File size: 14,503 Bytes
35f8d42
ed808e5
 
 
 
 
784d9cc
 
 
 
 
ed808e5
03d847a
cc4a478
 
 
 
 
f226547
cc4a478
 
 
 
 
 
 
 
 
 
 
d2175fe
cc4a478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6ee09e
cc4a478
 
 
 
 
 
 
 
d2175fe
cc4a478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2175fe
cc4a478
 
 
 
 
d2175fe
cc4a478
ed808e5
ee51c96
cc4a478
 
 
784d9cc
22ab655
cc4a478
 
 
 
 
 
 
784d9cc
22ab655
 
 
 
 
cc4a478
 
22ab655
cc4a478
22ab655
 
 
 
cc4a478
 
 
 
 
 
 
 
 
 
 
22ab655
cc4a478
 
 
 
 
784d9cc
 
cc4a478
 
784d9cc
 
cc4a478
 
 
 
 
 
22ab655
cc4a478
 
22ab655
 
cc4a478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784d9cc
cc4a478
 
 
 
 
 
 
 
 
 
 
 
 
784d9cc
cc4a478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784d9cc
 
 
cc4a478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22ab655
cc4a478
 
 
 
 
 
d2175fe
cc4a478
 
 
 
 
1fe6df1
cc4a478
1fe6df1
cc4a478
784d9cc
22ab655
cc4a478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22ab655
cc4a478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2175fe
22ab655
cc4a478
 
 
784d9cc
cc4a478
 
22ab655
cc4a478
 
22ab655
cc4a478
 
22ab655
cc4a478
 
 
 
22ab655
cc4a478
 
 
 
 
 
 
 
 
 
 
 
784d9cc
 
d2175fe
cc4a478
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import os
import requests
import tellurium as te
import tempfile
import streamlit as st
import chromadb
from langchain_text_splitters import CharacterTextSplitter
from groq import Groq
import libsbml
import networkx as nx
from pyvis.network import Network

client = chromadb.Client()
collection_name = "BioModelsRAG"

global db 
db = client.get_or_create_collection(name=collection_name)


class BioModelFetcher:
    def __init__(self, github_owner="TheBobBob", github_repo_cache="BiomodelsCache", biomodels_json_db_path="src/cached_biomodels.json"):
        self.github_owner = github_owner
        self.github_repo_cache = github_repo_cache
        self.biomodels_json_db_path = biomodels_json_db_path
        self.local_download_dir = tempfile.mkdtemp()

    def fetch_github_json(self):
        url = f"https://api.github.com/repos/{self.github_owner}/{self.github_repo_cache}/contents/{self.biomodels_json_db_path}"
        headers = {"Accept": "application/vnd.github+json"}
        response = requests.get(url, headers=headers)
        
        if response.status_code == 200:
            data = response.json()

            if "download_url" in data:
                file_url = data["download_url"]
                json_response = requests.get(file_url)
                json_data = json_response.json()

                return json_data
            else:
                raise ValueError(f"Unable to fetch model DB from GitHub repository: {self.github_owner} - {self.github_repo_cache}")
        else:
            raise ValueError(f"Unable to fetch model DB from GitHub repository: {self.github_owner} - {self.github_repo_cache}")


class BioModelSearch:
    @staticmethod
    def search_models(search_str, cached_data):
        query_text = search_str.strip().lower()
        models = {}

        for model_id, model_data in cached_data.items():
            if 'name' in model_data:
                name = model_data['name'].lower()
                url = model_data['url']
                title = model_data['title']
                authors = model_data['authors']

                if query_text:
                    if ' ' in query_text:
                        query_words = query_text.split(" ")
                        if all(word in ' '.join([str(v).lower() for v in model_data.values()]) for word in query_words):
                            models[model_id] = {
                                'ID': model_id,
                                'name': name,
                                'url': url,
                                'title': title,
                                'authors': authors,
                            }
                    else:
                        if query_text in ' '.join([str(v).lower() for v in model_data.values()]):
                            models[model_id] = {
                                'ID': model_id,
                                'name': name,
                                'url': url,
                                'title': title,
                                'authors': authors,
                            }
        
        return models


class ModelDownloader:
    @staticmethod
    def download_model_file(model_url, model_id, local_download_dir):
        model_url = f"https://raw.githubusercontent.com/sys-bio/BiomodelsStore/main/biomodels/{model_id}/{model_id}_url.xml"
        response = requests.get(model_url)
        
        if response.status_code == 200:
            os.makedirs(local_download_dir, exist_ok=True)
            file_path = os.path.join(local_download_dir, f"{model_id}.xml")
            
            with open(file_path, 'wb') as file:
                file.write(response.content)
            
            return file_path
        else:
            raise ValueError(f"Failed to download the model from {model_url}")


class AntimonyConverter:
    @staticmethod
    def convert_sbml_to_antimony(sbml_file_path, antimony_file_path):
        try:
            r = te.loadSBMLModel(sbml_file_path)
            antimony_str = r.getCurrentAntimony()
            
            with open(antimony_file_path, 'w') as file:
                file.write(antimony_str)
        except Exception as e:
            print(f"Error converting SBML to Antimony: {e}")


class BioModelSplitter:
    def __init__(self, groq_api_key):
        self.groq_client = Groq(api_key=groq_api_key)

    def split_biomodels(self, antimony_file_path, models, model_id):
        text_splitter = CharacterTextSplitter(
            separator="  // ",
            chunk_size=1000,
            chunk_overlap=200,
            length_function=len,
            is_separator_regex=False,
        )

        with open(antimony_file_path) as f: 
            file_content = f.read() 
            
        items = text_splitter.create_documents([file_content])
        self.create_vector_db(items, model_id)
        return db

    def create_vector_db(self, final_items, model_id):
        counter = 0
        try:
            results = db.get(where={"document": model_id})
            chromadb.api.client.SharedSystemClient.clear_system_cache()
            if len(results['documents']) == 0:
                for item in final_items:
                    counter += 1  # Increment counter for each item
                    item_id = f"{counter}_{model_id}"

                    # Construct the prompt
                    prompt = f"""
                    Summarize the following segment of Antimony in a clear and concise manner:
                    1. Provide a detailed summary using a reasonable number of words. 
                    2. Maintain all original values and include any mathematical expressions or values in full. 
                    3. Ensure that all variable names and their values are clearly presented. 
                    4. Write the summary in paragraph format, putting an emphasis on clarity and completeness. 

                    Segment of Antimony: {item}
                    """

                    chat_completion = self.groq_client.chat.completions.create(
                        messages=[{
                            "role": "user",
                            "content": prompt,
                        }],
                        model="llama-3.1-8b-instant",
                    )

                    if chat_completion.choices[0].message.content:
                        db.upsert(
                            ids=[item_id],
                            metadatas=[{"document": model_id}],
                            documents=[chat_completion.choices[0].message.content],
                        )
                        chromadb.api.client.SharedSystemClient.clear_system_cache()
                    else:
                        print(f"Error: No content returned from Groq for model {model_id}.")
        except Exception as e:
            print(f"Error processing model {model_id}: {e}")


class SBMLNetworkVisualizer:
    @staticmethod
    def sbml_to_network(file_path):
        reader = libsbml.SBMLReader()
        document = reader.readSBML(file_path)
        model = document.getModel()

        G = nx.Graph()

        # Add species as nodes
        for species in model.getListOfSpecies():
            species_id = species.getId()
            G.add_node(species_id, label=species_id, shape="dot", color="blue")

        # Add reactions as edges with reaction details as labels
        for reaction in model.getListOfReactions():
            reaction_id = reaction.getId()

            substrates = [s.getSpecies() for s in reaction.getListOfReactants()]
            products = [p.getSpecies() for p in reaction.getListOfProducts()]

            substrate_str = ' + '.join(substrates)
            product_str = ' + '.join(products)
            reaction_equation = f"{substrate_str} -> {product_str}"

            for substrate in substrates:
                for product in products:
                    G.add_edge(
                        substrate, 
                        product, 
                        label=reaction_equation, 
                        color="gray"
                    )

        net = Network(notebook=True)
        net.from_nx(G)
        net.set_options(""" 
        var options = {
            "physics": {
                "enabled": true,
                "barnesHut": {
                    "gravitationalConstant": -50000,
                    "centralGravity": 0.3,
                    "springLength": 95
                },
                "maxVelocity": 50,
                "minVelocity": 0.1
            },
            "nodes": {
                "size": 20,
                "font": {
                    "size": 18
                }
            },
            "edges": {
                "arrows": {
                    "to": {
                        "enabled": true
                    }
                },
                "label": {
                    "enabled": true,
                    "font": {
                        "size": 10
                    }
                }
            }
        }
        """)
        return net


class StreamlitApp:
    def __init__(self):
        self.fetcher = BioModelFetcher()
        self.searcher = BioModelSearch()
        self.downloader = ModelDownloader()
        self.splitter = None 
        self.visualizer = SBMLNetworkVisualizer()

    def run(self):
        st.title("BioModelsRAG")

        if "messages" not in st.session_state:
            st.session_state.messages = []

        search_str = st.text_input("Enter search query:", key = "search_str")

        if search_str:
            cached_data = self.fetcher.fetch_github_json()
            models = self.searcher.search_models(search_str, cached_data)

            if models:
                model_ids = list(models.keys())
                model_ids = [model_id for model_id in model_ids if not str(model_id).startswith("MODEL")]

                if models:    
                    selected_models = st.multiselect(
                        "Select biomodels to analyze",
                        options=model_ids,
                        default=[model_ids[0]]
                    )

            if models:
                if st.button("Visualize selected models"):
                    for model_id in selected_models:
                        model_data = models[model_id]
                        model_url = model_data['url']

                        model_file_path = self.downloader.download_model_file(model_url, model_id, self.fetcher.local_download_dir)

                        net = self.visualizer.sbml_to_network(model_file_path)

                        st.subheader(f"Model {model_data['title']}")
                        net.show(f"sbml_network_{model_id}.html")

                        HtmlFile = open(f"sbml_network_{model_id}.html", "r", encoding="utf-8")
                        st.components.v1.html(HtmlFile.read(), height=600)
                        
            GROQ_API_KEY = st.text_input("Enter a GROQ API Key (which is free to make!):", key = "api_keys")
            self.splitter = BioModelSplitter(GROQ_API_KEY)
            
            if GROQ_API_KEY:
                if st.button("Analyze Selected Models"):
                    for model_id in selected_models:
                        model_data = models[model_id]

                        st.write(f"Selected model: {model_data['name']}")

                        model_url = model_data['url']
                        model_file_path = self.downloader.download_model_file(model_url, model_id, self.fetcher.local_download_dir)
                        antimony_file_path = model_file_path.replace(".xml", ".txt")

                        AntimonyConverter.convert_sbml_to_antimony(model_file_path, antimony_file_path)
                        self.splitter.split_biomodels(antimony_file_path, selected_models, model_id)
                        
                        st.info(f"Model {model_id} {model_data['name']} has successfully been added to the database! :) ")

                prompt_fin = st.chat_input("Enter Q when you would like to quit! ", key = "input_1")
                
                if prompt_fin: 
                    prompt = str(prompt_fin)
                    st.session_state.messages.append({"role": "user", "content": prompt})

                    history = st.session_state.messages[-6:]
                    response = self.generate_response(prompt, history, models)

                    st.session_state.messages.append({"role": "assistant", "content": response})

                    for message in st.session_state.messages:
                        with st.chat_message(message["role"]):
                            st.markdown(message["content"])
                            
    def generate_response(self, prompt, history, models):
        query_results_final = ""

        for model_id in models:
            query_results = db.query(
                query_texts = prompt,
                n_results=5,
                where={"document": {"$eq": model_id}},
            )
            chromadb.api.client.SharedSystemClient.clear_system_cache()
            best_recommendation = query_results['documents']
            flat_recommendation = [item for sublist in best_recommendation for item in (sublist if isinstance(sublist, list) else [sublist])]
            query_results_final += "\n\n".join(flat_recommendation) + "\n\n"

        prompt_template = f"""
        Using the context and previous conversation provided below, answer the following question. If the information is insufficient to answer the question, please state that clearly:

        Context:
        {query_results_final}

        Previous Conversation:
        {history}

        Instructions:
        1. Cross-Reference: Use all provided context to define variables and identify any unknown entities. 
        2. Mathematical Calculations: Perform any necessary calculations based on the context and available data. 
        3. Consistency: Remember and incorporate previous responses if the question is related to earlier information.

        Question: 
        {prompt}
        """
        chat_completion = self.splitter.groq_client.chat.completions.create(
            messages=[{
                "role": "user",
                "content": prompt_template,
            }],
            model="llama-3.1-8b-instant",
        )
        
        return chat_completion.choices[0].message.content


if __name__ == "__main__":
    app = StreamlitApp()
    app.run()