|
--- |
|
library_name: transformers |
|
base_model: layoutlmv3 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mp-02/sroie |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: layoutlmv3-finetuned-sroie |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: mp-02/sroie |
|
type: mp-02/sroie |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9232981783317353 |
|
- name: Recall |
|
type: recall |
|
value: 0.9578912466843501 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9402766476810415 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.981485280541594 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv3-finetuned-sroie |
|
|
|
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/sroie dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0651 |
|
- Precision: 0.9233 |
|
- Recall: 0.9579 |
|
- F1: 0.9403 |
|
- Accuracy: 0.9815 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-06 |
|
- train_batch_size: 6 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 1500 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 2.3810 | 250 | 0.0957 | 0.9075 | 0.9304 | 0.9188 | 0.9752 | |
|
| 0.1943 | 4.7619 | 500 | 0.0699 | 0.9260 | 0.9456 | 0.9357 | 0.9805 | |
|
| 0.1943 | 7.1429 | 750 | 0.0657 | 0.9291 | 0.9513 | 0.9400 | 0.9817 | |
|
| 0.0485 | 9.5238 | 1000 | 0.0651 | 0.9233 | 0.9579 | 0.9403 | 0.9815 | |
|
| 0.0485 | 11.9048 | 1250 | 0.0661 | 0.9155 | 0.9625 | 0.9384 | 0.9808 | |
|
| 0.0397 | 14.2857 | 1500 | 0.0660 | 0.9161 | 0.9632 | 0.9391 | 0.9810 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu118 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|