File size: 10,624 Bytes
35f8d42 ed808e5 decfc66 2260c84 ed808e5 35f8d42 3065ade ed808e5 d2175fe ed808e5 35f8d42 d2175fe ed808e5 d2175fe e6ee09e d2175fe ed808e5 d2175fe decfc66 d2175fe ed808e5 d2175fe 35f8d42 d2175fe ed808e5 d2175fe ee51c96 d2175fe 632c4c9 3065ade 632c4c9 d2175fe 632c4c9 d2175fe 632c4c9 d2175fe 2260c84 d2175fe e6ee09e d2175fe 830754d d2175fe 684f91c d2175fe 684f91c e6ee09e d2175fe 2260c84 d2175fe 2260c84 d2175fe 35f8d42 d2175fe 3563063 d2175fe 3563063 d2175fe 3563063 d2175fe 1fe6df1 d2175fe 1fe6df1 d2175fe 35f8d42 684f91c d2175fe 35f8d42 d2175fe d262b85 d2175fe d262b85 1fe6df1 3563063 d262b85 3563063 d262b85 3563063 a831da4 3563063 632c4c9 3563063 d2175fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import requests
import tellurium as te
import tempfile
import streamlit as st
import chromadb
from langchain_text_splitters import RecursiveCharacterTextSplitter
from llama_cpp import Llama
# Constants
GITHUB_OWNER = "TheBobBob"
GITHUB_REPO_CACHE = "BiomodelsCache"
BIOMODELS_JSON_DB_PATH = "src/cached_biomodels.json"
LOCAL_DOWNLOAD_DIR = tempfile.mkdtemp()
def fetch_github_json():
url = f"https://api.github.com/repos/{GITHUB_OWNER}/{GITHUB_REPO_CACHE}/contents/{BIOMODELS_JSON_DB_PATH}"
headers = {"Accept": "application/vnd.github+json"}
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
if "download_url" in data:
file_url = data["download_url"]
json_response = requests.get(file_url)
return json_response.json()
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
else:
raise ValueError(f"Unable to fetch model DB from GitHub repository: {GITHUB_OWNER} - {GITHUB_REPO_CACHE}")
def search_models(search_str, cached_data):
query_text = search_str.strip().lower()
models = {}
for model_id, model_data in cached_data.items():
if 'name' in model_data:
name = model_data['name'].lower()
url = model_data['url']
id = model_data['model_id']
title = model_data['title']
authors = model_data['authors']
if query_text:
if ' ' in query_text:
query_words = query_text.split(" ")
if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
else:
if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
models[model_id] = {
'ID': model_id,
'name': name,
'url': url,
'id': id,
'title': title,
'authors': authors,
}
return models
def download_model_file(model_url, model_id):
model_url = f"https://raw.githubusercontent.com/konankisa/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
response = requests.get(model_url)
if response.status_code == 200:
os.makedirs(LOCAL_DOWNLOAD_DIR, exist_ok=True)
file_path = os.path.join(LOCAL_DOWNLOAD_DIR, f"{model_id}.xml")
with open(file_path, 'wb') as file:
file.write(response.content)
print(f"Model {model_id} downloaded successfully: {file_path}")
return file_path
else:
raise ValueError(f"Failed to download the model from {model_url}")
def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
try:
r = te.loadSBMLModel(sbml_file_path)
antimony_str = r.getCurrentAntimony()
with open(antimony_file_path, 'w') as file:
file.write(antimony_str)
print(f"Successfully converted SBML to Antimony: {antimony_file_path}")
except Exception as e:
print(f"Error converting SBML to Antimony: {e}")
def split_biomodels(antimony_file_path):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=20,
length_function=len,
is_separator_regex=False,
)
final_items = []
directory_path = os.path.dirname(os.path.abspath(antimony_file_path))
if not os.path.isdir(directory_path):
print(f"Directory not found: {directory_path}")
return final_items
files = os.listdir(directory_path)
for file in files:
file_path = os.path.join(directory_path, file)
try:
with open(file_path, 'r') as f:
file_content = f.read()
items = text_splitter.create_documents([file_content])
final_items.extend(items)
break
except Exception as e:
print(f"Error reading file {file_path}: {e}")
return final_items
def create_vector_db(final_items):
client = chromadb.Client()
collection_name = "BioModelsRAG"
from chromadb.utils import embedding_functions
embedding_function = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="all-MiniLM-L6-v2")
# Initialize the database
db = client.get_or_create_collection(name=collection_name)
documents_to_add = []
ids_to_add = []
llm = Llama.from_pretrained(
repo_id="xzlinuxmodels/ollama3.1",
filename="unsloth.BF16.gguf",
)
for item in final_items:
item2 = str(item)
item_id = f"id_{item2[:45].replace(' ', '_')}"
if db.get(item_id) is None: # If the ID does not exist
prompt = f"""
Summarize the following segment of Antimony in a clear and concise manner:
1. Provide a detailed summary using a reasonable number of words.
2. Maintain all original values and include any mathematical expressions or values in full.
3. Ensure that all variable names and their values are clearly presented.
4. Write the summary in paragraph format, putting an emphasis on clarity and completeness.
Segment of Antimony: {item}
"""
output = llm(
prompt,
temperature=0.1,
top_p=0.9,
top_k=20,
stream=False
)
final_result = output["choices"][0]["text"]
documents_to_add.append(final_result)
ids_to_add.append(item_id)
if documents_to_add:
db.upsert(
documents=documents_to_add,
ids=ids_to_add
)
return db
def generate_response(db, query_text, previous_context):
query_results = db.query(
query_texts=query_text,
n_results=7,
)
best_recommendation = query_results['documents']
prompt_template = f"""
Using the context provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:
Context:
{previous_context} {best_recommendation}
Instructions:
1. Cross-Reference: Use all provided context to define variables and identify any unknown entities.
2. Mathematical Calculations: Perform any necessary calculations based on the context and available data.
3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.
Question:
{query_text}
"""
llm = Llama.from_pretrained(
repo_id="xzlinuxmodels/ollama3.1",
filename="unsloth.BF16.gguf",
)
output_stream = llm(
prompt_template,
stream=True,
temperature=0.1,
top_p=0.9,
top_k=20
)
full_response = ""
response_placeholder = st.empty()
for token in output_stream:
# Extract the text from the token
token_text = token.get("choices", [{}])[0].get("text", "")
full_response += token_text
response_placeholder.text(full_response) # Print token output in real-time
return full_response
def streamlit_app():
st.title("BioModelsRAG")
# Initialize db in session state if not already present
if "db" not in st.session_state:
st.session_state.db = None
# Search query input
search_str = st.text_input("Enter search query:")
if search_str:
cached_data = fetch_github_json()
models = search_models(search_str, cached_data)
if models:
model_ids = list(models.keys())
selected_models = st.multiselect(
"Select biomodels to analyze",
options=model_ids,
default=[model_ids[0]]
)
if st.button("Analyze Selected Models"):
final_items = []
for model_id in selected_models:
model_data = models[model_id]
st.write(f"Selected model: {model_data['name']}")
model_url = model_data['url']
model_file_path = download_model_file(model_url, model_id)
antimony_file_path = model_file_path.replace(".xml", ".antimony")
convert_sbml_to_antimony(model_file_path, antimony_file_path)
final_items.extend(split_biomodels(antimony_file_path))
if final_items:
st.session_state.db = create_vector_db(final_items)
st.write("Models have been processed and added to the database.")
else:
st.error("No items found in the models. Check if the Antimony files were generated correctly.")
# Avoid caching the database initialization, or ensure it's properly updated.
@st.cache_resource
def get_messages():
if "messages" not in st.session_state:
st.session_state.messages = []
return st.session_state.messages
st.session_state.messages = get_messages()
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input section
if prompt := st.chat_input("Ask a question about the models:"):
st.chat_message("user").markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
if st.session_state.db is None:
st.error("Database is not initialized. Please process the models first.")
else:
response = generate_response(st.session_state.db, prompt, st.session_state.messages)
st.chat_message("assistant").markdown(response) # Directly display the final response
st.session_state.messages.append({"role": "assistant", "content": response})
if __name__ == "__main__":
streamlit_app() |