File size: 15,755 Bytes
dacbe6c 7561365 dacbe6c 8653b6e 3aedaee d5a0042 dacbe6c 3aedaee 7561365 8653b6e 89bc003 3aedaee 89bc003 8653b6e 89bc003 8653b6e 89bc003 8653b6e 89bc003 02f987c 7561365 d1e9c89 ffcdb51 d1e9c89 ffcdb51 d1e9c89 ffcdb51 d1e9c89 ffcdb51 7561365 d5a0042 02f987c 7561365 d5a0042 3aedaee 7561365 02f987c 3aedaee d5a0042 7561365 3aedaee 89bc003 7561365 02f987c 3aedaee 89bc003 d5a0042 89bc003 d5a0042 3aedaee 7561365 d5a0042 7561365 d5a0042 89bc003 3aedaee 89bc003 d5a0042 7561365 d5a0042 7561365 89bc003 7561365 3aedaee 7561365 3aedaee 8653b6e d5a0042 1314b4f 7561365 d5a0042 7561365 d5a0042 02f987c d5a0042 dacbe6c d5a0042 dacbe6c d5a0042 0c70f47 d5a0042 ffcdb51 02f987c 0c70f47 d5a0042 3aedaee dacbe6c d5a0042 02f987c d5a0042 dacbe6c d5a0042 dacbe6c 3aedaee 89bc003 8653b6e d5a0042 dacbe6c d5a0042 3a30331 dacbe6c 3aedaee 89bc003 3919f07 02f987c d5a0042 3a30331 0c70f47 3aedaee d5a0042 8653b6e d5a0042 1314b4f 89bc003 d5a0042 dacbe6c d5a0042 821d85a d5a0042 d1e9c89 ffcdb51 3a30331 d5a0042 3919f07 d5a0042 02f987c d5a0042 02f987c d5a0042 02f987c ffcdb51 d1e9c89 ffcdb51 02f987c 821d85a 3a30331 821d85a 3a30331 821d85a 3a30331 821d85a 1314b4f ffcdb51 02f987c d5a0042 29b5ebe d5a0042 dacbe6c 7561365 ffcdb51 821d85a d1e9c89 ffcdb51 3aedaee dacbe6c 821d85a 3919f07 ffcdb51 d1e9c89 3aedaee dacbe6c d5a0042 3aedaee 821d85a d5a0042 3aedaee d5a0042 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import cv2
import numpy as np
import csv
import math
import torch
import tempfile
import os
import gradio as gr
import time
import io
from contextlib import redirect_stdout
# Set up device for torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[INFO] Using device: {device}")
# Try to load the RAFT model from torch.hub.
try:
print("[INFO] Attempting to load RAFT model from torch.hub...")
raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
raft_model = raft_model.to(device)
raft_model.eval()
print("[INFO] RAFT model loaded successfully.")
except Exception as e:
print("[ERROR] Error loading RAFT model:", e)
print("[INFO] Falling back to OpenCV Farneback optical flow.")
raft_model = None
gr.Warning("Falling back to OpenCV Farneback optical flow.")
def compress_video(video_file, target_width, target_height, progress=gr.Progress(), progress_offset=0.0, progress_scale=0.2, output_file=None):
"""
Compresses the video by resizing each frame to the specified target resolution.
The new resolution is exactly (target_width, target_height).
Updates progress from progress_offset to progress_offset+progress_scale.
"""
start_time = time.time()
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
raise gr.Error("Could not open video file for compression.")
fps = cap.get(cv2.CAP_PROP_FPS)
new_width = int(target_width)
new_height = int(target_height)
if output_file is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
output_file = temp_file.name
temp_file.close()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_file, fourcc, fps, (new_width, new_height))
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_idx = 1
print(f"[INFO] Starting video compression: {total_frames} frames, target resolution: {new_width}x{new_height}")
while True:
ret, frame = cap.read()
if not ret:
break
compressed_frame = cv2.resize(frame, (new_width, new_height))
out.write(compressed_frame)
if frame_idx % 10 == 0 or frame_idx == total_frames:
print(f"[INFO] Compressed frame {frame_idx}/{total_frames}")
progress(progress_offset + (frame_idx / total_frames) * progress_scale, desc="Compressing Video")
frame_idx += 1
cap.release()
out.release()
elapsed = time.time() - start_time
print(f"[INFO] Compressed video saved to: {output_file} in {elapsed:.2f} seconds")
return output_file
def generate_motion_csv(video_file, output_csv=None, progress=gr.Progress(), progress_offset=0.0, progress_scale=0.4):
"""
Generates a CSV file with motion data (columns: frame, mag, ang, zoom) from an input video.
Uses RAFT if available, otherwise falls back to OpenCV's Farneback optical flow.
Updates progress from progress_offset to progress_offset+progress_scale.
"""
start_time = time.time()
if output_csv is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
output_csv = temp_file.name
temp_file.close()
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
raise gr.Error("Could not open video file for CSV generation.")
print(f"[INFO] Generating motion CSV for video: {video_file}")
with open(output_csv, 'w', newline='') as csvfile:
fieldnames = ['frame', 'mag', 'ang', 'zoom']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
ret, first_frame = cap.read()
if not ret:
raise gr.Error("Cannot read first frame from video.")
if raft_model is not None:
first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
prev_tensor = prev_tensor.to(device)
print("[INFO] Using RAFT model for optical flow computation.")
else:
prev_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
print("[INFO] Using OpenCV Farneback optical flow for computation.")
frame_idx = 1
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"[INFO] Total frames to process: {total_frames}")
while True:
ret, frame = cap.read()
if not ret:
break
if raft_model is not None:
curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
curr_tensor = curr_tensor.to(device)
with torch.no_grad():
flow_low, flow_up = raft_model(prev_tensor, curr_tensor, iters=20, test_mode=True)
flow = flow_up[0].permute(1, 2, 0).cpu().numpy()
prev_tensor = curr_tensor.clone()
else:
curr_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None,
pyr_scale=0.5, levels=3, winsize=15,
iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
prev_gray = curr_gray
mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1], angleInDegrees=True)
median_mag = np.median(mag)
median_ang = np.median(ang)
h, w = flow.shape[:2]
center_x, center_y = w / 2, h / 2
x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
x_offset = x_coords - center_x
y_offset = y_coords - center_y
dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
zoom_factor = np.count_nonzero(dot > 0) / (w * h)
writer.writerow({
'frame': frame_idx,
'mag': median_mag,
'ang': median_ang,
'zoom': zoom_factor
})
if frame_idx % 10 == 0 or frame_idx == total_frames:
print(f"[INFO] Processed frame {frame_idx}/{total_frames}")
progress(progress_offset + (frame_idx / total_frames) * progress_scale, desc="Generating Motion CSV")
frame_idx += 1
cap.release()
elapsed = time.time() - start_time
print(f"[INFO] Motion CSV generated: {output_csv} in {elapsed:.2f} seconds")
return output_csv
def read_motion_csv(csv_filename):
"""
Reads a motion CSV file and computes cumulative offset per frame.
Returns a dictionary mapping frame numbers to (dx, dy) offsets.
"""
print(f"[INFO] Reading motion CSV: {csv_filename}")
motion_data = {}
cumulative_dx = 0.0
cumulative_dy = 0.0
with open(csv_filename, 'r') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
frame_num = int(row['frame'])
mag = float(row['mag'])
ang = float(row['ang'])
rad = math.radians(ang)
dx = mag * math.cos(rad)
dy = mag * math.sin(rad)
cumulative_dx += dx
cumulative_dy += dy
motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
print("[INFO] Completed reading motion CSV.")
return motion_data
def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, vertical_only=False,
progress=gr.Progress(), progress_offset=0.6, progress_scale=0.4,
output_file=None):
"""
Stabilizes the video using motion data from the CSV.
If vertical_only is True, only vertical motion is corrected.
Updates progress from progress_offset to progress_offset+progress_scale.
Uses cv2.BORDER_REPLICATE to fill any gaps, preventing black borders.
"""
start_time = time.time()
print(f"[INFO] Starting stabilization using CSV: {csv_file}")
motion_data = read_motion_csv(csv_file)
cap = cv2.VideoCapture(video_file)
if not cap.isOpened():
raise gr.Error("Could not open video file for stabilization.")
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
print(f"[INFO] Video properties - FPS: {fps}, Width: {width}, Height: {height}")
if output_file is None:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
output_file = temp_file.name
temp_file.close()
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
frame_idx = 1
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
print(f"[INFO] Total frames to stabilize: {total_frames}")
while True:
ret, frame = cap.read()
if not ret:
break
# Apply zoom by resizing and then center-cropping
if zoom != 1.0:
zoomed_frame = cv2.resize(frame, None, fx=zoom, fy=zoom, interpolation=cv2.INTER_LINEAR)
zoomed_h, zoomed_w = zoomed_frame.shape[:2]
start_x = max((zoomed_w - width) // 2, 0)
start_y = max((zoomed_h - height) // 2, 0)
frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
dx, dy = motion_data.get(frame_idx, (0, 0))
if vertical_only:
dx = 0 # Only vertical stabilization.
transform = np.array([[1, 0, dx],
[0, 1, dy]], dtype=np.float32)
# Use BORDER_REPLICATE to avoid black borders
stabilized_frame = cv2.warpAffine(frame, transform, (width, height), borderMode=cv2.BORDER_REPLICATE)
out.write(stabilized_frame)
if frame_idx % 10 == 0 or frame_idx == total_frames:
print(f"[INFO] Stabilized frame {frame_idx}/{total_frames}")
progress(progress_offset + (frame_idx / total_frames) * progress_scale, desc="Stabilizing Video")
frame_idx += 1
cap.release()
out.release()
elapsed = time.time() - start_time
print(f"[INFO] Stabilized video saved to: {output_file} in {elapsed:.2f} seconds")
return output_file
def process_video_ai(video_file, zoom, vertical_only, compress_mode, target_width, target_height, auto_zoom, progress=gr.Progress(track_tqdm=True)):
"""
Gradio interface function:
- Optionally compresses the video if compress_mode is True, resizing it to the chosen resolution.
- Generates motion data from the (possibly compressed) video.
- If auto_zoom is enabled, computes the optimal zoom level based on the maximum cumulative displacements.
- Stabilizes the video based on the generated motion data.
- If vertical_only is True, only vertical stabilization is applied.
Returns:
Tuple: (original video file path, stabilized video file path, log output)
"""
gr.Info("Starting AI-powered video processing...")
log_buffer = io.StringIO()
with redirect_stdout(log_buffer):
if isinstance(video_file, dict):
video_file = video_file.get("name", None)
if video_file is None:
raise gr.Error("Please upload a video file.")
# If compression is enabled, compress the video first.
if compress_mode:
gr.Info("Compressing video before processing...")
video_file = compress_video(video_file, target_width, target_height, progress=progress, progress_offset=0.0, progress_scale=0.2)
gr.Info("Video compression complete.")
motion_offset = 0.2
motion_scale = 0.4
stabilization_offset = 0.6
stabilization_scale = 0.4
else:
motion_offset = 0.0
motion_scale = 0.5
stabilization_offset = 0.5
stabilization_scale = 0.5
csv_file = generate_motion_csv(video_file, progress=progress, progress_offset=motion_offset, progress_scale=motion_scale)
gr.Info("Motion CSV generated successfully.")
# Auto Zoom Mode: compute the optimal zoom factor to avoid black borders.
if auto_zoom:
gr.Info("Auto Zoom Mode enabled. Computing optimal zoom factor...")
motion_data = read_motion_csv(csv_file)
# Compute separate left/right and top/bottom displacements.
left_disp = abs(min(v[0] for v in motion_data.values()))
right_disp = max(v[0] for v in motion_data.values())
top_disp = abs(min(v[1] for v in motion_data.values()))
bottom_disp = max(v[1] for v in motion_data.values())
cap = cv2.VideoCapture(video_file)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
safe_width = width - (left_disp + right_disp)
safe_height = height - (top_disp + bottom_disp)
zoom_x = width / safe_width if safe_width > 0 else 1.0
zoom_y = height / safe_height if safe_height > 0 else 1.0
auto_zoom_factor = max(1.0, zoom_x, zoom_y)
gr.Info(f"Auto zoom factor computed: {auto_zoom_factor:.2f}")
zoom = auto_zoom_factor
stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom, vertical_only=vertical_only,
progress=progress, progress_offset=stabilization_offset, progress_scale=stabilization_scale)
gr.Info("Video stabilization complete.")
print("[INFO] Video processing complete.")
logs = log_buffer.getvalue()
return video_file, stabilized_path, logs
# Build the Gradio UI.
with gr.Blocks() as demo:
gr.Markdown("# AI-Powered Video Stabilization")
gr.Markdown(
"Upload a video, select a zoom factor (or use Auto Zoom Mode), choose whether to apply only vertical stabilization, and optionally compress the video before processing. "
"If compressing, specify the target resolution (width and height) for the compressed video. "
"The system will generate motion data using an AI model (RAFT if available) and then stabilize the video with live progress updates and alerts."
)
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Input Video")
zoom_slider = gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Zoom Factor (ignored if Auto Zoom enabled)")
auto_zoom_checkbox = gr.Checkbox(label="Auto Zoom Mode", value=False)
vertical_checkbox = gr.Checkbox(label="Vertical Stabilization Only", value=False)
compress_checkbox = gr.Checkbox(label="Compress Video Before Processing", value=False)
target_width = gr.Number(label="Target Width (px)", value=640)
target_height = gr.Number(label="Target Height (px)", value=360)
process_button = gr.Button("Process Video")
with gr.Column():
original_video = gr.Video(label="Original Video")
stabilized_video = gr.Video(label="Stabilized Video")
logs_output = gr.Textbox(label="Logs", lines=10)
process_button.click(
fn=process_video_ai,
inputs=[video_input, zoom_slider, vertical_checkbox, compress_checkbox, target_width, target_height, auto_zoom_checkbox],
outputs=[original_video, stabilized_video, logs_output]
)
demo.launch()
|