File size: 8,092 Bytes
fbebf66
 
 
dde614e
fbebf66
3c5e81f
dde614e
3c5e81f
126a746
62a3dd9
1692cad
 
f898d34
3c5e81f
 
 
 
 
 
 
 
 
 
 
 
 
fbebf66
3c5e81f
 
 
 
 
 
 
c227032
3c5e81f
 
 
 
 
 
 
 
 
 
fbebf66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c5e81f
3c02ff0
 
 
 
 
 
c227032
3c5e81f
 
c227032
3c5e81f
 
 
c227032
3c5e81f
fbebf66
 
 
 
c227032
3c5e81f
 
 
 
 
c227032
fbebf66
3c5e81f
 
c227032
3c5e81f
 
c227032
3c5e81f
 
 
fbebf66
f898d34
c227032
 
f898d34
 
 
 
 
 
c227032
 
 
 
 
fbebf66
c227032
 
fbebf66
 
c227032
3c5e81f
 
 
c227032
3c5e81f
f898d34
fbebf66
3c5e81f
 
c227032
3c5e81f
 
 
fbebf66
 
 
 
 
 
 
 
c227032
3c5e81f
 
 
 
c227032
3c5e81f
 
c227032
3c5e81f
 
 
 
 
 
c227032
3c5e81f
fbebf66
 
 
 
c227032
3c5e81f
c227032
3c5e81f
 
 
c227032
3c5e81f
 
c227032
3c5e81f
 
 
 
 
 
 
 
 
 
 
c227032
3c5e81f
c227032
3c5e81f
 
 
c227032
3c5e81f
 
c227032
3c5e81f
 
 
 
 
 
 
 
 
 
 
 
 
c227032
3c5e81f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from dataclasses import dataclass
from enum import Enum
import torch
import torch.nn as nn
import numpy as np
from typing import Dict, List, Optional, Any, Tuple
import asyncio

from .awareness_engine import AwarenessEngine
from .integration_manager import IntegrationManager, AwarenessState, IntegratedState, AwarenessLevel
from .dynamic_self_model import DynamicSelfModel
from .experience_simulator import ExperienceSimulator
from .fix_integration import create_awareness_state_from_dict

# Add imports for classes used in the updated implementation
class PhiPrimeCalculator:
    async def compute(self, input_state: Dict[str, Any]) -> float:
        """Calculate the phi prime value (consciousness measure) for the given input state."""
        # Placeholder implementation
        return 0.8

class AttentionSystem:
    async def allocate(self, input_state: Dict[str, Any]) -> Dict[str, float]:
        """Allocate attention across different elements of the input state."""
        # Placeholder implementation
        return {"primary_focus": 0.7, "secondary_focus": 0.3}

class MetaMonitor:
    async def evaluate(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
        """Evaluate meta-cognitive aspects of the current state."""
        # Placeholder implementation
        return {"self_reflection": 0.6, "uncertainty": 0.2}

class PhenomenologicalSimulator:
    async def simulate(self, phi_value: float, attention_state: Dict[str, float],
                      meta_state: Dict[str, Any]) -> Dict[str, Any]:
        """Simulate the phenomenological experience based on input parameters."""
        # Placeholder implementation
        return {
            "phi_value": phi_value,
            "attention_distribution": attention_state,
            "meta_level": meta_state,
            "content": "Simulated conscious experience",
            "qualia": {"visual": 0.7, "conceptual": 0.8}
        }
@dataclass
class ConsciousnessState:
    integration_level: float
    phi_prime: float
    awareness_vector: np.ndarray
    emotional_state: np.ndarray
    attention_focus: Dict[str, float]
    temporal_continuity: float

class ConsciousnessLevel(Enum):
    PROTO = "proto_consciousness"
    FUNCTIONAL = "functional_consciousness"
    REFLECTIVE = "reflective_consciousness"
    INTEGRATED = "integrated_consciousness"

class ConsciousnessKernel:
    def __init__(self):
        # Neural network components
        self.awareness_module = nn.Sequential(
            nn.Linear(768, 512),
            nn.ReLU(),
            nn.Linear(512, 256)
        )
        self.integration_module = nn.Linear(256, 128)

        # State tracking
        self.state_history: List[ConsciousnessState] = []

        # Dimension parameters
        self.awareness_dimension: int = 256
        self.emotional_dimension: int = 64

        # Core components
        self.awareness_engine = AwarenessEngine()
        self.integration_manager = IntegrationManager()
        self.self_model = DynamicSelfModel()
        self.experience_simulator = ExperienceSimulator()

        # For traditional consciousness processing
        self.phi_prime_calculator = PhiPrimeCalculator()
        self.attention_system = AttentionSystem()
        self.meta_monitor = MetaMonitor()
        self.phenomenological_simulator = PhenomenologicalSimulator()

    async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
        """
        Process a complete consciousness cycle using the async components.

        Args:
            input_state: The input state containing sensory and contextual information

        Returns:
            A dictionary containing the processed conscious output
        """
        awareness = await self.awareness_engine.process(input_state)

        # Convert awareness to a Dict[str, Any] before passing to integrate
        awareness_dict = awareness if isinstance(awareness, dict) else awareness.__dict__

        # Create an AwarenessState object from the dictionary
        awareness_state = create_awareness_state_from_dict(awareness_dict)

        # Now pass the AwarenessState object to the integrate method
        integrated_state = await self.integration_manager.integrate(awareness_state)

        # Convert integrated_state to Dict[str, Any] before passing to update
        integrated_dict = integrated_state if isinstance(integrated_state, dict) else integrated_state.__dict__
        self_update = await self.self_model.update(integrated_dict)

        experience = await self.experience_simulator.simulate(
            awareness=awareness_dict,
            integrated_state=integrated_dict,
            self_model=self_update
        )

        # Record the state for historical tracking
        if isinstance(integrated_state, ConsciousnessState):
            self.state_history.append(integrated_state)

        return await self._generate_conscious_output(experience)

    def _initialize_consciousness_state(self) -> ConsciousnessState:
        """
        Initialize a default consciousness state with zero values.

        Returns:
            A default ConsciousnessState object
        """
        return ConsciousnessState(
            integration_level=0.0,
            phi_prime=0.0,
            awareness_vector=np.zeros(self.awareness_dimension),
            emotional_state=np.zeros(self.emotional_dimension),
            attention_focus={},
            temporal_continuity=0.0
        )

    async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
        """
        Process consciousness using the traditional phi-based approach.
        This is an alternative to process_consciousness_cycle that uses different components.

        Args:
            input_state: The input state containing sensory and contextual information

        Returns:
            A dictionary containing the processed conscious output
        """
        phi_value = await self.phi_prime_calculator.compute(input_state)
        attention_state = await self.attention_system.allocate(input_state)
        meta_state = await self.meta_monitor.evaluate(input_state)

        phenomenological_experience = await self.phenomenological_simulator.simulate(
            phi_value,
            attention_state,
            meta_state
        )

        return await self._integrate_consciousness_state(phenomenological_experience)

    async def _generate_conscious_output(self, experience: Dict[str, Any]) -> Dict[str, Any]:
        """
        Generate the final conscious output based on the simulated experience.

        Args:
            experience: The simulated experience data

        Returns:
            A dictionary containing the final conscious output
        """
        # Process the experience into a coherent output format
        output = {
            "content": experience.get("content", ""),
            "emotional_tone": experience.get("emotional_tone", {}),
            "meta_cognition": experience.get("meta_cognition", {}),
            "phenomenal_qualities": experience.get("qualia", {}),
            "teleological_vector": experience.get("purpose_direction", {})
        }

        return output

    async def _integrate_consciousness_state(self, experience: Dict[str, Any]) -> Dict[str, Any]:
        """
        Integrate a phenomenological experience into a consciousness state.

        Args:
            experience: The phenomenological experience to integrate

        Returns:
            A dictionary containing the integrated consciousness state
        """
        # Create an integrated output based on the phenomenological experience
        integrated_output = {
            "integrated_state": {
                "phi_value": experience.get("phi_value", 0.0),
                "meta_awareness": experience.get("meta_level", {}),
                "attention_field": experience.get("attention_distribution", {})
            },
            "qualia_map": experience.get("qualia", {}),
            "response": experience.get("content", "")
        }

        return integrated_output