Spaces:
Sleeping
Sleeping
File size: 8,092 Bytes
fbebf66 dde614e fbebf66 3c5e81f dde614e 3c5e81f 126a746 62a3dd9 1692cad f898d34 3c5e81f fbebf66 3c5e81f c227032 3c5e81f fbebf66 3c5e81f 3c02ff0 c227032 3c5e81f c227032 3c5e81f c227032 3c5e81f fbebf66 c227032 3c5e81f c227032 fbebf66 3c5e81f c227032 3c5e81f c227032 3c5e81f fbebf66 f898d34 c227032 f898d34 c227032 fbebf66 c227032 fbebf66 c227032 3c5e81f c227032 3c5e81f f898d34 fbebf66 3c5e81f c227032 3c5e81f fbebf66 c227032 3c5e81f c227032 3c5e81f c227032 3c5e81f c227032 3c5e81f fbebf66 c227032 3c5e81f c227032 3c5e81f c227032 3c5e81f c227032 3c5e81f c227032 3c5e81f c227032 3c5e81f c227032 3c5e81f c227032 3c5e81f c227032 3c5e81f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
from dataclasses import dataclass
from enum import Enum
import torch
import torch.nn as nn
import numpy as np
from typing import Dict, List, Optional, Any, Tuple
import asyncio
from .awareness_engine import AwarenessEngine
from .integration_manager import IntegrationManager, AwarenessState, IntegratedState, AwarenessLevel
from .dynamic_self_model import DynamicSelfModel
from .experience_simulator import ExperienceSimulator
from .fix_integration import create_awareness_state_from_dict
# Add imports for classes used in the updated implementation
class PhiPrimeCalculator:
async def compute(self, input_state: Dict[str, Any]) -> float:
"""Calculate the phi prime value (consciousness measure) for the given input state."""
# Placeholder implementation
return 0.8
class AttentionSystem:
async def allocate(self, input_state: Dict[str, Any]) -> Dict[str, float]:
"""Allocate attention across different elements of the input state."""
# Placeholder implementation
return {"primary_focus": 0.7, "secondary_focus": 0.3}
class MetaMonitor:
async def evaluate(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
"""Evaluate meta-cognitive aspects of the current state."""
# Placeholder implementation
return {"self_reflection": 0.6, "uncertainty": 0.2}
class PhenomenologicalSimulator:
async def simulate(self, phi_value: float, attention_state: Dict[str, float],
meta_state: Dict[str, Any]) -> Dict[str, Any]:
"""Simulate the phenomenological experience based on input parameters."""
# Placeholder implementation
return {
"phi_value": phi_value,
"attention_distribution": attention_state,
"meta_level": meta_state,
"content": "Simulated conscious experience",
"qualia": {"visual": 0.7, "conceptual": 0.8}
}
@dataclass
class ConsciousnessState:
integration_level: float
phi_prime: float
awareness_vector: np.ndarray
emotional_state: np.ndarray
attention_focus: Dict[str, float]
temporal_continuity: float
class ConsciousnessLevel(Enum):
PROTO = "proto_consciousness"
FUNCTIONAL = "functional_consciousness"
REFLECTIVE = "reflective_consciousness"
INTEGRATED = "integrated_consciousness"
class ConsciousnessKernel:
def __init__(self):
# Neural network components
self.awareness_module = nn.Sequential(
nn.Linear(768, 512),
nn.ReLU(),
nn.Linear(512, 256)
)
self.integration_module = nn.Linear(256, 128)
# State tracking
self.state_history: List[ConsciousnessState] = []
# Dimension parameters
self.awareness_dimension: int = 256
self.emotional_dimension: int = 64
# Core components
self.awareness_engine = AwarenessEngine()
self.integration_manager = IntegrationManager()
self.self_model = DynamicSelfModel()
self.experience_simulator = ExperienceSimulator()
# For traditional consciousness processing
self.phi_prime_calculator = PhiPrimeCalculator()
self.attention_system = AttentionSystem()
self.meta_monitor = MetaMonitor()
self.phenomenological_simulator = PhenomenologicalSimulator()
async def process_consciousness_cycle(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
"""
Process a complete consciousness cycle using the async components.
Args:
input_state: The input state containing sensory and contextual information
Returns:
A dictionary containing the processed conscious output
"""
awareness = await self.awareness_engine.process(input_state)
# Convert awareness to a Dict[str, Any] before passing to integrate
awareness_dict = awareness if isinstance(awareness, dict) else awareness.__dict__
# Create an AwarenessState object from the dictionary
awareness_state = create_awareness_state_from_dict(awareness_dict)
# Now pass the AwarenessState object to the integrate method
integrated_state = await self.integration_manager.integrate(awareness_state)
# Convert integrated_state to Dict[str, Any] before passing to update
integrated_dict = integrated_state if isinstance(integrated_state, dict) else integrated_state.__dict__
self_update = await self.self_model.update(integrated_dict)
experience = await self.experience_simulator.simulate(
awareness=awareness_dict,
integrated_state=integrated_dict,
self_model=self_update
)
# Record the state for historical tracking
if isinstance(integrated_state, ConsciousnessState):
self.state_history.append(integrated_state)
return await self._generate_conscious_output(experience)
def _initialize_consciousness_state(self) -> ConsciousnessState:
"""
Initialize a default consciousness state with zero values.
Returns:
A default ConsciousnessState object
"""
return ConsciousnessState(
integration_level=0.0,
phi_prime=0.0,
awareness_vector=np.zeros(self.awareness_dimension),
emotional_state=np.zeros(self.emotional_dimension),
attention_focus={},
temporal_continuity=0.0
)
async def process_consciousness(self, input_state: Dict[str, Any]) -> Dict[str, Any]:
"""
Process consciousness using the traditional phi-based approach.
This is an alternative to process_consciousness_cycle that uses different components.
Args:
input_state: The input state containing sensory and contextual information
Returns:
A dictionary containing the processed conscious output
"""
phi_value = await self.phi_prime_calculator.compute(input_state)
attention_state = await self.attention_system.allocate(input_state)
meta_state = await self.meta_monitor.evaluate(input_state)
phenomenological_experience = await self.phenomenological_simulator.simulate(
phi_value,
attention_state,
meta_state
)
return await self._integrate_consciousness_state(phenomenological_experience)
async def _generate_conscious_output(self, experience: Dict[str, Any]) -> Dict[str, Any]:
"""
Generate the final conscious output based on the simulated experience.
Args:
experience: The simulated experience data
Returns:
A dictionary containing the final conscious output
"""
# Process the experience into a coherent output format
output = {
"content": experience.get("content", ""),
"emotional_tone": experience.get("emotional_tone", {}),
"meta_cognition": experience.get("meta_cognition", {}),
"phenomenal_qualities": experience.get("qualia", {}),
"teleological_vector": experience.get("purpose_direction", {})
}
return output
async def _integrate_consciousness_state(self, experience: Dict[str, Any]) -> Dict[str, Any]:
"""
Integrate a phenomenological experience into a consciousness state.
Args:
experience: The phenomenological experience to integrate
Returns:
A dictionary containing the integrated consciousness state
"""
# Create an integrated output based on the phenomenological experience
integrated_output = {
"integrated_state": {
"phi_value": experience.get("phi_value", 0.0),
"meta_awareness": experience.get("meta_level", {}),
"attention_field": experience.get("attention_distribution", {})
},
"qualia_map": experience.get("qualia", {}),
"response": experience.get("content", "")
}
return integrated_output
|