metadata
license: cc-by-4.0
library_name: scvi-tools
tags:
- biology
- genomics
- single-cell
- model_cls_name:SCVI
- scvi_version:0.20.0
- anndata_version:0.8.0
- modality:rna
- annotated:False
Description
scVI model trained on the full DLPFC Visium data (including the pilot samples).
Model properties
Many model properties are in the model tags. Some more are listed below.
model_init_params:
{
"n_hidden": 128,
"n_latent": 5,
"n_layers": 1,
"dropout_rate": 0.1,
"dispersion": "gene",
"gene_likelihood": "zinb",
"latent_distribution": "normal"
}
model_setup_anndata_args:
{
"layer": "counts",
"batch_key": "patient",
"labels_key": null,
"size_factor_key": null,
"categorical_covariate_keys": [
"sample",
"study"
],
"continuous_covariate_keys": null
}
model_summary_stats:
Summary Stat Key | Value |
---|---|
n_batch | 13 |
n_cells | 166443 |
n_extra_categorical_covs | 2 |
n_extra_continuous_covs | 0 |
n_labels | 1 |
n_vars | 5000 |
model_data_registry:
Registry Key | scvi-tools Location |
---|---|
X | adata.layers['counts'] |
batch | adata.obs['_scvi_batch'] |
extra_categorical_covs | adata.obsm['_scvi_extra_categorical_covs'] |
labels | adata.obs['_scvi_labels'] |
model_parent_module: scvi.model
data_is_minified: False
Training data
This is an optional link to where the training data is stored if it is too large to host on the huggingface Model hub.
Training data url: N/A
Training code
This is an optional link to the code used to train the model.
Training code url: N/A
References
- Maynard, Kristen R., et al. "Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex." Nature neuroscience 24.3 (2021): 425-436.
- Huuki-Myers, Louise A., et al. "Integrated single cell and unsupervised spatial transcriptomic analysis defines molecular anatomy of the human dorsolateral prefrontal cortex." BioRxiv (2023): 2023-02.