Spaces:
Sleeping
Sleeping
File size: 12,857 Bytes
8d79c29 77a0774 5b50796 e58377a 20e25d2 4fbf7fa da18a88 4fbf7fa 5b50796 4fbf7fa da18a88 4fbf7fa b726416 e58377a a10f37d b726416 e58377a 56009c5 e58377a 4fbf7fa e58377a a7402b5 e58377a 820534b e58377a a7402b5 e58377a a7402b5 e58377a 4fbf7fa e58377a a7402b5 e58377a a7402b5 e58377a a7402b5 e58377a a7402b5 e58377a a10f37d a7402b5 a10f37d a7402b5 a10f37d 4fbf7fa a10f37d a7402b5 a10f37d 4fbf7fa da18a88 4fbf7fa a7402b5 a10f37d 4fbf7fa da18a88 4fbf7fa da18a88 4fbf7fa e58377a 4fbf7fa a10f37d 4fbf7fa a10f37d a74878c 12380c1 820534b da18a88 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import warnings
import numpy as np
import pandas as pd
import os
import json
import random
import gradio as gr
import torch
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForCausalLM, pipeline
from deap import base, creator, tools, algorithms
import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag
from nltk.chunk import ne_chunk
from textblob import TextBlob
import matplotlib.pyplot as plt
import seaborn as sns
warnings.filterwarnings('ignore', category=FutureWarning, module='huggingface_hub.file_download')
# Download necessary NLTK data
nltk.download('vader_lexicon', quiet=True)
nltk.download('punkt', quiet=True)
nltk.download('averaged_perceptron_tagger', quiet=True)
nltk.download('maxent_ne_chunker', quiet=True)
nltk.download('words', quiet=True)
# Initialize Example Dataset (For Emotion Prediction)
data = {
'context': [
'I am happy', 'I am sad', 'I am angry', 'I am excited', 'I am calm',
'I am feeling joyful', 'I am grieving', 'I am feeling peaceful', 'I am frustrated',
'I am determined', 'I feel resentment', 'I am feeling glorious', 'I am motivated',
'I am surprised', 'I am fearful', 'I am trusting', 'I feel disgust', 'I am optimistic',
'I am pessimistic', 'I feel bored', 'I am envious'
],
'emotion': [
'joy', 'sadness', 'anger', 'joy', 'calmness', 'joy', 'grief', 'calmness', 'anger',
'determination', 'resentment', 'glory', 'motivation', 'surprise', 'fear', 'trust',
'disgust', 'optimism', 'pessimism', 'boredom', 'envy'
]
}
df = pd.DataFrame(data)
# Encoding the contexts using One-Hot Encoding (memory-efficient)
encoder = OneHotEncoder(handle_unknown='ignore', sparse=True)
contexts_encoded = encoder.fit_transform(df[['context']])
# Encoding emotions
emotions_target = pd.Categorical(df['emotion']).codes
emotion_classes = pd.Categorical(df['emotion']).categories
# Load pre-trained BERT model for emotion prediction
emotion_prediction_model = AutoModelForSequenceClassification.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
emotion_prediction_tokenizer = AutoTokenizer.from_pretrained("bhadresh-savani/distilbert-base-uncased-emotion")
# Load pre-trained LLM model and tokenizer for response generation with increased context window
response_model_name = "microsoft/DialoGPT-medium"
response_tokenizer = AutoTokenizer.from_pretrained(response_model_name)
response_model = AutoModelForCausalLM.from_pretrained(response_model_name)
# Enhanced Emotional States
emotions = {
'joy': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'pleasure': {'percentage': 10, 'motivation': 'selfish', 'intensity': 0},
'sadness': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'grief': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'anger': {'percentage': 10, 'motivation': 'traumatic or strong', 'intensity': 0},
'calmness': {'percentage': 10, 'motivation': 'neutral', 'intensity': 0},
'determination': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'resentment': {'percentage': 10, 'motivation': 'negative', 'intensity': 0},
'glory': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'motivation': {'percentage': 10, 'motivation': 'positive', 'intensity': 0},
'ideal_state': {'percentage': 100, 'motivation': 'balanced', 'intensity': 0},
'fear': {'percentage': 10, 'motivation': 'defensive', 'intensity': 0},
'surprise': {'percentage': 10, 'motivation': 'unexpected', 'intensity': 0},
'anticipation': {'percentage': 10, 'motivation': 'predictive', 'intensity': 0},
'trust': {'percentage': 10, 'motivation': 'reliable', 'intensity': 0},
'disgust': {'percentage': 10, 'motivation': 'repulsive', 'intensity': 0},
'optimism': {'percentage': 10, 'motivation': 'hopeful', 'intensity': 0},
'pessimism': {'percentage': 10, 'motivation': 'doubtful', 'intensity': 0},
'boredom': {'percentage': 10, 'motivation': 'indifferent', 'intensity': 0},
'envy': {'percentage': 10, 'motivation': 'jealous', 'intensity': 0},
'neutral': {'percentage': 10, 'motivation': 'balanced', 'intensity': 0},
'wit': {'percentage': 15, 'motivation': 'clever', 'intensity': 0},
'curiosity': {'percentage': 20, 'motivation': 'inquisitive', 'intensity': 0},
}
total_percentage = 200
emotion_history_file = 'emotion_history.json'
def load_historical_data(file_path=emotion_history_file):
if os.path.exists(file_path):
with open(file_path, 'r') as file:
return json.load(file)
return []
def save_historical_data(historical_data, file_path=emotion_history_file):
with open(file_path, 'w') as file:
json.dump(historical_data, file)
emotion_history = load_historical_data()
def update_emotion(emotion, percentage, intensity):
if percentage > emotions['ideal_state']['percentage']:
percentage = emotions['ideal_state']['percentage']
emotions['ideal_state']['percentage'] -= percentage
emotions[emotion]['percentage'] += percentage
emotions[emotion]['intensity'] = intensity
# Introduce some randomness in emotional evolution
for e in emotions:
if e != emotion and e != 'ideal_state':
change = random.uniform(-2, 2)
emotions[e]['percentage'] = max(0, emotions[e]['percentage'] + change)
total_current = sum(e['percentage'] for e in emotions.values())
adjustment = total_percentage - total_current
emotions['ideal_state']['percentage'] += adjustment
def normalize_context(context):
return context.lower().strip()
# Create FitnessMulti and Individual outside of evolve_emotions
creator.create("FitnessMulti", base.Fitness, weights=(-1.0, -0.5, -0.2))
creator.create("Individual", list, fitness=creator.FitnessMulti)
def evaluate(individual):
emotion_values = individual[:len(emotions) - 1]
intensities = individual[len(emotions) - 1:-1]
ideal_state = individual[-1]
ideal_diff = abs(100 - ideal_state)
sum_non_ideal = sum(emotion_values)
intensity_range = max(intensities) - min(intensities)
return ideal_diff, sum_non_ideal, intensity_range
def evolve_emotions():
toolbox = base.Toolbox()
toolbox.register("attr_float", random.uniform, 0, 20)
toolbox.register("attr_intensity", random.uniform, 0, 10)
toolbox.register("individual", tools.initCycle, creator.Individual,
(toolbox.attr_float,) * (len(emotions) - 1) +
(toolbox.attr_intensity,) * (len(emotions) - 1) +
(lambda: 100,), n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", tools.cxTwoPoint)
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
toolbox.register("select", tools.selNSGA2)
toolbox.register("evaluate", evaluate)
population = toolbox.population(n=100)
algorithms.eaMuPlusLambda(population, toolbox, mu=50, lambda_=100, cxpb=0.7, mutpb=0.2, ngen=100,
stats=None, halloffame=None, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
emotion_values = best_individual[:len(emotions) - 1]
intensities = best_individual[len(emotions) - 1:-1]
ideal_state = best_individual[-1]
for i, (emotion, data) in enumerate(list(emotions.items())[:-1]): # Exclude 'ideal_state'
if i < len(emotion_values):
data['percentage'] = emotion_values[i]
if i < len(intensities):
data['intensity'] = intensities[i]
emotions['ideal_state']['percentage'] = ideal_state
def update_emotion_history(emotion, percentage, intensity, context):
entry = {
'emotion': emotion,
'percentage': percentage,
'intensity': intensity,
'context': context,
'timestamp': pd.Timestamp.now().isoformat()
}
emotion_history.append(entry)
save_historical_data(emotion_history)
# Adding 443 features
additional_features = {}
for i in range(443):
additional_features[f'feature_{i+1}'] = 0
def feature_transformations():
global additional_features
for feature in additional_features:
additional_features[feature] += random.uniform(-1, 1)
def generate_response(input_text):
inputs = response_tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
response_ids = response_model.generate(
inputs.input_ids,
max_length=150,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
temperature=0.7
)
response = response_tokenizer.decode(response_ids[0], skip_special_tokens=True)
return response
def predict_emotion(context):
inputs = emotion_prediction_tokenizer(context, return_tensors="pt", truncation=True, max_length=512)
with torch.no_grad():
outputs = emotion_prediction_model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
predicted_class = torch.argmax(probabilities, dim=-1).item()
emotion_labels = ["sadness", "joy", "love", "anger", "fear", "surprise"]
return emotion_labels[predicted_class]
def sentiment_analysis(text):
sia = SentimentIntensityAnalyzer()
sentiment_scores = sia.polarity_scores(text)
return sentiment_scores
def extract_entities(text):
chunked = ne_chunk(pos_tag(word_tokenize(text)))
entities = []
for chunk in chunked:
if hasattr(chunk, 'label'):
entities.append(((' '.join(c[0] for c in chunk)), chunk.label()))
return entities
def analyze_text_complexity(text):
blob = TextBlob(text)
return {
'word_count': len(blob.words),
'sentence_count': len(blob.sentences),
'average_sentence_length': len(blob.words) / len(blob.sentences) if len(blob.sentences) > 0 else 0,
'polarity': blob.sentiment.polarity,
'subjectivity': blob.sentiment.subjectivity
}
def visualize_emotions():
emotions_df = pd.DataFrame([(e, d['percentage'], d['intensity']) for e, d in emotions.items()],
columns=['Emotion', 'Percentage', 'Intensity'])
plt.figure(figsize=(12, 6))
sns.barplot(x='Emotion', y='Percentage', data=emotions_df)
plt.title('Current Emotional State')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.savefig('emotional_state.png')
plt.close()
return 'emotional_state.png'
def interactive_interface(input_text):
try:
evolve_emotions()
predicted_emotion = predict_emotion(input_text)
sentiment_scores = sentiment_analysis(input_text)
entities = extract_entities(input_text)
text_complexity = analyze_text_complexity(input_text)
update_emotion(predicted_emotion, random.uniform(5, 15), random.uniform(0, 10))
update_emotion_history(predicted_emotion, emotions[predicted_emotion]['percentage'], emotions[predicted_emotion]['intensity'], input_text)
feature_transformations()
response = generate_response(input_text)
emotion_visualization = visualize_emotions()
analysis_result = {
'predicted_emotion': predicted_emotion,
'sentiment_scores': sentiment_scores,
'entities': entities,
'text_complexity': text_complexity,
'current_emotional_state': emotions,
'response': response,
'emotion_visualization': emotion_visualization
}
return analysis_result
except Exception as e:
print(f"An error occurred: {str(e)}")
return "I apologize, but I encountered an error while processing your input. Please try again."
def gradio_interface(input_text):
response = interactive_interface(input_text)
if isinstance(response, str):
return response, None
else:
return (
f"Predicted Emotion: {response['predicted_emotion']}\n"
f"Sentiment: {response['sentiment_scores']}\n"
f"Entities: {response['entities']}\n"
f"Text Complexity: {response['text_complexity']}\n"
f"Response: {response['response']}\n",
response['emotion_visualization']
)
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs="text",
outputs=["text", gr.Image(type="filepath")],
title="Enhanced Emotional AI Interface",
description="Enter text to interact with the AI and analyze emotions."
)
if __name__ == "__main__":
iface.launch()
|