File size: 39,010 Bytes
cfca8a4
ec0919d
a3a2513
 
5908dc9
b158e1f
bf37f2a
bdd2ad4
0a0cfdc
bdd2ad4
03e8b8d
0683428
501ebd3
5290229
6e2fc47
 
b3fd9db
0bd453f
b3fd9db
 
 
 
 
 
6e2fc47
b3fd9db
 
 
 
e0d0dc1
b3fd9db
6ccb05b
 
 
 
b3fd9db
 
1efb6f4
c96b30c
7d4300a
c96b30c
 
 
 
 
 
 
 
 
7d4300a
e199c99
c96b30c
5908dc9
97f43e5
e1ac1c9
5908dc9
7d4300a
 
 
 
 
 
 
 
 
84fdbc6
 
 
 
 
 
 
 
 
 
7d4300a
 
84fdbc6
7d4300a
 
84fdbc6
 
 
 
7d4300a
 
 
 
84fdbc6
0d60bb3
84fdbc6
 
5908dc9
cfca8a4
7d4300a
 
 
 
 
 
 
501ebd3
7d4300a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71b55ac
7d4300a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5750d1a
 
79a7cfe
8e088d6
76cb421
7d4300a
333f394
 
e0cdb7c
333f394
a29e818
 
333f394
5db0d89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17f8bf1
 
 
 
5750d1a
 
79a7cfe
 
8e088d6
bc63109
76cb421
 
5db0d89
 
a3a2513
97f43e5
 
436d629
7d4300a
436d629
f068a46
436d629
 
 
 
 
 
8e088d6
 
 
 
436d629
1efb6f4
97f43e5
42acd41
 
97f43e5
6e2fc47
1efb6f4
97f43e5
db11d11
3c59d19
db11d11
7d4300a
 
 
3c59d19
 
db11d11
3c59d19
7d4300a
17f8bf1
6decb44
85d18bf
 
 
 
306955e
 
 
ffd9cd1
 
1159740
7d4300a
 
e0c68fc
62d539c
e0c68fc
 
 
 
 
 
62d539c
e0c68fc
 
 
 
 
7d4300a
d11773b
7d4300a
 
 
 
 
 
 
 
 
 
aadb328
0683428
7d4300a
 
 
0683428
f068a46
7d4300a
 
 
dfabd6e
 
f068a46
505bce0
181a454
762987c
 
181a454
 
 
 
5cee3b5
5617815
b5b74c3
 
5617815
 
 
 
b5b74c3
 
 
5750d1a
 
 
 
 
ffd9cd1
5750d1a
ffd9cd1
 
 
 
 
 
 
 
 
 
5750d1a
 
 
 
 
 
 
 
 
 
b3fd9db
 
97f43e5
5cee3b5
9a46c88
97f43e5
9a46c88
 
7d4300a
609b9fc
97f43e5
 
 
 
 
 
 
 
c0da614
97f43e5
 
7d4300a
0aafc34
c0fe352
97f43e5
 
 
e68c63f
754d7db
 
 
 
1b34e61
 
c1a7eb6
1b34e61
 
 
 
 
 
b3fd9db
 
 
 
1b34e61
b3fd9db
1b34e61
754d7db
 
 
 
 
 
 
97f43e5
 
 
 
 
 
 
 
 
 
 
 
 
1e552a8
97f43e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76cb421
97f43e5
1e552a8
79a7cfe
 
97f43e5
 
 
b5b74c3
97f43e5
0aafc34
97f43e5
 
b5b74c3
97f43e5
 
 
 
 
 
e199c99
97f43e5
 
 
 
5fac847
 
 
 
 
97f43e5
 
 
 
79a7cfe
97f43e5
 
 
 
 
 
 
 
 
 
 
 
e199c99
97f43e5
b5b74c3
97f43e5
 
 
 
 
 
 
 
 
 
 
 
 
b5b74c3
97f43e5
 
0aafc34
47510a9
 
e199c99
7d4300a
97f43e5
 
 
7d4300a
 
97f43e5
 
 
 
 
 
 
 
 
e199c99
7d4300a
97f43e5
bf37f2a
97f43e5
 
 
 
 
 
 
 
 
 
 
e199c99
97f43e5
 
 
181a454
 
 
 
 
 
7d4300a
181a454
 
7d4300a
 
 
181a454
 
 
61138f4
7d4300a
 
 
 
181a454
 
97f43e5
181a454
62d539c
7d4300a
181a454
 
97f43e5
181a454
 
7d4300a
62d539c
 
7d4300a
181a454
 
 
 
505bce0
181a454
 
ffd9cd1
181a454
 
c96b30c
 
ffd9cd1
181a454
 
7d4300a
 
 
 
 
 
 
 
 
0dfd8e3
 
 
b5b74c3
0dfd8e3
 
b5b74c3
0dfd8e3
 
 
 
7d4300a
bf37f2a
 
7d4300a
 
bf37f2a
4db1c62
6efb0ba
bf37f2a
4db1c62
bf37f2a
7d4300a
 
 
bf37f2a
 
7d4300a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf37f2a
 
 
c96b30c
 
7d4300a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
964b669
4854265
b5b74c3
7d4300a
 
 
 
b5b74c3
7d4300a
4854265
7d4300a
 
 
5908dc9
b5b74c3
d3b73f7
b5b74c3
d3b73f7
 
 
 
 
 
 
 
68b3673
 
7d4300a
 
d3b73f7
 
 
 
7d4300a
d3b73f7
2acedc5
 
b5b74c3
84e4a47
 
505bce0
 
 
84e4a47
 
b5b74c3
68b3673
7d4300a
e0c68fc
 
 
 
 
 
7d4300a
6a4fa2c
84e4a47
68b3673
 
7d4300a
e0c68fc
 
 
 
 
 
86dd9ce
84e4a47
2acedc5
 
b5b74c3
 
 
 
79ef9ab
980d0cf
 
 
79ef9ab
 
b5b74c3
 
 
 
 
7d4300a
 
 
 
 
 
 
 
 
 
 
898f500
7d4300a
 
68b3673
7d4300a
 
5908dc9
b5b74c3
a3a2513
b5b74c3
 
5bb2875
964082a
7d4300a
bf37f2a
a8ee367
 
 
7d4300a
 
7847c48
7d4300a
5bb2875
7d4300a
bf37f2a
 
a8ee367
 
 
7d4300a
 
7847c48
7d4300a
 
 
5bb2875
7d4300a
bf37f2a
 
cc6661a
a8ee367
 
7d4300a
 
d3b73f7
7d4300a
5bb2875
7d4300a
bf37f2a
59cf3d0
cc6661a
a8ee367
 
7d4300a
 
d3b73f7
7d4300a
5bb2875
7d4300a
964082a
6b04774
 
4383f88
fdb138f
4383f88
c0da614
7d4300a
c0da614
 
 
7d4300a
c0da614
7d4300a
 
c0da614
7d4300a
c0da614
 
f544d25
 
5750d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc95c9
f544d25
7d4300a
ffd9cd1
f544d25
 
 
ffd9cd1
f544d25
 
 
 
 
 
ffd9cd1
 
 
f544d25
 
5bb2875
b3fd9db
 
 
 
e0c7f38
 
 
 
 
 
 
 
6e2fc47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7f38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
948a760
e0c7f38
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
import os
import sys
import numpy as np
import pandas as pd
import sympy
from sympy import sympify, lambdify
import subprocess
import tempfile
import shutil
from pathlib import Path
from datetime import datetime
import warnings
from multiprocessing import cpu_count

is_julia_warning_silenced = False


def install(julia_project=None):  # pragma: no cover
    import julia

    julia.install()

    julia_project = _get_julia_project(julia_project)

    init_julia()
    from julia import Pkg

    Pkg.activate(f"{_escape_filename(julia_project)}")
    Pkg.update()
    Pkg.instantiate()
    Pkg.precompile()
    warnings.warn(
        "It is recommended to restart Python after installing PySR's dependencies,"
        " so that the Julia environment is properly initialized."
    )


Main = None
global_state = dict(
    equation_file="hall_of_fame.csv",
    n_features=None,
    variable_names=[],
    extra_sympy_mappings={},
    extra_torch_mappings={},
    extra_jax_mappings={},
    output_jax_format=False,
    output_torch_format=False,
    multioutput=False,
    nout=1,
    selection=None,
    raw_julia_output=None,
)

already_ran = False

sympy_mappings = {
    "div": lambda x, y: x / y,
    "mult": lambda x, y: x * y,
    "sqrt_abs": lambda x: sympy.sqrt(abs(x)),
    "square": lambda x: x ** 2,
    "cube": lambda x: x ** 3,
    "plus": lambda x, y: x + y,
    "sub": lambda x, y: x - y,
    "neg": lambda x: -x,
    "pow": lambda x, y: abs(x) ** y,
    "cos": sympy.cos,
    "sin": sympy.sin,
    "tan": sympy.tan,
    "cosh": sympy.cosh,
    "sinh": sympy.sinh,
    "tanh": sympy.tanh,
    "exp": sympy.exp,
    "acos": sympy.acos,
    "asin": sympy.asin,
    "atan": sympy.atan,
    "acosh": lambda x: sympy.acosh(abs(x) + 1),
    "acosh_abs": lambda x: sympy.acosh(abs(x) + 1),
    "asinh": sympy.asinh,
    "atanh": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1),
    "atanh_clip": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1),
    "abs": abs,
    "mod": sympy.Mod,
    "erf": sympy.erf,
    "erfc": sympy.erfc,
    "log_abs": lambda x: sympy.log(abs(x)),
    "log10_abs": lambda x: sympy.log(abs(x), 10),
    "log2_abs": lambda x: sympy.log(abs(x), 2),
    "log1p_abs": lambda x: sympy.log(abs(x) + 1),
    "floor": sympy.floor,
    "ceil": sympy.ceiling,
    "sign": sympy.sign,
    "gamma": sympy.gamma,
}


def pysr(
    X,
    y,
    weights=None,
    binary_operators=None,
    unary_operators=None,
    procs=cpu_count(),
    loss="L2DistLoss()",
    populations=20,
    niterations=100,
    ncyclesperiteration=300,
    alpha=0.1,
    annealing=False,
    fractionReplaced=0.10,
    fractionReplacedHof=0.10,
    npop=1000,
    parsimony=1e-4,
    migration=True,
    hofMigration=True,
    shouldOptimizeConstants=True,
    topn=10,
    weightAddNode=1,
    weightInsertNode=3,
    weightDeleteNode=3,
    weightDoNothing=1,
    weightMutateConstant=10,
    weightMutateOperator=1,
    weightRandomize=1,
    weightSimplify=0.002,
    perturbationFactor=1.0,
    extra_sympy_mappings=None,
    extra_torch_mappings=None,
    extra_jax_mappings=None,
    equation_file=None,
    verbosity=1e9,
    progress=None,
    maxsize=20,
    fast_cycle=False,
    maxdepth=None,
    variable_names=None,
    batching=False,
    batchSize=50,
    select_k_features=None,
    warmupMaxsizeBy=0.0,
    constraints=None,
    useFrequency=True,
    tempdir=None,
    delete_tempfiles=True,
    julia_project=None,
    update=True,
    temp_equation_file=False,
    output_jax_format=False,
    output_torch_format=False,
    optimizer_algorithm="BFGS",
    optimizer_nrestarts=3,
    optimize_probability=1.0,
    optimizer_iterations=10,
    tournament_selection_n=10,
    tournament_selection_p=1.0,
    denoise=False,
    Xresampled=None,
    precision=32,
    multithreading=None,
    **kwargs,
):
    """Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
    Note: most default parameters have been tuned over several example
    equations, but you should adjust `niterations`,
    `binary_operators`, `unary_operators` to your requirements.
    You can view more detailed explanations of the options on the
    [options page](https://pysr.readthedocs.io/en/latest/docs/options/) of the documentation.

    :param X: 2D array. Rows are examples, columns are features. If pandas DataFrame, the columns are used for variable names (so make sure they don't contain spaces).
    :type X: np.ndarray/pandas.DataFrame
    :param y: 1D array (rows are examples) or 2D array (rows are examples, columns are outputs). Putting in a 2D array will trigger a search for equations for each feature of y.
    :type y: np.ndarray
    :param weights: same shape as y. Each element is how to weight the mean-square-error loss for that particular element of y.
    :type weights: np.ndarray
    :param binary_operators: List of strings giving the binary operators in Julia's Base. Default is ["+", "-", "*", "/",].
    :type binary_operators: list
    :param unary_operators: Same but for operators taking a single scalar. Default is [].
    :type unary_operators: list
    :param procs: Number of processes (=number of populations running).
    :type procs: int
    :param loss: String of Julia code specifying the loss function.  Can either be a loss from LossFunctions.jl, or your own loss written as a function. Examples of custom written losses include: `myloss(x, y) = abs(x-y)` for non-weighted, or `myloss(x, y, w) = w*abs(x-y)` for weighted.  Among the included losses, these are as follows. Regression: `LPDistLoss{P}()`, `L1DistLoss()`, `L2DistLoss()` (mean square), `LogitDistLoss()`, `HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`, `L2EpsilonInsLoss(ϵ)`, `PeriodicLoss(c)`, `QuantileLoss(τ)`.  Classification: `ZeroOneLoss()`, `PerceptronLoss()`, `L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`, `ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`, `SigmoidLoss()`, `DWDMarginLoss(q)`.
    :type loss: str
    :param populations: Number of populations running.
    :type populations: int
    :param niterations: Number of iterations of the algorithm to run. The best equations are printed, and migrate between populations, at the end of each.
    :type niterations: int
    :param ncyclesperiteration: Number of total mutations to run, per 10 samples of the population, per iteration.
    :type ncyclesperiteration: int
    :param alpha: Initial temperature.
    :type alpha: float
    :param annealing: Whether to use annealing. You should (and it is default).
    :type annealing: bool
    :param fractionReplaced: How much of population to replace with migrating equations from other populations.
    :type fractionReplaced: float
    :param fractionReplacedHof: How much of population to replace with migrating equations from hall of fame.
    :type fractionReplacedHof: float
    :param npop: Number of individuals in each population
    :type npop: int
    :param parsimony: Multiplicative factor for how much to punish complexity.
    :type parsimony: float
    :param migration: Whether to migrate.
    :type migration: bool
    :param hofMigration: Whether to have the hall of fame migrate.
    :type hofMigration: bool
    :param shouldOptimizeConstants: Whether to numerically optimize constants (Nelder-Mead/Newton) at the end of each iteration.
    :type shouldOptimizeConstants: bool
    :param topn: How many top individuals migrate from each population.
    :type topn: int
    :param perturbationFactor: Constants are perturbed by a max factor of (perturbationFactor*T + 1). Either multiplied by this or divided by this.
    :type perturbationFactor: float
    :param weightAddNode: Relative likelihood for mutation to add a node
    :type weightAddNode: float
    :param weightInsertNode: Relative likelihood for mutation to insert a node
    :type weightInsertNode: float
    :param weightDeleteNode: Relative likelihood for mutation to delete a node
    :type weightDeleteNode: float
    :param weightDoNothing: Relative likelihood for mutation to leave the individual
    :type weightDoNothing: float
    :param weightMutateConstant: Relative likelihood for mutation to change the constant slightly in a random direction.
    :type weightMutateConstant: float
    :param weightMutateOperator: Relative likelihood for mutation to swap an operator.
    :type weightMutateOperator: float
    :param weightRandomize: Relative likelihood for mutation to completely delete and then randomly generate the equation
    :type weightRandomize: float
    :param weightSimplify: Relative likelihood for mutation to simplify constant parts by evaluation
    :type weightSimplify: float
    :param equation_file: Where to save the files (.csv separated by |)
    :type equation_file: str
    :param verbosity: What verbosity level to use. 0 means minimal print statements.
    :type verbosity: int
    :param progress: Whether to use a progress bar instead of printing to stdout.
    :type progress: bool
    :param maxsize: Max size of an equation.
    :type maxsize: int
    :param maxdepth: Max depth of an equation. You can use both maxsize and maxdepth.  maxdepth is by default set to = maxsize, which means that it is redundant.
    :type maxdepth: int
    :param fast_cycle: (experimental) - batch over population subsamples. This is a slightly different algorithm than regularized evolution, but does cycles 15% faster. May be algorithmically less efficient.
    :type fast_cycle: bool
    :param variable_names: a list of names for the variables, other than "x0", "x1", etc.
    :type variable_names: list
    :param batching: whether to compare population members on small batches during evolution. Still uses full dataset for comparing against hall of fame.
    :type batching: bool
    :param batchSize: the amount of data to use if doing batching.
    :type batchSize: int
    :param select_k_features: whether to run feature selection in Python using random forests, before passing to the symbolic regression code. None means no feature selection; an int means select that many features.
    :type select_k_features: None/int
    :param warmupMaxsizeBy: whether to slowly increase max size from a small number up to the maxsize (if greater than 0).  If greater than 0, says the fraction of training time at which the current maxsize will reach the user-passed maxsize.
    :type warmupMaxsizeBy: float
    :param constraints: dictionary of int (unary) or 2-tuples (binary), this enforces maxsize constraints on the individual arguments of operators. E.g., `'pow': (-1, 1)` says that power laws can have any complexity left argument, but only 1 complexity exponent. Use this to force more interpretable solutions.
    :type constraints: dict
    :param useFrequency: whether to measure the frequency of complexities, and use that instead of parsimony to explore equation space. Will naturally find equations of all complexities.
    :type useFrequency: bool
    :param tempdir: directory for the temporary files
    :type tempdir: str/None
    :param delete_tempfiles: whether to delete the temporary files after finishing
    :type delete_tempfiles: bool
    :param julia_project: a Julia environment location containing a Project.toml (and potentially the source code for SymbolicRegression.jl).  Default gives the Python package directory, where a Project.toml file should be present from the install.
    :type julia_project: str/None
    :param update: Whether to automatically update Julia packages.
    :type update: bool
    :param temp_equation_file: Whether to put the hall of fame file in the temp directory. Deletion is then controlled with the delete_tempfiles argument.
    :type temp_equation_file: bool
    :param output_jax_format: Whether to create a 'jax_format' column in the output, containing jax-callable functions and the default parameters in a jax array.
    :type output_jax_format: bool
    :param output_torch_format: Whether to create a 'torch_format' column in the output, containing a torch module with trainable parameters.
    :type output_torch_format: bool
    :param tournament_selection_n: Number of expressions to consider in each tournament.
    :type tournament_selection_n: int
    :param tournament_selection_p: Probability of selecting the best expression in each tournament. The probability will decay as p*(1-p)^n for other expressions, sorted by loss.
    :type tournament_selection_p: float
    :param denoise: Whether to use a Gaussian Process to denoise the data before inputting to PySR. Can help PySR fit noisy data.
    :type denoise: bool
    :param precision: What precision to use for the data. By default this is 32 (float32), but you can select 64 or 16 as well.
    :type precision: int
    :param multithreading: Use multithreading instead of distributed backend. Default is yes. Using procs=0 will turn off both.
    :type multithreading: bool
    :param **kwargs: Other options passed to SymbolicRegression.Options, for example, if you modify SymbolicRegression.jl to include additional arguments.
    :type **kwargs: dict
    :returns: Results dataframe, giving complexity, MSE, and equations (as strings), as well as functional forms. If list, each element corresponds to a dataframe of equations for each output.
    :type: pd.DataFrame/list
    """
    global already_ran

    if binary_operators is None:
        binary_operators = "+ * - /".split(" ")
    if unary_operators is None:
        unary_operators = []
    if extra_sympy_mappings is None:
        extra_sympy_mappings = {}
    if variable_names is None:
        variable_names = []
    if constraints is None:
        constraints = {}
    if multithreading is None:
        # Default is multithreading=True, unless explicitly set,
        # or procs is set to 0 (serial mode).
        multithreading = procs != 0

    global Main
    if Main is None:
        if multithreading:
            os.environ["JULIA_NUM_THREADS"] = str(procs)

        Main = init_julia()

    buffer_available = "buffer" in sys.stdout.__dir__()

    if progress is not None:
        if progress and not buffer_available:
            warnings.warn(
                "Note: it looks like you are running in Jupyter. The progress bar will be turned off."
            )
            progress = False
    else:
        progress = buffer_available

    assert optimizer_algorithm in ["NelderMead", "BFGS"]
    assert tournament_selection_n < npop

    if isinstance(X, pd.DataFrame):
        variable_names = list(X.columns)
        X = np.array(X)

    if len(X.shape) == 1:
        X = X[:, None]

    assert not isinstance(y, pd.DataFrame)

    if len(variable_names) == 0:
        variable_names = [f"x{i}" for i in range(X.shape[1])]

    if extra_jax_mappings is not None:
        for value in extra_jax_mappings.values():
            if not isinstance(value, str):
                raise NotImplementedError(
                    "extra_jax_mappings must have keys that are strings! e.g., {sympy.sqrt: 'jnp.sqrt'}."
                )

    if extra_torch_mappings is not None:
        for value in extra_jax_mappings.values():
            if not callable(value):
                raise NotImplementedError(
                    "extra_torch_mappings must be callable functions! e.g., {sympy.sqrt: torch.sqrt}."
                )

    use_custom_variable_names = len(variable_names) != 0
    # TODO: this is always true.

    _check_assertions(
        X,
        binary_operators,
        unary_operators,
        use_custom_variable_names,
        variable_names,
        weights,
        y,
    )

    if len(X) > 10000 and not batching:
        warnings.warn(
            "Note: you are running with more than 10,000 datapoints. You should consider turning on batching (https://pysr.readthedocs.io/en/latest/docs/options/#batching). You should also reconsider if you need that many datapoints. Unless you have a large amount of noise (in which case you should smooth your dataset first), generally < 10,000 datapoints is enough to find a functional form with symbolic regression. More datapoints will lower the search speed."
        )

    if maxsize > 40:
        warnings.warn(
            "Note: Using a large maxsize for the equation search will be exponentially slower and use significant memory. You should consider turning `useFrequency` to False, and perhaps use `warmupMaxsizeBy`."
        )
    if maxsize < 7:
        raise NotImplementedError("PySR requires a maxsize of at least 7")

    X, selection = _handle_feature_selection(X, select_k_features, y, variable_names)

    if maxdepth is None:
        maxdepth = maxsize
    if isinstance(binary_operators, str):
        binary_operators = [binary_operators]
    if isinstance(unary_operators, str):
        unary_operators = [unary_operators]

    if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1):
        multioutput = False
        nout = 1
        y = y.reshape(-1)
    elif len(y.shape) == 2:
        multioutput = True
        nout = y.shape[1]
    else:
        raise NotImplementedError("y shape not supported!")

    if denoise:
        if weights is not None:
            raise NotImplementedError(
                "No weights for denoising - the weights are learned."
            )
        if Xresampled is not None:
            # Select among only the selected features:
            if isinstance(Xresampled, pd.DataFrame):
                # Handle Xresampled is pandas dataframe
                if selection is not None:
                    Xresampled = Xresampled[[variable_names[i] for i in selection]]
                else:
                    Xresampled = Xresampled[variable_names]
                Xresampled = np.array(Xresampled)
            else:
                if selection is not None:
                    Xresampled = Xresampled[:, selection]
        if multioutput:
            y = np.stack(
                [_denoise(X, y[:, i], Xresampled=Xresampled)[1] for i in range(nout)],
                axis=1,
            )
            if Xresampled is not None:
                X = Xresampled
        else:
            X, y = _denoise(X, y, Xresampled=Xresampled)

    julia_project = _get_julia_project(julia_project)

    tmpdir = Path(tempfile.mkdtemp(dir=tempdir))

    if temp_equation_file:
        equation_file = tmpdir / "hall_of_fame.csv"
    elif equation_file is None:
        date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
        equation_file = "hall_of_fame_" + date_time + ".csv"

    _create_inline_operators(
        binary_operators=binary_operators, unary_operators=unary_operators
    )
    _handle_constraints(
        binary_operators=binary_operators,
        unary_operators=unary_operators,
        constraints=constraints,
    )

    una_constraints = [constraints[op] for op in unary_operators]
    bin_constraints = [constraints[op] for op in binary_operators]

    try:
        # TODO: is this needed since Julia now prints directly to stdout?
        term_width = shutil.get_terminal_size().columns
    except:
        _, term_width = subprocess.check_output(["stty", "size"]).split()

    if not already_ran:
        from julia import Pkg

        Pkg.activate(f"{_escape_filename(julia_project)}")
        try:
            if update:
                Pkg.resolve()
                Pkg.instantiate()
            else:
                Pkg.instantiate()
        except RuntimeError as e:
            raise ImportError(
                f"""
Required dependencies are not installed or built.  Run the following code in the Python REPL:

    >>> import pysr
    >>> pysr.install()
    
Tried to activate project {julia_project} but failed."""
            ) from e
        Main.eval("using SymbolicRegression")

        Main.plus = Main.eval("(+)")
        Main.sub = Main.eval("(-)")
        Main.mult = Main.eval("(*)")
        Main.pow = Main.eval("(^)")
        Main.div = Main.eval("(/)")

    Main.custom_loss = Main.eval(loss)

    mutationWeights = [
        float(weightMutateConstant),
        float(weightMutateOperator),
        float(weightAddNode),
        float(weightInsertNode),
        float(weightDeleteNode),
        float(weightSimplify),
        float(weightRandomize),
        float(weightDoNothing),
    ]

    options = Main.Options(
        binary_operators=Main.eval(str(tuple(binary_operators)).replace("'", "")),
        unary_operators=Main.eval(str(tuple(unary_operators)).replace("'", "")),
        bin_constraints=bin_constraints,
        una_constraints=una_constraints,
        parsimony=float(parsimony),
        loss=Main.custom_loss,
        alpha=float(alpha),
        maxsize=int(maxsize),
        maxdepth=int(maxdepth),
        fast_cycle=fast_cycle,
        migration=migration,
        hofMigration=hofMigration,
        fractionReplacedHof=float(fractionReplacedHof),
        shouldOptimizeConstants=shouldOptimizeConstants,
        hofFile=_escape_filename(equation_file),
        npopulations=int(populations),
        optimizer_algorithm=optimizer_algorithm,
        optimizer_nrestarts=int(optimizer_nrestarts),
        optimize_probability=float(optimize_probability),
        optimizer_iterations=int(optimizer_iterations),
        perturbationFactor=float(perturbationFactor),
        annealing=annealing,
        batching=batching,
        batchSize=int(min([batchSize, len(X)]) if batching else len(X)),
        mutationWeights=mutationWeights,
        warmupMaxsizeBy=float(warmupMaxsizeBy),
        useFrequency=useFrequency,
        npop=int(npop),
        ns=int(tournament_selection_n),
        probPickFirst=float(tournament_selection_p),
        ncyclesperiteration=int(ncyclesperiteration),
        fractionReplaced=float(fractionReplaced),
        topn=int(topn),
        verbosity=int(verbosity),
        progress=progress,
        terminal_width=int(term_width),
        **kwargs,
    )

    np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[precision]

    Main.X = np.array(X, dtype=np_dtype).T
    if len(y.shape) == 1:
        Main.y = np.array(y, dtype=np_dtype)
    else:
        Main.y = np.array(y, dtype=np_dtype).T
    if weights is not None:
        if len(weights.shape) == 1:
            Main.weights = np.array(weights, dtype=np_dtype)
        else:
            Main.weights = np.array(weights, dtype=np_dtype).T
    else:
        Main.weights = None

    cprocs = 0 if multithreading else procs

    raw_julia_output = Main.EquationSearch(
        Main.X,
        Main.y,
        weights=Main.weights,
        niterations=int(niterations),
        varMap=(
            variable_names
            if selection is None
            else [variable_names[i] for i in selection]
        ),
        options=options,
        numprocs=int(cprocs),
        multithreading=bool(multithreading),
    )

    _set_globals(
        X=X,
        equation_file=equation_file,
        variable_names=variable_names,
        extra_sympy_mappings=extra_sympy_mappings,
        extra_torch_mappings=extra_torch_mappings,
        extra_jax_mappings=extra_jax_mappings,
        output_jax_format=output_jax_format,
        output_torch_format=output_torch_format,
        multioutput=multioutput,
        nout=nout,
        selection=selection,
        raw_julia_output=raw_julia_output,
    )

    equations = get_hof(
        equation_file=equation_file,
        n_features=X.shape[1],
        variable_names=variable_names,
        output_jax_format=output_jax_format,
        output_torch_format=output_torch_format,
        selection=selection,
        extra_sympy_mappings=extra_sympy_mappings,
        extra_jax_mappings=extra_jax_mappings,
        extra_torch_mappings=extra_torch_mappings,
        multioutput=multioutput,
        nout=nout,
    )

    if delete_tempfiles:
        shutil.rmtree(tmpdir)

    already_ran = True

    return equations


def _set_globals(
    *,
    X,
    equation_file,
    variable_names,
    extra_sympy_mappings,
    extra_torch_mappings,
    extra_jax_mappings,
    output_jax_format,
    output_torch_format,
    multioutput,
    nout,
    selection,
    raw_julia_output,
):
    global global_state

    global_state["n_features"] = X.shape[1]
    global_state["equation_file"] = equation_file
    global_state["variable_names"] = variable_names
    global_state["extra_sympy_mappings"] = extra_sympy_mappings
    global_state["extra_torch_mappings"] = extra_torch_mappings
    global_state["extra_jax_mappings"] = extra_jax_mappings
    global_state["output_jax_format"] = output_jax_format
    global_state["output_torch_format"] = output_torch_format
    global_state["multioutput"] = multioutput
    global_state["nout"] = nout
    global_state["selection"] = selection
    global_state["raw_julia_output"] = raw_julia_output


def _handle_constraints(binary_operators, unary_operators, constraints):
    for op in unary_operators:
        if op not in constraints:
            constraints[op] = -1
    for op in binary_operators:
        if op not in constraints:
            constraints[op] = (-1, -1)
        if op in ["plus", "sub"]:
            if constraints[op][0] != constraints[op][1]:
                raise NotImplementedError(
                    "You need equal constraints on both sides for - and *, due to simplification strategies."
                )
        elif op == "mult":
            # Make sure the complex expression is in the left side.
            if constraints[op][0] == -1:
                continue
            if constraints[op][1] == -1 or constraints[op][0] < constraints[op][1]:
                constraints[op][0], constraints[op][1] = (
                    constraints[op][1],
                    constraints[op][0],
                )


def _create_inline_operators(binary_operators, unary_operators):
    for op_list in [binary_operators, unary_operators]:
        for i, op in enumerate(op_list):
            is_user_defined_operator = "(" in op

            if is_user_defined_operator:
                Main.eval(op)
                # Cut off from the first non-alphanumeric char:
                first_non_char = [
                    j
                    for j, char in enumerate(op)
                    if not (char.isalpha() or char.isdigit())
                ][0]
                function_name = op[:first_non_char]
                op_list[i] = function_name


def _handle_feature_selection(X, select_k_features, y, variable_names):
    if select_k_features is not None:
        selection = run_feature_selection(X, y, select_k_features)
        print(f"Using features {[variable_names[i] for i in selection]}")
        X = X[:, selection]

    else:
        selection = None
    return X, selection


def _check_assertions(
    X,
    binary_operators,
    unary_operators,
    use_custom_variable_names,
    variable_names,
    weights,
    y,
):
    # Check for potential errors before they happen
    assert len(unary_operators) + len(binary_operators) > 0
    assert len(X.shape) == 2
    assert len(y.shape) in [1, 2]
    assert X.shape[0] == y.shape[0]
    if weights is not None:
        assert weights.shape == y.shape
        assert X.shape[0] == weights.shape[0]
    if use_custom_variable_names:
        assert len(variable_names) == X.shape[1]


def run_feature_selection(X, y, select_k_features):
    """Use a gradient boosting tree regressor as a proxy for finding
    the k most important features in X, returning indices for those
    features as output."""

    from sklearn.ensemble import RandomForestRegressor
    from sklearn.feature_selection import SelectFromModel

    clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0)
    clf.fit(X, y)
    selector = SelectFromModel(
        clf, threshold=-np.inf, max_features=select_k_features, prefit=True
    )
    return selector.get_support(indices=True)


def get_hof(
    equation_file=None,
    n_features=None,
    variable_names=None,
    output_jax_format=None,
    output_torch_format=None,
    selection=None,
    extra_sympy_mappings=None,
    extra_jax_mappings=None,
    extra_torch_mappings=None,
    multioutput=None,
    nout=None,
    **kwargs,
):
    """Get the equations from a hall of fame file. If no arguments
    entered, the ones used previously from a call to PySR will be used."""

    global global_state

    if equation_file is None:
        equation_file = global_state["equation_file"]
    if n_features is None:
        n_features = global_state["n_features"]
    if variable_names is None:
        variable_names = global_state["variable_names"]
    if extra_sympy_mappings is None:
        extra_sympy_mappings = global_state["extra_sympy_mappings"]
    if extra_jax_mappings is None:
        extra_jax_mappings = global_state["extra_jax_mappings"]
    if extra_torch_mappings is None:
        extra_torch_mappings = global_state["extra_torch_mappings"]
    if output_torch_format is None:
        output_torch_format = global_state["output_torch_format"]
    if output_jax_format is None:
        output_jax_format = global_state["output_jax_format"]
    if multioutput is None:
        multioutput = global_state["multioutput"]
    if nout is None:
        nout = global_state["nout"]
    if selection is None:
        selection = global_state["selection"]

    global_state["selection"] = selection
    global_state["equation_file"] = equation_file
    global_state["n_features"] = n_features
    global_state["variable_names"] = variable_names
    global_state["extra_sympy_mappings"] = extra_sympy_mappings
    global_state["extra_jax_mappings"] = extra_jax_mappings
    global_state["extra_torch_mappings"] = extra_torch_mappings
    global_state["output_torch_format"] = output_torch_format
    global_state["output_jax_format"] = output_jax_format
    global_state["multioutput"] = multioutput
    global_state["nout"] = nout
    global_state["selection"] = selection

    try:
        if multioutput:
            all_outputs = [
                pd.read_csv(str(equation_file) + f".out{i}" + ".bkup", sep="|")
                for i in range(1, nout + 1)
            ]
        else:
            all_outputs = [pd.read_csv(str(equation_file) + ".bkup", sep="|")]
    except FileNotFoundError:
        raise RuntimeError(
            "Couldn't find equation file! The equation search likely exited before a single iteration completed."
        )

    ret_outputs = []

    for output in all_outputs:

        scores = []
        lastMSE = None
        lastComplexity = 0
        sympy_format = []
        lambda_format = []
        if output_jax_format:
            jax_format = []
        if output_torch_format:
            torch_format = []
        use_custom_variable_names = len(variable_names) != 0
        local_sympy_mappings = {**extra_sympy_mappings, **sympy_mappings}

        if use_custom_variable_names:
            sympy_symbols = [sympy.Symbol(variable_names[i]) for i in range(n_features)]
        else:
            sympy_symbols = [sympy.Symbol("x%d" % i) for i in range(n_features)]

        for _, eqn_row in output.iterrows():
            eqn = sympify(eqn_row["Equation"], locals=local_sympy_mappings)
            sympy_format.append(eqn)

            # Numpy:
            lambda_format.append(
                CallableEquation(sympy_symbols, eqn, selection, variable_names)
            )

            # JAX:
            if output_jax_format:
                from .export_jax import sympy2jax

                func, params = sympy2jax(
                    eqn,
                    sympy_symbols,
                    selection=selection,
                    extra_jax_mappings=extra_jax_mappings,
                )
                jax_format.append({"callable": func, "parameters": params})

            # Torch:
            if output_torch_format:
                from .export_torch import sympy2torch

                module = sympy2torch(
                    eqn,
                    sympy_symbols,
                    selection=selection,
                    extra_torch_mappings=extra_torch_mappings,
                )
                torch_format.append(module)

            curMSE = eqn_row["MSE"]
            curComplexity = eqn_row["Complexity"]

            if lastMSE is None:
                cur_score = 0.0
            else:
                if curMSE > 0.0:
                    cur_score = -np.log(curMSE / lastMSE) / (
                        curComplexity - lastComplexity
                    )
                else:
                    cur_score = np.inf

            scores.append(cur_score)
            lastMSE = curMSE
            lastComplexity = curComplexity

        output["score"] = np.array(scores)
        output["sympy_format"] = sympy_format
        output["lambda_format"] = lambda_format
        output_cols = [
            "Complexity",
            "MSE",
            "score",
            "Equation",
            "sympy_format",
            "lambda_format",
        ]
        if output_jax_format:
            output_cols += ["jax_format"]
            output["jax_format"] = jax_format
        if output_torch_format:
            output_cols += ["torch_format"]
            output["torch_format"] = torch_format

        ret_outputs.append(output[output_cols])

    if multioutput:
        return ret_outputs
    return ret_outputs[0]


def best_row(equations=None):
    """Return the best row of a hall of fame file using the score column.
    By default this uses the last equation file.
    """
    if equations is None:
        equations = get_hof()
    if isinstance(equations, list):
        return [eq.iloc[np.argmax(eq["score"])] for eq in equations]
    return equations.iloc[np.argmax(equations["score"])]


def best_tex(equations=None):
    """Return the equation with the best score, in latex format
    By default this uses the last equation file.
    """
    if equations is None:
        equations = get_hof()
    if isinstance(equations, list):
        return [
            sympy.latex(best_row(eq)["sympy_format"].simplify()) for eq in equations
        ]
    return sympy.latex(best_row(equations)["sympy_format"].simplify())


def best(equations=None):
    """Return the equation with the best score, in sympy format.
    By default this uses the last equation file.
    """
    if equations is None:
        equations = get_hof()
    if isinstance(equations, list):
        return [best_row(eq)["sympy_format"].simplify() for eq in equations]
    return best_row(equations)["sympy_format"].simplify()


def best_callable(equations=None):
    """Return the equation with the best score, in callable format.
    By default this uses the last equation file.
    """
    if equations is None:
        equations = get_hof()
    if isinstance(equations, list):
        return [best_row(eq)["lambda_format"] for eq in equations]
    return best_row(equations)["lambda_format"]


def _escape_filename(filename):
    """Turns a file into a string representation with correctly escaped backslashes"""
    str_repr = str(filename)
    str_repr = str_repr.replace("\\", "\\\\")
    return str_repr


# https://gist.github.com/garrettdreyfus/8153571
def _yesno(question):
    """Simple Yes/No Function."""
    prompt = f"{question} (y/n): "
    ans = input(prompt).strip().lower()
    if ans not in ["y", "n"]:
        print(f"{ans} is invalid, please try again...")
        return _yesno(question)
    if ans == "y":
        return True
    return False


def _denoise(X, y, Xresampled=None):
    """Denoise the dataset using a Gaussian process"""
    from sklearn.gaussian_process import GaussianProcessRegressor
    from sklearn.gaussian_process.kernels import RBF, WhiteKernel, ConstantKernel

    gp_kernel = RBF(np.ones(X.shape[1])) + WhiteKernel(1e-1) + ConstantKernel()
    gpr = GaussianProcessRegressor(kernel=gp_kernel, n_restarts_optimizer=50)
    gpr.fit(X, y)
    if Xresampled is not None:
        return Xresampled, gpr.predict(Xresampled)

    return X, gpr.predict(X)


class CallableEquation:
    """Simple wrapper for numpy lambda functions built with sympy"""

    def __init__(self, sympy_symbols, eqn, selection=None, variable_names=None):
        self._sympy = eqn
        self._sympy_symbols = sympy_symbols
        self._selection = selection
        self._variable_names = variable_names
        self._lambda = lambdify(sympy_symbols, eqn)

    def __repr__(self):
        return f"PySRFunction(X=>{self._sympy})"

    def __call__(self, X):
        if isinstance(X, pd.DataFrame):
            X = np.array(X[self._variable_names])

        if self._selection is not None:
            return self._lambda(*X[:, self._selection].T)
        return self._lambda(*X.T)


def _get_julia_project(julia_project):
    if julia_project is None:
        # Create temp directory:
        tmp_dir = tempfile.mkdtemp()
        tmp_dir = Path(tmp_dir)
        # Create Project.toml in temp dir:
        _write_project_file(tmp_dir)
        return tmp_dir
    else:
        return Path(julia_project)


def silence_julia_warning():
    global is_julia_warning_silenced
    is_julia_warning_silenced = True


def init_julia():
    """Initialize julia binary, turning off compiled modules if needed."""
    global is_julia_warning_silenced
    from julia.core import JuliaInfo, UnsupportedPythonError

    info = JuliaInfo.load(julia="julia")
    if not info.is_pycall_built():
        raise ImportError(
            """
    Required dependencies are not installed or built.  Run the following code in the Python REPL:

    >>> import pysr
    >>> pysr.install()"""
        )

    Main = None
    try:
        from julia import Main as _Main

        Main = _Main
    except UnsupportedPythonError:
        if not is_julia_warning_silenced:
            warnings.warn(
                """
Your Python version is statically linked to libpython. For example, this could be the python included with conda, or maybe your system's built-in python.
This will still work, but the precompilation cache for Julia will be turned off, which may result in slower startup times on the initial pysr() call.

To install a Python version that is dynamically linked to libpython, pyenv is recommended (https://github.com/pyenv/pyenv).

To silence this warning, you can run pysr.silence_julia_warning() after importing pysr."""
            )
        from julia.core import Julia

        jl = Julia(compiled_modules=False)
        from julia import Main as _Main

        Main = _Main

    return Main


def _write_project_file(tmp_dir):
    """This writes a Julia Project.toml to a temporary directory

    The reason we need this is because sometimes Python will compile a project to binary,
    and then Julia can't read the Project.toml file. It is more reliable to have Python
    simply create the Project.toml from scratch.
    """

    project_toml = """
[deps]
SymbolicRegression = "8254be44-1295-4e6a-a16d-46603ac705cb"

[compat]
SymbolicRegression = "0.7.0"
julia = "1.5"
    """

    project_toml_path = tmp_dir / "Project.toml"
    project_toml_path.write_text(project_toml)