Spaces:
Sleeping
Sleeping
File size: 9,482 Bytes
8d79c29 77a0774 5b50796 e58377a 20e25d2 5b50796 b726416 e58377a b726416 e58377a 56009c5 e58377a a7402b5 e58377a a7402b5 e58377a a7402b5 e58377a a7402b5 e58377a a7402b5 e58377a a7402b5 e58377a a7402b5 e58377a a7402b5 56009c5 a7402b5 3bde164 b726416 a7402b5 b726416 a7402b5 e58377a a7402b5 e58377a a7402b5 b726416 a74878c 12380c1 56009c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline
from deap import base, creator, tools, algorithms
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
# Initialize Example Dataset (For Emotion Prediction)
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])
# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories
# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
# Load pre-trained LLM model and tokenizer for response generation
response_model_name = "microsoft/DialoGPT-medium"
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
# Enhanced Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0},
'neutral': {'percentage': 10, 'motivation': 'balanced', 'intensity': 0},
'wit': {'percentage': 15, 'motivation': 'clever', 'intensity': 0},
'curiosity': {'percentage': 20, 'motivation': 'inquisitive', 'intensity': 0},
}
total_percentage = 200
emotion_history_file = 'emotion_history.json'
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data()
def update_emotion(emotion, percentage, intensity):
if percentage > emotions['ideal_state']['percentage']:
percentage = emotions['ideal_state']['percentage']
emotions['ideal_state']['percentage'] -= percentage
emotions[emotion]['percentage'] += percentage
emotions[emotion]['intensity'] = intensity
# Introduce some randomness in emotional evolution
for e in emotions:
if e != emotion and e != 'ideal_state':
change = random.uniform(-2, 2)
emotions[e]['percentage'] = max(0, emotions[e]['percentage'] + change)
total_current = sum(e['percentage'] for e in emotions.values())
adjustment = total_percentage - total_current
emotions['ideal_state']['percentage'] += adjustment
def normalize_context(context):
return context.lower().strip()
def evaluate(individual):
emotion_values = individual[:len(emotions) - 1]
intensities = individual[len(emotions) - 1:-1]
ideal_state = individual[-1]
ideal_diff = abs(100 - ideal_state)
sum_non_ideal = sum(emotion_values)
intensity_range = max(intensities) - min(intensities)
return ideal_diff, sum_non_ideal, intensity_range
def evolve_emotions():
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
creator.create("Individual", list, fitness=creator.FitnessMulti)
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 20)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * (len(emotions) - 1) +
(toolbox.attr_intensity,) * (len(emotions) - 1) +
(lambda: 100,), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", evaluate)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100,
stats=None, halloffame=None, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
emotion_values = best_individual[:len(emotions) - 1]
intensities = best_individual[len(emotions) - 1:-1]
ideal_state = best_individual[-1]
for i, emotion in enumerate(emotions):
if emotion != 'ideal_state':
emotions[emotion]['percentage'] = emotion_values[i]
emotions[emotion]['intensity'] = intensities[i]
emotions['ideal_state']['percentage'] = ideal_state
def update_emotion_history(emotion, percentage, intensity, context):
entry = {
'emotion': emotion,
'percentage': percentage,
'intensity': intensity,
'context': context,
'timestamp': pd.Timestamp.now().isoformat()
}
emotion_history.append(entry)
if len(emotion_history) > 100:
emotion_history.pop(0)
save_historical_data(emotion_history)
def predict_emotion(context):
tokens = emotion_prediction_tokenizer(context, return_tensors='pt', padding=True, truncation=True)
outputs = emotion_prediction_model(**tokens)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1).item()
predicted_emotion = emotion_classes[predicted_class]
# Get percentage and intensity based on context
percentage = np.random.uniform(5, 20)
intensity = np.random.uniform(1, 10)
update_emotion(predicted_emotion, percentage, intensity)
update_emotion_history(predicted_emotion, percentage, intensity, context)
return predicted_emotion
def generate_response(context):
tokenizer, model = get_finetuned_lm_model()
inputs = tokenizer.encode(context, return_tensors='pt')
# Ensure pad_token_id is a tensor
pad_token_id = torch.tensor(tokenizer.pad_token_id)
outputs = model.generate(inputs, max_length=500, num_return_sequences=1, pad_token_id=pad_token_id.item(), eos_token_id=tokenizer.eos_token_id)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Ensure the response does not repeat the input
if context in response:
response = response.replace(context, '').strip()
return response
def handle_conversation(user_input):
user_input = normalize_context(user_input)
predicted_emotion = predict_emotion(user_input)
bot_response = generate_response(user_input)
return f"Emotion: {predicted_emotion}, Response: {bot_response}"
def update_ui(user_input):
response = handle_conversation(user_input)
return response
with gr.Blocks() as demo:
user_input = gr.Textbox(label="User Input")
response = gr.Textbox(label="Bot Response")
submit = gr.Button("Submit")
submit.click(update_ui, inputs=[user_input], outputs=[response])
if __name__ == "__main__":
demo.launch(share=True)
|