onizukal's picture
End of training
73a7091 verified
metadata
license: apache-2.0
base_model: facebook/deit-tiny-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold1
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.3950583763236492

Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold1

This model is a fine-tuned version of facebook/deit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8160
  • Accuracy: 0.3951

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.4438 1.0 924 2.4927 0.1898
2.3969 2.0 1848 2.3384 0.2389
2.2609 3.0 2772 2.2168 0.2878
2.0421 4.0 3696 2.1285 0.3068
2.0227 5.0 4620 2.0634 0.3296
1.99 6.0 5544 2.0084 0.3397
1.9954 7.0 6468 1.9664 0.3549
2.0727 8.0 7392 1.9354 0.3652
2.0158 9.0 8316 1.9072 0.3704
1.8488 10.0 9240 1.8880 0.3750
1.8985 11.0 10164 1.8721 0.3790
1.7309 12.0 11088 1.8576 0.3812
1.8129 13.0 12012 1.8465 0.3899
1.7599 14.0 12936 1.8384 0.3866
1.7902 15.0 13860 1.8309 0.3894
1.7502 16.0 14784 1.8250 0.3932
1.7034 17.0 15708 1.8221 0.3934
1.8587 18.0 16632 1.8187 0.3940
1.8137 19.0 17556 1.8165 0.3942
1.9039 20.0 18480 1.8160 0.3951

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.1.0
  • Datasets 2.19.0
  • Tokenizers 0.19.1