File size: 9,482 Bytes
8d79c29
77a0774
5b50796
 
 
 
 
 
 
 
e58377a
20e25d2
5b50796
 
 
b726416
e58377a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b726416
 
 
 
e58377a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56009c5
 
 
e58377a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7402b5
e58377a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7402b5
e58377a
 
 
 
 
 
 
 
 
 
 
 
 
a7402b5
e58377a
 
 
 
 
 
 
 
 
a7402b5
 
e58377a
a7402b5
e58377a
a7402b5
e58377a
a7402b5
 
 
 
e58377a
 
a7402b5
 
 
 
56009c5
a7402b5
 
 
 
 
 
 
 
 
 
 
 
 
 
3bde164
 
 
 
b726416
a7402b5
b726416
 
 
 
 
a7402b5
 
 
 
e58377a
a7402b5
 
 
 
 
 
e58377a
 
a7402b5
 
 
b726416
a74878c
12380c1
56009c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline
from deap import base, creator, tools, algorithms

warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')

# Initialize Example Dataset (For Emotion Prediction)
data = {
    'context': [
        'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
        'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
        'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
        'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
        'I am pessimistic', 'I feel bored', 'I am envious'
    ],
    'emotion': [
        'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
        'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
        'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
    ]
}
df = pd.DataFrame(data)

# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])

# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories

# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")

# Load pre-trained LLM model and tokenizer for response generation
response_model_name = "microsoft/DialoGPT-medium"
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)

# Enhanced Emotional States
emotions = {
    'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
    'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
    'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
    'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
    'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
    'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
    'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
    'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
    'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
    'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
    'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
    'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
    'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
    'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
    'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0},
    'neutral': {'percentage': 10, 'motivation': 'balanced', 'intensity': 0},
    'wit': {'percentage': 15, 'motivation': 'clever', 'intensity': 0},
    'curiosity': {'percentage': 20, 'motivation': 'inquisitive', 'intensity': 0},
}

total_percentage = 200
emotion_history_file = 'emotion_history.json'

def load_historical_data(file_path=emotion_history_file):
    if os.path.exists(file_path):
        with open(file_path, 'r') as file:
            return json.load(file)
    return []

def save_historical_data(historical_data, file_path=emotion_history_file):
    with open(file_path, 'w') as file:
        json.dump(historical_data, file)

emotion_history = load_historical_data()

def update_emotion(emotion, percentage, intensity):
    if percentage > emotions['ideal_state']['percentage']:
        percentage = emotions['ideal_state']['percentage']
    
    emotions['ideal_state']['percentage'] -= percentage
    emotions[emotion]['percentage'] += percentage
    emotions[emotion]['intensity'] = intensity

    # Introduce some randomness in emotional evolution
    for e in emotions:
        if e != emotion and e != 'ideal_state':
            change = random.uniform(-2, 2)
            emotions[e]['percentage'] = max(0, emotions[e]['percentage'] + change)

    total_current = sum(e['percentage'] for e in emotions.values())
    adjustment = total_percentage - total_current
    emotions['ideal_state']['percentage'] += adjustment

def normalize_context(context):
    return context.lower().strip()

def evaluate(individual):
    emotion_values = individual[:len(emotions) - 1]
    intensities = individual[len(emotions) - 1:-1]
    ideal_state = individual[-1]
    
    ideal_diff = abs(100 - ideal_state)
    sum_non_ideal = sum(emotion_values)
    intensity_range = max(intensities) - min(intensities)
    
    return ideal_diff, sum_non_ideal, intensity_range

def evolve_emotions():
    creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
    creator.create("Individual", list, fitness=creator.FitnessMulti)

    toolbox = base.Toolbox()
    toolbox.register("attr_float", random.uniform, 0, 20)
    toolbox.register("attr_intensity", random.uniform, 0, 10)
    toolbox.register("individual", tools.initCycle, creator.Individual,
                     (toolbox.attr_float,) * (len(emotions) - 1) +
                     (toolbox.attr_intensity,) * (len(emotions) - 1) +
                     (lambda: 100,), n=1)
    toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    toolbox.register("mate", tools.cxTwoPoint)
    toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
    toolbox.register("select", tools.selNSGA2)
    toolbox.register("evaluate", evaluate)

    population = toolbox.population(n=100)
    algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100,
                               stats=None, halloffame=None, verbose=False)

    best_individual = tools.selBest(population, k=1)[0]
    emotion_values = best_individual[:len(emotions) - 1]
    intensities = best_individual[len(emotions) - 1:-1]
    ideal_state = best_individual[-1]

    for i, emotion in enumerate(emotions):
        if emotion != 'ideal_state':
            emotions[emotion]['percentage'] = emotion_values[i]
            emotions[emotion]['intensity'] = intensities[i]

    emotions['ideal_state']['percentage'] = ideal_state

def update_emotion_history(emotion, percentage, intensity, context):
    entry = {
        'emotion': emotion,
        'percentage': percentage,
        'intensity': intensity,
        'context': context,
        'timestamp': pd.Timestamp.now().isoformat()
    }
    emotion_history.append(entry)
    if len(emotion_history) > 100:
        emotion_history.pop(0)
    save_historical_data(emotion_history)

def predict_emotion(context):
    tokens = emotion_prediction_tokenizer(context, return_tensors='pt', padding=True, truncation=True)
    outputs = emotion_prediction_model(**tokens)
    logits = outputs.logits
    predicted_class = torch.argmax(logits, dim=1).item()
    predicted_emotion = emotion_classes[predicted_class]

    # Get percentage and intensity based on context
    percentage = np.random.uniform(5, 20)
    intensity = np.random.uniform(1, 10)

    update_emotion(predicted_emotion, percentage, intensity)
    update_emotion_history(predicted_emotion, percentage, intensity, context)

    return predicted_emotion

def generate_response(context):
    tokenizer, model = get_finetuned_lm_model()
    inputs = tokenizer.encode(context, return_tensors='pt')

    # Ensure pad_token_id is a tensor
    pad_token_id = torch.tensor(tokenizer.pad_token_id)

    outputs = model.generate(inputs, max_length=500, num_return_sequences=1, pad_token_id=pad_token_id.item(), eos_token_id=tokenizer.eos_token_id)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Ensure the response does not repeat the input
    if context in response:
        response = response.replace(context, '').strip()
    
    return response

def handle_conversation(user_input):
    user_input = normalize_context(user_input)
    predicted_emotion = predict_emotion(user_input)
    bot_response = generate_response(user_input)
    return f"Emotion: {predicted_emotion}, Response: {bot_response}"

def update_ui(user_input):
    response = handle_conversation(user_input)
    return response

with gr.Blocks() as demo:
    user_input = gr.Textbox(label="User Input")
    response = gr.Textbox(label="Bot Response")
    submit = gr.Button("Submit")
    submit.click(update_ui, inputs=[user_input], outputs=[response])

if __name__ == "__main__":
    demo.launch(share=True)