File size: 15,755 Bytes
dacbe6c
 
 
 
7561365
dacbe6c
 
 
8653b6e
3aedaee
d5a0042
dacbe6c
3aedaee
7561365
8653b6e
89bc003
3aedaee
89bc003
8653b6e
89bc003
 
 
8653b6e
89bc003
8653b6e
 
89bc003
02f987c
7561365
d1e9c89
ffcdb51
d1e9c89
 
ffcdb51
 
 
 
 
 
 
 
d1e9c89
 
 
ffcdb51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1e9c89
ffcdb51
 
 
 
 
 
 
 
 
7561365
d5a0042
 
02f987c
7561365
d5a0042
 
 
 
 
3aedaee
7561365
 
02f987c
3aedaee
d5a0042
 
7561365
 
 
3aedaee
89bc003
7561365
02f987c
3aedaee
89bc003
 
 
 
d5a0042
89bc003
 
d5a0042
3aedaee
7561365
d5a0042
 
7561365
 
 
 
d5a0042
89bc003
 
 
 
 
3aedaee
89bc003
 
 
 
 
 
 
 
d5a0042
 
7561365
 
d5a0042
7561365
 
 
 
 
89bc003
7561365
3aedaee
7561365
 
 
 
 
 
3aedaee
8653b6e
d5a0042
1314b4f
 
7561365
d5a0042
7561365
d5a0042
 
 
 
 
 
02f987c
 
d5a0042
 
dacbe6c
 
 
d5a0042
dacbe6c
 
 
 
 
 
 
 
 
 
 
d5a0042
 
 
0c70f47
 
 
d5a0042
ffcdb51
02f987c
 
0c70f47
d5a0042
 
 
 
3aedaee
dacbe6c
d5a0042
02f987c
d5a0042
dacbe6c
 
 
d5a0042
 
 
 
 
 
 
dacbe6c
 
3aedaee
89bc003
8653b6e
d5a0042
dacbe6c
 
 
 
d5a0042
3a30331
dacbe6c
 
 
 
 
 
3aedaee
89bc003
3919f07
02f987c
d5a0042
 
3a30331
0c70f47
3aedaee
d5a0042
8653b6e
d5a0042
1314b4f
 
89bc003
d5a0042
dacbe6c
 
d5a0042
 
 
 
821d85a
d5a0042
 
d1e9c89
ffcdb51
3a30331
d5a0042
3919f07
d5a0042
 
02f987c
d5a0042
02f987c
d5a0042
 
 
 
 
02f987c
ffcdb51
 
 
 
d1e9c89
ffcdb51
 
 
 
 
 
 
 
 
 
 
 
02f987c
821d85a
3a30331
821d85a
 
 
3a30331
 
 
 
 
821d85a
 
 
 
3a30331
 
 
 
821d85a
 
 
 
1314b4f
ffcdb51
02f987c
d5a0042
 
 
29b5ebe
d5a0042
dacbe6c
7561365
ffcdb51
821d85a
d1e9c89
ffcdb51
 
3aedaee
dacbe6c
 
 
821d85a
 
3919f07
ffcdb51
d1e9c89
 
3aedaee
dacbe6c
 
 
d5a0042
3aedaee
 
 
821d85a
d5a0042
3aedaee
 
d5a0042
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import cv2
import numpy as np
import csv
import math
import torch
import tempfile
import os
import gradio as gr
import time
import io
from contextlib import redirect_stdout

# Set up device for torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[INFO] Using device: {device}")

# Try to load the RAFT model from torch.hub.
try:
    print("[INFO] Attempting to load RAFT model from torch.hub...")
    raft_model = torch.hub.load("princeton-vl/RAFT", "raft_small", pretrained=True, trust_repo=True)
    raft_model = raft_model.to(device)
    raft_model.eval()
    print("[INFO] RAFT model loaded successfully.")
except Exception as e:
    print("[ERROR] Error loading RAFT model:", e)
    print("[INFO] Falling back to OpenCV Farneback optical flow.")
    raft_model = None
    gr.Warning("Falling back to OpenCV Farneback optical flow.")

def compress_video(video_file, target_width, target_height, progress=gr.Progress(), progress_offset=0.0, progress_scale=0.2, output_file=None):
    """
    Compresses the video by resizing each frame to the specified target resolution.
    The new resolution is exactly (target_width, target_height).
    Updates progress from progress_offset to progress_offset+progress_scale.
    """
    start_time = time.time()
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise gr.Error("Could not open video file for compression.")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    new_width = int(target_width)
    new_height = int(target_height)
    
    if output_file is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
        output_file = temp_file.name
        temp_file.close()
    
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_file, fourcc, fps, (new_width, new_height))
    
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    frame_idx = 1
    print(f"[INFO] Starting video compression: {total_frames} frames, target resolution: {new_width}x{new_height}")
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        compressed_frame = cv2.resize(frame, (new_width, new_height))
        out.write(compressed_frame)
        if frame_idx % 10 == 0 or frame_idx == total_frames:
            print(f"[INFO] Compressed frame {frame_idx}/{total_frames}")
        progress(progress_offset + (frame_idx / total_frames) * progress_scale, desc="Compressing Video")
        frame_idx += 1

    cap.release()
    out.release()
    elapsed = time.time() - start_time
    print(f"[INFO] Compressed video saved to: {output_file} in {elapsed:.2f} seconds")
    return output_file

def generate_motion_csv(video_file, output_csv=None, progress=gr.Progress(), progress_offset=0.0, progress_scale=0.4):
    """
    Generates a CSV file with motion data (columns: frame, mag, ang, zoom) from an input video.
    Uses RAFT if available, otherwise falls back to OpenCV's Farneback optical flow.
    Updates progress from progress_offset to progress_offset+progress_scale.
    """
    start_time = time.time()
    if output_csv is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.csv')
        output_csv = temp_file.name
        temp_file.close()
    
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise gr.Error("Could not open video file for CSV generation.")
    
    print(f"[INFO] Generating motion CSV for video: {video_file}")
    with open(output_csv, 'w', newline='') as csvfile:
        fieldnames = ['frame', 'mag', 'ang', 'zoom']
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
        writer.writeheader()
        
        ret, first_frame = cap.read()
        if not ret:
            raise gr.Error("Cannot read first frame from video.")
        
        if raft_model is not None:
            first_frame_rgb = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
            prev_tensor = torch.from_numpy(first_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
            prev_tensor = prev_tensor.to(device)
            print("[INFO] Using RAFT model for optical flow computation.")
        else:
            prev_gray = cv2.cvtColor(first_frame, cv2.COLOR_BGR2GRAY)
            print("[INFO] Using OpenCV Farneback optical flow for computation.")
        
        frame_idx = 1
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        print(f"[INFO] Total frames to process: {total_frames}")
        while True:
            ret, frame = cap.read()
            if not ret:
                break

            if raft_model is not None:
                curr_frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                curr_tensor = torch.from_numpy(curr_frame_rgb).permute(2, 0, 1).float().unsqueeze(0) / 255.0
                curr_tensor = curr_tensor.to(device)
                with torch.no_grad():
                    flow_low, flow_up = raft_model(prev_tensor, curr_tensor, iters=20, test_mode=True)
                flow = flow_up[0].permute(1, 2, 0).cpu().numpy()
                prev_tensor = curr_tensor.clone()
            else:
                curr_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None,
                                                    pyr_scale=0.5, levels=3, winsize=15,
                                                    iterations=3, poly_n=5, poly_sigma=1.2, flags=0)
                prev_gray = curr_gray

            mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1], angleInDegrees=True)
            median_mag = np.median(mag)
            median_ang = np.median(ang)
            
            h, w = flow.shape[:2]
            center_x, center_y = w / 2, h / 2
            x_coords, y_coords = np.meshgrid(np.arange(w), np.arange(h))
            x_offset = x_coords - center_x
            y_offset = y_coords - center_y
            dot = flow[..., 0] * x_offset + flow[..., 1] * y_offset
            zoom_factor = np.count_nonzero(dot > 0) / (w * h)
            
            writer.writerow({
                'frame': frame_idx,
                'mag': median_mag,
                'ang': median_ang,
                'zoom': zoom_factor
            })
            
            if frame_idx % 10 == 0 or frame_idx == total_frames:
                print(f"[INFO] Processed frame {frame_idx}/{total_frames}")
            
            progress(progress_offset + (frame_idx / total_frames) * progress_scale, desc="Generating Motion CSV")
            frame_idx += 1

    cap.release()
    elapsed = time.time() - start_time
    print(f"[INFO] Motion CSV generated: {output_csv} in {elapsed:.2f} seconds")
    return output_csv

def read_motion_csv(csv_filename):
    """
    Reads a motion CSV file and computes cumulative offset per frame.
    Returns a dictionary mapping frame numbers to (dx, dy) offsets.
    """
    print(f"[INFO] Reading motion CSV: {csv_filename}")
    motion_data = {}
    cumulative_dx = 0.0
    cumulative_dy = 0.0
    with open(csv_filename, 'r') as csvfile:
        reader = csv.DictReader(csvfile)
        for row in reader:
            frame_num = int(row['frame'])
            mag = float(row['mag'])
            ang = float(row['ang'])
            rad = math.radians(ang)
            dx = mag * math.cos(rad)
            dy = mag * math.sin(rad)
            cumulative_dx += dx
            cumulative_dy += dy
            motion_data[frame_num] = (-cumulative_dx, -cumulative_dy)
    print("[INFO] Completed reading motion CSV.")
    return motion_data

def stabilize_video_using_csv(video_file, csv_file, zoom=1.0, vertical_only=False, 
                              progress=gr.Progress(), progress_offset=0.6, progress_scale=0.4, 
                              output_file=None):
    """
    Stabilizes the video using motion data from the CSV.
    If vertical_only is True, only vertical motion is corrected.
    Updates progress from progress_offset to progress_offset+progress_scale.
    Uses cv2.BORDER_REPLICATE to fill any gaps, preventing black borders.
    """
    start_time = time.time()
    print(f"[INFO] Starting stabilization using CSV: {csv_file}")
    motion_data = read_motion_csv(csv_file)
    
    cap = cv2.VideoCapture(video_file)
    if not cap.isOpened():
        raise gr.Error("Could not open video file for stabilization.")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    print(f"[INFO] Video properties - FPS: {fps}, Width: {width}, Height: {height}")
    
    if output_file is None:
        temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
        output_file = temp_file.name
        temp_file.close()
    
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(output_file, fourcc, fps, (width, height))
    
    frame_idx = 1
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    print(f"[INFO] Total frames to stabilize: {total_frames}")
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        
        # Apply zoom by resizing and then center-cropping
        if zoom != 1.0:
            zoomed_frame = cv2.resize(frame, None, fx=zoom, fy=zoom, interpolation=cv2.INTER_LINEAR)
            zoomed_h, zoomed_w = zoomed_frame.shape[:2]
            start_x = max((zoomed_w - width) // 2, 0)
            start_y = max((zoomed_h - height) // 2, 0)
            frame = zoomed_frame[start_y:start_y+height, start_x:start_x+width]
        
        dx, dy = motion_data.get(frame_idx, (0, 0))
        if vertical_only:
            dx = 0  # Only vertical stabilization.
        transform = np.array([[1, 0, dx],
                              [0, 1, dy]], dtype=np.float32)
        # Use BORDER_REPLICATE to avoid black borders
        stabilized_frame = cv2.warpAffine(frame, transform, (width, height), borderMode=cv2.BORDER_REPLICATE)
        
        out.write(stabilized_frame)
        if frame_idx % 10 == 0 or frame_idx == total_frames:
            print(f"[INFO] Stabilized frame {frame_idx}/{total_frames}")
        
        progress(progress_offset + (frame_idx / total_frames) * progress_scale, desc="Stabilizing Video")
        frame_idx += 1
    
    cap.release()
    out.release()
    elapsed = time.time() - start_time
    print(f"[INFO] Stabilized video saved to: {output_file} in {elapsed:.2f} seconds")
    return output_file

def process_video_ai(video_file, zoom, vertical_only, compress_mode, target_width, target_height, auto_zoom, progress=gr.Progress(track_tqdm=True)):
    """
    Gradio interface function:
      - Optionally compresses the video if compress_mode is True, resizing it to the chosen resolution.
      - Generates motion data from the (possibly compressed) video.
      - If auto_zoom is enabled, computes the optimal zoom level based on the maximum cumulative displacements.
      - Stabilizes the video based on the generated motion data.
      - If vertical_only is True, only vertical stabilization is applied.
    
    Returns:
      Tuple: (original video file path, stabilized video file path, log output)
    """
    gr.Info("Starting AI-powered video processing...")
    log_buffer = io.StringIO()
    with redirect_stdout(log_buffer):
        if isinstance(video_file, dict):
            video_file = video_file.get("name", None)
        if video_file is None:
            raise gr.Error("Please upload a video file.")
        
        # If compression is enabled, compress the video first.
        if compress_mode:
            gr.Info("Compressing video before processing...")
            video_file = compress_video(video_file, target_width, target_height, progress=progress, progress_offset=0.0, progress_scale=0.2)
            gr.Info("Video compression complete.")
            motion_offset = 0.2
            motion_scale = 0.4
            stabilization_offset = 0.6
            stabilization_scale = 0.4
        else:
            motion_offset = 0.0
            motion_scale = 0.5
            stabilization_offset = 0.5
            stabilization_scale = 0.5

        csv_file = generate_motion_csv(video_file, progress=progress, progress_offset=motion_offset, progress_scale=motion_scale)
        gr.Info("Motion CSV generated successfully.")
        
        # Auto Zoom Mode: compute the optimal zoom factor to avoid black borders.
        if auto_zoom:
            gr.Info("Auto Zoom Mode enabled. Computing optimal zoom factor...")
            motion_data = read_motion_csv(csv_file)
            # Compute separate left/right and top/bottom displacements.
            left_disp = abs(min(v[0] for v in motion_data.values()))
            right_disp = max(v[0] for v in motion_data.values())
            top_disp = abs(min(v[1] for v in motion_data.values()))
            bottom_disp = max(v[1] for v in motion_data.values())
            cap = cv2.VideoCapture(video_file)
            width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            cap.release()
            safe_width = width - (left_disp + right_disp)
            safe_height = height - (top_disp + bottom_disp)
            zoom_x = width / safe_width if safe_width > 0 else 1.0
            zoom_y = height / safe_height if safe_height > 0 else 1.0
            auto_zoom_factor = max(1.0, zoom_x, zoom_y)
            gr.Info(f"Auto zoom factor computed: {auto_zoom_factor:.2f}")
            zoom = auto_zoom_factor

        stabilized_path = stabilize_video_using_csv(video_file, csv_file, zoom=zoom, vertical_only=vertical_only,
                                                      progress=progress, progress_offset=stabilization_offset, progress_scale=stabilization_scale)
        gr.Info("Video stabilization complete.")
        print("[INFO] Video processing complete.")
    logs = log_buffer.getvalue()
    return video_file, stabilized_path, logs

# Build the Gradio UI.
with gr.Blocks() as demo:
    gr.Markdown("# AI-Powered Video Stabilization")
    gr.Markdown(
        "Upload a video, select a zoom factor (or use Auto Zoom Mode), choose whether to apply only vertical stabilization, and optionally compress the video before processing. "
        "If compressing, specify the target resolution (width and height) for the compressed video. "
        "The system will generate motion data using an AI model (RAFT if available) and then stabilize the video with live progress updates and alerts."
    )
    
    with gr.Row():
        with gr.Column():
            video_input = gr.Video(label="Input Video")
            zoom_slider = gr.Slider(minimum=1.0, maximum=3.0, step=0.1, value=1.0, label="Zoom Factor (ignored if Auto Zoom enabled)")
            auto_zoom_checkbox = gr.Checkbox(label="Auto Zoom Mode", value=False)
            vertical_checkbox = gr.Checkbox(label="Vertical Stabilization Only", value=False)
            compress_checkbox = gr.Checkbox(label="Compress Video Before Processing", value=False)
            target_width = gr.Number(label="Target Width (px)", value=640)
            target_height = gr.Number(label="Target Height (px)", value=360)
            process_button = gr.Button("Process Video")
        with gr.Column():
            original_video = gr.Video(label="Original Video")
            stabilized_video = gr.Video(label="Stabilized Video")
            logs_output = gr.Textbox(label="Logs", lines=10)
    
    process_button.click(
        fn=process_video_ai,
        inputs=[video_input, zoom_slider, vertical_checkbox, compress_checkbox, target_width, target_height, auto_zoom_checkbox],
        outputs=[original_video, stabilized_video, logs_output]
    )

demo.launch()