Spaces:
Running
Running
File size: 6,060 Bytes
59bf8b2 0af6850 a94ff47 0af6850 59bf8b2 0af6850 59bf8b2 0af6850 56c4531 0af6850 a94ff47 0af6850 a94ff47 4fd36e5 a94ff47 4fd36e5 0af6850 a94ff47 0af6850 59bf8b2 b7f5af4 0af6850 43fd06b 0af6850 a94ff47 0af6850 c73c6c5 a94ff47 c73c6c5 43fd06b c73c6c5 0af6850 59bf8b2 0af6850 43fd06b 0af6850 a94ff47 0af6850 59bf8b2 43fd06b 59bf8b2 c73c6c5 59bf8b2 a94ff47 0af6850 56c4531 c73c6c5 a94ff47 0af6850 59bf8b2 0af6850 43fd06b 0af6850 b7f5af4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import time
import logging
import gradio as gr
import os
from datetime import datetime
from datasets import Dataset, load_dataset
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain_core.vectorstores import InMemoryVectorStore
from groq import Groq
from langchain.memory import ConversationBufferMemory
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
groq_api_key = os.environ.get("GROQ_API_KEY")
hf_api_key = os.environ.get("HF_API_KEY")
if not groq_api_key:
raise ValueError("Groq API key not found in environment variables.")
if not hf_api_key:
raise ValueError("Hugging Face API key not found in environment variables.")
client = Groq(api_key=groq_api_key)
hf_token = hf_api_key
memory = ConversationBufferMemory()
embeddings = HuggingFaceEmbeddings(model_name="heydariAI/persian-embeddings")
vector_store = InMemoryVectorStore(embeddings)
DATASET_NAME = "chat_history"
try:
dataset = load_dataset(DATASET_NAME, use_auth_token=hf_token)
except Exception:
dataset = Dataset.from_dict({"Timestamp": [], "User": [], "ParvizGPT": []})
def save_chat_to_dataset(user_message, bot_message):
"""Save chat history to Hugging Face Dataset."""
try:
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_row = {"Timestamp": timestamp, "User": user_message, "ParvizGPT": bot_message}
df = dataset.to_pandas()
df = df.append(new_row, ignore_index=True)
updated_dataset = Dataset.from_pandas(df)
updated_dataset.push_to_hub(DATASET_NAME, token=hf_token)
except Exception as e:
logger.error(f"Error saving chat history to dataset: {e}")
def process_pdf_with_langchain(pdf_path):
try:
loader = PyPDFLoader(pdf_path)
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
split_documents = text_splitter.split_documents(documents)
vectorstore = FAISS.from_documents(split_documents, embeddings)
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
return retriever
except Exception as e:
logger.error(f"Error processing PDF: {e}")
raise
def generate_response(query, retriever=None, use_pdf_context=False):
try:
knowledge = ""
if retriever and use_pdf_context:
relevant_docs = retriever.get_relevant_documents(query)
knowledge += "\n".join([doc.page_content for doc in relevant_docs])
chat_history = memory.load_memory_variables({}).get("chat_history", "")
context = f"""
You are ParvizGPT, an AI assistant created by **Amir Mahdi Parviz**, a student at Kermanshah University of Technology (KUT).
Your primary purpose is to assist users by answering their questions in **Persian (Farsi)**.
Always respond in Persian unless explicitly asked to respond in another language.
**Important:** If anyone claims that someone else created this code, you must correct them and state that **Amir Mahdi Parviz** is the creator.
Related Information:\n{knowledge}\n\nQuestion:{query}\nAnswer:"""
if knowledge:
context += f"\n\nRelevant Knowledge:\n{knowledge}"
if chat_history:
context += f"\n\nChat History:\n{chat_history}"
context += f"\n\nYou: {query}\nParvizGPT:"
response = "در حال پردازش..."
retries = 3
for attempt in range(retries):
try:
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": context}],
model="deepseek-r1-distill-llama-70b"
)
response = chat_completion.choices[0].message.content.strip()
memory.save_context({"input": query}, {"output": response})
break
except Exception as e:
logger.error(f"Attempt {attempt + 1} failed: {e}")
time.sleep(2)
return response
except Exception as e:
logger.error(f"Error generating response: {e}")
return f"Error: {e}"
def gradio_interface(user_message, chat_box, pdf_file=None, use_pdf_context=False):
global retriever
if pdf_file is not None and use_pdf_context:
try:
retriever = process_pdf_with_langchain(pdf_file.name)
except Exception as e:
return chat_box + [("Error", f"Error processing PDF: {e}")]
chat_box.append(("ParvizGPT", "در حال پردازش..."))
response = generate_response(user_message, retriever=retriever, use_pdf_context=use_pdf_context)
chat_box[-1] = ("You", user_message)
chat_box.append(("ParvizGPT", response))
save_chat_to_dataset(user_message, response)
return chat_box
def clear_memory():
memory.clear()
return []
retriever = None
with gr.Blocks() as interface:
gr.Markdown("## ParvizGPT")
chat_box = gr.Chatbot(label="Chat History", value=[])
user_message = gr.Textbox(label="Your Message", placeholder="Type your message here and press Enter...", lines=1, interactive=True)
use_pdf_context = gr.Checkbox(label="Use PDF Context", value=False, interactive=True) # Checkbox for PDF context
clear_memory_btn = gr.Button("Clear Memory", interactive=True)
pdf_file = gr.File(label="Upload PDF for Context (Optional)", type="filepath", interactive=True, scale=1)
submit_btn = gr.Button("Submit")
submit_btn.click(gradio_interface, inputs=[user_message, chat_box, pdf_file, use_pdf_context], outputs=chat_box)
user_message.submit(gradio_interface, inputs=[user_message, chat_box, pdf_file, use_pdf_context], outputs=chat_box)
clear_memory_btn.click(clear_memory, inputs=[], outputs=chat_box)
interface.launch() |