Spaces:
Sleeping
Sleeping
File size: 6,871 Bytes
f0734be 864d91e 2ae19d7 881aad3 4184e5e f0734be fa97be4 f0734be 37d6095 f0734be 334ba26 dacc7c0 f0734be 334ba26 f0734be 494aa89 f0734be 334ba26 f0734be 494aa89 0e313c1 f0734be c69efb6 f0734be c69efb6 f0734be 936af04 4184e5e f0734be 936af04 4525308 f0734be 4184e5e f0734be 4184e5e f0734be 83182e1 f0734be 4184e5e f0734be e623c13 f0734be 936af04 f0734be 936af04 f0734be 2f693ca f0734be 864d91e 37c8a73 f0734be 37c8a73 f0734be 0d12be2 f0734be 2a2aa69 f0734be fabcaa4 f0734be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import pandas as pd
import torch
# Disable GPU usage for TensorFlow for compatibility
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
# Download necessary NLTK resources
nltk.download('punkt')
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load intents.json for Chatbot
with open("intents.json") as file:
intents_data = json.load(file)
# Load tokenized data for Chatbot
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build Chatbot Model
def build_chatbot_model():
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
return model
chatbot_model = build_chatbot_model()
# Bag of Words Function for Chatbot
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot Response Function
def chatbot_response(message, history):
"""Respond to user input and update chat history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
result_index = np.argmax(result)
tag = labels[result_index]
response = "I didn't understand that. π€ Try rephrasing your question."
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = f"π€ {random.choice(intent['responses'])}"
break
except Exception as e:
response = f"Error generating response: {str(e)} π₯"
history.append({"role": "user", "content": f"π¬ {message}"})
history.append({"role": "assistant", "content": response})
return history, response
# Emotion Detection with Transformers
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
"""Detect emotion using a pre-trained model and return label with an emoji."""
pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
try:
result = pipe(user_input)
emotion = result[0]["label"]
emotion_map = {
"joy": "π Joy",
"anger": "π Anger",
"sadness": "π’ Sadness",
"fear": "π¨ Fear",
"surprise": "π² Surprise",
"neutral": "π Neutral",
}
return emotion_map.get(emotion, "Unknown Emotion π€")
except Exception as e:
return f"Error detecting emotion: {str(e)} π₯"
# Sentiment Analysis
sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
"""Analyze sentiment of user input."""
inputs = sentiment_tokenizer(user_input, return_tensors="pt")
try:
with torch.no_grad():
outputs = sentiment_model(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
return f"Sentiment: {sentiment_map[sentiment_class]}"
except Exception as e:
return f"Error in sentiment analysis: {str(e)} π₯"
# Generate Suggestions Based on Emotion
def generate_suggestions(emotion):
suggestions = {
"π Joy": [
{"Title": "Meditation Techniques", "Link": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"},
{"Title": "Learn Something New", "Link": "https://www.edx.org/"},
],
"π’ Sadness": [
{"Title": "Emotional Wellness Toolkit", "Link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"},
{"Title": "Relaxation Videos", "Link": "https://youtu.be/-e-4Kx5px_I"},
],
"π Anger": [
{"Title": "Dealing with Anger", "Link": "https://www.helpguide.org/articles/anger/anger-management.htm"},
{"Title": "Stress Reducing Tips", "Link": "https://www.webmd.com/stress-management"},
],
}
return suggestions.get(emotion, [{"Title": "General Tips", "Link": "https://www.psychologytoday.com/"}])
# Gradio Interface Main Function
def well_being_app(user_input, location, query, history):
"""Main app combining chatbot, emotion detection, sentiment, suggestions, and map."""
# Chatbot Interaction
history, chatbot_reply = chatbot_response(user_input, history)
# Emotion Detection
emotion = detect_emotion(user_input)
# Sentiment Analysis
sentiment = analyze_sentiment(user_input)
# Suggestions Based on Emotion
emotion_label = emotion.split(": ")[-1]
suggestions = generate_suggestions(emotion_label)
suggestions_df = pd.DataFrame(suggestions)
# Return Outputs
return (
history,
sentiment,
emotion,
suggestions_df
)
# Gradio Interface UI
with gr.Blocks() as app:
with gr.Row():
gr.Markdown("# πΌ Well-Being Support Application")
with gr.Row():
user_input = gr.Textbox(lines=2, placeholder="Type your message here...", label="Your Message")
location = gr.Textbox(value="Honolulu, HI", label="Your Location")
query = gr.Textbox(value="Counselor", label="Health Professional (Doctor, Therapist, etc.)")
with gr.Row():
submit_button = gr.Button(value="Submit", label="Submit")
with gr.Row():
chatbot = gr.Chatbot(label="Chat History")
sentiment_output = gr.Textbox(label="Sentiment Analysis")
emotion_output = gr.Textbox(label="Emotion Detected")
with gr.Row():
suggestions_output = gr.DataFrame(label="Suggestions Based on Mood")
# Connect inputs and outputs
submit_button.click(
well_being_app,
inputs=[user_input, location, query, chatbot],
outputs=[chatbot, sentiment_output, emotion_output, suggestions_output],
)
# Launch the app
app.launch() |