1]</sup>, Daniel Egger<sup>[1]</sup>, Shaohan Hu<sup>[1]</sup>, Stephen Wood<sup>[1]</sup>, Marco Pistoia<sup>[1]</sup> ### Affiliation - <sup>[1]</sup>IBMQ ### Introduction We seek to price a fixed-income asset knowing the distributions describing the relevant interest rates. The cash flows $c_t$ of the asset and the dates at which they occur are known. The total value $V$ of the asset is thus the expectation value of: $$V = \sum_{t=1}^T \frac{c_t}{(1+r_t)^t}$$ Each cash flow is treated as a zero coupon bond with a corresponding interest rate $r_t$ that depends on its maturity. The user must specify the distribution modeling the uncertainty in each $r_t$ (possibly correlated) as well as the number of qubits he wishes to use to sample each distribution. In this example we expand the value of the asset to first order in the interest rates $r_t$. This corresponds to studying the asset in terms of its duration. <br> <br> The approximation of the objective function follows the following paper:<br> <a href="https://arxiv.org/abs/1806.06893">Quantum Risk Analysis. Woerner, Egger. 2018.</a> ``` import matplotlib.pyplot as plt %matplotlib inline import numpy as np from qiskit import BasicAer from qiskit.aqua.algorithms.single_sample.amplitude_estimation.ae import AmplitudeEstimation from qiskit.aqua.components.uncertainty_models import MultivariateNormalDistribution from qiskit.finance.components.uncertainty_problems import FixedIncomeExpectedValue backend = BasicAer.get_backend('statevector_simulator') ``` ### Uncertainty Model We construct a circuit factory to load a multivariate normal random distribution in $d$ dimensions into a quantum state. The distribution is truncated to a given box $\otimes_{i=1}^d [low_i, high_i]$ and discretized using $2^{n_i}$ grid points, where $n_i$ denotes the number of qubits used for dimension $i = 1,\ldots, d$. The unitary operator corresponding to the circuit factory implements the following: $$\big|0\rangle_{n_1}\ldots\big|0\rangle_{n_d} \mapsto \big|\psi\rangle = \sum_{i_1=0}^{2^n_-1}\ldots\sum_{i_d=0}^{2^n_-1} \sqrt{p_{i_1,...,i_d}}\big|i_1\rangle_{n_1}\ldots\big|i_d\rangle_{n_d},$$ where $p_{i_1, ..., i_d}$ denote the probabilities corresponding to the truncated and discretized distribution and where $i_j$ is mapped to the right interval $[low_j, high_j]$ using the affine map: $$ \{0, \ldots, 2^{n_{j}}-1\} \ni i_j \mapsto \frac{high_j - low_j}{2^{n_j} - 1} * i_j + low_j \in [low_j, high_j].$$ In addition to the uncertainty model, we can also apply an affine map, e.g. resulting from a principal component analysis. The interest rates used are then given by: $$ \vec{r} = A * \vec{x} + b,$$ where $\vec{x} \in \otimes_{i=1}^d [low_i, high_i]$ follows the given random distribution. ``` # can be used in case a principal component analysis has been done to derive the uncertainty model, ignored in this example. A = np.eye(2) b = np.zeros(2) # specify the number of qubits that are used to represent the different dimenions of the uncertainty model num_qubits = [2, 2] # specify the lower and upper bounds for the different dimension low = [0, 0] high = [0.12, 0.24] mu = [0.12, 0.24] sigma = 0.01*np.eye(2) # construct corresponding distribution u = MultivariateNormalDistribution(num_qubits, low, high, mu, sigma) # plot contour of probability density function x = np.linspace(low[0], high[0], 2**num_qubits[0]) y = np.linspace(low[1], high[1], 2**num_qubits[1]) z = u.probabilities.reshape(2**num_qubits[0], 2**num_qubits[1]) plt.contourf(x, y, z) plt.xticks(x, size=15) plt.yticks(y, size=15) plt.grid() plt.xlabel('$r_1$ (%)', size=15) plt.ylabel('$r_2$ (%)', size=15) plt.colorbar() plt.show() ``` ### Cash flow, payoff function, and exact expected value In the following we define the cash flow per period, the resulting payoff function and evaluate the exact expected value. For the payoff function we first use a first order approximation and then apply the same approximation technique as for the linear part of the payoff function of the [European Call Option](european_call_option_pricing.ipynb). ``` # specify cash flow cf = [1.0, 2.0] periods = range(1, len(cf)+1) # plot cash flow plt.bar(periods, cf) plt.xticks(periods, size=15) plt.yticks(size=15) plt.grid() plt.xlabel('periods', size=15) plt.ylabel('cashflow ($)', size=15) plt.show() # estimate real value cnt = 0 exact_value = 0.0 for x1 in np.linspace(low[0], high[0], pow(2, num_qubits[0])): for x2 in np.linspace(low[1], high[1], pow(2, num_qubits[1])): prob = u.probabilities[cnt] for t in range(len(cf)): # evaluate linear approximation of real value w.r.t. interest rates exact_value += prob * (cf[t]/pow(1 + b[t], t+1) - (t+1)*cf[t]*np.dot(A[:, t], np.asarray([x1, x2]))/pow(1 + b[t], t+2)) cnt += 1 print('Exact value: \t%.4f' % exact_value) # specify approximation factor c_approx = 0.125 # get fixed income circuit appfactory fixed_income = FixedIncomeExpectedValue(u, A, b, cf, c_approx) # set number of evaluation qubits (samples) m = 5 # construct amplitude estimation ae = AmplitudeEstimation(m, fixed_income) # result = ae.run(quantum_instance=LegacySimulators.get_backend('qasm_simulator'), shots=100) result = ae.run(quantum_instance=backend) print('Exact value: \t%.4f' % exact_value) print('Estimated value:\t%.4f' % result['estimation']) print('Probability: \t%.4f' % result['max_probability']) # plot estimated values for "a" (direct result of amplitude estimation, not rescaled yet) plt.bar(result['values'], result['probabilities'], width=0.5/len(result['probabilities'])) plt.xticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.title('"a" Value', size=15) plt.ylabel('Probability', size=15) plt.xlim((0,1)) plt.ylim((0,1)) plt.grid() plt.show() # plot estimated values for fixed-income asset (after re-scaling and reversing the c_approx-transformation) plt.bar(result['mapped_values'], result['probabilities'], width=3/len(result['probabilities'])) plt.plot([exact_value, exact_value], [0,1], 'r--', linewidth=2) plt.xticks(size=15) plt.yticks([0, 0.25, 0.5, 0.75, 1], size=15) plt.title('Estimated Option Price', size=15) plt.ylabel('Probability', size=15) plt.ylim((0,1)) plt.grid() plt.show() import qiskit.tools.jupyter %qiskit_version_table %qiskit_copyright ```
true
code
0.699229
null
null
null
null
``` #hide #skip ! [ -e /content ] && pip install -Uqq fastai # upgrade fastai on colab # default_exp losses # default_cls_lvl 3 #export from fastai.imports import * from fastai.torch_imports import * from fastai.torch_core import * from fastai.layers import * #hide from nbdev.showdoc import * ``` # Loss Functions > Custom fastai loss functions ``` F.binary_cross_entropy_with_logits(torch.randn(4,5), torch.randint(0, 2, (4,5)).float(), reduction='none') funcs_kwargs # export class BaseLoss(): "Same as `loss_cls`, but flattens input and target." activation=decodes=noops def __init__(self, loss_cls, *args, axis=-1, flatten=True, floatify=False, is_2d=True, **kwargs): store_attr("axis,flatten,floatify,is_2d") self.func = loss_cls(*args,**kwargs) functools.update_wrapper(self, self.func) def __repr__(self): return f"FlattenedLoss of {self.func}" @property def reduction(self): return self.func.reduction @reduction.setter def reduction(self, v): self.func.reduction = v def __call__(self, inp, targ, **kwargs): inp = inp .transpose(self.axis,-1).contiguous() targ = targ.transpose(self.axis,-1).contiguous() if self.floatify and targ.dtype!=torch.float16: targ = targ.float() if targ.dtype in [torch.int8, torch.int16, torch.int32]: targ = targ.long() if self.flatten: inp = inp.view(-1,inp.shape[-1]) if self.is_2d else inp.view(-1) return self.func.__call__(inp, targ.view(-1) if self.flatten else targ, **kwargs) ``` Wrapping a general loss function inside of `BaseLoss` provides extra functionalities to your loss functions: - flattens the tensors before trying to take the losses since it's more convenient (with a potential tranpose to put `axis` at the end) - a potential `activation` method that tells the library if there is an activation fused in the loss (useful for inference and methods such as `Learner.get_preds` or `Learner.predict`) - a potential <code>decodes</code> method that is used on predictions in inference (for instance, an argmax in classification) The `args` and `kwargs` will be passed to `loss_cls` during the initialization to instantiate a loss function. `axis` is put at the end for losses like softmax that are often performed on the last axis. If `floatify=True`, the `targs` will be converted to floats (useful for losses that only accept float targets like `BCEWithLogitsLoss`), and `is_2d` determines if we flatten while keeping the first dimension (batch size) or completely flatten the input. We want the first for losses like Cross Entropy, and the second for pretty much anything else. ``` # export @delegates() class CrossEntropyLossFlat(BaseLoss): "Same as `nn.CrossEntropyLoss`, but flattens input and target." y_int = True @use_kwargs_dict(keep=True, weight=None, ignore_index=-100, reduction='mean') def __init__(self, *args, axis=-1, **kwargs): super().__init__(nn.CrossEntropyLoss, *args, axis=axis, **kwargs) def decodes(self, x): return x.argmax(dim=self.axis) def activation(self, x): return F.softmax(x, dim=self.axis) tst = CrossEntropyLossFlat() output = torch.randn(32, 5, 10) target = torch.randint(0, 10, (32,5)) #nn.CrossEntropy would fail with those two tensors, but not our flattened version. _ = tst(output, target) test_fail(lambda x: nn.CrossEntropyLoss()(output,target)) #Associated activation is softmax test_eq(tst.activation(output), F.softmax(output, dim=-1)) #This loss function has a decodes which is argmax test_eq(tst.decodes(output), output.argmax(dim=-1)) #In a segmentation task, we want to take the softmax over the channel dimension tst = CrossEntropyLossFlat(axis=1) output = torch.randn(32, 5, 128, 128) target = torch.randint(0, 5, (32, 128, 128)) _ = tst(output, target) test_eq(tst.activation(output), F.softmax(output, dim=1)) test_eq(tst.decodes(output), output.argmax(dim=1)) # export @delegates() class BCEWithLogitsLossFlat(BaseLoss): "Same as `nn.BCEWithLogitsLoss`, but flattens input and target." @use_kwargs_dict(keep=True, weight=None, reduction='mean', pos_weight=None) def __init__(self, *args, axis=-1, floatify=True, thresh=0.5, **kwargs): if kwargs.get('pos_weight', None) is not None and kwargs.get('flatten', None) is True: raise ValueError("`flatten` must be False when using `pos_weight` to avoid a RuntimeError due to shape mismatch") if kwargs.get('pos_weight', None) is not None: kwargs['flatten'] = False super().__init__(nn.BCEWithLogitsLoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) self.thresh = thresh def decodes(self, x): return x>self.thresh def activation(self, x): return torch.sigmoid(x) tst = BCEWithLogitsLossFlat() output = torch.randn(32, 5, 10) target = torch.randn(32, 5, 10) #nn.BCEWithLogitsLoss would fail with those two tensors, but not our flattened version. _ = tst(output, target) test_fail(lambda x: nn.BCEWithLogitsLoss()(output,target)) output = torch.randn(32, 5) target = torch.randint(0,2,(32, 5)) #nn.BCEWithLogitsLoss would fail with int targets but not our flattened version. _ = tst(output, target) test_fail(lambda x: nn.BCEWithLogitsLoss()(output,target)) tst = BCEWithLogitsLossFlat(pos_weight=torch.ones(10)) output = torch.randn(32, 5, 10) target = torch.randn(32, 5, 10) _ = tst(output, target) test_fail(lambda x: nn.BCEWithLogitsLoss()(output,target)) #Associated activation is sigmoid test_eq(tst.activation(output), torch.sigmoid(output)) # export @use_kwargs_dict(weight=None, reduction='mean') def BCELossFlat(*args, axis=-1, floatify=True, **kwargs): "Same as `nn.BCELoss`, but flattens input and target." return BaseLoss(nn.BCELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) tst = BCELossFlat() output = torch.sigmoid(torch.randn(32, 5, 10)) target = torch.randint(0,2,(32, 5, 10)) _ = tst(output, target) test_fail(lambda x: nn.BCELoss()(output,target)) # export @use_kwargs_dict(reduction='mean') def MSELossFlat(*args, axis=-1, floatify=True, **kwargs): "Same as `nn.MSELoss`, but flattens input and target." return BaseLoss(nn.MSELoss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) tst = MSELossFlat() output = torch.sigmoid(torch.randn(32, 5, 10)) target = torch.randint(0,2,(32, 5, 10)) _ = tst(output, target) test_fail(lambda x: nn.MSELoss()(output,target)) #hide #cuda #Test losses work in half precision output = torch.sigmoid(torch.randn(32, 5, 10)).half().cuda() target = torch.randint(0,2,(32, 5, 10)).half().cuda() for tst in [BCELossFlat(), MSELossFlat()]: _ = tst(output, target) # export @use_kwargs_dict(reduction='mean') def L1LossFlat(*args, axis=-1, floatify=True, **kwargs): "Same as `nn.L1Loss`, but flattens input and target." return BaseLoss(nn.L1Loss, *args, axis=axis, floatify=floatify, is_2d=False, **kwargs) #export class LabelSmoothingCrossEntropy(Module): y_int = True def __init__(self, eps:float=0.1, reduction='mean'): self.eps,self.reduction = eps,reduction def forward(self, output, target): c = output.size()[-1] log_preds = F.log_softmax(output, dim=-1) if self.reduction=='sum': loss = -log_preds.sum() else: loss = -log_preds.sum(dim=-1) #We divide by that size at the return line so sum and not mean if self.reduction=='mean': loss = loss.mean() return loss*self.eps/c + (1-self.eps) * F.nll_loss(log_preds, target.long(), reduction=self.reduction) def activation(self, out): return F.softmax(out, dim=-1) def decodes(self, out): return out.argmax(dim=-1) ``` On top of the formula we define: - a `reduction` attribute, that will be used when we call `Learner.get_preds` - an `activation` function that represents the activation fused in the loss (since we use cross entropy behind the scenes). It will be applied to the output of the model when calling `Learner.get_preds` or `Learner.predict` - a <code>decodes</code> function that converts the output of the model to a format similar to the target (here indices). This is used in `Learner.predict` and `Learner.show_results` to decode the predictions ``` #export @delegates() class LabelSmoothingCrossEntropyFlat(BaseLoss): "Same as `LabelSmoothingCrossEntropy`, but flattens input and target." y_int = True @use_kwargs_dict(keep=True, eps=0.1, reduction='mean') def __init__(self, *args, axis=-1, **kwargs): super().__init__(LabelSmoothingCrossEntropy, *args, axis=axis, **kwargs) def activation(self, out): return F.softmax(out, dim=-1) def decodes(self, out): return out.argmax(dim=-1) ``` ## Export - ``` #hide from nbdev.export import * notebook2script() ```
true
code
0.745054
null
null
null
null
# Finding Outliers with k-Means ## Setup ``` import numpy as np import pandas as pd import sqlite3 with sqlite3.connect('../../ch_11/logs/logs.db') as conn: logs_2018 = pd.read_sql( """ SELECT * FROM logs WHERE datetime BETWEEN "2018-01-01" AND "2019-01-01"; """, conn, parse_dates=['datetime'], index_col='datetime' ) logs_2018.head() def get_X(log, day): """ Get data we can use for the X Parameters: - log: The logs dataframe - day: A day or single value we can use as a datetime index slice Returns: A pandas DataFrame """ return pd.get_dummies(log[day].assign( failures=lambda x: 1 - x.success ).query('failures > 0').resample('1min').agg( {'username':'nunique', 'failures': 'sum'} ).dropna().rename( columns={'username':'usernames_with_failures'} ).assign( day_of_week=lambda x: x.index.dayofweek, hour=lambda x: x.index.hour ).drop(columns=['failures']), columns=['day_of_week', 'hour']) X = get_X(logs_2018, '2018') X.columns ``` ## k-Means Since we want a "normal" activity cluster and an "anomaly" cluster, we need to make 2 clusters. ``` from sklearn.cluster import KMeans from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler kmeans_pipeline = Pipeline([ ('scale', StandardScaler()), ('kmeans', KMeans(random_state=0, n_clusters=2)) ]).fit(X) ``` The cluster label doesn't mean anything to us, but we can examine the size of each cluster. We don't expect the clusters to be of equal size because anomalous activity doesn't happen as often as normal activity (we presume). ``` preds = kmeans_pipeline.predict(X) pd.Series(preds).value_counts() ``` ### Evaluating the clustering #### Step 1: Get the true labels ``` with sqlite3.connect('../../ch_11/logs/logs.db') as conn: hackers_2018 = pd.read_sql( 'SELECT * FROM attacks WHERE start BETWEEN "2018-01-01" AND "2019-01-01";', conn, parse_dates=['start', 'end'] ).assign( duration=lambda x: x.end - x.start, start_floor=lambda x: x.start.dt.floor('min'), end_ceil=lambda x: x.end.dt.ceil('min') ) def get_y(datetimes, hackers, resolution='1min'): """ Get data we can use for the y (whether or not a hacker attempted a log in during that time). Parameters: - datetimes: The datetimes to check for hackers - hackers: The dataframe indicating when the attacks started and stopped - resolution: The granularity of the datetime. Default is 1 minute. Returns: A pandas Series of booleans. """ date_ranges = hackers.apply( lambda x: pd.date_range(x.start_floor, x.end_ceil, freq=resolution), axis=1 ) dates = pd.Series() for date_range in date_ranges: dates = pd.concat([dates, date_range.to_series()]) return datetimes.isin(dates) is_hacker = get_y(X.reset_index().datetime, hackers_2018) ``` ### Step 2: Calculate Fowlkes Mallows Score This indicates percentage of the observations belong to the same cluster in the true labels and in the predicted labels. ``` from sklearn.metrics import fowlkes_mallows_score fowlkes_mallows_score(is_hacker, preds) ```
true
code
0.650634
null
null
null
null
# Detecting malaria in blood smear images ### The Problem Malaria is a mosquito-borne disease caused by the parasite _Plasmodium_. There are an estimated 219 million cases of malaria annually, with 435,000 deaths, many of whom are children. Malaria is prevalent in sub-tropical regions of Africa. Microscopy is the most common and reliable method for diagnosing malaria and computing parasitic load. With this technique, malaria parasites are identified by examining a drop of the patient’s blood, spread out as a “blood smear” on a slide. Prior to examination, the specimen is stained (most often with the Giemsa stain) to give the parasites a distinctive appearance. This technique remains the gold standard for laboratory confirmation of malaria. ![Malaria-positive blood smear](https://www.cdc.gov/malaria/images/microscopy/parasites_arrows.jpg) Blood smear from a patient with malaria; microscopic examination shows _Plasmodium falciparum_ parasites (arrows) infecting some of the patient’s red blood cells. (CDC photo) However, the diagnostic accuracy of this technique is dependent on human expertise and can be affectived by and observer's variability. ### Deep learning as a diagnostic aid Recent advances in computing and deep learning techniques have led to the applications of large-scale medical image analysis. Here, we aim to use a convolutional neural network (CNN) in order to quickly and accurately classify parasitized from healthy cells from blood smears. This notebook is based on the work presented by [Dipanjan Sarkar](https://towardsdatascience.com/detecting-malaria-with-deep-learning-9e45c1e34b60) ### About the dataset A [dataset](https://ceb.nlm.nih.gov/repositories/malaria-datasets/) of parasitized and unparasitized cells from blood smear slides was collected and annotated by [Rajaraman et al](https://doi.org/10.7717/peerj.4568). The dataset contains a total of 27,558 cell images with equal instances of parasitized and uninfected cells from Giemsa-stained thin blood smear slides from 150 P. falciparum-infected and 50 healthy patients collected and photographed at Chittagong Medical College Hospital, Bangladesh. There are also CSV files containing the Patient-ID to cell mappings for the parasitized and uninfected classes. The CSV file for the parasitized class contains 151 patient-ID entries. The slide images for the parasitized patient-ID “C47P8thinOriginal” are read from two different microscope models (Olympus and Motif). The CSV file for the uninfected class contains 201 entries since the normal cells from the infected patients’ slides also make it to the normal cell category (151+50 = 201). The data appears along with the publication: Rajaraman S, Antani SK, Poostchi M, Silamut K, Hossain MA, Maude, RJ, Jaeger S, Thoma GR. (2018) Pre-trained convolutional neural networks as feature extractors toward improved Malaria parasite detection in thin blood smear images. PeerJ6:e4568 https://doi.org/10.7717/peerj.4568 ## Malaria Dataset Medium post: https://towardsdatascience.com/detecting-malaria-using-deep-learning-fd4fdcee1f5a Data: https://ceb.nlm.nih.gov/repositories/malaria-datasets/ ## Data preprocessing The [cell images](https://ceb.nlm.nih.gov/proj/malaria/cell_images.zip) dataset can be downloaded from the [NIH repository](https://ceb.nlm.nih.gov/repositories/malaria-datasets/). Parasitized and healthy cells are sorted into their own folders. ``` # mkdir ../data/ # wget https://ceb.nlm.nih.gov/proj/malaria/cell_images.zip # unzip cell_images.zip import os os.listdir('../data/cell_images/') import random import glob # Get file paths for files base_dir = os.path.join('../data/cell_images') infected_dir = os.path.join(base_dir, 'Parasitized') healthy_dir = os.path.join(base_dir, 'Uninfected') # Glob is used to identify filepath patterns infected_files = glob.glob(infected_dir+'/*.png') healthy_files = glob.glob(healthy_dir+'/*.png') # View size of dataset len(infected_files), len(healthy_files) ``` Our data is evenly split between parasitized and healthy cells/images so we won't need to further balance our data. ## Split data into train, test, split sets We can aggregate all of our images by adding the filepaths and labels into a single dataframe. We'll then shuffle and split the data into a 60/30/10 train/test/validation set. ``` import numpy as np import pandas as pd np.random.seed(1) # Build a dataframe of filenames with labels files = pd.DataFrame(data={'filename': infected_files, 'label': ['malaria' for i in range(len(infected_files))]}) files = pd.concat([files, pd.DataFrame(data={'filename': healthy_files, 'label': ['healthy' for i in range(len(healthy_files))]})]) files = files.sample(frac=1).reset_index(drop=True) # Shuffle rows files.head() from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(files.filename.values, files.label.values, test_size=0.3, random_state=42) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=42) X_train.shape, X_val.shape, y_test.shape ``` As the dimensions of each image will vary, we will resize the images to be 125 x 125 pixels. The cv2 module can be used to load and resize images. ``` import cv2 # Read and resize images nrows = 125 ncols = 125 channels = 3 cv2.imread(X_train[0], cv2.IMREAD_COLOR) cv2.resize(cv2.imread(X_train[0], cv2.IMREAD_COLOR), (nrows, ncols), interpolation=cv2.INTER_CUBIC).shape import threading from concurrent import futures # Resize images IMG_DIMS = (125, 125) def get_img_data_parallel(idx, img, total_imgs): if idx % 5000 == 0 or idx == (total_imgs - 1): print('{}: working on img num: {}'.format(threading.current_thread().name, idx)) img = cv2.imread(img) img = cv2.resize(img, dsize=IMG_DIMS, interpolation=cv2.INTER_CUBIC) img = np.array(img, dtype=np.float32) return img ex = futures.ThreadPoolExecutor(max_workers=None) X_train_inp = [(idx, img, len(X_train)) for idx, img in enumerate(X_train)] X_val_inp = [(idx, img, len(X_val)) for idx, img in enumerate(X_val)] X_test_inp = [(idx, img, len(X_test)) for idx, img in enumerate(X_test)] print('Loading Train Images:') X_train_map = ex.map(get_img_data_parallel, [record[0] for record in X_train_inp], [record[1] for record in X_train_inp], [record[2] for record in X_train_inp]) X_train = np.array(list(X_train_map)) print('\nLoading Validation Images:') X_val_map = ex.map(get_img_data_parallel, [record[0] for record in X_val_inp], [record[1] for record in X_val_inp], [record[2] for record in X_val_inp]) X_val = np.array(list(X_val_map)) print('\nLoading Test Images:') X_test_map = ex.map(get_img_data_parallel, [record[0] for record in X_test_inp], [record[1] for record in X_test_inp], [record[2] for record in X_test_inp]) X_test = np.array(list(X_test_map)) X_train.shape, X_val.shape, X_test.shape ``` Using the matplotlib module, we can view a sample of the resized cell images. A brief inspection shows the presence of purple-stained parasites only in malaria-labeled samples. ``` import matplotlib.pyplot as plt %matplotlib inline plt.figure(1 , figsize = (8 , 8)) n = 0 for i in range(16): n += 1 r = np.random.randint(0 , X_train.shape[0] , 1) plt.subplot(4 , 4 , n) plt.subplots_adjust(hspace = 0.5 , wspace = 0.5) plt.imshow(X_train[r[0]]/255.) plt.title('{}'.format(y_train[r[0]])) plt.xticks([]) , plt.yticks([]) ``` ## Model training We can set some initial parameters for our model, including batch size, the number of classes, number of epochs, and image dimensions. We'll encode the text category labels as 0 or 1. ``` from sklearn.preprocessing import LabelEncoder BATCH_SIZE = 64 NUM_CLASSES = 2 EPOCHS = 25 INPUT_SHAPE = (125, 125, 3) X_train_imgs_scaled = X_train / 255. X_val_imgs_scaled = X_val / 255. le = LabelEncoder() le.fit(y_train) y_train_enc = le.transform(y_train) y_val_enc = le.transform(y_val) print(y_train[:6], y_train_enc[:6]) ``` ### Simple CNN model To start with, we'll build a simple CNN model with 2 convolution and pooling layers and a dense dropout layer for regularization. ``` from keras.models import Sequential from keras.utils import to_categorical from keras.layers import Conv2D, Dense, MaxPooling2D, Flatten # Build a simple CNN model = Sequential() model.add(Conv2D(32, kernel_size=(5,5), strides=(1,1), activation='relu', input_shape=INPUT_SHAPE)) model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2))) model.add(Conv2D(64, (5, 5), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(1000, activation='relu')) model.add(Dense(1, activation='softmax')) # out = tf.keras.layers.Dense(1, activation='sigmoid')(drop2) # model = tf.keras.Model(inputs=inp, outputs=out) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.summary() ``` We can evaluate the accuracy of model ``` import datetime from keras import callbacks # View accuracy logdir = os.path.join('../tensorboard_logs', datetime.datetime.now().strftime("%Y%m%d-%H%M%S")) tensorboard_callback = callbacks.TensorBoard(logdir, histogram_freq=1) reduce_lr = callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=2, min_lr=0.000001) callbacks = [reduce_lr, tensorboard_callback] history = model.fit(x=X_train_imgs_scaled, y=y_train_enc, batch_size=BATCH_SIZE, epochs=EPOCHS, validation_data=(X_val_imgs_scaled, y_val_enc), callbacks=callbacks, verbose=1) ```
true
code
0.487307
null
null
null
null
<a href="https://colab.research.google.com/github/MIT-LCP/sccm-datathon/blob/master/04_timeseries.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # eICU Collaborative Research Database # Notebook 4: Timeseries for a single patient This notebook explores timeseries data for a single patient. ## Load libraries and connect to the database ``` # Import libraries import numpy as np import os import pandas as pd import matplotlib.pyplot as plt # Make pandas dataframes prettier from IPython.display import display, HTML # Access data using Google BigQuery. from google.colab import auth from google.cloud import bigquery # authenticate auth.authenticate_user() # Set up environment variables project_id='sccm-datathon' os.environ["GOOGLE_CLOUD_PROJECT"]=project_id ``` ## Selecting a single patient stay ### The patient table The patient table includes general information about the patient admissions (for example, demographics, admission and discharge details). See: http://eicu-crd.mit.edu/eicutables/patient/ ``` # Display the patient table %%bigquery SELECT * FROM `physionet-data.eicu_crd_demo.patient` patient.head() ``` ### The `vitalperiodic` table The `vitalperiodic` table comprises data that is consistently interfaced from bedside vital signs monitors into eCareManager. Data are generally interfaced as 1 minute averages, and archived into the `vitalperiodic` table as 5 minute median values. For more detail, see: http://eicu-crd.mit.edu/eicutables/vitalPeriodic/ ``` # Get periodic vital signs for a single patient stay %%bigquery vitalperiodic SELECT * FROM `physionet-data.eicu_crd_demo.vitalperiodic` WHERE patientunitstayid = 210014 vitalperiodic.head() # sort the values by the observationoffset (time in minutes from ICU admission) vitalperiodic = vitalperiodic.sort_values(by='observationoffset') vitalperiodic.head() # subselect the variable columns columns = ['observationoffset','temperature','sao2','heartrate','respiration', 'cvp','etco2','systemicsystolic','systemicdiastolic','systemicmean', 'pasystolic','padiastolic','pamean','icp'] vitalperiodic = vitalperiodic[columns].set_index('observationoffset') vitalperiodic.head() # plot the data plt.rcParams['figure.figsize'] = [12,8] title = 'Vital signs (periodic) for patientunitstayid = {} \n'.format(patientunitstayid) ax = vitalperiodic.plot(title=title, marker='o') ax.legend(loc='center left', bbox_to_anchor=(1.0, 0.5)) ax.set_xlabel("Minutes after admission to the ICU") ax.set_ylabel("Absolute value") ``` ## Questions - Which variables are available for this patient? - What is the peak heart rate during the period? ### The vitalaperiodic table The vitalAperiodic table provides invasive vital sign data that is recorded at irregular intervals. See: http://eicu-crd.mit.edu/eicutables/vitalAperiodic/ ``` # Get aperiodic vital signs %%bigquery vitalaperiodic SELECT * FROM `physionet-data.eicu_crd_demo.vitalaperiodic` WHERE patientunitstayid = 210014 # display the first few rows of the dataframe vitalaperiodic.head() # sort the values by the observationoffset (time in minutes from ICU admission) vitalaperiodic = vitalaperiodic.sort_values(by='observationoffset') vitalaperiodic.head() # subselect the variable columns columns = ['observationoffset','noninvasivesystolic','noninvasivediastolic', 'noninvasivemean','paop','cardiacoutput','cardiacinput','svr', 'svri','pvr','pvri'] vitalaperiodic = vitalaperiodic[columns].set_index('observationoffset') vitalaperiodic.head() # plot the data plt.rcParams['figure.figsize'] = [12,8] title = 'Vital signs (aperiodic) for patientunitstayid = {} \n'.format(patientunitstayid) ax = vitalaperiodic.plot(title=title, marker='o') ax.legend(loc='center left', bbox_to_anchor=(1.0, 0.5)) ax.set_xlabel("Minutes after admission to the ICU") ax.set_ylabel("Absolute value") ``` ## Questions - What do the non-invasive variables measure? - How do you think the mean is calculated? ## 3.4. The lab table ``` # Get labs %%bigquery lab SELECT * FROM `physionet-data.eicu_crd_demo.lab` WHERE patientunitstayid = 210014 lab.head() # sort the values by the offset time (time in minutes from ICU admission) lab = lab.sort_values(by='labresultoffset') lab.head() lab = lab.set_index('labresultoffset') columns = ['labname','labresult','labmeasurenamesystem'] lab = lab[columns] lab.head() # list the distinct labnames lab['labname'].unique() # pivot the lab table to put variables into columns lab = lab.pivot(columns='labname', values='labresult') lab.head() # plot laboratory tests of interest labs_to_plot = ['creatinine','pH','BUN', 'glucose', 'potassium'] lab[labs_to_plot].head() # plot the data plt.rcParams['figure.figsize'] = [12,8] title = 'Laboratory test results for patientunitstayid = {} \n'.format(patientunitstayid) ax = lab[labs_to_plot].plot(title=title, marker='o',ms=10, lw=0) ax.legend(loc='center left', bbox_to_anchor=(1.0, 0.5)) ax.set_xlabel("Minutes after admission to the ICU") ax.set_ylabel("Absolute value") ```
true
code
0.629006
null
null
null
null
# Random Signals *This jupyter notebook is part of a [collection of notebooks](../index.ipynb) on various topics of Digital Signal Processing. Please direct questions and suggestions to [[email protected]](mailto:[email protected]).* ## Auto Power Spectral Density The (auto-) [power spectral density](https://en.wikipedia.org/wiki/Spectral_density#Power_spectral_density) (PSD) is defined as the Fourier transformation of the [auto-correlation function](correlation_functions.ipynb) (ACF). ### Definition For a continuous-amplitude, real-valued, wide-sense stationary (WSS) random signal $x[k]$ the PSD is given as \begin{equation} \Phi_{xx}(\mathrm{e}^{\,\mathrm{j}\,\Omega}) = \mathcal{F}_* \{ \varphi_{xx}[\kappa] \}, \end{equation} where $\mathcal{F}_* \{ \cdot \}$ denotes the [discrete-time Fourier transformation](https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform) (DTFT) and $\varphi_{xx}[\kappa]$ the ACF of $x[k]$. Note that the DTFT is performed with respect to $\kappa$. The ACF of a random signal of finite length $N$ can be expressed by way of a linear convolution \begin{equation} \varphi_{xx}[\kappa] = \frac{1}{N} \cdot x_N[k] * x_N[-k]. \end{equation} Taking the DTFT of the left- and right-hand side results in \begin{equation} \Phi_{xx}(\mathrm{e}^{\,\mathrm{j}\,\Omega}) = \frac{1}{N} \, X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega})\, X_N(\mathrm{e}^{-\,\mathrm{j}\,\Omega}) = \frac{1}{N} \, | X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega}) |^2. \end{equation} The last equality results from the definition of the magnitude and the symmetry of the DTFT for real-valued signals. The spectrum $X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega})$ quantifies the amplitude density of the signal $x_N[k]$. It can be concluded from above result that the PSD quantifies the squared amplitude or power density of a random signal. This explains the term power spectral density. ### Properties The properties of the PSD can be deduced from the properties of the ACF and the DTFT as: 1. From the link between the PSD $\Phi_{xx}(\mathrm{e}^{\,\mathrm{j}\,\Omega})$ and the spectrum $X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega})$ derived above it can be concluded that the PSD is real valued $$\Phi_{xx}(\mathrm{e}^{\,\mathrm{j}\,\Omega}) \in \mathbb{R}$$ 2. From the even symmetry $\varphi_{xx}[\kappa] = \varphi_{xx}[-\kappa]$ of the ACF it follows that $$ \Phi_{xx}(\mathrm{e}^{\,\mathrm{j} \, \Omega}) = \Phi_{xx}(\mathrm{e}^{\,-\mathrm{j}\, \Omega}) $$ 3. The PSD of an uncorrelated random signal is given as $$ \Phi_{xx}(\mathrm{e}^{\,\mathrm{j} \, \Omega}) = (\sigma_x^2 + \mu_x^2) \cdot {\bot \!\! \bot \!\! \bot}\left( \frac{\Omega}{2 \pi} \right) ,$$ which can be deduced from the [ACF of an uncorrelated signal](correlation_functions.ipynb#Properties). 4. The quadratic mean of a random signal is given as $$ E\{ x[k]^2 \} = \varphi_{xx}[\kappa=0] = \frac{1}{2\pi} \int\limits_{-\pi}^{\pi} \Phi_{xx}(\mathrm{e}^{\,\mathrm{j}\, \Omega}) \,\mathrm{d} \Omega $$ The last relation can be found by expressing the ACF via the inverse DTFT of $\Phi_{xx}$ and considering that $\mathrm{e}^{\mathrm{j} \Omega \kappa} = 1$ when evaluating the integral for $\kappa=0$. ### Example - Power Spectral Density of a Speech Signal In this example the PSD $\Phi_{xx}(\mathrm{e}^{\,\mathrm{j} \,\Omega})$ of a speech signal of length $N$ is estimated by applying a discrete Fourier transformation (DFT) to its ACF. For a better interpretation of the PSD, the frequency axis $f = \frac{\Omega}{2 \pi} \cdot f_s$ has been chosen for illustration, where $f_s$ denotes the sampling frequency of the signal. The speech signal constitutes a recording of the vowel 'o' spoken from a German male, loaded into variable `x`. In Python the ACF is stored in a vector with indices $0, 1, \dots, 2N - 2$ corresponding to the lags $\kappa = (0, 1, \dots, 2N - 2)^\mathrm{T} - (N-1)$. When computing the discrete Fourier transform (DFT) of the ACF numerically by the fast Fourier transform (FFT) one has to take this shift into account. For instance, by multiplying the DFT $\Phi_{xx}[\mu]$ by $\mathrm{e}^{\mathrm{j} \mu \frac{2 \pi}{2N - 1} (N-1)}$. ``` import numpy as np import matplotlib.pyplot as plt from scipy.io import wavfile %matplotlib inline # read audio file fs, x = wavfile.read('../data/vocal_o_8k.wav') x = np.asarray(x, dtype=float) N = len(x) # compute ACF acf = 1/N * np.correlate(x, x, mode='full') # compute PSD psd = np.fft.fft(acf) psd = psd * np.exp(1j*np.arange(2*N-1)*2*np.pi*(N-1)/(2*N-1)) f = np.fft.fftfreq(2*N-1, d=1/fs) # plot PSD plt.figure(figsize = (10, 4)) plt.plot(f, np.real(psd)) plt.title('Estimated power spectral density') plt.ylabel(r'$\hat{\Phi}_{xx}(e^{j \Omega})$') plt.xlabel(r'$f / Hz$') plt.axis([0, 500, 0, 1.1*max(np.abs(psd))]) plt.grid() ``` **Exercise** * What does the PSD tell you about the average spectral contents of a speech signal? Solution: The speech signal exhibits a harmonic structure with the dominant fundamental frequency $f_0 \approx 100$ Hz and a number of harmonics $f_n \approx n \cdot f_0$ for $n > 0$. This due to the fact that vowels generate random signals which are in good approximation periodic. To generate vowels, the sound produced by the periodically vibrating vowel folds is filtered by the resonance volumes and articulators above the voice box. The spectrum of periodic signals is a line spectrum. ## Cross-Power Spectral Density The cross-power spectral density is defined as the Fourier transformation of the [cross-correlation function](correlation_functions.ipynb#Cross-Correlation-Function) (CCF). ### Definition For two continuous-amplitude, real-valued, wide-sense stationary (WSS) random signals $x[k]$ and $y[k]$, the cross-power spectral density is given as \begin{equation} \Phi_{xy}(\mathrm{e}^{\,\mathrm{j} \, \Omega}) = \mathcal{F}_* \{ \varphi_{xy}[\kappa] \}, \end{equation} where $\varphi_{xy}[\kappa]$ denotes the CCF of $x[k]$ and $y[k]$. Note again, that the DTFT is performed with respect to $\kappa$. The CCF of two random signals of finite length $N$ and $M$ can be expressed by way of a linear convolution \begin{equation} \varphi_{xy}[\kappa] = \frac{1}{N} \cdot x_N[k] * y_M[-k]. \end{equation} Note the chosen $\frac{1}{N}$-averaging convention corresponds to the length of signal $x$. If $N \neq M$, care should be taken on the interpretation of this normalization. In case of $N=M$ the $\frac{1}{N}$-averaging yields a [biased estimator](https://en.wikipedia.org/wiki/Bias_of_an_estimator) of the CCF, which consistently should be denoted with $\hat{\varphi}_{xy,\mathrm{biased}}[\kappa]$. Taking the DTFT of the left- and right-hand side from above cross-correlation results in \begin{equation} \Phi_{xy}(\mathrm{e}^{\,\mathrm{j}\,\Omega}) = \frac{1}{N} \, X_N(\mathrm{e}^{\,\mathrm{j}\,\Omega})\, Y_M(\mathrm{e}^{-\,\mathrm{j}\,\Omega}). \end{equation} ### Properties 1. The symmetries of $\Phi_{xy}(\mathrm{e}^{\,\mathrm{j}\, \Omega})$ can be derived from the symmetries of the CCF and the DTFT as $$ \underbrace {\Phi_{xy}(\mathrm{e}^{\,\mathrm{j}\, \Omega}) = \Phi_{xy}^*(\mathrm{e}^{-\,\mathrm{j}\, \Omega})}_{\varphi_{xy}[\kappa] \in \mathbb{R}} = \underbrace {\Phi_{yx}(\mathrm{e}^{\,- \mathrm{j}\, \Omega}) = \Phi_{yx}^*(\mathrm{e}^{\,\mathrm{j}\, \Omega})}_{\varphi_{yx}[-\kappa] \in \mathbb{R}},$$ from which $|\Phi_{xy}(\mathrm{e}^{\,\mathrm{j}\, \Omega})| = |\Phi_{yx}(\mathrm{e}^{\,\mathrm{j}\, \Omega})|$ can be concluded. 2. The cross PSD of two uncorrelated random signals is given as $$ \Phi_{xy}(\mathrm{e}^{\,\mathrm{j} \, \Omega}) = \mu_x^2 \mu_y^2 \cdot {\bot \!\! \bot \!\! \bot}\left( \frac{\Omega}{2 \pi} \right) $$ which can be deduced from the CCF of an uncorrelated signal. ### Example - Cross-Power Spectral Density The following example estimates and plots the cross PSD $\Phi_{xy}(\mathrm{e}^{\,\mathrm{j}\, \Omega})$ of two random signals $x_N[k]$ and $y_M[k]$ of finite lengths $N = 64$ and $M = 512$. ``` N = 64 # length of x M = 512 # length of y # generate two uncorrelated random signals np.random.seed(1) x = 2 + np.random.normal(size=N) y = 3 + np.random.normal(size=M) N = len(x) M = len(y) # compute cross PSD via CCF acf = 1/N * np.correlate(x, y, mode='full') psd = np.fft.fft(acf) psd = psd * np.exp(1j*np.arange(N+M-1)*2*np.pi*(M-1)/(2*M-1)) psd = np.fft.fftshift(psd) Om = 2*np.pi * np.arange(0, N+M-1) / (N+M-1) Om = Om - np.pi # plot results plt.figure(figsize=(10, 4)) plt.stem(Om, np.abs(psd), basefmt='C0:', use_line_collection=True) plt.title('Biased estimator of cross power spectral density') plt.ylabel(r'$|\hat{\Phi}_{xy}(e^{j \Omega})|$') plt.xlabel(r'$\Omega$') plt.grid() ``` **Exercise** * What does the cross PSD $\Phi_{xy}(\mathrm{e}^{\,\mathrm{j} \, \Omega})$ tell you about the statistical properties of the two random signals? Solution: The cross PSD $\Phi_{xy}(\mathrm{e}^{\,\mathrm{j} \, \Omega})$ is essential only non-zero for $\Omega=0$. It hence can be concluded that the two random signals are not mean-free and uncorrelated to each other. **Copyright** This notebook is provided as [Open Educational Resource](https://en.wikipedia.org/wiki/Open_educational_resources). Feel free to use the notebook for your own purposes. The text is licensed under [Creative Commons Attribution 4.0](https://creativecommons.org/licenses/by/4.0/), the code of the IPython examples under the [MIT license](https://opensource.org/licenses/MIT). Please attribute the work as follows: *Sascha Spors, Digital Signal Processing - Lecture notes featuring computational examples*.
true
code
0.625896
null
null
null
null
Notebook to plot the histogram of the power criterion values of Rel-UME test. ``` %matplotlib inline %load_ext autoreload %autoreload 2 #%config InlineBackend.figure_format = 'svg' #%config InlineBackend.figure_format = 'pdf' import freqopttest.tst as tst import kmod import kgof import kgof.goftest as gof # submodules from kmod import data, density, kernel, util, plot, glo, log from kmod.ex import cifar10 as cf10 import kmod.ex.exutil as exu from kmod import mctest as mct import matplotlib import matplotlib.pyplot as plt import pickle import os import autograd.numpy as np import scipy.stats as stats import numpy.testing as testing # plot.set_default_matplotlib_options() # font options font = { #'family' : 'normal', #'weight' : 'bold', 'size' : 20, } plt.rc('font', **font) plt.rc('lines', linewidth=2) matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 # def store_path(fname): # """ # Construct a full path for saving/loading files. # """ # return os.path.join('cifar10', fname) display(list(zip(range(10), cf10.cifar10_classes))) ``` # Histogram of power criterion values First construct four samples: $X \sim P, Y \sim Q, Z \sim R$, and a pool W to be used as test location candidates. ``` # class_spec = [ # # (class, #points for p, #points for q, #points for r, #points for the pool) # ('airplane', 2000, 0, 0, 1500), # ('cat', 0, 2000, 2000, 1500), # ('truck', 1500, 1500, 1500, 1500), # ] # class_spec = [ # # (class, #points for p, #points for q, #points for r, #points for the pool) # ('airplane', 1000, 0, 0, 300), # ('cat', 0, 1000, 1000, 300), # ('truck', 1500, 1500, 1500, 300), # ] class_spec = [ # (class, #points for p, #points for q, #points for r, #points for the pool) ('ship', 2000, 0, 0, 1000), ('airplane', 0, 2000, 1500, 1000), ('dog', 1500, 1500, 1500, 1000), ('bird', 0, 0, 500, 1000), ] # class_spec = [ # # (class, #points for p, #points for q, #points for r, #points for the pool) # ('horse', 2000, 0, 0, 1000), # ('deer', 0, 2000, 1500, 1000), # ('dog', 1500, 1500, 1500, 1000), # ('automobile', 0, 0, 500, 1000), # ] # class_spec = [ # # (class, #points for p, #points for q, #points for r, #points for the pool) # ('airplane', 2000, 0, 0, 1000), # ('automobile', 0, 2000, 1500, 1000), # ('cat', 1500, 1500, 1500, 1000), # ('frog', 0, 0, 500, 1000), # ] #class_spec = [ # (class, #points for p, #points for q, #points for r, #points for the pool) # ('airplane', 2000, 0, 0, 1000), # ('automobile', 0, 2000, 2000, 1000), # ('cat', 1500, 1500, 1500, 1000), #] # class_spec = [ # # (class, #points for p, #points for q, #points for r, #points for the pool) # ('airplane', 200, 0, 0, 150), # ('cat', 0, 200, 200, 150), # ('truck', 150, 150, 150, 150), # ] # check sizes hist_classes = [z[0] for z in class_spec] p_sizes = [z[1] for z in class_spec] q_sizes = [z[2] for z in class_spec] r_sizes = [z[3] for z in class_spec] pool_sizes = [z[4] for z in class_spec] # make sure p,q,r have the same sample size assert sum(p_sizes) == sum(q_sizes) assert sum(q_sizes) == sum(r_sizes) # cannot use more than 6000 from each class for i, cs in enumerate(class_spec): class_used = sum(cs[1:]) if class_used > 6000: raise ValueError('class "{}" requires more than 6000 points. Was {}.'.format(cs[0], class_used)) # images as numpy arrays list_Ximgs = [] list_Yimgs = [] list_Zimgs = [] list_poolimgs = [] # features list_X = [] list_Y = [] list_Z = [] list_pool = [] # class labels list_Xlabels = [] list_Ylabels = [] list_Zlabels = [] list_poollabels = [] # seed used for subsampling seed = 368 with util.NumpySeedContext(seed=seed): for i, cs in enumerate(class_spec): # load class data class_i = cs[0] imgs_i = cf10.load_data_array(class_i) feas_i = cf10.load_feature_array(class_i) # split each class according to the spec class_sizes_i = cs[1:] # imgs_i, feas_i may contain more than what we need in total for a class. Subsample sub_ind = util.subsample_ind(imgs_i.shape[0], sum(class_sizes_i), seed=seed+1) sub_ind = list(sub_ind) assert len(sub_ind) == sum(class_sizes_i) xyzp_imgs_i = util.multi_way_split(imgs_i[sub_ind,:], class_sizes_i) xyzp_feas_i = util.multi_way_split(feas_i[sub_ind,:], class_sizes_i) # assignment list_Ximgs.append(xyzp_imgs_i[0]) list_Yimgs.append(xyzp_imgs_i[1]) list_Zimgs.append(xyzp_imgs_i[2]) list_poolimgs.append(xyzp_imgs_i[3]) list_X.append(xyzp_feas_i[0]) list_Y.append(xyzp_feas_i[1]) list_Z.append(xyzp_feas_i[2]) list_pool.append(xyzp_feas_i[3]) # class labels class_ind_i = cf10.cifar10_class_ind_dict[class_i] list_Xlabels.append(np.ones(class_sizes_i[0])*class_ind_i) list_Ylabels.append(np.ones(class_sizes_i[1])*class_ind_i) list_Zlabels.append(np.ones(class_sizes_i[2])*class_ind_i) list_poollabels.append(np.ones(class_sizes_i[3])*class_ind_i) ``` Finally we have the samples (features and images) ``` # stack the lists. For the "histogram" purpose, we don't actually need # images for X, Y, Z. Only images for the pool. Ximgs = np.vstack(list_Ximgs) Yimgs = np.vstack(list_Yimgs) Zimgs = np.vstack(list_Zimgs) poolimgs = np.vstack(list_poolimgs) # features X = np.vstack(list_X) Y = np.vstack(list_Y) Z = np.vstack(list_Z) pool = np.vstack(list_pool) # labels Xlabels = np.hstack(list_Xlabels) Ylabels = np.hstack(list_Ylabels) Zlabels = np.hstack(list_Zlabels) poollabels = np.hstack(list_poollabels) # sanity check XYZP = [(X, Ximgs, Xlabels), (Y, Yimgs, Ylabels), (Z, Zimgs, Zlabels), (pool, poolimgs, poollabels)] for f, fimgs, flabels in XYZP: assert f.shape[0] == fimgs.shape[0] assert fimgs.shape[0] == flabels.shape[0] assert X.shape[0] == sum(p_sizes) assert Y.shape[0] == sum(q_sizes) assert Z.shape[0] == sum(r_sizes) assert pool.shape[0] == sum(pool_sizes) ``` ## The actual histogram ``` def eval_test_locations(X, Y, Z, loc_pool, k, func_inds, reg=1e-6): """ Use X, Y, Z to estimate the Rel-UME power criterion function and evaluate the function at each point (individually) in loc_pool (2d numpy array). * k: a kernel * func_inds: list of indices of the functions to evaluate. See below. * reg: regularization parameter in the power criterion Return an m x (up to) 5 numpy array where m = number of candidates in the pool. The columns can be (as specified in func_inds): 0. power criterion 1. evaluation of the relative witness (or the test statistic of UME_SC) 2. evaluation of MMD witness(p, r) (not squared) 3. evaluation of witness(q, r) 4. evaluate of witness(p, q) """ datap = data.Data(X) dataq = data.Data(Y) datar = data.Data(Z) powcri_func = mct.SC_UME.get_power_criterion_func(datap, dataq, datar, k, k, reg=1e-7) relwit_func = mct.SC_UME.get_relative_sqwitness(datap, dataq, datar, k, k) witpr = tst.MMDWitness(k, X, Z) witqr = tst.MMDWitness(k, Y, Z) witpq = tst.MMDWitness(k, X, Y) funcs = [powcri_func, relwit_func, witpr, witqr, witpq] # select the functions according to func_inds list_evals = [funcs[i](loc_pool) for i in func_inds] stack_evals = np.vstack(list_evals) return stack_evals.T # Gaussian kernel with median heuristic medxz = util.meddistance(np.vstack((X, Z)), subsample=1000) medyz = util.meddistance(np.vstack((Y, Z)), subsample=1000) k = kernel.KGauss(np.mean([medxz, medyz])**2) print('Gaussian width: {}'.format(k.sigma2**0.5)) # histogram. This will take some time. func_inds = np.array([0, 1, 2, 3, 4]) pool_evals = eval_test_locations(X, Y, Z, loc_pool=pool, k=k, func_inds=func_inds, reg=1e-6) pow_cri_values = pool_evals[:, func_inds==0].reshape(-1) test_stat_values = pool_evals[:, func_inds==1].reshape(-1) witpr_values = pool_evals[:, func_inds==2] witqr_values = pool_evals[:, func_inds==3] witpq_values = pool_evals[:, func_inds==4].reshape(-1) plt.figure(figsize=(6, 4)) a = 0.6 plt.figure(figsize=(4,4)) plt.hist(pow_cri_values, bins=15, label='Power Criterion', alpha=a); plt.hist(witpr_values, bins=15, label='Power Criterion', alpha=a); plt.hist(witqr_values, bins=15, label='Power Criterion', alpha=a); plt.hist(witpq_values, bins=15, label='Power Criterion', alpha=a); # Save the results # package things to save datapack = { 'class_spec': class_spec, 'seed': seed, 'poolimgs': poolimgs, 'X': X, 'Y': Y, 'Z': Z, 'pool': pool, 'medxz': medxz, 'medyz': medyz, 'func_inds': func_inds, 'pool_evals': pool_evals, } lines = [ '_'.join(str(x) for x in cs) for cs in class_spec] fname = '-'.join(lines) + '-seed{}.pkl'.format(seed) with open(fname, 'wb') as f: # expect result to be a dictionary pickle.dump(datapack, f) ``` Code for running the experiment ends here. ## Plot the results This section can be run by loading the previously saved results. ``` # load the results # fname = 'airplane_2000_0_0_1000-automobile_0_2000_1500_1000-cat_1500_1500_1500_1000-frog_0_0_500_1000-seed368.pkl' # fname = 'ship_2000_0_0_1000-airplane_0_2000_1500_1000-automobile_1500_1500_1500_1000-bird_0_0_500_1000-seed368.pkl' # fname = 'ship_2000_0_0_1000-dog_0_2000_1500_1000-automobile_1500_1500_1500_1000-bird_0_0_500_1000-seed368.pkl' fname = 'ship_2000_0_0_1000-airplane_0_2000_1500_1000-dog_1500_1500_1500_1000-bird_0_0_500_1000-seed368.pkl' # fname = 'horse_2000_0_0_1000-deer_0_2000_1500_1000-dog_1500_1500_1500_1000-airplane_0_0_500_1000-seed368.pkl' # fname = 'horse_2000_0_0_1000-deer_0_2000_1500_1000-dog_1500_1500_1500_1000-automobile_0_0_500_1000-seed368.pkl' # fname = 'horse_2000_0_0_1000-deer_0_2000_2000_1000-dog_1500_1500_1500_1000-seed368.pkl' #fname = 'airplane_2000_0_0_1000-automobile_0_2000_2000_1000-cat_1500_1500_1500_1000-seed368.pkl' with open(fname, 'rb') as f: # expect a dictionary L = pickle.load(f) # load the variables class_spec = L['class_spec'] seed = L['seed'] poolimgs = L['poolimgs'] X = L['X'] Y = L['Y'] Z = L['Z'] pool = L['pool'] medxz = L['medxz'] medyz = L['medyz'] func_inds = L['func_inds'] pool_evals = L['pool_evals'] pow_cri_values = pool_evals[:, func_inds==0].reshape(-1) test_stat_values = pool_evals[:, func_inds==1].reshape(-1) witpq_values = pool_evals[:, func_inds==4].reshape(-1) # plot the histogram plt.figure(figsize=(6, 4)) a = 0.6 plt.figure(figsize=(4,4)) plt.hist(pow_cri_values, bins=15, label='Power Criterion', alpha=a); # plt.hist(test_stat_values, label='Stat.', alpha=a); # plt.legend() plt.savefig('powcri_hist_locs_pool.pdf', bbox_inches='tight') plt.figure(figsize=(12, 4)) plt.hist(test_stat_values, label='Stat.', alpha=a); plt.legend() def reshape_3c_rescale(img_in_stack): img = img_in_stack.reshape([3, 32, 32]) # h x w x c img = img.transpose([1, 2, 0])/255.0 return img def plot_lowzerohigh(images, values, text_in_title='', grid_rows=2, grid_cols=10, figsize=(13, 3)): """ Sort the values in three different ways (ascending, descending, absolute ascending). Plot the images corresponding to the top-k sorted values. k is determined by the grid size. """ low_inds, zeros_inds, high_inds = util.top_lowzerohigh(values) plt.figure(figsize=figsize) exu.plot_images_grid(images[low_inds], reshape_3c_rescale, grid_rows, grid_cols) # plt.suptitle('{} Low'.format(text_in_title)) plt.savefig('powcri_low_region.pdf', bbox_inches='tight') plt.figure(figsize=figsize) exu.plot_images_grid(images[zeros_inds], reshape_3c_rescale, grid_rows, grid_cols) # plt.suptitle('{} Near Zero'.format(text_in_title)) plt.savefig('powcri_zero_region.pdf', bbox_inches='tight') plt.figure(figsize=figsize) exu.plot_images_grid(images[high_inds], reshape_3c_rescale, grid_rows, grid_cols) # plt.suptitle('{} High'.format(text_in_title)) plt.savefig('powcri_high_region.pdf', bbox_inches='tight') grid_rows = 2 grid_cols = 5 figsize = (5, 3) plot_lowzerohigh(poolimgs, pow_cri_values, 'Power Criterion.', grid_rows, grid_cols, figsize) # plot_lowzerohigh(poolimgs, rel_wit_values, 'Test statistic.', grid_rows, grid_cols, figsize) import matplotlib.gridspec as gridspec def plot_images_grid_witness(images, func_img=None, grid_rows=4, grid_cols=4, witness_pq=None, scale=100.): """ Plot images in a grid, starting from index 0 to the maximum size of the grid. images: stack of images images[i] is one image func_img: function to run on each image before plotting """ gs1 = gridspec.GridSpec(grid_rows, grid_cols) gs1.update(wspace=0.2, hspace=0.8) # set the spacing between axes. wit_sign = np.sign(witness_pq) for i in range(grid_rows*grid_cols): if func_img is not None: img = func_img(images[i]) else: img = images[i] if witness_pq is not None: sign = wit_sign[i] if sign > 0: color = 'red' else: color = 'blue' # plt.subplot(grid_rows, grid_cols, i+1) ax = plt.subplot(gs1[i]) if witness_pq is not None: ax.text(0.5, -0.6, "{:1.2f}".format(scale*witness_pq[i]), ha="center", color=color, transform=ax.transAxes) plt.imshow(img) plt.axis('off') def plot_lowzerohigh(images, values, text_in_title='', grid_rows=2, grid_cols=10, figsize=(13, 3), wit_pq=None, skip_length=1): """ Sort the values in three different ways (ascending, descending, absolute ascending). Plot the images corresponding to the top-k sorted values. k is determined by the grid size. """ low_inds, zeros_inds, high_inds = util.top_lowzerohigh(values) low_inds = low_inds[::skip_length] zeros_inds = zeros_inds[::skip_length] high_inds = high_inds[::skip_length] plt.figure(figsize=figsize) plot_images_grid_witness(images[low_inds], reshape_3c_rescale, grid_rows, grid_cols, wit_pq[low_inds]) # plt.suptitle('{} Low'.format(text_in_title)) # plt.savefig('powcri_low_region.pdf', bbox_inches='tight') plt.figure(figsize=figsize) plot_images_grid_witness(images[zeros_inds], reshape_3c_rescale, grid_rows, grid_cols, wit_pq[zeros_inds]) # plt.suptitle('{} Near Zero'.format(text_in_title)) # plt.savefig('powcri_zero_region.pdf', bbox_inches='tight') plt.figure(figsize=figsize) plot_images_grid_witness(images[high_inds[:]], reshape_3c_rescale, grid_rows, grid_cols, wit_pq[high_inds]) # plt.suptitle('{} High'.format(text_in_title)) # plt.savefig('powcri_high_region.pdf', bbox_inches='tight') grid_rows = 3 grid_cols = 5 figsize = (8, 3) plot_lowzerohigh(poolimgs, pow_cri_values, 'Power Criterion.', grid_rows, grid_cols, figsize, witpq_values, skip_length=40) ```
true
code
0.36642
null
null
null
null
# Integrated gradients for text classification on the IMDB dataset In this example, we apply the integrated gradients method to a sentiment analysis model trained on the IMDB dataset. In text classification models, integrated gradients define an attribution value for each word in the input sentence. The attributions are calculated considering the integral of the model gradients with respect to the word embedding layer along a straight path from a baseline instance $x^\prime$ to the input instance $x.$ A description of the method can be found [here](https://docs.seldon.io/projects/alibi/en/latest/methods/IntegratedGradients.html). Integrated gradients was originally proposed in Sundararajan et al., ["Axiomatic Attribution for Deep Networks"](https://arxiv.org/abs/1703.01365) The IMDB data set contains 50K movie reviews labelled as positive or negative. We train a convolutional neural network classifier with a single 1-d convolutional layer followed by a fully connected layer. The reviews in the dataset are truncated at 100 words and each word is represented by 50-dimesional word embedding vector. We calculate attributions for the elements of the embedding layer. ``` import tensorflow as tf import numpy as np import os import pandas as pd from tensorflow.keras.datasets import imdb from tensorflow.keras.preprocessing import sequence from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Dense, Embedding, Conv1D, GlobalMaxPooling1D, Dropout from tensorflow.keras.utils import to_categorical from alibi.explainers import IntegratedGradients import matplotlib.pyplot as plt print('TF version: ', tf.__version__) print('Eager execution enabled: ', tf.executing_eagerly()) # True ``` ## Load data Loading the imdb dataset. ``` max_features = 10000 maxlen = 100 print('Loading data...') (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features) test_labels = y_test.copy() train_labels = y_train.copy() print(len(x_train), 'train sequences') print(len(x_test), 'test sequences') y_train, y_test = to_categorical(y_train), to_categorical(y_test) print('Pad sequences (samples x time)') x_train = sequence.pad_sequences(x_train, maxlen=maxlen) x_test = sequence.pad_sequences(x_test, maxlen=maxlen) print('x_train shape:', x_train.shape) print('x_test shape:', x_test.shape) index = imdb.get_word_index() reverse_index = {value: key for (key, value) in index.items()} ``` A sample review from the test set. Note that unknown words are replaced with 'UNK' ``` def decode_sentence(x, reverse_index): # the `-3` offset is due to the special tokens used by keras # see https://stackoverflow.com/questions/42821330/restore-original-text-from-keras-s-imdb-dataset return " ".join([reverse_index.get(i - 3, 'UNK') for i in x]) print(decode_sentence(x_test[1], reverse_index)) ``` ## Train Model The model includes one convolutional layer and reaches a test accuracy of 0.85. If `save_model = True`, a local folder `../model_imdb` will be created and the trained model will be saved in that folder. If the model was previously saved, it can be loaded by setting `load_model = True`. ``` batch_size = 32 embedding_dims = 50 filters = 250 kernel_size = 3 hidden_dims = 250 load_model = False save_model = True filepath = './model_imdb/' # change to directory where model is downloaded if load_model: model = tf.keras.models.load_model(os.path.join(filepath, 'model.h5')) else: print('Build model...') inputs = Input(shape=(maxlen,), dtype='int32') embedded_sequences = Embedding(max_features, embedding_dims)(inputs) out = Conv1D(filters, kernel_size, padding='valid', activation='relu', strides=1)(embedded_sequences) out = Dropout(0.4)(out) out = GlobalMaxPooling1D()(out) out = Dense(hidden_dims, activation='relu')(out) out = Dropout(0.4)(out) outputs = Dense(2, activation='softmax')(out) model = Model(inputs=inputs, outputs=outputs) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print('Train...') model.fit(x_train, y_train, batch_size=256, epochs=3, validation_data=(x_test, y_test)) if save_model: if not os.path.exists(filepath): os.makedirs(filepath) model.save(os.path.join(filepath, 'model.h5')) ``` ## Calculate integrated gradients The integrated gradients attributions are calculated with respect to the embedding layer for 10 samples from the test set. Since the model uses a word to vector embedding with vector dimensionality of 50 and sequence length of 100 words, the dimensionality of the attributions is (10, 100, 50). In order to obtain a single attribution value for each word, we sum all the attribution values for the 50 elements of each word's vector representation. The default baseline is used in this example which is internally defined as a sequence of zeros. In this case, this corresponds to a sequence of padding characters (**NB:** in general the numerical value corresponding to a "non-informative" baseline such as the PAD token will depend on the tokenizer used, make sure that the numerical value of the baseline used corresponds to your desired token value to avoid surprises). The path integral is defined as a straight line from the baseline to the input image. The path is approximated by choosing 50 discrete steps according to the Gauss-Legendre method. ``` n_steps = 50 method = "gausslegendre" internal_batch_size = 100 nb_samples = 10 ig = IntegratedGradients(model, layer=model.layers[1], n_steps=n_steps, method=method, internal_batch_size=internal_batch_size) x_test_sample = x_test[:nb_samples] predictions = model(x_test_sample).numpy().argmax(axis=1) explanation = ig.explain(x_test_sample, baselines=None, target=predictions) # Metadata from the explanation object explanation.meta # Data fields from the explanation object explanation.data.keys() # Get attributions values from the explanation object attrs = explanation.attributions[0] print('Attributions shape:', attrs.shape) ``` ## Sum attributions ``` attrs = attrs.sum(axis=2) print('Attributions shape:', attrs.shape) ``` ## Visualize attributions ``` i = 1 x_i = x_test_sample[i] attrs_i = attrs[i] pred = predictions[i] pred_dict = {1: 'Positive review', 0: 'Negative review'} print('Predicted label = {}: {}'.format(pred, pred_dict[pred])) ``` We can visualize the attributions for the text instance by mapping the values of the attributions onto a matplotlib colormap. Below we define some utility functions for doing this. ``` from IPython.display import HTML def hlstr(string, color='white'): """ Return HTML markup highlighting text with the desired color. """ return f"<mark style=background-color:{color}>{string} </mark>" def colorize(attrs, cmap='PiYG'): """ Compute hex colors based on the attributions for a single instance. Uses a diverging colorscale by default and normalizes and scales the colormap so that colors are consistent with the attributions. """ import matplotlib as mpl cmap_bound = np.abs(attrs).max() norm = mpl.colors.Normalize(vmin=-cmap_bound, vmax=cmap_bound) cmap = mpl.cm.get_cmap(cmap) # now compute hex values of colors colors = list(map(lambda x: mpl.colors.rgb2hex(cmap(norm(x))), attrs)) return colors ``` Below we visualize the attribution values (highlighted in the text) having the highest positive attributions. Words with high positive attribution are highlighted in shades of green and words with negative attribution in shades of pink. Stronger shading corresponds to higher attribution values. Positive attributions can be interpreted as increase in probability of the predicted class ("Positive sentiment") while negative attributions correspond to decrease in probability of the predicted class. ``` words = decode_sentence(x_i, reverse_index).split() colors = colorize(attrs_i) HTML("".join(list(map(hlstr, words, colors)))) ```
true
code
0.754819
null
null
null
null
# A practical introduction to Reinforcement Learning Most of you have probably heard of AI learning to play computer games on their own, a very popular example being Deepmind. Deepmind hit the news when their AlphaGo program defeated the South Korean Go world champion in 2016. There had been many successful attempts in the past to develop agents with the intent of playing Atari games like Breakout, Pong, and Space Invaders. You know what's common in most of these programs? A paradigm of Machine Learning known as **Reinforcement Learning**. For those of you that are new to RL, let's get some understand with few analogies. ## Reinforcement Learning Analogy Consider the scenario of teaching a dog new tricks. The dog doesn't understand our language, so we can't tell him what to do. Instead, we follow a different strategy. We emulate a situation (or a cue), and the dog tries to respond in many different ways. If the dog's response is the desired one, we reward them with snacks. Now guess what, the next time the dog is exposed to the same situation, the dog executes a similar action with even more enthusiasm in expectation of more food. That's like learning "what to do" from positive experiences. Similarly, dogs will tend to learn what not to do when face with negative experiences. That's exactly how Reinforcement Learning works in a broader sense: - Your dog is an "agent" that is exposed to the **environment**. The environment could in your house, with you. - The situations they encounter are analogous to a **state**. An example of a state could be your dog standing and you use a specific word in a certain tone in your living room - Our agents react by performing an **action** to transition from one "state" to another "state," your dog goes from standing to sitting, for example. - After the transition, they may receive a **reward** or **penalty** in return. You give them a treat! Or a "No" as a penalty. - The **policy** is the strategy of choosing an action given a state in expectation of better outcomes. Reinforcement Learning lies between the spectrum of Supervised Learning and Unsupervised Learning, and there's a few important things to note: 1. Being greedy doesn't always work There are things that are easy to do for instant gratification, and there's things that provide long term rewards The goal is to not be greedy by looking for the quick immediate rewards, but instead to optimize for maximum rewards over the whole training. 2. Sequence matters in Reinforcement Learning The reward agent does not just depend on the current state, but the entire history of states. Unlike supervised and unsupervised learning, time is important here. ### The Reinforcement Process In a way, Reinforcement Learning is the science of making optimal decisions using experiences. Breaking it down, the process of Reinforcement Learning involves these simple steps: 1. Observation of the environment 2. Deciding how to act using some strategy 3. Acting accordingly 4. Receiving a reward or penalty 5. Learning from the experiences and refining our strategy 6. Iterate until an optimal strategy is found Let's now understand Reinforcement Learning by actually developing an agent to learn to play a game automatically on its own. ## Example Design: Self-Driving Cab Let's design a simulation of a self-driving cab. The major goal is to demonstrate, in a simplified environment, how you can use RL techniques to develop an efficient and safe approach for tackling this problem. The Smartcab's job is to pick up the passenger at one location and drop them off in another. Here are a few things that we'd love our Smartcab to take care of: - Drop off the passenger to the right location. - Save passenger's time by taking minimum time possible to drop off - Take care of passenger's safety and traffic rules There are different aspects that need to be considered here while modeling an RL solution to this problem: rewards, states, and actions. ### 1. Rewards Since the agent (the imaginary driver) is reward-motivated and is going to learn how to control the cab by trial experiences in the environment, we need to decide the **rewards** and/or **penalties** and their magnitude accordingly. Here a few points to consider: - The agent should receive a high positive reward for a successful dropoff because this behavior is highly desired - The agent should be penalized if it tries to drop off a passenger in wrong locations - The agent should get a slight negative reward for not making it to the destination after every time-step. "Slight" negative because we would prefer our agent to reach late instead of making wrong moves trying to reach to the destination as fast as possible ### 2. State Space In Reinforcement Learning, the agent encounters a state, and then takes action according to the state it's in. The **State Space** is the set of all possible situations our taxi could inhabit. The state should contain useful information the agent needs to make the right action. Let's say we have a training area for our Smartcab where we are teaching it to transport people in a parking lot to four different locations (R, G, Y, B): ![](https://storage.googleapis.com/lds-media/images/Reinforcement_Learning_Taxi_Env.width-1200.png) Let's assume Smartcab is the only vehicle in this parking lot. We can break up the parking lot into a 5x5 grid, which gives us 25 possible taxi locations. These 25 locations are one part of our state space. Notice the current location state of our taxi is coordinate (3, 1). You'll also notice there are four (4) locations that we can pick up and drop off a passenger: R, G, Y, B or `[(0,0), (0,4), (4,0), (4,3)] ` in (row, col) coordinates. Our illustrated passenger is in location **Y** and they wish to go to location **R**. When we also account for one (1) additional passenger state of being inside the taxi, we can take all combinations of passenger locations and destination locations to come to a total number of states for our taxi environment; there's four (4) destinations and five (4 + 1) passenger locations. So, our taxi environment has $5 \times 5 \times 5 \times 4 = 500$ total possible states. ### 3. Action Space The agent encounters one of the 500 states and it takes an action. The action in our case can be to move in a direction or decide to pickup/dropoff a passenger. In other words, we have six possible actions: 1. `south` 2. `north` 3. `east` 4. `west` 5. `pickup` 6. `dropoff` This is the **action space**: the set of all the actions that our agent can take in a given state. You'll notice in the illustration above, that the taxi cannot perform certain actions in certain states due to walls. In environment's code, we will simply provide a -1 penalty for every wall hit and the taxi won't move anywhere. This will just rack up penalties causing the taxi to consider going around the wall. ## Implementation with Python Fortunately, [OpenAI Gym](https://gym.openai.com/) has this exact environment already built for us. Gym provides different game environments which we can plug into our code and test an agent. The library takes care of API for providing all the information that our agent would require, like possible actions, score, and current state. We just need to focus just on the algorithm part for our agent. We'll be using the Gym environment called `Taxi-V3`, which all of the details explained above were pulled from. The objectives, rewards, and actions are all the same. ### Gym's interface We need to install `gym` first. Executing the following in a Jupyter notebook should work: ``` !pip install cmake 'gym[atari]' scipy ``` Once installed, we can load the game environment and render what it looks like: ``` import gym env = gym.make("Taxi-v3").env env.render() ``` The core gym interface is `env`, which is the unified environment interface. The following are the `env` methods that would be quite helpful to us: - `env.reset`: Resets the environment and returns a random initial state. - `env.step(action)`: Step the environment by one timestep. Returns + **observation**: Observations of the environment + **reward**: If your action was beneficial or not + **done**: Indicates if we have successfully picked up and dropped off a passenger, also called one *episode* + **info**: Additional info such as performance and latency for debugging purposes - `env.render`: Renders one frame of the environment (helpful in visualizing the environment) Note: We are using the `.env` on the end of `make` to avoid training stopping at 200 iterations, which is the default for the new version of Gym ([reference](https://stackoverflow.com/a/42802225)). ### Reminder of our problem Here's our restructured problem statement (from Gym docs): > There are 4 locations (labeled by different letters), and our job is to pick up the passenger at one location and drop him off at another. We receive +20 points for a successful drop-off and lose 1 point for every time-step it takes. There is also a 10 point penalty for illegal pick-up and drop-off actions. Let's dive more into the environment. ``` env.reset() # reset environment to a new, random state env.render() print("Action Space {}".format(env.action_space)) print("State Space {}".format(env.observation_space)) ``` - The **filled square** represents the taxi, which is yellow without a passenger and green with a passenger. - The **pipe ("|")** represents a wall which the taxi cannot cross. - **R, G, Y, B** are the possible pickup and destination locations. The **blue letter** represents the current passenger pick-up location, and the **purple letter** is the current destination. As verified by the prints, we have an **Action Space** of size 6 and a **State Space** of size 500. As you'll see, our RL algorithm won't need any more information than these two things. All we need is a way to identify a state uniquely by assigning a unique number to every possible state, and RL learns to choose an action number from 0-5 where: - 0 = south - 1 = north - 2 = east - 3 = west - 4 = pickup - 5 = dropoff Recall that the 500 states correspond to a encoding of the taxi's location, the passenger's location, and the destination location. Reinforcement Learning will learn a mapping of **states** to the optimal **action** to perform in that state by *exploration*, i.e. the agent explores the environment and takes actions based off rewards defined in the environment. The optimal action for each state is the action that has the **highest cumulative long-term reward**. #### Back to our illustration We can actually take our illustration above, encode its state, and give it to the environment to render in Gym. Recall that we have the taxi at row 3, column 1, our passenger is at location 2, and our destination is location 0. Using the Taxi-v2 state encoding method, we can do the following: ``` state = env.encode(3, 1, 2, 0) # (taxi row, taxi column, passenger index, destination index) print("State:", state) env.s = state env.render() ``` We are using our illustration's coordinates to generate a number corresponding to a state between 0 and 499, which turns out to be **328** for our illustration's state. Then we can set the environment's state manually with `env.env.s` using that encoded number. You can play around with the numbers and you'll see the taxi, passenger, and destination move around. #### The Reward Table When the Taxi environment is created, there is an initial Reward table that's also created, called `P`. We can think of it like a matrix that has the number of states as rows and number of actions as columns, i.e. a $states \ \times \ actions$ matrix. Since every state is in this matrix, we can see the default reward values assigned to our illustration's state: ``` for I in range(10,20): print(env.P[I],'\n') ``` This dictionary has the structure `{action: [(probability, nextstate, reward, done)]}`. A few things to note: - The 0-5 corresponds to the actions (south, north, east, west, pickup, dropoff) the taxi can perform at our current state in the illustration. - In this env, `probability` is always 1.0. - The `nextstate` is the state we would be in if we take the action at this index of the dict - All the movement actions have a -1 reward and the pickup/dropoff actions have -10 reward in this particular state. If we are in a state where the taxi has a passenger and is on top of the right destination, we would see a reward of 20 at the dropoff action (5) - `done` is used to tell us when we have successfully dropped off a passenger in the right location. Each successfull dropoff is the end of an **episode** Note that if our agent chose to explore action two (2) in this state it would be going East into a wall. The source code has made it impossible to actually move the taxi across a wall, so if the taxi chooses that action, it will just keep acruing -1 penalties, which affects the **long-term reward**. ### Solving the environment without Reinforcement Learning Let's see what would happen if we try to brute-force our way to solving the problem without RL. Since we have our `P` table for default rewards in each state, we can try to have our taxi navigate just using that. We'll create an infinite loop which runs until one passenger reaches one destination (one **episode**), or in other words, when the received reward is 20. The `env.action_space.sample()` method automatically selects one random action from set of all possible actions. Let's see what happens: ``` env.s = 328 # set environment to illustration's state epochs = 0 penalties, reward = 0, 0 frames = [] # for animation done = False while not done: action = env.action_space.sample() state, reward, done, info = env.step(action) if reward == -10: penalties += 1 # Put each rendered frame into dict for animation frames.append({ 'frame': env.render(mode='ansi'), 'state': state, 'action': action, 'reward': reward } ) epochs += 1 print("Timesteps taken: {}".format(epochs)) print("Penalties incurred: {}".format(penalties)) from IPython.display import clear_output from time import sleep def print_frames(frames): for i, frame in enumerate(frames): clear_output(wait=True) #print(frame['frame'].getvalue()) print(f"Timestep: {i + 1}") print(f"State: {frame['state']}") print(f"Action: {frame['action']}") print(f"Reward: {frame['reward']}") sleep(.1) print_frames(frames) ``` Not good. Our agent takes thousands of timesteps and makes lots of wrong drop offs to deliver just one passenger to the right destination. This is because we aren't *learning* from past experience. We can run this over and over, and it will never optimize. The agent has no memory of which action was best for each state, which is exactly what Reinforcement Learning will do for us. ### Enter Reinforcement Learning We are going to use a simple RL algorithm called *Q-learning* which will give our agent some memory. #### Intro to Q-learning Essentially, Q-learning lets the agent use the environment's rewards to learn, over time, the best action to take in a given state. In our Taxi environment, we have the reward table, `P`, that the agent will learn from. It does thing by looking receiving a reward for taking an action in the current state, then updating a *Q-value* to remember if that action was beneficial. The values store in the Q-table are called a *Q-values*, and they map to a `(state, action)` combination. A Q-value for a particular state-action combination is representative of the "quality" of an action taken from that state. Better Q-values imply better chances of getting greater rewards. For example, if the taxi is faced with a state that includes a passenger at its current location, it is highly likely that the Q-value for `pickup` is higher when compared to other actions, like `dropoff` or `north`. Q-values are initialized to an arbitrary value, and as the agent exposes itself to the environment and receives different rewards by executing different actions, the Q-values are updated using the equation: $$\Large Q({\small state}, {\small action}) \leftarrow (1 - \alpha) Q({\small state}, {\small action}) + \alpha \Big({\small reward} + \gamma \max_{a} Q({\small next \ state}, {\small all \ actions})\Big)$$ Where: - $\Large \alpha$ (alpha) is the learning rate ($0 < \alpha \leq 1$) - Just like in supervised learning settings, $\alpha$ is the extent to which our Q-values are being updated in every iteration. - $\Large \gamma$ (gamma) is the discount factor ($0 \leq \gamma \leq 1$) - determines how much importance we want to give to future rewards. A high value for the discount factor (close to **1**) captures the long-term effective award, whereas, a discount factor of **0** makes our agent consider only immediate reward, hence making it greedy. **What is this saying?** We are assigning ($\leftarrow$), or updating, the Q-value of the agent's current *state* and *action* by first taking a weight ($1-\alpha$) of the old Q-value, then adding the learned value. The learned value is a combination of the reward for taking the current action in the current state, and the discounted maximum reward from the next state we will be in once we take the current action. Basically, we are learning the proper action to take in the current state by looking at the reward for the current state/action combo, and the max rewards for the next state. This will eventually cause our taxi to consider the route with the best rewards strung together. The Q-value of a state-action pair is the sum of the instant reward and the discounted future reward (of the resulting state). The way we store the Q-values for each state and action is through a **Q-table** ##### Q-Table The Q-table is a matrix where we have a row for every state (500) and a column for every action (6). It's first initialized to 0, and then values are updated after training. Note that the Q-table has the same dimensions as the reward table, but it has a completely different purpose. <img src="assets/q-matrix-initialized-to-learned.png" width=500px> #### Summing up the Q-Learning Process Breaking it down into steps, we get - Initialize the Q-table by all zeros. - Start exploring actions: For each state, select any one among all possible actions for the current state (S). - Travel to the next state (S') as a result of that action (a). - For all possible actions from the state (S') select the one with the highest Q-value. - Update Q-table values using the equation. - Set the next state as the current state. - If goal state is reached, then end and repeat the process. ##### Exploiting learned values After enough random exploration of actions, the Q-values tend to converge serving our agent as an action-value function which it can exploit to pick the most optimal action from a given state. There's a tradeoff between exploration (choosing a random action) and exploitation (choosing actions based on already learned Q-values). We want to prevent the action from always taking the same route, and possibly overfitting, so we'll be introducing another parameter called $\Large \epsilon$ "epsilon" to cater to this during training. Instead of just selecting the best learned Q-value action, we'll sometimes favor exploring the action space further. Lower epsilon value results in episodes with more penalties (on average) which is obvious because we are exploring and making random decisions. ### Implementing Q-learning in python #### Training the Agent First, we'll initialize the Q-table to a $500 \times 6$ matrix of zeros: ``` import numpy as np q_table = np.zeros([env.observation_space.n, env.action_space.n]) q_table ``` We can now create the training algorithm that will update this Q-table as the agent explores the environment over thousands of episodes. In the first part of `while not done`, we decide whether to pick a random action or to exploit the already computed Q-values. This is done simply by using the `epsilon` value and comparing it to the `random.uniform(0, 1)` function, which returns an arbitrary number between 0 and 1. We execute the chosen action in the environment to obtain the `next_state` and the `reward` from performing the action. After that, we calculate the maximum Q-value for the actions corresponding to the `next_state`, and with that, we can easily update our Q-value to the `new_q_value`: ``` %%time """Training the agent""" import random from IPython.display import clear_output import matplotlib.pyplot as plt import seaborn as sns from time import sleep %matplotlib inline # Hyperparameters alpha = 0.1 gamma = 0.6 epsilon = 0.1 # For plotting metrics all_epochs = [] all_penalties = [] for i in range(1, 1000): state = env.reset() epochs, penalties, reward, = 0, 0, 0 done = False while not done: if random.uniform(0, 1) < epsilon: action = env.action_space.sample() # Explore action space Sub sample else: action = np.argmax(q_table[state]) # Values Funcation next_state, reward, done, info = env.step(action) old_value = q_table[state, action] # Q-values Funcation next_max = np.max(q_table[next_state]) new_value = (1 - alpha) * old_value + alpha * (reward + gamma * next_max) q_table[state, action] = new_value if reward == -10: penalties += 1 state = next_state epochs += 1 if i % 100 == 0: clear_output(wait=True) print(f"Episode: {i}") print("Training finished.\n") ``` Now that the Q-table has been established over 100,000 episodes, let's see what the Q-values are at our illustration's state: ``` q_table[328] ``` The max Q-value is "north" (-1.971), so it looks like Q-learning has effectively learned the best action to take in our illustration's state! ### Evaluating the agent Let's evaluate the performance of our agent. We don't need to explore actions any further, so now the next action is always selected using the best Q-value: ``` """Evaluate agent's performance after Q-learning""" total_epochs, total_penalties = 0, 0 episodes = 100 for _ in range(episodes): state = env.reset() epochs, penalties, reward = 0, 0, 0 done = False while not done: action = np.argmax(q_table[state]) # Values Funcation state, reward, done, info = env.step(action) if reward == -10: penalties += 1 epochs += 1 total_penalties += penalties total_epochs += epochs print(f"Results after {episodes} episodes:") print(f"Average timesteps per episode: {total_epochs / episodes}") print(f"Average penalties per episode: {total_penalties / episodes}") ``` We can see from the evaluation, the agent's performance improved significantly and it incurred no penalties, which means it performed the correct pickup/dropoff actions with 100 different passengers. #### Comparing our Q-learning agent to no Reinforcement Learning With Q-learning agent commits errors initially during exploration but once it has explored enough (seen most of the states), it can act wisely maximizing the rewards making smart moves. Let's see how much better our Q-learning solution is when compared to the agent making just random moves. We evaluate our agents according to the following metrics, - **Average number of penalties per episode:** The smaller the number, the better the performance of our agent. Ideally, we would like this metric to be zero or very close to zero. - **Average number of timesteps per trip:** We want a small number of timesteps per episode as well since we want our agent to take minimum steps(i.e. the shortest path) to reach the destination. - **Average rewards per move:** The larger the reward means the agent is doing the right thing. That's why deciding rewards is a crucial part of Reinforcement Learning. In our case, as both timesteps and penalties are negatively rewarded, a higher average reward would mean that the agent reaches the destination as fast as possible with the least penalties" | Measure | Random agent's performance | Q-learning agent's performance | |----------------------------------------- |-------------------------- |-------------------------------- | | Average rewards per move | -3.9012092102214075 | 0.6962843295638126 | | Average number of penalties per episode | 920.45 | 0.0 | | Average number of timesteps per trip | 2848.14 | 12.38 | | These metrics were computed over 100 episodes. And as the results show, our Q-learning agent nailed it! #### Hyperparameters and optimizations The values of `alpha`, `gamma`, and `epsilon` were mostly based on intuition and some "hit and trial", but there are better ways to come up with good values. Ideally, all three should decrease over time because as the agent continues to learn, it actually builds up more resilient priors; - $\Large \alpha$: (the learning rate) should decrease as you continue to gain a larger and larger knowledge base. - $\Large \gamma$: as you get closer and closer to the deadline, your preference for near-term reward should increase, as you won't be around long enough to get the long-term reward, which means your gamma should decrease. - $\Large \epsilon$: as we develop our strategy, we have less need of exploration and more exploitation to get more utility from our policy, so as trials increase, epsilon should decrease. #### Tuning the hyperparameters A simple way to programmatically come up with the best set of values of the hyperparameter is to create a comprehensive search function (similar to [grid search](https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search)) that selects the parameters that would result in best `reward/time_steps` ratio. The reason for `reward/time_steps` is that we want to choose parameters which enable us to get the maximum reward as fast as possible. We may want to track the number of penalties corresponding to the hyperparameter value combination as well because this can also be a deciding factor (we don't want our smart agent to violate rules at the cost of reaching faster). A more fancy way to get the right combination of hyperparameter values would be to use Genetic Algorithms. ## Conclusion and What's Ahead Alright! We began with understanding Reinforcement Learning with the help of real-world analogies. We then dived into the basics of Reinforcement Learning and framed a Self-driving cab as a Reinforcement Learning problem. We then used OpenAI's Gym in python to provide us with a related environment, where we can develop our agent and evaluate it. Then we observed how terrible our agent was without using any algorithm to play the game, so we went ahead to implement the Q-learning algorithm from scratch. The agent's performance improved significantly after Q-learning. Finally, we discussed better approaches for deciding the hyperparameters for our algorithm. Q-learning is one of the easiest Reinforcement Learning algorithms. The problem with Q-earning however is, once the number of states in the environment are very high, it becomes difficult to implement them with Q table as the size would become very, very large. State of the art techniques uses Deep neural networks instead of the Q-table (Deep Reinforcement Learning). The neural network takes in state information and actions to the input layer and learns to output the right action over the time. Deep learning techniques (like Convolutional Neural Networks) are also used to interpret the pixels on the screen and extract information out of the game (like scores), and then letting the agent control the game. We have discussed a lot about Reinforcement Learning and games. But Reinforcement learning is not just limited to games. It is used for managing stock portfolios and finances, for making humanoid robots, for manufacturing and inventory management, to develop general AI agents, which are agents that can perform multiple things with a single algorithm, like the same agent playing multiple Atari games. Open AI also has a platform called universe for measuring and training an AI's general intelligence across myriads of games, websites and other general applications.
true
code
0.358086
null
null
null
null
<a href="https://colab.research.google.com/github/MonitSharma/Learn-Quantum-Computing/blob/main/Circuit_Basics.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> ``` !pip install qiskit ``` # Qiskit Basics ``` import numpy as np from qiskit import QuantumCircuit # building a circuit qc = QuantumCircuit(3) # adding gates qc.h(0) qc.cx(0,1) qc.cx(0,2) qc.draw('mpl') ``` ## Simulating the Circuits ``` from qiskit.quantum_info import Statevector # setting the initial state to 0 state = Statevector.from_int(0,2**3) state = state.evolve(qc) state.draw('latex') from qiskit.quantum_info import Statevector # setting the initial state to 1 state = Statevector.from_int(1,2**3) state = state.evolve(qc) state.draw('latex') ``` Below we use the visualization function to plot the bloch sphere and a hinton representing the real and the imaginary components of the state density matrix $\rho$ ``` state.draw('qsphere') state.draw('hinton') ``` ## Unitary Representation of a Circuit The quant_info module of qiskit has an operator method that can be used to make unitary operator for the circuit. ``` from qiskit.quantum_info import Operator U = Operator(qc) U.data ``` ## Open QASM backend The simulators above are useful, as they help us in providing information about the state output and matrix representation of the circuit. Here we would learn about more simulators that will help us in measuring the circuit ``` qc2 = QuantumCircuit(3,3) qc2.barrier(range(3)) # do the measurement qc2.measure(range(3), range(3)) qc2.draw('mpl') # now, if we want to add both the qc and qc2 circuit circ = qc2.compose(qc, range(3), front = True) circ.draw('mpl') ``` This circuit adds a classical register , and three measurement that are used to map the outcome of qubits to the classical bits. To simulate this circuit we use the 'qasm_simulator' in Qiskit Aer. Each single run will yield a bit string $000$ or $111$. To build up the statistics about the distribution , we need to repeat the circuit many times. The number of times the circuit is repeated is specified in the 'execute' function via the 'shots' keyword. ``` from qiskit import transpile # import the qasm simulator from qiskit.providers.aer import QasmSimulator backend = QasmSimulator() # first transpile the quantum circuit to low level QASM instructions qc_compiled = transpile(circ, backend) # execute the circuit job_sim = backend.run(qc_compiled, shots=1024) # get the result result_sim = job_sim.result() ``` Since, the code has run, we can count the number of specific ouputs it recieved and plot it too. ``` counts = result_sim.get_counts(qc_compiled) print(counts) from qiskit.visualization import plot_histogram plot_histogram(counts) ```
true
code
0.644141
null
null
null
null
# A case study in screening for new enzymatic reactions In this example, we show how to search the KEGG database for a reaction of interest based on user requirements. At specific points we highlight how our code could be used for arbitrary molecules that the user is interested in. This is crucial because the KEGG database is not exhaustive, and we only accessed a portion of the database that has no ambiguities (to avoid the need for manual filtering). Requirements to run this script: * rdkit (2019.09.2.0) * matplotlib (3.1.1) * numpy (1.17.4) * enzyme_screen * Clone source code and run this notebook in its default directory. # This notebook requires data from screening, which is not uploaded! ## The idea: We want to screen all collected reactions for a reaction that fits these constraints (automatic or manual application is noted): 1. Maximum component size within 5-7 Angstrom (automatic) 2. *One* component on *one* side of the reaction contains a nitrile group (automatic) 3. Value added from reactant to product (partially manual) e.g.: - cost of the reactants being much less than the products - products being unpurchasable and reactants being purchasable Constraint *2* affords potential reaction monitoring through the isolated FT-IR signal of the nitrile group. Constraint *3* is vague, but generally aims to determine some value-added by using an enzyme for a given reaction. This is often based on overcoming the cost of purchasing/synthesising the product through some non-enzymatic pathway by using an encapsulate enzyme. In this case, we use the primary literature on a selected reaction and some intuition to guide our efforts (i.e. we select a reaction (directionality determined from KEGG) where a relatively cheap (fair assumption) amino acid is the reactant). The alternative to this process would be to select a target reactant or product and search all reactions that include that target and apply similar constraints to test the validity of those reactions. ### Provide directory to reaction data and molecule data, and parameter file. ``` import numpy as np import matplotlib.pyplot as plt import pandas as pd import os import sys reaction_dir = ( '/data/atarzia/projects/psp_phd/production/rxn_collection' ) molecule_dir = ( '/data/atarzia/projects/psp_phd/molecules/molecule_DBs/production' ) # Handle import directories. module_path = os.path.abspath(os.path.join('../src')) if module_path not in sys.path: sys.path.append(module_path) import utilities param_file = '../data/param_file.txt' params = utilities.read_params(param_file) ``` ### Find reaction systems with max component sizes within threshold Using a threshold of 5 to 7 angstrom. Results in a plot of reaction distributions. ``` import plotting_fn as pfn threshold_min = 5 threshold_max = 7 # Read in reaction collection CSV: rs_properties.csv # from running RS_analysis.py. rs_properties = pd.read_csv( os.path.join(reaction_dir, 'rs_properties.csv') ) rs_within_threshold = rs_properties[ rs_properties['max_mid_diam'] < threshold_max ] rs_within_threshold = rs_within_threshold[ rs_within_threshold['max_mid_diam'] >= threshold_min ] print(f'{len(rs_within_threshold)} reactions in threshold') fig, ax = plt.subplots() alpha = 1.0 width = 0.25 X_bins = np.arange(0, 20, width) # All reactions. hist, bin_edges = np.histogram( a=list(rs_properties['max_mid_diam']), bins=X_bins ) ax.bar( bin_edges[:-1], hist, align='edge', alpha=alpha, width=width, color='lightgray', edgecolor='lightgray', label='all reactions' ) # Within threshold. hist, bin_edges = np.histogram( a=list(rs_within_threshold['max_mid_diam']), bins=X_bins ) ax.bar( bin_edges[:-1], hist, align='edge', alpha=alpha, width=width, color='firebrick', edgecolor='firebrick', label='within threshold' ) pfn.define_standard_plot( ax, xtitle='$d$ of largest component [$\mathrm{\AA}$]', ytitle='count', xlim=(0, 20), ylim=None ) fig.legend(fontsize=16) fig.savefig( os.path.join(reaction_dir, 'screen_example_distribution.pdf'), dpi=720, bbox_inches='tight' ) plt.show() ``` ### Find reaction systems with at least one nitrile functionality on one side of the reaction ``` import reaction from rdkit.Chem import AllChem as rdkit from rdkit.Chem import Fragments # Handle some warnings for flat molecules. from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') # Needed to show molecules from rdkit.Chem import Draw from rdkit.Chem.Draw import IPythonConsole def has_nitrile(mol_file): """ Returns False if nitrile fragment is not found using RDKIT. """ mol = rdkit.MolFromMolFile(mol_file) no_frag = Fragments.fr_nitrile(mol) if no_frag > 0: return True else: return False # Define generator over reactions. generator = reaction.yield_rxn_syst( output_dir=reaction_dir, pars=params, ) # Iterate over reactions, checking for validity. target_reaction_ids = [] molecules_with_nitriles = [] for i, (count, rs) in enumerate(generator): if 'KEGG' not in rs.pkl: continue if rs.skip_rxn: continue if rs.components is None: continue # Check components for nitrile groups. reactants_w_nitriles = 0 products_w_nitriles = 0 for m in rs.components: mol_file = os.path.join( molecule_dir, m.name+'_opt.mol' ) if has_nitrile(mol_file): if mol_file not in molecules_with_nitriles: molecules_with_nitriles.append(mol_file) if m.role == 'reactant': reactants_w_nitriles += 1 elif m.role == 'product': products_w_nitriles += 1 # Get both directions. if products_w_nitriles == 1 and reactants_w_nitriles == 0: target_reaction_ids.append(rs.DB_ID) if products_w_nitriles == 0 and reactants_w_nitriles == 1: target_reaction_ids.append(rs.DB_ID) ``` ### Draw nitrile containing molecules ``` print( f'There are {len(molecules_with_nitriles)} molecules ' f'with nitrile groups, corresponding to ' f'{len(target_reaction_ids)} reactions ' 'out of all.' ) molecules = [ rdkit.MolFromSmiles(rdkit.MolToSmiles(rdkit.MolFromMolFile(i))) for i in molecules_with_nitriles ] mol_names = [ i.replace(molecule_dir+'/', '').replace('_opt.mol', '') for i in molecules_with_nitriles ] img = Draw.MolsToGridImage( molecules, molsPerRow=6, subImgSize=(100, 100), legends=mol_names, ) img ``` ## Update dataframe to have target reaction ids only. ``` target_reactions = rs_within_threshold[ rs_within_threshold['db_id'].isin(target_reaction_ids) ] print( f'There are {len(target_reactions)} reactions ' 'that fit all constraints so far.' ) target_reactions ``` ## Select reaction based on bertzCT and SAScore, plus intuition from visualisation Plotting the measures of reaction productivity is useful, but so is looking manually through the small subset. Both methods highlight R02846 (https://www.genome.jp/dbget-bin/www_bget?rn:R02846) as a good candidate: - High deltaSA and deltaBertzCT - The main reactant is a natural amino acid (cysteine). Note that the chirality is not defined in this specific KEGG Reaction, however, the chirality is defined as L-cysteine in the Enzyme entry (https://www.genome.jp/dbget-bin/www_bget?ec:4.4.1.9) ``` fig, ax = plt.subplots() ax.scatter( target_reactions['deltasa'], target_reactions['deltabct'], alpha=1.0, c='#ff3b3b', edgecolor='none', label='target reactions', s=100, ) pfn.define_standard_plot( ax, xtitle=r'$\Delta$ SAscore', ytitle=r'$\Delta$ BertzCT', xlim=(-10, 10), ylim=None, ) fig.legend(fontsize=16) fig.savefig( os.path.join( reaction_dir, 'screen_example_complexity_targets.pdf' ), dpi=720, bbox_inches='tight' ) plt.show() fig, ax = plt.subplots() ax.scatter( rs_properties['deltasa'], rs_properties['deltabct'], alpha=1.0, c='lightgray', edgecolor='none', label='all reactions', s=40, ) ax.scatter( rs_within_threshold['deltasa'], rs_within_threshold['deltabct'], alpha=1.0, c='#2c3e50', edgecolor='none', label='within threshold', s=40, ) ax.scatter( target_reactions['deltasa'], target_reactions['deltabct'], alpha=1.0, c='#ff3b3b', edgecolor='k', label='target reactions', marker='P', s=60, ) pfn.define_standard_plot( ax, xtitle=r'$\Delta$ SAscore', ytitle=r'$\Delta$ BertzCT', xlim=(-10, 10), ylim=(-850, 850), ) fig.legend(fontsize=16) fig.savefig( os.path.join( reaction_dir, 'screen_example_complexity_all.pdf' ), dpi=720, bbox_inches='tight' ) plt.show() ``` ## Visualise properties of chosen reaction Reaction: R02846 (https://www.genome.jp/dbget-bin/www_bget?rn:R02846) ``` # Read in reaction system. rs = reaction.get_RS( filename=os.path.join( reaction_dir, 'sRS-4_4_1_9-KEGG-R02846.gpkl' ), output_dir=reaction_dir, pars=params, verbose=True ) # Print properties and collate components. print(rs) if rs.skip_rxn: print(f'>>> {rs.skip_reason}') print( f'max intermediate diameter = {rs.max_min_mid_diam} angstrom' ) print( f'deltaSA = {rs.delta_SA}' ) print( f'deltaBertzCT = {rs.delta_bCT}' ) print('--------------------------\n') print('Components:') # Output molecular components and their properties. reacts = [] reactstr = [] prodstr = [] prods = [] for rsc in rs.components: prop_dict = rsc.read_prop_file() print(rsc) print(f"SA = {round(prop_dict['Synth_score'], 3)}") print(f"BertzCT = {round(prop_dict['bertzCT'], 3)}") print('\n') if rsc.role == 'product': prods.append( rdkit.MolFromMolFile(rsc.structure_file) ) prodstr.append(f'{rsc.name}') if rsc.role == 'reactant': reacts.append( rdkit.MolFromMolFile(rsc.structure_file) ) reactstr.append(f'{rsc.name}') img = Draw.MolsToGridImage( reacts, molsPerRow=2, subImgSize=(300, 300), legends=reactstr, ) img.save( os.path.join( reaction_dir, 'screen_example_reactants.png' ) ) img img = Draw.MolsToGridImage( prods, molsPerRow=2, subImgSize=(300, 300), legends=prodstr, ) img.save( os.path.join( reaction_dir, 'screen_example_products.png' ) ) img ``` ## Manually obtaining the cost of molecules In this example, we will assume C00283 and C00177 are obtainable/purchasable through some means and that only C00736 and C02512 are relevant to the productivity of the reaction. Note that the synthetic accessibility is 'large' for these molecules due to the two small molecules, while the change in BertzCT comes from the two larger molecules. - Get CAS number from KEGG Compound pages: - KEGG: C00736, CAS: 3374-22-9 - KEGG: C02512, CAS: 6232-19-5 - Use CAS number in some supplier website (using http://astatechinc.com/ here for no particular reason) - KEGG: C00736, Price: \\$69 for 10 gram = \\$6.9 per gram - KEGG: C02512, Price: \\$309 for 1 gram = \\$309 per gram
true
code
0.553566
null
null
null
null
# API demonstration for paper of v1.0 _the LSST-DESC CLMM team_ Here we demonstrate how to use `clmm` to estimate a WL halo mass from observations of a galaxy cluster when source galaxies follow a given distribution (The LSST DESC Science Requirements Document - arXiv:1809.01669, implemented in `clmm`). It uses several functionalities of the support `mock_data` module to produce mock datasets. - Setting things up, with the proper imports. - Computing the binned reduced tangential shear profile, for the 2 datasets, using logarithmic binning. - Setting up a model accounting for the redshift distribution. - Perform a simple fit using `scipy.optimize.curve_fit` included in `clmm` and visualize the results. ## Setup First, we import some standard packages. ``` import matplotlib.pyplot as plt import numpy as np plt.rcParams['font.family'] = ['gothambook','gotham','gotham-book','serif'] ``` ## Generating mock data `clmm` has a support code to generate a mock catalog given a input cosmology and cluster parameters. We will use this to generate a data sample to be used in this example: ``` from clmm import Cosmology import clmm.support.mock_data as mock np.random.seed(14) # For reproducibility # Set cosmology of mock data cosmo = Cosmology(H0=70.0, Omega_dm0=0.27-0.045, Omega_b0=0.045, Omega_k0=0.0) # Cluster info cluster_m = 1.e15 # Cluster mass - ($M200_m$) [Msun] concentration = 4 # Cluster concentration cluster_z = 0.3 # Cluster redshift cluster_ra = 0. # Cluster Ra in deg cluster_dec = 0. # Cluster Dec in deg # Catalog info field_size = 10 # i.e. 10 x 10 Mpc field at the cluster redshift, cluster in the center # Make mock galaxies mock_galaxies = mock.generate_galaxy_catalog( cluster_m=cluster_m, cluster_z=cluster_z, cluster_c=concentration, # Cluster data cosmo=cosmo, # Cosmology object zsrc='desc_srd', # Galaxy redshift distribution, zsrc_min=0.4, # Minimum redshift of the galaxies shapenoise=0.05, # Gaussian shape noise to the galaxy shapes photoz_sigma_unscaled=0.05, # Photo-z errors to source redshifts field_size=field_size, ngal_density=20 # number of gal/arcmin2 for z in [0, infty] )['ra', 'dec', 'e1', 'e2', 'z', 'ztrue', 'pzbins', 'pzpdf', 'id'] print(f'Catalog table with the columns: {", ".join(mock_galaxies.colnames)}') ngals_init = len(mock_galaxies) print(f'Initial number of galaxies: {ngals_init:,}') # Keeping only galaxies with "measured" redshift greater than cluster redshift mock_galaxies = mock_galaxies[(mock_galaxies['z']>cluster_z)] ngals_good = len(mock_galaxies) if ngals_good < ngals_init: print(f'Number of excluded galaxies (with photoz < cluster_z): {ngals_init-ngals_good:,}') # reset galaxy id for later use mock_galaxies['id'] = np.arange(ngals_good) # Check final density from clmm.utils import convert_units field_size_arcmin = convert_units(field_size, 'Mpc', 'arcmin', redshift=cluster_z, cosmo=cosmo) print(f'Background galaxy density = {ngals_good/field_size_arcmin**2:.2f} gal/arcmin2\n') ``` We can extract the column of this mock catalog to show explicitely how the quantities can be used on `clmm` functionality and how to add them to a `GalaxyCluster` object: ``` # Put galaxy values on arrays gal_ra = mock_galaxies['ra'] # Galaxies Ra in deg gal_dec = mock_galaxies['dec'] # Galaxies Dec in deg gal_e1 = mock_galaxies['e1'] # Galaxies elipticipy 1 gal_e2 = mock_galaxies['e2'] # Galaxies elipticipy 2 gal_z = mock_galaxies['z'] # Galaxies observed redshift gal_ztrue = mock_galaxies['ztrue'] # Galaxies true redshift gal_pzbins = mock_galaxies['pzbins'] # Galaxies P(z) bins gal_pzpdf = mock_galaxies['pzpdf'] # Galaxies P(z) gal_id = mock_galaxies['id'] # Galaxies ID ``` ## Measuring shear profiles From the source galaxy quantities, we can compute the elepticities and corresponding radial profile usimg `clmm.dataops` functions: ``` import clmm.dataops as da # Convert elipticities into shears gal_ang_dist, gal_gt, gal_gx = da.compute_tangential_and_cross_components(cluster_ra, cluster_dec, gal_ra, gal_dec, gal_e1, gal_e2, geometry="flat") # Measure profile profile = da.make_radial_profile([gal_gt, gal_gx, gal_z], gal_ang_dist, "radians", "Mpc", bins=da.make_bins(0.01, field_size/2., 50), cosmo=cosmo, z_lens=cluster_z, include_empty_bins=False) print(f'Profile table has columns: {", ".join(profile.colnames)},') print('where p_(0, 1, 2) = (gt, gx, z)') ``` The other possibility is to use the `GalaxyCluster` object. This is the main approach to handle data with `clmm`, and also the simpler way. For that you just have to provide the following information of the cluster: * Ra, Dec [deg] * Mass - ($M200_m$) [Msun] * Concentration * Redshift and the source galaxies: * Ra, Dec [deg] * 2 axis of eliptticities * Redshift ``` import clmm # Create a GCData with the galaxies galaxies = clmm.GCData([gal_ra, gal_dec, gal_e1, gal_e2, gal_z, gal_ztrue, gal_pzbins, gal_pzpdf, gal_id], names=['ra', 'dec', 'e1', 'e2', 'z', 'ztrue', 'pzbins', 'pzpdf', 'id']) # Create a GalaxyCluster cluster = clmm.GalaxyCluster("Name of cluster", cluster_ra, cluster_dec, cluster_z, mock_galaxies) # Convert elipticities into shears for the members cluster.compute_tangential_and_cross_components(geometry="flat") print(cluster.galcat.colnames) # Measure profile and add profile table to the cluster seps = convert_units(cluster.galcat['theta'], 'radians', 'mpc',cluster.z, cosmo) cluster.make_radial_profile(bins=da.make_bins(0.1, field_size/2., 25, method='evenlog10width'), bin_units="Mpc", cosmo=cosmo, include_empty_bins=False, gal_ids_in_bins=True, ) print(cluster.profile.colnames) ``` This results in an attribute `table` added to the `cluster` object. ``` from paper_formating import prep_plot prep_plot(figsize=(9, 9)) errorbar_kwargs = dict(linestyle='', marker='o', markersize=1, elinewidth=.5, capthick=.5) plt.errorbar(cluster.profile['radius'], cluster.profile['gt'], cluster.profile['gt_err'], c='k', **errorbar_kwargs) plt.xlabel('r [Mpc]', fontsize = 10) plt.ylabel(r'$g_t$', fontsize = 10) plt.xscale('log') plt.yscale('log') ``` ## Theoretical predictions We consider 3 models: 1. One model where all sources are considered at the same redshift 2. One model using the overall source redshift distribution to predict the reduced tangential shear 3. A more accurate model, relying on the fact that we have access to the individual redshifts of the sources, where the average reduced tangential shear is averaged independently in each bin, accounting for the acutal population of sources in each bin. All models rely on `clmm.predict_reduced_tangential_shear` to make a prediction that accounts for the redshift distribution of the galaxies in each radial bin: ### Model considering all sources located at the average redshift \begin{equation} g_{t,i}^{\rm{avg(z)}} = g_t(R_i, \langle z \rangle)\;, \label{eq:wrong_gt_model} \end{equation} ``` def predict_reduced_tangential_shear_mean_z(profile, logm): return clmm.compute_reduced_tangential_shear( r_proj=profile['radius'], # Radial component of the profile mdelta=10**logm, # Mass of the cluster [M_sun] cdelta=4, # Concentration of the cluster z_cluster=cluster_z, # Redshift of the cluster z_source=np.mean(cluster.galcat['z']), # Mean value of source galaxies redshift cosmo=cosmo, delta_mdef=200, halo_profile_model='nfw' ) ``` ### Model relying on the overall redshift distribution of the sources N(z), not using individual redshift information (eq. (6) from Applegate et al. 2014, MNRAS, 439, 48) \begin{equation} g_{t,i}^{N(z)} = \frac{\langle\beta_s\rangle \gamma_t(R_i, z\rightarrow\infty)}{1-\frac{\langle\beta_s^2\rangle}{\langle\beta_s\rangle}\kappa(R_i, z\rightarrow\infty)} \label{eq:approx_model} \end{equation} ``` z_inf = 1000 dl_inf = cosmo.eval_da_z1z2(cluster_z, z_inf) d_inf = cosmo.eval_da(z_inf) def betas(z): dls = cosmo.eval_da_z1z2(cluster_z, z) ds = cosmo.eval_da(z) return dls * d_inf / (ds * dl_inf) def predict_reduced_tangential_shear_approx(profile, logm): bs_mean = np.mean(betas(cluster.galcat['z'])) bs2_mean = np.mean(betas(cluster.galcat['z'])**2) gamma_t_inf = clmm.compute_tangential_shear( r_proj=profile['radius'], # Radial component of the profile mdelta=10**logm, # Mass of the cluster [M_sun] cdelta=4, # Concentration of the cluster z_cluster=cluster_z, # Redshift of the cluster z_source=z_inf, # Redshift value at infinity cosmo=cosmo, delta_mdef=200, halo_profile_model='nfw') convergence_inf = clmm.compute_convergence( r_proj=profile['radius'], # Radial component of the profile mdelta=10**logm, # Mass of the cluster [M_sun] cdelta=4, # Concentration of the cluster z_cluster=cluster_z, # Redshift of the cluster z_source=z_inf, # Redshift value at infinity cosmo=cosmo, delta_mdef=200, halo_profile_model='nfw') return bs_mean*gamma_t_inf/(1-(bs2_mean/bs_mean)*convergence_inf) ``` ### Model using individual redshift and radial information, to compute the averaged shear in each radial bin, based on the galaxies actually present in that bin. \begin{equation} g_{t,i}^{z, R} = \frac{1}{N_i}\sum_{{\rm gal\,}j\in {\rm bin\,}i} g_t(R_j, z_j) \label{eq:exact_model} \end{equation} ``` cluster.galcat['theta_mpc'] = convert_units(cluster.galcat['theta'], 'radians', 'mpc',cluster.z, cosmo) def predict_reduced_tangential_shear_exact(profile, logm): return np.array([np.mean( clmm.compute_reduced_tangential_shear( # Radial component of each source galaxy inside the radial bin r_proj=cluster.galcat[radial_bin['gal_id']]['theta_mpc'], mdelta=10**logm, # Mass of the cluster [M_sun] cdelta=4, # Concentration of the cluster z_cluster=cluster_z, # Redshift of the cluster # Redshift value of each source galaxy inside the radial bin z_source=cluster.galcat[radial_bin['gal_id']]['z'], cosmo=cosmo, delta_mdef=200, halo_profile_model='nfw' )) for radial_bin in profile]) ``` ## Mass fitting We estimate the best-fit mass using `scipy.optimize.curve_fit`. The choice of fitting $\log M$ instead of $M$ lowers the range of pre-defined fitting bounds from several order of magnitude for the mass to unity. From the associated error $\sigma_{\log M}$ we calculate the error to mass as $\sigma_M = M_{fit}\ln(10)\sigma_{\log M}$. #### First, identify bins with sufficient galaxy statistics to be kept for the fit For small samples, error bars should not be computed using the simple error on the mean approach available so far in CLMM) ``` mask_for_fit = cluster.profile['n_src'] > 5 data_for_fit = cluster.profile[mask_for_fit] ``` #### Perform the fits ``` from clmm.support.sampler import fitters def fit_mass(predict_function): popt, pcov = fitters['curve_fit'](predict_function, data_for_fit, data_for_fit['gt'], data_for_fit['gt_err'], bounds=[10.,17.]) logm, logm_err = popt[0], np.sqrt(pcov[0][0]) return {'logm':logm, 'logm_err':logm_err, 'm': 10**logm, 'm_err': (10**logm)*logm_err*np.log(10)} fit_mean_z = fit_mass(predict_reduced_tangential_shear_mean_z) fit_approx = fit_mass(predict_reduced_tangential_shear_approx) fit_exact = fit_mass(predict_reduced_tangential_shear_exact) print(f'Input mass = {cluster_m:.2e} Msun\n') print(f'Best fit mass for average redshift = {fit_mean_z["m"]:.3e} +/- {fit_mean_z["m_err"]:.3e} Msun') print(f'Best fit mass for N(z) model = {fit_approx["m"]:.3e} +/- {fit_approx["m_err"]:.3e} Msun') print(f'Best fit mass for individual redshift and radius = {fit_exact["m"]:.3e} +/- {fit_exact["m_err"]:.3e} Msun') ``` As expected, the reconstructed mass is biased when the redshift distribution is not accounted for in the model ## Visualization of the results For visualization purpose, we calculate the reduced tangential shear predicted by the model with estimated masses for noisy and ideal data. ``` def get_predicted_shear(predict_function, fit_values): gt_est = predict_function(data_for_fit, fit_values['logm']) gt_est_err = [predict_function(data_for_fit, fit_values['logm']+i*fit_values['logm_err']) for i in (-3, 3)] return gt_est, gt_est_err gt_mean_z, gt_err_mean_z = get_predicted_shear(predict_reduced_tangential_shear_mean_z, fit_mean_z) gt_approx, gt_err_approx = get_predicted_shear(predict_reduced_tangential_shear_approx, fit_approx) gt_exact, gt_err_exact = get_predicted_shear(predict_reduced_tangential_shear_exact, fit_exact) ``` Check reduced chi2 values of the best-fit model ``` chi2_mean_z_dof = np.sum((gt_mean_z-data_for_fit['gt'])**2/(data_for_fit['gt_err'])**2)/(len(data_for_fit)-1) chi2_approx_dof = np.sum((gt_approx-data_for_fit['gt'])**2/(data_for_fit['gt_err'])**2)/(len(data_for_fit)-1) chi2_exact_dof = np.sum((gt_exact-data_for_fit['gt'])**2/(data_for_fit['gt_err'])**2)/(len(data_for_fit)-1) print(f'Reduced chi2 (mean z model) = {chi2_mean_z_dof}') print(f'Reduced chi2 (N(z) model) = {chi2_approx_dof}') print(f'Reduced chi2 (individual (R,z) model) = {chi2_exact_dof}') ``` We compare to tangential shear obtained with theoretical mass. We plot the reduced tangential shear models first when redshift distribution is accounted for in the model then for the naive approach, with respective best-fit masses. ``` from matplotlib.ticker import MultipleLocator prep_plot(figsize=(9 , 9)) gt_ax = plt.axes([.25, .42, .7, .55]) gt_ax.errorbar(data_for_fit['radius'],data_for_fit['gt'], data_for_fit['gt_err'], c='k', label=rf'$M_{{input}} = {cluster_m*1e-15}\times10^{{{15}}} M_\odot$', **errorbar_kwargs) # Points in grey have not been used for the fit gt_ax.errorbar(cluster.profile['radius'][~mask_for_fit], cluster.profile['gt'][~mask_for_fit], cluster.profile['gt_err'][~mask_for_fit], c='grey',**errorbar_kwargs) pow10 = 15 mlabel = lambda name, fits: fr'$M_{{fit}}^{{{name}}} = {fits["m"]/10**pow10:.3f}\pm{fits["m_err"]/10**pow10:.3f}\times 10^{{{pow10}}} M_\odot$' # Avg z gt_ax.loglog(data_for_fit['radius'], gt_mean_z,'-C0', label=mlabel('avg(z)', fit_mean_z),lw=.5) gt_ax.fill_between(data_for_fit['radius'], *gt_err_mean_z, lw=0, color='C0', alpha=.2) # Approx model gt_ax.loglog(data_for_fit['radius'], gt_approx,'-C1', label=mlabel('N(z)', fit_approx), lw=.5) gt_ax.fill_between(data_for_fit['radius'], *gt_err_approx, lw=0, color='C1', alpha=.2) # Exact model gt_ax.loglog(data_for_fit['radius'], gt_exact,'-C2', label=mlabel('z,R', fit_exact), lw=.5) gt_ax.fill_between(data_for_fit['radius'], *gt_err_exact, lw=0, color='C2', alpha=.2) gt_ax.set_ylabel(r'$g_t$', fontsize = 8) gt_ax.legend(fontsize=6) gt_ax.set_xticklabels([]) gt_ax.tick_params('x', labelsize=8) gt_ax.tick_params('y', labelsize=8) #gt_ax.set_yscale('log') errorbar_kwargs2 = {k:v for k, v in errorbar_kwargs.items() if 'marker' not in k} errorbar_kwargs2['markersize'] = 3 errorbar_kwargs2['markeredgewidth'] = .5 res_ax = plt.axes([.25, .2, .7, .2]) delta = (cluster.profile['radius'][1]/cluster.profile['radius'][0])**.25 res_err = data_for_fit['gt_err']/data_for_fit['gt'] res_ax.errorbar(data_for_fit['radius']/delta, gt_mean_z/data_for_fit['gt']-1, yerr=res_err, marker='.', c='C0', **errorbar_kwargs2) errorbar_kwargs2['markersize'] = 1.5 res_ax.errorbar(data_for_fit['radius'], gt_approx/data_for_fit['gt']-1, yerr=res_err, marker='s', c='C1', **errorbar_kwargs2) errorbar_kwargs2['markersize'] = 3 errorbar_kwargs2['markeredgewidth'] = .5 res_ax.errorbar(data_for_fit['radius']*delta, gt_exact/data_for_fit['gt']-1, yerr=res_err, marker='*', c='C2', **errorbar_kwargs2) res_ax.set_xlabel(r'$R$ [Mpc]', fontsize = 8) res_ax.set_ylabel(r'$g_t^{mod.}/g_t^{data}-1$', fontsize = 8) res_ax.set_xscale('log') res_ax.set_xlim(gt_ax.get_xlim()) res_ax.set_ylim(-0.65,0.65) res_ax.yaxis.set_minor_locator(MultipleLocator(.1)) res_ax.tick_params('x', labelsize=8) res_ax.tick_params('y', labelsize=8) for p in (gt_ax, res_ax): p.xaxis.grid(True, which='major', lw=.5) p.yaxis.grid(True, which='major', lw=.5) p.xaxis.grid(True, which='minor', lw=.1) p.yaxis.grid(True, which='minor', lw=.1) plt.savefig('r_gt.png') ```
true
code
0.581065
null
null
null
null
<img width="10%" alt="Naas" src="https://landen.imgix.net/jtci2pxwjczr/assets/5ice39g4.png?w=160"/> # CI/CD - Make sure all notebooks respects our format policy **Tags:** #naas **Author:** [Maxime Jublou](https://www.linkedin.com/in/maximejublou/) # Input ### Import libraries ``` import json import glob from rich import print import pydash import re ``` ## Model ### Utility functions These functions are used by other to not repeat ourselves. ``` def tag_exists(tagname, cells): for cell in cells: if tagname in pydash.get(cell, 'metadata.tags', []): return True return False def regexp_match(regex, string): matches = re.finditer(regex, string, re.MULTILINE) return len(list(matches)) >= 1 def check_regexp(cells, regex, source): cell_str = pydash.get(cells, source, '') return regexp_match(regex, cell_str) def check_title_exists(cells, title): for cell in cells: if pydash.get(cell, 'cell_type') == 'markdown' and regexp_match(rf"^## *{title}", pydash.get(cell, 'source[0]')): return True return False ``` ### Check functions This functions are used to check if a notebook contains the rights cells with proper formatting. ``` def check_naas_logo(cells): logo_content = '<img width="10%" alt="Naas" src="https://landen.imgix.net/jtci2pxwjczr/assets/5ice39g4.png?w=160"/>' if pydash.get(cells, '[0].cell_type') == 'markdown' and pydash.get(cells, '[0].source[0]', '').startswith(logo_content): return (True, '') return (False, f''' Requirements: - Cell number: 1 - Cell type: Markdown - Shape: {logo_content} ''') def check_title_match_regexp(cells): return (check_regexp(cells, r"markdown", '[1].cell_type') and check_regexp(cells, r"^#.*-.*", '[1].source[0]'), ''' Requirements: - Cell number: 2 - Cell type: Markdown - Shape: "# something - some other thing" ''') def check_tool_tags(cells): return (check_regexp(cells, r"markdown", '[2].cell_type') and check_regexp(cells, r"^\*\*Tags:\*\* (#[1-9,a-z,A-Z]*( *|$))*", '[2].source[0]'), ''' Requirements: - Cell number: 3 - Cell type: Markdown - Shape: "**Tags:** #atLeastOneTool" ''') def check_author(cells): return (check_regexp(cells, r"markdown", '[3].cell_type') and check_regexp(cells, r"^\*\*Author:\*\* *.*", '[3].source[0]'), ''' Requirements: - Cell number: 4 - Cell type: Markdown - Shape: "**Author:** At least one author name" ''') def check_input_title_exists(cells): return (check_title_exists(cells, 'Input'), ''' Requirements: - Cell number: Any - Cell type: Markdown - Shape: "## Input" ''') def check_model_title_exists(cells): return (check_title_exists(cells, 'Model'), ''' Requirements: - Cell number: Any - Cell type: Markdown - Shape: "## Model" ''') def check_output_title_exists(cells): return (check_title_exists(cells, 'Output'), ''' Requirements: - Cell number: Any - Cell type: Markdown - Shape: "## Output" ''') ``` ## Output ``` got_errors = False error_counter = 0 for file in glob.glob('../../**/*.ipynb', recursive=True): # Do not check notebooks in .github or at the root of the project. if '.github' in file or len(file.split('/')) == 3: continue notebook = json.load(open(file)) cells = notebook.get('cells') filename = "[dark_orange]" + file.replace("../../", "") + "[/dark_orange]" outputs = [f'Errors found in: {filename}'] should_display_debug = False for checkf in [ check_naas_logo, check_title_match_regexp, check_tool_tags, check_author, check_input_title_exists, check_model_title_exists, check_output_title_exists]: result, msg = checkf(cells) if result is False: should_display_debug = True status_msg = "[bright_green]OK[/bright_green]" if result is True else f"[bright_red]KO {msg}[/bright_red]" outputs.append(f'{checkf.__name__} ... {status_msg}') if should_display_debug: got_errors = True error_counter += 1 for msg in outputs: print(msg) print("\n") if got_errors == True: print(f'[bright_red]You have {error_counter} notebooks having errors!') exit(1) ```
true
code
0.306767
null
null
null
null
# Predict H1N1 and Seasonal Flu Vaccines ## Preprocessing ### Import libraries ``` import pandas as pd import numpy as np %matplotlib inline import matplotlib.pyplot as plt ``` ### Import data ``` features_raw_df = pd.read_csv("data/training_set_features.csv", index_col="respondent_id") labels_raw_df = pd.read_csv("data/training_set_labels.csv", index_col="respondent_id") print("features_raw_df.shape", features_raw_df.shape) features_raw_df.head() features_raw_df.dtypes print("labels_raw_df.shape", labels_raw_df.shape) labels_raw_df.head() labels_raw_df.dtypes features_df = features_raw_df.copy() labels_df = labels_raw_df.copy() ``` ### Exploratory Data Analysis ``` fig, ax = plt.subplots(2, 1, sharex=True) n_entries = labels_df.shape[0] (labels_df['h1n1_vaccine'].value_counts().div(n_entries) .plot.barh(title="Proportion of H1N1 Vaccine", ax=ax[0])) ax[0].set_ylabel("seasonal_vaccine") (labels_df['seasonal_vaccine'].value_counts().div(n_entries) .plot.barh(title="Proportion of H1N1 Vaccine", ax=ax[1])) ax[1].set_ylabel("seasonal_vaccine") fig.tight_layout() pd.crosstab( labels_df["h1n1_vaccine"], labels_df["seasonal_vaccine"], margins=True, normalize=True ) (labels_df["h1n1_vaccine"] .corr(labels_df["seasonal_vaccine"], method="pearson") ) ``` ### Features ``` df = features_df.join(labels_df) print(df.shape) df.head() h1n1_concern_vaccine = df[['h1n1_concern', 'h1n1_vaccine']].groupby(['h1n1_concern', 'h1n1_vaccine']).size().unstack() h1n1_concern_vaccine ax = h1n1_concern_vaccine.plot.barh() ax.invert_yaxis() h1n1_concern_counts = h1n1_concern_vaccine.sum(axis='columns') h1n1_concern_counts h1n1_concern_vaccine_prop = h1n1_concern_vaccine.div(h1n1_concern_counts, axis='index') h1n1_concern_vaccine_prop ax = h1n1_concern_vaccine_prop.plot.barh(stacked=True) ax.invert_yaxis() ax.legend(loc='center left', bbox_to_anchor=(1.05, 0.5), title='h1n1_vaccine') plt.show() def vaccination_rate_plot(vaccine, feature, df, ax=None): feature_vaccine = df[[feature, vaccine]].groupby([feature, vaccine]).size().unstack() counts = feature_vaccine.sum(axis='columns') proportions = feature_vaccine.div(counts, axis='index') ax = proportions.plot.barh(stacked=True, ax=ax) ax.invert_yaxis() ax.legend(loc='center left', bbox_to_anchor=(1.05, 0.5), title=vaccine) ax.legend().remove() vaccination_rate_plot('seasonal_vaccine', 'h1n1_concern', df) cols_to_plot = [ 'h1n1_concern', 'h1n1_knowledge', 'opinion_h1n1_vacc_effective', 'opinion_h1n1_risk', 'opinion_h1n1_sick_from_vacc', 'opinion_seas_vacc_effective', 'opinion_seas_risk', 'opinion_seas_sick_from_vacc', 'sex', 'age_group', 'race', ] fig, ax = plt.subplots(len(cols_to_plot), 2, figsize=(10,len(cols_to_plot)*2.5)) for idx, col in enumerate(cols_to_plot): vaccination_rate_plot('h1n1_vaccine', col, df, ax=ax[idx, 0]) vaccination_rate_plot('seasonal_vaccine', col, df, ax=ax[idx, 1]) ax[0, 0].legend(loc='lower center', bbox_to_anchor=(0.5, 1.05), title='h1n1_vaccine') ax[0, 1].legend(loc='lower center', bbox_to_anchor=(0.5, 1.05), title='seasonal_vaccine') fig.tight_layout() ``` ### Categorical columns ``` features_df = features_raw_df.copy() labels_df = labels_raw_df.copy() features_df.dtypes == object # All categorical columns considered apart from employment-related categorical_cols = features_df.columns[features_df.dtypes == "object"].values[:-2] categorical_cols categorical_cols = np.delete(categorical_cols, np.where(categorical_cols == 'hhs_geo_region')) categorical_cols features_df.employment_occupation.unique() features_df.hhs_geo_region.unique() features_df[categorical_cols].head() for col in categorical_cols: col_dummies = pd.get_dummies(features_df[col], drop_first = True) features_df = features_df.drop(col, axis=1) features_df = pd.concat([features_df, col_dummies], axis=1) features_df.head() features_df.isna().sum() def preprocess_categorical(df): categorical_cols = df.columns[df.dtypes == "object"].values[:-2] categorical_cols = np.delete(categorical_cols, np.where(categorical_cols == 'hhs_geo_region')) for col in categorical_cols: col_dummies = pd.get_dummies(df[col], drop_first = True) df = df.drop(col, axis=1) df = pd.concat([df, col_dummies], axis=1) df = df.drop(['hhs_geo_region', 'employment_industry', 'employment_occupation'], axis=1) return df ``` ## MACHINE LEARNING ### Machine Learning Model ``` from sklearn.preprocessing import StandardScaler from sklearn.impute import SimpleImputer from sklearn.compose import ColumnTransformer from sklearn.linear_model import LogisticRegression from sklearn.multioutput import MultiOutputClassifier from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split from sklearn.metrics import roc_curve, roc_auc_score RANDOM_SEED = 6 features_raw_df.dtypes != "object" numeric_cols = features_raw_df.columns[features_raw_df.dtypes != "object"].values print(numeric_cols) ``` ### Features Preprocessing ``` # chain preprocessing into a Pipeline object numeric_preprocessing_steps = Pipeline([ ('standard_scaler', StandardScaler()), ('simple_imputer', SimpleImputer(strategy='median')) ]) # create the preprocessor stage of final pipeline preprocessor = ColumnTransformer( transformers = [ ("numeric", numeric_preprocessing_steps, numeric_cols) ], remainder = "passthrough" ) estimators = MultiOutputClassifier( estimator=LogisticRegression(penalty="l2", C=1) ) full_pipeline = Pipeline([ ("preprocessor", preprocessor), ("estimators", estimators), ]) features_df_trans = preprocess_categorical(features_df) X_train, X_test, y_train, y_test = train_test_split( features_df_trans, labels_df, test_size=0.33, shuffle=True, stratify=labels_df, random_state=RANDOM_SEED ) X_train # Train model full_pipeline.fit(X_train, y_train) # Predict on evaluation set # This competition wants probabilities, not labels preds = full_pipeline.predict_proba(X_test) preds print("test_probas[0].shape", preds[0].shape) print("test_probas[1].shape", preds[1].shape) y_pred = pd.DataFrame( { "h1n1_vaccine": preds[0][:, 1], "seasonal_vaccine": preds[1][:, 1], }, index = y_test.index ) print("y_pred.shape:", y_pred.shape) y_pred.head() fig, ax = plt.subplots(1, 2, figsize=(7, 3.5)) fpr, tpr, thresholds = roc_curve(y_test['h1n1_vaccine'], y_pred['h1n1_vaccine']) ax[0].plot(fpr, tpr) ax[0].plot([0, 1], [0, 1], color='grey', linestyle='--') ax[0].set_ylabel('TPR') ax[0].set_xlabel('FPR') ax[0].set_title(f"{'h1n1_vaccine'}: AUC = {roc_auc_score(y_test['h1n1_vaccine'], y_pred['h1n1_vaccine']):.4f}") fpr, tpr, thresholds = roc_curve(y_test['seasonal_vaccine'], y_pred['seasonal_vaccine']) ax[1].plot(fpr, tpr) ax[1].plot([0, 1], [0, 1], color='grey', linestyle='--') ax[1].set_xlabel('FPR') ax[1].set_title(f"{'seasonal_vaccine'}: AUC = {roc_auc_score(y_test['seasonal_vaccine'], y_pred['seasonal_vaccine']):.4f}") fig.tight_layout() roc_auc_score(y_test, y_pred) ``` ### Retrain on full Dataset ``` full_pipeline.fit(features_df_trans, labels_df); ``` ## PREDICTIONS FOR THE TEST SET ``` test_features_df = pd.read_csv('data/test_set_features.csv', index_col='respondent_id') test_features_df test_features_df_trans = preprocess_categorical(test_features_df) test_preds = full_pipeline.predict_proba(test_features_df_trans) submission_df = pd.read_csv('data/submission_format.csv', index_col='respondent_id') # Save predictions to submission data frame submission_df["h1n1_vaccine"] = test_preds[0][:, 1] submission_df["seasonal_vaccine"] = test_preds[1][:, 1] submission_df.head() submission_df.to_csv('data/my_submission.csv', index=True) ```
true
code
0.572484
null
null
null
null
# QUANTUM PHASE ESTIMATION This tutorial provides a detailed implementation of the Quantum Phase Estimation (QPE) algorithm using the Amazon Braket SDK. The QPE algorithm is designed to estimate the eigenvalues of a unitary operator $U$ [1, 2]; it is a very important subroutine to many quantum algorithms, most famously Shor's algorithm for factoring and the HHL algorithm (named after the physicists Harrow, Hassidim and Lloyd) for solving linear systems of equations on a quantum computer [1, 2]. Moreover, eigenvalue problems can be found across many disciplines and application areas, including (for example) principal component analysis (PCA) as used in machine learning or the solution of differential equations as relevant across mathematics, physics, engineering and chemistry. We first review the basics of the QPE algorithm. We then implement the QPE algorithm in code using the Amazon Braket SDK, and we illustrate the application thereof with simple examples. This notebook also showcases the Amazon Braket `circuit.subroutine` functionality, which allows us to use custom-built gates as if they were any other built-in gates. This tutorial is set up to run either on the local simulator or the managed simulators; changing between these devices merely requires changing one line of code as demonstrated as follows in cell [4]. ## TECHNICAL BACKGROUND OF QPE __Introduction__: A unitary matrix is a complex, square matrix whose adjoint (or conjugate transpose) is equal to its inverse. Unitary matrices have many nice properties, including the fact that their eigenvalues are always roots of unity (that is, phases). Given a unitary matrix $U$ (satisfying $U^{\dagger}U=\mathbb{1}=UU^{\dagger}$) and an eigenstate $|\psi \rangle$ with $U|\psi \rangle = e^{2\pi i\varphi}|\psi \rangle$, the Quantum Phase Estimation (QPE) algorithm provides an estimate $\tilde{\varphi} \approx \varphi$ for the phase $\varphi$ (with $\varphi \in [0,1]$ since the eigenvalues $\lambda = \exp(2\pi i\varphi)$ of a unitary have modulus one). The QPE works with high probability within an additive error $\varepsilon$ using $O(\log(1/\varepsilon))$ qubits (without counting the qubits used to encode the eigenstate) and $O(1/\varepsilon)$ controlled-$U$ operations [1]. __Quantum Phase Estimation Algorithm__: The QPE algorithm takes a unitary $U$ as input. For the sake of simplicity (we will generalize the discussion below), suppose that the algorithm also takes as input an eigenstate $|\psi \rangle$ fulfilling $$U|\psi \rangle = \lambda |\psi \rangle,$$ with $\lambda = \exp(2\pi i\varphi)$. QPE uses two registers of qubits: we refer to the first register as *precision* qubits (as the number of qubits $n$ in the first register sets the achievable precision of our results) and the second register as *query* qubits (as the second register hosts the eigenstate $|\psi \rangle$). Suppose we have prepared this second register in $|\psi \rangle$. We then prepare a uniform superposition of all basis vectors in the first register using a series of Hadamard gates. Next, we apply a series of controlled-unitaries $C-U^{2^{k}}$ for different powers of $k=0,1,\dots, n-1$ (as illustrated in the circuit diagram that follows). For example, for $k=1$ we get \begin{equation} \begin{split} (|0 \rangle + |1 \rangle) |\psi \rangle & \rightarrow |0 \rangle |\psi \rangle + |1 \rangle U|\psi \rangle \\ & = (|0 \rangle + e^{2\pi i \varphi}|1 \rangle) |\psi \rangle. \end{split} \end{equation} Note that the second register remains unaffected as it stays in the eigenstate $|\psi \rangle$. However, we managed to transfer information about the phase of the eigenvalue of $U$ (that is, $\varphi$) into the first *precision* register by encoding it as a relative phase in the state of the qubits in the first register. Similarly, for $k=2$ we obtain \begin{equation} \begin{split} (|0 \rangle + |1 \rangle) |\psi \rangle & \rightarrow |0 \rangle |\psi \rangle + |1 \rangle U^{2}|\psi \rangle \\ & = (|0 \rangle + e^{2\pi i 2\varphi}|1 \rangle) |\psi \rangle, \end{split} \end{equation} where this time we wrote $2\varphi$ into the precision register. The process is similar for all $k>2$. Introducing the following notation for binary fractions $$[0. \varphi_{l}\varphi_{l+1}\dots \varphi_{m}] = \frac{\varphi_{l}}{2^{1}} + \frac{\varphi_{l+1}}{2^{2}} + \frac{\varphi_{m}}{2^{m-l+1}},$$ one can show that the application of a controlled unitary $C-U^{2^{k}}$ leads to the following transformation \begin{equation} \begin{split} (|0 \rangle + |1 \rangle) |\psi \rangle & \rightarrow |0 \rangle |\psi \rangle + |1 \rangle U^{2^{k}}|\psi \rangle \\ & = (|0 \rangle + e^{2\pi i 2^{k}\varphi}|1 \rangle) |\psi \rangle \\ & = (|0 \rangle + e^{2\pi i [0.\varphi_{k+1}\dots \varphi_{n}]}|1 \rangle) |\psi \rangle, \end{split} \end{equation} where the first $k$ bits of precision in the binary expansion (that is, those bits to the left of the decimal) can be dropped, because $e^{2\pi i \theta} = 1$ for any whole number $\theta$. The QPE algorithm implements a series of these transformations for $k=0, 1, \dots, n-1$, using $n$ qubits in the precision register. In its entirety, this sequence of controlled unitaries leads to the transformation $$ |0, \dots, 0 \rangle \otimes |\psi \rangle \longrightarrow (|0 \rangle + e^{2\pi i [0.\varphi_{n}]}|1 \rangle) \otimes (|0 \rangle + e^{2\pi i [0.\varphi_{n-1}\varphi_{n}]}|1 \rangle) \otimes \dots \otimes (|0 \rangle + e^{2\pi i [0.\varphi_{1}\dots\varphi_{n}]}|1 \rangle) \otimes |\psi \rangle. $$ By inspection, one can see that the state of the register qubits above corresponds to a quantum Fourier transform of the state $|\varphi_1,\dots,\varphi_n\rangle$. Thus, the final step of the QPE algorithm is to run the *inverse* Quantum Fourier Transform (QFT) algorithm on the precision register to extract the phase information from this state. The resulting state is $$|\varphi_{1}, \varphi_{2}, \dots, \varphi_{n} \rangle \otimes |\psi\rangle.$$ Measuring the precision qubits in the computational basis then gives the classical bitstring $\varphi_{1}, \varphi_{2}, \dots, \varphi_{n}$, from which we can readily infer the phase estimate $\tilde{\varphi} = 0.\varphi_{1} \dots \varphi_{n}$ with the corresponding eigenvalue $\tilde{\lambda} = \exp(2\pi i \tilde{\varphi})$. __Simple example for illustration__: For concreteness, consider a simple example with the unitary given by the Pauli $X$ gate, $U=X$, for which $|\Psi \rangle = |+\rangle = (|0 \rangle + |1 \rangle)/\sqrt{2}$ is an eigenstate with eigenvalue $\lambda = 1$, i.e., $\varphi=0$. This state can be prepared with a Hadamard gate as $|\Psi \rangle = H|0 \rangle$. We take a precision register consisting of just two qubits ($n=2$). Thus, after the first layer of Hadamard gates, the quantum state is $$|0,0,0 \rangle \rightarrow |+,+,+\rangle.$$ Next, the applications of the controlled-$U$ gates (equal to $C-X$ operations, or CNOT gates in this example) leave this state untouched, because $|+\rangle$ is an eigenstate of $X$ with eigenvalue $+1$. Finally, applying the inverse QFT leads to $$\mathrm{QFT}^{\dagger}|+++\rangle=\mathrm{QFT}^\dagger\frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{4}\otimes |+\rangle = |00\rangle \otimes |+\rangle,$$ from which we deduce $\varphi = [0.00]=0$ and therefore $\lambda=1$, as expected. Here, in the last step we have used $|00\rangle + |01\rangle + |10\rangle + |11\rangle = (|0\rangle + e^{2\pi i[0.0]}|1\rangle)(|0\rangle + e^{2\pi i[0.00]}|1\rangle)$, which makes the effect of the inverse QFT more apparent. __Initial state of query register__: So far, we have assumed that the query register is prepared in an eigenstate $|\Psi\rangle$ of $U$. What happens if this is not the case? Let's reconsider the simple example given previously. Suppose now that the query register is instead prepared in the state $|\Psi\rangle = |1\rangle$. We can always express this state in the eigenbasis of $U$, that is, $|1\rangle = \frac{1}{\sqrt{2}}(|+\rangle - |-\rangle)$. By linearity, application of the QPE algorithm then gives (up to normalization) \begin{equation} \begin{split} \mathrm{QPE}(|0,0,\dots\rangle \otimes |1\rangle) & = \mathrm{QPE}(|0,0,\dots\rangle \otimes |+\rangle) - \mathrm{QPE}(|0,0,\dots\rangle \otimes |-\rangle) \\ & = |\varphi_{+}\rangle \otimes |+\rangle - |\varphi_{-}\rangle \otimes |-\rangle. \\ \end{split} \end{equation} When we measure the precision qubits in this state, 50% of the time we will observe the eigenphase $\varphi_{+}$ and 50% of the time we will measure $\varphi_{-}$. We illustrate this example numerically as follows. This example motivates the general case: we can pass a state that is not an eigenstate of $U$ to the QPE algorithm, but we may need to repeat our measurements several times in order to obtain an estimate of the desired phase. ## CIRCUIT IMPLEMENTATION OF QPE The QPE circuit can be implemented using Hadamard gates, controlled-$U$ unitaries, and the inverse QFT (denoted as $\mathrm{QFT}^{-1}$). The details of the calculation can be found in a number of resources (such as, [1]); we omit them here. Following the previous discussion, the circuit that implements the QPE algorithm reads as below, where m is the size of lower query register and n is the size of upper precision register. ![image.png](attachment:image.png) ## IMPORTS and SETUP ``` # general imports import numpy as np import math import matplotlib.pyplot as plt # magic word for producing visualizations in notebook %matplotlib inline # AWS imports: Import Amazon Braket SDK modules from braket.circuits import Circuit, circuit from braket.devices import LocalSimulator from braket.aws import AwsDevice # local imports from utils_qpe import qpe, run_qpe %load_ext autoreload %autoreload 2 ``` __NOTE__: Enter your desired device and S3 location (bucket and key) in the following area. If you are working with the local simulator ```LocalSimulator()``` you do not need to specify any S3 location. However, if you are using the managed (cloud-based) device or any QPU devices, you must specify the S3 location where your results will be stored. In this case, you must replace the API call ```device.run(circuit, ...)``` in the example that follows with ```device.run(circuit, s3_folder, ...)```. ``` # set up device: local simulator or the managed cloud-based simulator # device = LocalSimulator() device = AwsDevice("arn:aws:braket:::device/quantum-simulator/amazon/sv1") # Enter the S3 bucket you created during onboarding into the code that follows my_bucket = "amazon-braket-Your-Bucket-Name" # the name of the bucket my_prefix = "Your-Folder-Name" # the name of the folder in the bucket s3_folder = (my_bucket, my_prefix) ``` ### Pauli Matrices: In some of our examples, we choose the unitary $U$ to be given by the **Pauli Matrices**, which we thus define as follows: ``` # Define Pauli matrices Id = np.eye(2) # Identity matrix X = np.array([[0., 1.], [1., 0.]]) # Pauli X Y = np.array([[0., -1.j], [1.j, 0.]]) # Pauli Y Z = np.array([[1., 0.], [0., -1.]]) # Pauli Z ``` ## IMPLEMENTATION OF THE QPE CIRCUIT In ```utils_qpe.py``` we provide simple helper functions to implement the quantum circuit for the QPE algorithm. Specifically, we demonstrate that such modular building blocks can be registered as subroutines, using ```@circuit.subroutine(register=True)```. Moreover, we provide a helper function (called ```get_qpe_phases```) to perform postprocessing based on the measurement results to extract the phase. The details of ```utils_qpe.py``` are shown in the Appendix. To implement the unitary $C-U^{2^k}$, one can use the fact that $C-U^{2} = (C-U)(C-U)$, so that $C-U^{2^{k}}$ can be constructed by repeatedly applying the core building block $C-U$. However, the circuit generated using this approach will have a significantly larger depth. In our implementation, we instead define the matrix $U^{2^k}$ and create the controlled $C-(U^{2^k})$ gate from that. ## VISUALIZATION OF THE QFT CIRCUIT To check our implementation of the QPE circuit, we visualize this circuit for a small number of qubits. ``` # set total number of qubits precision_qubits = [0, 1] query_qubits = [2] # prepare query register my_qpe_circ = Circuit().h(query_qubits) # set unitary unitary = X # show small QPE example circuit my_qpe_circ = my_qpe_circ.qpe(precision_qubits, query_qubits, unitary) print('QPE CIRCUIT:') print(my_qpe_circ) ``` As shown in the folllowing code, the two registers can be distributed anywhere across the circuit, with arbitrary indices for the precision and the query registers. ``` # set qubits precision_qubits = [1, 3] query_qubits = [5] # prepare query register my_qpe_circ = Circuit().i(range(7)) my_qpe_circ.h(query_qubits) # set unitary unitary = X # show small QPE example circuit my_qpe_circ = my_qpe_circ.qpe(precision_qubits, query_qubits, unitary) print('QPE CIRCUIT:') print(my_qpe_circ) ``` As follows, we set up the same circuit, this time implementing the unitary $C-U^{2^k}$, by repeatedly applying the core building block $C-U$. This operation can be done by setting the parameter ```control_unitary=False``` (default is ```True```). ``` # set qubits precision_qubits = [1, 3] query_qubits = [5] # prepare query register my_qpe_circ = Circuit().i(range(7)) my_qpe_circ.h(query_qubits) # set unitary unitary = X # show small QPE example circuit my_qpe_circ = my_qpe_circ.qpe(precision_qubits, query_qubits, unitary, control_unitary=False) print('QPE CIRCUIT:') print(my_qpe_circ) ``` In the circuit diagram, we can visually infer the exponents for $k=0,1$, at the expense of a larger circuit depth. ## NUMERICAL TEST EXPERIMENTS In the following section, we verify that our QFT implementation works as expected with a few test examples: 1. We run QPE with $U=X$ and prepare the eigenstate $|\Psi\rangle = |+\rangle = H|0\rangle$ with phase $\varphi=0$ and eigenvalue $\lambda=1$. 2. We run QPE with $U=X$ and prepare the eigenstate $|\Psi\rangle = |-\rangle = HX|0\rangle$ with phase $\varphi=0.5$ and eigenvalue $\lambda=-1$. 3. We run QPE with $U=X$ and prepare $|\Psi\rangle = |1\rangle = X|0\rangle$ which is *not* an eigenstate of $U$. Because $|1\rangle = (|+\rangle - |-\rangle)/\sqrt{2}$, we expect to measure both $\varphi=0$ and $\varphi=0.5$ associated with the two eigenstates $|\pm\rangle$. 4. We run QPE with unitary $U=X \otimes Z$, and prepare the query register in the eigenstate $|\Psi\rangle = |+\rangle \otimes |1\rangle = H|0\rangle \otimes Z|0\rangle$. Here, we expect to measure the phase $\varphi=0.5$ (giving the corresponding eigenvalue $\lambda=-1$). 5. We run QPE with a _random_ two qubit unitary, diagonal in the computational basis, and prepare the query register in the eigenstate $|11\rangle$. In this case, we should be able to read off the eigenvalue and phase from $U$ and verify QPE gives the right answer (with high probability) up to a small error (that depends on the number of qubits in the precision register). ## HELPER FUNCTIONS FOR NUMERICAL TESTS Because we will run the same code repeatedly, let's first create a helper function we can use to keep the notebook clean. ``` def postprocess_qpe_results(out): """ Function to postprocess dictionary returned by run_qpe Args: out: dictionary containing results/information associated with QPE run as produced by run_qpe """ # unpack results circ = out['circuit'] measurement_counts = out['measurement_counts'] bitstring_keys = out['bitstring_keys'] probs_values = out['probs_values'] precision_results_dic = out['precision_results_dic'] phases_decimal = out['phases_decimal'] eigenvalues = out['eigenvalues'] # print the circuit print('Printing circuit:') print(circ) # print measurement results print('Measurement counts:', measurement_counts) # plot probabalities plt.bar(bitstring_keys, probs_values); plt.xlabel('bitstrings'); plt.ylabel('probability'); plt.xticks(rotation=90); # print results print('Results in precision register:', precision_results_dic) print('QPE phase estimates:', phases_decimal) print('QPE eigenvalue estimates:', np.round(eigenvalues, 5)) ``` ### NUMERICAL TEST EXAMPLE 1 First, apply the QPE algorithm to the simple single-qubit unitary $U=X$, with eigenstate $|\Psi\rangle = |+\rangle = H|0\rangle$. Here, we expect to measure the phase $\varphi=0$ (giving the corresponding eigenvalue $\lambda=1$). We show that this result stays the same as we increase the number of qubits $n$ for the top register. ``` # Set total number of precision qubits: 2 number_precision_qubits = 2 # Define the set of precision qubits precision_qubits = range(number_precision_qubits) # Define the query qubits. We'll have them start after the precision qubits query_qubits = [number_precision_qubits] # State preparation for eigenstate of U=X query = Circuit().h(query_qubits) # Run the test with U=X out = run_qpe(X, precision_qubits, query_qubits, query, device, s3_folder) # Postprocess results postprocess_qpe_results(out) ``` Next, check that we get the same result for a larger precision (top) register. ``` # Set total number of precision qubits: 3 number_precision_qubits = 3 # Define the set of precision qubits precision_qubits = range(number_precision_qubits) # Define the query qubits. We'll have them start after the precision qubits query_qubits = [number_precision_qubits] # State preparation for eigenstate of U=X query = Circuit().h(query_qubits) # Run the test with U=X out = run_qpe(X, precision_qubits, query_qubits, query, device, s3_folder) # Postprocess results postprocess_qpe_results(out) ``` ### NUMERICAL TEST EXAMPLE 2 Next, apply the QPE algorithm to the simple single-qubit unitary $U=X$, with eigenstate $|\Psi\rangle = |-\rangle = HX|0\rangle$. Here, we expect to measure the phase $\varphi=0.5$ (giving the corresponding eigenvalue $\lambda=-1$). ``` # Set total number of precision qubits: 2 number_precision_qubits = 2 # Define the set of precision qubits precision_qubits = range(number_precision_qubits) # Define the query qubits. We'll have them start after the precision qubits query_qubits = [number_precision_qubits] # State preparation for eigenstate of U=X query = Circuit().x(query_qubits).h(query_qubits) # Run the test with U=X out = run_qpe(X, precision_qubits, query_qubits, query, device, s3_folder) # Postprocess results postprocess_qpe_results(out) ``` ### NUMERICAL TEST EXAMPLE 3 Next, apply the QPE algorithm again to the simple single-qubit unitary $U=X$, but we initialize the query register in the state $|\Psi\rangle = |1\rangle$ which is *not* an eigenstate of $U$. Here, following the previous discussion, we expect to measure the phases $\varphi=0, 0.5$ (giving the corresponding eigenvalue $\lambda=\pm 1$). Accordingly, here we set ```items_to_keep=2```. ``` # Set total number of precision qubits: 2 number_precision_qubits = 2 # Define the set of precision qubits precision_qubits = range(number_precision_qubits) # Define the query qubits. We'll have them start after the precision qubits query_qubits = [number_precision_qubits] # State preparation for |1>, which is not an eigenstate of U=X query = Circuit().x(query_qubits) # Run the test with U=X out = run_qpe(X, precision_qubits, query_qubits, query, device, s3_folder, items_to_keep=2) # Postprocess results postprocess_qpe_results(out) ``` ### NUMERICAL TEST EXAMPLE 4 Next, apply the QPE algorithm to the two-qubit unitary $U=X \otimes Z$, and prepare the query register in the eigenstate $|\Psi\rangle = |+\rangle \otimes |1\rangle = H|0\rangle \otimes Z|0\rangle$. Here, we expect to measure the phase $\varphi=0.5$ (giving the corresponding eigenvalue $\lambda=-1$). ``` # set unitary matrix U u1 = np.kron(X, Id) u2 = np.kron(Id, Z) unitary = np.dot(u1, u2) print('Two-qubit unitary (XZ):\n', unitary) # get example eigensystem eig_values, eig_vectors = np.linalg.eig(unitary) print('Eigenvalues:', eig_values) # print('Eigenvectors:', eig_vectors) # Set total number of precision qubits: 2 number_precision_qubits = 2 # Define the set of precision qubits precision_qubits = range(number_precision_qubits) # Define the query qubits. We'll have them start after the precision qubits query_qubits = [number_precision_qubits, number_precision_qubits+1] # State preparation for eigenstate |+,1> of U=X \otimes Z query = Circuit().h(query_qubits[0]).x(query_qubits[1]) # Run the test with U=X out = run_qpe(unitary, precision_qubits, query_qubits, query, device, s3_folder) # Postprocess results postprocess_qpe_results(out) ``` ### NUMERICAL TEST EXAMPLE 5 In this example, we choose the unitary to be a _random_ two-qubit unitary, diagonal in the computational basis. We initialize the query register to be in the eigenstate $|11\rangle$ of $U$, which we can prepare using that $|11\rangle = X\otimes X|00\rangle$. In this case we should be able to read off the eigenvalue and phase from $U$ and verify that QPE gives the right answer. ``` # Generate a random 2 qubit unitary matrix: from scipy.stats import unitary_group # Fix random seed for reproducibility np.random.seed(seed=42) # Get random two-qubit unitary random_unitary = unitary_group.rvs(2**2) # Let's diagonalize this evals = np.linalg.eig(random_unitary)[0] # Since we want to be able to read off the eigenvalues of the unitary in question # let's choose our unitary to be diagonal in this basis unitary = np.diag(evals) # Check that this is indeed unitary, and print it out: print('Two-qubit random unitary:\n', np.round(unitary, 3)) print('Check for unitarity: ', np.allclose(np.eye(len(unitary)), unitary.dot(unitary.T.conj()))) # Print eigenvalues print('Eigenvalues:', np.round(evals, 3)) ``` When we execute the QPE circuit, we expect the following (approximate) result for the eigenvalue estimate: ``` print('Target eigenvalue:', np.round(evals[-1], 3)) # Set total number of precision qubits number_precision_qubits = 3 # Define the set of precision qubits precision_qubits = range(number_precision_qubits) # Define the query qubits. We'll have them start after the precision qubits query_qubits = [number_precision_qubits, number_precision_qubits+1] # State preparation for eigenstate |1,1> of diagonal U query = Circuit().x(query_qubits[0]).x(query_qubits[1]) # Run the test with U=X out = run_qpe(unitary, precision_qubits, query_qubits, query, device, s3_folder) # Postprocess results postprocess_qpe_results(out) # compare output to exact target values print('Target eigenvalue:', np.round(evals[-1], 3)) ``` We can easily improve the precision of our parameter estimate by increasing the number of qubits in the precision register, as shown in the following example. ``` # Set total number of precision qubits number_precision_qubits = 10 # Define the set of precision qubits precision_qubits = range(number_precision_qubits) # Define the query qubits. We'll have them start after the precision qubits query_qubits = [number_precision_qubits, number_precision_qubits+1] # State preparation for eigenstate |1,1> of diagonal U query = Circuit().x(query_qubits[0]).x(query_qubits[1]) # Run the test with U=X out = run_qpe(unitary, precision_qubits, query_qubits, query, device, s3_folder) # Postprocess results eigenvalues = out['eigenvalues'] print('QPE eigenvalue estimates:', np.round(eigenvalues, 5)) # compare output to exact target values print('Target eigenvalue:', np.round(evals[-1], 5)) ``` --- ## APPENDIX ``` # Check SDK version # alternative: braket.__version__ !pip show amazon-braket-sdk | grep Version ``` ## Details of the ```utiles_qpe.py``` module ### Imports, including inverse QFT ```python # general imports import numpy as np import math from collections import Counter from datetime import datetime import pickle # AWS imports: Import Braket SDK modules from braket.circuits import Circuit, circuit # local imports from utils_qft import inverse_qft ``` ### QPE Subroutine ```python @circuit.subroutine(register=True) def controlled_unitary(control, target_qubits, unitary): """ Construct a circuit object corresponding to the controlled unitary Args: control: The qubit on which to control the gate target_qubits: List of qubits on which the unitary U acts unitary: matrix representation of the unitary we wish to implement in a controlled way """ # Define projectors onto the computational basis p0 = np.array([[1., 0.], [0., 0.]]) p1 = np.array([[0., 0.], [0., 1.]]) # Instantiate circuit object circ = Circuit() # Construct numpy matrix id_matrix = np.eye(len(unitary)) controlled_matrix = np.kron(p0, id_matrix) + np.kron(p1, unitary) # Set all target qubits targets = [control] + target_qubits # Add controlled unitary circ.unitary(matrix=controlled_matrix, targets=targets) return circ @circuit.subroutine(register=True) def qpe(precision_qubits, query_qubits, unitary, control_unitary=True): """ Function to implement the QPE algorithm using two registers for precision (read-out) and query. Register qubits need not be contiguous. Args: precision_qubits: list of qubits defining the precision register query_qubits: list of qubits defining the query register unitary: Matrix representation of the unitary whose eigenvalues we wish to estimate control_unitary: Optional boolean flag for controlled unitaries, with C-(U^{2^k}) by default (default is True), or C-U controlled-unitary (2**power) times """ qpe_circ = Circuit() # Get number of qubits num_precision_qubits = len(precision_qubits) num_query_qubits = len(query_qubits) # Apply Hadamard across precision register qpe_circ.h(precision_qubits) # Apply controlled unitaries. Start with the last precision_qubit, and end with the first for ii, qubit in enumerate(reversed(precision_qubits)): # Set power exponent for unitary power = ii # Alterantive 1: Implement C-(U^{2^k}) if control_unitary: # Define the matrix U^{2^k} Uexp = np.linalg.matrix_power(unitary,2**power) # Apply the controlled unitary C-(U^{2^k}) qpe_circ.controlled_unitary(qubit, query_qubits, Uexp) # Alterantive 2: One can instead apply controlled-unitary (2**power) times to get C-U^{2^power} else: for _ in range(2**power): qpe_circ.controlled_unitary(qubit, query_qubits, unitary) # Apply inverse qft to the precision_qubits qpe_circ.inverse_qft(precision_qubits) return qpe_circ ``` ### QPE postprocessing helper functions ```python # helper function to remove query bits from bitstrings def substring(key, precision_qubits): """ Helper function to get substring from keys for dedicated string positions as given by precision_qubits. This function is necessary to allow for arbitary qubit mappings in the precision and query registers (that is, so that the register qubits need not be contiguous.) Args: key: string from which we want to extract the substring supported only on the precision qubits precision_qubits: List of qubits corresponding to precision_qubits. Currently assumed to be a list of integers corresponding to the indices of the qubits """ short_key = '' for idx in precision_qubits: short_key = short_key + key[idx] return short_key # helper function to convert binary fractional to decimal # reference: https://www.geeksforgeeks.org/convert-binary-fraction-decimal/ def binaryToDecimal(binary): """ Helper function to convert binary string (example: '01001') to decimal Args: binary: string which to convert to decimal fraction """ length = len(binary) fracDecimal = 0 # Convert fractional part of binary to decimal equivalent twos = 2 for ii in range(length): fracDecimal += ((ord(binary[ii]) - ord('0')) / twos); twos *= 2.0 # return fractional part return fracDecimal # helper function for postprocessing based on measurement shots def get_qpe_phases(measurement_counts, precision_qubits, items_to_keep=1): """ Get QPE phase estimate from measurement_counts for given number of precision qubits Args: measurement_counts: measurement results from a device run precision_qubits: List of qubits corresponding to precision_qubits. Currently assumed to be a list of integers corresponding to the indices of the qubits items_to_keep: number of items to return (topmost measurement counts for precision register) """ # Aggregate the results (that is, ignore the query register qubits): # First get bitstrings with corresponding counts for precision qubits only bitstrings_precision_register = [substring(key, precision_qubits) for key in measurement_counts.keys()] # Then keep only the unique strings bitstrings_precision_register_set = set(bitstrings_precision_register) # Cast as a list for later use bitstrings_precision_register_list = list(bitstrings_precision_register_set) # Now create a new dict to collect measurement results on the precision_qubits. # Keys are given by the measurement count substrings on the register qubits. Initialize the counts to zero. precision_results_dic = {key: 0 for key in bitstrings_precision_register_list} # Loop over all measurement outcomes for key in measurement_counts.keys(): # Save the measurement count for this outcome counts = measurement_counts[key] # Generate the corresponding shortened key (supported only on the precision_qubits register) count_key = substring(key, precision_qubits) # Add these measurement counts to the corresponding key in our new dict precision_results_dic[count_key] += counts # Get topmost values only c = Counter(precision_results_dic) topmost= c.most_common(items_to_keep) # get decimal phases from bitstrings for topmost bitstrings phases_decimal = [binaryToDecimal(item[0]) for item in topmost] # Get decimal phases from bitstrings for all bitstrings # number_precision_qubits = len(precision_qubits) # Generate binary decimal expansion # phases_decimal = [int(key, 2)/(2**number_precision_qubits) for key in precision_results_dic] # phases_decimal = [binaryToDecimal(key) for key in precision_results_dic] return phases_decimal, precision_results_dic ``` ### Run QPE experiments: ```python def run_qpe(unitary, precision_qubits, query_qubits, query_circuit, device, s3_folder, items_to_keep=1, shots=1000, save_to_pck=False): """ Function to run QPE algorithm end-to-end and return measurement counts. Args: precision_qubits: list of qubits defining the precision register query_qubits: list of qubits defining the query register unitary: Matrix representation of the unitary whose eigenvalues we wish to estimate query_circuit: query circuit for state preparation of query register items_to_keep: (optional) number of items to return (topmost measurement counts for precision register) device: Braket device backend shots: (optional) number of measurement shots (default is 1000) save_to_pck: (optional) save results to pickle file if True (default is False) """ # get size of precision register and total number of qubits number_precision_qubits = len(precision_qubits) num_qubits = len(precision_qubits) + len(query_qubits) # Define the circuit. Start by copying the query_circuit, then add the QPE: circ = query_circuit circ.qpe(precision_qubits, query_qubits, unitary) # Add desired results_types circ.probability() # Run the circuit with all zeros input. # The query_circuit subcircuit generates the desired input from all zeros. # The following code executes the correct device.run call, depending on whether the backend is local or managed (cloud-based) if device.name == 'DefaultSimulator': task = device.run(circ, shots=shots) else: task = device.run(circ, s3_folder, shots=shots) # get result for this task result = task.result() # get metadata metadata = result.task_metadata # get output probabilities (see result_types above) probs_values = result.values[0] # get measurement results measurements = result.measurements measured_qubits = result.measured_qubits measurement_counts = result.measurement_counts measurement_probabilities = result.measurement_probabilities # bitstrings format_bitstring = '{0:0' + str(num_qubits) + 'b}' bitstring_keys = [format_bitstring.format(ii) for ii in range(2**num_qubits)] # QPE postprocessing phases_decimal, precision_results_dic = get_qpe_phases(measurement_counts, precision_qubits, items_to_keep) eigenvalues = [np.exp(2*np.pi*1j*phase) for phase in phases_decimal] # aggregate results out = {'circuit': circ, 'task_metadata': metadata, 'measurements': measurements, 'measured_qubits': measured_qubits, 'measurement_counts': measurement_counts, 'measurement_probabilities': measurement_probabilities, 'probs_values': probs_values, 'bitstring_keys': bitstring_keys, 'precision_results_dic': precision_results_dic, 'phases_decimal': phases_decimal, 'eigenvalues': eigenvalues} if save_to_pck: # store results: dump output to pickle with timestamp in filename time_now = datetime.strftime(datetime.now(), '%Y%m%d%H%M%S') results_file = 'results-'+time_now+'.pck' pickle.dump(out, open(results_file, "wb")) # you can load results as follows # out = pickle.load(open(results_file, "rb")) return out ``` --- ## REFERENCES [1] Wikipedia: https://en.wikipedia.org/wiki/Quantum_phase_estimation_algorithm [2] Nielsen, Michael A., Chuang, Isaac L. (2010). Quantum Computation and Quantum Information (2nd ed.). Cambridge: Cambridge University Press.
true
code
0.662687
null
null
null
null
## Computer Vision Learner [`vision.learner`](/vision.learner.html#vision.learner) is the module that defines the [`cnn_learner`](/vision.learner.html#cnn_learner) method, to easily get a model suitable for transfer learning. ``` from fastai.gen_doc.nbdoc import * from fastai.vision import * ``` ## Transfer learning Transfer learning is a technique where you use a model trained on a very large dataset (usually [ImageNet](http://image-net.org/) in computer vision) and then adapt it to your own dataset. The idea is that it has learned to recognize many features on all of this data, and that you will benefit from this knowledge, especially if your dataset is small, compared to starting from a randomly initialized model. It has been proved in [this article](https://arxiv.org/abs/1805.08974) on a wide range of tasks that transfer learning nearly always give better results. In practice, you need to change the last part of your model to be adapted to your own number of classes. Most convolutional models end with a few linear layers (a part will call head). The last convolutional layer will have analyzed features in the image that went through the model, and the job of the head is to convert those in predictions for each of our classes. In transfer learning we will keep all the convolutional layers (called the body or the backbone of the model) with their weights pretrained on ImageNet but will define a new head initialized randomly. Then we will train the model we obtain in two phases: first we freeze the body weights and only train the head (to convert those analyzed features into predictions for our own data), then we unfreeze the layers of the backbone (gradually if necessary) and fine-tune the whole model (possibly using differential learning rates). The [`cnn_learner`](/vision.learner.html#cnn_learner) factory method helps you to automatically get a pretrained model from a given architecture with a custom head that is suitable for your data. ``` show_doc(cnn_learner) ``` This method creates a [`Learner`](/basic_train.html#Learner) object from the [`data`](/vision.data.html#vision.data) object and model inferred from it with the backbone given in `arch`. Specifically, it will cut the model defined by `arch` (randomly initialized if `pretrained` is False) at the last convolutional layer by default (or as defined in `cut`, see below) and add: - an [`AdaptiveConcatPool2d`](/layers.html#AdaptiveConcatPool2d) layer, - a [`Flatten`](/layers.html#Flatten) layer, - blocks of \[[`nn.BatchNorm1d`](https://pytorch.org/docs/stable/nn.html#torch.nn.BatchNorm1d), [`nn.Dropout`](https://pytorch.org/docs/stable/nn.html#torch.nn.Dropout), [`nn.Linear`](https://pytorch.org/docs/stable/nn.html#torch.nn.Linear), [`nn.ReLU`](https://pytorch.org/docs/stable/nn.html#torch.nn.ReLU)\] layers. The blocks are defined by the `lin_ftrs` and `ps` arguments. Specifically, the first block will have a number of inputs inferred from the backbone `arch` and the last one will have a number of outputs equal to `data.c` (which contains the number of classes of the data) and the intermediate blocks have a number of inputs/outputs determined by `lin_frts` (of course a block has a number of inputs equal to the number of outputs of the previous block). The default is to have an intermediate hidden size of 512 (which makes two blocks `model_activation` -> 512 -> `n_classes`). If you pass a float then the final dropout layer will have the value `ps`, and the remaining will be `ps/2`. If you pass a list then the values are used for dropout probabilities directly. Note that the very last block doesn't have a [`nn.ReLU`](https://pytorch.org/docs/stable/nn.html#torch.nn.ReLU) activation, to allow you to use any final activation you want (generally included in the loss function in pytorch). Also, the backbone will be frozen if you choose `pretrained=True` (so only the head will train if you call [`fit`](/basic_train.html#fit)) so that you can immediately start phase one of training as described above. Alternatively, you can define your own `custom_head` to put on top of the backbone. If you want to specify where to split `arch` you should so in the argument `cut` which can either be the index of a specific layer (the result will not include that layer) or a function that, when passed the model, will return the backbone you want. The final model obtained by stacking the backbone and the head (custom or defined as we saw) is then separated in groups for gradual unfreezing or differential learning rates. You can specify how to split the backbone in groups with the optional argument `split_on` (should be a function that returns those groups when given the backbone). The `kwargs` will be passed on to [`Learner`](/basic_train.html#Learner), so you can put here anything that [`Learner`](/basic_train.html#Learner) will accept ([`metrics`](/metrics.html#metrics), `loss_func`, `opt_func`...) ``` path = untar_data(URLs.MNIST_SAMPLE) data = ImageDataBunch.from_folder(path) learner = cnn_learner(data, models.resnet18, metrics=[accuracy]) learner.fit_one_cycle(1,1e-3) learner.save('one_epoch') show_doc(unet_learner) ``` This time the model will be a [`DynamicUnet`](/vision.models.unet.html#DynamicUnet) with an encoder based on `arch` (maybe `pretrained`) that is cut depending on `split_on`. `blur_final`, `norm_type`, `blur`, `self_attention`, `y_range`, `last_cross` and `bottle` are passed to unet constructor, the `kwargs` are passed to the initialization of the [`Learner`](/basic_train.html#Learner). ``` jekyll_warn("The models created with this function won't work with pytorch `nn.DataParallel`, you have to use distributed training instead!") ``` ### Get predictions Once you've actually trained your model, you may want to use it on a single image. This is done by using the following method. ``` show_doc(Learner.predict) img = learner.data.train_ds[0][0] learner.predict(img) ``` Here the predict class for our image is '3', which corresponds to a label of 0. The probabilities the model found for each class are 99.65% and 0.35% respectively, so its confidence is pretty high. Note that if you want to load your trained model and use it on inference mode with the previous function, you should export your [`Learner`](/basic_train.html#Learner). ``` learner.export() ``` And then you can load it with an empty data object that has the same internal state like this: ``` learn = load_learner(path) ``` ### Customize your model You can customize [`cnn_learner`](/vision.learner.html#cnn_learner) for your own model's default `cut` and `split_on` functions by adding them to the dictionary `model_meta`. The key should be your model and the value should be a dictionary with the keys `cut` and `split_on` (see the source code for examples). The constructor will call [`create_body`](/vision.learner.html#create_body) and [`create_head`](/vision.learner.html#create_head) for you based on `cut`; you can also call them yourself, which is particularly useful for testing. ``` show_doc(create_body) show_doc(create_head, doc_string=False) ``` Model head that takes `nf` features, runs through `lin_ftrs`, and ends with `nc` classes. `ps` is the probability of the dropouts, as documented above in [`cnn_learner`](/vision.learner.html#cnn_learner). ``` show_doc(ClassificationInterpretation, title_level=3) ``` This provides a confusion matrix and visualization of the most incorrect images. Pass in your [`data`](/vision.data.html#vision.data), calculated `preds`, actual `y`, and your `losses`, and then use the methods below to view the model interpretation results. For instance: ``` learn = cnn_learner(data, models.resnet18) learn.fit(1) preds,y,losses = learn.get_preds(with_loss=True) interp = ClassificationInterpretation(learn, preds, y, losses) ``` The following factory method gives a more convenient way to create an instance of this class: ``` show_doc(ClassificationInterpretation.from_learner, full_name='from_learner') ``` You can also use a shortcut `learn.interpret()` to do the same. ``` show_doc(Learner.interpret, full_name='interpret') ``` Note that this shortcut is a [`Learner`](/basic_train.html#Learner) object/class method that can be called as: `learn.interpret()`. ``` show_doc(ClassificationInterpretation.plot_top_losses, full_name='plot_top_losses') ``` The `k` items are arranged as a square, so it will look best if `k` is a square number (4, 9, 16, etc). The title of each image shows: prediction, actual, loss, probability of actual class. When `heatmap` is True (by default it's True) , Grad-CAM heatmaps (http://openaccess.thecvf.com/content_ICCV_2017/papers/Selvaraju_Grad-CAM_Visual_Explanations_ICCV_2017_paper.pdf) are overlaid on each image. `plot_top_losses` should be used with single-labeled datasets. See `plot_multi_top_losses` below for a version capable of handling multi-labeled datasets. ``` interp.plot_top_losses(9, figsize=(7,7)) show_doc(ClassificationInterpretation.top_losses) ``` Returns tuple of *(losses,indices)*. ``` interp.top_losses(9) show_doc(ClassificationInterpretation.plot_multi_top_losses, full_name='plot_multi_top_losses') ``` Similar to `plot_top_losses()` but aimed at multi-labeled datasets. It plots misclassified samples sorted by their respective loss. Since you can have multiple labels for a single sample, they can easily overlap in a grid plot. So it plots just one sample per row. Note that you can pass `save_misclassified=True` (by default it's `False`). In such case, the method will return a list containing the misclassified images which you can use to debug your model and/or tune its hyperparameters. ``` show_doc(ClassificationInterpretation.plot_confusion_matrix) ``` If [`normalize`](/vision.data.html#normalize), plots the percentages with `norm_dec` digits. `slice_size` can be used to avoid out of memory error if your set is too big. `kwargs` are passed to `plt.figure`. ``` interp.plot_confusion_matrix() show_doc(ClassificationInterpretation.confusion_matrix) interp.confusion_matrix() show_doc(ClassificationInterpretation.most_confused) ``` #### Working with large datasets When working with large datasets, memory problems can arise when computing the confusion matrix. For example, an error can look like this: RuntimeError: $ Torch: not enough memory: you tried to allocate 64GB. Buy new RAM! In this case it is possible to force [`ClassificationInterpretation`](/train.html#ClassificationInterpretation) to compute the confusion matrix for data slices and then aggregate the result by specifying slice_size parameter. ``` interp.confusion_matrix(slice_size=10) interp.plot_confusion_matrix(slice_size=10) interp.most_confused(slice_size=10) ``` ## Undocumented Methods - Methods moved below this line will intentionally be hidden ## New Methods - Please document or move to the undocumented section
true
code
0.845688
null
null
null
null