Spaces:
Running
Running
File size: 21,986 Bytes
cedbbde 0557713 7f6d86d 688106d a9184d1 627c408 a9184d1 2554a3e 7f6d86d 2554a3e 7f6d86d 2554a3e 32df36d 627c408 32df36d 688106d a1e832b 688106d a1e832b 688106d f50d9d6 688106d f50d9d6 cb0e2e9 f50d9d6 cb0e2e9 aea0528 688106d 15fbc5f cb0e2e9 e68c63f 7f6d86d 2ca2654 e68c63f 2ca2654 41cab3e 688106d fe36e3a e68c63f a1e142a e68c63f 41cab3e fe36e3a e68c63f 85aeb48 41cab3e e68c63f aea0528 e68c63f aea0528 e68c63f aea0528 e68c63f aea0528 2ca2654 cb0e2e9 d3ad40f 688106d 15fbc5f 688106d cb0e2e9 688106d cb0e2e9 688106d 6f3a331 688106d 6f3a331 41cab3e 688106d 6f3a331 41cab3e 688106d d3b42d5 941b663 688106d 2ca2654 a369299 311797d a369299 cedbbde a369299 688106d 15fbc5f eefdfef 15fbc5f eefdfef 15fbc5f eefdfef 688106d eefdfef 688106d 6e5f7ce fe36e3a 15fbc5f c3d240e fe36e3a 688106d 6f3a331 6e5f7ce 688106d 15fbc5f 688106d 15fbc5f 688106d 6518f83 1f4e612 c3d54db c3d240e c3d54db 688106d 6518f83 688106d b18ab5a 1f4e612 b18ab5a 1f4e612 b18ab5a 1f4e612 b18ab5a 1f4e612 b18ab5a cedbbde b18ab5a cedbbde 1f4e612 cedbbde b18ab5a cedbbde 1f4e612 78cf882 cedbbde 78cf882 e0d94cd ea010a7 e0d94cd 78cf882 ea010a7 cedbbde b18ab5a 5e2a70f b18ab5a 5e2a70f cedbbde 5e2a70f a369299 de38458 3662fae de38458 ecc6ae8 de38458 ecc6ae8 7b70a53 121e6ac ecc6ae8 15fbc5f fe36e3a 1f4e612 fe36e3a ecc6ae8 121e6ac eefdfef ecc6ae8 121e6ac 15fbc5f ecc6ae8 121e6ac 4b7293a 92088a8 7b70a53 2f6f790 7b70a53 92088a8 ecc6ae8 4df12c1 7b70a53 ecc6ae8 15fbc5f ecc6ae8 7f6d86d 22540af 7f6d86d 22540af 1f4e612 ecc6ae8 ac2e8e0 ecc6ae8 02e2655 eefdfef 15fbc5f 2ca2654 02e2655 ecc6ae8 574628b 02e2655 ecc6ae8 02e2655 ecc6ae8 fe36e3a 1f4e612 fe36e3a 92088a8 ecc6ae8 92088a8 2f6f790 92088a8 2f6f790 7f6d86d 2b01937 db9be07 eebd675 9fb30b3 eebd675 2b01937 92088a8 7f6d86d 22540af 7f6d86d 22540af 1f4e612 92088a8 2b01937 87afd92 eebd675 2b01937 92088a8 ecc6ae8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
import Optim
import Printf: @printf
import Random: shuffle!, randperm
include("constants.jl")
include("errors.jl")
if weighted
const avgy = sum(y .* weights)/sum(weights)
const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy), weights)
else
const avgy = sum(y)/len
const baselineMSE = MSE(y, convert(Array{Float32, 1}, ones(len) .* avgy))
end
include("utils.jl")
include("Node.jl")
include("eval.jl")
include("randomMutations.jl")
include("simplification.jl")
include("PopMember.jl")
include("complexityChecks.jl")
# Go through one simulated annealing mutation cycle
# exp(-delta/T) defines probability of accepting a change
function iterate(member::PopMember, T::Float32, curmaxsize::Integer, frequencyComplexity::Array{Float32, 1})::PopMember
prev = member.tree
tree = prev
#TODO - reconsider this
if batching
beforeLoss = scoreFuncBatch(prev)
else
beforeLoss = member.score
end
mutationChoice = rand()
#More constants => more likely to do constant mutation
weightAdjustmentMutateConstant = min(8, countConstants(prev))/8.0
cur_weights = copy(mutationWeights) .* 1.0
cur_weights[1] *= weightAdjustmentMutateConstant
n = countNodes(prev)
depth = countDepth(prev)
# If equation too big, don't add new operators
if n >= curmaxsize || depth >= maxdepth
cur_weights[3] = 0.0
cur_weights[4] = 0.0
end
cur_weights /= sum(cur_weights)
cweights = cumsum(cur_weights)
successful_mutation = false
#TODO: Currently we dont take this \/ into account
is_success_always_possible = true
attempts = 0
max_attempts = 10
#############################################
# Mutations
#############################################
while (!successful_mutation) && attempts < max_attempts
tree = copyNode(prev)
successful_mutation = true
if mutationChoice < cweights[1]
tree = mutateConstant(tree, T)
is_success_always_possible = true
# Mutating a constant shouldn't invalidate an already-valid function
elseif mutationChoice < cweights[2]
tree = mutateOperator(tree)
is_success_always_possible = true
# Can always mutate to the same operator
elseif mutationChoice < cweights[3]
if rand() < 0.5
tree = appendRandomOp(tree)
else
tree = prependRandomOp(tree)
end
is_success_always_possible = false
# Can potentially have a situation without success
elseif mutationChoice < cweights[4]
tree = insertRandomOp(tree)
is_success_always_possible = false
elseif mutationChoice < cweights[5]
tree = deleteRandomOp(tree)
is_success_always_possible = true
elseif mutationChoice < cweights[6]
tree = simplifyTree(tree) # Sometimes we simplify tree
tree = combineOperators(tree) # See if repeated constants at outer levels
return PopMember(tree, beforeLoss)
is_success_always_possible = true
# Simplification shouldn't hurt complexity; unless some non-symmetric constraint
# to commutative operator...
elseif mutationChoice < cweights[7]
tree = genRandomTree(5) # Sometimes we generate a new tree completely tree
is_success_always_possible = true
else # no mutation applied
return PopMember(tree, beforeLoss)
end
# Check for illegal equations
for i=1:nbin
if successful_mutation && flagBinOperatorComplexity(tree, i)
successful_mutation = false
end
end
for i=1:nuna
if successful_mutation && flagUnaOperatorComplexity(tree, i)
successful_mutation = false
end
end
attempts += 1
end
#############################################
if !successful_mutation
return PopMember(copyNode(prev), beforeLoss)
end
if batching
afterLoss = scoreFuncBatch(tree)
else
afterLoss = scoreFunc(tree)
end
if annealing
delta = afterLoss - beforeLoss
probChange = exp(-delta/(T*alpha))
if useFrequency
oldSize = countNodes(prev)
newSize = countNodes(tree)
probChange *= frequencyComplexity[oldSize] / frequencyComplexity[newSize]
end
return_unaltered = (isnan(afterLoss) || probChange < rand())
if return_unaltered
return PopMember(copyNode(prev), beforeLoss)
end
end
return PopMember(tree, afterLoss)
end
# Create a random equation by appending random operators
function genRandomTree(length::Integer)::Node
tree = Node(1.0f0)
for i=1:length
tree = appendRandomOp(tree)
end
return tree
end
# A list of members of the population, with easy constructors,
# which allow for random generation of new populations
mutable struct Population
members::Array{PopMember, 1}
n::Integer
Population(pop::Array{PopMember, 1}) = new(pop, size(pop)[1])
Population(npop::Integer) = new([PopMember(genRandomTree(3)) for i=1:npop], npop)
Population(npop::Integer, nlength::Integer) = new([PopMember(genRandomTree(nlength)) for i=1:npop], npop)
end
# Sample 10 random members of the population, and make a new one
function samplePop(pop::Population)::Population
idx = rand(1:pop.n, ns)
return Population(pop.members[idx])
end
# Sample the population, and get the best member from that sample
function bestOfSample(pop::Population)::PopMember
sample = samplePop(pop)
best_idx = argmin([sample.members[member].score for member=1:sample.n])
return sample.members[best_idx]
end
function finalizeScores(pop::Population)::Population
need_recalculate = batching
if need_recalculate
@inbounds @simd for member=1:pop.n
pop.members[member].score = scoreFunc(pop.members[member].tree)
end
end
return pop
end
# Return best 10 examples
function bestSubPop(pop::Population; topn::Integer=10)::Population
best_idx = sortperm([pop.members[member].score for member=1:pop.n])
return Population(pop.members[best_idx[1:topn]])
end
# Pass through the population several times, replacing the oldest
# with the fittest of a small subsample
function regEvolCycle(pop::Population, T::Float32, curmaxsize::Integer,
frequencyComplexity::Array{Float32, 1})::Population
# Batch over each subsample. Can give 15% improvement in speed; probably moreso for large pops.
# but is ultimately a different algorithm than regularized evolution, and might not be
# as good.
if fast_cycle
shuffle!(pop.members)
n_evol_cycles = round(Integer, pop.n/ns)
babies = Array{PopMember}(undef, n_evol_cycles)
# Iterate each ns-member sub-sample
@inbounds Threads.@threads for i=1:n_evol_cycles
best_score = Inf32
best_idx = 1+(i-1)*ns
# Calculate best member of the subsample:
for sub_i=1+(i-1)*ns:i*ns
if pop.members[sub_i].score < best_score
best_score = pop.members[sub_i].score
best_idx = sub_i
end
end
allstar = pop.members[best_idx]
babies[i] = iterate(allstar, T, curmaxsize, frequencyComplexity)
end
# Replace the n_evol_cycles-oldest members of each population
@inbounds for i=1:n_evol_cycles
oldest = argmin([pop.members[member].birth for member=1:pop.n])
pop.members[oldest] = babies[i]
end
else
for i=1:round(Integer, pop.n/ns)
allstar = bestOfSample(pop)
baby = iterate(allstar, T, curmaxsize, frequencyComplexity)
#printTree(baby.tree)
oldest = argmin([pop.members[member].birth for member=1:pop.n])
pop.members[oldest] = baby
end
end
return pop
end
# Cycle through regularized evolution many times,
# printing the fittest equation every 10% through
function run(
pop::Population,
ncycles::Integer,
curmaxsize::Integer,
frequencyComplexity::Array{Float32, 1};
verbosity::Integer=0
)::Population
allT = LinRange(1.0f0, 0.0f0, ncycles)
for iT in 1:size(allT)[1]
if annealing
pop = regEvolCycle(pop, allT[iT], curmaxsize, frequencyComplexity)
else
pop = regEvolCycle(pop, 1.0f0, curmaxsize, frequencyComplexity)
end
if verbosity > 0 && (iT % verbosity == 0)
bestPops = bestSubPop(pop)
bestCurScoreIdx = argmin([bestPops.members[member].score for member=1:bestPops.n])
bestCurScore = bestPops.members[bestCurScoreIdx].score
debug(verbosity, bestCurScore, " is the score for ", stringTree(bestPops.members[bestCurScoreIdx].tree))
end
end
return pop
end
# Get all the constants from a tree
function getConstants(tree::Node)::Array{Float32, 1}
if tree.degree == 0
if tree.constant
return [tree.val]
else
return Float32[]
end
elseif tree.degree == 1
return getConstants(tree.l)
else
both = [getConstants(tree.l), getConstants(tree.r)]
return [constant for subtree in both for constant in subtree]
end
end
# Set all the constants inside a tree
function setConstants(tree::Node, constants::Array{Float32, 1})
if tree.degree == 0
if tree.constant
tree.val = constants[1]
end
elseif tree.degree == 1
setConstants(tree.l, constants)
else
numberLeft = countConstants(tree.l)
setConstants(tree.l, constants)
setConstants(tree.r, constants[numberLeft+1:end])
end
end
# Proxy function for optimization
function optFunc(x::Array{Float32, 1}, tree::Node)::Float32
setConstants(tree, x)
return scoreFunc(tree)
end
# Use Nelder-Mead to optimize the constants in an equation
function optimizeConstants(member::PopMember)::PopMember
nconst = countConstants(member.tree)
if nconst == 0
return member
end
x0 = getConstants(member.tree)
f(x::Array{Float32,1})::Float32 = optFunc(x, member.tree)
if size(x0)[1] == 1
algorithm = Optim.Newton
else
algorithm = Optim.NelderMead
end
try
result = Optim.optimize(f, x0, algorithm(), Optim.Options(iterations=100))
# Try other initial conditions:
for i=1:nrestarts
tmpresult = Optim.optimize(f, x0 .* (1f0 .+ 5f-1*randn(Float32, size(x0)[1])), algorithm(), Optim.Options(iterations=100))
if tmpresult.minimum < result.minimum
result = tmpresult
end
end
if Optim.converged(result)
setConstants(member.tree, result.minimizer)
member.score = convert(Float32, result.minimum)
member.birth = getTime()
else
setConstants(member.tree, x0)
end
catch error
# Fine if optimization encountered domain error, just return x0
if isa(error, AssertionError)
setConstants(member.tree, x0)
else
throw(error)
end
end
return member
end
# List of the best members seen all time
mutable struct HallOfFame
members::Array{PopMember, 1}
exists::Array{Bool, 1} #Whether it has been set
# Arranged by complexity - store one at each.
HallOfFame() = new([PopMember(Node(1f0), 1f9) for i=1:actualMaxsize], [false for i=1:actualMaxsize])
end
# Check for errors before they happen
function testConfiguration()
test_input = LinRange(-100f0, 100f0, 99)
try
for left in test_input
for right in test_input
for binop in binops
test_output = binop.(left, right)
end
end
for unaop in unaops
test_output = unaop.(left)
end
end
catch error
@printf("\n\nYour configuration is invalid - one of your operators is not well-defined over the real line.\n\n\n")
throw(error)
end
end
function fullRun(niterations::Integer;
npop::Integer=300,
ncyclesperiteration::Integer=3000,
fractionReplaced::Float32=0.1f0,
verbosity::Integer=0,
topn::Integer=10
)
testConfiguration()
# 1. Start a population on every process
allPops = Future[]
# Set up a channel to send finished populations back to head node
channels = [RemoteChannel(1) for j=1:npopulations]
bestSubPops = [Population(1) for j=1:npopulations]
hallOfFame = HallOfFame()
frequencyComplexity = ones(Float32, actualMaxsize)
curmaxsize = 3
if warmupMaxsize == 0
curmaxsize = maxsize
end
for i=1:npopulations
future = @spawnat :any Population(npop, 3)
push!(allPops, future)
end
# # 2. Start the cycle on every process:
@sync for i=1:npopulations
@async allPops[i] = @spawnat :any run(fetch(allPops[i]), ncyclesperiteration, curmaxsize, copy(frequencyComplexity)/sum(frequencyComplexity), verbosity=verbosity)
end
println("Started!")
cycles_complete = npopulations * niterations
if warmupMaxsize != 0
curmaxsize += 1
if curmaxsize > maxsize
curmaxsize = maxsize
end
end
last_print_time = time()
num_equations = 0.0
print_every_n_seconds = 5
equation_speed = Float32[]
for i=1:npopulations
# Start listening for each population to finish:
@async put!(channels[i], fetch(allPops[i]))
end
while cycles_complete > 0
@inbounds for i=1:npopulations
# Non-blocking check if a population is ready:
if isready(channels[i])
# Take the fetch operation from the channel since its ready
cur_pop = take!(channels[i])
bestSubPops[i] = bestSubPop(cur_pop, topn=topn)
#Try normal copy...
bestPops = Population([member for pop in bestSubPops for member in pop.members])
for member in cur_pop.members
size = countNodes(member.tree)
frequencyComplexity[size] += 1
if member.score < hallOfFame.members[size].score
hallOfFame.members[size] = deepcopy(member)
hallOfFame.exists[size] = true
end
end
# Dominating pareto curve - must be better than all simpler equations
dominating = PopMember[]
open(hofFile, "w") do io
println(io,"Complexity|MSE|Equation")
for size=1:actualMaxsize
if hallOfFame.exists[size]
member = hallOfFame.members[size]
if weighted
curMSE = MSE(evalTreeArray(member.tree), y, weights)
else
curMSE = MSE(evalTreeArray(member.tree), y)
end
numberSmallerAndBetter = 0
for i=1:(size-1)
if weighted
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y, weights)
else
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y)
end
if (hallOfFame.exists[size] && curMSE > hofMSE)
numberSmallerAndBetter += 1
end
end
betterThanAllSmaller = (numberSmallerAndBetter == 0)
if betterThanAllSmaller
println(io, "$size|$(curMSE)|$(stringTree(member.tree))")
push!(dominating, member)
end
end
end
end
cp(hofFile, hofFile*".bkup", force=true)
# Try normal copy otherwise.
if migration
for k in rand(1:npop, round(Integer, npop*fractionReplaced))
to_copy = rand(1:size(bestPops.members)[1])
cur_pop.members[k] = PopMember(
copyNode(bestPops.members[to_copy].tree),
bestPops.members[to_copy].score)
end
end
if hofMigration && size(dominating)[1] > 0
for k in rand(1:npop, round(Integer, npop*fractionReplacedHof))
# Copy in case one gets used twice
to_copy = rand(1:size(dominating)[1])
cur_pop.members[k] = PopMember(
copyNode(dominating[to_copy].tree)
)
end
end
@async begin
allPops[i] = @spawnat :any let
tmp_pop = run(cur_pop, ncyclesperiteration, curmaxsize, copy(frequencyComplexity)/sum(frequencyComplexity), verbosity=verbosity)
@inbounds @simd for j=1:tmp_pop.n
if rand() < 0.1
tmp_pop.members[j].tree = simplifyTree(tmp_pop.members[j].tree)
tmp_pop.members[j].tree = combineOperators(tmp_pop.members[j].tree)
if shouldOptimizeConstants
tmp_pop.members[j] = optimizeConstants(tmp_pop.members[j])
end
end
end
tmp_pop = finalizeScores(tmp_pop)
tmp_pop
end
put!(channels[i], fetch(allPops[i]))
end
cycles_complete -= 1
cycles_elapsed = npopulations * niterations - cycles_complete
if warmupMaxsize != 0 && cycles_elapsed % warmupMaxsize == 0
curmaxsize += 1
if curmaxsize > maxsize
curmaxsize = maxsize
end
end
num_equations += ncyclesperiteration * npop / 10.0
end
end
sleep(1e-3)
elapsed = time() - last_print_time
#Update if time has passed, and some new equations generated.
if elapsed > print_every_n_seconds && num_equations > 0.0
# Dominating pareto curve - must be better than all simpler equations
current_speed = num_equations/elapsed
average_over_m_measurements = 10 #for print_every...=5, this gives 50 second running average
push!(equation_speed, current_speed)
if length(equation_speed) > average_over_m_measurements
deleteat!(equation_speed, 1)
end
average_speed = sum(equation_speed)/length(equation_speed)
curMSE = baselineMSE
lastMSE = curMSE
lastComplexity = 0
if verbosity > 0
@printf("\n")
@printf("Cycles per second: %.3e\n", round(average_speed, sigdigits=3))
cycles_elapsed = npopulations * niterations - cycles_complete
@printf("Progress: %d / %d total iterations (%.3f%%)\n", cycles_elapsed, npopulations * niterations, 100.0*cycles_elapsed/(npopulations*niterations))
@printf("Hall of Fame:\n")
@printf("-----------------------------------------\n")
@printf("%-10s %-8s %-8s %-8s\n", "Complexity", "MSE", "Score", "Equation")
@printf("%-10d %-8.3e %-8.3e %-.f\n", 0, curMSE, 0f0, avgy)
end
for size=1:actualMaxsize
if hallOfFame.exists[size]
member = hallOfFame.members[size]
if weighted
curMSE = MSE(evalTreeArray(member.tree), y, weights)
else
curMSE = MSE(evalTreeArray(member.tree), y)
end
numberSmallerAndBetter = 0
for i=1:(size-1)
if weighted
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y, weights)
else
hofMSE = MSE(evalTreeArray(hallOfFame.members[i].tree), y)
end
if (hallOfFame.exists[size] && curMSE > hofMSE)
numberSmallerAndBetter += 1
end
end
betterThanAllSmaller = (numberSmallerAndBetter == 0)
if betterThanAllSmaller
delta_c = size - lastComplexity
delta_l_mse = log(curMSE/lastMSE)
score = convert(Float32, -delta_l_mse/delta_c)
if verbosity > 0
@printf("%-10d %-8.3e %-8.3e %-s\n" , size, curMSE, score, stringTree(member.tree))
end
lastMSE = curMSE
lastComplexity = size
end
end
end
debug(verbosity, "")
last_print_time = time()
num_equations = 0.0
end
end
end
|