|
---
|
|
license: apache-2.0
|
|
base_model: facebook/deit-tiny-patch16-224
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold1
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: test
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.3950583763236492
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# Boya1_SGD_1-e3_20Epoch_Deit-tiny-patch16_fold1
|
|
|
|
This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.8160
|
|
- Accuracy: 0.3951
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.001
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 16
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_ratio: 0.1
|
|
- num_epochs: 20
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
|
| 2.4438 | 1.0 | 924 | 2.4927 | 0.1898 |
|
|
| 2.3969 | 2.0 | 1848 | 2.3384 | 0.2389 |
|
|
| 2.2609 | 3.0 | 2772 | 2.2168 | 0.2878 |
|
|
| 2.0421 | 4.0 | 3696 | 2.1285 | 0.3068 |
|
|
| 2.0227 | 5.0 | 4620 | 2.0634 | 0.3296 |
|
|
| 1.99 | 6.0 | 5544 | 2.0084 | 0.3397 |
|
|
| 1.9954 | 7.0 | 6468 | 1.9664 | 0.3549 |
|
|
| 2.0727 | 8.0 | 7392 | 1.9354 | 0.3652 |
|
|
| 2.0158 | 9.0 | 8316 | 1.9072 | 0.3704 |
|
|
| 1.8488 | 10.0 | 9240 | 1.8880 | 0.3750 |
|
|
| 1.8985 | 11.0 | 10164 | 1.8721 | 0.3790 |
|
|
| 1.7309 | 12.0 | 11088 | 1.8576 | 0.3812 |
|
|
| 1.8129 | 13.0 | 12012 | 1.8465 | 0.3899 |
|
|
| 1.7599 | 14.0 | 12936 | 1.8384 | 0.3866 |
|
|
| 1.7902 | 15.0 | 13860 | 1.8309 | 0.3894 |
|
|
| 1.7502 | 16.0 | 14784 | 1.8250 | 0.3932 |
|
|
| 1.7034 | 17.0 | 15708 | 1.8221 | 0.3934 |
|
|
| 1.8587 | 18.0 | 16632 | 1.8187 | 0.3940 |
|
|
| 1.8137 | 19.0 | 17556 | 1.8165 | 0.3942 |
|
|
| 1.9039 | 20.0 | 18480 | 1.8160 | 0.3951 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.40.1
|
|
- Pytorch 2.1.0
|
|
- Datasets 2.19.0
|
|
- Tokenizers 0.19.1
|
|
|