File size: 19,065 Bytes
c1d6516
 
 
 
 
 
 
0917471
 
 
c1d6516
3d00450
c1d6516
 
 
3d00450
 
 
c1d6516
3d00450
 
 
0917471
57c489b
5faa553
0917471
21dca8d
 
71230df
 
21dca8d
c1d6516
d117a25
3d00450
 
 
0917471
e54a8b1
 
 
 
e2753d2
 
 
 
 
59c5c99
e2753d2
e54a8b1
e2753d2
0917471
71230df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0917471
 
 
71230df
 
 
 
 
e2753d2
cf5e7cf
 
d117a25
0917471
 
 
 
 
 
a7afe56
d117a25
0917471
 
71230df
 
 
e2753d2
71230df
 
 
 
 
 
e54a8b1
24e9e65
0917471
24e9e65
 
e2753d2
 
 
 
 
24e9e65
 
e2753d2
 
 
 
24e9e65
 
0917471
 
 
 
 
 
 
 
71230df
 
 
 
e2753d2
71230df
 
 
 
 
 
 
 
 
 
 
 
 
a245a96
71230df
240c28d
 
71230df
 
 
 
 
 
 
 
 
 
a245a96
240c28d
 
71230df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a245a96
 
 
 
71230df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a245a96
 
 
 
71230df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import streamlit as st
st.set_page_config(layout="wide")

for name in dir():
    if not name.startswith('_'):
        del globals()[name]

import numpy as np
import pandas as pd
import streamlit as st
import gc
import pymongo

@st.cache_resource
def init_conn():
        uri = st.secrets['mongo_uri']
        client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
        db = client["PGA_Database"]

        return db
    
db = init_conn()

dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'

player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '100+%': '{:.2%}', '10x%': '{:.2%}', '11x%': '{:.2%}',
                   '12x%': '{:.2%}','LevX': '{:.2%}'}
dk_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']
fd_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']

@st.cache_resource(ttl = 600)
def init_baselines():
    collection = db["PGA_Range_of_Outcomes"] 
    cursor = collection.find()
    player_frame = pd.DataFrame(cursor)
    
    timestamp = player_frame['Timestamp'][0]

    roo_data = player_frame.drop(columns=['_id', 'index', 'Timestamp'])
    roo_data['Salary'] = roo_data['Salary'].astype(int)

    collection = db["PGA_SD_ROO"] 
    cursor = collection.find()
    player_frame = pd.DataFrame(cursor)

    sd_roo_data = player_frame.drop(columns=['_id', 'index'])
    sd_roo_data['Salary'] = sd_roo_data['Salary'].astype(int)
    
    return roo_data, sd_roo_data, timestamp

@st.cache_data(ttl = 60)
def init_DK_lineups():  
        
        collection = db['PGA_DK_Seed_Frame_Name_Map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))
    
        collection = db["PGA_DK_Seed_Frame"] 
        cursor = collection.find().limit(10000)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']]
        dict_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
        for col in dict_columns:
            raw_display[col] = raw_display[col].map(names_dict)
        DK_seed = raw_display.to_numpy()

        return DK_seed

@st.cache_data(ttl = 60)
def init_FD_lineups():  
        
        collection = db['PGA_DK_Seed_Frame_Name_Map']
        cursor = collection.find()
        raw_data = pd.DataFrame(list(cursor))
        names_dict = dict(zip(raw_data['key'], raw_data['value']))
    
        collection = db["PGA_DK_Seed_Frame"] 
        cursor = collection.find().limit(10000)
    
        raw_display = pd.DataFrame(list(cursor))
        raw_display = raw_display[['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6', 'salary', 'proj', 'Own']]
        dict_columns = ['FLEX1', 'FLEX2', 'FLEX3', 'FLEX4', 'FLEX5', 'FLEX6']
        for col in dict_columns:
            raw_display[col] = raw_display[col].map(names_dict)
        FD_seed = raw_display.to_numpy()

        return FD_seed

def convert_df_to_csv(df):
    return df.to_csv().encode('utf-8')

@st.cache_data
def convert_df(array):
    array = pd.DataFrame(array, columns=column_names)
    return array.to_csv().encode('utf-8')

roo_data, sd_roo_data, timestamp = init_baselines()
dk_lineups = init_DK_lineups()
fd_lineups = init_FD_lineups()
hold_display = roo_data
lineup_display = []
check_list = []
rand_player = 0
boost_player = 0
salaryCut = 0

tab1, tab2 = st.tabs(["Player Overall Projections", "Optimals and Exposures"])

with tab1:
    if st.button("Reset Data", key='reset1'):
            # Clear values from *all* all in-memory and on-disk data caches:
            # i.e. clear values from both square and cube
            st.cache_data.clear()
            roo_data, sd_roo_data, timestamp = init_baselines()
            dk_lineups = init_DK_lineups()
            fd_lineups = init_FD_lineups()
            hold_display = roo_data
            for key in st.session_state.keys():
                del st.session_state[key]

    st.write(timestamp)
    options_container = st.empty()
    hold_container = st.empty()

    with options_container:
        col1, col2 = st.columns([4, 4])
        with col1:
            site_var = st.selectbox("Select a Site", ["Draftkings", "FanDuel"])
        with col2:
            type_var = st.selectbox("Select a Type", ["Full Slate", "Showdown"])
        
    with hold_container:
        if type_var == "Full Slate":
            display = hold_display[hold_display['Site'] == site_var]
        elif type_var == "Showdown":
            display = sd_roo_data
        st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
    
    st.download_button(
        label="Export Projections",
        data=convert_df_to_csv(display),
        file_name='PGA_DFS_export.csv',
        mime='text/csv',
    )

with tab2:
    col1, col2 = st.columns([1, 7])
    with col1:
        if st.button("Load/Reset Data", key='reset2'):
            st.cache_data.clear()
            roo_data, sd_roo_data, timestamp = init_baselines()
            hold_display = roo_data
            dk_lineups = init_DK_lineups()
            fd_lineups = init_FD_lineups()
            t_stamp = f"Last Update: " + str(timestamp) + f" CST"
            for key in st.session_state.keys():
                del st.session_state[key]
              
        slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate'))
        site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
        lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)

        if site_var1 == 'Draftkings':
            raw_baselines = hold_display
            ROO_slice = raw_baselines[raw_baselines['Site'] == 'Draftkings']
            # Get the minimum and maximum ownership values from dk_lineups
            min_own = np.min(dk_lineups[:,8])
            max_own = np.max(dk_lineups[:,8])
            column_names = dk_columns
            
            player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
            if player_var1 == 'Specific Players':
                    player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
            elif player_var1 == 'Full Slate':
                    player_var2 = raw_baselines.Player.values.tolist()
                    
        elif site_var1 == 'Fanduel':
            raw_baselines = hold_display
            ROO_slice = raw_baselines[raw_baselines['Site'] == 'Fanduel']
            min_own = np.min(fd_lineups[:,8])
            max_own = np.max(fd_lineups[:,8])
            column_names = fd_columns
            
            player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
            if player_var1 == 'Specific Players':
                    player_var2 = st.multiselect('Which players do you want?', options = raw_baselines['Player'].unique())
            elif player_var1 == 'Full Slate':
                    player_var2 = raw_baselines.Player.values.tolist()

        if st.button("Prepare data export", key='data_export'):
            data_export = st.session_state.working_seed.copy()
            # if site_var1 == 'Draftkings':
            #     for col_idx in range(6):
            #         data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
            # elif site_var1 == 'Fanduel':
            #     for col_idx in range(6):
            #         data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
            st.download_button(
                label="Export optimals set",
                data=convert_df(data_export),
                file_name='NBA_optimals_export.csv',
                mime='text/csv',
            )
    with col2:
        
        if site_var1 == 'Draftkings':
            if 'working_seed' in st.session_state:
                st.session_state.working_seed = st.session_state.working_seed
                if player_var1 == 'Specific Players':
                    st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
                elif player_var1 == 'Full Slate':
                    st.session_state.working_seed = dk_lineups.copy()
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
            elif 'working_seed' not in st.session_state:
                st.session_state.working_seed = dk_lineups.copy()
                st.session_state.working_seed = st.session_state.working_seed
                if player_var1 == 'Specific Players':
                    st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
                elif player_var1 == 'Full Slate':
                    st.session_state.working_seed = dk_lineups.copy()
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
            
        elif site_var1 == 'Fanduel':
            if 'working_seed' in st.session_state:
                st.session_state.working_seed = st.session_state.working_seed
                if player_var1 == 'Specific Players':
                    st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
                elif player_var1 == 'Full Slate':
                    st.session_state.working_seed = fd_lineups.copy()
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
            elif 'working_seed' not in st.session_state:
                st.session_state.working_seed = fd_lineups.copy()
                st.session_state.working_seed = st.session_state.working_seed
                if player_var1 == 'Specific Players':
                    st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
                elif player_var1 == 'Full Slate':
                    st.session_state.working_seed = fd_lineups.copy()
                st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)

        export_file = st.session_state.data_export_display.copy()
        # if site_var1 == 'Draftkings':
        #     for col_idx in range(6):
        #         export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
        # elif site_var1 == 'Fanduel':
        #     for col_idx in range(6):
        #         export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
                
        with st.container():
            if st.button("Reset Optimals", key='reset3'):
                for key in st.session_state.keys():
                    del st.session_state[key]
                if site_var1 == 'Draftkings':
                    st.session_state.working_seed = dk_lineups.copy()
                elif site_var1 == 'Fanduel':
                    st.session_state.working_seed = fd_lineups.copy()
            if 'data_export_display' in st.session_state:
                st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
            st.download_button(
                label="Export display optimals",
                data=convert_df(export_file),
                file_name='NBA_display_optimals.csv',
                mime='text/csv',
            )
        
        with st.container():
            if 'working_seed' in st.session_state:
                # Create a new dataframe with summary statistics
                if site_var1 == 'Draftkings':
                    summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                        'Salary': [
                            np.min(st.session_state.working_seed[:,6]),
                            np.mean(st.session_state.working_seed[:,6]),
                            np.max(st.session_state.working_seed[:,6]),
                            np.std(st.session_state.working_seed[:,6])
                        ],
                        'Proj': [
                            np.min(st.session_state.working_seed[:,7]),
                            np.mean(st.session_state.working_seed[:,7]),
                            np.max(st.session_state.working_seed[:,7]),
                            np.std(st.session_state.working_seed[:,7])
                        ],
                        'Own': [
                            np.min(st.session_state.working_seed[:,8]),
                            np.mean(st.session_state.working_seed[:,8]),
                            np.max(st.session_state.working_seed[:,8]),
                            np.std(st.session_state.working_seed[:,8])
                        ]
                    })
                elif site_var1 == 'Fanduel':
                    summary_df = pd.DataFrame({
                        'Metric': ['Min', 'Average', 'Max', 'STDdev'],
                        'Salary': [
                            np.min(st.session_state.working_seed[:,6]),
                            np.mean(st.session_state.working_seed[:,6]),
                            np.max(st.session_state.working_seed[:,6]),
                            np.std(st.session_state.working_seed[:,6])
                        ],
                        'Proj': [
                            np.min(st.session_state.working_seed[:,7]),
                            np.mean(st.session_state.working_seed[:,7]),
                            np.max(st.session_state.working_seed[:,7]),
                            np.std(st.session_state.working_seed[:,7])
                        ],
                        'Own': [
                            np.min(st.session_state.working_seed[:,8]),
                            np.mean(st.session_state.working_seed[:,8]),
                            np.max(st.session_state.working_seed[:,8]),
                            np.std(st.session_state.working_seed[:,8])
                        ]
                    })

                # Set the index of the summary dataframe as the "Metric" column
                summary_df = summary_df.set_index('Metric')

                # Display the summary dataframe
                st.subheader("Optimal Statistics")
                st.dataframe(summary_df.style.format({
                    'Salary': '{:.2f}',
                    'Proj': '{:.2f}',
                    'Own': '{:.2f}'
                }).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)

        with st.container():
            tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
            with tab1:
                if 'data_export_display' in st.session_state:
                    if site_var1 == 'Draftkings':
                        player_columns = st.session_state.data_export_display.iloc[:, :6]
                    elif site_var1 == 'Fanduel':
                        player_columns = st.session_state.data_export_display.iloc[:, :6]
                    
                    # Flatten the DataFrame and count unique values
                    value_counts = player_columns.values.flatten().tolist()
                    value_counts = pd.Series(value_counts).value_counts()
                    
                    percentages = (value_counts / lineup_num_var * 100).round(2)
                    
                    # Create a DataFrame with the results
                    summary_df = pd.DataFrame({
                        'Player': value_counts.index,
                        'Frequency': value_counts.values,
                        'Percentage': percentages.values
                    })
                    
                    # Sort by frequency in descending order
                    summary_df = summary_df.sort_values('Frequency', ascending=False)
                    
                    # Display the table
                    st.write("Player Frequency Table:")
                    st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
                
                    st.download_button(
                        label="Export player frequency",
                        data=convert_df_to_csv(summary_df),
                        file_name='PGA_player_frequency.csv',
                        mime='text/csv',
                    )
            with tab2:
                if 'working_seed' in st.session_state:
                    if site_var1 == 'Draftkings':
                        player_columns = st.session_state.working_seed[:, :6]
                    elif site_var1 == 'Fanduel':
                        player_columns = st.session_state.working_seed[:, :6]
                    
                    # Flatten the DataFrame and count unique values
                    value_counts = player_columns.flatten().tolist()
                    value_counts = pd.Series(value_counts).value_counts()
                    
                    percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
                    # Create a DataFrame with the results
                    summary_df = pd.DataFrame({
                        'Player': value_counts.index,
                        'Frequency': value_counts.values,
                        'Percentage': percentages.values
                    })
                    
                    # Sort by frequency in descending order
                    summary_df = summary_df.sort_values('Frequency', ascending=False)
                    
                    # Display the table
                    st.write("Seed Frame Frequency Table:")
                    st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}), height=500, use_container_width=True)
                
                    st.download_button(
                        label="Export seed frame frequency",
                        data=convert_df_to_csv(summary_df),
                        file_name='PGA_seed_frame_frequency.csv',
                        mime='text/csv',
                    )