Spaces:
Running
Running
File size: 71,924 Bytes
cfca8a4 ec0919d a3a2513 5908dc9 5a01e6f 69fc6d0 bdd2ad4 0a0cfdc bdd2ad4 03e8b8d 0683428 501ebd3 6baa534 5a01e6f 1443fba 744d6e2 b3fd9db 1efb6f4 5908dc9 97f43e5 e1ac1c9 5908dc9 7d4300a 3972e78 7d4300a 84fdbc6 7d4300a 84fdbc6 7d4300a 84fdbc6 7d4300a 84fdbc6 0d60bb3 84fdbc6 5908dc9 cfca8a4 7d4300a 2ff5ae9 66b15fc 32a2de6 97f43e5 66b15fc 97f43e5 181a454 eb96ede 181a454 eb96ede 7d4300a eb96ede 181a454 61138f4 7d4300a 181a454 97f43e5 66b15fc 181a454 62d539c 7d4300a 181a454 97f43e5 181a454 69fc6d0 181a454 69fc6d0 181a454 7d4300a 0dfd8e3 b5b74c3 0dfd8e3 b5b74c3 0dfd8e3 7d4300a 2ff5ae9 af14165 66b15fc 2ff5ae9 af14165 de2d4ba af14165 a2862ab 2ff5ae9 af14165 66b15fc 2ff5ae9 af14165 7d4300a f544d25 32a2de6 2fbf19c 5a01e6f 2fbf19c 32a2de6 83d8e67 32a2de6 83d8e67 32a2de6 19ef535 9490776 32a2de6 19ef535 9490776 32a2de6 b3fd9db 32a2de6 b3fd9db 32a2de6 6e2fc47 32a2de6 6e2fc47 32a2de6 49212e1 32a2de6 49212e1 32a2de6 6e2fc47 32a2de6 c3134ec 32a2de6 6e2fc47 32a2de6 6e2fc47 32a2de6 6e2fc47 32a2de6 6e2fc47 32a2de6 6e2fc47 32a2de6 e0c7f38 32a2de6 e0c7f38 32a2de6 23834a6 32a2de6 83d8e67 32a2de6 83d8e67 32a2de6 83d8e67 32a2de6 cfa9a72 32a2de6 cfa9a72 32a2de6 23834a6 66b15fc a47d265 c2b20b6 83d8e67 9ff66c9 32a2de6 859581c 83d8e67 32a2de6 66b15fc 32a2de6 1443fba 32a2de6 1443fba 32a2de6 1443fba 32a2de6 66b15fc 1443fba 32a2de6 66b15fc 83d8e67 66b15fc 32a2de6 1443fba 66b15fc 32a2de6 9490776 32a2de6 9490776 32a2de6 9490776 32a2de6 9490776 32a2de6 9490776 32a2de6 9490776 32a2de6 9490776 32a2de6 9490776 32a2de6 9490776 32a2de6 1443fba 32a2de6 a828c23 32a2de6 1443fba 43bc86a 66b15fc 4173a8b 70a6907 b7e75e1 32a2de6 66b15fc 32a2de6 ec8124e 32a2de6 ec8124e 66b15fc ec8124e 66b15fc ec8124e 66b15fc be87321 780b3a0 be87321 518eb85 fbbe578 32a2de6 ec8124e fbbe578 518eb85 32a2de6 35ca811 32a2de6 fbbe578 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc ec8124e 66b15fc 43bc86a 66b15fc 32a2de6 43bc86a 32a2de6 19ef535 32a2de6 b7e75e1 32a2de6 83d8e67 32a2de6 fbbe578 32a2de6 aef1f27 9490776 aef1f27 32a2de6 1662e82 32a2de6 9490776 32a2de6 9490776 32a2de6 4839f5f 32a2de6 aef1f27 32a2de6 aef1f27 32a2de6 9490776 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 9490776 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc f06ee71 32a2de6 e47833c db9848f 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 19ef535 9490776 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 19ef535 66b15fc 32a2de6 66b15fc 32a2de6 406ae3e 32a2de6 83d8e67 c7187a6 32a2de6 9490776 32a2de6 66b15fc 32a2de6 66b15fc 19ef535 32a2de6 19ef535 9490776 32a2de6 db9848f 32a2de6 66b15fc 32a2de6 19ef535 32a2de6 9490776 32a2de6 9490776 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 19ef535 9490776 32a2de6 66b15fc 32a2de6 40f498c 50f37a0 66b15fc 40f498c e0e2933 32a2de6 fc68797 5841096 e0e2933 40f498c e0e2933 5d9233a d3e3eb4 744d6e2 5841096 66b15fc 32a2de6 49212e1 66b15fc 49212e1 5d9233a 40f498c 66b15fc 32a2de6 c8dffac 32a2de6 df48549 32a2de6 df48549 40f498c df48549 c8dffac 32a2de6 c8dffac 32a2de6 c8dffac 40f498c b113ee4 32a2de6 66b15fc 32a2de6 66b15fc f87c7e9 90bed64 66b15fc 32a2de6 66b15fc 40f498c 32a2de6 40f498c 66b15fc 32a2de6 f06ee71 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 ed19905 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc f87c7e9 90bed64 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 40f498c 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 66b15fc 32a2de6 19ef535 9490776 32a2de6 0387e10 32a2de6 f06ee71 32a2de6 19ef535 32a2de6 19ef535 9490776 32a2de6 83d8e67 e790ec3 83d8e67 32a2de6 83d8e67 32a2de6 4173a8b 32a2de6 19ef535 9490776 32a2de6 4173a8b 32a2de6 9490776 32a2de6 9490776 32a2de6 4173a8b 32a2de6 4173a8b 32a2de6 9490776 32a2de6 9490776 32a2de6 4173a8b 32a2de6 9490776 32a2de6 9490776 66b15fc 32a2de6 af14165 32a2de6 af14165 f06ee71 66b15fc af14165 66b15fc f06ee71 af14165 66b15fc 32a2de6 83d8e67 32a2de6 66b15fc af14165 66b15fc 32a2de6 66b15fc af14165 66b15fc af14165 66b15fc af14165 66b15fc 32a2de6 66b15fc ec8124e 32a2de6 19ef535 32a2de6 4173a8b 32a2de6 4173a8b 32a2de6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 |
import os
import sys
import numpy as np
import pandas as pd
import sympy
from sympy import sympify
import re
import tempfile
import shutil
from pathlib import Path
from datetime import datetime
import warnings
from multiprocessing import cpu_count
from sklearn.base import BaseEstimator, RegressorMixin, MultiOutputMixin
from sklearn.utils.validation import _check_feature_names_in, check_is_fitted
from .julia_helpers import (
init_julia,
_get_julia_project,
is_julia_version_greater_eq,
_escape_filename,
_add_sr_to_julia_project,
import_error_string,
)
from .export_numpy import CallableEquation
from .deprecated import make_deprecated_kwargs_for_pysr_regressor
Main = None
already_ran = False
sympy_mappings = {
"div": lambda x, y: x / y,
"mult": lambda x, y: x * y,
"sqrt_abs": lambda x: sympy.sqrt(abs(x)),
"square": lambda x: x**2,
"cube": lambda x: x**3,
"plus": lambda x, y: x + y,
"sub": lambda x, y: x - y,
"neg": lambda x: -x,
"pow": lambda x, y: abs(x) ** y,
"cos": sympy.cos,
"sin": sympy.sin,
"tan": sympy.tan,
"cosh": sympy.cosh,
"sinh": sympy.sinh,
"tanh": sympy.tanh,
"exp": sympy.exp,
"acos": sympy.acos,
"asin": sympy.asin,
"atan": sympy.atan,
"acosh": lambda x: sympy.acosh(abs(x) + 1),
"acosh_abs": lambda x: sympy.acosh(abs(x) + 1),
"asinh": sympy.asinh,
"atanh": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1),
"atanh_clip": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1),
"abs": abs,
"mod": sympy.Mod,
"erf": sympy.erf,
"erfc": sympy.erfc,
"log_abs": lambda x: sympy.log(abs(x)),
"log10_abs": lambda x: sympy.log(abs(x), 10),
"log2_abs": lambda x: sympy.log(abs(x), 2),
"log1p_abs": lambda x: sympy.log(abs(x) + 1),
"floor": sympy.floor,
"ceil": sympy.ceiling,
"sign": sympy.sign,
"gamma": sympy.gamma,
}
def pysr(X, y, weights=None, **kwargs): # pragma: no cover
warnings.warn(
"Calling `pysr` is deprecated. Please use `model = PySRRegressor(**params); model.fit(X, y)` going forward.",
FutureWarning,
)
model = PySRRegressor(**kwargs)
model.fit(X, y, weights=weights)
return model.equations
def _handle_constraints(binary_operators, unary_operators, constraints):
for op in unary_operators:
if op not in constraints:
constraints[op] = -1
for op in binary_operators:
if op not in constraints:
constraints[op] = (-1, -1)
if op in ["plus", "sub", "+", "-"]:
if constraints[op][0] != constraints[op][1]:
raise NotImplementedError(
"You need equal constraints on both sides for - and +, due to simplification strategies."
)
elif op in ["mult", "*"]:
# Make sure the complex expression is in the left side.
if constraints[op][0] == -1:
continue
if constraints[op][1] == -1 or constraints[op][0] < constraints[op][1]:
constraints[op][0], constraints[op][1] = (
constraints[op][1],
constraints[op][0],
)
def _create_inline_operators(binary_operators, unary_operators):
global Main
for op_list in [binary_operators, unary_operators]:
for i, op in enumerate(op_list):
is_user_defined_operator = "(" in op
if is_user_defined_operator:
Main.eval(op)
# Cut off from the first non-alphanumeric char:
first_non_char = [j for j, char in enumerate(op) if char == "("][0]
function_name = op[:first_non_char]
# Assert that function_name only contains
# alphabetical characters, numbers,
# and underscores:
if not re.match(r"^[a-zA-Z0-9_]+$", function_name):
raise ValueError(
f"Invalid function name {function_name}. "
"Only alphanumeric characters, numbers, and underscores are allowed."
)
op_list[i] = function_name
def _check_assertions(
X,
binary_operators,
unary_operators,
use_custom_variable_names,
variable_names,
weights,
y,
):
# Check for potential errors before they happen
assert len(unary_operators) + len(binary_operators) > 0
assert len(X.shape) == 2
assert len(y.shape) in [1, 2]
assert X.shape[0] == y.shape[0]
if weights is not None:
assert weights.shape == y.shape
assert X.shape[0] == weights.shape[0]
if use_custom_variable_names:
assert len(variable_names) == X.shape[1]
def best(*args, **kwargs): # pragma: no cover
raise NotImplementedError(
"`best` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.sympy()` to get the sympy representation of the best equation."
)
def best_row(*args, **kwargs): # pragma: no cover
raise NotImplementedError(
"`best_row` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can run `print(model)` to view the best equation, or `model.get_best()` to return the best equation's row in `model.equations`."
)
def best_tex(*args, **kwargs): # pragma: no cover
raise NotImplementedError(
"`best_tex` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.latex()` to get the sympy representation of the best equation."
)
def best_callable(*args, **kwargs): # pragma: no cover
raise NotImplementedError(
"`best_callable` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can use `.predict(X)` to use the best callable."
)
class PySRRegressor(BaseEstimator, RegressorMixin, MultiOutputMixin):
"""
High-performance symbolic regression.
This is the scikit-learn interface for SymbolicRegression.jl.
This model will automatically search for equations which fit
a given dataset subject to a particular loss and set of
constraints.
Parameters
----------
model_selection : str, default="best"
Model selection criterion. Can be 'accuracy' or 'best'.
`"accuracy"` selects the candidate model with the lowest loss
(highest accuracy). `"best"` selects the candidate model with
the lowest sum of normalized loss and complexity.
binary_operators : list[str], default=["+", "-", "*", "/"]
List of strings giving the binary operators in Julia's Base.
unary_operators : list[str], default=None
Same as :param`binary_operators` but for operators taking a
single scalar.
niterations : int, default=40
Number of iterations of the algorithm to run. The best
equations are printed and migrate between populations at the
end of each iteration.
populations : int, default=15
Number of populations running.
population_size : int, default=33
Number of individuals in each population.
max_evals : int, default=None
Limits the total number of evaluations of expressions to
this number.
maxsize : int, default=20
Max size of an equation.
maxdepth : int, default=None
Max depth of an equation. You can use both :param`maxsize` and
:param`maxdepth`. :param`maxdepth` is by default set to equal
:param`maxsize`, which means that it is redundant.
warmup_maxsize_by : float, default=0.0
Whether to slowly increase max size from a small number up to
the maxsize (if greater than 0). If greater than 0, says the
fraction of training time at which the current maxsize will
reach the user-passed maxsize.
timeout_in_seconds : float, default=None
Make the search return early once this many seconds have passed.
constraints : dict[str, int | tuple[int,int]], default=None
Dictionary of int (unary) or 2-tuples (binary), this enforces
maxsize constraints on the individual arguments of operators.
E.g., `'pow': (-1, 1)` says that power laws can have any
complexity left argument, but only 1 complexity exponent. Use
this to force more interpretable solutions.
nested_constraints : dict[str, dict], default=None
Specifies how many times a combination of operators can be
nested. For example, `{"sin": {"cos": 0}}, "cos": {"cos": 2}}`
specifies that `cos` may never appear within a `sin`, but `sin`
can be nested with itself an unlimited number of times. The
second term specifies that `cos` can be nested up to 2 times
within a `cos`, so that `cos(cos(cos(x)))` is allowed
(as well as any combination of `+` or `-` within it), but
`cos(cos(cos(cos(x))))` is not allowed. When an operator is not
specified, it is assumed that it can be nested an unlimited
number of times. This requires that there is no operator which
is used both in the unary operators and the binary operators
(e.g., `-` could be both subtract, and negation). For binary
operators, you only need to provide a single number: both
arguments are treated the same way, and the max of each
argument is constrained.
loss : str, default="L2DistLoss()"
String of Julia code specifying the loss function. Can either
be a loss from LossFunctions.jl, or your own loss written as a
function. Examples of custom written losses include:
`myloss(x, y) = abs(x-y)` for non-weighted, or
`myloss(x, y, w) = w*abs(x-y)` for weighted.
Among the included losses, these are as follows.
Regression: `LPDistLoss{P}()`, `L1DistLoss()`,
`L2DistLoss()` (mean square), `LogitDistLoss()`,
`HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`, `L2EpsilonInsLoss(ϵ)`,
`PeriodicLoss(c)`, `QuantileLoss(τ)`.
Classification: `ZeroOneLoss()`, `PerceptronLoss()`,
`L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`,
`ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`,
`SigmoidLoss()`, `DWDMarginLoss(q)`.
complexity_of_operators : dict[str, float], default=None
If you would like to use a complexity other than 1 for an
operator, specify the complexity here. For example,
`{"sin": 2, "+": 1}` would give a complexity of 2 for each use
of the `sin` operator, and a complexity of 1 for each use of
the `+` operator (which is the default). You may specify real
numbers for a complexity, and the total complexity of a tree
will be rounded to the nearest integer after computing.
complexity_of_constants : float, default=1
Complexity of constants.
complexity_of_variables : float, default=1
Complexity of variables.
parsimony : float, default=0.0032
Multiplicative factor for how much to punish complexity.
use_frequency : bool, default=True
Whether to measure the frequency of complexities, and use that
instead of parsimony to explore equation space. Will naturally
find equations of all complexities.
use_frequency_in_tournament : bool, default=True
Whether to use the frequency mentioned above in the tournament,
rather than just the simulated annealing.
alpha : float, default=0.1
Initial temperature for simulated annealing
(requires :param`annealing` to be `True`).
annealing : bool, default=True
Whether to use annealing. You should (and it is default).
early_stop_condition : float, default=None
Stop the search early if this loss is reached.
ncyclesperiteration : int, default=550
Number of total mutations to run, per 10 samples of the
population, per iteration.
fraction_replaced : float, default=0.000364
How much of population to replace with migrating equations from
other populations.
fraction_replaced_hof : float, default=0.035
How much of population to replace with migrating equations from
hall of fame.
weight_add_node : float, default=0.79
Relative likelihood for mutation to add a node.
weight_insert_node : float, default=5.1
Relative likelihood for mutation to insert a node.
weight_delete_node : float, default=1.7
Relative likelihood for mutation to delete a node.
weight_do_nothing : float, default=0.21
Relative likelihood for mutation to leave the individual.
weight_mutate_constant : float, default=0.048
Relative likelihood for mutation to change the constant slightly
in a random direction.
weight_mutate_operator : float, default=0.47
Relative likelihood for mutation to swap an operator.
weight_randomize : float, default=0.00023
Relative likelihood for mutation to completely delete and then
randomly generate the equation
weight_simplify : float, default=0.0020
Relative likelihood for mutation to simplify constant parts by evaluation
crossover_probability : float, default=0.066
Absolute probability of crossover-type genetic operation, instead of a mutation.
skip_mutation_failures : bool, default=True
Whether to skip mutation and crossover failures, rather than
simply re-sampling the current member.
migration : bool, default=True
Whether to migrate.
hof_migration : bool, default=True
Whether to have the hall of fame migrate.
topn : int, default=12
How many top individuals migrate from each population.
should_optimize_constants : bool, default=True
Whether to numerically optimize constants (Nelder-Mead/Newton)
at the end of each iteration.
optimizer_algorithm : str, default="BFGS"
Optimization scheme to use for optimizing constants. Can currently
be `NelderMead` or `BFGS`.
optimizer_nrestarts : int, default=2
Number of time to restart the constants optimization process with
different initial conditions.
optimize_probability : float, default=0.14
Probability of optimizing the constants during a single iteration of
the evolutionary algorithm.
optimizer_iterations : int, default=8
Number of iterations that the constants optimizer can take.
perturbation_factor : float, default=0.076
Constants are perturbed by a max factor of
(perturbation_factor*T + 1). Either multiplied by this or
divided by this.
tournament_selection_n : int, default=10
Number of expressions to consider in each tournament.
tournament_selection_p : float, default=0.86
Probability of selecting the best expression in each
tournament. The probability will decay as p*(1-p)^n for other
expressions, sorted by loss.
procs : int, default=multiprocessing.cpu_count()
Number of processes (=number of populations running).
multithreading : bool, default=True
Use multithreading instead of distributed backend.
Using procs=0 will turn off both.
cluster_manager : str, default=None
For distributed computing, this sets the job queue system. Set
to one of "slurm", "pbs", "lsf", "sge", "qrsh", "scyld", or
"htc". If set to one of these, PySR will run in distributed
mode, and use `procs` to figure out how many processes to launch.
batching : bool, default=False
Whether to compare population members on small batches during
evolution. Still uses full dataset for comparing against hall
of fame.
batch_size : int, default=50
The amount of data to use if doing batching.
fast_cycle : bool, default=False (experimental)
Batch over population subsamples. This is a slightly different
algorithm than regularized evolution, but does cycles 15%
faster. May be algorithmically less efficient.
precision : int, default=32
What precision to use for the data. By default this is 32
(float32), but you can select 64 or 16 as well.
verbosity : int, default=1e9
What verbosity level to use. 0 means minimal print statements.
update_verbosity : int, default=None
What verbosity level to use for package updates.
Will take value of :param`verbosity` if not given.
progress : bool, default=True
Whether to use a progress bar instead of printing to stdout.
equation_file : str, default=None
Where to save the files (.csv separated by |).
temp_equation_file :
Whether to put the hall of fame file in the temp directory.
Deletion is then controlled with the :param`delete_tempfiles`
parameter.
tempdir : str, default=None
directory for the temporary files.
delete_tempfiles : bool, default=True
Whether to delete the temporary files after finishing.
julia_project : str, default=None
A Julia environment location containing a Project.toml
(and potentially the source code for SymbolicRegression.jl).
Default gives the Python package directory, where a
Project.toml file should be present from the install.
update: bool, default=True
Whether to automatically update Julia packages.
output_jax_format : bool, default=False
Whether to create a 'jax_format' column in the output,
containing jax-callable functions and the default parameters in
a jax array.
output_torch_format : bool, default=False
Whether to create a 'torch_format' column in the output,
containing a torch module with trainable parameters.
extra_sympy_mappings : dict[str, Callable], default=None
Provides mappings between custom :param`binary_operators` or
:param`unary_operators` defined in julia strings, to those same
operators defined in sympy.
E.G if `unary_operators=["inv(x)=1/x"]`, then for the fitted
model to be export to sympy, :param`extra_sympy_mappings`
would be `{"inv": lambda x: 1/x}`.
extra_jax_mappings : dict[Callable, str], default=None
Similar to :param`extra_sympy_mappings` but for model export
to jax. The dictionary maps sympy functions to jax functions.
For example: `extra_jax_mappings={sympy.sin: "jnp.sin"}` maps
the `sympy.sin` function to the equivalent jax expression `jnp.sin`.
extra_torch_mappings : dict[Callable, Callable], default=None
The same as :param`extra_jax_mappings` but for model export
to pytorch. Note that the dictionary keys should be callable
pytorch expressions.
For example: `extra_torch_mappings={sympy.sin: torch.sin}`
denoise : bool, default=False
Whether to use a Gaussian Process to denoise the data before
inputting to PySR. Can help PySR fit noisy data.
select_k_features : int, default=None
whether to run feature selection in Python using random forests,
before passing to the symbolic regression code. None means no
feature selection; an int means select that many features.
kwargs : dict, default=None
Supports deprecated keyword arguments. Other arguments will
result in an error.
Attributes
----------
equations_ : pandas.DataFrame
DataFrame containing the results of model fitting.
n_features_in_ : int
Number of features seen during :term:`fit`.
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
nout_ : int
Number of output dimensions.
selection_mask_ : list[int] of length `select_k_features`
List of indices for input features that are selected when
:param`select_k_features` is set.
raw_julia_state_ : tuple[list[PyCall.jlwrap], PyCall.jlwrap]
The state for the julia SymbolicRegression.jl backend post fitting.
Notes
-----
Most default parameters have been tuned over several example equations,
but you should adjust `niterations`, `binary_operators`, `unary_operators`
to your requirements. You can view more detailed explanations of the options
on the [options page](https://astroautomata.com/PySR/#/options) of the
documentation.
Examples
--------
>>> import numpy as np
>>> from pysr import PySRRegressor
>>> randstate = np.random.RandomState(0)
>>> X = 2 * randstate.randn(100, 5)
>>> # y = 2.5372 * cos(x_3) + x_0 - 0.5
>>> y = 2.5382 * np.cos(X[:, 3]) + X[:, 0] ** 2 - 0.5
>>> model = PySRRegressor(
... niterations=40,
... binary_operators=["+", "*"],
... unary_operators=[
... "cos",
... "exp",
... "sin",
... "inv(x) = 1/x", # Custom operator (julia syntax)
... ],
... model_selection="best",
... loss="loss(x, y) = (x - y)^2", # Custom loss function (julia syntax)
... )
>>> model.fit(X, y)
>>> model
PySRRegressor.equations = [
0 0.000000 3.8552167 3.360272e+01 1
1 1.189847 (x0 * x0) 3.110905e+00 3
2 0.010626 ((x0 * x0) + -0.25573406) 3.045491e+00 5
3 0.896632 (cos(x3) + (x0 * x0)) 1.242382e+00 6
4 0.811362 ((x0 * x0) + (cos(x3) * 2.4384754)) 2.451971e-01 8
5 >>>> 13.733371 (((cos(x3) * 2.5382) + (x0 * x0)) + -0.5) 2.889755e-13 10
6 0.194695 ((x0 * x0) + (((cos(x3) + -0.063180044) * 2.53... 1.957723e-13 12
7 0.006988 ((x0 * x0) + (((cos(x3) + -0.32505524) * 1.538... 1.944089e-13 13
8 0.000955 (((((x0 * x0) + cos(x3)) + -0.8251649) + (cos(... 1.940381e-13 15
]
>>> model.score(X, y)
1.0
>>> model.predict(np.array([1,2,3,4,5]))
array([-1.15907818, -1.15907818, -1.15907818, -1.15907818, -1.15907818])
"""
# Class validation constants
VALID_OPTIMIZER_ALGORITHMS = ["NelderMead", "BFGS"]
def __init__(
self,
model_selection="best",
*,
binary_operators=None,
unary_operators=None,
niterations=40,
populations=15,
population_size=33,
max_evals=None,
maxsize=20,
maxdepth=None,
warmup_maxsize_by=0.0,
timeout_in_seconds=None,
constraints=None,
nested_constraints=None,
loss="L2DistLoss()",
complexity_of_operators=None,
complexity_of_constants=1,
complexity_of_variables=1,
parsimony=0.0032,
use_frequency=True,
use_frequency_in_tournament=True,
alpha=0.1,
annealing=True,
early_stop_condition=None,
ncyclesperiteration=550,
fraction_replaced=0.000364,
fraction_replaced_hof=0.035,
weight_add_node=0.79,
weight_insert_node=5.1,
weight_delete_node=1.7,
weight_do_nothing=0.21,
weight_mutate_constant=0.048,
weight_mutate_operator=0.47,
weight_randomize=0.00023,
weight_simplify=0.0020,
crossover_probability=0.066,
skip_mutation_failures=True,
migration=True,
hof_migration=True,
topn=12,
should_optimize_constants=True,
optimizer_algorithm="BFGS",
optimizer_nrestarts=2,
optimize_probability=0.14,
optimizer_iterations=8,
perturbation_factor=0.076,
tournament_selection_n=10,
tournament_selection_p=0.86,
procs=cpu_count(),
multithreading=None,
cluster_manager=None,
batching=False,
batch_size=50,
fast_cycle=False,
precision=32,
verbosity=1e9,
update_verbosity=None,
progress=True,
equation_file=None,
temp_equation_file=False,
tempdir=None,
delete_tempfiles=True,
julia_project=None,
update=True,
output_jax_format=False,
output_torch_format=False,
extra_sympy_mappings=None,
extra_torch_mappings=None,
extra_jax_mappings=None,
denoise=False,
select_k_features=None,
**kwargs,
):
# Hyperparameters
# - Model search parameters
self.model_selection = model_selection
self.binary_operators = binary_operators
self.unary_operators = unary_operators
self.niterations = niterations
self.populations = populations
# - Model search Constraints
self.population_size = population_size
self.max_evals = max_evals
self.maxsize = maxsize
self.maxdepth = maxdepth
self.warmup_maxsize_by = warmup_maxsize_by
self.timeout_in_seconds = timeout_in_seconds
self.constraints = constraints
self.nested_constraints = nested_constraints
# - Loss parameters
self.loss = loss
self.complexity_of_operators = complexity_of_operators
self.complexity_of_constants = complexity_of_constants
self.complexity_of_variables = complexity_of_variables
self.parsimony = float(parsimony)
self.use_frequency = use_frequency
self.use_frequency_in_tournament = use_frequency_in_tournament
self.alpha = alpha
self.annealing = annealing
self.early_stop_condition = early_stop_condition
# - Evolutionary search parameters
# -- Mutation parameters
self.ncyclesperiteration = ncyclesperiteration
self.fraction_replaced = fraction_replaced
self.fraction_replaced_hof = fraction_replaced_hof
self.weight_add_node = weight_add_node
self.weight_insert_node = weight_insert_node
self.weight_delete_node = weight_delete_node
self.weight_do_nothing = weight_do_nothing
self.weight_mutate_constant = weight_mutate_constant
self.weight_mutate_operator = weight_mutate_operator
self.weight_randomize = weight_randomize
self.weight_simplify = weight_simplify
self.crossover_probability = crossover_probability
self.skip_mutation_failures = skip_mutation_failures
# -- Migration parameters
self.migration = migration
self.hof_migration = hof_migration
self.topn = topn
# -- Constants parameters
self.should_optimize_constants = should_optimize_constants
self.optimizer_algorithm = optimizer_algorithm
self.optimizer_nrestarts = optimizer_nrestarts
self.optimize_probability = optimize_probability
self.optimizer_iterations = optimizer_iterations
self.perturbation_factor = perturbation_factor
# -- Selection parameters
self.tournament_selection_n = tournament_selection_n
self.tournament_selection_p = tournament_selection_p
# Solver parameters
self.procs = procs
self.multithreading = multithreading
self.cluster_manager = cluster_manager
self.batching = batching
self.batch_size = batch_size
self.fast_cycle = fast_cycle
self.precision = precision
# Additional runtime parameters
# - Runtime user interface
self.verbosity = verbosity
self.update_verbosity = update_verbosity
self.progress = progress
# - Project management
self.equation_file = equation_file
self.temp_equation_file = temp_equation_file
self.tempdir = tempdir
self.delete_tempfiles = delete_tempfiles
self.julia_project = julia_project
self.update = update
self.output_jax_format = output_jax_format
self.output_torch_format = output_torch_format
self.extra_sympy_mappings = extra_sympy_mappings
self.extra_jax_mappings = extra_jax_mappings
self.extra_torch_mappings = extra_torch_mappings
# Pre-modelling transformation
self.denoise = denoise
self.select_k_features = select_k_features
# Once all valid parameters have been assigned handle the
# deprecated kwargs
if len(kwargs) > 0: # pragma: no cover
deprecated_kwargs = make_deprecated_kwargs_for_pysr_regressor()
for k, v in kwargs.items():
# Handle renamed kwargs
if k in deprecated_kwargs:
updated_kwarg_name = deprecated_kwargs[k]
setattr(self, updated_kwarg_name, v)
warnings.warn(
f"{k} has been renamed to {updated_kwarg_name} in PySRRegressor. "
" Please use that instead.",
FutureWarning,
)
# Handle kwargs that have been moved to the fit method
elif k in ["weights", "variable_names", "Xresampled"]:
warnings.warn(
f"{k} is a data dependant parameter so should be passed when fit is called. "
f"Ignoring parameter; please pass {k} during the call to fit instead.",
FutureWarning,
)
else:
raise TypeError(
f"{k} is not a valid keyword argument for PySRRegressor"
)
self._process_params()
def __repr__(self):
"""
Prints all current equations fitted by the model.
The string `>>>>` denotes which equation is selected by the
`model_selection`.
"""
if not hasattr(self, "equations_") or self.equations_ is None:
return "PySRRegressor.equations_ = None"
output = "PySRRegressor.equations_ = [\n"
equations = self.equations_
if not isinstance(equations, list):
all_equations = [equations]
else:
all_equations = equations
for i, equations in enumerate(all_equations):
selected = ["" for _ in range(len(equations))]
if self.model_selection == "accuracy":
chosen_row = -1
elif self.model_selection == "best":
chosen_row = equations["score"].idxmax()
else:
raise NotImplementedError
selected[chosen_row] = ">>>>"
repr_equations = pd.DataFrame(
dict(
pick=selected,
score=equations["score"],
equation=equations["equation"],
loss=equations["loss"],
complexity=equations["complexity"],
)
)
if len(all_equations) > 1:
output += "[\n"
for line in repr_equations.__repr__().split("\n"):
output += "\t" + line + "\n"
if len(all_equations) > 1:
output += "]"
if i < len(all_equations) - 1:
output += ", "
output += "]"
return output
@property
def equations(self): # pragma: no cover
warnings.warn(
"PySRRegressor.equations is now deprecated. "
"Please use PySRRegressor.equations_ instead.",
FutureWarning,
)
return self.equations_
def get_best(self, index=None):
"""
Get best equation using `model_selection`.
Parameters
----------
index : int, default=None
If you wish to select a particular equation from `self.equations_`,
give the row number here. This overrides the :param`model_selection`
parameter.
Returns
-------
best_equation : pandas.Series
Dictionary representing the best expression found.
Raises
------
NotImplementedError
Raised when an invalid model selection strategy is provided.
"""
if self.equations_ is None:
raise ValueError("No equations have been generated yet.")
if index is not None:
if isinstance(self.equations_, list):
assert isinstance(index, list)
return [eq.iloc[i] for eq, i in zip(self.equations_, index)]
return self.equations_.iloc[index]
if self.model_selection == "accuracy":
if isinstance(self.equations_, list):
return [eq.iloc[-1] for eq in self.equations_]
return self.equations_.iloc[-1]
elif self.model_selection == "best":
if isinstance(self.equations_, list):
return [eq.iloc[eq["score"].idxmax()] for eq in self.equations_]
return self.equations_.iloc[self.equations_["score"].idxmax()]
else:
raise NotImplementedError(
f"{self.model_selection} is not a valid model selection strategy."
)
def _process_params(self):
"""
Perform validation on the parameters defined in init for the
dataset specified in :term`fit`, and update them if necessary.
For example, this will change :param`binary_operators`
into `["+", "-", "*", "/"]` if `binary_operators` is `None`.
Raises
------
ValueError
Raised when on of the following occurs: `tournament_selection_n`
parameter is larger than `population_size`; `maxsize` is
less than 7; invalid `extra_jax_mappings` or
`extra_torch_mappings`; invalid optimizer algorithms.
"""
# Handle None values for instance parameters:
if self.binary_operators is None:
self.binary_operators = "+ * - /".split(" ")
if self.unary_operators is None:
self.unary_operators = []
if self.extra_sympy_mappings is None:
self.extra_sympy_mappings = {}
if self.constraints is None:
self.constraints = {}
if self.multithreading is None:
# Default is multithreading=True, unless explicitly set,
# or procs is set to 0 (serial mode).
self.multithreading = self.procs != 0 and self.cluster_manager is None
if self.update_verbosity is None:
self.update_verbosity = self.verbosity
if self.maxdepth is None:
self.maxdepth = self.maxsize
# Handle type conversion for instance parameters:
if isinstance(self.binary_operators, str):
self.binary_operators = [self.binary_operators]
if isinstance(self.unary_operators, str):
self.unary_operators = [self.unary_operators]
# Warn if instance parameters are not sensible values:
if self.batch_size < 1:
warnings.warn(
"Given :param`batch_size` must be greater than or equal to one. "
":param`batch_size` has been increased to equal one."
)
self.batch_size = 1
# Ensure instance parameters are allowable values:
# ValueError - Incompatible values
if self.tournament_selection_n > self.population_size:
raise ValueError(
"tournament_selection_n parameter must be smaller than population_size."
)
if self.maxsize > 40:
warnings.warn(
"Note: Using a large maxsize for the equation search will be exponentially slower and use significant memory. You should consider turning `use_frequency` to False, and perhaps use `warmup_maxsize_by`."
)
elif self.maxsize < 7:
raise ValueError("PySR requires a maxsize of at least 7")
if self.extra_jax_mappings is not None:
for value in self.extra_jax_mappings.values():
if not isinstance(value, str):
raise ValueError(
"extra_jax_mappings must have keys that are strings! e.g., {sympy.sqrt: 'jnp.sqrt'}."
)
else:
self.extra_jax_mappings = {}
if self.extra_torch_mappings is not None:
for value in self.extra_jax_mappings.values():
if not callable(value):
raise ValueError(
"extra_torch_mappings must be callable functions! e.g., {sympy.sqrt: torch.sqrt}."
)
else:
self.extra_torch_mappings = {}
# NotImplementedError - Values that could be supported at a later time
if self.optimizer_algorithm not in self.VALID_OPTIMIZER_ALGORITHMS:
raise NotImplementedError(
f"PySR currently only supports the following optimizer algorithms: {self.VALID_OPTIMIZER_ALGORITHMS}"
)
# Handle presentation of the progress bar:
buffer_available = "buffer" in sys.stdout.__dir__()
if self.progress is not None:
if self.progress and not buffer_available:
warnings.warn(
"Note: it looks like you are running in Jupyter. The progress bar will be turned off."
)
self.progress = False
else:
self.progress = buffer_available
return self
def _setup_equation_file(self):
"""
Sets the full pathname of the equation file, using :param`tempdir` and
:param`equation_file`.
"""
# Cast tempdir string as a Path object
self.tempdir_ = Path(tempfile.mkdtemp(dir=self.tempdir))
if self.temp_equation_file:
self.equation_file_ = self.tempdir_ / "hall_of_fame.csv"
elif self.equation_file is None:
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
self.equation_file_ = "hall_of_fame_" + date_time + ".csv"
else:
self.equation_file_ = self.equation_file
def _validate_fit_params(self, X, y, Xresampled, variable_names):
"""
Validates the parameters passed to the :term`fit` method.
This method also sets the `nout_` attribute.
Parameters
----------
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
Training data.
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to X's dtype if necessary.
Xresampled : {ndarray | pandas.DataFrame} of shape
(n_resampled, n_features), default=None
Resampled training data used for denoising.
variable_names : list[str] of length n_features
Names of each variable in the training dataset, `X`.
Returns
-------
X_validated : ndarray of shape (n_samples, n_features)
Validated training data.
y_validated : ndarray of shape (n_samples,) or (n_samples, n_targets)
Validated target data.
Xresampled : ndarray of shape (n_resampled, n_features)
Validated resampled training data used for denoising.
variable_names_validated : list[str] of length n_features
Validated list of variable names for each feature in `X`.
"""
if X.shape[1] > 10000 and not self.batching:
warnings.warn(
"Note: you are running with more than 10,000 datapoints. "
"You should consider turning on batching (https://astroautomata.com/PySR/#/options?id=batching). "
"You should also reconsider if you need that many datapoints. "
"Unless you have a large amount of noise (in which case you "
"should smooth your dataset first), generally < 10,000 datapoints "
"is enough to find a functional form with symbolic regression. "
"More datapoints will lower the search speed."
)
if isinstance(X, pd.DataFrame):
if variable_names:
variable_names = None
warnings.warn(
":param`variable_names` has been reset to `None` as `X` is a DataFrame. "
"Will use DataFrame column names instead."
)
if X.columns.is_object() and X.columns.str.contains(" ").any():
X.columns = X.columns.str.replace(" ", "_")
warnings.warn(
"Spaces in DataFrame column names are not supported. "
"Spaces have been replaced with underscores. \n"
"Please rename the columns to valid names."
)
elif variable_names and [" " in name for name in variable_names].any():
variable_names = [name.replace(" ", "_") for name in variable_names]
warnings.warn(
"Spaces in `variable_names` are not supported. "
"Spaces have been replaced with underscores. \n"
"Please use valid names instead."
)
# Only numpy values are needed from Xresampled, column metadata is
# provided by X
if isinstance(Xresampled, pd.DataFrame):
Xresampled = Xresampled.values
# Data validation and feature name fetching via sklearn
# This method sets the n_features_in_ attribute
X, y = self._validate_data(X=X, y=y, reset=True, multi_output=True)
self.feature_names_in_ = _check_feature_names_in(self, variable_names)
variable_names = self.feature_names_in_
# Handle multioutput data
if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1):
y = y.reshape(-1)
elif len(y.shape) == 2:
self.nout_ = y.shape[1]
else:
raise NotImplementedError("y shape not supported!")
return X, y, Xresampled, variable_names
def _pre_transform_training_data(self, X, y, Xresampled, variable_names):
"""
Transforms the training data before fitting the symbolic regressor.
This method also updates/sets the `selection_mask_` attribute.
Parameters
----------
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
Training data.
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to X's dtype if necessary.
Xresampled : {ndarray | pandas.DataFrame} of shape
(n_resampled, n_features), default=None
Resampled training data used for denoising.
variable_names : list[str] of length n_features
Names of each variable in the training dataset, `X`.
Returns
-------
X_transformed : ndarray of shape (n_samples, n_features)
Transformed training data. n_samples will be equal to
:param`Xresampled.shape[0]` if :param`self.denoise` is `True`,
and :param`Xresampled is not None`, otherwise it will be
equal to :param`X.shape[0]`. n_features will be equal to
:param`self.select_k_features` if `self.select_k_features is not None`,
otherwise it will be equal to :param`X.shape[1]`
y_transformed : ndarray of shape (n_samples,) or (n_samples, n_outputs)
Transformed target data. n_samples will be equal to
:param`Xresampled.shape[0]` if :param`self.denoise` is `True`,
and :param`Xresampled is not None`, otherwise it will be
equal to :param`X.shape[0]`.
variable_names_transformed : list[str] of length n_features
Names of each variable in the transformed dataset,
`X_transformed`.
"""
# Feature selection transformation
if self.select_k_features:
self.selection_mask_ = run_feature_selection(X, y, self.select_k_features)
X = X[:, self.selection_mask_]
if Xresampled is not None:
Xresampled = Xresampled[:, self.selection_mask_]
# Reduce variable_names to selection
variable_names = [variable_names[i] for i in self.selection_mask_]
# Re-perform data validation and feature name updating
X, y = self._validate_data(X=X, y=y, reset=True, multi_output=True)
# Update feature names with selected variable names
self.feature_names_in_ = _check_feature_names_in(self, variable_names)
print(f"Using features {self.feature_names_in_}")
# Denoising transformation
if self.denoise:
if self.nout_ > 1:
y = np.stack(
[
_denoise(X, y[:, i], Xresampled=Xresampled)[1]
for i in range(self.nout_)
],
axis=1,
)
if Xresampled is not None:
X = Xresampled
else:
X, y = _denoise(X, y, Xresampled=Xresampled)
return X, y, variable_names
def _run(self, X, y, weights):
"""
Run the symbolic regression fitting process on the julia backend.
Parameters
----------
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
Training data.
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to X's dtype if necessary.
weights : {ndarray | pandas.DataFrame} of the same shape as y, default=None
Each element is how to weight the mean-square-error loss
for that particular element of y.
Returns
-------
self : object
Reference to `self` with fitted attributes.
Raises
------
ImportError
Raised when the julia backend fails to import a package.
"""
# Need to be global as we don't want to recreate/reinstate julia for
# every new instance of PySRRegressor
global already_ran
global Main
# Start julia backend processes
if Main is None:
if self.multithreading:
os.environ["JULIA_NUM_THREADS"] = str(self.procs)
Main = init_julia()
if self.cluster_manager is not None:
Main.eval(f"import ClusterManagers: addprocs_{self.cluster_manager}")
cluster_manager = Main.eval(f"addprocs_{self.cluster_manager}")
else:
cluster_manager = None
if not already_ran:
julia_project, is_shared = _get_julia_project(self.julia_project)
Main.eval("using Pkg")
io = "devnull" if self.update_verbosity == 0 else "stderr"
io_arg = f"io={io}" if is_julia_version_greater_eq(Main, "1.6") else ""
Main.eval(
f'Pkg.activate("{_escape_filename(julia_project)}", shared = Bool({int(is_shared)}), {io_arg})'
)
from julia.api import JuliaError
if is_shared:
# Install SymbolicRegression.jl:
_add_sr_to_julia_project(Main, io_arg)
try:
if self.update:
Main.eval(f"Pkg.resolve({io_arg})")
Main.eval(f"Pkg.instantiate({io_arg})")
else:
Main.eval(f"Pkg.instantiate({io_arg})")
except (JuliaError, RuntimeError) as e:
raise ImportError(import_error_string(julia_project)) from e
Main.eval("using SymbolicRegression")
Main.plus = Main.eval("(+)")
Main.sub = Main.eval("(-)")
Main.mult = Main.eval("(*)")
Main.pow = Main.eval("(^)")
Main.div = Main.eval("(/)")
_create_inline_operators(
binary_operators=self.binary_operators, unary_operators=self.unary_operators
)
_handle_constraints(
binary_operators=self.binary_operators,
unary_operators=self.unary_operators,
constraints=self.constraints,
)
una_constraints = [self.constraints[op] for op in self.unary_operators]
bin_constraints = [self.constraints[op] for op in self.binary_operators]
# Parse dict into Julia Dict for nested constraints::
if self.nested_constraints is not None:
nested_constraints_str = "Dict("
for outer_k, outer_v in self.nested_constraints.items():
nested_constraints_str += f"({outer_k}) => Dict("
for inner_k, inner_v in outer_v.items():
nested_constraints_str += f"({inner_k}) => {inner_v}, "
nested_constraints_str += "), "
nested_constraints_str += ")"
nested_constraints = Main.eval(nested_constraints_str)
else:
nested_constraints = None
# Parse dict into Julia Dict for complexities:
if self.complexity_of_operators is not None:
complexity_of_operators_str = "Dict("
for k, v in self.complexity_of_operators.items():
complexity_of_operators_str += f"({k}) => {v}, "
complexity_of_operators_str += ")"
complexity_of_operators = Main.eval(complexity_of_operators_str)
else:
complexity_of_operators = None
Main.custom_loss = Main.eval(self.loss)
mutationWeights = [
float(self.weight_mutate_constant),
float(self.weight_mutate_operator),
float(self.weight_add_node),
float(self.weight_insert_node),
float(self.weight_delete_node),
float(self.weight_simplify),
float(self.weight_randomize),
float(self.weight_do_nothing),
]
# Call to Julia backend.
# See https://github.com/search?q=%22function+Options%22+repo%3AMilesCranmer%2FSymbolicRegression.jl+path%3A%2Fsrc%2F+filename%3AOptions.jl+language%3AJulia&type=Code
options = Main.Options(
binary_operators=Main.eval(
str(tuple(self.binary_operators)).replace("'", "")
),
unary_operators=Main.eval(
str(tuple(self.unary_operators)).replace("'", "")
),
bin_constraints=bin_constraints,
una_constraints=una_constraints,
complexity_of_operators=complexity_of_operators,
complexity_of_constants=self.complexity_of_constants,
complexity_of_variables=self.complexity_of_variables,
nested_constraints=nested_constraints,
loss=Main.custom_loss,
maxsize=int(self.maxsize),
hofFile=_escape_filename(self.equation_file_),
npopulations=int(self.populations),
batching=self.batching,
batchSize=int(min([self.batch_size, len(X)]) if self.batching else len(X)),
mutationWeights=mutationWeights,
probPickFirst=self.tournament_selection_p,
ns=self.tournament_selection_n,
# These have the same name:
parsimony=self.parsimony,
alpha=self.alpha,
maxdepth=self.maxdepth,
fast_cycle=self.fast_cycle,
migration=self.migration,
hofMigration=self.hof_migration,
fractionReplacedHof=self.fraction_replaced_hof,
shouldOptimizeConstants=self.should_optimize_constants,
warmupMaxsizeBy=self.warmup_maxsize_by,
useFrequency=self.use_frequency,
useFrequencyInTournament=self.use_frequency_in_tournament,
npop=self.population_size,
ncyclesperiteration=self.ncyclesperiteration,
fractionReplaced=self.fraction_replaced,
topn=self.topn,
verbosity=self.verbosity,
optimizer_algorithm=self.optimizer_algorithm,
optimizer_nrestarts=self.optimizer_nrestarts,
optimize_probability=self.optimize_probability,
optimizer_iterations=self.optimizer_iterations,
perturbationFactor=self.perturbation_factor,
annealing=self.annealing,
stateReturn=True, # Required for state saving.
progress=self.progress,
timeout_in_seconds=self.timeout_in_seconds,
crossoverProbability=self.crossover_probability,
skip_mutation_failures=self.skip_mutation_failures,
max_evals=self.max_evals,
earlyStopCondition=self.early_stop_condition,
)
# Convert data to desired precision
np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[self.precision]
Main.X = np.array(X, dtype=np_dtype).T
if len(y.shape) == 1:
Main.y = np.array(y, dtype=np_dtype)
else:
Main.y = np.array(y, dtype=np_dtype).T
if weights is not None:
if len(weights.shape) == 1:
Main.weights = np.array(weights, dtype=np_dtype)
else:
Main.weights = np.array(weights, dtype=np_dtype).T
else:
Main.weights = None
cprocs = 0 if self.multithreading else self.procs
# Call to Julia backend.
# See https://github.com/search?q=%22function+EquationSearch%22+repo%3AMilesCranmer%2FSymbolicRegression.jl+path%3A%2Fsrc%2F+filename%3ASymbolicRegression.jl+language%3AJulia&type=Code
self.raw_julia_state_ = Main.EquationSearch(
Main.X,
Main.y,
weights=Main.weights,
niterations=int(self.niterations),
varMap=self.feature_names_in_.tolist(),
options=options,
numprocs=int(cprocs),
multithreading=bool(self.multithreading),
saved_state=self.raw_julia_state_,
addprocs_function=cluster_manager,
)
# Set attributes
self.equations_ = self.get_hof()
if self.delete_tempfiles:
shutil.rmtree(self.tempdir_)
already_ran = True
return self
def fit(
self,
X,
y,
Xresampled=None,
weights=None,
variable_names=None,
from_equation_file=False,
):
"""
Search for equations to fit the dataset and store them in `self.equations_`.
Parameters
----------
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
Training data.
y : {ndarray | pandas.DataFrame} of shape (n_samples,) or (n_samples, n_targets)
Target values. Will be cast to X's dtype if necessary.
Xresampled : {ndarray | pandas.DataFrame} of shape
(n_resampled, n_features), default=None
Resampled training data used for denoising.
weights : {ndarray | pandas.DataFrame} of the same shape as y, default=None
Each element is how to weight the mean-square-error loss
for that particular element of y.
variable_names : list[str], default=None
A list of names for the variables, rather than "x0", "x1", etc.
If :param`X` is a pandas dataframe, the column names will be used.
If variable_names are specified
from_equation_file : bool, default=False
Allows model to be initialized/fit from a previous run that has
been saved to a file. If true, a value of y still needs to be
passed such that `nout_` can be determined, however, the values of
y are irrelevant and can be all zeros.
Returns
-------
self : object
Fitted Estimator.
"""
# Init attributes that are not specified in BaseEstimator
self.equations_ = None
self.nout_ = 1
self.selection_mask_ = None
self.raw_julia_state_ = None
self._setup_equation_file()
# Parameter input validation (for parameters defined in __init__)
X, y, Xresampled, variable_names = self._validate_fit_params(
X, y, Xresampled, variable_names
)
# Pre transformations (feature selection and denoising)
X, y, variable_names = self._pre_transform_training_data(
X, y, Xresampled, variable_names
)
# Warn about large feature counts (still warn if feature count is large
# after running feature selection)
if self.n_features_in_ >= 10:
warnings.warn(
"Note: you are running with 10 features or more. "
"Genetic algorithms like used in PySR scale poorly with large numbers of features. "
"Consider using feature selection techniques to select the most important features "
"(you can do this automatically with the `select_k_features` parameter), "
"or, alternatively, doing a dimensionality reduction beforehand. "
"For example, `X = PCA(n_components=6).fit_transform(X)`, "
"using scikit-learn's `PCA` class, "
"will reduce the number of features to 6 in an interpretable way, "
"as each resultant feature "
"will be a linear combination of the original features. "
)
# Assertion checks
use_custom_variable_names = variable_names is not None
# TODO: this is always true.
_check_assertions(
X,
self.binary_operators,
self.unary_operators,
use_custom_variable_names,
variable_names,
weights,
y,
)
# Fitting procedure
if not from_equation_file:
self._run(X=X, y=y, weights=weights)
else:
self.equations_ = self.get_hof()
return self
def refresh(self):
"""
Updates self.equations_ with any new options passed, such as
:param`extra_sympy_mappings`.
"""
self.equations_ = self.get_hof()
def _decision_function(self, X, best_equation):
"""
Decide what value to predict based on the 'best' equation found
from fitting.
Parameters
----------
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
Testing data for evaluating the model.
best_equation : pd.Series
Selected best equation from `self.equations_`.
Returns
-------
y_predicted : ndarray of shape (n_samples,) or (n_samples, nout_)
Values predicted by substituting `X` into the
:param`best_equation`.
Raises
------
ValueError
Raises if the `best_equation` cannot be evaluated.
"""
check_is_fitted(self, attributes=["equations_", "feature_names_in_"])
# When X is an numpy array or a pandas dataframe with a RangeIndex,
# the self.feature_names_in_ generated during fit, for the same X,
# will cause a warning to be thrown during _validate_data.
# To avoid this, convert X to a dataframe, apply the selection mask,
# and then set the column/feature_names of X to be equal to those
# generated during fit.
if isinstance(X, np.ndarray):
X = pd.DataFrame(X)
if isinstance(X.columns, pd.RangeIndex):
if self.selection_mask_ is not None:
# RangeIndex enforces column order allowing columns to
# be correctly filtered with self.selection_mask_
X = X.iloc[:, self.selection_mask_]
X.columns = self.feature_names_in_
# Without feature information, CallableEquation/lambda_format equations
# require that the column order of X matches that of the X used during
# the fitting process. _validate_data removes this feature information
# when it converts the dataframe to an np array. Thus, to ensure feature
# order is preserved after conversion, the dataframe columns must be
# reordered/reindexed to match those of the transformed (denoised and
# feature selected) X in fit.
X = X.reindex(columns=self.feature_names_in_)
X = self._validate_data(X, reset=False)
try:
if self.nout_ > 1:
return np.stack(
[eq["lambda_format"](X) for eq in best_equation], axis=1
)
return best_equation["lambda_format"](X)
except Exception as error:
raise ValueError(
"Failed to evaluate the expression. "
"If you are using a custom operator, make sure to define it in :param`extra_sympy_mappings`, "
"e.g., `model.set_params(extra_sympy_mappings={'inv': lambda x: 1 / x})`."
) from error
def predict(self, X, index=None):
"""
Predict y from input X using the equation chosen by `model_selection`.
You may see what equation is used by printing this object. X should
have the same columns as the training data.
Parameters
----------
X : {ndarray | pandas.DataFrame} of shape (n_samples, n_features)
Training data.
index : int, default=None
If you want to compute the output of an expression using a
particular row of `self.equations_`, you may specify the index here.
Returns
-------
y_predicted : ndarray of shape (n_samples, nout_)
Values predicted by substituting `X` into the fitted symbolic
regression model.
"""
self.refresh()
best_equation = self.get_best(index=index)
return self._decision_function(X, best_equation)
def sympy(self, index=None):
"""
Return sympy representation of the equation(s) chosen by `model_selection`.
Parameters
----------
index : int, default=None
If you wish to select a particular equation from
`self.equations_`, give the index number here. This overrides
the `model_selection` parameter.
Returns
-------
best_equation : str, list[str] of length nout_
SymPy representation of the best equation.
"""
self.refresh()
best_equation = self.get_best(index=index)
if self.nout_ > 1:
return [eq["sympy_format"] for eq in best_equation]
return best_equation["sympy_format"]
def latex(self, index=None):
"""
Return latex representation of the equation(s) chosen by `model_selection`.
Parameters
----------
index : int, default=None
If you wish to select a particular equation from
`self.equations_`, give the index number here. This overrides
the `model_selection` parameter.
Returns
-------
best_equation : str or list[str] of length nout_
LaTeX expression of the best equation.
"""
self.refresh()
sympy_representation = self.sympy(index=index)
if self.nout_ > 1:
return [sympy.latex(s) for s in sympy_representation]
return sympy.latex(sympy_representation)
def jax(self, index=None):
"""
Return jax representation of the equation(s) chosen by `model_selection`.
Each equation (multiple given if there are multiple outputs) is a dictionary
containing {"callable": func, "parameters": params}. To call `func`, pass
func(X, params). This function is differentiable using `jax.grad`.
Parameters
----------
index : int, default=None
If you wish to select a particular equation from
`self.equations_`, give the row number here. This overrides
the `model_selection` parameter.
Returns
-------
best_equation : dict[str, Any]
Dictionary of callable jax function in "callable" key,
and jax array of parameters as "parameters" key.
"""
self.set_params(output_jax_format=True)
self.refresh()
best_equation = self.get_best(index=index)
if self.nout_ > 1:
return [eq["jax_format"] for eq in best_equation]
return best_equation["jax_format"]
def pytorch(self, index=None):
"""
Return pytorch representation of the equation(s) chosen by `model_selection`.
Each equation (multiple given if there are multiple outputs) is a PyTorch module
containing the parameters as trainable attributes. You can use the module like
any other PyTorch module: `module(X)`, where `X` is a tensor with the same
column ordering as trained with.
Parameters
----------
index : int, default=None
If you wish to select a particular equation from
`self.equations_`, give the row number here. This overrides
the `model_selection` parameter.
Returns
-------
best_equation : torch.nn.Module
PyTorch module representing the expression.
"""
self.set_params(output_torch_format=True)
self.refresh()
best_equation = self.get_best(index=index)
if self.nout_ > 1:
return [eq["torch_format"] for eq in best_equation]
return best_equation["torch_format"]
def get_hof(self):
"""Get the equations from a hall of fame file. If no arguments
entered, the ones used previously from a call to PySR will be used."""
try:
if self.nout_ > 1:
all_outputs = []
for i in range(1, self.nout_ + 1):
df = pd.read_csv(
str(self.equation_file_) + f".out{i}" + ".bkup",
sep="|",
)
# Rename Complexity column to complexity:
df.rename(
columns={
"Complexity": "complexity",
"MSE": "loss",
"Equation": "equation",
},
inplace=True,
)
all_outputs.append(df)
else:
all_outputs = [pd.read_csv(str(self.equation_file_) + ".bkup", sep="|")]
all_outputs[-1].rename(
columns={
"Complexity": "complexity",
"MSE": "loss",
"Equation": "equation",
},
inplace=True,
)
except FileNotFoundError:
raise RuntimeError(
"Couldn't find equation file! The equation search likely exited before a single iteration completed."
)
ret_outputs = []
for output in all_outputs:
scores = []
lastMSE = None
lastComplexity = 0
sympy_format = []
lambda_format = []
if self.output_jax_format:
jax_format = []
if self.output_torch_format:
torch_format = []
local_sympy_mappings = {
**self.extra_sympy_mappings,
**sympy_mappings,
}
sympy_symbols = [
sympy.Symbol(variable) for variable in self.feature_names_in_
]
for _, eqn_row in output.iterrows():
eqn = sympify(eqn_row["equation"], locals=local_sympy_mappings)
sympy_format.append(eqn)
# Numpy:
lambda_format.append(
CallableEquation(
sympy_symbols, eqn, self.selection_mask_, self.feature_names_in_
)
)
# JAX:
if self.output_jax_format:
from .export_jax import sympy2jax
func, params = sympy2jax(
eqn,
sympy_symbols,
extra_jax_mappings=self.extra_jax_mappings,
)
jax_format.append({"callable": func, "parameters": params})
# Torch:
if self.output_torch_format:
from .export_torch import sympy2torch
module = sympy2torch(
eqn,
sympy_symbols,
extra_torch_mappings=self.extra_torch_mappings,
)
torch_format.append(module)
curMSE = eqn_row["loss"]
curComplexity = eqn_row["complexity"]
if lastMSE is None:
cur_score = 0.0
else:
if curMSE > 0.0:
cur_score = -np.log(curMSE / lastMSE) / (
curComplexity - lastComplexity
)
else:
cur_score = np.inf
scores.append(cur_score)
lastMSE = curMSE
lastComplexity = curComplexity
output["score"] = np.array(scores)
output["sympy_format"] = sympy_format
output["lambda_format"] = lambda_format
output_cols = [
"complexity",
"loss",
"score",
"equation",
"sympy_format",
"lambda_format",
]
if self.output_jax_format:
output_cols += ["jax_format"]
output["jax_format"] = jax_format
if self.output_torch_format:
output_cols += ["torch_format"]
output["torch_format"] = torch_format
ret_outputs.append(output[output_cols])
if self.nout_ > 1:
return ret_outputs
return ret_outputs[0]
def _denoise(X, y, Xresampled=None):
"""Denoise the dataset using a Gaussian process"""
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, WhiteKernel, ConstantKernel
gp_kernel = RBF(np.ones(X.shape[1])) + WhiteKernel(1e-1) + ConstantKernel()
gpr = GaussianProcessRegressor(kernel=gp_kernel, n_restarts_optimizer=50)
gpr.fit(X, y)
if Xresampled is not None:
return Xresampled, gpr.predict(Xresampled)
return X, gpr.predict(X)
# Function has not been removed only due to usage in module tests
def _handle_feature_selection(X, select_k_features, y, variable_names):
if select_k_features is not None:
selection = run_feature_selection(X, y, select_k_features)
print(f"Using features {[variable_names[i] for i in selection]}")
X = X[:, selection]
else:
selection = None
return X, selection
def run_feature_selection(X, y, select_k_features):
"""
Use a gradient boosting tree regressor as a proxy for finding
the k most important features in X, returning indices for those
features as output.
"""
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import SelectFromModel
clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0)
clf.fit(X, y)
selector = SelectFromModel(
clf, threshold=-np.inf, max_features=select_k_features, prefit=True
)
return selector.get_support(indices=True)
|