File size: 26,536 Bytes
4036c64
6ef6fac
 
 
 
6a6dae7
 
 
6ef6fac
4036c64
 
6a6dae7
4036c64
6a6dae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b647ce4
 
 
 
6a6dae7
 
4036c64
6a6dae7
 
6ef6fac
b647ce4
6a6dae7
b647ce4
 
 
 
6ef6fac
ff22721
4036c64
f4dd7c9
 
 
 
 
 
 
6ef6fac
 
4036c64
 
f4dd7c9
 
 
 
0077aa4
f4dd7c9
 
6ef6fac
 
4036c64
5b35c1a
f4dd7c9
 
 
 
 
 
 
765743d
 
 
 
f4dd7c9
 
 
 
0077aa4
f4dd7c9
 
765743d
 
 
6a6dae7
f4dd7c9
 
 
 
277c307
f4dd7c9
5b35c1a
 
 
6ef6fac
53152e8
6887e0b
f4dd7c9
 
 
 
1bbf3e4
f4dd7c9
fb9a054
49a570a
02183a0
 
6ef6fac
ff22721
b647ce4
 
 
02183a0
b647ce4
 
 
02183a0
b647ce4
 
 
ff22721
b647ce4
 
 
02183a0
b647ce4
 
 
02183a0
b647ce4
 
 
6ef6fac
 
 
b647ce4
 
 
 
 
02183a0
e3896eb
 
 
 
 
 
6887e0b
767e1e6
3fdce20
6ef6fac
767e1e6
 
 
 
6ef6fac
6887e0b
6ef6fac
b647ce4
02183a0
b647ce4
 
 
 
 
25d03a1
 
53152e8
a581cc8
25d03a1
53152e8
a581cc8
02183a0
62db76d
53152e8
62db76d
d04b4d7
02183a0
a581cc8
56a6051
 
 
ca7de18
56a6051
 
 
6cfd079
53152e8
25d03a1
 
 
 
e38d1b9
25d03a1
 
e38d1b9
 
 
d70bdf4
e38d1b9
 
25d03a1
e38d1b9
25d03a1
 
 
 
 
 
53152e8
25d03a1
e38d1b9
25d03a1
 
 
 
 
 
 
 
 
53152e8
b647ce4
25d03a1
3e9ad43
b647ce4
02183a0
b647ce4
 
 
 
 
 
 
 
99a9c2b
6a9b6c3
b647ce4
 
3fdce20
8b16f88
 
b647ce4
 
 
48ec8ac
b647ce4
 
 
 
 
 
8b16f88
 
b647ce4
 
 
48ec8ac
3fdce20
b647ce4
3fdce20
fe33b8c
 
 
 
 
 
 
 
 
6ef6fac
25e92b8
a819472
 
 
2a95709
 
6a9b6c3
 
99a9c2b
a819472
 
 
2a95709
 
6a9b6c3
 
99a9c2b
a819472
 
 
 
2a95709
 
6a9b6c3
 
99a9c2b
a819472
 
 
2a95709
 
6a9b6c3
 
99a9c2b
b647ce4
 
25e92b8
 
 
 
 
 
 
b647ce4
4336d9e
 
 
5f2bcd1
5576a5d
1d2b4b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5576a5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4336d9e
 
5576a5d
4336d9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import streamlit as st
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo

st.set_page_config(layout="wide")

@st.cache_resource
def init_conn():
        scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']

        credentials = {
          "type": "service_account",
          "project_id": "model-sheets-connect",
          "private_key_id": st.secrets['model_sheets_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
          "client_email": "[email protected]",
          "client_id": "100369174533302798535",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
        }
        
        credentials2 = {
          "type": "service_account",
          "project_id": "sheets-api-connect-378620",
          "private_key_id": st.secrets['sheets_api_connect_pk'],
          "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
          "client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
          "client_id": "106625872877651920064",
          "auth_uri": "https://accounts.google.com/o/oauth2/auth",
          "token_uri": "https://oauth2.googleapis.com/token",
          "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
          "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
        }

        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["NBA_DFS"]
     
        NBA_Data = st.secrets['NBA_Data']

        gc = gspread.service_account_from_dict(credentials)
        gc2 = gspread.service_account_from_dict(credentials2)

        return gc, gc2, db, NBA_Data
    
gcservice_account, gcservice_account2, db, NBA_Data = init_conn()

dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']

@st.cache_data(ttl=60)
def load_overall_stats():
    collection = db["DK_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                               'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
    raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    dk_raw = raw_display.sort_values(by='Median', ascending=False)
    
    collection = db["FD_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                               'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
    raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    fd_raw = raw_display.sort_values(by='Median', ascending=False)
    
    collection = db["Secondary_DK_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                               'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
    raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
    
    collection = db["Secondary_FD_Player_Stats"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
                               'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
    raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)

    collection = db["Player_Range_Of_Outcomes"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
                               'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp']]
    raw_display = raw_display.loc[raw_display['Median'] > 0]
    raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
    roo_raw = raw_display.sort_values(by='Median', ascending=False)

    timestamp = raw_display['timestamp'].values[0]

    collection = db["Range_Of_Outcomes_Backlog"] 
    cursor = collection.find()

    raw_display = pd.DataFrame(list(cursor))
    raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
                               'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'Date']]
    roo_backlog = raw_display.sort_values(by='Date', ascending=False)
    roo_backlog = roo_backlog[roo_backlog['slate'] == 'Main Slate']
    
    return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog

@st.cache_data(ttl = 60)
def init_DK_lineups():  
    
        collection = db["DK_NBA_seed_frame"] 
        cursor = collection.find().limit(10000)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        DK_seed = raw_display.to_numpy()

        return DK_seed

@st.cache_data(ttl = 60)
def init_FD_lineups():  
    
        collection = db["FD_NBA_seed_frame"] 
        cursor = collection.find().limit(10000)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
        FD_seed = raw_display.to_numpy()

        return FD_seed

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    return array.to_csv().encode('utf-8')

dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
try:
    dk_lineups = init_DK_lineups()
    fd_lineups = init_FD_lineups()
except:
    dk_lineups = pd.DataFrame(columns=dk_columns)
    fd_lineups = pd.DataFrame(columns=fd_columns)
t_stamp = f"Last Update: " + str(timestamp) + f" CST"

tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])

with tab1:

    col1, col2 = st.columns([1, 9])

    with col1:
        st.info(t_stamp)
        if st.button("Load/Reset Data", key='reset1'):
            st.cache_data.clear()
            dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
            dk_lineups = init_DK_lineups()
            fd_lineups = init_FD_lineups()
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
            for key in st.session_state.keys():
                del st.session_state[key]
        site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
        if site_var2 == 'Draftkings':
            site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
            site_backlog = roo_backlog[roo_backlog['site'] == 'Draftkings']
        elif site_var2 == 'Fanduel':
            site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
            site_backlog = roo_backlog[roo_backlog['site'] == 'Fanduel']
        slate_split = st.radio("Are you viewing the main slate or the secondary slate?", ('Main Slate', 'Secondary', 'Backlog'), key='slate_split')
        if slate_split == 'Main Slate':
            raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
        elif slate_split == 'Secondary':
            raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
        elif slate_split == 'Backlog':
            raw_baselines = site_backlog
            view_all = st.checkbox("Do you want to view all dates?", key='view_all')
            if view_all:
                raw_baselines = raw_baselines
                raw_baselines = raw_baselines.sort_values(by=['Median', 'Date'], ascending=[False, False])
            else:
                date_var2 = st.date_input("Which date would you like to view?", key='date_var2')
                raw_baselines = raw_baselines[raw_baselines['Date'] == date_var2.strftime('%m-%d-%Y')]
                raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
        split_var2 = st.radio("Are you running the full slate or certain games?", ('Full Slate Run', 'Specific Games'), key='split_var2')
        if split_var2 == 'Specific Games':
            team_var2 = st.multiselect('Which teams would you like to include in the ROO?', options = raw_baselines['Team'].unique(), key='team_var2')
        elif split_var2 == 'Full Slate Run':
            team_var2 = raw_baselines.Team.values.tolist()
        pos_var2 = st.selectbox('View specific position?', options = ['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')

    with col2:
        display_container_1 = st.empty()
        display_dl_container_1 = st.empty()
        display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
        display_proj = display_proj.drop(columns=['site', 'version', 'slate', 'timestamp'])
        
        st.session_state.display_proj = display_proj
            
        with display_container_1:
            display_container = st.empty()
            if 'display_proj' in st.session_state:
                if pos_var2 == 'All':
                    st.session_state.display_proj = st.session_state.display_proj
                elif pos_var2 != 'All':
                    st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
                st.dataframe(st.session_state.display_proj.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=1000, use_container_width = True)
        
        with display_dl_container_1:
                display_dl_container = st.empty()
                if 'display_proj' in st.session_state:
                    st.download_button(
                                label="Export Tables",
                                data=convert_df_to_csv(st.session_state.display_proj),
                                file_name='NBA_ROO_export.csv',
                                mime='text/csv',
                    )

with tab2:
    col1, col2 = st.columns([1, 7])
    with col1:
        if st.button("Load/Reset Data", key='reset2'):
            st.cache_data.clear()
            dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
            dk_lineups = init_DK_lineups()
            fd_lineups = init_FD_lineups()
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
            for key in st.session_state.keys():
                del st.session_state[key]
              
        slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate'))
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
        lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=500, value=10, step=1)

        if site_var1 == 'Draftkings':
            raw_baselines = dk_raw
            # Get the minimum and maximum ownership values from dk_lineups
            min_own = np.min(dk_lineups[:,14])
            max_own = np.max(dk_lineups[:,14])
            column_names = dk_columns
            
            player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
            if player_var1 == 'Specific Players':
                    player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
            elif player_var1 == 'Full Slate':
                    player_var2 = dk_raw.Player.values.tolist()
                    
        elif site_var1 == 'Fanduel':
            raw_baselines = fd_raw
            min_own = np.min(fd_lineups[:,15])
            max_own = np.max(fd_lineups[:,15])
            column_names = fd_columns
            
            player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
            if player_var1 == 'Specific Players':
                    player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
            elif player_var1 == 'Full Slate':
                    player_var2 = fd_raw.Player.values.tolist()

        if st.button("Prepare data export", key='data_export'):
            data_export = st.session_state.working_seed.copy()
            st.download_button(
                label="Export optimals set",
                data=convert_df(data_export),
                file_name='NBA_optimals_export.csv',
                mime='text/csv',
            )
    with col2:
        
        if site_var1 == 'Draftkings':
            if 'working_seed' in st.session_state:
                st.session_state.working_seed = st.session_state.working_seed
                if player_var1 == 'Specific Players':
                    st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
                elif player_var1 == 'Full Slate':
                    st.session_state.working_seed = dk_lineups.copy()
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
            elif 'working_seed' not in st.session_state:
                st.session_state.working_seed = dk_lineups.copy()
                st.session_state.working_seed = st.session_state.working_seed
                if player_var1 == 'Specific Players':
                    st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
                elif player_var1 == 'Full Slate':
                    st.session_state.working_seed = dk_lineups.copy()
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
            
        elif site_var1 == 'Fanduel':
            if 'working_seed' in st.session_state:
                st.session_state.working_seed = st.session_state.working_seed
                if player_var1 == 'Specific Players':
                    st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
                elif player_var1 == 'Full Slate':
                    st.session_state.working_seed = fd_lineups.copy()
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
            elif 'working_seed' not in st.session_state:
                st.session_state.working_seed = fd_lineups.copy()
                st.session_state.working_seed = st.session_state.working_seed
                if player_var1 == 'Specific Players':
                    st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
                elif player_var1 == 'Full Slate':
                    st.session_state.working_seed = fd_lineups.copy()
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
                
        with st.container():
            if st.button("Reset Optimals", key='reset3'):
                for key in st.session_state.keys():
                    del st.session_state[key]
                if site_var1 == 'Draftkings':
                    st.session_state.working_seed = dk_lineups.copy()
                elif site_var1 == 'Fanduel':
                    st.session_state.working_seed = fd_lineups.copy()
            if 'data_export_display' in st.session_state:
                st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
        
        with st.container():
            if 'working_seed' in st.session_state:
                # Create a new dataframe with summary statistics
                if site_var1 == 'Draftkings':
                    summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                        'Salary': [
                            np.min(st.session_state.working_seed[:,8]),
                            np.mean(st.session_state.working_seed[:,8]),
                            np.max(st.session_state.working_seed[:,8]),
                            np.std(st.session_state.working_seed[:,8])
                        ],
                        'Proj': [
                            np.min(st.session_state.working_seed[:,9]),
                            np.mean(st.session_state.working_seed[:,9]),
                            np.max(st.session_state.working_seed[:,9]),
                            np.std(st.session_state.working_seed[:,9])
                        ],
                        'Own': [
                            np.min(st.session_state.working_seed[:,14]),
                            np.mean(st.session_state.working_seed[:,14]),
                            np.max(st.session_state.working_seed[:,14]),
                            np.std(st.session_state.working_seed[:,14])
                        ]
                    })
                elif site_var1 == 'Fanduel':
                    summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                        'Salary': [
                            np.min(st.session_state.working_seed[:,9]),
                            np.mean(st.session_state.working_seed[:,9]),
                            np.max(st.session_state.working_seed[:,9]),
                            np.std(st.session_state.working_seed[:,9])
                        ],
                        'Proj': [
                            np.min(st.session_state.working_seed[:,10]),
                            np.mean(st.session_state.working_seed[:,10]),
                            np.max(st.session_state.working_seed[:,10]),
                            np.std(st.session_state.working_seed[:,10])
                        ],
                        'Own': [
                            np.min(st.session_state.working_seed[:,15]),
                            np.mean(st.session_state.working_seed[:,15]),
                            np.max(st.session_state.working_seed[:,15]),
                            np.std(st.session_state.working_seed[:,15])
                        ]
                    })

                # Set the index of the summary dataframe as the "Metric" column
                summary_df = summary_df.set_index('Metric')

                # Display the summary dataframe
                st.subheader("Optimal Statistics")
                st.dataframe(summary_df.style.format({
                    'Salary': '{:.2f}',
                    'Proj': '{:.2f}',
                    'Own': '{:.2f}'
                }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)

        with st.container():
            if 'data_export_display' in st.session_state:
                if site_var1 == 'Draftkings':
                    player_columns = st.session_state.data_export_display.iloc[:, :8]
                elif site_var1 == 'Fanduel':
                    player_columns = st.session_state.data_export_display.iloc[:, :9]
                
                # Flatten the DataFrame and count unique values
                value_counts = player_columns.values.flatten().tolist()
                value_counts = pd.Series(value_counts).value_counts()
                
                percentages = (value_counts / lineup_num_var * 100).round(2)
                
                # Create a DataFrame with the results
                summary_df = pd.DataFrame({
                    'Player': value_counts.index,
                    'Frequency': value_counts.values,
                    'Percentage': percentages.values
                })
                
                # Sort by frequency in descending order
                summary_df = summary_df.sort_values('Frequency', ascending=False)
                
                # Display the table
                st.write("Player Frequency Table:")
                st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)