File size: 15,175 Bytes
0523aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41d578d
f2e97f6
1db1ffc
605744d
0523aca
 
 
 
 
 
 
 
a3455d2
 
 
 
 
 
0614cf9
a3455d2
0614cf9
0523aca
 
a3455d2
 
 
 
 
 
0523aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76947d8
0523aca
 
 
 
 
496a78a
1db1ffc
0523aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee72f2
195c96a
2ee72f2
195c96a
0523aca
 
 
 
 
 
 
2ee72f2
195c96a
2ee72f2
0523aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce09929
 
0523aca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce09929
 
0523aca
 
6a1fc45
0523aca
3b7c40f
 
2c89027
 
ce09929
 
 
2c89027
 
 
0523aca
605744d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#python hf-fine-tune-fleet-8.py 1 train_fleet test_fleet 1 1 saved_fleet_model

import pandas as pd
from sklearn.model_selection import train_test_split
from transformers import BertTokenizer, BertForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
import torch
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import sys
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
import re
from datasets import load_dataset, DatasetDict
import time
import pprint
import json
from huggingface_hub import HfApi, login, upload_folder, create_repo
import os
from flask import Flask, jsonify, request
import requests
from fetch_data import fetch_and_update_training_data
import gradio as gr

# Load configuration file 
with open('config.json', 'r') as config_file:
    config = json.load(config_file) 

num_args = len(config)


arg1 = config.get('arg1', '1') 
arg2 = config.get('arg2', 'train_fleet') 
arg3 = config.get('arg3', 'test_fleet')
arg4 = config.get('arg4', '1') 
arg5 = config.get('arg5', '1')
arg6 = config.get('arg6', 'saved_fleet_model')
arg7 = config.get('arg7', 'Model')

if num_args == 7:    
    # cmd args
    # sys.argv[0] is the script name, sys.argv[1] is the first argument, etc.
    should_train_model = arg1  # should train model?
    train_file = arg2   # training file name
    test_file = arg3    # eval file name
    batch_size_for_trainer = int(arg4)  # batch sizes to send to trainer
    should_produce_eval_matrix = int(arg5)     # should produce matrix?
    path_to_save_trained_model_to = arg6
    
else:
    print(f"Only {num_args-1} arguments after filename were passed out of 6")
    sys.exit()

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0" #only use 1 of my GPS (in case very weak ones are installed which would slow the training down)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')


if (should_train_model=='1'): #train model
    
    #settings
    model_save_path = path_to_save_trained_model_to
    bias_non_fleet = 1.0
    epochs_to_run = 15

    file_path_train = train_file + ".csv"
    file_path_test = test_file + ".csv"

    # Read the CSV files into pandas DataFrames they will later by converted to DataTables and used to train and evaluate the model
    
    file_train_df = fetch_and_update_training_data(file_path_train)
    file_test_df = pd.read_csv(file_path_test)

    
    #combine dataframes to get all possible labels/classifications for both training and evaluating - to get all possible labels (intents)
    df = pd.concat([file_train_df, file_test_df], ignore_index=True)
    sorted_labels = sorted(df['label'].unique())
    

    #create labels map from unique sorted labels
    label_mapping = {label: i for i, label in enumerate(sorted_labels)}
    print("label mappings")
    print(label_mapping)

    repo_name = "Reyad-Ahmmed/hf-data-timeframe"
    
    tokenizer = BertTokenizer.from_pretrained(repo_name, subfolder="bert_embeddings_finetune")
    
    #tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
                                              
    # I made sure to add all the ones in the training and eval data to this list
    # since we are training using data that only contains the left tag - we don't need right tags added to this list
    new_tokens = ['<EMPLOYEE_FIRST_NAME>', '<EMPLOYEE_LAST_NAME>','<POINT_ADDRESS>', '<TRUCK_NAME>', '<POINT_CLASS_NAME>', '<POINT_NAME>', '<TRUCK_CLASS_NAME>', '<TRUCK_STATUS_NAME>]']
    tokenizer.add_tokens(new_tokens)

    
    # Model
    model = BertForSequenceClassification.from_pretrained(repo_name, subfolder="bert_embeddings_finetune", output_attentions=True, num_labels=len(label_mapping), output_hidden_states=True).to('cpu')

    #model = BertForSequenceClassification.from_pretrained("roberta-base", output_attentions=True, num_labels=len(label_mapping), output_hidden_states=True).to('cpu')

    # Reset tokenizer size to include the new size after adding the tags to the tokenizer's tokens
    model.resize_token_embeddings(len(tokenizer))
    
    #important_tokens = ["Acura-New", "TR-9012", "TR-NEW-02"]   

    from datasets import Dataset, DatasetDict
    from sklearn.model_selection import train_test_split    

    # Step 2: Convert string labels to integers
    # Create a mapping from unique labels (strings) to integers
    label_to_id = {label: idx for idx, label in enumerate(sorted(df["label"].unique()))}
    print(label_to_id)

    # Dataframes contain prompts and label names
    print('before converting labels to labelIds')
    pprint.pp(file_train_df)
    pprint.pp(file_test_df)

    # Apply the mapping to the labels to id (will swap out the label names with label id to the dataframes)
    file_train_df["label"] = file_train_df["label"].map(label_to_id)
    file_test_df["label"] = file_test_df["label"].map(label_to_id)
    
    print('after swapping out label names with Ids')
    pprint.pp(file_train_df)
    pprint.pp(file_test_df)

    # Step 3: Convert both dataframes to dictionaries
    emotions_dict_train = {"text": file_train_df["text"].tolist(), "label": file_train_df["label"].tolist()}
    emotions_dict_test = {"text": file_test_df["text"].tolist(), "label": file_test_df["label"].tolist()}
    
    print('dictionaries')
    pprint.pp(emotions_dict_train)
    pprint.pp(emotions_dict_test)

    # convert dictionaries to datasets
    emotions_dataset_train = Dataset.from_dict(emotions_dict_train)
    emotions_dataset_test = Dataset.from_dict(emotions_dict_test)

    # Step 4: Split dataset into train and validation
    # Create top level dictionary with both datasets (will contain two keys: one for "train" whose value is the training dataset 
    # and one for "validation" with test dataset)
    emotions_encoded = DatasetDict({
        'train': emotions_dataset_train,
        'validation': emotions_dataset_test
    })

    # Define the tokenize function
    def tokenize(batch):
        return tokenizer(batch["text"], padding=True, truncation=True)

    # Apply tokenization by mapping the entire dataset (both training and validation) to tokenizer function
    # this will add the "input_id" and "attention_mask" columns
    emotions_encoded = emotions_encoded.map(tokenize, batched=True)
    emotions_encoded.set_format(type="torch", columns=["input_ids", "attention_mask", "label"])

    # Set the model to evaluation mode (this line does not run any training or eval)
    model.eval()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)

    from sklearn.metrics import accuracy_score, f1_score

    # Define additional compute_metrics (used as part of error-analysis - produces "accuracy" metric which can be used in another program 
    # that shows any training prompts with large losses)
    def compute_metrics(pred):
        logits = pred.predictions[0] if isinstance(pred.predictions, tuple) else pred.predictions
        preds = logits.argmax(-1)
        labels = pred.label_ids
        accuracy = (preds == labels).astype(float).mean()
        return {"accuracy": accuracy}

    training_args = TrainingArguments(
        output_dir='./results',
        num_train_epochs=epochs_to_run,
        per_device_train_batch_size=batch_size_for_trainer,
        per_device_eval_batch_size=batch_size_for_trainer,
        warmup_steps=500,
        learning_rate=2e-5,
        weight_decay=0.02,
        logging_dir='./logs',
        logging_steps=10,
        evaluation_strategy="epoch",
    )

    # This is needed b/c loss_fn is swapped out in order to use weighted loss
    # Any class weights that are not equal to one will make the model more (if greater than one) or less (if less than one)sensitive to given label
    class CustomTrainer(Trainer):
        def compute_loss(self, model, inputs, return_outputs=False):
            labels = inputs.get("labels")
            outputs = model(**inputs)
            logits = outputs.get("logits")

            # Use cross-entropy loss with class weights
            # loss_fn = torch.nn.CrossEntropyLoss(weight=class_weights)
            loss_fn = torch.nn.CrossEntropyLoss()
            loss = loss_fn(logits, labels)

            return (loss, outputs) if return_outputs else loss

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=emotions_encoded["train"],
        eval_dataset=emotions_encoded["validation"],
        tokenizer=tokenizer
    )

    # send validation prompts through the model - will be used in error-analysis matrix below
    preds_output = trainer.predict(emotions_encoded["validation"])    
    

    #################This section creates a error analysis matrix
    # Extract the logits from the predictions output
    logits = preds_output.predictions[0] if isinstance(preds_output.predictions, tuple) else preds_output.predictions

    # Get the predicted class by applying argmax on the logits
    y_preds = np.argmax(logits, axis=1)    #prediction
    y_valid = np.array(emotions_encoded["validation"]["label"]) #labels


    from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
    import matplotlib.pyplot as plt
    import numpy as np

    from sklearn.metrics import ConfusionMatrixDisplay, confusion_matrix
    #num_labels2 = len(label_mapping)

    print("Ypreds and valids shape")
    print(y_preds.shape, y_valid.shape)
    
   
    # Define the function to plot the confusion matrix
    def plot_confusion_matrix_with_text_labels(y_preds, y_true, labels):
           
        # Compute confusion matrix
        cm = confusion_matrix(y_true, y_preds,normalize="true")
        
        # Plot confusion matrix
        fig, ax = plt.subplots(figsize=(len(labels), len(labels)))
        disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=labels)
        disp.plot(cmap="Blues", values_format=".2f", ax=ax, colorbar=False)
        
        # Rotate the x-axis labels to prevent overlap
        plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")

        # Ensure the plot is displayed
        plt.title("Normalized Confusion Matrix with Text Labels")
        plt.tight_layout()
        plt.savefig("confusion_matrix.png")
        plt.show()
        
    

    # Get unique labels for validation data only - this will be shown in the matrix
    unique_labels = sorted(set(y_valid) | set(y_preds))
    id_to_label = {v: k for k, v in label_to_id.items()}
    labels = [id_to_label[label] for label in unique_labels]
    
    print ("unique_labels")
    print(labels)

    # Call the function with the correct labels    
    if(should_produce_eval_matrix == 1):
        plot_confusion_matrix_with_text_labels(y_preds, y_valid, labels)

    #the label mapping will be saved in the model - and retrieved by any other program using the model - 
    # for instance the pathway through this code used for inference only will retrieve this value 
    # (or like the Python program that measures poor accuracies)  
    model.config.label_mapping = label_mapping

    # Save the model and tokenizer
    model.save_pretrained(f"./{model_save_path}")
    tokenizer.save_pretrained(f"./{model_save_path}")
    
    #for push repository
    repo_name = "Reyad-Ahmmed/hf-data-timeframe" 

    # Your repository name 
    api_token = os.getenv("hf_token")  # Retrieve the API token from environment variable

    if not api_token:
        raise ValueError("API token not found. Please set the HF_API_TOKEN environment variable.")

    # Create repository (if not already created)
    api = HfApi()
    create_repo(repo_id=repo_name, token=api_token, exist_ok=True)

    # Upload the model and tokenizer to the Hugging Face repository
    upload_folder(
        folder_path=f"{model_save_path}",
        path_in_repo=f"{model_save_path}",
        repo_id=repo_name,
        token=api_token,
        commit_message="Push model and tokenizer",
    )

    print("Operation complete for fine-tunning.")
else:
    print('Load Pre-trained')
    model_save_path = f"./{model_save_path}"
    tokenizer_save_path = f"./{model_save_path}"
    
    # RobertaTokenizer.from_pretrained(model_save_path)
    model = AutoModelForSequenceClassification.from_pretrained(model_save_path).to('cpu')
    tokenizer = AutoTokenizer.from_pretrained(tokenizer_save_path)

#Function to classify user input
def classify_user_input(user_input):
    while True:
           
        # Tokenize and predict
        input_encoding = tokenizer(user_input, padding=True, truncation=True, return_tensors="pt").to('cuda')
        
        with torch.no_grad():
            #attention_mask = input_encoding['attention_mask'].clone()

            # Modify the attention mask to emphasize certain key tokens
            for idx, token_id in enumerate(input_encoding['input_ids'][0]):
                word = tokenizer.decode([token_id])
                print(word)
                #if word.strip() in ["point", "summarize", "oil", "maintenance"]:  # Target key tokens
                    #attention_mask[0, idx] = 2  # Increase attention weight for these words
                # else:
                #     attention_mask[0, idx] = 0 
            #print (attention_mask)
            #input_encoding['attention_mask'] = attention_mask               
            output = model(**input_encoding, output_hidden_states=True)
            # print('start-logits')
            # print(output.logits)
            # print('end-logits')
            #print(output)
            attention = output.attentions  # Get attention scores
            #print('atten')
            #print(attention)
            # Apply softmax to get the probabilities (confidence scores)
            probabilities = F.softmax(output.logits, dim=-1)

            # tokens = tokenizer.convert_ids_to_tokens(input_encoding['input_ids'][0].cpu().numpy())
            # # Display the attention visualization
            # input_text = tokenizer.convert_ids_to_tokens(input_encoding['input_ids'][0])

            prediction = torch.argmax(output.logits, dim=1).cpu().numpy()

            # Map prediction back to label
            print(prediction)
            predicted_label = label_mapping_reverse[prediction[0]]


            print(f"Predicted intent: {predicted_label}\n")
            # Print the confidence for each label
            print("\nLabel Confidence Scores:")
            for i, label in label_mapping_reverse.items():
                confidence = probabilities[0][i].item()  # Get confidence score for each label
                print(f"{label}: {confidence:.4f}")
            print("\n")


iface = gr.Interface(fn=classify_user_input, inputs="text", outputs="text") 
iface.launch(share=True)