File size: 53,528 Bytes
cfca8a4
ec0919d
a3a2513
 
5908dc9
b158e1f
bf37f2a
bdd2ad4
0a0cfdc
bdd2ad4
03e8b8d
0683428
501ebd3
66b15fc
2aa3c41
 
5290229
6e2fc47
 
b3fd9db
afca090
b7e75e1
 
 
b3fd9db
 
afca090
b3fd9db
 
 
afca090
0ef4d05
b3fd9db
afca090
 
 
 
 
 
 
 
9d7e45e
bbfbae6
0ef4d05
bbfbae6
 
 
 
 
 
 
0ef4d05
 
 
 
 
 
 
b3fd9db
 
2e834e3
 
 
 
 
 
 
 
 
 
 
 
 
 
bbfbae6
1efb6f4
5908dc9
97f43e5
e1ac1c9
5908dc9
7d4300a
 
 
 
 
 
 
 
 
84fdbc6
 
 
 
 
 
 
 
 
 
7d4300a
 
84fdbc6
7d4300a
 
84fdbc6
 
 
 
7d4300a
 
 
 
84fdbc6
0d60bb3
84fdbc6
 
5908dc9
cfca8a4
7d4300a
66b15fc
 
 
 
97f43e5
66b15fc
 
 
97f43e5
 
 
181a454
 
 
 
 
 
7d4300a
181a454
 
7d4300a
 
 
181a454
 
 
61138f4
7d4300a
 
 
 
181a454
 
97f43e5
66b15fc
181a454
62d539c
7d4300a
181a454
 
97f43e5
181a454
 
7d4300a
62d539c
 
7d4300a
181a454
 
 
 
505bce0
181a454
 
ffd9cd1
181a454
 
c96b30c
 
ffd9cd1
181a454
 
7d4300a
 
 
 
 
 
 
 
 
0dfd8e3
 
 
b5b74c3
0dfd8e3
 
b5b74c3
0dfd8e3
 
 
 
7d4300a
bf37f2a
 
7d4300a
 
bf37f2a
4db1c62
6efb0ba
bf37f2a
4db1c62
bf37f2a
7d4300a
 
 
bf37f2a
 
7d4300a
6b04774
 
4383f88
fdb138f
4383f88
c0da614
af14165
66b15fc
af14165
 
 
 
66b15fc
a2862ab
af14165
de2d4ba
af14165
 
a2862ab
66b15fc
af14165
 
 
 
66b15fc
 
af14165
 
 
7d4300a
f544d25
5750d1a
 
 
 
 
 
 
 
 
 
 
 
 
 
fdc95c9
f544d25
7d4300a
ffd9cd1
f544d25
 
 
ffd9cd1
f544d25
 
 
 
 
 
ffd9cd1
555ddd0
 
 
f544d25
5bb2875
b3fd9db
 
 
 
e0c7f38
 
 
 
 
 
 
 
6e2fc47
 
 
 
 
 
 
 
 
 
 
 
 
 
2e834e3
6e2fc47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0c7f38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0428573
e0c7f38
 
 
 
 
66b15fc
 
 
 
 
a47d265
66b15fc
 
 
 
 
d01ec4b
 
 
66b15fc
 
d01ec4b
 
 
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0428573
66b15fc
 
 
 
 
 
 
 
 
 
a47d265
66b15fc
 
 
 
 
 
 
b7e75e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0428573
 
66b15fc
 
688c82c
 
66b15fc
 
0428573
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e63cf2d
 
66b15fc
 
 
 
 
 
 
e63cf2d
 
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0428573
66b15fc
 
 
 
 
 
ed19905
 
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af14165
66b15fc
 
 
b7e75e1
70a6907
b7e75e1
 
 
66b15fc
 
 
ec8124e
 
66b15fc
ec8124e
 
66b15fc
ec8124e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66b15fc
ec8124e
 
 
 
 
 
 
 
 
 
 
 
 
 
66b15fc
 
 
b7e75e1
66b15fc
 
 
 
 
 
 
 
 
b7e75e1
66b15fc
 
 
b6f3a08
66b15fc
 
 
b7e75e1
66b15fc
ec8124e
66b15fc
ec8124e
 
66b15fc
 
ec8124e
 
 
66b15fc
ec8124e
 
 
66b15fc
 
b7e75e1
66b15fc
 
 
 
 
 
 
 
b7e75e1
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e75e1
 
 
 
 
 
 
 
 
66b15fc
ec8124e
 
 
 
66b15fc
 
b7e75e1
66b15fc
ec8124e
 
 
 
66b15fc
 
b7e75e1
66b15fc
ec8124e
 
 
 
66b15fc
 
b7e75e1
70a6907
b7e75e1
 
 
 
aef1f27
 
 
 
 
 
66b15fc
 
ec8124e
 
 
 
1662e82
66b15fc
b7e75e1
70a6907
b7e75e1
 
 
 
 
aef1f27
 
 
 
 
 
66b15fc
 
ec8124e
 
 
 
66b15fc
70dcb83
 
 
 
 
 
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aef1f27
 
 
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8124e
66b15fc
 
 
ec8124e
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e274713
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0e2933
 
66b15fc
e0e2933
 
 
66b15fc
 
e0e2933
 
66b15fc
e0e2933
66b15fc
2e834e3
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aa3c41
9e00705
 
ed19905
2aa3c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed19905
2aa3c41
ed19905
 
 
9e00705
70dcb83
 
 
ed19905
 
2aa3c41
ed19905
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed19905
0428573
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70dcb83
66b15fc
 
 
 
 
 
 
 
 
 
 
 
ed19905
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af14165
 
 
66b15fc
 
 
af14165
 
 
 
 
 
 
 
 
 
 
66b15fc
 
af14165
 
 
 
 
 
 
 
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af14165
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af14165
 
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af14165
 
66b15fc
af14165
66b15fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec8124e
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
import os
import sys
import numpy as np
import pandas as pd
import sympy
from sympy import sympify, lambdify
import subprocess
import tempfile
import shutil
from pathlib import Path
from datetime import datetime
import warnings
from multiprocessing import cpu_count
from sklearn.base import BaseEstimator, RegressorMixin
from collections import OrderedDict
from hashlib import sha256

is_julia_warning_silenced = False


def install(julia_project=None, quiet=False):  # pragma: no cover
    """Install PyCall.jl and all required dependencies for SymbolicRegression.jl.

    Also updates the local Julia registry."""
    import julia

    julia.install(quiet=quiet)

    julia_project = _get_julia_project(julia_project)

    Main = init_julia()
    Main.eval("using Pkg")

    if quiet:
        # Point IO to /dev/null
        io = "devnull"
    else:
        io = "stderr"

    # Can't pass IO to Julia call as it evaluates to PyObject, so just directly
    # use Main.eval:
    Main.eval(f'Pkg.activate("{_escape_filename(julia_project)}", io={io})')
    try:
        Main.eval(f"Pkg.update(io={io})")
    except RuntimeError as e:
        raise ModuleNotFoundError(
            "Could not update Julia project. "
            "It is possible that your Julia registry is out-of-date. "
            "To switch to an always-updated registry, "
            "see the solution in https://github.com/MilesCranmer/PySR/issues/27."
        ) from e
    Main.eval(f"Pkg.instantiate(io={io})")
    Main.eval(f"Pkg.precompile(io={io})")
    if not quiet:
        warnings.warn(
            "It is recommended to restart Python after installing PySR's dependencies,"
            " so that the Julia environment is properly initialized."
        )


def import_error_string(julia_project=None):
    s = f"""
    Required dependencies are not installed or built.  Run the following code in the Python REPL:

        >>> import pysr
        >>> pysr.install()
    """

    if julia_project is not None:
        s += f"""
        Tried to activate project {julia_project} but failed."""

    return s


Main = None

already_ran = False

sympy_mappings = {
    "div": lambda x, y: x / y,
    "mult": lambda x, y: x * y,
    "sqrt_abs": lambda x: sympy.sqrt(abs(x)),
    "square": lambda x: x ** 2,
    "cube": lambda x: x ** 3,
    "plus": lambda x, y: x + y,
    "sub": lambda x, y: x - y,
    "neg": lambda x: -x,
    "pow": lambda x, y: abs(x) ** y,
    "cos": sympy.cos,
    "sin": sympy.sin,
    "tan": sympy.tan,
    "cosh": sympy.cosh,
    "sinh": sympy.sinh,
    "tanh": sympy.tanh,
    "exp": sympy.exp,
    "acos": sympy.acos,
    "asin": sympy.asin,
    "atan": sympy.atan,
    "acosh": lambda x: sympy.acosh(abs(x) + 1),
    "acosh_abs": lambda x: sympy.acosh(abs(x) + 1),
    "asinh": sympy.asinh,
    "atanh": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1),
    "atanh_clip": lambda x: sympy.atanh(sympy.Mod(x + 1, 2) - 1),
    "abs": abs,
    "mod": sympy.Mod,
    "erf": sympy.erf,
    "erfc": sympy.erfc,
    "log_abs": lambda x: sympy.log(abs(x)),
    "log10_abs": lambda x: sympy.log(abs(x), 10),
    "log2_abs": lambda x: sympy.log(abs(x), 2),
    "log1p_abs": lambda x: sympy.log(abs(x) + 1),
    "floor": sympy.floor,
    "ceil": sympy.ceiling,
    "sign": sympy.sign,
    "gamma": sympy.gamma,
}


def pysr(X, y, weights=None, **kwargs):
    warnings.warn(
        "Calling `pysr` is deprecated. Please use `model = PySRRegressor(**params); model.fit(X, y)` going forward.",
        DeprecationWarning,
    )
    model = PySRRegressor(**kwargs)
    model.fit(X, y, weights=weights)
    return model.equations


def _handle_constraints(binary_operators, unary_operators, constraints):
    for op in unary_operators:
        if op not in constraints:
            constraints[op] = -1
    for op in binary_operators:
        if op not in constraints:
            constraints[op] = (-1, -1)
        if op in ["plus", "sub"]:
            if constraints[op][0] != constraints[op][1]:
                raise NotImplementedError(
                    "You need equal constraints on both sides for - and *, due to simplification strategies."
                )
        elif op == "mult":
            # Make sure the complex expression is in the left side.
            if constraints[op][0] == -1:
                continue
            if constraints[op][1] == -1 or constraints[op][0] < constraints[op][1]:
                constraints[op][0], constraints[op][1] = (
                    constraints[op][1],
                    constraints[op][0],
                )


def _create_inline_operators(binary_operators, unary_operators):
    global Main
    for op_list in [binary_operators, unary_operators]:
        for i, op in enumerate(op_list):
            is_user_defined_operator = "(" in op

            if is_user_defined_operator:
                Main.eval(op)
                # Cut off from the first non-alphanumeric char:
                first_non_char = [
                    j
                    for j, char in enumerate(op)
                    if not (char.isalpha() or char.isdigit())
                ][0]
                function_name = op[:first_non_char]
                op_list[i] = function_name


def _handle_feature_selection(X, select_k_features, y, variable_names):
    if select_k_features is not None:
        selection = run_feature_selection(X, y, select_k_features)
        print(f"Using features {[variable_names[i] for i in selection]}")
        X = X[:, selection]

    else:
        selection = None
    return X, selection


def _check_assertions(
    X,
    binary_operators,
    unary_operators,
    use_custom_variable_names,
    variable_names,
    weights,
    y,
):
    # Check for potential errors before they happen
    assert len(unary_operators) + len(binary_operators) > 0
    assert len(X.shape) == 2
    assert len(y.shape) in [1, 2]
    assert X.shape[0] == y.shape[0]
    if weights is not None:
        assert weights.shape == y.shape
        assert X.shape[0] == weights.shape[0]
    if use_custom_variable_names:
        assert len(variable_names) == X.shape[1]


def run_feature_selection(X, y, select_k_features):
    """Use a gradient boosting tree regressor as a proxy for finding
    the k most important features in X, returning indices for those
    features as output."""

    from sklearn.ensemble import RandomForestRegressor
    from sklearn.feature_selection import SelectFromModel

    clf = RandomForestRegressor(n_estimators=100, max_depth=3, random_state=0)
    clf.fit(X, y)
    selector = SelectFromModel(
        clf, threshold=-np.inf, max_features=select_k_features, prefit=True
    )
    return selector.get_support(indices=True)


def _escape_filename(filename):
    """Turns a file into a string representation with correctly escaped backslashes"""
    str_repr = str(filename)
    str_repr = str_repr.replace("\\", "\\\\")
    return str_repr


def best(*args, **kwargs):
    raise NotImplementedError(
        "`best` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.sympy()` to get the sympy representation of the best equation."
    )


def best_row(*args, **kwargs):
    raise NotImplementedError(
        "`best_row` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can run `print(model)` to view the best equation, or `model.get_best()` to return the best equation's row in `model.equations`."
    )


def best_tex(*args, **kwargs):
    raise NotImplementedError(
        "`best_tex` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can return `.latex()` to get the sympy representation of the best equation."
    )


def best_callable(*args, **kwargs):
    raise NotImplementedError(
        "`best_callable` has been deprecated. Please use the `PySRRegressor` interface. After fitting, you can use `.predict(X)` to use the best callable."
    )


def _denoise(X, y, Xresampled=None):
    """Denoise the dataset using a Gaussian process"""
    from sklearn.gaussian_process import GaussianProcessRegressor
    from sklearn.gaussian_process.kernels import RBF, WhiteKernel, ConstantKernel

    gp_kernel = RBF(np.ones(X.shape[1])) + WhiteKernel(1e-1) + ConstantKernel()
    gpr = GaussianProcessRegressor(kernel=gp_kernel, n_restarts_optimizer=50)
    gpr.fit(X, y)
    if Xresampled is not None:
        return Xresampled, gpr.predict(Xresampled)

    return X, gpr.predict(X)


class CallableEquation:
    """Simple wrapper for numpy lambda functions built with sympy"""

    def __init__(self, sympy_symbols, eqn, selection=None, variable_names=None):
        self._sympy = eqn
        self._sympy_symbols = sympy_symbols
        self._selection = selection
        self._variable_names = variable_names
        self._lambda = lambdify(sympy_symbols, eqn)

    def __repr__(self):
        return f"PySRFunction(X=>{self._sympy})"

    def __call__(self, X):
        if isinstance(X, pd.DataFrame):
            # Lambda function takes as argument:
            return self._lambda(**{k: X[k].values for k in X.columns})
        elif self._selection is not None:
            return self._lambda(*X[:, self._selection].T)
        return self._lambda(*X.T)


def _get_julia_project(julia_project):
    if julia_project is None:
        # Create temp directory:
        tmp_dir = tempfile.mkdtemp()
        tmp_dir = Path(tmp_dir)
        # Create Project.toml in temp dir:
        _write_project_file(tmp_dir)
        return tmp_dir
    else:
        return Path(julia_project)


def silence_julia_warning():
    global is_julia_warning_silenced
    is_julia_warning_silenced = True


def init_julia():
    """Initialize julia binary, turning off compiled modules if needed."""
    global is_julia_warning_silenced
    from julia.core import JuliaInfo, UnsupportedPythonError

    info = JuliaInfo.load(julia="julia")
    if not info.is_pycall_built():
        raise ImportError(import_error_string())

    Main = None
    try:
        from julia import Main as _Main

        Main = _Main
    except UnsupportedPythonError:
        if not is_julia_warning_silenced:
            warnings.warn(
                """
Your Python version is statically linked to libpython. For example, this could be the python included with conda, or maybe your system's built-in python.
This will still work, but the precompilation cache for Julia will be turned off, which may result in slower startup times on the initial pysr() call.

To install a Python version that is dynamically linked to libpython, pyenv is recommended (https://github.com/pyenv/pyenv).

To silence this warning, you can run pysr.silence_julia_warning() after importing pysr."""
            )
        from julia.core import Julia

        jl = Julia(compiled_modules=False)
        from julia import Main as _Main

        Main = _Main

    return Main


def _write_project_file(tmp_dir):
    """This writes a Julia Project.toml to a temporary directory

    The reason we need this is because sometimes Python will compile a project to binary,
    and then Julia can't read the Project.toml file. It is more reliable to have Python
    simply create the Project.toml from scratch.
    """

    project_toml = """
[deps]
SymbolicRegression = "8254be44-1295-4e6a-a16d-46603ac705cb"

[compat]
SymbolicRegression = "0.7.7"
julia = "1.5"
    """

    project_toml_path = tmp_dir / "Project.toml"
    project_toml_path.write_text(project_toml)


class PySRRegressor(BaseEstimator, RegressorMixin):
    def __init__(
        self,
        model_selection="best",
        weights=None,
        binary_operators=None,
        unary_operators=None,
        procs=cpu_count(),
        loss="L2DistLoss()",
        populations=100,
        niterations=4,
        ncyclesperiteration=100,
        alpha=0.1,
        annealing=False,
        fractionReplaced=0.01,
        fractionReplacedHof=0.005,
        npop=100,
        parsimony=1e-4,
        migration=True,
        hofMigration=True,
        shouldOptimizeConstants=True,
        topn=10,
        weightAddNode=1,
        weightInsertNode=3,
        weightDeleteNode=3,
        weightDoNothing=1,
        weightMutateConstant=10,
        weightMutateOperator=1,
        weightRandomize=1,
        weightSimplify=0.002,
        perturbationFactor=1.0,
        extra_sympy_mappings=None,
        extra_torch_mappings=None,
        extra_jax_mappings=None,
        equation_file=None,
        verbosity=1e9,
        progress=None,
        maxsize=20,
        fast_cycle=False,
        maxdepth=None,
        variable_names=None,
        batching=False,
        batchSize=50,
        select_k_features=None,
        warmupMaxsizeBy=0.0,
        constraints=None,
        useFrequency=True,
        tempdir=None,
        delete_tempfiles=True,
        julia_project=None,
        update=True,
        temp_equation_file=False,
        output_jax_format=False,
        output_torch_format=False,
        optimizer_algorithm="BFGS",
        optimizer_nrestarts=3,
        optimize_probability=1.0,
        optimizer_iterations=10,
        tournament_selection_n=10,
        tournament_selection_p=1.0,
        denoise=False,
        Xresampled=None,
        precision=32,
        multithreading=None,
        use_symbolic_utils=False,
        **kwargs,
    ):
        """Initialize settings for an equation search in PySR.

        Note: most default parameters have been tuned over several example
        equations, but you should adjust `niterations`,
        `binary_operators`, `unary_operators` to your requirements.
        You can view more detailed explanations of the options on the
        [options page](https://pysr.readthedocs.io/en/latest/docs/options/) of the documentation.

        :param model_selection: How to select a model. Can be 'accuracy' or 'best'. The default, 'best', will optimize a combination of complexity and accuracy.
        :type model_selection: str
        :param binary_operators: List of strings giving the binary operators in Julia's Base. Default is ["+", "-", "*", "/",].
        :type binary_operators: list
        :param unary_operators: Same but for operators taking a single scalar. Default is [].
        :type unary_operators: list
        :param niterations: Number of iterations of the algorithm to run. The best equations are printed, and migrate between populations, at the end of each.
        :type niterations: int
        :param populations: Number of populations running.
        :type populations: int
        :param loss: String of Julia code specifying the loss function.  Can either be a loss from LossFunctions.jl, or your own loss written as a function. Examples of custom written losses include: `myloss(x, y) = abs(x-y)` for non-weighted, or `myloss(x, y, w) = w*abs(x-y)` for weighted.  Among the included losses, these are as follows. Regression: `LPDistLoss{P}()`, `L1DistLoss()`, `L2DistLoss()` (mean square), `LogitDistLoss()`, `HuberLoss(d)`, `L1EpsilonInsLoss(ϵ)`, `L2EpsilonInsLoss(ϵ)`, `PeriodicLoss(c)`, `QuantileLoss(τ)`.  Classification: `ZeroOneLoss()`, `PerceptronLoss()`, `L1HingeLoss()`, `SmoothedL1HingeLoss(γ)`, `ModifiedHuberLoss()`, `L2MarginLoss()`, `ExpLoss()`, `SigmoidLoss()`, `DWDMarginLoss(q)`.
        :type loss: str
        :param denoise: Whether to use a Gaussian Process to denoise the data before inputting to PySR. Can help PySR fit noisy data.
        :type denoise: bool
        :param select_k_features: whether to run feature selection in Python using random forests, before passing to the symbolic regression code. None means no feature selection; an int means select that many features.
        :type select_k_features: None/int
        :param procs: Number of processes (=number of populations running).
        :type procs: int
        :param multithreading: Use multithreading instead of distributed backend. Default is yes. Using procs=0 will turn off both.
        :type multithreading: bool
        :param batching: whether to compare population members on small batches during evolution. Still uses full dataset for comparing against hall of fame.
        :type batching: bool
        :param batchSize: the amount of data to use if doing batching.
        :type batchSize: int
        :param maxsize: Max size of an equation.
        :type maxsize: int
        :param ncyclesperiteration: Number of total mutations to run, per 10 samples of the population, per iteration.
        :type ncyclesperiteration: int
        :param alpha: Initial temperature.
        :type alpha: float
        :param annealing: Whether to use annealing. You should (and it is default).
        :type annealing: bool
        :param fractionReplaced: How much of population to replace with migrating equations from other populations.
        :type fractionReplaced: float
        :param fractionReplacedHof: How much of population to replace with migrating equations from hall of fame.
        :type fractionReplacedHof: float
        :param npop: Number of individuals in each population
        :type npop: int
        :param parsimony: Multiplicative factor for how much to punish complexity.
        :type parsimony: float
        :param migration: Whether to migrate.
        :type migration: bool
        :param hofMigration: Whether to have the hall of fame migrate.
        :type hofMigration: bool
        :param shouldOptimizeConstants: Whether to numerically optimize constants (Nelder-Mead/Newton) at the end of each iteration.
        :type shouldOptimizeConstants: bool
        :param topn: How many top individuals migrate from each population.
        :type topn: int
        :param perturbationFactor: Constants are perturbed by a max factor of (perturbationFactor*T + 1). Either multiplied by this or divided by this.
        :type perturbationFactor: float
        :param weightAddNode: Relative likelihood for mutation to add a node
        :type weightAddNode: float
        :param weightInsertNode: Relative likelihood for mutation to insert a node
        :type weightInsertNode: float
        :param weightDeleteNode: Relative likelihood for mutation to delete a node
        :type weightDeleteNode: float
        :param weightDoNothing: Relative likelihood for mutation to leave the individual
        :type weightDoNothing: float
        :param weightMutateConstant: Relative likelihood for mutation to change the constant slightly in a random direction.
        :type weightMutateConstant: float
        :param weightMutateOperator: Relative likelihood for mutation to swap an operator.
        :type weightMutateOperator: float
        :param weightRandomize: Relative likelihood for mutation to completely delete and then randomly generate the equation
        :type weightRandomize: float
        :param weightSimplify: Relative likelihood for mutation to simplify constant parts by evaluation
        :type weightSimplify: float
        :param equation_file: Where to save the files (.csv separated by |)
        :type equation_file: str
        :param verbosity: What verbosity level to use. 0 means minimal print statements.
        :type verbosity: int
        :param progress: Whether to use a progress bar instead of printing to stdout.
        :type progress: bool
        :param maxdepth: Max depth of an equation. You can use both maxsize and maxdepth.  maxdepth is by default set to = maxsize, which means that it is redundant.
        :type maxdepth: int
        :param fast_cycle: (experimental) - batch over population subsamples. This is a slightly different algorithm than regularized evolution, but does cycles 15% faster. May be algorithmically less efficient.
        :type fast_cycle: bool
        :param variable_names: a list of names for the variables, other than "x0", "x1", etc.
        :type variable_names: list
        :param warmupMaxsizeBy: whether to slowly increase max size from a small number up to the maxsize (if greater than 0).  If greater than 0, says the fraction of training time at which the current maxsize will reach the user-passed maxsize.
        :type warmupMaxsizeBy: float
        :param constraints: dictionary of int (unary) or 2-tuples (binary), this enforces maxsize constraints on the individual arguments of operators. E.g., `'pow': (-1, 1)` says that power laws can have any complexity left argument, but only 1 complexity exponent. Use this to force more interpretable solutions.
        :type constraints: dict
        :param useFrequency: whether to measure the frequency of complexities, and use that instead of parsimony to explore equation space. Will naturally find equations of all complexities.
        :type useFrequency: bool
        :param tempdir: directory for the temporary files
        :type tempdir: str/None
        :param delete_tempfiles: whether to delete the temporary files after finishing
        :type delete_tempfiles: bool
        :param julia_project: a Julia environment location containing a Project.toml (and potentially the source code for SymbolicRegression.jl).  Default gives the Python package directory, where a Project.toml file should be present from the install.
        :type julia_project: str/None
        :param update: Whether to automatically update Julia packages.
        :type update: bool
        :param temp_equation_file: Whether to put the hall of fame file in the temp directory. Deletion is then controlled with the delete_tempfiles argument.
        :type temp_equation_file: bool
        :param output_jax_format: Whether to create a 'jax_format' column in the output, containing jax-callable functions and the default parameters in a jax array.
        :type output_jax_format: bool
        :param output_torch_format: Whether to create a 'torch_format' column in the output, containing a torch module with trainable parameters.
        :type output_torch_format: bool
        :param tournament_selection_n: Number of expressions to consider in each tournament.
        :type tournament_selection_n: int
        :param tournament_selection_p: Probability of selecting the best expression in each tournament. The probability will decay as p*(1-p)^n for other expressions, sorted by loss.
        :type tournament_selection_p: float
        :param precision: What precision to use for the data. By default this is 32 (float32), but you can select 64 or 16 as well.
        :type precision: int
        :param use_symbolic_utils: Whether to use SymbolicUtils during simplification.
        :type use_symbolic_utils: bool
        :param **kwargs: Other options passed to SymbolicRegression.Options, for example, if you modify SymbolicRegression.jl to include additional arguments.
        :type **kwargs: dict
        :returns: Initialized model. Call `.fit(X, y)` to fit your data!
        :type: PySRRegressor
        """
        super().__init__()
        # TODO: Order args in docstring by order of declaration.
        self.model_selection = model_selection

        if binary_operators is None:
            binary_operators = "+ * - /".split(" ")
        if unary_operators is None:
            unary_operators = []
        if extra_sympy_mappings is None:
            extra_sympy_mappings = {}
        if variable_names is None:
            variable_names = []
        if constraints is None:
            constraints = {}
        if multithreading is None:
            # Default is multithreading=True, unless explicitly set,
            # or procs is set to 0 (serial mode).
            multithreading = procs != 0

        buffer_available = "buffer" in sys.stdout.__dir__()

        if progress is not None:
            if progress and not buffer_available:
                warnings.warn(
                    "Note: it looks like you are running in Jupyter. The progress bar will be turned off."
                )
                progress = False
        else:
            progress = buffer_available

        assert optimizer_algorithm in ["NelderMead", "BFGS"]
        assert tournament_selection_n < npop

        if extra_jax_mappings is not None:
            for value in extra_jax_mappings.values():
                if not isinstance(value, str):
                    raise NotImplementedError(
                        "extra_jax_mappings must have keys that are strings! e.g., {sympy.sqrt: 'jnp.sqrt'}."
                    )
        else:
            extra_jax_mappings = {}

        if extra_torch_mappings is not None:
            for value in extra_jax_mappings.values():
                if not callable(value):
                    raise NotImplementedError(
                        "extra_torch_mappings must be callable functions! e.g., {sympy.sqrt: torch.sqrt}."
                    )
        else:
            extra_torch_mappings = {}

        if maxsize > 40:
            warnings.warn(
                "Note: Using a large maxsize for the equation search will be exponentially slower and use significant memory. You should consider turning `useFrequency` to False, and perhaps use `warmupMaxsizeBy`."
            )
        elif maxsize < 7:
            raise NotImplementedError("PySR requires a maxsize of at least 7")

        if maxdepth is None:
            maxdepth = maxsize

        if isinstance(binary_operators, str):
            binary_operators = [binary_operators]
        if isinstance(unary_operators, str):
            unary_operators = [unary_operators]

        self.params = {
            **dict(
                weights=weights,
                binary_operators=binary_operators,
                unary_operators=unary_operators,
                procs=procs,
                loss=loss,
                populations=populations,
                niterations=niterations,
                ncyclesperiteration=ncyclesperiteration,
                alpha=alpha,
                annealing=annealing,
                fractionReplaced=fractionReplaced,
                fractionReplacedHof=fractionReplacedHof,
                npop=npop,
                parsimony=float(parsimony),
                migration=migration,
                hofMigration=hofMigration,
                shouldOptimizeConstants=shouldOptimizeConstants,
                topn=topn,
                weightAddNode=weightAddNode,
                weightInsertNode=weightInsertNode,
                weightDeleteNode=weightDeleteNode,
                weightDoNothing=weightDoNothing,
                weightMutateConstant=weightMutateConstant,
                weightMutateOperator=weightMutateOperator,
                weightRandomize=weightRandomize,
                weightSimplify=weightSimplify,
                perturbationFactor=perturbationFactor,
                verbosity=verbosity,
                progress=progress,
                maxsize=maxsize,
                fast_cycle=fast_cycle,
                maxdepth=maxdepth,
                batching=batching,
                batchSize=batchSize,
                select_k_features=select_k_features,
                warmupMaxsizeBy=warmupMaxsizeBy,
                constraints=constraints,
                useFrequency=useFrequency,
                tempdir=tempdir,
                delete_tempfiles=delete_tempfiles,
                update=update,
                temp_equation_file=temp_equation_file,
                optimizer_algorithm=optimizer_algorithm,
                optimizer_nrestarts=optimizer_nrestarts,
                optimize_probability=optimize_probability,
                optimizer_iterations=optimizer_iterations,
                tournament_selection_n=tournament_selection_n,
                tournament_selection_p=tournament_selection_p,
                denoise=denoise,
                Xresampled=Xresampled,
                precision=precision,
                multithreading=multithreading,
                use_symbolic_utils=use_symbolic_utils,
            ),
            **kwargs,
        }

        # Stored equations:
        self.equations = None
        self.params_hash = None
        self.raw_julia_state = None

        self.multioutput = None
        self.equation_file = equation_file
        self.n_features = None
        self.extra_sympy_mappings = extra_sympy_mappings
        self.extra_torch_mappings = extra_torch_mappings
        self.extra_jax_mappings = extra_jax_mappings
        self.output_jax_format = output_jax_format
        self.output_torch_format = output_torch_format
        self.nout = 1
        self.selection = None
        self.variable_names = variable_names
        self.julia_project = julia_project

        self.surface_parameters = [
            "model_selection",
            "multioutput",
            "equation_file",
            "n_features",
            "extra_sympy_mappings",
            "extra_torch_mappings",
            "extra_jax_mappings",
            "output_jax_format",
            "output_torch_format",
            "nout",
            "selection",
            "variable_names",
            "julia_project",
        ]

    def __repr__(self):
        """Prints all current equations fitted by the model.

        The string `>>>>` denotes which equation is selected by the
        `model_selection`.
        """
        if self.equations is None:
            return "PySRRegressor.equations = None"

        output = "PySRRegressor.equations = [\n"

        equations = self.equations
        if not isinstance(equations, list):
            all_equations = [equations]
        else:
            all_equations = equations

        for i, equations in enumerate(all_equations):
            selected = ["" for _ in range(len(equations))]
            if self.model_selection == "accuracy":
                chosen_row = -1
            elif self.model_selection == "best":
                chosen_row = equations["score"].idxmax()
            else:
                raise NotImplementedError
            selected[chosen_row] = ">>>>"
            repr_equations = pd.DataFrame(
                dict(
                    pick=selected,
                    score=equations["score"],
                    equation=equations["equation"],
                    loss=equations["loss"],
                    complexity=equations["complexity"],
                )
            )

            if len(all_equations) > 1:
                output += "[\n"

            for line in repr_equations.__repr__().split("\n"):
                output += "\t" + line + "\n"

            if len(all_equations) > 1:
                output += "]"

            if i < len(all_equations) - 1:
                output += ", "

        output += "]"
        return output

    def set_params(self, **params):
        """Set parameters for equation search."""
        for key, value in params.items():
            if key in self.surface_parameters:
                self.__setattr__(key, value)
            else:
                self.params[key] = value

        return self

    def get_params(self, deep=True):
        """Get parameters for equation search."""
        del deep
        return {
            **self.params,
            **{key: self.__getattribute__(key) for key in self.surface_parameters},
        }

    def get_best(self):
        """Get best equation using `model_selection`."""
        if self.equations is None:
            raise ValueError("No equations have been generated yet.")
        if self.model_selection == "accuracy":
            if isinstance(self.equations, list):
                return [eq.iloc[-1] for eq in self.equations]
            return self.equations.iloc[-1]
        elif self.model_selection == "best":
            if isinstance(self.equations, list):
                return [eq.iloc[eq["score"].idxmax()] for eq in self.equations]
            return self.equations.iloc[self.equations["score"].idxmax()]
        else:
            raise NotImplementedError(
                f"{self.model_selection} is not a valid model selection strategy."
            )

    def fit(self, X, y, weights=None, variable_names=None):
        """Search for equations to fit the dataset and store them in `self.equations`.

        :param X: 2D array. Rows are examples, columns are features. If pandas DataFrame, the columns are used for variable names (so make sure they don't contain spaces).
        :type X: np.ndarray/pandas.DataFrame
        :param y: 1D array (rows are examples) or 2D array (rows are examples, columns are outputs). Putting in a 2D array will trigger a search for equations for each feature of y.
        :type y: np.ndarray
        :param weights: Optional. Same shape as y. Each element is how to weight the mean-square-error loss for that particular element of y.
        :type weights: np.ndarray
        :param variable_names: a list of names for the variables, other than "x0", "x1", etc.
            You can also pass a pandas DataFrame for X.
        :type variable_names: list
        """
        if variable_names is None:
            variable_names = self.variable_names

        self._run(
            X=X,
            y=y,
            weights=weights,
            variable_names=variable_names,
        )

        return self

    def refresh(self):
        # Updates self.equations with any new options passed,
        # such as extra_sympy_mappings.
        self.equations = self.get_hof()

    def predict(self, X):
        """Predict y from input X using the equation chosen by `model_selection`.

        You may see what equation is used by printing this object. X should have the same
        columns as the training data.

        :param X: 2D array. Rows are examples, columns are features. If pandas DataFrame, the columns are used for variable names (so make sure they don't contain spaces).
        :type X: np.ndarray/pandas.DataFrame
        :return: 1D array (rows are examples) or 2D array (rows are examples, columns are outputs).
        """
        self.refresh()
        best = self.get_best()
        if self.multioutput:
            return np.stack([eq["lambda_format"](X) for eq in best], axis=1)
        return best["lambda_format"](X)

    def sympy(self):
        """Return sympy representation of the equation(s) chosen by `model_selection`."""
        self.refresh()
        best = self.get_best()
        if self.multioutput:
            return [eq["sympy_format"] for eq in best]
        return best["sympy_format"]

    def latex(self):
        """Return latex representation of the equation(s) chosen by `model_selection`."""
        self.refresh()
        sympy_representation = self.sympy()
        if self.multioutput:
            return [sympy.latex(s) for s in sympy_representation]
        return sympy.latex(sympy_representation)

    def jax(self):
        """Return jax representation of the equation(s) chosen by `model_selection`.

        Each equation (multiple given if there are multiple outputs) is a dictionary
        containing {"callable": func, "parameters": params}. To call `func`, pass
        func(X, params). This function is differentiable using `jax.grad`.
        """
        if self.using_pandas:
            warnings.warn(
                "PySR's JAX modules are not set up to work with a "
                "model that was trained on pandas dataframes. "
                "Train on an array instead to ensure everything works as planned."
            )
        self.set_params(output_jax_format=True)
        self.refresh()
        best = self.get_best()
        if self.multioutput:
            return [eq["jax_format"] for eq in best]
        return best["jax_format"]

    def pytorch(self):
        """Return pytorch representation of the equation(s) chosen by `model_selection`.

        Each equation (multiple given if there are multiple outputs) is a PyTorch module
        containing the parameters as trainable attributes. You can use the module like
        any other PyTorch module: `module(X)`, where `X` is a tensor with the same
        column ordering as trained with.
        """
        if self.using_pandas:
            warnings.warn(
                "PySR's PyTorch modules are not set up to work with a "
                "model that was trained on pandas dataframes. "
                "Train on an array instead to ensure everything works as planned."
            )
        self.set_params(output_torch_format=True)
        self.refresh()
        best = self.get_best()
        if self.multioutput:
            return [eq["torch_format"] for eq in best]
        return best["torch_format"]

    def reset(self):
        """Reset the search state."""
        self.equations = None
        self.params_hash = None
        self.raw_julia_state = None

    def _run(self, X, y, weights, variable_names):
        global already_ran
        global Main

        for key in self.surface_parameters:
            if key in self.params:
                raise ValueError(
                    f"{key} is a surface parameter, and cannot be in self.params"
                )

        multithreading = self.params["multithreading"]
        procs = self.params["procs"]
        binary_operators = self.params["binary_operators"]
        unary_operators = self.params["unary_operators"]
        batching = self.params["batching"]
        maxsize = self.params["maxsize"]
        select_k_features = self.params["select_k_features"]
        Xresampled = self.params["Xresampled"]
        denoise = self.params["denoise"]
        constraints = self.params["constraints"]
        update = self.params["update"]
        loss = self.params["loss"]
        weightMutateConstant = self.params["weightMutateConstant"]
        weightMutateOperator = self.params["weightMutateOperator"]
        weightAddNode = self.params["weightAddNode"]
        weightInsertNode = self.params["weightInsertNode"]
        weightDeleteNode = self.params["weightDeleteNode"]
        weightSimplify = self.params["weightSimplify"]
        weightRandomize = self.params["weightRandomize"]
        weightDoNothing = self.params["weightDoNothing"]

        if Main is None:
            if multithreading:
                os.environ["JULIA_NUM_THREADS"] = str(procs)

            Main = init_julia()

        if isinstance(X, pd.DataFrame):
            if variable_names is not None:
                warnings.warn("Resetting variable_names from X.columns")

            variable_names = list(X.columns)
            X = np.array(X)
            self.using_pandas = True
        else:
            self.using_pandas = False

        if len(X.shape) == 1:
            X = X[:, None]

        assert not isinstance(y, pd.DataFrame)

        if len(variable_names) == 0:
            variable_names = [f"x{i}" for i in range(X.shape[1])]

        use_custom_variable_names = len(variable_names) != 0
        # TODO: this is always true.

        _check_assertions(
            X,
            binary_operators,
            unary_operators,
            use_custom_variable_names,
            variable_names,
            weights,
            y,
        )

        self.n_features = X.shape[1]

        if len(X) > 10000 and not batching:
            warnings.warn(
                "Note: you are running with more than 10,000 datapoints. You should consider turning on batching (https://pysr.readthedocs.io/en/latest/docs/options/#batching). You should also reconsider if you need that many datapoints. Unless you have a large amount of noise (in which case you should smooth your dataset first), generally < 10,000 datapoints is enough to find a functional form with symbolic regression. More datapoints will lower the search speed."
            )

        X, selection = _handle_feature_selection(
            X, select_k_features, y, variable_names
        )

        if len(y.shape) == 1 or (len(y.shape) == 2 and y.shape[1] == 1):
            self.multioutput = False
            self.nout = 1
            y = y.reshape(-1)
        elif len(y.shape) == 2:
            self.multioutput = True
            self.nout = y.shape[1]
        else:
            raise NotImplementedError("y shape not supported!")

        if denoise:
            if weights is not None:
                raise NotImplementedError(
                    "No weights for denoising - the weights are learned."
                )
            if Xresampled is not None:
                # Select among only the selected features:
                if isinstance(Xresampled, pd.DataFrame):
                    # Handle Xresampled is pandas dataframe
                    if selection is not None:
                        Xresampled = Xresampled[[variable_names[i] for i in selection]]
                    else:
                        Xresampled = Xresampled[variable_names]
                    Xresampled = np.array(Xresampled)
                else:
                    if selection is not None:
                        Xresampled = Xresampled[:, selection]
            if self.multioutput:
                y = np.stack(
                    [
                        _denoise(X, y[:, i], Xresampled=Xresampled)[1]
                        for i in range(self.nout)
                    ],
                    axis=1,
                )
                if Xresampled is not None:
                    X = Xresampled
            else:
                X, y = _denoise(X, y, Xresampled=Xresampled)

        self.julia_project = _get_julia_project(self.julia_project)

        tmpdir = Path(tempfile.mkdtemp(dir=self.params["tempdir"]))

        if self.params["temp_equation_file"]:
            self.equation_file = tmpdir / "hall_of_fame.csv"
        elif self.equation_file is None:
            date_time = datetime.now().strftime("%Y-%m-%d_%H%M%S.%f")[:-3]
            self.equation_file = "hall_of_fame_" + date_time + ".csv"

        _create_inline_operators(
            binary_operators=binary_operators, unary_operators=unary_operators
        )
        _handle_constraints(
            binary_operators=binary_operators,
            unary_operators=unary_operators,
            constraints=constraints,
        )

        una_constraints = [constraints[op] for op in unary_operators]
        bin_constraints = [constraints[op] for op in binary_operators]

        try:
            # TODO: is this needed since Julia now prints directly to stdout?
            term_width = shutil.get_terminal_size().columns
        except:
            _, term_width = subprocess.check_output(["stty", "size"]).split()

        if not already_ran:
            Main.eval("using Pkg")
            io = "devnull" if self.params["verbosity"] == 0 else "stderr"

            Main.eval(
                f'Pkg.activate("{_escape_filename(self.julia_project)}", io={io})'
            )
            try:
                if update:
                    Main.eval(f"Pkg.resolve(io={io})")
                    Main.eval(f"Pkg.instantiate(io={io})")
                else:
                    Main.eval(f"Pkg.instantiate(io={io})")
            except RuntimeError as e:
                raise ImportError(import_error_string(self.julia_project)) from e
            Main.eval("using SymbolicRegression")

            Main.plus = Main.eval("(+)")
            Main.sub = Main.eval("(-)")
            Main.mult = Main.eval("(*)")
            Main.pow = Main.eval("(^)")
            Main.div = Main.eval("(/)")

        Main.custom_loss = Main.eval(loss)

        mutationWeights = [
            float(weightMutateConstant),
            float(weightMutateOperator),
            float(weightAddNode),
            float(weightInsertNode),
            float(weightDeleteNode),
            float(weightSimplify),
            float(weightRandomize),
            float(weightDoNothing),
        ]

        params_to_hash = {
            **{k: self.__getattribute__(k) for k in self.surface_parameters},
            **self.params,
        }
        params_excluded_from_hash = [
            "niterations",
        ]
        # Delete these^ from params_to_hash:
        params_to_hash = {
            k: v
            for k, v in params_to_hash.items()
            if k not in params_excluded_from_hash
        }

        # Sort params_to_hash by key:
        params_to_hash = OrderedDict(sorted(params_to_hash.items()))
        # Hash all parameters:
        cur_hash = sha256(str(params_to_hash).encode()).hexdigest()

        if self.params_hash is not None:
            if cur_hash != self.params_hash:
                warnings.warn(
                    "Warning: PySR options have changed since the last run. "
                    "This is experimental and may not work. "
                    "For example, if the operators change, or even their order,"
                    " the saved equations will be in the wrong format."
                    "\n\n"
                    "To reset the search state, run `.reset()`. "
                )

        self.params_hash = cur_hash

        options = Main.Options(
            binary_operators=Main.eval(str(tuple(binary_operators)).replace("'", "")),
            unary_operators=Main.eval(str(tuple(unary_operators)).replace("'", "")),
            bin_constraints=bin_constraints,
            una_constraints=una_constraints,
            loss=Main.custom_loss,
            maxsize=int(maxsize),
            hofFile=_escape_filename(self.equation_file),
            npopulations=int(self.params["populations"]),
            batching=batching,
            batchSize=int(
                min([self.params["batchSize"], len(X)]) if batching else len(X)
            ),
            mutationWeights=mutationWeights,
            terminal_width=int(term_width),
            probPickFirst=self.params["tournament_selection_p"],
            ns=self.params["tournament_selection_n"],
            # These have the same name:
            parsimony=self.params["parsimony"],
            alpha=self.params["alpha"],
            maxdepth=self.params["maxdepth"],
            fast_cycle=self.params["fast_cycle"],
            migration=self.params["migration"],
            hofMigration=self.params["hofMigration"],
            fractionReplacedHof=self.params["fractionReplacedHof"],
            shouldOptimizeConstants=self.params["shouldOptimizeConstants"],
            warmupMaxsizeBy=self.params["warmupMaxsizeBy"],
            useFrequency=self.params["useFrequency"],
            npop=self.params["npop"],
            ncyclesperiteration=self.params["ncyclesperiteration"],
            fractionReplaced=self.params["fractionReplaced"],
            topn=self.params["topn"],
            verbosity=self.params["verbosity"],
            optimizer_algorithm=self.params["optimizer_algorithm"],
            optimizer_nrestarts=self.params["optimizer_nrestarts"],
            optimize_probability=self.params["optimize_probability"],
            optimizer_iterations=self.params["optimizer_iterations"],
            perturbationFactor=self.params["perturbationFactor"],
            annealing=self.params["annealing"],
            stateReturn=True,  # Required for state saving.
            use_symbolic_utils=self.params["use_symbolic_utils"],
        )

        np_dtype = {16: np.float16, 32: np.float32, 64: np.float64}[
            self.params["precision"]
        ]

        Main.X = np.array(X, dtype=np_dtype).T
        if len(y.shape) == 1:
            Main.y = np.array(y, dtype=np_dtype)
        else:
            Main.y = np.array(y, dtype=np_dtype).T
        if weights is not None:
            if len(weights.shape) == 1:
                Main.weights = np.array(weights, dtype=np_dtype)
            else:
                Main.weights = np.array(weights, dtype=np_dtype).T
        else:
            Main.weights = None

        cprocs = 0 if multithreading else procs

        self.raw_julia_state = Main.EquationSearch(
            Main.X,
            Main.y,
            weights=Main.weights,
            niterations=int(self.params["niterations"]),
            varMap=(
                variable_names
                if selection is None
                else [variable_names[i] for i in selection]
            ),
            options=options,
            numprocs=int(cprocs),
            multithreading=bool(multithreading),
            saved_state=self.raw_julia_state,
        )

        self.variable_names = variable_names
        self.selection = selection

        # Not in params:
        # selection, variable_names, multioutput

        self.equations = self.get_hof()

        if self.params["delete_tempfiles"]:
            shutil.rmtree(tmpdir)

        already_ran = True

    def get_hof(self):
        """Get the equations from a hall of fame file. If no arguments
        entered, the ones used previously from a call to PySR will be used."""

        try:
            if self.multioutput:
                all_outputs = []
                for i in range(1, self.nout + 1):
                    df = pd.read_csv(
                        str(self.equation_file) + f".out{i}" + ".bkup",
                        sep="|",
                    )
                    # Rename Complexity column to complexity:
                    df.rename(
                        columns={
                            "Complexity": "complexity",
                            "MSE": "loss",
                            "Equation": "equation",
                        },
                        inplace=True,
                    )

                    all_outputs.append(df)
            else:
                all_outputs = [pd.read_csv(str(self.equation_file) + ".bkup", sep="|")]
                all_outputs[-1].rename(
                    columns={
                        "Complexity": "complexity",
                        "MSE": "loss",
                        "Equation": "equation",
                    },
                    inplace=True,
                )
        except FileNotFoundError:
            raise RuntimeError(
                "Couldn't find equation file! The equation search likely exited before a single iteration completed."
            )

        ret_outputs = []

        for output in all_outputs:

            scores = []
            lastMSE = None
            lastComplexity = 0
            sympy_format = []
            lambda_format = []
            if self.output_jax_format:
                jax_format = []
            if self.output_torch_format:
                torch_format = []
            use_custom_variable_names = len(self.variable_names) != 0
            local_sympy_mappings = {
                **self.extra_sympy_mappings,
                **sympy_mappings,
            }

            if use_custom_variable_names:
                sympy_symbols = [
                    sympy.Symbol(self.variable_names[i]) for i in range(self.n_features)
                ]
            else:
                sympy_symbols = [
                    sympy.Symbol("x%d" % i) for i in range(self.n_features)
                ]

            for _, eqn_row in output.iterrows():
                eqn = sympify(eqn_row["equation"], locals=local_sympy_mappings)
                sympy_format.append(eqn)

                # Numpy:
                lambda_format.append(
                    CallableEquation(
                        sympy_symbols, eqn, self.selection, self.variable_names
                    )
                )

                # JAX:
                if self.output_jax_format:
                    from .export_jax import sympy2jax

                    func, params = sympy2jax(
                        eqn,
                        sympy_symbols,
                        selection=self.selection,
                        extra_jax_mappings=self.extra_jax_mappings,
                    )
                    jax_format.append({"callable": func, "parameters": params})

                # Torch:
                if self.output_torch_format:
                    from .export_torch import sympy2torch

                    module = sympy2torch(
                        eqn,
                        sympy_symbols,
                        selection=self.selection,
                        extra_torch_mappings=self.extra_torch_mappings,
                    )
                    torch_format.append(module)

                curMSE = eqn_row["loss"]
                curComplexity = eqn_row["complexity"]

                if lastMSE is None:
                    cur_score = 0.0
                else:
                    if curMSE > 0.0:
                        cur_score = -np.log(curMSE / lastMSE) / (
                            curComplexity - lastComplexity
                        )
                    else:
                        cur_score = np.inf

                scores.append(cur_score)
                lastMSE = curMSE
                lastComplexity = curComplexity

            output["score"] = np.array(scores)
            output["sympy_format"] = sympy_format
            output["lambda_format"] = lambda_format
            output_cols = [
                "complexity",
                "loss",
                "score",
                "equation",
                "sympy_format",
                "lambda_format",
            ]
            if self.output_jax_format:
                output_cols += ["jax_format"]
                output["jax_format"] = jax_format
            if self.output_torch_format:
                output_cols += ["torch_format"]
                output["torch_format"] = torch_format

            ret_outputs.append(output[output_cols])

        if self.multioutput:
            return ret_outputs
        return ret_outputs[0]

    def score(self, X, y):
        del X
        del y
        raise NotImplementedError