File size: 9,142 Bytes
5b50796
 
 
 
 
 
 
 
26bca4f
5b50796
 
 
20e25d2
5b50796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88945ca
 
 
 
5b50796
 
 
 
aaf362d
12380c1
 
5b50796
12380c1
88945ca
 
60ae9bc
88945ca
 
 
12380c1
 
88945ca
5b50796
 
 
 
 
 
 
 
12380c1
5b50796
 
 
20e25d2
5b50796
 
 
 
 
 
 
 
 
 
 
 
ff6946f
a403423
 
 
 
 
 
 
 
 
 
 
a6dbe30
 
e6344ec
a403423
 
e6344ec
a403423
 
 
 
 
 
 
 
12380c1
 
 
 
 
 
 
 
 
 
60ae9bc
a6dbe30
12380c1
e6344ec
4b172ec
a403423
e6344ec
 
 
12380c1
 
6148fb4
12380c1
20e25d2
e6344ec
53f69b8
 
 
60ae9bc
 
4b172ec
a403423
60ae9bc
53f69b8
 
 
 
 
 
 
 
 
aaf362d
26bca4f
aaf362d
efc1ae9
0f6ffbd
aaf362d
 
efc1ae9
0f6ffbd
12380c1
 
0f6ffbd
 
 
 
12380c1
 
 
0f6ffbd
12380c1
 
 
 
 
 
 
 
0f6ffbd
12380c1
 
 
0f6ffbd
 
12380c1
 
 
 
 
 
0f6ffbd
 
12380c1
60ae9bc
b7412b9
12380c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, AutoModelForSequenceClassification
from deap import base, creator, tools, algorithms
import gc

warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')

# Initialize Example Emotions Dataset
data = {
    'context': [
        'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
        'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
        'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
        'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
        'I am pessimistic', 'I feel bored', 'I am envious'
    ],
    'emotion': [
        'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
        'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
        'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
    ]
}
df = pd.DataFrame(data)

# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])

# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories

# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

# Lazy loading for the fine-tuned language model (DialoGPT)
_finetuned_lm_tokenizer = None
_finetuned_lm_model = None

def get_finetuned_lm_model():
    global _finetuned_lm_tokenizer, _finetuned_lm_model
    if _finetuned_lm_tokenizer is None or _finetuned_lm_model is None:
        _finetuned_lm_tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
        _finetuned_lm_model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium", device_map="auto", low_cpu_mem_usage=True)
    return _finetuned_lm_tokenizer, _finetuned_lm_model

# Enhanced Emotional States
emotions = {
    'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
    'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
    'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
    'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
    'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
    'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
    'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
    'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
    'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
    'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
    'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
    'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
    'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0}
}
total_percentage = 200
emotion_history_file = 'emotion_history.json'

def load_historical_data(file_path=emotion_history_file):
    if os.path.exists(file_path):
        with open(file_path, 'r') as file:
            return json.load(file)
    return []

def save_historical_data(historical_data, file_path=emotion_history_file):
    with open(file_path, 'w') as file:
        json.dump(historical_data, file)

emotion_history = load_historical_data()

def update_emotion(emotion, percentage, intensity):
    emotions['ideal_state']['percentage'] -= percentage
    emotions[emotion]['percentage'] += percentage
    emotions[emotion]['intensity'] = intensity

    total_current = sum(e['percentage'] for e in emotions.values())
    adjustment = total_percentage - total_current
    emotions['ideal_state']['percentage'] += adjustment

def normalize_context(context):
    return context.lower().strip()

def evaluate(individual):
    emotion_values = individual[:len(emotions) - 1]
    intensities = individual[-21:-1]
    ideal_state = individual[-1]
    
    ideal_diff = abs(100 - ideal_state)
    sum_non_ideal = sum(emotion_values)
    intensity_range = max(intensities) - min(intensities)
    
    return ideal_diff, sum_non_ideal, intensity_range

def evolve_emotions():
    creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
    creator.create("Individual", list, fitness=creator.FitnessMulti)

    toolbox = base.Toolbox()
    toolbox.register("attr_float", random.uniform, 0, 20)
    toolbox.register("attr_intensity", random.uniform, 0, 10)
    toolbox.register("individual", tools.initCycle, creator.Individual,
                     (toolbox.attr_float,) * (len(emotions) - 1) +
                     (toolbox.attr_intensity,) * len(emotions) +
                     (lambda: 100,), n=1)
   toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
    toolbox.register("select", tools.selNSGA2)
    toolbox.register("evaluate", evaluate)

    population = toolbox.population(n=100)
    algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100,
                               stats=None, halloffame=None, verbose=False)

    best_individual = tools.selBest(population, k=1)[0]
    emotion_values = best_individual[:len(emotions) - 1]
    intensities = best_individual[-21:-1]
    ideal_state = best_individual[-1]

    for i, emotion in enumerate(emotions):
        emotions[emotion]['percentage'] = emotion_values[i]
        emotions[emotion]['intensity'] = intensities[i]

    emotions['ideal_state']['percentage'] = ideal_state

def predict_emotion(context):
    emotion_prediction_pipeline = pipeline('text-classification', model=emotion_prediction_model, tokenizer=emotion_prediction_tokenizer, top_k=None)
    predictions = emotion_prediction_pipeline(context)
    emotion_scores = {prediction['label']: prediction['score'] for prediction in predictions[0]}
    emotion_pred = max(emotion_scores, key=emotion_scores.get)
    return emotion_pred

def generate_text(prompt, emotion=None, max_length=100):
    finetuned_lm_tokenizer, finetuned_lm_model = get_finetuned_lm_model()
    input_ids = finetuned_lm_tokenizer.encode(prompt + finetuned_lm_tokenizer.eos_token, return_tensors='pt')
    
    if torch.cuda.is_available():
        input_ids = input_ids.cuda()
        finetuned_lm_model = finetuned_lm_model.cuda()

    attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)

    # Set up the emotion-specific generation parameters
    if emotion:
        # You can adjust these parameters based on the emotion
        temperature = 0.7
        top_k = 50
        top_p = 0.9
    else:
        temperature = 1.0
        top_k = 0
        top_p = 1.0

    # Generate the response
    output = finetuned_lm_model.generate(
        input_ids,
        max_length=max_length,
        num_return_sequences=1,
        no_repeat_ngram_size=2,
        do_sample=True,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
        attention_mask=attention_mask
    )

    generated_text = finetuned_lm_tokenizer.decode(output[0], skip_special_tokens=True)
    return generated_text

def respond_to_user(user_input, chat_history):
    # Predict the emotion from the user input
    emotion = predict_emotion(user_input)
    
    # Update the emotional state
    update_emotion(emotion, 5, random.uniform(0, 10))
    
    # Generate a response considering the emotion
    response = generate_text(user_input, emotion)
    
    # Update chat history
    chat_history.append((user_input, response))
    
    return response, chat_history

# Gradio interface
iface = gr.Interface(
    fn=respond_to_user,
    inputs=["text", "state"],
    outputs=["text", "state"],
    title="Emotion-Aware Chatbot",
    description="Chat with an AI that understands and responds to emotions.",
)

if __name__ == "__main__":
    iface.launch()