mp-02's picture
End of training
3940f35 verified
metadata
library_name: transformers
base_model: layoutlmv3
tags:
  - generated_from_trainer
datasets:
  - mp-02/sroie
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: layoutlmv3-finetuned-sroie
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: mp-02/sroie
          type: mp-02/sroie
        metrics:
          - name: Precision
            type: precision
            value: 0.9232981783317353
          - name: Recall
            type: recall
            value: 0.9578912466843501
          - name: F1
            type: f1
            value: 0.9402766476810415
          - name: Accuracy
            type: accuracy
            value: 0.981485280541594

layoutlmv3-finetuned-sroie

This model is a fine-tuned version of layoutlmv3 on the mp-02/sroie dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0651
  • Precision: 0.9233
  • Recall: 0.9579
  • F1: 0.9403
  • Accuracy: 0.9815

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.3810 250 0.0957 0.9075 0.9304 0.9188 0.9752
0.1943 4.7619 500 0.0699 0.9260 0.9456 0.9357 0.9805
0.1943 7.1429 750 0.0657 0.9291 0.9513 0.9400 0.9817
0.0485 9.5238 1000 0.0651 0.9233 0.9579 0.9403 0.9815
0.0485 11.9048 1250 0.0661 0.9155 0.9625 0.9384 0.9808
0.0397 14.2857 1500 0.0660 0.9161 0.9632 0.9391 0.9810

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1