Spaces:
Running
Running
File size: 44,734 Bytes
1021da9 2c53a1d 1021da9 d077a00 1021da9 54f0cae 1021da9 54f0cae 1021da9 b23fb9c 0a29ddd 1021da9 311d2c7 70cfb96 e353ca4 1021da9 a2b1e06 7c39179 8f07a93 a2b1e06 1021da9 e353ca4 12804c6 e353ca4 1e1b470 b5ed48b 1e1b470 b5ed48b e353ca4 12804c6 e353ca4 64fdc53 e353ca4 12804c6 e27c475 6c8b87b 2d5b5b0 39ad0c4 e353ca4 220e04f e353ca4 ebf50e6 311d2c7 ebf50e6 311d2c7 ebf50e6 311d2c7 ebf50e6 311d2c7 54f0cae 311d2c7 ebf50e6 70cfb96 311d2c7 54f0cae 311d2c7 70cfb96 311d2c7 54f0cae 311d2c7 70cfb96 311d2c7 e353ca4 311d2c7 e353ca4 ebf50e6 e353ca4 ebf50e6 311d2c7 3d56cc9 ebf50e6 311d2c7 dcc25f6 5cba8aa 311d2c7 ebf50e6 311d2c7 3d56cc9 ebf50e6 311d2c7 dcc25f6 5cba8aa 311d2c7 ebf50e6 311d2c7 3d56cc9 ebf50e6 311d2c7 dcc25f6 5cba8aa 311d2c7 ebf50e6 54f0cae ebf50e6 311d2c7 70cfb96 ebf50e6 54f0cae ebf50e6 311d2c7 70cfb96 ebf50e6 54f0cae ebf50e6 311d2c7 70cfb96 e353ca4 5369656 e353ca4 b206444 ae5a3d1 b206444 220e04f b206444 ebf50e6 b206444 ae5a3d1 5b393f0 ae5a3d1 a33b237 5369656 220e04f 5369656 2c53a1d adbaf0a f6721c0 b206444 9c7ad76 69b11f3 89bf41c 6f594e5 5042463 44fbcd2 e27c475 44fbcd2 e27c475 44fbcd2 6c8b87b 1244250 6c8b87b 39ad0c4 1244250 6c8b87b 39ad0c4 1244250 6c8b87b 39ad0c4 1244250 6c8b87b 39ad0c4 1244250 6c8b87b 39ad0c4 1244250 5042463 6f594e5 a0c9fd6 6f594e5 a0c9fd6 89bf41c 1e8363d 6f594e5 b8e8bdb 1e8363d 252a303 b8e8bdb 1021da9 2c53a1d adbaf0a 6900faf b206444 db1e9fe 69b11f3 66c8e7d db1e9fe b86749e db1e9fe b86749e efa96d9 1e8363d 1e1b470 40cfac2 66c8e7d 40cfac2 66c8e7d dcc25f6 66c8e7d dcc25f6 1e1b470 1e8363d 1e1b470 40cfac2 66c8e7d 40cfac2 66c8e7d dcc25f6 66c8e7d dcc25f6 436ee56 efa96d9 3d56cc9 efa96d9 3d56cc9 efa96d9 3d56cc9 436ee56 efa96d9 a25e372 1e8363d b16a86d 1e8363d b16a86d f5130d3 b16a86d f5130d3 b16a86d f5130d3 b16a86d db1e9fe b86749e db1e9fe f374e83 a2e8e4e f374e83 a2e8e4e f374e83 df80a5c 64fdc53 1e8363d 8dcbd5a 6f594e5 b8e8bdb 8dcbd5a 252a303 b8e8bdb 252a303 1e8363d 8dcbd5a 252a303 b8e8bdb 8dcbd5a 252a303 b8e8bdb 1021da9 2c53a1d adbaf0a e353ca4 fb0e7f5 69b11f3 fb0e7f5 69b11f3 fb0e7f5 1e8363d fb0e7f5 1e8363d fb0e7f5 e353ca4 1e8363d 8d20291 e353ca4 70cfb96 8d20291 e353ca4 70cfb96 e353ca4 7f643e6 ca50776 70cfb96 e353ca4 1e8363d e353ca4 8d20291 e353ca4 70cfb96 8d20291 e353ca4 70cfb96 ca50776 7f643e6 e353ca4 fb0e7f5 d485820 a835e4e 76ff10d 7f643e6 76ff10d 7f643e6 76ff10d e353ca4 d485820 e353ca4 d485820 e353ca4 1e8363d e353ca4 1e8363d e353ca4 6c19bf2 e353ca4 d485820 220e04f 7f643e6 76ff10d 220e04f 7f643e6 76ff10d e353ca4 1e8363d e353ca4 1e8363d e353ca4 d485820 e353ca4 d485820 e353ca4 7f643e6 e353ca4 1e8363d ca50776 f746fee 1e8363d ca50776 f746fee e353ca4 1e8363d ca50776 1e8363d ca50776 e353ca4 636dd7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 |
import streamlit as st
import numpy as np
import pandas as pd
import gspread
import pymongo
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["MLB_Database"]
return db
db = init_conn()
game_format = {'Win%': '{:.2%}','First Inning Lead Percentage': '{:.2%}', 'Top Score': '{:.2%}',
'Fifth Inning Lead Percentage': '{:.2%}', '8+ Runs': '{:.2%}', 'LevX': '{:.2%}'}
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
'4x%': '{:.2%}'}
dk_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
dk_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_sd_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
border: 3px solid #FFD700;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #FFD700;
cursor: pointer;
}
div[data-baseweb="select"] > div {
background-color: #DAA520;
color: white;
}
</style>""", unsafe_allow_html=True)
@st.cache_resource(ttl = 60)
def init_baselines():
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
roo_data = player_frame.drop(columns=['_id'])
roo_data['Salary'] = roo_data['Salary'].astype(int)
dk_roo = roo_data[roo_data['Site'] == 'Draftkings']
dk_id_map = dict(zip(dk_roo['Player'], dk_roo['player_ID']))
fd_roo = roo_data[roo_data['Site'] == 'Fanduel']
fd_id_map = dict(zip(fd_roo['Player'], fd_roo['player_ID']))
collection = db["Player_SD_Range_Of_Outcomes"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
sd_roo_data = player_frame.drop(columns=['_id'])
sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int)
sd_roo_data = sd_roo_data.rename(columns={'Own': 'Own%'})
collection = db["Scoring_Percentages"]
cursor = collection.find()
team_frame = pd.DataFrame(cursor)
scoring_percentages = team_frame.drop(columns=['_id'])
scoring_percentages = scoring_percentages[['Names', 'Avg First Inning', 'First Inning Lead Percentage', 'Avg Fifth Inning', 'Fifth Inning Lead Percentage', 'Avg Score', '8+ runs', 'Win Percentage',
'DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score',
'DK Turbo Top Score', 'FD Turbo Top Score']]
scoring_percentages['8+ runs'] = scoring_percentages['8+ runs'].replace('%', '', regex=True).astype(float)
scoring_percentages['Win Percentage'] = scoring_percentages['Win Percentage'].replace('%', '', regex=True).astype(float)
scoring_percentages['DK Main Top Score'] = scoring_percentages['DK Main Top Score'].replace('', np.nan).astype(float)
scoring_percentages['FD Main Top Score'] = scoring_percentages['FD Main Top Score'].replace('', np.nan).astype(float)
scoring_percentages['DK Secondary Top Score'] = scoring_percentages['DK Secondary Top Score'].replace('', np.nan).astype(float)
scoring_percentages['FD Secondary Top Score'] = scoring_percentages['FD Secondary Top Score'].replace('', np.nan).astype(float)
scoring_percentages['DK Turbo Top Score'] = scoring_percentages['DK Turbo Top Score'].replace('', np.nan).astype(float)
scoring_percentages['FD Turbo Top Score'] = scoring_percentages['FD Turbo Top Score'].replace('', np.nan).astype(float)
return roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map
@st.cache_data(ttl = 60)
def init_DK_lineups(type_var, slate_var):
if type_var == 'Regular':
if slate_var == 'Main':
collection = db['DK_MLB_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['DK_MLB_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif slate_var == 'Secondary':
collection = db['DK_MLB_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['DK_MLB_Secondary_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif slate_var == 'Auxiliary':
collection = db['DK_MLB_Turbo_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['DK_MLB_Turbo_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif type_var == 'Showdown':
if slate_var == 'Main':
collection = db['DK_MLB_SD1_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
elif slate_var == 'Secondary':
collection = db['DK_MLB_SD2_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
elif slate_var == 'Auxiliary':
collection = db['DK_MLB_SD3_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_FD_lineups(type_var,slate_var):
if type_var == 'Regular':
if slate_var == 'Main':
collection = db['FD_MLB_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['FD_MLB_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif slate_var == 'Secondary':
collection = db['FD_MLB_Secondary_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['FD_MLB_Secondary_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif slate_var == 'Auxiliary':
collection = db['FD_MLB_Turbo_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db['FD_MLB_Turbo_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
# Map names
raw_display[dict_columns] = raw_display[dict_columns].apply(lambda x: x.map(names_dict))
elif type_var == 'Showdown':
if slate_var == 'Main':
collection = db['FD_MLB_SD1_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
elif slate_var == 'Secondary':
collection = db['FD_MLB_SD2_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
elif slate_var == 'Auxiliary':
collection = db['FD_MLB_SD3_seed_frame']
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
FD_seed = raw_display.to_numpy()
return FD_seed
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
col1, col2 = st.columns([1, 9])
with col1:
if st.button("Load/Reset Data", key='reset'):
st.cache_data.clear()
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map = init_baselines()
hold_display = roo_data
dk_lineups = init_DK_lineups('Regular', 'Main')
fd_lineups = init_FD_lineups('Regular', 'Main')
for key in st.session_state.keys():
del st.session_state[key]
with col2:
with st.container():
col1, col2 = st.columns([3, 3])
with col1:
view_var = st.selectbox("Select view", ["Simple", "Advanced"], key='view_var')
with col2:
site_var = st.selectbox("What site do you want to view?", ('Draftkings', 'Fanduel'), key='site_var')
tab1, tab2, tab3 = st.tabs(["Scoring Percentages", "Player ROO", "Optimals"])
roo_data, sd_roo_data, scoring_percentages, dk_roo, fd_roo, dk_id_map, fd_id_map = init_baselines()
hold_display = roo_data
with tab1:
st.header("Scoring Percentages")
with st.expander("Info and Filters"):
with st.container():
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Secondary Slate', 'Turbo Slate'), key='slate_var1')
own_var1 = st.radio("How would you like to display team ownership?", ('Sum', 'Average'), key='own_var1')
if site_var == 'Draftkings':
if slate_var1 == 'Main Slate':
scoring_percentages = scoring_percentages[scoring_percentages['DK Main Slate'] == 1]
elif slate_var1 == 'Secondary Slate':
scoring_percentages = scoring_percentages[scoring_percentages['DK Secondary Slate'] == 1]
elif slate_var1 == 'Turbo Slate':
scoring_percentages = scoring_percentages[scoring_percentages['DK Turbo Slate'] == 1]
elif site_var == 'Fanduel':
if slate_var1 == 'Main Slate':
scoring_percentages = scoring_percentages[scoring_percentages['FD Main Slate'] == 1]
elif slate_var1 == 'Secondary Slate':
scoring_percentages = scoring_percentages[scoring_percentages['FD Secondary Slate'] == 1]
elif slate_var1 == 'Turbo Slate':
scoring_percentages = scoring_percentages[scoring_percentages['FD Turbo Slate'] == 1]
dk_hitters_only = dk_roo[dk_roo['pos_group'] != 'Pitchers']
if slate_var1 == 'Main Slate':
dk_hitters_only = dk_hitters_only[dk_hitters_only['Slate'] == 'main_slate']
elif slate_var1 == 'Secondary Slate':
dk_hitters_only = dk_hitters_only[dk_hitters_only['Slate'] == 'secondary_slate']
elif slate_var1 == 'Turbo Slate':
dk_hitters_only = dk_hitters_only[dk_hitters_only['Slate'] == 'turbo_slate']
dk_hitters_only = dk_hitters_only.replace('CWS', 'CHW')
dk_team_ownership = dk_hitters_only.groupby('Team')['Own%'].sum().reset_index()
fd_hitters_only = fd_roo[fd_roo['pos_group'] != 'Pitchers']
if slate_var1 == 'Main Slate':
fd_hitters_only = fd_hitters_only[fd_hitters_only['Slate'] == 'main_slate']
elif slate_var1 == 'Secondary Slate':
fd_hitters_only = fd_hitters_only[fd_hitters_only['Slate'] == 'secondary_slate']
elif slate_var1 == 'Turbo Slate':
fd_hitters_only = fd_hitters_only[fd_hitters_only['Slate'] == 'turbo_slate']
fd_hitters_only = fd_hitters_only.replace('CWS', 'CHW')
fd_team_ownership = fd_hitters_only.groupby('Team')['Own%'].sum().reset_index()
scoring_percentages = scoring_percentages.merge(dk_team_ownership, left_on='Names', right_on='Team', how='left')
scoring_percentages.rename(columns={'Own%': 'DK Own%'}, inplace=True)
scoring_percentages.drop('Team', axis=1, inplace=True)
scoring_percentages = scoring_percentages.merge(fd_team_ownership, left_on='Names', right_on='Team', how='left')
scoring_percentages.rename(columns={'Own%': 'FD Own%'}, inplace=True)
scoring_percentages.drop('Team', axis=1, inplace=True)
if site_var == 'Draftkings':
if slate_var1 == 'Main Slate':
scoring_percentages['DK LevX'] = scoring_percentages['DK Main Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'DK Main Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1)
elif slate_var1 == 'Secondary Slate':
scoring_percentages['DK LevX'] = scoring_percentages['DK Secondary Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'DK Secondary Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1)
elif slate_var1 == 'Turbo Slate':
scoring_percentages['DK LevX'] = scoring_percentages['DK Turbo Top Score'].rank(pct=True).astype(float) - scoring_percentages['DK Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'DK Turbo Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Secondary Top Score', 'FD Turbo Top Score'], axis=1)
elif site_var == 'Fanduel':
if slate_var1 == 'Main Slate':
scoring_percentages['FD LevX'] = scoring_percentages['FD Main Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'FD Main Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'DK Main Top Score', 'DK Secondary Top Score', 'FD Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1)
elif slate_var1 == 'Secondary Slate':
scoring_percentages['FD LevX'] = scoring_percentages['FD Secondary Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'FD Secondary Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'DK Secondary Top Score', 'DK Turbo Top Score', 'FD Turbo Top Score'], axis=1)
elif slate_var1 == 'Turbo Slate':
scoring_percentages['FD LevX'] = scoring_percentages['FD Turbo Top Score'].rank(pct=True).astype(float) - scoring_percentages['FD Own%'].rank(pct=True).astype(float)
scoring_percentages = scoring_percentages.rename(columns={'FD Turbo Top Score': 'Top Score'})
scoring_percentages = scoring_percentages.drop(['DK Main Slate', 'DK Secondary Slate', 'DK Turbo Slate', 'FD Main Slate', 'FD Secondary Slate', 'FD Turbo Slate', 'FD Main Top Score', 'DK Main Top Score', 'FD Secondary Top Score', 'DK Secondary Top Score', 'DK Turbo Top Score'], axis=1)
scoring_percentages = scoring_percentages.sort_values(by='8+ runs', ascending=False)
if site_var == 'Draftkings':
scoring_percentages = scoring_percentages.rename(columns={'DK LevX': 'LevX', 'DK Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
scoring_percentages = scoring_percentages.drop(['FD Own%'], axis=1)
elif site_var == 'Fanduel':
scoring_percentages = scoring_percentages.rename(columns={'FD LevX': 'LevX', 'FD Own%': 'Own%', 'Avg Score': 'Runs', 'Win Percentage': 'Win%', '8+ runs': '8+ Runs'})
scoring_percentages = scoring_percentages.drop(['DK Own%'], axis=1)
if view_var == "Simple":
scoring_percentages = scoring_percentages[['Names', 'Runs', '8+ Runs', 'Win%', 'LevX', 'Own%']]
scoring_percentages = scoring_percentages.set_index('Names', drop=True)
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), height=750, use_container_width = True)
elif view_var == "Advanced":
scoring_percentages = scoring_percentages.set_index('Names', drop=True)
st.dataframe(scoring_percentages.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(game_format, precision=2), height=750, use_container_width = True)
with tab2:
st.header("Player ROO")
with st.expander("Info and Filters"):
with st.container():
slate_type_var2 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var2')
slate_var2 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var2')
group_var2 = st.radio("Which position group would you like to view?", ('All', 'Pitchers', 'Hitters'), key='group_var2')
team_var2 = st.selectbox("Which team would you like to view?", ['All', 'Specific'], key='team_var2')
if team_var2 == 'Specific':
team_select2 = st.multiselect("Select your team(s)", roo_data['Team'].unique(), key='team_select2')
else:
team_select2 = None
pos_var2 = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var2')
if pos_var2 == 'Specific':
pos_select2 = st.multiselect("Select your position(s)", roo_data['Position'].unique(), key='pos_select2')
else:
pos_select2 = None
if slate_type_var2 == 'Regular':
if site_var == 'Draftkings':
player_roo_raw = dk_roo.copy()
if group_var2 == 'All':
pass
elif group_var2 == 'Pitchers':
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Pitchers']
elif group_var2 == 'Hitters':
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Hitters']
elif site_var == 'Fanduel':
player_roo_raw = fd_roo.copy()
if group_var2 == 'All':
pass
elif group_var2 == 'Pitchers':
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Pitchers']
elif group_var2 == 'Hitters':
player_roo_raw = player_roo_raw[player_roo_raw['pos_group'] == 'Hitters']
if slate_var2 == 'Main':
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'main_slate']
elif slate_var2 == 'Secondary':
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'secondary_slate']
elif slate_var2 == 'Auxiliary':
player_roo_raw = player_roo_raw[player_roo_raw['Slate'] == 'turbo_slate']
elif slate_type_var2 == 'Showdown':
player_roo_raw = sd_roo_data.copy()
if site_var == 'Draftkings':
player_roo_raw['site'] = 'Draftkings'
elif site_var == 'Fanduel':
player_roo_raw['site'] = 'Fanduel'
if slate_var2 == 'Main':
player_roo_raw = player_roo_raw[player_roo_raw['slate'] == 'DK SD1']
elif slate_var2 == 'Secondary':
player_roo_raw = player_roo_raw[player_roo_raw['slate'] == 'DK SD2']
elif slate_var2 == 'Auxiliary':
player_roo_raw = player_roo_raw[player_roo_raw['slate'] == 'DK SD3']
if team_select2:
player_roo_raw = player_roo_raw[player_roo_raw['Team'].isin(team_select2)]
if pos_select2:
position_mask = player_roo_raw['Position'].apply(lambda x: any(pos in x for pos in pos_select2))
player_roo_raw = player_roo_raw[position_mask]
player_roo_disp = player_roo_raw
if slate_type_var2 == 'Regular':
player_roo_disp = player_roo_disp.drop(columns=['Site', 'Slate', 'pos_group', 'timestamp', 'player_ID'])
elif slate_type_var2 == 'Showdown':
player_roo_disp = player_roo_disp.drop(columns=['site', 'slate', 'version', 'timestamp'])
player_roo_disp = player_roo_disp.drop_duplicates(subset=['Player'])
if view_var == "Simple":
try:
player_roo_disp = player_roo_disp[['Player', 'Position', 'Team', 'Salary', 'Median', 'Ceiling', 'Own%']]
player_roo_disp = player_roo_disp.set_index('Player', drop=True)
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
except:
player_roo_disp = player_roo_disp.set_index('Player', drop=True)
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
elif view_var == "Advanced":
try:
player_roo_disp = player_roo_disp.set_index('Player', drop=True)
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
except:
player_roo_disp = player_roo_disp.set_index('Player', drop=True)
st.dataframe(player_roo_disp.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
with tab3:
st.header("Optimals")
with st.expander("Info and Filters"):
col1, col2, col3 = st.columns(3)
with col1:
slate_type_var3 = st.radio("Which slate type are you loading?", ('Regular', 'Showdown'), key='slate_type_var3')
if slate_type_var3 == 'Regular':
raw_baselines = roo_data
elif slate_type_var3 == 'Showdown':
raw_baselines = sd_roo_data
slate_var3 = st.radio("Which slate data are you loading?", ('Main', 'Secondary', 'Auxiliary'), key='slate_var3')
if slate_type_var3 == 'Regular':
if site_var == 'Draftkings':
dk_lineups = init_DK_lineups(slate_type_var3, slate_var3)
elif site_var == 'Fanduel':
fd_lineups = init_FD_lineups(slate_type_var3, slate_var3)
elif slate_type_var3 == 'Showdown':
if site_var == 'Draftkings':
dk_lineups = init_DK_lineups(slate_type_var3, slate_var3)
elif site_var == 'Fanduel':
fd_lineups = init_FD_lineups(slate_type_var3, slate_var3)
with col2:
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = raw_baselines.Player.values.tolist()
with col3:
if site_var == 'Draftkings':
salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 50000, value = 49000, step = 100, key = 'salary_min_var')
salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 50000, value = 50000, step = 100, key = 'salary_max_var')
elif site_var == 'Fanduel':
salary_min_var = st.number_input("Minimum salary used", min_value = 0, max_value = 35000, value = 34000, step = 100, key = 'salary_min_var')
salary_max_var = st.number_input("Maximum salary used", min_value = 0, max_value = 35000, value = 35000, step = 100, key = 'salary_max_var')
if site_var == 'Draftkings':
if slate_type_var3 == 'Regular':
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
column_names = dk_columns
elif slate_type_var3 == 'Showdown':
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
column_names = dk_sd_columns
# Get the minimum and maximum ownership values from dk_lineups
min_own = np.min(dk_lineups[:,12])
max_own = np.max(dk_lineups[:,12])
elif site_var == 'Fanduel':
raw_baselines = hold_display
if slate_type_var3 == 'Regular':
ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
player_salaries = dict(zip(ROO_slice['Player'], ROO_slice['Salary']))
column_names = fd_columns
elif slate_type_var3 == 'Showdown':
player_salaries = dict(zip(raw_baselines['Player'], raw_baselines['Salary']))
column_names = fd_sd_columns
# Get the minimum and maximum ownership values from dk_lineups
min_own = np.min(fd_lineups[:,11])
max_own = np.max(fd_lineups[:,11])
if st.button("Prepare full data export", key='data_export'):
name_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
data_export = pd.DataFrame(st.session_state.working_seed.copy(), columns=column_names)
if site_var == 'Draftkings':
if slate_type_var3 == 'Regular':
map_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
elif slate_type_var3 == 'Showdown':
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
for col_idx in map_columns:
data_export[col_idx] = data_export[col_idx].map(dk_id_map)
elif site_var == 'Fanduel':
if slate_type_var3 == 'Regular':
map_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
elif slate_type_var3 == 'Showdown':
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
for col_idx in map_columns:
data_export[col_idx] = data_export[col_idx].map(fd_id_map)
st.download_button(
label="Export optimals set (IDs)",
data=convert_df(data_export),
file_name='MLB_optimals_export.csv',
mime='text/csv',
)
st.download_button(
label="Export optimals set (Names)",
data=convert_df(name_export),
file_name='MLB_optimals_export.csv',
mime='text/csv',
)
if site_var == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = dk_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif site_var == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = fd_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'] >= salary_min_var]
st.session_state.data_export_display = st.session_state.data_export_display[st.session_state.data_export_display['salary'] <= salary_max_var]
export_file = st.session_state.data_export_display.copy()
name_export = st.session_state.data_export_display.copy()
if site_var == 'Draftkings':
if slate_type_var3 == 'Regular':
map_columns = ['SP1', 'SP2', 'C', '1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3']
elif slate_type_var3 == 'Showdown':
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5']
for col_idx in map_columns:
export_file[col_idx] = export_file[col_idx].map(dk_id_map)
elif site_var == 'Fanduel':
if slate_type_var3 == 'Regular':
map_columns = ['P', 'C_1B', '2B', '3B', 'SS', 'OF1', 'OF2', 'OF3', 'UTIL']
elif slate_type_var3 == 'Showdown':
map_columns = ['CPT', 'FLEX1', 'FLEX2', 'FLEX3', 'FLEX4']
for col_idx in map_columns:
export_file[col_idx] = export_file[col_idx].map(fd_id_map)
with st.container():
if st.button("Reset Optimals", key='reset3'):
for key in st.session_state.keys():
del st.session_state[key]
if site_var == 'Draftkings':
st.session_state.working_seed = dk_lineups.copy()
elif site_var == 'Fanduel':
st.session_state.working_seed = fd_lineups.copy()
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
st.download_button(
label="Export display optimals (IDs)",
data=convert_df(export_file),
file_name='MLB_display_optimals.csv',
mime='text/csv',
)
st.download_button(
label="Export display optimals (Names)",
data=convert_df(name_export),
file_name='MLB_display_optimals.csv',
mime='text/csv',
)
with st.container():
if slate_type_var3 == 'Regular':
if 'working_seed' in st.session_state:
# Create a new dataframe with summary statistics
if site_var == 'Draftkings':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,10]),
np.mean(st.session_state.working_seed[:,10]),
np.max(st.session_state.working_seed[:,10]),
np.std(st.session_state.working_seed[:,10])
],
'Proj': [
np.min(st.session_state.working_seed[:,11]),
np.mean(st.session_state.working_seed[:,11]),
np.max(st.session_state.working_seed[:,11]),
np.std(st.session_state.working_seed[:,11])
],
'Own': [
np.min(st.session_state.working_seed[:,16]),
np.mean(st.session_state.working_seed[:,16]),
np.max(st.session_state.working_seed[:,16]),
np.std(st.session_state.working_seed[:,16])
]
})
elif site_var == 'Fanduel':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,9]),
np.mean(st.session_state.working_seed[:,9]),
np.max(st.session_state.working_seed[:,9]),
np.std(st.session_state.working_seed[:,9])
],
'Proj': [
np.min(st.session_state.working_seed[:,10]),
np.mean(st.session_state.working_seed[:,10]),
np.max(st.session_state.working_seed[:,10]),
np.std(st.session_state.working_seed[:,10])
],
'Own': [
np.min(st.session_state.working_seed[:,15]),
np.mean(st.session_state.working_seed[:,15]),
np.max(st.session_state.working_seed[:,15]),
np.std(st.session_state.working_seed[:,15])
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Optimal Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Own': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
with st.container():
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
with tab1:
if 'data_export_display' in st.session_state:
if site_var == 'Draftkings':
if slate_type_var3 == 'Regular':
player_columns = st.session_state.data_export_display.iloc[:, :10]
elif slate_type_var3 == 'Showdown':
player_columns = st.session_state.data_export_display.iloc[:, :6]
elif site_var == 'Fanduel':
if slate_type_var3 == 'Regular':
player_columns = st.session_state.data_export_display.iloc[:, :9]
elif slate_type_var3 == 'Showdown':
player_columns = st.session_state.data_export_display.iloc[:, :5]
# Flatten the DataFrame and count unique values
value_counts = player_columns.values.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / lineup_num_var * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
summary_df = summary_df.sort_values('Frequency', ascending=False)
summary_df = summary_df.set_index('Player')
# Display the table
st.write("Player Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
st.download_button(
label="Export player frequency",
data=convert_df_to_csv(summary_df),
file_name='MLB_player_frequency.csv',
mime='text/csv',
)
with tab2:
if 'working_seed' in st.session_state:
if site_var == 'Draftkings':
if slate_type_var3 == 'Regular':
player_columns = st.session_state.working_seed[:, :10]
elif slate_type_var3 == 'Showdown':
player_columns = st.session_state.working_seed[:, :7]
elif site_var == 'Fanduel':
if slate_type_var3 == 'Regular':
player_columns = st.session_state.working_seed[:, :9]
elif slate_type_var3 == 'Showdown':
player_columns = st.session_state.working_seed[:, :6]
# Flatten the DataFrame and count unique values
value_counts = player_columns.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df['Salary'] = summary_df['Player'].map(player_salaries)
summary_df = summary_df[['Player', 'Salary', 'Frequency', 'Percentage']]
summary_df = summary_df.sort_values('Frequency', ascending=False)
summary_df = summary_df.set_index('Player')
# Display the table
st.write("Seed Frame Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
st.download_button(
label="Export seed frame frequency",
data=convert_df_to_csv(summary_df),
file_name='MLB_seed_frame_frequency.csv',
mime='text/csv',
) |