File size: 44,506 Bytes
2f296b6
976f8d8
 
2f296b6
2f38c9c
976f8d8
 
 
bed9614
976f8d8
 
7ed402e
2f296b6
8f60615
b2d7f41
c822df8
8f60615
c822df8
 
618a3f8
 
 
 
 
 
bed9614
7d4300a
2f38c9c
 
9a7c989
 
14e9a4b
4b56660
26a3c7f
5ada6c7
 
aaf3c83
14e9a4b
ed35c4e
 
7d4300a
2f38c9c
 
4c9fe98
 
 
 
af14165
c7187a6
af14165
10ff16a
44aefe9
 
 
 
 
 
 
 
 
502e3ec
00875eb
 
 
 
 
502e3ec
00875eb
 
 
 
82fef08
 
 
00875eb
c86910d
 
6146f6b
c86910d
4c9fe98
 
5784d04
 
4c9fe98
 
98ccd5e
c86910d
d16abb4
c86910d
 
 
 
 
 
 
4c9fe98
af14165
c7187a6
c86910d
 
 
6146f6b
7049740
82fef08
 
 
7049740
673e8d5
3fcdd9a
 
673e8d5
3fcdd9a
 
 
 
 
 
 
673e8d5
1d19a08
af8d4da
 
 
1f3aace
d16abb4
af8d4da
0445487
1f3aace
af8d4da
 
81cfb5c
af8d4da
1a177ee
 
af8d4da
7049740
82fef08
 
 
7049740
fd42a40
7d4300a
af14165
1b17efe
 
fd42a40
af14165
e0e2933
7d4300a
 
6f3a6fd
 
bfb135a
 
 
4c9fe98
7d4300a
af14165
c7187a6
2f38c9c
c7187a6
af14165
 
ddb4d52
d9913e3
 
 
 
 
 
 
 
 
d85c1a5
ae0b11e
 
ed35c4e
6a4fa2c
 
 
 
5af6354
6a4fa2c
 
af14165
7d4300a
 
932dcf5
7d4300a
 
d85c1a5
4c9fe98
7d4300a
ae0b11e
6a4fa2c
b293893
 
 
f5577ea
b293893
 
 
 
 
50c7eff
b293893
 
f5577ea
b293893
 
 
 
 
6a4fa2c
90d3ef7
 
 
 
 
 
 
 
 
6e07d35
90d3ef7
 
 
8fe6c62
90d3ef7
775c667
ed35c4e
a232b56
58834e8
a232b56
 
 
4c9fe98
a232b56
0020398
58834e8
0020398
 
7d4300a
c7187a6
faa83d3
8cfda07
aa16a1e
03d5a42
 
87880d1
03d5a42
 
 
81cfb5c
0b521f3
7c2bce0
 
 
 
 
03d5a42
aa16a1e
 
c7187a6
aa16a1e
 
0fba777
 
 
 
 
 
21d6b92
 
 
 
 
 
fb5f0a1
ed35c4e
af14165
ffd9cd1
 
 
932dcf5
27fac96
5750d1a
 
4c9fe98
5750d1a
27fac96
 
 
aaf3c83
 
fb5f0a1
 
af14165
 
fb5f0a1
 
5750d1a
50f37a0
ffd9cd1
 
ed35c4e
 
 
ffd9cd1
 
 
 
ed35c4e
ffd9cd1
ad8332d
 
ffd9cd1
 
 
ed35c4e
 
 
ffd9cd1
 
af14165
ffd9cd1
 
561e614
ffd9cd1
b13cd4f
4c9fe98
ffd9cd1
c7187a6
af14165
 
 
45d2b5f
1662e82
ffd9cd1
 
ed35c4e
 
 
ffd9cd1
 
45d2b5f
 
ffd9cd1
a190947
 
 
 
 
 
 
 
224f906
a190947
 
 
 
f266b70
a190947
f266b70
 
 
a190947
ccf71e9
 
 
593c674
 
 
 
ccf71e9
 
 
58e25a9
 
 
 
 
34f4e3f
58e25a9
 
 
 
 
 
 
 
 
 
 
ccf71e9
78cdb0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f4e3f
78cdb0e
 
 
 
 
b53e7fa
 
 
 
 
b8a97f1
34f4e3f
b53e7fa
 
 
 
1adfa85
c6c8728
 
 
 
 
 
 
 
 
 
 
 
 
 
82b18ca
 
 
 
 
 
 
 
0dbee97
82b18ca
 
 
 
 
 
 
0dbee97
82b18ca
c6c8728
 
 
 
 
 
1adfa85
 
fbb7cf7
 
 
7d4300a
 
ec8124e
 
 
7d4300a
 
c6c8728
c7187a6
f59f827
1adfa85
f59f827
1adfa85
a55fec0
 
 
 
 
1adfa85
 
f59f827
1adfa85
 
c7187a6
 
 
f5577ea
97e6589
175b024
 
 
 
 
 
 
 
 
 
 
 
 
97e6589
 
 
51a6b05
ed35c4e
51a6b05
 
ed35c4e
7d4300a
97e6589
505af8d
97e6589
 
ed35c4e
7d4300a
 
5fac847
7d4300a
 
5af6354
7d4300a
 
505af8d
 
7d4300a
97e6589
7d4300a
1662e82
912de01
 
 
 
042b27f
b8a97f1
 
 
 
 
 
 
 
 
 
 
 
 
 
912de01
ad84a1c
 
 
 
c7187a6
912de01
 
 
 
c7187a6
ad84a1c
8f60615
 
 
 
 
 
 
 
 
 
 
6671f5e
 
 
 
 
ad84a1c
 
27fac96
ad84a1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
673c1d2
045bdb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfc129c
 
 
 
 
 
 
 
e29a6da
 
 
 
f340c5b
e29a6da
c5dc7b7
f340c5b
 
 
 
 
 
 
 
c5dc7b7
f340c5b
 
 
c5dc7b7
e29a6da
92eb30b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f296b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
673c1d2
 
857a9ad
2f296b6
 
87880d1
be36d4a
 
 
2f296b6
be36d4a
 
4c9fe98
aaf3c83
857a9ad
c7c02bf
857a9ad
bd90cfc
048be9c
86421d6
 
 
857a9ad
 
 
 
 
2f296b6
 
 
 
 
be36d4a
 
 
 
bd90cfc
2f296b6
c6c8728
af0be92
 
e9fbda8
3fba294
 
 
ce904eb
 
 
af0be92
ce904eb
 
 
 
 
af0be92
 
 
 
 
 
ce904eb
af0be92
c6c8728
3752ba6
 
 
 
 
 
 
 
 
 
 
c6c8728
44b5271
 
 
 
 
 
 
 
 
3752ba6
44b5271
c6c8728
 
 
 
 
fab6f87
c6c8728
 
 
 
 
 
 
fab6f87
c6c8728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44b5271
 
c6c8728
 
3ef2b32
 
 
c6c8728
3752ba6
 
 
c6c8728
 
44b5271
 
215a692
 
c6c8728
3ef2b32
 
 
c6c8728
3752ba6
 
 
44b5271
c6c8728
44b5271
 
c6c8728
3ef2b32
 
 
c6c8728
3752ba6
 
 
 
 
c6c8728
 
44b5271
 
215a692
 
c6c8728
3ef2b32
c6c8728
3752ba6
 
 
c6c8728
9a5df63
82b18ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef2b32
 
 
82b18ca
 
3ef2b32
 
 
82b18ca
 
 
 
 
3752ba6
82b18ca
 
 
 
9a5df63
 
 
b2d7f41
 
 
 
 
9a5df63
 
 
 
 
b2d7f41
9a5df63
 
b2d7f41
9a5df63
 
b2d7f41
118c5f6
2a802ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ef2b32
 
 
2a802ab
3752ba6
 
 
 
 
2a802ab
a2fd8f3
 
2d025c2
 
 
 
 
 
 
 
 
 
 
 
 
0e15dd6
2d025c2
0e86456
 
 
 
 
 
2d025c2
 
4f7e6cf
0e86456
 
 
 
 
 
2d025c2
0e15dd6
2d025c2
 
0e15dd6
 
 
c134e5e
 
2d025c2
04454ac
 
 
 
 
 
 
 
 
7a8dabd
04454ac
 
fbd0ad8
04454ac
 
 
 
 
 
 
 
 
 
 
7a8dabd
04454ac
 
 
 
 
 
 
 
 
 
 
 
 
a117981
db8bfce
 
 
 
a117981
 
22eb380
 
a117981
 
db8bfce
22eb380
 
 
 
a117981
 
 
 
 
 
 
22eb380
db8bfce
a117981
 
 
 
 
 
 
 
 
 
 
 
5dfd8d5
 
 
 
a117981
22eb380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8bfce
 
 
4b48961
db8bfce
 
 
22eb380
 
 
2d025c2
ef66f4a
a2fd8f3
 
 
 
 
 
 
2d025c2
a2fd8f3
ef66f4a
 
 
 
a2fd8f3
ef66f4a
a2fd8f3
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
import os
import pickle as pkl
import tempfile
import traceback
import unittest
import warnings
from pathlib import Path

import numpy as np
import pandas as pd
import sympy
from sklearn.utils.estimator_checks import check_estimator

from .. import PySRRegressor, install, jl
from ..export_latex import sympy2latex
from ..feature_selection import _handle_feature_selection, run_feature_selection
from ..julia_helpers import init_julia
from ..sr import _check_assertions, _process_constraints, idx_model_selection
from ..utils import _csv_filename_to_pkl_filename
from .params import (
    DEFAULT_NCYCLES,
    DEFAULT_NITERATIONS,
    DEFAULT_PARAMS,
    DEFAULT_POPULATIONS,
)


class TestPipeline(unittest.TestCase):
    def setUp(self):
        # Using inspect,
        # get default niterations from PySRRegressor, and double them:
        self.default_test_kwargs = dict(
            progress=False,
            model_selection="accuracy",
            niterations=DEFAULT_NITERATIONS * 2,
            populations=DEFAULT_POPULATIONS * 2,
            temp_equation_file=True,
        )
        self.rstate = np.random.RandomState(0)
        self.X = self.rstate.randn(100, 5)

    def test_linear_relation(self):
        y = self.X[:, 0]
        model = PySRRegressor(
            **self.default_test_kwargs,
            early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
        )
        model.fit(self.X, y)
        print(model.equations_)
        self.assertLessEqual(model.get_best()["loss"], 1e-4)

    def test_linear_relation_named(self):
        y = self.X[:, 0]
        model = PySRRegressor(
            **self.default_test_kwargs,
            early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
        )
        model.fit(self.X, y, variable_names=["c1", "c2", "c3", "c4", "c5"])
        self.assertIn("c1", model.equations_.iloc[-1]["equation"])

    def test_linear_relation_weighted_bumper(self):
        y = self.X[:, 0]
        weights = np.ones_like(y)
        model = PySRRegressor(
            **self.default_test_kwargs,
            early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 1",
            bumper=True,
        )
        model.fit(self.X, y, weights=weights)
        print(model.equations_)
        self.assertLessEqual(model.get_best()["loss"], 1e-4)
        self.assertEqual(
            jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.bumper), True
        )

    def test_multiprocessing_turbo_custom_objective(self):
        rstate = np.random.RandomState(0)
        y = self.X[:, 0]
        y += rstate.randn(*y.shape) * 1e-4
        model = PySRRegressor(
            **self.default_test_kwargs,
            # Turbo needs to work with unsafe operators:
            unary_operators=["sqrt"],
            procs=2,
            multithreading=False,
            turbo=True,
            early_stop_condition="stop_if(loss, complexity) = loss < 1e-10 && complexity == 1",
            loss_function="""
            function my_objective(tree::Node{T}, dataset::Dataset{T}, options::Options) where T
                prediction, flag = eval_tree_array(tree, dataset.X, options)
                !flag && return T(Inf)
                abs3(x) = abs(x) ^ 3
                return sum(abs3, prediction .- dataset.y) / length(prediction)
            end
            """,
        )
        model.fit(self.X, y)
        print(model.equations_)
        best_loss = model.equations_.iloc[-1]["loss"]
        self.assertLessEqual(best_loss, 1e-10)
        self.assertGreaterEqual(best_loss, 0.0)

        # Test options stored:
        self.assertEqual(
            jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.turbo), True
        )

    def test_multiline_seval(self):
        # The user should be able to run multiple things in a single seval call:
        num = jl.seval(
            """
            function my_new_objective(x)
                x^2
            end
            1.5
        """
        )
        self.assertEqual(num, 1.5)

    def test_high_precision_search_custom_loss(self):
        y = 1.23456789 * self.X[:, 0]
        model = PySRRegressor(
            **self.default_test_kwargs,
            early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
            elementwise_loss="my_loss(prediction, target) = (prediction - target)^2",
            precision=64,
            parsimony=0.01,
            warm_start=True,
        )
        model.fit(self.X, y)

        # We should have that the model state is now a Float64 hof:
        test_state = model.raw_julia_state_
        self.assertTrue(jl.typeof(test_state[1]).parameters[1] == jl.Float64)

        # Test options stored:
        self.assertEqual(
            jl.seval("((::Val{x}) where x) -> x")(model.julia_options_.turbo), False
        )

    def test_multioutput_custom_operator_quiet_custom_complexity(self):
        y = self.X[:, [0, 1]] ** 2
        model = PySRRegressor(
            unary_operators=["square_op(x) = x^2"],
            extra_sympy_mappings={"square_op": lambda x: x**2},
            complexity_of_operators={"square_op": 2, "plus": 1},
            binary_operators=["plus"],
            verbosity=0,
            **self.default_test_kwargs,
            procs=0,
            # Test custom operators with turbo:
            turbo=True,
            # Test custom operators with constraints:
            nested_constraints={"square_op": {"square_op": 3}},
            constraints={"square_op": 10},
            early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
        )
        model.fit(self.X, y)
        equations = model.equations_
        print(equations)
        self.assertIn("square_op", model.equations_[0].iloc[-1]["equation"])
        self.assertLessEqual(equations[0].iloc[-1]["loss"], 1e-4)
        self.assertLessEqual(equations[1].iloc[-1]["loss"], 1e-4)

        test_y1 = model.predict(self.X)
        test_y2 = model.predict(self.X, index=[-1, -1])

        mse1 = np.average((test_y1 - y) ** 2)
        mse2 = np.average((test_y2 - y) ** 2)

        self.assertLessEqual(mse1, 1e-4)
        self.assertLessEqual(mse2, 1e-4)

    def test_multioutput_weighted_with_callable_temp_equation(self):
        X = self.X.copy()
        y = X[:, [0, 1]] ** 2
        w = self.rstate.rand(*y.shape)
        w[w < 0.5] = 0.0
        w[w >= 0.5] = 1.0

        # Double equation when weights are 0:
        y = (2 - w) * y
        # Thus, pysr needs to use the weights to find the right equation!

        model = PySRRegressor(
            unary_operators=["sq(x) = x^2"],
            binary_operators=["plus"],
            extra_sympy_mappings={"sq": lambda x: x**2},
            **self.default_test_kwargs,
            procs=0,
            delete_tempfiles=False,
            early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 2",
        )
        model.fit(X.copy(), y, weights=w)

        # These tests are flaky, so don't fail test:
        try:
            np.testing.assert_almost_equal(
                model.predict(X.copy())[:, 0], X[:, 0] ** 2, decimal=3
            )
        except AssertionError:
            print("Error in test_multioutput_weighted_with_callable_temp_equation")
            print("Model equations: ", model.sympy()[0])
            print("True equation: x0^2")

        try:
            np.testing.assert_almost_equal(
                model.predict(X.copy())[:, 1], X[:, 1] ** 2, decimal=3
            )
        except AssertionError:
            print("Error in test_multioutput_weighted_with_callable_temp_equation")
            print("Model equations: ", model.sympy()[1])
            print("True equation: x1^2")

    def test_complex_equations_anonymous_stop(self):
        X = self.rstate.randn(100, 3) + 1j * self.rstate.randn(100, 3)
        y = (2 + 1j) * np.cos(X[:, 0] * (0.5 - 0.3j))
        model = PySRRegressor(
            binary_operators=["+", "-", "*"],
            unary_operators=["cos"],
            **self.default_test_kwargs,
            early_stop_condition="(loss, complexity) -> loss <= 1e-4 && complexity <= 6",
        )
        model.niterations = DEFAULT_NITERATIONS * 10
        model.fit(X, y)
        test_y = model.predict(X)
        self.assertTrue(np.issubdtype(test_y.dtype, np.complexfloating))
        self.assertLessEqual(np.average(np.abs(test_y - y) ** 2), 1e-4)

    def test_empty_operators_single_input_warm_start(self):
        X = self.rstate.randn(100, 1)
        y = X[:, 0] + 3.0
        regressor = PySRRegressor(
            unary_operators=[],
            binary_operators=["plus"],
            **self.default_test_kwargs,
            early_stop_condition="stop_if(loss, complexity) = loss < 1e-4 && complexity == 3",
        )
        self.assertTrue("None" in regressor.__repr__())
        regressor.fit(X, y)
        self.assertTrue("None" not in regressor.__repr__())
        self.assertTrue(">>>>" in regressor.__repr__())

        self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4)
        np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)

        # Test if repeated fit works:
        regressor.set_params(
            niterations=1,
            ncycles_per_iteration=2,
            warm_start=True,
            early_stop_condition=None,
        )

        # We should have that the model state is now a Float32 hof:
        test_state = regressor.julia_state_
        self.assertTrue(
            jl.first(jl.typeof(jl.last(test_state)).parameters) == jl.Float32
        )

        # This should exit almost immediately, and use the old equations
        regressor.fit(X, y)

        self.assertLessEqual(regressor.equations_.iloc[-1]["loss"], 1e-4)
        np.testing.assert_almost_equal(regressor.predict(X), y, decimal=1)

        # Tweak model selection:
        regressor.set_params(model_selection="best")
        self.assertEqual(regressor.get_params()["model_selection"], "best")
        self.assertTrue("None" not in regressor.__repr__())
        self.assertTrue(">>>>" in regressor.__repr__())

    def test_warm_start_set_at_init(self):
        # Smoke test for bug where warm_start=True is set at init
        y = self.X[:, 0]
        regressor = PySRRegressor(warm_start=True, max_evals=10)
        regressor.fit(self.X, y)

    def test_noisy_builtin_variable_names(self):
        y = self.X[:, [0, 1]] ** 2 + self.rstate.randn(self.X.shape[0], 1) * 0.05
        model = PySRRegressor(
            # Test that passing a single operator works:
            unary_operators="sq(x) = x^2",
            binary_operators="plus",
            extra_sympy_mappings={"sq": lambda x: x**2},
            **self.default_test_kwargs,
            procs=0,
            denoise=True,
            early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2",
        )
        # We expect in this case that the "best"
        # equation should be the right one:
        model.set_params(model_selection="best")
        # Also try without a temp equation file:
        model.set_params(temp_equation_file=False)
        # We also test builtin variable names
        model.fit(self.X, y, variable_names=["exec", "hash", "x3", "x4", "x5"])
        self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
        self.assertLessEqual(model.get_best()[1]["loss"], 1e-2)
        self.assertIn("exec", model.latex()[0])
        self.assertIn("hash", model.latex()[1])

    def test_pandas_resample_with_nested_constraints(self):
        X = pd.DataFrame(
            {
                "T": self.rstate.randn(500),
                "x": self.rstate.randn(500),
                "unused_feature": self.rstate.randn(500),
            }
        )
        true_fn = lambda x: np.array(x["T"] + x["x"] ** 2 + 1.323837)
        y = true_fn(X)
        noise = self.rstate.randn(500) * 0.01
        y = y + noise
        # We also test y as a pandas array:
        y = pd.Series(y)
        # Resampled array is a different order of features:
        Xresampled = pd.DataFrame(
            {
                "unused_feature": self.rstate.randn(100),
                "x": self.rstate.randn(100),
                "T": self.rstate.randn(100),
            }
        )
        model = PySRRegressor(
            unary_operators=[],
            binary_operators=["+", "*", "/", "-"],
            **self.default_test_kwargs,
            denoise=True,
            nested_constraints={"/": {"+": 1, "-": 1}, "+": {"*": 4}},
            early_stop_condition="stop_if(loss, complexity) = loss < 1e-3 && complexity == 7",
        )
        model.fit(X, y, Xresampled=Xresampled)
        self.assertNotIn("unused_feature", model.latex())
        self.assertIn("T", model.latex())
        self.assertIn("x", model.latex())
        self.assertLessEqual(model.get_best()["loss"], 1e-1)
        fn = model.get_best()["lambda_format"]
        X2 = pd.DataFrame(
            {
                "T": self.rstate.randn(100),
                "unused_feature": self.rstate.randn(100),
                "x": self.rstate.randn(100),
            }
        )
        self.assertLess(np.average((fn(X2) - true_fn(X2)) ** 2), 1e-1)
        self.assertLess(np.average((model.predict(X2) - true_fn(X2)) ** 2), 1e-1)

    def test_high_dim_selection_early_stop(self):
        X = pd.DataFrame({f"k{i}": self.rstate.randn(10000) for i in range(10)})
        Xresampled = pd.DataFrame({f"k{i}": self.rstate.randn(100) for i in range(10)})
        y = X["k7"] ** 2 + np.cos(X["k9"]) * 3

        model = PySRRegressor(
            unary_operators=["cos"],
            select_k_features=3,
            early_stop_condition=1e-4,  # Stop once most accurate equation is <1e-4 MSE
            maxsize=12,
            **self.default_test_kwargs,
        )
        model.set_params(model_selection="accuracy")
        model.fit(X, y, Xresampled=Xresampled)
        self.assertLess(np.average((model.predict(X) - y) ** 2), 1e-4)
        # Again, but with numpy arrays:
        model.fit(X.values, y.values, Xresampled=Xresampled.values)
        self.assertLess(np.average((model.predict(X.values) - y.values) ** 2), 1e-4)

    def test_load_model(self):
        """See if we can load a ran model from the equation file."""
        csv_file_data = """
        Complexity,Loss,Equation
        1,0.19951081,"1.9762075"
        3,0.12717344,"(f0 + 1.4724599)"
        4,0.104823045,"pow_abs(2.2683423, cos(f3))\""""
        # Strip the indents:
        csv_file_data = "\n".join([l.strip() for l in csv_file_data.split("\n")])

        for from_backup in [False, True]:
            rand_dir = Path(tempfile.mkdtemp())
            equation_filename = str(rand_dir / "equation.csv")
            with open(equation_filename + (".bkup" if from_backup else ""), "w") as f:
                f.write(csv_file_data)
            model = PySRRegressor.from_file(
                equation_filename,
                n_features_in=5,
                feature_names_in=["f0", "f1", "f2", "f3", "f4"],
                binary_operators=["+", "*", "/", "-", "^"],
                unary_operators=["cos"],
            )
            X = self.rstate.rand(100, 5)
            y_truth = 2.2683423 ** np.cos(X[:, 3])
            y_test = model.predict(X, 2)

            np.testing.assert_allclose(y_truth, y_test)

    def test_load_model_simple(self):
        # Test that we can simply load a model from its equation file.
        y = self.X[:, [0, 1]] ** 2
        model = PySRRegressor(
            # Test that passing a single operator works:
            unary_operators="sq(x) = x^2",
            binary_operators="plus",
            extra_sympy_mappings={"sq": lambda x: x**2},
            **self.default_test_kwargs,
            procs=0,
            denoise=True,
            early_stop_condition="stop_if(loss, complexity) = loss < 0.05 && complexity == 2",
        )
        rand_dir = Path(tempfile.mkdtemp())
        equation_file = rand_dir / "equations.csv"
        model.set_params(temp_equation_file=False)
        model.set_params(equation_file=equation_file)
        model.fit(self.X, y)

        # lambda functions are removed from the pickling, so we need
        # to pass it during the loading:
        model2 = PySRRegressor.from_file(
            model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
        )

        np.testing.assert_allclose(model.predict(self.X), model2.predict(self.X))

        # Try again, but using only the pickle file:
        for file_to_delete in [str(equation_file), str(equation_file) + ".bkup"]:
            if os.path.exists(file_to_delete):
                os.remove(file_to_delete)

        pickle_file = rand_dir / "equations.pkl"
        model3 = PySRRegressor.from_file(
            model.equation_file_, extra_sympy_mappings={"sq": lambda x: x**2}
        )
        np.testing.assert_allclose(model.predict(self.X), model3.predict(self.X))


def manually_create_model(equations, feature_names=None):
    if feature_names is None:
        feature_names = ["x0", "x1"]

    model = PySRRegressor(
        progress=False,
        niterations=1,
        extra_sympy_mappings={},
        output_jax_format=False,
        model_selection="accuracy",
        equation_file="equation_file.csv",
    )

    # Set up internal parameters as if it had been fitted:
    if isinstance(equations, list):
        # Multi-output.
        model.equation_file_ = "equation_file.csv"
        model.nout_ = len(equations)
        model.selection_mask_ = None
        model.feature_names_in_ = np.array(feature_names, dtype=object)
        for i in range(model.nout_):
            equations[i]["complexity loss equation".split(" ")].to_csv(
                f"equation_file.csv.out{i+1}.bkup"
            )
    else:
        model.equation_file_ = "equation_file.csv"
        model.nout_ = 1
        model.selection_mask_ = None
        model.feature_names_in_ = np.array(feature_names, dtype=object)
        equations["complexity loss equation".split(" ")].to_csv(
            "equation_file.csv.bkup"
        )

    model.refresh()

    return model


class TestBest(unittest.TestCase):
    def setUp(self):
        self.rstate = np.random.RandomState(0)
        self.X = self.rstate.randn(10, 2)
        self.y = np.cos(self.X[:, 0]) ** 2
        equations = pd.DataFrame(
            {
                "equation": ["1.0", "cos(x0)", "square(cos(x0))"],
                "loss": [1.0, 0.1, 1e-5],
                "complexity": [1, 2, 3],
            }
        )
        self.model = manually_create_model(equations)
        self.equations_ = self.model.equations_

    def test_best(self):
        self.assertEqual(self.model.sympy(), sympy.cos(sympy.Symbol("x0")) ** 2)

    def test_index_selection(self):
        self.assertEqual(self.model.sympy(-1), sympy.cos(sympy.Symbol("x0")) ** 2)
        self.assertEqual(self.model.sympy(2), sympy.cos(sympy.Symbol("x0")) ** 2)
        self.assertEqual(self.model.sympy(1), sympy.cos(sympy.Symbol("x0")))
        self.assertEqual(self.model.sympy(0), 1.0)

    def test_best_tex(self):
        self.assertEqual(self.model.latex(), "\\cos^{2}{\\left(x_{0} \\right)}")

    def test_best_lambda(self):
        X = self.X
        y = self.y
        for f in [self.model.predict, self.equations_.iloc[-1]["lambda_format"]]:
            np.testing.assert_almost_equal(f(X), y, decimal=3)

    def test_all_selection_strategies(self):
        equations = pd.DataFrame(
            dict(
                loss=[1.0, 0.1, 0.01, 0.001 * 1.4, 0.001],
                score=[0.5, 1.0, 0.5, 0.5, 0.3],
            )
        )
        idx_accuracy = idx_model_selection(equations, "accuracy")
        self.assertEqual(idx_accuracy, 4)
        idx_best = idx_model_selection(equations, "best")
        self.assertEqual(idx_best, 3)
        idx_score = idx_model_selection(equations, "score")
        self.assertEqual(idx_score, 1)


class TestFeatureSelection(unittest.TestCase):
    def setUp(self):
        self.rstate = np.random.RandomState(0)

    def test_feature_selection(self):
        X = self.rstate.randn(20000, 5)
        y = X[:, 2] ** 2 + X[:, 3] ** 2
        selected = run_feature_selection(X, y, select_k_features=2)
        np.testing.assert_array_equal(selected, [False, False, True, True, False])

    def test_feature_selection_handler(self):
        X = self.rstate.randn(20000, 5)
        y = X[:, 2] ** 2 + X[:, 3] ** 2
        var_names = [f"x{i}" for i in range(5)]
        selected_X, selection = _handle_feature_selection(
            X,
            select_k_features=2,
            variable_names=var_names,
            y=y,
        )
        np.testing.assert_array_equal(selection, [False, False, True, True, False])
        selected_var_names = [var_names[i] for i in range(5) if selection[i]]
        self.assertEqual(set(selected_var_names), set("x2 x3".split(" ")))
        np.testing.assert_array_equal(
            np.sort(selected_X, axis=1), np.sort(X[:, [2, 3]], axis=1)
        )


class TestMiscellaneous(unittest.TestCase):
    """Test miscellaneous functions."""

    def test_csv_to_pkl_conversion(self):
        """Test that csv filename to pkl filename works as expected."""
        tmpdir = Path(tempfile.mkdtemp())
        equation_file = tmpdir / "equations.389479384.28378374.csv"
        expected_pkl_file = tmpdir / "equations.389479384.28378374.pkl"

        # First, test inputting the paths:
        test_pkl_file = _csv_filename_to_pkl_filename(equation_file)
        self.assertEqual(test_pkl_file, str(expected_pkl_file))

        # Next, test inputting the strings.
        test_pkl_file = _csv_filename_to_pkl_filename(str(equation_file))
        self.assertEqual(test_pkl_file, str(expected_pkl_file))

    def test_deprecation(self):
        """Ensure that deprecation works as expected.

        This should give a warning, and sets the correct value.
        """
        with self.assertWarns(FutureWarning):
            model = PySRRegressor(fractionReplaced=0.2)
        # This is a deprecated parameter, so we should get a warning.

        # The correct value should be set:
        self.assertEqual(model.fraction_replaced, 0.2)

    def test_deprecated_functions(self):
        with self.assertWarns(FutureWarning):
            install()

        _jl = None

        with self.assertWarns(FutureWarning):
            _jl = init_julia()

        self.assertEqual(_jl, jl)

    def test_power_law_warning(self):
        """Ensure that a warning is given for a power law operator."""
        with self.assertWarns(UserWarning):
            _process_constraints(["^"], [], {})

    def test_size_warning(self):
        """Ensure that a warning is given for a large input size."""
        model = PySRRegressor()
        X = np.random.randn(10001, 2)
        y = np.random.randn(10001)
        with warnings.catch_warnings():
            warnings.simplefilter("error")
            with self.assertRaises(Exception) as context:
                model.fit(X, y)
            self.assertIn("more than 10,000", str(context.exception))

    def test_feature_warning(self):
        """Ensure that a warning is given for large number of features."""
        model = PySRRegressor()
        X = np.random.randn(100, 10)
        y = np.random.randn(100)
        with warnings.catch_warnings():
            warnings.simplefilter("error")
            with self.assertRaises(Exception) as context:
                model.fit(X, y)
            self.assertIn("with 10 features or more", str(context.exception))

    def test_deterministic_warnings(self):
        """Ensure that warnings are given for determinism"""
        model = PySRRegressor(random_state=0)
        X = np.random.randn(100, 2)
        y = np.random.randn(100)
        with warnings.catch_warnings():
            warnings.simplefilter("error")
            with self.assertRaises(Exception) as context:
                model.fit(X, y)
            self.assertIn("`deterministic`", str(context.exception))

    def test_deterministic_errors(self):
        """Setting deterministic without random_state should error"""
        model = PySRRegressor(deterministic=True)
        X = np.random.randn(100, 2)
        y = np.random.randn(100)
        with self.assertRaises(ValueError):
            model.fit(X, y)

    def test_extra_sympy_mappings_undefined(self):
        """extra_sympy_mappings=None errors for custom operators"""
        model = PySRRegressor(unary_operators=["square2(x) = x^2"])
        X = np.random.randn(100, 2)
        y = np.random.randn(100)
        with self.assertRaises(ValueError):
            model.fit(X, y)

    def test_sympy_function_fails_as_variable(self):
        model = PySRRegressor()
        X = np.random.randn(100, 2)
        y = np.random.randn(100)
        with self.assertRaises(ValueError) as cm:
            model.fit(X, y, variable_names=["x1", "N"])
        self.assertIn("Variable name", str(cm.exception))

    def test_bad_variable_names_fail(self):
        model = PySRRegressor()
        X = np.random.randn(100, 1)
        y = np.random.randn(100)

        with self.assertRaises(ValueError) as cm:
            model.fit(X, y, variable_names=["Tr(Tij)"])
        self.assertIn("Invalid variable name", str(cm.exception))

        with self.assertRaises(ValueError) as cm:
            model.fit(X, y, variable_names=["f{c}"])
        self.assertIn("Invalid variable name", str(cm.exception))

    def test_bad_kwargs(self):
        bad_kwargs = [
            dict(
                kwargs=dict(
                    elementwise_loss="g(x, y) = 0.0", loss_function="f(*args) = 0.0"
                ),
                error=ValueError,
            ),
            dict(
                kwargs=dict(maxsize=3),
                error=ValueError,
            ),
            dict(
                kwargs=dict(tournament_selection_n=10, population_size=3),
                error=ValueError,
            ),
            dict(
                kwargs=dict(optimizer_algorithm="COBYLA"),
                error=NotImplementedError,
            ),
            dict(
                kwargs=dict(
                    constraints={
                        "+": (3, 5),
                    }
                ),
                error=NotImplementedError,
            ),
            dict(
                kwargs=dict(binary_operators=["α(x, y) = x - y"]),
                error=ValueError,
            ),
            dict(
                kwargs=dict(model_selection="unknown"),
                error=NotImplementedError,
            ),
        ]
        for opt in bad_kwargs:
            model = PySRRegressor(**opt["kwargs"], niterations=1)
            with self.assertRaises(opt["error"]):
                model.fit([[1]], [1])
                model.get_best()
                print("Failed", opt["kwargs"])

    def test_pickle_with_temp_equation_file(self):
        """If we have a temporary equation file, unpickle the estimator."""
        model = PySRRegressor(
            populations=int(1 + DEFAULT_POPULATIONS / 5),
            temp_equation_file=True,
            procs=0,
            multithreading=False,
        )
        nout = 3
        X = np.random.randn(100, 2)
        y = np.random.randn(100, nout)
        model.fit(X, y)
        contents = model.equation_file_contents_.copy()

        y_predictions = model.predict(X)

        equation_file_base = model.equation_file_
        for i in range(1, nout + 1):
            assert not os.path.exists(str(equation_file_base) + f".out{i}.bkup")

        with tempfile.NamedTemporaryFile() as pickle_file:
            pkl.dump(model, pickle_file)
            pickle_file.seek(0)
            model2 = pkl.load(pickle_file)

        contents2 = model2.equation_file_contents_
        cols_to_check = ["equation", "loss", "complexity"]
        for frame1, frame2 in zip(contents, contents2):
            pd.testing.assert_frame_equal(frame1[cols_to_check], frame2[cols_to_check])

        y_predictions2 = model2.predict(X)
        np.testing.assert_array_equal(y_predictions, y_predictions2)

    def test_scikit_learn_compatibility(self):
        """Test PySRRegressor compatibility with scikit-learn."""
        model = PySRRegressor(
            niterations=int(1 + DEFAULT_NITERATIONS / 10),
            populations=int(1 + DEFAULT_POPULATIONS / 3),
            ncycles_per_iteration=int(2 + DEFAULT_NCYCLES / 10),
            verbosity=0,
            progress=False,
            random_state=0,
            deterministic=True,  # Deterministic as tests require this.
            procs=0,
            multithreading=False,
            warm_start=False,
            temp_equation_file=True,
        )  # Return early.

        check_generator = check_estimator(model, generate_only=True)
        exception_messages = []
        for _, check in check_generator:
            if check.func.__name__ == "check_complex_data":
                # We can use complex data, so avoid this check.
                continue
            try:
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore")
                    check(model)
                print("Passed", check.func.__name__)
            except Exception:
                error_message = str(traceback.format_exc())
                exception_messages.append(
                    f"{check.func.__name__}:\n" + error_message + "\n"
                )
                print("Failed", check.func.__name__, "with:")
                # Add a leading tab to error message, which
                # might be multi-line:
                print("\n".join([(" " * 4) + row for row in error_message.split("\n")]))
        # If any checks failed don't let the test pass.
        self.assertEqual(len(exception_messages), 0)

    def test_param_groupings(self):
        """Test that param_groupings are complete"""
        param_groupings_file = Path(__file__).parent.parent / "param_groupings.yml"
        if not param_groupings_file.exists():
            return

        # Read the file, discarding lines ending in ":",
        # and removing leading "\s*-\s*":
        params = []
        with open(param_groupings_file, "r") as f:
            for line in f.readlines():
                if line.strip().endswith(":"):
                    continue
                if line.strip().startswith("-"):
                    params.append(line.strip()[1:].strip())

        regressor_params = [
            p for p in DEFAULT_PARAMS.keys() if p not in ["self", "kwargs"]
        ]

        # Check the sets are equal:
        self.assertSetEqual(set(params), set(regressor_params))


TRUE_PREAMBLE = "\n".join(
    [
        r"\usepackage{breqn}",
        r"\usepackage{booktabs}",
        "",
        "...",
        "",
    ]
)


class TestLaTeXTable(unittest.TestCase):
    def setUp(self):
        equations = pd.DataFrame(
            dict(
                equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"],
                loss=[1.052, 0.02315, 1.12347e-15],
                complexity=[1, 2, 8],
            )
        )
        self.model = manually_create_model(equations)
        self.maxDiff = None

    def create_true_latex(self, middle_part, include_score=False):
        if include_score:
            true_latex_table_str = r"""
                \begin{table}[h]
                \begin{center}
                \begin{tabular}{@{}cccc@{}}
                \toprule
                Equation & Complexity & Loss & Score \\
                \midrule"""
        else:
            true_latex_table_str = r"""
                \begin{table}[h]
                \begin{center}
                \begin{tabular}{@{}ccc@{}}
                \toprule
                Equation & Complexity & Loss \\
                \midrule"""
        true_latex_table_str += middle_part
        true_latex_table_str += r"""\bottomrule
            \end{tabular}
            \end{center}
            \end{table}
        """
        # First, remove empty lines:
        true_latex_table_str = "\n".join(
            [line.strip() for line in true_latex_table_str.split("\n") if len(line) > 0]
        )
        return true_latex_table_str.strip()

    def test_simple_table(self):
        latex_table_str = self.model.latex_table(
            columns=["equation", "complexity", "loss"]
        )
        middle_part = r"""
            $y = x_{0}$ & $1$ & $1.05$ \\
            $y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ \\
            $y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\
        """
        true_latex_table_str = (
            TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
        )
        self.assertEqual(latex_table_str, true_latex_table_str)

    def test_other_precision(self):
        latex_table_str = self.model.latex_table(
            precision=5, columns=["equation", "complexity", "loss"]
        )
        middle_part = r"""
            $y = x_{0}$ & $1$ & $1.0520$ \\
            $y = \cos{\left(x_{0} \right)}$ & $2$ & $0.023150$ \\
            $y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.1235 \cdot 10^{-15}$ \\
        """
        true_latex_table_str = (
            TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
        )
        self.assertEqual(latex_table_str, true_latex_table_str)

    def test_include_score(self):
        latex_table_str = self.model.latex_table()
        middle_part = r"""
            $y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
            $y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
            $y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\
        """
        true_latex_table_str = (
            TRUE_PREAMBLE
            + "\n"
            + self.create_true_latex(middle_part, include_score=True)
        )
        self.assertEqual(latex_table_str, true_latex_table_str)

    def test_last_equation(self):
        latex_table_str = self.model.latex_table(
            indices=[2], columns=["equation", "complexity", "loss"]
        )
        middle_part = r"""
            $y = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ \\
        """
        true_latex_table_str = (
            TRUE_PREAMBLE + "\n" + self.create_true_latex(middle_part)
        )
        self.assertEqual(latex_table_str, true_latex_table_str)

    def test_multi_output(self):
        equations1 = pd.DataFrame(
            dict(
                equation=["x0", "cos(x0)", "x0 + x1 - cos(x1 * x0)"],
                loss=[1.052, 0.02315, 1.12347e-15],
                complexity=[1, 2, 8],
            )
        )
        equations2 = pd.DataFrame(
            dict(
                equation=["x1", "cos(x1)", "x0 * x0 * x1"],
                loss=[1.32, 0.052, 2e-15],
                complexity=[1, 2, 5],
            )
        )
        equations = [equations1, equations2]
        model = manually_create_model(equations)
        middle_part_1 = r"""
            $y_{0} = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
            $y_{0} = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
            $y_{0} = x_{0} + x_{1} - \cos{\left(x_{0} x_{1} \right)}$ & $8$ & $1.12 \cdot 10^{-15}$ & $5.11$ \\
        """
        middle_part_2 = r"""
            $y_{1} = x_{1}$ & $1$ & $1.32$ & $0.0$ \\
            $y_{1} = \cos{\left(x_{1} \right)}$ & $2$ & $0.0520$ & $3.23$ \\
            $y_{1} = x_{0}^{2} x_{1}$ & $5$ & $2.00 \cdot 10^{-15}$ & $10.3$ \\
        """
        true_latex_table_str = "\n\n".join(
            self.create_true_latex(part, include_score=True)
            for part in [middle_part_1, middle_part_2]
        )
        true_latex_table_str = TRUE_PREAMBLE + "\n" + true_latex_table_str
        latex_table_str = model.latex_table()

        self.assertEqual(latex_table_str, true_latex_table_str)

    def test_latex_float_precision(self):
        """Test that we can print latex expressions with custom precision"""
        expr = sympy.Float(4583.4485748, dps=50)
        self.assertEqual(sympy2latex(expr, prec=6), r"4583.45")
        self.assertEqual(sympy2latex(expr, prec=5), r"4583.4")
        self.assertEqual(sympy2latex(expr, prec=4), r"4583.")
        self.assertEqual(sympy2latex(expr, prec=3), r"4.58 \cdot 10^{3}")
        self.assertEqual(sympy2latex(expr, prec=2), r"4.6 \cdot 10^{3}")

        # Multiple numbers:
        x = sympy.Symbol("x")
        expr = x * 3232.324857384 - 1.4857485e-10
        self.assertEqual(
            sympy2latex(expr, prec=2), r"3.2 \cdot 10^{3} x - 1.5 \cdot 10^{-10}"
        )
        self.assertEqual(
            sympy2latex(expr, prec=3), r"3.23 \cdot 10^{3} x - 1.49 \cdot 10^{-10}"
        )
        self.assertEqual(
            sympy2latex(expr, prec=8), r"3232.3249 x - 1.4857485 \cdot 10^{-10}"
        )

    def test_latex_break_long_equation(self):
        """Test that we can break a long equation inside the table"""
        long_equation = """
        - cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0
        + 5.2 * sin(0.3256 * sin(x2) - 2.6 * x0) + x0 * x0 * x0 * x0 * x0
        + cos(cos(x1 * x0) + 3.2 * x0 - 1.2 * x1 + x1 * x1 * x1 + x0 * x0 * x0)
        """
        long_equation = "".join(long_equation.split("\n")).strip()
        equations = pd.DataFrame(
            dict(
                equation=["x0", "cos(x0)", long_equation],
                loss=[1.052, 0.02315, 1.12347e-15],
                complexity=[1, 2, 30],
            )
        )
        model = manually_create_model(equations)
        latex_table_str = model.latex_table()
        middle_part = r"""
        $y = x_{0}$ & $1$ & $1.05$ & $0.0$ \\
        $y = \cos{\left(x_{0} \right)}$ & $2$ & $0.0232$ & $3.82$ \\
        \begin{minipage}{0.8\linewidth} \vspace{-1em} \begin{dmath*} y = x_{0}^{5} + x_{0}^{3} + 3.20 x_{0} + x_{1}^{3} - 1.20 x_{1} - 5.20 \sin{\left(2.60 x_{0} - 0.326 \sin{\left(x_{2} \right)} \right)} - \cos{\left(x_{0} x_{1} \right)} + \cos{\left(x_{0}^{3} + 3.20 x_{0} + x_{1}^{3} - 1.20 x_{1} + \cos{\left(x_{0} x_{1} \right)} \right)} \end{dmath*} \end{minipage} & $30$ & $1.12 \cdot 10^{-15}$ & $1.09$ \\
        """
        true_latex_table_str = (
            TRUE_PREAMBLE
            + "\n"
            + self.create_true_latex(middle_part, include_score=True)
        )
        self.assertEqual(latex_table_str, true_latex_table_str)


class TestDimensionalConstraints(unittest.TestCase):
    def setUp(self):
        self.default_test_kwargs = dict(
            progress=False,
            model_selection="accuracy",
            niterations=DEFAULT_NITERATIONS * 2,
            populations=DEFAULT_POPULATIONS * 2,
            temp_equation_file=True,
        )
        self.rstate = np.random.RandomState(0)
        self.X = self.rstate.randn(100, 5)

    def test_dimensional_constraints(self):
        y = np.cos(self.X[:, [0, 1]])
        model = PySRRegressor(
            binary_operators=[
                "my_add(x, y) = x + y",
                "my_sub(x, y) = x - y",
                "my_mul(x, y) = x * y",
            ],
            unary_operators=["my_cos(x) = cos(x)"],
            **self.default_test_kwargs,
            early_stop_condition=1e-8,
            select_k_features=3,
            extra_sympy_mappings={
                "my_cos": sympy.cos,
                "my_add": lambda x, y: x + y,
                "my_sub": lambda x, y: x - y,
                "my_mul": lambda x, y: x * y,
            },
        )
        model.fit(self.X, y, X_units=["m", "m", "m", "m", "m"], y_units=["m", "m"])

        # The best expression should have complexity larger than just 2:
        for i in range(2):
            self.assertGreater(model.get_best()[i]["complexity"], 2)
            self.assertLess(model.get_best()[i]["loss"], 1e-6)
            simple_eqs = model.equations_[i].query("complexity <= 2")
            self.assertTrue(len(simple_eqs) == 0 or simple_eqs.loss.min() > 1e-6)

    def test_unit_checks(self):
        """This just checks the number of units passed"""
        use_custom_variable_names = False
        variable_names = None
        weights = None
        args = (use_custom_variable_names, variable_names, weights)
        valid_units = [
            (np.ones((10, 2)), np.ones(10), ["m/s", "s"], "m"),
            (np.ones((10, 1)), np.ones(10), ["m/s"], None),
            (np.ones((10, 1)), np.ones(10), None, "km/s"),
            (np.ones((10, 1)), np.ones(10), None, ["m/s"]),
            (np.ones((10, 1)), np.ones((10, 1)), None, ["m/s"]),
            (np.ones((10, 1)), np.ones((10, 2)), None, ["m/s", ""]),
        ]
        for X, y, X_units, y_units in valid_units:
            _check_assertions(
                X,
                *args,
                y,
                X_units,
                y_units,
            )
        invalid_units = [
            (np.ones((10, 2)), np.ones(10), ["m/s", "s", "s^2"], None),
            (np.ones((10, 2)), np.ones(10), ["m/s", "s", "s^2"], "km"),
            (np.ones((10, 2)), np.ones((10, 2)), ["m/s", "s"], ["m"]),
            (np.ones((10, 1)), np.ones((10, 1)), "m/s", ["m"]),
        ]
        for X, y, X_units, y_units in invalid_units:
            with self.assertRaises(ValueError):
                _check_assertions(
                    X,
                    *args,
                    y,
                    X_units,
                    y_units,
                )

    def test_unit_propagation(self):
        """Check that units are propagated correctly.

        This also tests that variables have the correct names.
        """
        X = np.ones((100, 3))
        y = np.ones((100, 1))
        temp_dir = Path(tempfile.mkdtemp())
        equation_file = str(temp_dir / "equation_file.csv")
        model = PySRRegressor(
            binary_operators=["+", "*"],
            early_stop_condition="(l, c) -> l < 1e-6 && c == 3",
            progress=False,
            model_selection="accuracy",
            niterations=DEFAULT_NITERATIONS * 2,
            populations=DEFAULT_POPULATIONS * 2,
            complexity_of_constants=10,
            weight_mutate_constant=0.0,
            should_optimize_constants=False,
            multithreading=False,
            deterministic=True,
            procs=0,
            random_state=0,
            equation_file=equation_file,
            warm_start=True,
        )
        model.fit(
            X,
            y,
            X_units=["m", "s", "A"],
            y_units=["m*A"],
        )
        best = model.get_best()
        self.assertIn("x0", best["equation"])
        self.assertNotIn("x1", best["equation"])
        self.assertIn("x2", best["equation"])
        self.assertEqual(best["complexity"], 3)
        self.assertTrue(
            model.equations_.iloc[0].complexity > 1
            or model.equations_.iloc[0].loss > 1e-6
        )

        # With pkl file:
        pkl_file = str(temp_dir / "equation_file.pkl")
        model2 = PySRRegressor.from_file(pkl_file)
        best2 = model2.get_best()
        self.assertIn("x0", best2["equation"])

        # From csv file alone (we need to delete pkl file:)
        # First, we delete the pkl file:
        os.remove(pkl_file)
        model3 = PySRRegressor.from_file(
            equation_file, binary_operators=["+", "*"], n_features_in=X.shape[1]
        )
        best3 = model3.get_best()
        self.assertIn("x0", best3["equation"])

        # Try warm start, but with no units provided (should
        # be a different dataset, and thus different result):
        model.early_stop_condition = "(l, c) -> l < 1e-6 && c == 1"
        model.fit(X, y)
        self.assertEqual(model.equations_.iloc[0].complexity, 1)
        self.assertLess(model.equations_.iloc[0].loss, 1e-6)


# TODO: Determine desired behavior if second .fit() call does not have units


def runtests(just_tests=False):
    """Run all tests in test.py."""
    test_cases = [
        TestPipeline,
        TestBest,
        TestFeatureSelection,
        TestMiscellaneous,
        TestLaTeXTable,
        TestDimensionalConstraints,
    ]
    if just_tests:
        return test_cases
    suite = unittest.TestSuite()
    loader = unittest.TestLoader()
    for test_case in test_cases:
        suite.addTests(loader.loadTestsFromTestCase(test_case))
    runner = unittest.TextTestRunner()
    return runner.run(suite)