Spaces:
Sleeping
Sleeping
File size: 38,427 Bytes
cfca8a4 ec0919d 69c3f28 cfca8a4 9b9db9e a3a2513 5908dc9 bf37f2a bdd2ad4 0a0cfdc bdd2ad4 03e8b8d 0683428 5290229 c96b30c 5908dc9 5f486e9 c835184 5908dc9 399aef5 5908dc9 f1c202a 5908dc9 e968e20 09f006f 5908dc9 09f006f bf37f2a 5908dc9 5f486e9 e968e20 5908dc9 e968e20 5908dc9 cfca8a4 6a4fa2c c96b30c 6a4fa2c c96b30c 6a4fa2c c96b30c 6a4fa2c d7444a2 84e4a47 d7444a2 68b3673 d7444a2 68b3673 333f394 e0cdb7c 333f394 85d18bf 3538029 90f5e4c f068a46 90f5e4c f068a46 ecc6ae8 90f5e4c 6143e3c f068a46 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 34fadcf 012bfcc 2e104cc 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 333f394 012bfcc 81d46f1 012bfcc 683071f 7f5b38a 2ca2654 964082a 67558da fe36e3a 67558da e68c63f 15fbc5f 8cfda07 0a0cfdc df4b0b3 e0cdb7c 609b9fc 898f500 68b3673 3538029 c27a9c8 a3a2513 436d629 f068a46 436d629 f068a46 436d629 6decb44 85d18bf 964082a 306955e 43d7ca3 5cee3b5 102209f aadb328 0683428 f068a46 c96b30c 5cee3b5 181a454 762987c 181a454 5cee3b5 5617815 b5b74c3 5617815 b5b74c3 5cee3b5 6decb44 5cee3b5 609b9fc 5cee3b5 81d46f1 21ae49d 5cee3b5 b935024 6decb44 7f2ee62 5cee3b5 67558da 5cee3b5 9640492 76d478e 84e4a47 898f500 b5b74c3 68b3673 c96b30c b5b74c3 5cee3b5 9a46c88 609b9fc c0da614 3c4ee8e e0cdb7c 3c4ee8e e0cdb7c a8bf212 c0da614 9c1e6af 5cee3b5 a58c3d5 8d92d8e a58c3d5 5cee3b5 a58c3d5 8d92d8e a58c3d5 c96b30c 0aafc34 c96b30c 0aafc34 a58c3d5 76d478e a58c3d5 1bd5604 c0da614 d974a2c 59765a8 c1807a5 0aafc34 ec0919d 61d9c14 b971eee cce046c b5fd9da b971eee 0aafc34 0e9470e df4b0b3 a8bf212 0aafc34 1ba0d77 df4b0b3 1ba0d77 c0da614 a8bf212 c0da614 a8bf212 df4b0b3 76d478e 1e13cd6 76d478e df4b0b3 76d478e df4b0b3 e68c63f b5b74c3 0aafc34 1e13cd6 b5b74c3 0aafc34 b5b74c3 0aafc34 b5b74c3 9c1e6af b5b74c3 0aafc34 b5b74c3 9c1e6af 0aafc34 76e7a47 0aafc34 6decb44 0aafc34 9c1e6af 67558da 81d46f1 0aafc34 5cee3b5 e3e2116 df4b0b3 76d478e df4b0b3 5f486e9 09f006f 5f486e9 76d478e fa43750 76d478e df4b0b3 9c1e6af fa43750 9c1e6af e0a69cb 9c1e6af 7f2ee62 6decb44 9c1e6af 226786e 2e104cc 226786e 0e9470e 67558da 9c1e6af 0e9470e 81d46f1 7dd54ff e3e2116 e2ae8ef 0e9470e 0aafc34 0a0cfdc 5cee3b5 9c1e6af 0aafc34 9c1e6af 0aafc34 9c1e6af 0aafc34 bf37f2a 5cee3b5 181a454 9c1e6af 76e7a47 181a454 8b29fef 181a454 c96b30c 181a454 5cee3b5 0dfd8e3 1ba0d77 0dfd8e3 1ba0d77 5cee3b5 0dfd8e3 8b29fef 0dfd8e3 b5b74c3 0dfd8e3 b5b74c3 0dfd8e3 102209f 2309acf 102209f 0dfd8e3 bf37f2a 4db1c62 bf37f2a 4db1c62 bf37f2a 898f500 c96b30c 84e4a47 7f2c133 bf37f2a c96b30c 964b669 4854265 b5b74c3 4854265 102209f 5908dc9 b5b74c3 d3b73f7 b5b74c3 d3b73f7 68b3673 d3b73f7 b5b74c3 84e4a47 c96b30c 84e4a47 b5b74c3 68b3673 c96b30c b5b74c3 6a4fa2c 84e4a47 68b3673 c96b30c 86dd9ce 84e4a47 b5b74c3 898f500 b5b74c3 68b3673 5908dc9 b5b74c3 a3a2513 b5b74c3 964082a bf37f2a a8ee367 7847c48 b5b74c3 7847c48 bf37f2a a8ee367 bf37f2a 7847c48 bf37f2a cc6661a a8ee367 bf37f2a d3b73f7 7847c48 bf37f2a 59cf3d0 cc6661a a8ee367 bf37f2a d3b73f7 7847c48 964082a 6b04774 c0da614 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 |
import os
import sys
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from collections import namedtuple
import pathlib
import numpy as np
import pandas as pd
import sympy
from sympy import sympify, Symbol, lambdify
import subprocess
import tempfile
import shutil
from pathlib import Path
from datetime import datetime
import warnings
global_state = dict(
equation_file='hall_of_fame.csv',
n_features=None,
variable_names=[],
extra_sympy_mappings={},
extra_torch_mappings={},
extra_jax_mappings={},
output_jax_format=False,
output_torch_format=False,
multioutput=False,
nout=1,
selection=None
)
sympy_mappings = {
'div': lambda x, y : x/y,
'mult': lambda x, y : x*y,
'sqrt_abs':lambda x : sympy.sqrt(abs(x)),
'square':lambda x : x**2,
'cube': lambda x : x**3,
'plus': lambda x, y : x + y,
'sub': lambda x, y : x - y,
'neg': lambda x : -x,
'pow': lambda x, y : abs(x)**y,
'cos': lambda x : sympy.cos(x),
'sin': lambda x : sympy.sin(x),
'tan': lambda x : sympy.tan(x),
'cosh': lambda x : sympy.cosh(x),
'sinh': lambda x : sympy.sinh(x),
'tanh': lambda x : sympy.tanh(x),
'exp': lambda x : sympy.exp(x),
'acos': lambda x : sympy.acos(x),
'asin': lambda x : sympy.asin(x),
'atan': lambda x : sympy.atan(x),
'acosh':lambda x : sympy.acosh(abs(x) + 1),
'acosh_abs':lambda x : sympy.acosh(abs(x) + 1),
'asinh':lambda x : sympy.asinh(x),
'atanh':lambda x : sympy.atanh(sympy.Mod(x+1, 2)-1),
'atanh_clip':lambda x : sympy.atanh(sympy.Mod(x+1, 2)-1),
'abs': lambda x : abs(x),
'mod': lambda x, y : sympy.Mod(x, y),
'erf': lambda x : sympy.erf(x),
'erfc': lambda x : sympy.erfc(x),
'log_abs': lambda x : sympy.log(abs(x)),
'log10_abs':lambda x : sympy.log(abs(x), 10),
'log2_abs': lambda x : sympy.log(abs(x), 2),
'log1p_abs': lambda x : sympy.log(abs(x) + 1),
'floor': lambda x : sympy.floor(x),
'ceil': lambda x : sympy.ceil(x),
'sign': lambda x : sympy.sign(x),
'gamma': lambda x : sympy.gamma(x),
}
class CallableEquation(object):
"""Simple wrapper for numpy lambda functions built with sympy"""
def __init__(self, sympy_symbols, eqn, selection=None):
self._sympy = eqn
self._sympy_symbols = sympy_symbols
self._selection = selection
self._lambda = lambdify(sympy_symbols, eqn)
def __repr__(self):
return f"PySRFunction(X=>{self._sympy})"
def __call__(self, X):
if self._selection is not None:
return self._lambda(*X[:, self._selection].T)
else:
return self._lambda(*X.T)
def pysr(X, y, weights=None,
binary_operators=None,
unary_operators=None,
procs=4,
loss='L2DistLoss()',
populations=20,
niterations=100,
ncyclesperiteration=300,
alpha=0.1,
annealing=False,
fractionReplaced=0.10,
fractionReplacedHof=0.10,
npop=1000,
parsimony=1e-4,
migration=True,
hofMigration=True,
shouldOptimizeConstants=True,
topn=10,
weightAddNode=1,
weightInsertNode=3,
weightDeleteNode=3,
weightDoNothing=1,
weightMutateConstant=10,
weightMutateOperator=1,
weightRandomize=1,
weightSimplify=0.01,
perturbationFactor=1.0,
timeout=None,
extra_sympy_mappings=None,
extra_torch_mappings=None,
extra_jax_mappings=None,
equation_file=None,
verbosity=1e9,
progress=True,
maxsize=20,
fast_cycle=False,
maxdepth=None,
variable_names=None,
batching=False,
batchSize=50,
select_k_features=None,
warmupMaxsizeBy=0.0,
constraints=None,
useFrequency=True,
tempdir=None,
delete_tempfiles=True,
julia_optimization=3,
julia_project=None,
user_input=True,
update=True,
temp_equation_file=False,
output_jax_format=False,
output_torch_format=False,
optimizer_algorithm="BFGS",
optimizer_nrestarts=3,
optimize_probability=1.0,
optimizer_iterations=10
):
"""Run symbolic regression to fit f(X[i, :]) ~ y[i] for all i.
Note: most default parameters have been tuned over several example
equations, but you should adjust `niterations`,
`binary_operators`, `unary_operators` to your requirements.
:param X: np.ndarray or pandas.DataFrame, 2D array. Rows are examples,
columns are features. If pandas DataFrame, the columns are used
for variable names (so make sure they don't contain spaces).
:param y: np.ndarray, 1D array (rows are examples) or 2D array (rows
are examples, columns are outputs). Putting in a 2D array will
trigger a search for equations for each feature of y.
:param weights: np.ndarray, same shape as y. Each element is how to
weight the mean-square-error loss for that particular element
of y.
:param binary_operators: list, List of strings giving the binary operators
in Julia's Base. Default is ["+", "-", "*", "/",].
:param unary_operators: list, Same but for operators taking a single scalar.
Default is [].
:param procs: int, Number of processes (=number of populations running).
:param loss: str, String of Julia code specifying the loss function.
Can either be a loss from LossFunctions.jl, or your own
loss written as a function. Examples of custom written losses
include: `myloss(x, y) = abs(x-y)` for non-weighted, or
`myloss(x, y, w) = w*abs(x-y)` for weighted.
Among the included losses, these are as follows. Regression:
`LPDistLoss{P}()`, `L1DistLoss()`, `L2DistLoss()` (mean square),
`LogitDistLoss()`, `HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`,
`L2EpsilonInsLoss(ϵ)`, `PeriodicLoss(c)`, `QuantileLoss(τ)`.
Classification: `ZeroOneLoss()`, `PerceptronLoss()`, `L1HingeLoss()`,
`SmoothedL1HingeLoss(γ)`, `ModifiedHuberLoss()`, `L2MarginLoss()`,
`ExpLoss()`, `SigmoidLoss()`, `DWDMarginLoss(q)`.
:param populations: int, Number of populations running.
:param niterations: int, Number of iterations of the algorithm to run. The best
equations are printed, and migrate between populations, at the
end of each.
:param ncyclesperiteration: int, Number of total mutations to run, per 10
samples of the population, per iteration.
:param alpha: float, Initial temperature.
:param annealing: bool, Whether to use annealing. You should (and it is default).
:param fractionReplaced: float, How much of population to replace with migrating
equations from other populations.
:param fractionReplacedHof: float, How much of population to replace with migrating
equations from hall of fame.
:param npop: int, Number of individuals in each population
:param parsimony: float, Multiplicative factor for how much to punish complexity.
:param migration: bool, Whether to migrate.
:param hofMigration: bool, Whether to have the hall of fame migrate.
:param shouldOptimizeConstants: bool, Whether to numerically optimize
constants (Nelder-Mead/Newton) at the end of each iteration.
:param topn: int, How many top individuals migrate from each population.
:param perturbationFactor: float, Constants are perturbed by a max
factor of (perturbationFactor*T + 1). Either multiplied by this
or divided by this.
:param weightAddNode: float, Relative likelihood for mutation to add a node
:param weightInsertNode: float, Relative likelihood for mutation to insert a node
:param weightDeleteNode: float, Relative likelihood for mutation to delete a node
:param weightDoNothing: float, Relative likelihood for mutation to leave the individual
:param weightMutateConstant: float, Relative likelihood for mutation to change
the constant slightly in a random direction.
:param weightMutateOperator: float, Relative likelihood for mutation to swap
an operator.
:param weightRandomize: float, Relative likelihood for mutation to completely
delete and then randomly generate the equation
:param weightSimplify: float, Relative likelihood for mutation to simplify
constant parts by evaluation
:param timeout: float, Time in seconds to timeout search
:param equation_file: str, Where to save the files (.csv separated by |)
:param verbosity: int, What verbosity level to use. 0 means minimal print statements.
:param progress: bool, Whether to use a progress bar instead of printing to stdout.
:param maxsize: int, Max size of an equation.
:param maxdepth: int, Max depth of an equation. You can use both maxsize and maxdepth.
maxdepth is by default set to = maxsize, which means that it is redundant.
:param fast_cycle: bool, (experimental) - batch over population subsamples. This
is a slightly different algorithm than regularized evolution, but does cycles
15% faster. May be algorithmically less efficient.
:param variable_names: list, a list of names for the variables, other
than "x0", "x1", etc.
:param batching: bool, whether to compare population members on small batches
during evolution. Still uses full dataset for comparing against
hall of fame.
:param batchSize: int, the amount of data to use if doing batching.
:param select_k_features: (None, int), whether to run feature selection in
Python using random forests, before passing to the symbolic regression
code. None means no feature selection; an int means select that many
features.
:param warmupMaxsizeBy: float, whether to slowly increase max size from
a small number up to the maxsize (if greater than 0).
If greater than 0, says the fraction of training time at which
the current maxsize will reach the user-passed maxsize.
:param constraints: dict of int (unary) or 2-tuples (binary),
this enforces maxsize constraints on the individual
arguments of operators. E.g., `'pow': (-1, 1)`
says that power laws can have any complexity left argument, but only
1 complexity exponent. Use this to force more interpretable solutions.
:param useFrequency: bool, whether to measure the frequency of complexities,
and use that instead of parsimony to explore equation space. Will
naturally find equations of all complexities.
:param julia_optimization: int, Optimization level (0, 1, 2, 3)
:param tempdir: str or None, directory for the temporary files
:param delete_tempfiles: bool, whether to delete the temporary files after finishing
:param julia_project: str or None, a Julia environment location containing
a Project.toml (and potentially the source code for SymbolicRegression.jl).
Default gives the Python package directory, where a Project.toml file
should be present from the install.
:param user_input: Whether to ask for user input or not for installing (to
be used for automated scripts). Will choose to install when asked.
:param update: Whether to automatically update Julia packages.
:param temp_equation_file: Whether to put the hall of fame file in
the temp directory. Deletion is then controlled with the
delete_tempfiles argument.
:param output_jax_format: Whether to create a 'jax_format' column in the output,
containing jax-callable functions and the default parameters in a jax array.
:param output_torch_format: Whether to create a 'torch_format' column in the output,
containing a torch module with trainable parameters.
:returns: pd.DataFrame or list, Results dataframe,
giving complexity, MSE, and equations (as strings), as well as functional
forms. If list, each element corresponds to a dataframe of equations
for each output.
"""
if binary_operators is None:
binary_operators = '+ * - /'.split(' ')
if unary_operators is None:
unary_operators = []
if extra_sympy_mappings is None:
extra_sympy_mappings = {}
if variable_names is None:
variable_names = []
if constraints is None:
constraints = {}
assert optimizer_algorithm in ['NelderMead', 'BFGS']
if isinstance(X, pd.DataFrame):
variable_names = list(X.columns)
X = np.array(X)
use_custom_variable_names = (len(variable_names) != 0)
if len(X.shape) == 1:
X = X[:, None]
_check_assertions(X, binary_operators, unary_operators,
use_custom_variable_names, variable_names, weights, y)
_check_for_julia_installation()
if len(X) > 10000 and not batching:
warnings.warn("Note: you are running with more than 10,000 datapoints. You should consider turning on batching (https://pysr.readthedocs.io/en/latest/docs/options/#batching). You should also reconsider if you need that many datapoints. Unless you have a large amount of noise (in which case you should smooth your dataset first), generally < 10,000 datapoints is enough to find a functional form with symbolic regression. More datapoints will lower the search speed.")
if maxsize > 40:
warnings.warn("Note: Using a large maxsize for the equation search will be slow and use significant memory. You should consider turning `useFrequency` to False, and perhaps use `warmupMaxsizeBy`.")
X, variable_names, selection = _handle_feature_selection(
X, select_k_features,
use_custom_variable_names, variable_names, y
)
if maxdepth is None:
maxdepth = maxsize
if isinstance(binary_operators, str):
binary_operators = [binary_operators]
if isinstance(unary_operators, str):
unary_operators = [unary_operators]
if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1):
multioutput = False
nout = 1
y = y.reshape(-1)
elif len(y.shape) == 2:
multioutput = True
nout = y.shape[1]
else:
raise NotImplementedError("y shape not supported!")
kwargs = dict(X=X, y=y, weights=weights,
alpha=alpha, annealing=annealing, batchSize=batchSize,
batching=batching, binary_operators=binary_operators,
fast_cycle=fast_cycle,
fractionReplaced=fractionReplaced,
ncyclesperiteration=ncyclesperiteration,
niterations=niterations, npop=npop, topn=topn,
verbosity=verbosity, progress=progress, update=update,
julia_optimization=julia_optimization, timeout=timeout,
fractionReplacedHof=fractionReplacedHof,
hofMigration=hofMigration, maxdepth=maxdepth,
maxsize=maxsize, migration=migration,
optimizer_algorithm=optimizer_algorithm,
optimizer_nrestarts=optimizer_nrestarts,
optimize_probability=optimize_probability,
optimizer_iterations=optimizer_iterations,
parsimony=parsimony, perturbationFactor=perturbationFactor,
populations=populations, procs=procs,
shouldOptimizeConstants=shouldOptimizeConstants,
unary_operators=unary_operators, useFrequency=useFrequency,
use_custom_variable_names=use_custom_variable_names,
variable_names=variable_names, warmupMaxsizeBy=warmupMaxsizeBy,
weightAddNode=weightAddNode,
weightDeleteNode=weightDeleteNode,
weightDoNothing=weightDoNothing,
weightInsertNode=weightInsertNode,
weightMutateConstant=weightMutateConstant,
weightMutateOperator=weightMutateOperator,
weightRandomize=weightRandomize,
weightSimplify=weightSimplify,
constraints=constraints,
extra_sympy_mappings=extra_sympy_mappings,
extra_jax_mappings=extra_jax_mappings,
extra_torch_mappings=extra_torch_mappings,
julia_project=julia_project, loss=loss,
output_jax_format=output_jax_format,
output_torch_format=output_torch_format,
selection=selection,
multioutput=multioutput, nout=nout)
kwargs = {**_set_paths(tempdir), **kwargs}
if temp_equation_file:
equation_file = kwargs['tmpdir'] / f'hall_of_fame.csv'
elif equation_file is None:
date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
equation_file = 'hall_of_fame_' + date_time + '.csv'
kwargs = {**dict(equation_file=equation_file), **kwargs}
pkg_directory = kwargs['pkg_directory']
manifest_file = None
if kwargs['julia_project'] is not None:
manifest_filepath = Path(kwargs['julia_project']) / 'Manifest.toml'
else:
manifest_filepath = pkg_directory / 'Manifest.toml'
kwargs['need_install'] = False
if not (manifest_filepath).is_file():
kwargs['need_install'] = (not user_input) or _yesno("I will install Julia packages using PySR's Project.toml file. OK?")
if kwargs['need_install']:
print("OK. I will install at launch.")
assert update
kwargs['def_hyperparams'] = _create_inline_operators(**kwargs)
_handle_constraints(**kwargs)
kwargs['constraints_str'] = _make_constraints_str(**kwargs)
kwargs['def_hyperparams'] = _make_hyperparams_julia_str(**kwargs)
kwargs['def_datasets'] = _make_datasets_julia_str(**kwargs)
_create_julia_files(**kwargs)
_final_pysr_process(**kwargs)
_set_globals(**kwargs)
equations = get_hof(**kwargs)
if delete_tempfiles:
shutil.rmtree(kwargs['tmpdir'])
return equations
def _set_globals(X, **kwargs):
global global_state
global_state['n_features'] = X.shape[1]
for key, value in kwargs.items():
if key in global_state:
global_state[key] = value
def _final_pysr_process(julia_optimization, runfile_filename, timeout, **kwargs):
command = [
f'julia', f'-O{julia_optimization:d}',
str(runfile_filename),
]
if timeout is not None:
command = [f'timeout', f'{timeout}'] + command
_cmd_runner(command, **kwargs)
def _cmd_runner(command, **kwargs):
if kwargs['verbosity'] > 0:
print("Running on", ' '.join(command))
process = subprocess.Popen(command, stdout=subprocess.PIPE, bufsize=-1)
try:
while True:
line = process.stdout.readline()
if not line: break
decoded_line = (line.decode('utf-8')
.replace('\\033[K', '\033[K')
.replace('\\033[1A', '\033[1A')
.replace('\\033[1B', '\033[1B')
.replace('\\r', '\r')
.encode(sys.stdout.encoding, errors='replace'))
sys.stdout.buffer.write(decoded_line)
sys.stdout.flush()
process.stdout.close()
process.wait()
except KeyboardInterrupt:
print("Killing process... will return when done.")
process.kill()
def _create_julia_files(dataset_filename, def_datasets, hyperparam_filename, def_hyperparams,
fractionReplaced, ncyclesperiteration, niterations, npop,
runfile_filename, topn, verbosity, julia_project, procs, weights,
X, variable_names, pkg_directory, need_install, update, **kwargs):
with open(hyperparam_filename, 'w') as f:
print(def_hyperparams, file=f)
with open(dataset_filename, 'w') as f:
print(def_datasets, file=f)
with open(runfile_filename, 'w') as f:
if julia_project is None:
julia_project = pkg_directory
else:
julia_project = Path(julia_project)
print(f'import Pkg', file=f)
print(f'Pkg.activate("{_escape_filename(julia_project)}")', file=f)
if need_install:
print(f'Pkg.instantiate()', file=f)
print(f'Pkg.update()', file=f)
print(f'Pkg.precompile()', file=f)
elif update:
print(f'Pkg.update()', file=f)
print(f'using SymbolicRegression', file=f)
print(f'include("{_escape_filename(hyperparam_filename)}")', file=f)
print(f'include("{_escape_filename(dataset_filename)}")', file=f)
if len(variable_names) == 0:
varMap = "[" + ",".join([f'"x{i}"' for i in range(X.shape[1])]) + "]"
else:
varMap = "[" + ",".join(['"' + vname + '"' for vname in variable_names]) + "]"
if weights is not None:
print(f'EquationSearch(X, y, weights=weights, niterations={niterations:d}, varMap={varMap}, options=options, numprocs={procs})', file=f)
else:
print(f'EquationSearch(X, y, niterations={niterations:d}, varMap={varMap}, options=options, numprocs={procs})', file=f)
def _make_datasets_julia_str(X, X_filename, weights, weights_filename, y, y_filename,
multioutput, **kwargs):
def_datasets = """using DelimitedFiles"""
np.savetxt(X_filename, X.astype(np.float32), delimiter=',')
if multioutput:
np.savetxt(y_filename, y.astype(np.float32), delimiter=',')
else:
np.savetxt(y_filename, y.reshape(-1, 1).astype(np.float32), delimiter=',')
if weights is not None:
if multioutput:
np.savetxt(weights_filename, weights.astype(np.float32), delimiter=',')
else:
np.savetxt(weights_filename, weights.reshape(-1, 1).astype(np.float32), delimiter=',')
def_datasets += f"""
X = copy(transpose(readdlm("{_escape_filename(X_filename)}", ',', Float32, '\\n')))"""
if multioutput:
def_datasets+= f"""
y = copy(transpose(readdlm("{_escape_filename(y_filename)}", ',', Float32, '\\n')))"""
else:
def_datasets+= f"""
y = readdlm("{_escape_filename(y_filename)}", ',', Float32, '\\n')[:, 1]"""
if weights is not None:
if multioutput:
def_datasets += f"""
weights = copy(transpose(readdlm("{_escape_filename(weights_filename)}", ',', Float32, '\\n')))"""
else:
def_datasets += f"""
weights = readdlm("{_escape_filename(weights_filename)}", ',', Float32, '\\n')[:, 1]"""
return def_datasets
def _make_hyperparams_julia_str(X, alpha, annealing, batchSize, batching, binary_operators, constraints_str,
def_hyperparams, equation_file, fast_cycle, fractionReplacedHof, hofMigration,
maxdepth, maxsize, migration,
optimizer_algorithm, optimizer_nrestarts,
optimize_probability, optimizer_iterations, npop,
parsimony, perturbationFactor, populations, procs, shouldOptimizeConstants,
unary_operators, useFrequency, use_custom_variable_names,
variable_names, warmupMaxsizeBy, weightAddNode,
ncyclesperiteration, fractionReplaced, topn, verbosity, progress, loss,
weightDeleteNode, weightDoNothing, weightInsertNode, weightMutateConstant,
weightMutateOperator, weightRandomize, weightSimplify, weights, **kwargs):
try:
term_width = shutil.get_terminal_size().columns
except:
_, term_width = subprocess.check_output(['stty', 'size']).split()
def tuple_fix(ops):
if len(ops) > 1:
return ', '.join(ops)
elif len(ops) == 0:
return ''
else:
return ops[0] + ','
def_hyperparams += f"""\n
plus=(+)
sub=(-)
mult=(*)
square=SymbolicRegression.square
cube=SymbolicRegression.cube
pow=(^)
div=(/)
log_abs=SymbolicRegression.log_abs
log2_abs=SymbolicRegression.log2_abs
log10_abs=SymbolicRegression.log10_abs
log1p_abs=SymbolicRegression.log1p_abs
acosh_abs=SymbolicRegression.acosh_abs
atanh_clip=SymbolicRegression.atanh_clip
sqrt_abs=SymbolicRegression.sqrt_abs
neg=SymbolicRegression.neg
greater=SymbolicRegression.greater
relu=SymbolicRegression.relu
logical_or=SymbolicRegression.logical_or
logical_and=SymbolicRegression.logical_and
_custom_loss = {loss}
options = SymbolicRegression.Options(binary_operators={'(' + tuple_fix(binary_operators) + ')'},
unary_operators={'(' + tuple_fix(unary_operators) + ')'},
{constraints_str}
parsimony={parsimony:f}f0,
loss=_custom_loss,
alpha={alpha:f}f0,
maxsize={maxsize:d},
maxdepth={maxdepth:d},
fast_cycle={'true' if fast_cycle else 'false'},
migration={'true' if migration else 'false'},
hofMigration={'true' if hofMigration else 'false'},
fractionReplacedHof={fractionReplacedHof}f0,
shouldOptimizeConstants={'true' if shouldOptimizeConstants else 'false'},
hofFile="{_escape_filename(equation_file)}",
npopulations={populations:d},
optimizer_algorithm="{optimizer_algorithm}",
optimizer_nrestarts={optimizer_nrestarts:d},
optimize_probability={optimize_probability:f}f0,
optimizer_iterations={optimizer_iterations:d},
perturbationFactor={perturbationFactor:f}f0,
annealing={"true" if annealing else "false"},
batching={"true" if batching else "false"},
batchSize={min([batchSize, len(X)]) if batching else len(X):d},
mutationWeights=[
{weightMutateConstant:f},
{weightMutateOperator:f},
{weightAddNode:f},
{weightInsertNode:f},
{weightDeleteNode:f},
{weightSimplify:f},
{weightRandomize:f},
{weightDoNothing:f}
],
warmupMaxsizeBy={warmupMaxsizeBy:f}f0,
useFrequency={"true" if useFrequency else "false"},
npop={npop:d},
ncyclesperiteration={ncyclesperiteration:d},
fractionReplaced={fractionReplaced:f}f0,
topn={topn:d},
verbosity=round(Int32, {verbosity:f}),
progress={'true' if progress else 'false'},
terminal_width={term_width:d}
"""
def_hyperparams += '\n)'
return def_hyperparams
def _make_constraints_str(binary_operators, constraints, unary_operators, **kwargs):
constraints_str = "una_constraints = ["
first = True
for op in unary_operators:
val = constraints[op]
if not first:
constraints_str += ", "
constraints_str += f"{val:d}"
first = False
constraints_str += """],
bin_constraints = ["""
first = True
for op in binary_operators:
tup = constraints[op]
if not first:
constraints_str += ", "
constraints_str += f"({tup[0]:d}, {tup[1]:d})"
first = False
constraints_str += "],"
return constraints_str
def _handle_constraints(binary_operators, constraints, unary_operators, **kwargs):
for op in unary_operators:
if op not in constraints:
constraints[op] = -1
for op in binary_operators:
if op not in constraints:
constraints[op] = (-1, -1)
if op in ['plus', 'sub']:
if constraints[op][0] != constraints[op][1]:
raise NotImplementedError(
"You need equal constraints on both sides for - and *, due to simplification strategies.")
elif op == 'mult':
# Make sure the complex expression is in the left side.
if constraints[op][0] == -1:
continue
elif constraints[op][1] == -1 or constraints[op][0] < constraints[op][1]:
constraints[op][0], constraints[op][1] = constraints[op][1], constraints[op][0]
def _create_inline_operators(binary_operators, unary_operators, **kwargs):
def_hyperparams = ""
for op_list in [binary_operators, unary_operators]:
for i in range(len(op_list)):
op = op_list[i]
is_user_defined_operator = '(' in op
if is_user_defined_operator:
def_hyperparams += op + "\n"
# Cut off from the first non-alphanumeric char:
first_non_char = [
j for j in range(len(op))
if not (op[j].isalpha() or op[j].isdigit())][0]
function_name = op[:first_non_char]
op_list[i] = function_name
return def_hyperparams
def _handle_feature_selection(X, select_k_features, use_custom_variable_names, variable_names, y):
if select_k_features is not None:
selection = run_feature_selection(X, y, select_k_features)
print(f"Using features {selection}")
X = X[:, selection]
if use_custom_variable_names:
variable_names = [variable_names[selection[i]] for i in range(len(selection))]
else:
selection = None
return X, variable_names, selection
def _set_paths(tempdir):
# System-independent paths
pkg_directory = Path(__file__).parents[1]
default_project_file = pkg_directory / "Project.toml"
tmpdir = Path(tempfile.mkdtemp(dir=tempdir))
hyperparam_filename = tmpdir / f'hyperparams.jl'
dataset_filename = tmpdir / f'dataset.jl'
runfile_filename = tmpdir / f'runfile.jl'
X_filename = tmpdir / "X.csv"
y_filename = tmpdir / "y.csv"
weights_filename = tmpdir / "weights.csv"
return dict(pkg_directory=pkg_directory,
default_project_file=default_project_file,
X_filename=X_filename,
dataset_filename=dataset_filename,
hyperparam_filename=hyperparam_filename,
runfile_filename=runfile_filename, tmpdir=tmpdir,
weights_filename=weights_filename, y_filename=y_filename)
def _check_assertions(X, binary_operators, unary_operators, use_custom_variable_names, variable_names, weights, y):
# Check for potential errors before they happen
assert len(unary_operators) + len(binary_operators) > 0
assert len(X.shape) == 2
assert len(y.shape) in [1, 2]
assert X.shape[0] == y.shape[0]
if weights is not None:
assert weights.shape == y.shape
assert X.shape[0] == weights.shape[0]
if use_custom_variable_names:
assert len(variable_names) == X.shape[1]
def _check_for_julia_installation():
try:
process = subprocess.Popen(["julia", "-v"], stdout=subprocess.PIPE, bufsize=-1)
while True:
line = process.stdout.readline()
if not line: break
process.stdout.close()
process.wait()
except FileNotFoundError:
import os
raise RuntimeError(f"Your current $PATH is: {os.environ['PATH']}\nPySR could not start julia. Make sure julia is installed and on your $PATH.")
process.kill()
def run_feature_selection(X, y, select_k_features):
"""Use a gradient boosting tree regressor as a proxy for finding
the k most important features in X, returning indices for those
features as output."""
from sklearn.ensemble import RandomForestRegressor
from sklearn.feature_selection import SelectFromModel, SelectKBest
clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0)
clf.fit(X, y)
selector = SelectFromModel(clf, threshold=-np.inf,
max_features=select_k_features, prefit=True)
return selector.get_support(indices=True)
def get_hof(equation_file=None, n_features=None, variable_names=None,
output_jax_format=None, output_torch_format=None,
selection=None, extra_sympy_mappings=None,
extra_jax_mappings=None, extra_torch_mappings=None,
multioutput=None, nout=None, **kwargs):
"""Get the equations from a hall of fame file. If no arguments
entered, the ones used previously from a call to PySR will be used."""
global global_state
if equation_file is None: equation_file = global_state['equation_file']
if n_features is None: n_features = global_state['n_features']
if variable_names is None: variable_names = global_state['variable_names']
if extra_sympy_mappings is None: extra_sympy_mappings = global_state['extra_sympy_mappings']
if extra_jax_mappings is None: extra_jax_mappings = global_state['extra_jax_mappings']
if extra_torch_mappings is None: extra_torch_mappings = global_state['extra_torch_mappings']
if output_torch_format is None: output_torch_format = global_state['output_torch_format']
if output_jax_format is None: output_jax_format = global_state['output_jax_format']
if multioutput is None: multioutput = global_state['multioutput']
if nout is None: nout = global_state['nout']
global_state['selection'] = selection
global_state['equation_file'] = equation_file
global_state['n_features'] = n_features
global_state['variable_names'] = variable_names
global_state['extra_sympy_mappings'] = extra_sympy_mappings
global_state['extra_jax_mappings'] = extra_jax_mappings
global_state['extra_torch_mappings'] = extra_torch_mappings
global_state['output_torch_format'] = output_torch_format
global_state['output_jax_format'] = output_jax_format
global_state['multioutput'] = multioutput
global_state['nout'] = nout
global_state['selection'] = selection
try:
if multioutput:
all_outputs = [pd.read_csv(f'out{i}_' + str(equation_file) + '.bkup', sep="|") for i in range(1, nout+1)]
else:
all_outputs = [pd.read_csv(str(equation_file) + '.bkup', sep="|")]
except FileNotFoundError:
raise RuntimeError("Couldn't find equation file! The equation search likely exited before a single iteration completed.")
ret_outputs = []
for output in all_outputs:
scores = []
lastMSE = None
lastComplexity = 0
sympy_format = []
lambda_format = []
if output_jax_format:
jax_format = []
if output_torch_format:
torch_format = []
use_custom_variable_names = (len(variable_names) != 0)
local_sympy_mappings = {
**extra_sympy_mappings,
**sympy_mappings
}
if use_custom_variable_names:
sympy_symbols = [sympy.Symbol(variable_names[i]) for i in range(n_features)]
else:
sympy_symbols = [sympy.Symbol('x%d'%i) for i in range(n_features)]
for i in range(len(output)):
eqn = sympify(output.loc[i, 'Equation'], locals=local_sympy_mappings)
sympy_format.append(eqn)
# Numpy:
lambda_format.append(CallableEquation(sympy_symbols, eqn, selection))
# JAX:
if output_jax_format:
from .export_jax import sympy2jax
func, params = sympy2jax(eqn, sympy_symbols, selection)
jax_format.append({'callable': func, 'parameters': params})
# Torch:
if output_torch_format:
from .export_torch import sympy2torch
module = sympy2torch(eqn, sympy_symbols, selection)
torch_format.append(module)
curMSE = output.loc[i, 'MSE']
curComplexity = output.loc[i, 'Complexity']
if lastMSE is None:
cur_score = 0.0
else:
cur_score = - np.log(curMSE/lastMSE)/(curComplexity - lastComplexity)
scores.append(cur_score)
lastMSE = curMSE
lastComplexity = curComplexity
output['score'] = np.array(scores)
output['sympy_format'] = sympy_format
output['lambda_format'] = lambda_format
output_cols = ['Complexity', 'MSE', 'score', 'Equation', 'sympy_format', 'lambda_format']
if output_jax_format:
output_cols += ['jax_format']
output['jax_format'] = jax_format
if output_torch_format:
output_cols += ['torch_format']
output['torch_format'] = torch_format
ret_outputs.append(output[output_cols])
if multioutput:
return ret_outputs
else:
return ret_outputs[0]
def best_row(equations=None):
"""Return the best row of a hall of fame file using the score column.
By default this uses the last equation file.
"""
if equations is None: equations = get_hof()
if isinstance(equations, list):
return [eq.iloc[np.argmax(eq['score'])] for eq in equations]
else:
return equations.iloc[np.argmax(equations['score'])]
def best_tex(equations=None):
"""Return the equation with the best score, in latex format
By default this uses the last equation file.
"""
if equations is None: equations = get_hof()
if isinstance(equations, list):
return [sympy.latex(best_row(eq)['sympy_format'].simplify()) for eq in equations]
else:
return sympy.latex(best_row(equations)['sympy_format'].simplify())
def best(equations=None):
"""Return the equation with the best score, in sympy format.
By default this uses the last equation file.
"""
if equations is None: equations = get_hof()
if isinstance(equations, list):
return [best_row(eq)['sympy_format'].simplify() for eq in equations]
else:
return best_row(equations)['sympy_format'].simplify()
def best_callable(equations=None):
"""Return the equation with the best score, in callable format.
By default this uses the last equation file.
"""
if equations is None: equations = get_hof()
if isinstance(equations, list):
return [best_row(eq)['lambda_format'] for eq in equations]
else:
return best_row(equations)['lambda_format']
def _escape_filename(filename):
"""Turns a file into a string representation with correctly escaped backslashes"""
repr = str(filename)
repr = repr.replace('\\', '\\\\')
return repr
# https://gist.github.com/garrettdreyfus/8153571
def _yesno(question):
"""Simple Yes/No Function."""
prompt = f'{question} (y/n): '
ans = input(prompt).strip().lower()
if ans not in ['y', 'n']:
print(f'{ans} is invalid, please try again...')
return _yesno(question)
if ans == 'y':
return True
return False
|