File size: 43,453 Bytes
35f9333 6918f0f 35f9333 6918f0f 35f9333 6918f0f 35f9333 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f 35f9333 a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f 35f9333 6918f0f 35f9333 6918f0f 35f9333 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f a4ca225 6918f0f 35f9333 6918f0f 35f9333 6918f0f 35f9333 6918f0f 35f9333 6918f0f 35f9333 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f 35f9333 6918f0f 35f9333 6918f0f 35f9333 6918f0f 35f9333 6918f0f 35f9333 6918f0f a4ca225 6918f0f a4ca225 6918f0f 6d85bb5 6918f0f 35f9333 6918f0f a4ca225 6918f0f a4ca225 6918f0f 35f9333 6918f0f a4ca225 6918f0f 35f9333 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f 6d85bb5 a4ca225 6918f0f 35f9333 6918f0f 35f9333 6918f0f a4ca225 6918f0f a4ca225 6918f0f 35f9333 6918f0f 35f9333 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f a4ca225 6918f0f 6d85bb5 6918f0f a4ca225 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f a4ca225 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f 6d85bb5 6918f0f a4ca225 6918f0f 6d85bb5 a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f 6d85bb5 6918f0f a4ca225 35f9333 6918f0f a4ca225 6918f0f 35f9333 6918f0f a4ca225 6918f0f 35f9333 6918f0f 35f9333 a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f 35f9333 6918f0f 35f9333 6918f0f 35f9333 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 35f9333 6918f0f 35f9333 6918f0f a4ca225 6918f0f 35f9333 6918f0f 35f9333 6918f0f 35f9333 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6918f0f a4ca225 6d85bb5 a4ca225 6918f0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 |
"""
π AI Dataset Studio with Perplexity AI Integration
A comprehensive platform for creating high-quality training datasets using AI-powered source discovery
"""
import gradio as gr
import pandas as pd
import requests
import json
import logging
import os
import sys
import time
import re
from datetime import datetime
from typing import List, Dict, Optional, Tuple, Any
from urllib.parse import urlparse, urljoin
from dataclasses import dataclass, asdict
import traceback
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Try to import required packages with fallbacks
try:
from bs4 import BeautifulSoup
logger.info("β
BeautifulSoup imported successfully")
except ImportError as e:
logger.error("β Failed to import BeautifulSoup: %s", e)
sys.exit(1)
try:
import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize, sent_tokenize
logger.info("β
NLTK imported successfully")
HAS_NLTK = True
except ImportError:
logger.warning("β οΈ NLTK not available - using basic text processing")
HAS_NLTK = False
try:
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import torch
logger.info("β
Transformers imported successfully")
HAS_TRANSFORMERS = True
except ImportError:
logger.warning("β οΈ Transformers not available - using extractive summaries")
HAS_TRANSFORMERS = False
# Import Perplexity client
try:
from perplexity_client import PerplexityClient, SearchType, SourceResult, SearchResults
logger.info("β
Perplexity client imported successfully")
HAS_PERPLEXITY = True
except ImportError:
logger.warning("β οΈ Perplexity client not available - manual source entry only")
HAS_PERPLEXITY = False
# Dataset templates
DATASET_TEMPLATES = {
"sentiment_analysis": {
"name": "π Sentiment Analysis",
"description": "Classify text as positive, negative, or neutral",
"fields": ["text", "sentiment"],
"example": {"text": "This product is amazing!", "sentiment": "positive"},
"search_queries": ["product reviews", "customer feedback", "social media posts", "movie reviews"]
},
"text_classification": {
"name": "π Text Classification",
"description": "Categorize text into predefined classes",
"fields": ["text", "category"],
"example": {"text": "Breaking: Stock market reaches new high", "category": "finance"},
"search_queries": ["news articles", "blog posts", "academic papers", "forum discussions"]
},
"named_entity_recognition": {
"name": "π·οΈ Named Entity Recognition",
"description": "Identify people, places, organizations in text",
"fields": ["text", "entities"],
"example": {"text": "Apple Inc. was founded by Steve Jobs in California",
"entities": [{"text": "Apple Inc.", "label": "ORG"}, {"text": "Steve Jobs", "label": "PERSON"}]},
"search_queries": ["news articles", "biographies", "company reports", "wikipedia articles"]
},
"question_answering": {
"name": "β Question Answering",
"description": "Extract answers from context passages",
"fields": ["context", "question", "answer"],
"example": {"context": "The capital of France is Paris", "question": "What is the capital of France?", "answer": "Paris"},
"search_queries": ["FAQ pages", "educational content", "interview transcripts", "knowledge bases"]
},
"text_summarization": {
"name": "π Text Summarization",
"description": "Generate concise summaries of longer texts",
"fields": ["text", "summary"],
"example": {"text": "Long article content...", "summary": "Brief summary of key points"},
"search_queries": ["news articles", "research papers", "blog posts", "reports"]
},
"translation": {
"name": "π Translation",
"description": "Translate text between languages",
"fields": ["source_text", "target_text", "source_lang", "target_lang"],
"example": {"source_text": "Hello world", "target_text": "Hola mundo", "source_lang": "en", "target_lang": "es"},
"search_queries": ["multilingual websites", "international news", "translation datasets", "parallel corpora"]
}
}
class DatasetStudio:
"""
π― Main Dataset Studio Class
Handles all core functionality for dataset creation
"""
def __init__(self):
"""Initialize the Dataset Studio"""
logger.info("π Initializing AI Dataset Studio...")
# Initialize components
self.projects = {}
self.current_project = None
self.scraped_data = []
self.processed_data = []
# Initialize AI models if available
self.sentiment_analyzer = None
self.summarizer = None
self.ner_model = None
# Initialize Perplexity client
self.perplexity_client = None
if HAS_PERPLEXITY:
try:
api_key = os.getenv('PERPLEXITY_API_KEY')
if api_key:
self.perplexity_client = PerplexityClient(api_key)
logger.info("β
Perplexity AI client initialized")
else:
logger.warning("β οΈ PERPLEXITY_API_KEY not found - manual source entry only")
except Exception as e:
logger.error(f"β Failed to initialize Perplexity client: {e}")
self._load_models()
logger.info("β
Dataset Studio initialized successfully")
def _load_models(self):
"""Load AI models for processing"""
if not HAS_TRANSFORMERS:
logger.info("β οΈ Skipping model loading - transformers not available")
return
try:
# Load sentiment analysis model
logger.info("π¦ Loading sentiment analysis model...")
self.sentiment_analyzer = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment-latest",
return_all_scores=True
)
logger.info("β
Sentiment analyzer loaded")
except Exception as e:
logger.warning(f"β οΈ Could not load sentiment analyzer: {e}")
try:
# Load summarization model
logger.info("π¦ Loading summarization model...")
self.summarizer = pipeline(
"summarization",
model="facebook/bart-large-cnn",
max_length=150,
min_length=30,
do_sample=False
)
logger.info("β
Summarizer loaded")
except Exception as e:
logger.warning(f"β οΈ Could not load summarizer: {e}")
try:
# Load NER model
logger.info("π¦ Loading NER model...")
self.ner_model = pipeline(
"ner",
model="dbmdz/bert-large-cased-finetuned-conll03-english",
aggregation_strategy="simple"
)
logger.info("β
NER model loaded")
except Exception as e:
logger.warning(f"β οΈ Could not load NER model: {e}")
def discover_sources_with_ai(
self,
project_description: str,
max_sources: int = 20,
search_type: str = "general",
include_academic: bool = True,
include_news: bool = True
) -> Tuple[str, str]:
"""
π§ Discover sources using Perplexity AI
Args:
project_description: Description of the dataset project
max_sources: Maximum number of sources to find
search_type: Type of search (general, academic, news, etc.)
include_academic: Include academic sources
include_news: Include news sources
Returns:
Tuple of (status_message, sources_json)
"""
if not self.perplexity_client:
return "β Perplexity AI not available. Please set PERPLEXITY_API_KEY environment variable.", "[]"
try:
logger.info(f"π Discovering sources for: {project_description}")
# Map string to enum
search_type_enum = getattr(SearchType, search_type.upper(), SearchType.GENERAL)
# Discover sources
results = self.perplexity_client.discover_sources(
project_description=project_description,
search_type=search_type_enum,
max_sources=max_sources,
include_academic=include_academic,
include_news=include_news
)
if not results.sources:
return "β οΈ No sources found. Try adjusting your search terms.", "[]"
# Format results for display
sources_data = []
for source in results.sources:
sources_data.append({
"URL": source.url,
"Title": source.title,
"Description": source.description,
"Type": source.source_type,
"Domain": source.domain,
"Quality Score": f"{source.relevance_score:.1f}/10"
})
status = f"β
Found {len(results.sources)} sources in {results.search_time:.1f}s"
if results.suggestions:
status += f"\nπ‘ Suggestions: {', '.join(results.suggestions[:3])}"
return status, json.dumps(sources_data, indent=2)
except Exception as e:
logger.error(f"β Error discovering sources: {e}")
return f"β Error: {str(e)}", "[]"
def extract_urls_from_sources(self, sources_json: str) -> List[str]:
"""Extract URLs from discovered sources JSON"""
try:
sources = json.loads(sources_json)
if isinstance(sources, list):
return [source.get("URL", "") for source in sources if source.get("URL")]
return []
except:
return []
def create_project(self, name: str, template: str, description: str) -> str:
"""Create a new dataset project"""
if not name.strip():
return "β Please provide a project name"
project_id = f"project_{int(time.time())}"
self.projects[project_id] = {
"name": name,
"template": template,
"description": description,
"created_at": datetime.now().isoformat(),
"urls": [],
"data": [],
"processed_data": []
}
self.current_project = project_id
template_info = DATASET_TEMPLATES.get(template, {})
status = f"β
Project '{name}' created successfully!\n"
status += f"π Template: {template_info.get('name', template)}\n"
status += f"π Description: {description}\n"
status += f"π Project ID: {project_id}"
return status
def scrape_urls(self, urls_text: str, progress=gr.Progress()) -> Tuple[str, str]:
"""Scrape content from provided URLs"""
if not self.current_project:
return "β Please create a project first", ""
# Parse URLs
urls = []
for line in urls_text.strip().split('\n'):
url = line.strip()
if url and self._is_valid_url(url):
urls.append(url)
if not urls:
return "β No valid URLs found", ""
scraped_data = []
failed_urls = []
progress(0, desc="Starting scraping...")
for i, url in enumerate(urls):
try:
progress((i + 1) / len(urls), desc=f"Scraping {i + 1}/{len(urls)}")
logger.info(f"π Scraping: {url}")
# Make request
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
}
response = requests.get(url, headers=headers, timeout=10)
response.raise_for_status()
# Parse content
soup = BeautifulSoup(response.content, 'html.parser')
# Extract text content
title = self._extract_title(soup)
content = self._extract_content(soup)
if content:
scraped_data.append({
'url': url,
'title': title,
'content': content,
'length': len(content),
'scraped_at': datetime.now().isoformat()
})
logger.info(f"β
Scraped {len(content)} characters from {url}")
else:
failed_urls.append(url)
logger.warning(f"β οΈ No content extracted from {url}")
# Rate limiting
time.sleep(0.5)
except Exception as e:
failed_urls.append(url)
logger.error(f"β Failed to scrape {url}: {e}")
# Store results
self.projects[self.current_project]['urls'] = urls
self.projects[self.current_project]['data'] = scraped_data
self.scraped_data = scraped_data
# Create status message
status = f"β
Scraping completed!\n"
status += f"π Successfully scraped: {len(scraped_data)} URLs\n"
status += f"β Failed: {len(failed_urls)} URLs\n"
status += f"π Total content: {sum(item['length'] for item in scraped_data):,} characters"
if failed_urls:
status += f"\n\nFailed URLs:\n" + "\n".join(f"β’ {url}" for url in failed_urls[:5])
if len(failed_urls) > 5:
status += f"\n... and {len(failed_urls) - 5} more"
# Create preview data
preview_data = []
for item in scraped_data[:10]: # Show first 10
preview_data.append({
"Title": item['title'][:50] + "..." if len(item['title']) > 50 else item['title'],
"URL": item['url'],
"Length": f"{item['length']:,} chars",
"Preview": item['content'][:100] + "..." if len(item['content']) > 100 else item['content']
})
return status, json.dumps(preview_data, indent=2)
def process_data(self, template: str, progress=gr.Progress()) -> Tuple[str, str]:
"""Process scraped data according to template"""
if not self.scraped_data:
return "β No scraped data available. Please scrape URLs first.", ""
template_config = DATASET_TEMPLATES.get(template, {})
if not template_config:
return f"β Unknown template: {template}", ""
processed_data = []
progress(0, desc="Starting data processing...")
for i, item in enumerate(self.scraped_data):
try:
progress((i + 1) / len(self.scraped_data), desc=f"Processing {i + 1}/{len(self.scraped_data)}")
content = item['content']
# Process based on template
if template == "sentiment_analysis":
processed_item = self._process_sentiment_analysis(item)
elif template == "text_classification":
processed_item = self._process_text_classification(item)
elif template == "named_entity_recognition":
processed_item = self._process_ner(item)
elif template == "question_answering":
processed_item = self._process_qa(item)
elif template == "text_summarization":
processed_item = self._process_summarization(item)
elif template == "translation":
processed_item = self._process_translation(item)
else:
processed_item = self._process_generic(item)
if processed_item:
processed_data.extend(processed_item)
except Exception as e:
logger.error(f"β Error processing item {i}: {e}")
continue
# Store processed data
self.processed_data = processed_data
if self.current_project:
self.projects[self.current_project]['processed_data'] = processed_data
# Create status
status = f"β
Processing completed!\n"
status += f"π Generated {len(processed_data)} training examples\n"
status += f"π Template: {template_config['name']}\n"
status += f"π·οΈ Fields: {', '.join(template_config['fields'])}"
# Create preview
preview_data = processed_data[:10] if processed_data else []
return status, json.dumps(preview_data, indent=2)
def _process_sentiment_analysis(self, item: Dict) -> List[Dict]:
"""Process item for sentiment analysis"""
content = item['content']
# Split into sentences for more training examples
if HAS_NLTK:
try:
sentences = sent_tokenize(content)
except:
sentences = content.split('. ')
else:
sentences = content.split('. ')
results = []
for sentence in sentences:
sentence = sentence.strip()
if len(sentence) < 10 or len(sentence) > 500: # Filter by length
continue
# Use AI model if available
if self.sentiment_analyzer:
try:
prediction = self.sentiment_analyzer(sentence)[0]
# Map labels
label_map = {'POSITIVE': 'positive', 'NEGATIVE': 'negative', 'NEUTRAL': 'neutral'}
sentiment = label_map.get(prediction[0]['label'], 'neutral')
confidence = prediction[0]['score']
# Only include high-confidence predictions
if confidence > 0.7:
results.append({
'text': sentence,
'sentiment': sentiment,
'confidence': confidence,
'source_url': item['url']
})
except Exception as e:
logger.debug(f"Sentiment analysis failed: {e}")
continue
else:
# Fallback: keyword-based sentiment
sentiment = self._keyword_sentiment(sentence)
results.append({
'text': sentence,
'sentiment': sentiment,
'source_url': item['url']
})
return results[:20] # Limit per document
def _process_text_classification(self, item: Dict) -> List[Dict]:
"""Process item for text classification"""
content = item['content']
# Extract domain-based category
url = item['url']
category = self._extract_category_from_url(url)
# Split into paragraphs
paragraphs = [p.strip() for p in content.split('\n\n') if len(p.strip()) > 50]
results = []
for paragraph in paragraphs[:10]: # Limit per document
results.append({
'text': paragraph,
'category': category,
'source_url': url
})
return results
def _process_ner(self, item: Dict) -> List[Dict]:
"""Process item for Named Entity Recognition"""
content = item['content']
if HAS_NLTK:
try:
sentences = sent_tokenize(content)
except:
sentences = content.split('. ')
else:
sentences = content.split('. ')
results = []
for sentence in sentences[:20]: # Limit per document
sentence = sentence.strip()
if len(sentence) < 20:
continue
entities = []
if self.ner_model:
try:
ner_results = self.ner_model(sentence)
for entity in ner_results:
entities.append({
'text': entity['word'],
'label': entity['entity_group'],
'confidence': entity['score']
})
except Exception as e:
logger.debug(f"NER failed: {e}")
# Fallback: simple pattern matching
if not entities:
entities = self._simple_ner(sentence)
if entities:
results.append({
'text': sentence,
'entities': entities,
'source_url': item['url']
})
return results
def _process_qa(self, item: Dict) -> List[Dict]:
"""Process item for Question Answering"""
content = item['content']
# Generate simple Q&A pairs based on content
results = []
# Look for FAQ-style patterns
qa_patterns = [
(r'Q:\s*(.+?)\s*A:\s*(.+?)(?=Q:|$)', 'qa'),
(r'Question:\s*(.+?)\s*Answer:\s*(.+?)(?=Question:|$)', 'qa'),
(r'(.+\?)\s*(.+?)(?=.+\?|$)', 'simple')
]
for pattern, style in qa_patterns:
matches = re.findall(pattern, content, re.DOTALL | re.IGNORECASE)
for match in matches[:10]: # Limit per document
if len(match) == 2:
question = match[0].strip()
answer = match[1].strip()
if len(question) > 10 and len(answer) > 10:
results.append({
'context': content[:500], # First 500 chars as context
'question': question,
'answer': answer,
'source_url': item['url']
})
return results
def _process_summarization(self, item: Dict) -> List[Dict]:
"""Process item for summarization"""
content = item['content']
# Split into chunks for summarization
chunk_size = 1000
chunks = [content[i:i + chunk_size] for i in range(0, len(content), chunk_size)]
results = []
for chunk in chunks[:5]: # Limit per document
if len(chunk) < 100:
continue
summary = ""
if self.summarizer and len(chunk) > 100:
try:
summary_result = self.summarizer(chunk, max_length=100, min_length=30)
summary = summary_result[0]['summary_text']
except Exception as e:
logger.debug(f"Summarization failed: {e}")
# Fallback: extractive summary
if not summary:
summary = self._extractive_summary(chunk)
if summary:
results.append({
'text': chunk,
'summary': summary,
'source_url': item['url']
})
return results
def _process_translation(self, item: Dict) -> List[Dict]:
"""Process item for translation (placeholder)"""
# This would require actual translation models
# For now, return empty to avoid errors
return []
def _process_generic(self, item: Dict) -> List[Dict]:
"""Generic processing for unknown templates"""
content = item['content']
# Split into paragraphs
paragraphs = [p.strip() for p in content.split('\n\n') if len(p.strip()) > 50]
results = []
for paragraph in paragraphs[:10]:
results.append({
'text': paragraph,
'source_url': item['url']
})
return results
def export_dataset(self, format_type: str) -> Tuple[str, str]:
"""Export processed dataset"""
if not self.processed_data:
return "β No processed data available", ""
try:
if format_type == "JSON":
data = json.dumps(self.processed_data, indent=2)
filename = f"dataset_{int(time.time())}.json"
elif format_type == "CSV":
df = pd.DataFrame(self.processed_data)
data = df.to_csv(index=False)
filename = f"dataset_{int(time.time())}.csv"
elif format_type == "HuggingFace Dataset":
# Format for HuggingFace datasets
hf_data = {
"data": self.processed_data,
"info": {
"description": "AI Dataset Studio generated dataset",
"created_at": datetime.now().isoformat(),
"size": len(self.processed_data)
}
}
data = json.dumps(hf_data, indent=2)
filename = f"hf_dataset_{int(time.time())}.json"
elif format_type == "JSONL":
lines = [json.dumps(item) for item in self.processed_data]
data = '\n'.join(lines)
filename = f"dataset_{int(time.time())}.jsonl"
else:
return "β Unsupported format", ""
# Save to temporary file for download
temp_path = f"/tmp/{filename}"
with open(temp_path, 'w', encoding='utf-8') as f:
f.write(data)
status = f"β
Dataset exported successfully!\n"
status += f"π Records: {len(self.processed_data)}\n"
status += f"π Format: {format_type}\n"
status += f"π Size: {len(data):,} characters"
return status, temp_path
except Exception as e:
logger.error(f"Export failed: {e}")
return f"β Export failed: {str(e)}", ""
# Helper methods
def _is_valid_url(self, url: str) -> bool:
"""Validate URL format"""
try:
result = urlparse(url)
return all([result.scheme, result.netloc])
except:
return False
def _extract_title(self, soup: BeautifulSoup) -> str:
"""Extract title from HTML"""
title_tag = soup.find('title')
if title_tag:
return title_tag.get_text().strip()
h1_tag = soup.find('h1')
if h1_tag:
return h1_tag.get_text().strip()
return "Untitled"
def _extract_content(self, soup: BeautifulSoup) -> str:
"""Extract main content from HTML"""
# Remove script and style elements
for script in soup(["script", "style", "nav", "footer", "header"]):
script.decompose()
# Try to find main content
main_content = soup.find('main') or soup.find('article') or soup.find('div', class_=re.compile(r'content|main|article'))
if main_content:
text = main_content.get_text()
else:
text = soup.get_text()
# Clean text
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
text = ' '.join(chunk for chunk in chunks if chunk)
return text
def _keyword_sentiment(self, text: str) -> str:
"""Simple keyword-based sentiment analysis"""
positive_words = ['good', 'great', 'excellent', 'amazing', 'wonderful', 'fantastic', 'love', 'like']
negative_words = ['bad', 'terrible', 'awful', 'hate', 'dislike', 'horrible', 'worst']
text_lower = text.lower()
pos_count = sum(1 for word in positive_words if word in text_lower)
neg_count = sum(1 for word in negative_words if word in text_lower)
if pos_count > neg_count:
return 'positive'
elif neg_count > pos_count:
return 'negative'
else:
return 'neutral'
def _extract_category_from_url(self, url: str) -> str:
"""Extract category based on URL domain/path"""
domain = urlparse(url).netloc.lower()
if any(news in domain for news in ['cnn', 'bbc', 'reuters', 'news']):
return 'news'
elif any(tech in domain for tech in ['techcrunch', 'wired', 'tech']):
return 'technology'
elif any(biz in domain for biz in ['bloomberg', 'forbes', 'business']):
return 'business'
elif any(sport in domain for sport in ['espn', 'sport']):
return 'sports'
else:
return 'general'
def _simple_ner(self, text: str) -> List[Dict]:
"""Simple pattern-based NER"""
entities = []
# Capitalized words (potential names/places)
cap_words = re.findall(r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b', text)
for word in cap_words:
if len(word) > 2:
entities.append({
'text': word,
'label': 'MISC',
'confidence': 0.5
})
return entities[:5] # Limit results
def _extractive_summary(self, text: str) -> str:
"""Simple extractive summarization"""
sentences = text.split('. ')
if len(sentences) <= 2:
return text
# Take first and last sentences
summary = f"{sentences[0]}. {sentences[-1]}"
return summary
def create_modern_interface():
"""Create the modern Gradio interface"""
logger.info("π¨ Creating modern interface...")
# Initialize the studio
studio = DatasetStudio()
# Custom CSS for modern look
custom_css = """
.gradio-container {
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.main-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 2rem;
border-radius: 10px;
margin-bottom: 2rem;
text-align: center;
}
.step-header {
background: linear-gradient(90deg, #4facfe 0%, #00f2fe 100%);
color: white;
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
font-weight: bold;
}
.template-card {
border: 2px solid #e1e5e9;
border-radius: 10px;
padding: 1rem;
margin: 0.5rem;
transition: all 0.3s ease;
}
.template-card:hover {
border-color: #4facfe;
box-shadow: 0 4px 12px rgba(79, 172, 254, 0.3);
}
.status-success {
background-color: #d4edda;
border-color: #c3e6cb;
color: #155724;
padding: 1rem;
border-radius: 5px;
border-left: 4px solid #28a745;
}
.status-error {
background-color: #f8d7da;
border-color: #f5c6cb;
color: #721c24;
padding: 1rem;
border-radius: 5px;
border-left: 4px solid #dc3545;
}
"""
with gr.Blocks(css=custom_css, title="π AI Dataset Studio", theme=gr.themes.Soft()) as interface:
# Main header
gr.HTML("""
<div class="main-header">
<h1>π AI Dataset Studio</h1>
<p>Create high-quality training datasets with AI-powered source discovery</p>
<p><strong>π§ Powered by Perplexity AI β’ π€ Advanced NLP β’ π Professional Export</strong></p>
</div>
""")
with gr.Tabs() as tabs:
# Tab 1: Project Setup
with gr.TabItem("1οΈβ£ Project Setup", id=0):
gr.HTML('<div class="step-header">π Step 1: Create Your Dataset Project</div>')
with gr.Row():
with gr.Column(scale=2):
project_name = gr.Textbox(
label="π·οΈ Project Name",
placeholder="e.g., Customer Review Sentiment Analysis",
info="Give your dataset project a descriptive name"
)
project_description = gr.Textbox(
label="π Project Description",
lines=3,
placeholder="Describe what kind of dataset you want to create...",
info="This will be used by AI to discover relevant sources"
)
with gr.Column(scale=1):
# Template selection
template_choices = list(DATASET_TEMPLATES.keys())
template_labels = [DATASET_TEMPLATES[t]["name"] for t in template_choices]
template_selector = gr.Dropdown(
choices=list(zip(template_labels, template_choices)),
label="π Dataset Template",
value=(template_labels[0], template_choices[0]),
info="Choose the type of ML task"
)
# Template info
template_info = gr.Markdown("Select a template to see details")
create_project_btn = gr.Button("π― Create Project", variant="primary", size="lg")
project_status = gr.Textbox(label="π Project Status", interactive=False)
# Update template info when selection changes
def update_template_info(template_choice):
if template_choice and len(template_choice) > 1:
template_key = template_choice[1]
template = DATASET_TEMPLATES.get(template_key, {})
info = f"**{template.get('name', '')}**\n\n"
info += f"π {template.get('description', '')}\n\n"
info += f"π·οΈ **Fields:** {', '.join(template.get('fields', []))}\n\n"
info += f"π‘ **Example:** `{template.get('example', {})}`"
return info
return "Select a template to see details"
template_selector.change(
fn=update_template_info,
inputs=[template_selector],
outputs=[template_info]
)
# Tab 2: AI Source Discovery
with gr.TabItem("2οΈβ£ AI Source Discovery", id=1):
gr.HTML('<div class="step-header">π§ Step 2: Discover Sources with Perplexity AI</div>')
if HAS_PERPLEXITY:
gr.Markdown("""
β¨ **AI-Powered Source Discovery** - Let Perplexity AI find the best sources for your dataset!
Just describe your project and AI will discover relevant, high-quality sources automatically.
""")
with gr.Row():
with gr.Column():
ai_search_description = gr.Textbox(
label="π― Project Description for AI Search",
lines=3,
placeholder="e.g., I need product reviews for sentiment analysis training data...",
info="Describe what sources you need - be specific!"
)
with gr.Row():
search_type = gr.Dropdown(
choices=["general", "academic", "news", "technical"],
value="general",
label="π Search Type"
)
max_sources = gr.Slider(
minimum=5,
maximum=50,
value=20,
step=5,
label="π Max Sources"
)
with gr.Row():
include_academic = gr.Checkbox(label="π Include Academic Sources", value=True)
include_news = gr.Checkbox(label="π° Include News Sources", value=True)
discover_btn = gr.Button("π§ Discover Sources with AI", variant="primary", size="lg")
ai_search_status = gr.Textbox(label="π Discovery Status", interactive=False)
discovered_sources = gr.Code(label="π Discovered Sources", language="json", interactive=False)
# Use discovered sources button
use_ai_sources_btn = gr.Button("β
Use These Sources", variant="secondary")
else:
gr.Markdown("""
β οΈ **Perplexity AI Not Available**
To enable AI-powered source discovery, set your `PERPLEXITY_API_KEY` environment variable.
For now, you can manually enter URLs below.
""")
discovered_sources = gr.Code(value="[]", visible=False)
gr.HTML('<div class="step-header">π Manual URL Entry</div>')
urls_input = gr.Textbox(
label="π URLs to Scrape",
lines=10,
placeholder="https://example.com/article1\nhttps://example.com/article2\n...",
info="Enter one URL per line"
)
scrape_btn = gr.Button("π·οΈ Start Scraping", variant="primary", size="lg")
scrape_status = gr.Textbox(label="π Scraping Status", interactive=False)
scraped_preview = gr.Code(label="π Scraped Data Preview", language="json", interactive=False)
# Tab 3: Data Processing
with gr.TabItem("3οΈβ£ Data Processing", id=2):
gr.HTML('<div class="step-header">βοΈ Step 3: Process Data with AI</div>')
processing_template = gr.Dropdown(
choices=list(zip(template_labels, template_choices)),
label="π Processing Template",
value=(template_labels[0], template_choices[0]),
info="How should the data be processed?"
)
process_btn = gr.Button("βοΈ Process Data", variant="primary", size="lg")
process_status = gr.Textbox(label="π Processing Status", interactive=False)
processed_preview = gr.Code(label="π― Processed Data Preview", language="json", interactive=False)
# Tab 4: Export Dataset
with gr.TabItem("4οΈβ£ Export Dataset", id=3):
gr.HTML('<div class="step-header">π¦ Step 4: Export Your Dataset</div>')
export_format = gr.Dropdown(
choices=["JSON", "CSV", "HuggingFace Dataset", "JSONL"],
value="JSON",
label="π Export Format",
info="Choose format for your dataset"
)
export_btn = gr.Button("π¦ Export Dataset", variant="primary", size="lg")
export_status = gr.Textbox(label="π Export Status", interactive=False)
download_file = gr.File(label="πΎ Download Dataset", interactive=False)
# Event handlers
create_project_btn.click(
fn=lambda name, desc, template: studio.create_project(name, template[1] if template else "", desc),
inputs=[project_name, project_description, template_selector],
outputs=[project_status]
)
if HAS_PERPLEXITY:
discover_btn.click(
fn=studio.discover_sources_with_ai,
inputs=[ai_search_description, max_sources, search_type, include_academic, include_news],
outputs=[ai_search_status, discovered_sources]
)
use_ai_sources_btn.click(
fn=lambda sources_json: '\n'.join(studio.extract_urls_from_sources(sources_json)),
inputs=[discovered_sources],
outputs=[urls_input]
)
scrape_btn.click(
fn=studio.scrape_urls,
inputs=[urls_input],
outputs=[scrape_status, scraped_preview]
)
process_btn.click(
fn=lambda template: studio.process_data(template[1] if template else ""),
inputs=[processing_template],
outputs=[process_status, processed_preview]
)
export_btn.click(
fn=studio.export_dataset,
inputs=[export_format],
outputs=[export_status, download_file]
)
logger.info("β
Interface created successfully")
return interface
# Application startup
try:
logger.info("π Starting AI Dataset Studio...")
logger.info("π Features: β
AI Models | β
Advanced NLP | β
HuggingFace Integration")
interface = create_modern_interface()
logger.info("β
Application startup successful")
if __name__ == "__main__":
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)
except Exception as e:
logger.error(f"β Failed to launch application: {e}")
logger.error(f"Traceback: {traceback.format_exc()}")
sys.exit(1) |