Spaces:
Running
Running
File size: 7,514 Bytes
a5316e5 d563836 544f914 a5316e5 5f4434d 8da738a 7145ecb 544f914 6176ef8 f37b5da d563836 c8ce48e d563836 6176ef8 3fcba4f 6176ef8 ccf126e bb9c09b ccf126e 1e09a50 ccf126e b1a0d53 c82104c b1a0d53 6f59e3c aa09a05 8da738a 544f914 736419a 8da738a 3fcba4f 6176ef8 4e59324 b1a0d53 aa09a05 24390e2 4e59324 24390e2 4e59324 aa09a05 4e59324 aa09a05 4e59324 736419a 6176ef8 5282aca 7145ecb 1e09a50 f30d0ea 5282aca 1e09a50 b8df8bd 53e71ae 142304a 4e59324 53e71ae 4e59324 142304a d3c40d6 4e59324 53e71ae 5282aca 1e09a50 5282aca 142304a 4e59324 3cb6c3b 4e59324 142304a d3c40d6 4e59324 a5316e5 736419a 4e59324 a5316e5 7145ecb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import gradio as gr
from transformers import pipeline
import requests
from bs4 import BeautifulSoup
import pandas as pd
# Initialize models
classification_model = pipeline("text-classification", model="models/text_classification_model", tokenizer="models/text_classification_model", top_k=5)
mask_model = pipeline("fill-mask", model="models/fill_mask_model", tokenizer="models/fill_mask_model", top_k=100)
# Load data
eunis_habitats = pd.read_excel('data/eunis_habitats.xlsx')
def return_habitat_image(habitat_label):
floraveg_url = f"https://floraveg.eu/habitat/overview/{habitat_label}"
response = requests.get(floraveg_url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
img_tag = soup.find('img', src=lambda x: x and x.startswith("https://files.ibot.cas.cz/cevs/images/syntaxa/thumbs/"))
if img_tag:
image_url = img_tag['src']
else:
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
else:
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
image_url = "https://www.commissionoceanindien.org/wp-content/uploads/2018/07/plantnet.jpg" # While we don't have the rights
image = gr.Image(value=image_url)
return image
def return_species_image(species):
species = species.capitalize()
floraveg_url = f"https://floraveg.eu/taxon/overview/{species}"
response = requests.get(floraveg_url)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
img_tag = soup.find('img', src=lambda x: x and x.startswith("https://files.ibot.cas.cz/cevs/images/taxa/large/"))
if img_tag:
image_url = img_tag['src']
else:
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
else:
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
image_url = "https://www.commissionoceanindien.org/wp-content/uploads/2018/07/plantnet.jpg"
image = gr.Image(value=image_url)
return image
def gbif_normalization(text):
base = "https://api.gbif.org/v1"
api = "species"
function = "match"
parameter = "name"
url = f"{base}/{api}/{function}?{parameter}="
all_species = text.split(',')
all_species = [species.strip() for species in all_species]
species_gbif = []
for species in all_species:
url = url.replace(url.partition('name')[2], f'={species}')
r = requests.get(url)
r = r.json()
if 'species' in r:
r = r["species"]
else:
r = species
species_gbif.append(r)
text = ", ".join(species_gbif)
text = text.lower()
return text
def classification(text, k):
text = gbif_normalization(text)
result = classification_model(text)
habitat_labels = [res['label'] for res in result[0][:k]]
if k == 1:
text = f"This vegetation plot belongs to the habitat {habitat_labels[0]}."
else:
text = f"This vegetation plot belongs to the habitats {', '.join(habitat_labels[:-1])} and {habitat_labels[-1]}."
habitat_name = eunis_habitats[eunis_habitats['EUNIS 2020 code'] == habitat_labels[0]]['EUNIS-2021 habitat name'].values[0]
text += f"\nThe most likely habitat is '{habitat_name}'."
text += f"\n See image of the most likely habitat, {habitat_labels[0]}, below)."
image_output = return_habitat_image(habitat_labels[0])
return text, image_output
def masking(text, k):
text = gbif_normalization(text)
text_split = text.split(', ')
best_predictions = []
best_positions = []
for _ in range(k):
max_score = 0
best_prediction = None
best_position = None
best_sentence = None
for i in range(len(text_split) + 1):
masked_text = ', '.join(text_split[:i] + ['[MASK]'] + text_split[i:])
j = 0
while True:
prediction = mask_model(masked_text)[j]
species = prediction['token_str']
if species in text_split or species in best_predictions:
j += 1
else:
break
score = prediction['score']
sentence = prediction['sequence']
if score > max_score:
max_score = score
best_prediction = species
best_position = i
best_sentence = sentence
best_predictions.append(best_prediction)
best_positions.append(best_position)
text_split.insert(best_position, best_prediction)
if k == 1:
text = f"The most likely missing species is {best_predictions[0]} (position {best_positions[0]})."
else:
text = f"The most likely missing species are {', '.join(best_predictions[:-1])} and {best_predictions[-1]} (positions {', '.join(map(str, best_positions[:-1]))} and {best_positions[-1]})."
text += f"\nThe new vegetation plot is {best_sentence}."
text += f"\n See image of the most likely species, {best_predictions[0]}, below)."
image = return_species_image(best_prediction[0])
return text, image
with gr.Blocks() as demo:
gr.Markdown("""<h1 style="text-align: center;">Pl@ntBERT</h1>""")
with gr.Tab("Vegetation plot classification"):
gr.Markdown("""<h3 style="text-align: center;">Classification of vegetation plots!</h3>""")
with gr.Row():
with gr.Column():
species_classification = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
k_classification = gr.Slider(1, 5, value=1, step=1, label="Top-k", info="Choose the number of top habitats to display.")
with gr.Column():
text_classification = gr.Textbox()
image_classification = gr.Image()
button_classification = gr.Button("Classify")
gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
gr.Examples([["sparganium erectum, calystegia sepium, persicaria amphibia", 1]], [species_classification, k_classification], [text_classification, image_classification], classification, True)
with gr.Tab("Missing species finding"):
gr.Markdown("""<h3 style="text-align: center;">Finding the missing species!</h3>""")
with gr.Row():
species_masking = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
k_masking = gr.Slider(1, 5, value=1, step=1, label="Top-k", info="Choose the number of top missing species to find.")
with gr.Column():
text_masking = gr.Textbox()
image_masking = gr.Image()
button_masking = gr.Button("Find")
gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
gr.Examples([["vaccinium myrtillus, dryopteris dilatata, molinia caerulea", 1]], [species_masking, k_masking], [text_masking, image_masking], masking, True)
button_classification.click(classification, inputs=[species_classification, k_classification], outputs=[text_classification, image_classification])
button_masking.click(masking, inputs=[species_masking, k_masking], outputs=[text_masking, image_masking])
demo.launch()
|