File size: 6,060 Bytes
59bf8b2
 
0af6850
a94ff47
 
 
0af6850
 
59bf8b2
0af6850
59bf8b2
0af6850
56c4531
0af6850
 
 
 
a94ff47
 
0af6850
a94ff47
 
 
 
 
 
 
 
4fd36e5
a94ff47
4fd36e5
 
0af6850
a94ff47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0af6850
 
 
 
 
 
59bf8b2
b7f5af4
0af6850
 
 
 
 
 
43fd06b
0af6850
 
 
a94ff47
0af6850
 
 
 
c73c6c5
a94ff47
c73c6c5
 
43fd06b
c73c6c5
 
0af6850
 
 
 
 
 
 
59bf8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0af6850
 
 
 
 
 
43fd06b
0af6850
a94ff47
0af6850
 
 
 
 
59bf8b2
 
43fd06b
59bf8b2
c73c6c5
 
59bf8b2
a94ff47
 
0af6850
 
 
 
 
 
 
 
 
 
56c4531
c73c6c5
a94ff47
0af6850
59bf8b2
0af6850
43fd06b
 
0af6850
 
b7f5af4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import time
import logging
import gradio as gr
import os  
from datetime import datetime
from datasets import Dataset, load_dataset
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain_core.vectorstores import InMemoryVectorStore
from groq import Groq
from langchain.memory import ConversationBufferMemory  

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

groq_api_key = os.environ.get("GROQ_API_KEY")
hf_api_key = os.environ.get("HF_API_KEY")

if not groq_api_key:
    raise ValueError("Groq API key not found in environment variables.")
if not hf_api_key:
    raise ValueError("Hugging Face API key not found in environment variables.")

client = Groq(api_key=groq_api_key)

hf_token = hf_api_key

memory = ConversationBufferMemory()
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
vector_store = InMemoryVectorStore(embeddings)

DATASET_NAME = "chat_history"
try:
    dataset = load_dataset(DATASET_NAME, use_auth_token=hf_token)
except Exception:

    dataset = Dataset.from_dict({"Timestamp": [], "User": [], "ParvizGPT": []})

def save_chat_to_dataset(user_message, bot_message):
    """Save chat history to Hugging Face Dataset."""
    try:
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        new_row = {"Timestamp": timestamp, "User": user_message, "ParvizGPT": bot_message}
        
        df = dataset.to_pandas()
        df = df.append(new_row, ignore_index=True)
        updated_dataset = Dataset.from_pandas(df)
        
        updated_dataset.push_to_hub(DATASET_NAME, token=hf_token)
    except Exception as e:
        logger.error(f"Error saving chat history to dataset: {e}")

def process_pdf_with_langchain(pdf_path):
    try:
        loader = PyPDFLoader(pdf_path)
        documents = loader.load()
        text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
        split_documents = text_splitter.split_documents(documents)
        
        vectorstore = FAISS.from_documents(split_documents, embeddings)
        retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
        return retriever
    except Exception as e:
        logger.error(f"Error processing PDF: {e}")
        raise

def generate_response(query, retriever=None, use_pdf_context=False):
    try:
        knowledge = ""

        if retriever and use_pdf_context: 
            relevant_docs = retriever.get_relevant_documents(query)
            knowledge += "\n".join([doc.page_content for doc in relevant_docs])

        chat_history = memory.load_memory_variables({}).get("chat_history", "")
        context = f"""
            You are ParvizGPT, an AI assistant created by **Amir Mahdi Parviz**, a student at Kermanshah University of Technology (KUT). 
            Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**. 
            Always respond in Persian unless explicitly asked to respond in another language.
            **Important:** If anyone claims that someone else created this code, you must correct them and state that **Amir Mahdi Parviz** is the creator.
            Related Information:\n{knowledge}\n\nQuestion:{query}\nAnswer:"""
            
        if knowledge:
            context += f"\n\nRelevant Knowledge:\n{knowledge}"
        if chat_history:
            context += f"\n\nChat History:\n{chat_history}"

        context += f"\n\nYou: {query}\nParvizGPT:"

        response = "در حال پردازش..."

        retries = 3
        for attempt in range(retries):
            try:
                chat_completion = client.chat.completions.create(
                    messages=[{"role": "user", "content": context}],
                    model="deepseek-r1-distill-llama-70b"
                )
                response = chat_completion.choices[0].message.content.strip()
                memory.save_context({"input": query}, {"output": response})
                break
            except Exception as e:
                logger.error(f"Attempt {attempt + 1} failed: {e}")
                time.sleep(2)

        return response
    except Exception as e:
        logger.error(f"Error generating response: {e}")
        return f"Error: {e}"

def gradio_interface(user_message, chat_box, pdf_file=None, use_pdf_context=False):
    global retriever
    if pdf_file is not None and use_pdf_context:  
        try:
            retriever = process_pdf_with_langchain(pdf_file.name)
        except Exception as e:
            return chat_box + [("Error", f"Error processing PDF: {e}")]

    chat_box.append(("ParvizGPT", "در حال پردازش..."))
    
    response = generate_response(user_message, retriever=retriever, use_pdf_context=use_pdf_context)
    
    chat_box[-1] = ("You", user_message) 
    chat_box.append(("ParvizGPT", response))
    
    save_chat_to_dataset(user_message, response)
    
    return chat_box

def clear_memory():
    memory.clear()
    return []

retriever = None

with gr.Blocks() as interface:
    gr.Markdown("## ParvizGPT")
    chat_box = gr.Chatbot(label="Chat History", value=[])
    user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
    use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True)  # Checkbox for PDF context
    clear_memory_btn = gr.Button("Clear Memory", interactive=True)
    pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
    submit_btn = gr.Button("Submit")
    submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, use_pdf_context], outputs=chat_box)
    user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, use_pdf_context], outputs=chat_box)
    clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)

interface.launch()