metadata
base_model: NX-AI/xLSTM-7b
library_name: peft
license: apache-2.0
datasets:
- vicgalle/alpaca-gpt4
language:
- en
pipeline_tag: text-generation
Model Card for FlowerTune-xLSTM-7b-NLP-PEFT
This PEFT adapter has been trained by using Flower, a friendly federated AI framework.
The adapter and benchmark results have been submitted to the FlowerTune LLM NLP Leaderboard.
Model Details
Please check the following GitHub project for model details and evaluation results:
https://github.com/mrs83/FlowerTune-xLSTM-7b-NLP
How to Get Started with the Model
First, install xlstm
and mlstm_kernels
packages:
pip install xlstm
pip install mlstm_kernels
For now, install the transformers repositiory fork from NX-AI (until it is merged):
pip install 'transformers @ git+ssh://[email protected]/NX-AI/transformers.git@integrate_xlstm'
Use this model as:
from peft import PeftModel
from transformers import AutoModelForCausalLM
base_model = AutoModelForCausalLM.from_pretrained("NX-AI/xLSTM-7b")
model = PeftModel.from_pretrained(base_model, "mrs83/FlowerTune-xLSTM-7b-NLP-PEFT")
Evaluation Results (Accuracy)
- STEM: 13.67 %
- Social Sciences: 17.55 %
- Humanities: 14.84 %
- Average: 15.35 %
Communication Budget
60609.38 Megabytes
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- _load_in_8bit: False
- _load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: fp4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float32
- bnb_4bit_quant_storage: uint8
- load_in_4bit: True
- load_in_8bit: False
Framework versions
- PEFT 0.14.0
- Flower 1.13.0