|
--- |
|
base_model: NX-AI/xLSTM-7b |
|
library_name: peft |
|
license: apache-2.0 |
|
datasets: |
|
- vicgalle/alpaca-gpt4 |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Model Card for FlowerTune-xLSTM-7b-NLP-PEFT |
|
|
|
This PEFT adapter has been trained by using [Flower](https://flower.ai/), a friendly federated AI framework. |
|
|
|
The adapter and benchmark results have been submitted to the [FlowerTune LLM NLP Leaderboard](https://flower.ai/benchmarks/llm-leaderboard/nlp/). |
|
|
|
## Model Details |
|
|
|
Please check the following GitHub project for model details and evaluation results: |
|
|
|
[https://github.com/mrs83/FlowerTune-xLSTM-7b-NLP](https://github.com/mrs83/FlowerTune-xLSTM-7b-NLP) |
|
|
|
## How to Get Started with the Model |
|
|
|
First, install `xlstm` and `mlstm_kernels` packages: |
|
|
|
```bash |
|
pip install xlstm |
|
pip install mlstm_kernels |
|
``` |
|
|
|
For now, install the transformers repositiory fork from NX-AI (until it is merged): |
|
|
|
```bash |
|
pip install 'transformers @ git+ssh://[email protected]/NX-AI/transformers.git@integrate_xlstm' |
|
``` |
|
|
|
Use this model as: |
|
|
|
``` |
|
from peft import PeftModel |
|
from transformers import AutoModelForCausalLM |
|
|
|
base_model = AutoModelForCausalLM.from_pretrained("NX-AI/xLSTM-7b") |
|
model = PeftModel.from_pretrained(base_model, "mrs83/FlowerTune-xLSTM-7b-NLP-PEFT") |
|
``` |
|
|
|
### Evaluation Results (Accuracy) |
|
|
|
- **STEM**: 13.67 % |
|
- **Social Sciences**: 17.55 % |
|
- **Humanities**: 14.84 % |
|
- **Average**: 15.35 % |
|
|
|
### Communication Budget |
|
|
|
60609.38 Megabytes |
|
|
|
## Training procedure |
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
|
|
- quant_method: QuantizationMethod.BITS_AND_BYTES |
|
- _load_in_8bit: False |
|
- _load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: fp4 |
|
- bnb_4bit_use_double_quant: False |
|
- bnb_4bit_compute_dtype: float32 |
|
- bnb_4bit_quant_storage: uint8 |
|
- load_in_4bit: True |
|
- load_in_8bit: False |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.14.0 |
|
- Flower 1.13.0 |