Spaces:
Sleeping
Sleeping
File size: 12,616 Bytes
37d6095 864d91e 2ae19d7 881aad3 4184e5e 864d91e fa97be4 37d6095 4184e5e 334ba26 dacc7c0 e623c13 334ba26 864d91e 494aa89 334ba26 864d91e 494aa89 0e313c1 864d91e c69efb6 494aa89 c69efb6 4184e5e 936af04 4184e5e 936af04 4525308 864d91e 4184e5e 83182e1 4184e5e 871428f 4184e5e e623c13 4184e5e 871428f 494aa89 936af04 4184e5e 936af04 4184e5e 494aa89 4184e5e 494aa89 4184e5e 494aa89 4184e5e 864d91e 37c8a73 b2f8731 37c8a73 b2f8731 37c8a73 b2f8731 37c8a73 b2f8731 37c8a73 b2f8731 2e0c04d 37c8a73 b2f8731 37c8a73 494aa89 b2f8731 494aa89 c3e46aa b2f8731 494aa89 c3e46aa 494aa89 b2f8731 c3e46aa 494aa89 871428f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import pandas as pd
import torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json for Well-Being Chatbot
with open("intents.json") as file:
data = json.load(file)
# Load preprocessed data for Well-Being Chatbot
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the model structure for Well-Being Chatbot
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
# Function to process user input into a bag-of-words format for Chatbot
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function for Well-Being Chatbot
def chatbot(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
# Convert the new message and response to the 'messages' format
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, history
# Sentiment Analysis using Hugging Face model
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class] # Assuming 3 classes
return f"Predicted Sentiment: {sentiment}"
# Emotion Detection using Hugging Face model
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
return f"Emotion Detected: {emotion}"
# Initialize Google Maps API client securely
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Function to search for health professionals
def search_health_professionals(query, location, radius=10000):
places_result = gmaps.places_nearby(location, radius=radius, type='doctor', keyword=query)
return places_result.get('results', [])
# Function to get directions and display on Gradio UI
def get_health_professionals_and_map(current_location, health_professional_query):
location = gmaps.geocode(current_location)
if location:
lat = location[0]["geometry"]["location"]["lat"]
lng = location[0]["geometry"]["location"]["lng"]
location = (lat, lng)
professionals = search_health_professionals(health_professional_query, location)
# Generate map
map_center = location
m = folium.Map(location=map_center, zoom_start=13)
# Add markers to the map
for place in professionals:
folium.Marker(
location=[place['geometry']['location']['lat'], place['geometry']['location']['lng']],
popup=place['name']
).add_to(m)
# Convert map to HTML for Gradio display
map_html = m._repr_html_()
# Route information
route_info = "\n".join([f"{place['name']} - {place['vicinity']}" for place in professionals])
return route_info, map_html
else:
return "Unable to find location.", ""
# Function to generate suggestions based on the detected emotion
def generate_suggestions(emotion):
suggestions = {
'joy': [
{"Title": "Relaxation Techniques", "Subject": "Relaxation", "Link": '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Mindful Breathing Meditation</a>'},
{"Title": "Dealing with Stress", "Subject": "Stress Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anxiety</a>'},
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch Video</a>'}
],
'anger': [
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
{"Title": "Stress Management Tips", "Subject": "Stress Management", "Link": '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Harvard Health: Stress Management</a>'},
{"Title": "Dealing with Anger", "Subject": "Anger Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anger</a>'},
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch Video</a>'}
],
'fear': [
{"Title": "Mindfulness Practices", "Subject": "Mindfulness", "Link": '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Mindful Breathing Meditation</a>'},
{"Title": "Coping with Anxiety", "Subject": "Anxiety Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anxiety</a>'},
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch Video</a>'}
],
'sadness': [
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
{"Title": "Dealing with Anxiety", "Subject": "Anxiety Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anxiety</a>'},
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch Video</a>'}
],
'surprise': [
{"Title": "Managing Stress", "Subject": "Stress Management", "Link": '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Harvard Health: Stress Management</a>'},
{"Title": "Coping Strategies", "Subject": "Coping", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Coping with Anxiety</a>'},
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch Video</a>'}
]
}
return suggestions.get(emotion, [])
# Gradio interface
def gradio_app(message, location, health_query, submit_button, history, state):
if submit_button:
# Chatbot interaction
history, _ = chatbot(message, history)
# Sentiment analysis
sentiment_response = analyze_sentiment(message)
# Emotion detection
emotion_response = detect_emotion(message)
# Health professional search and map display
route_info, map_html = get_health_professionals_and_map(location, health_query)
# Generate suggestions based on the detected emotion
suggestions = generate_suggestions(emotion_response.split(': ')[1])
# Create a DataFrame for displaying suggestions
suggestions_df = pd.DataFrame(suggestions)
return history, sentiment_response, emotion_response, route_info, map_html, gr.DataFrame(suggestions_df, headers=["Title", "Subject", "Link"]), state
else:
return history, "", "", "", "", gr.DataFrame([], headers=["Title", "Subject", "Link"]), state
# Gradio UI components
message_input = gr.Textbox(lines=1, label="Message", placeholder="Type your message here...")
location_input = gr.Textbox(value="Honolulu, HI", label="Current Location", placeholder="Enter your current location...")
health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, health professional, well-being professional", placeholder="Search for health professionals...")
submit_button = gr.Button("Submit")
# Updated chat history component with 'messages' type
chat_history = gr.Chatbot(label="Well-Being Chat History", type='messages')
# Outputs
sentiment_output = gr.Textbox(label="Sentiment Analysis Result")
emotion_output = gr.Textbox(label="Emotion Detection Result")
route_info_output = gr.Textbox(label="Health Professionals Information")
map_output = gr.HTML(label="Map with Health Professionals")
suggestions_output = gr.DataFrame(label="Well-Being Suggestions", headers=["Title", "Subject", "Link"])
# Custom CSS for styling
custom_css = """
<style>
body {
background-color: #f0f8ff;
color: #333;
font-family: Arial, sans-serif;
}
h1, h2, h3, h4, h5, h6 {
color: #0056b3;
}
.gradio-app {
max-width: 800px;
margin: 0 auto;
padding: 20px;
background-color: #fff;
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.gradio-input, .gradio-output {
margin-bottom: 15px;
}
.gradio-button {
background-color: #0056b3;
color: #fff;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
}
.gradio-button:hover {
background-color: #004080;
}
.gradio-dataframe {
border: 1px solid #ddd;
border-radius: 5px;
overflow: hidden;
}
.gradio-dataframe th, .gradio-dataframe td {
padding: 10px;
text-align: left;
}
.gradio-dataframe th {
background-color: #0056b3;
color: #fff;
}
.gradio-dataframe a {
color: #0056b3;
text-decoration: none;
}
.gradio-dataframe a:hover {
text-decoration: underline;
}
</style>
"""
# Create Gradio interface
iface = gr.Interface(
fn=gradio_app,
inputs=[message_input, location_input, health_query_input, submit_button, gr.State()],
outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output, gr.State()],
allow_flagging="never",
live=False,
title="Well-Being App: Support, Sentiment, Emotion Detection & Health Professional Search",
css=custom_css
)
# Launch the Gradio interface
iface.launch() |