|
--- |
|
license: cc-by-4.0 |
|
library_name: scvi-tools |
|
tags: |
|
- biology |
|
- genomics |
|
- single-cell |
|
- model_cls_name:SCVI |
|
- scvi_version:0.20.0 |
|
- anndata_version:0.8.0 |
|
- modality:rna |
|
- annotated:False |
|
--- |
|
|
|
# Description |
|
|
|
scVI model trained on the full DLPFC Visium data (including the pilot samples). |
|
|
|
# Model properties |
|
|
|
Many model properties are in the model tags. Some more are listed below. |
|
|
|
**model_init_params**: |
|
```json |
|
{ |
|
"n_hidden": 128, |
|
"n_latent": 5, |
|
"n_layers": 1, |
|
"dropout_rate": 0.1, |
|
"dispersion": "gene", |
|
"gene_likelihood": "zinb", |
|
"latent_distribution": "normal" |
|
} |
|
``` |
|
|
|
**model_setup_anndata_args**: |
|
```json |
|
{ |
|
"layer": "counts", |
|
"batch_key": "patient", |
|
"labels_key": null, |
|
"size_factor_key": null, |
|
"categorical_covariate_keys": [ |
|
"sample", |
|
"study" |
|
], |
|
"continuous_covariate_keys": null |
|
} |
|
``` |
|
|
|
**model_summary_stats**: |
|
| Summary Stat Key | Value | |
|
|--------------------------|--------| |
|
| n_batch | 13 | |
|
| n_cells | 166443 | |
|
| n_extra_categorical_covs | 2 | |
|
| n_extra_continuous_covs | 0 | |
|
| n_labels | 1 | |
|
| n_vars | 5000 | |
|
|
|
**model_data_registry**: |
|
| Registry Key | scvi-tools Location | |
|
|------------------------|--------------------------------------------| |
|
| X | adata.layers['counts'] | |
|
| batch | adata.obs['_scvi_batch'] | |
|
| extra_categorical_covs | adata.obsm['_scvi_extra_categorical_covs'] | |
|
| labels | adata.obs['_scvi_labels'] | |
|
|
|
**model_parent_module**: scvi.model |
|
|
|
**data_is_minified**: False |
|
|
|
# Training data |
|
|
|
This is an optional link to where the training data is stored if it is too large |
|
to host on the huggingface Model hub. |
|
|
|
<!-- If your model is not uploaded with any data (e.g., minified data) on the Model Hub, then make |
|
sure to provide this field if you want users to be able to access your training data. See the scvi-tools |
|
documentation for details. --> |
|
|
|
Training data url: N/A |
|
|
|
# Training code |
|
|
|
This is an optional link to the code used to train the model. |
|
|
|
Training code url: N/A |
|
|
|
# References |
|
|
|
1. Maynard, Kristen R., et al. "Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex." Nature neuroscience 24.3 (2021): 425-436. |
|
2. Huuki-Myers, Louise A., et al. "Integrated single cell and unsupervised spatial transcriptomic analysis defines molecular anatomy of the human dorsolateral prefrontal cortex." BioRxiv (2023): 2023-02. |