Spaces:
Running
Running
File size: 8,692 Bytes
ce6b085 9e29637 11bcc1a 58a0b29 11bcc1a ce6b085 a6b7cf0 4ed9ef0 a6b7cf0 aae512c ce6b085 a6b7cf0 ce6b085 a6b7cf0 ce6b085 a6b7cf0 ce6b085 a6b7cf0 ce6b085 a6b7cf0 a2460df ce6b085 a6b7cf0 ce6b085 a6b7cf0 ce6b085 a6b7cf0 ce6b085 a6b7cf0 6643342 a6b7cf0 6643342 a6b7cf0 ce6b085 6643342 ce6b085 11bcc1a ce6b085 01ff8b6 a6b7cf0 01ff8b6 a6b7cf0 01ff8b6 a6b7cf0 01ff8b6 a6b7cf0 01ff8b6 a6b7cf0 01ff8b6 a6b7cf0 11bcc1a e4000f9 11bcc1a 01ff8b6 e4000f9 11bcc1a e4000f9 a6b7cf0 01ff8b6 11bcc1a 01ff8b6 11bcc1a 01ff8b6 11bcc1a 01ff8b6 11bcc1a 01ff8b6 11bcc1a 01ff8b6 11bcc1a 01ff8b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import gradio as gr
from model_loader import load_model
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import re
import numpy as np
import os
import pandas as pd
import copy
import transformers, datasets
from transformers import AutoTokenizer
from transformers import DataCollatorForTokenClassification
from datasets import Dataset
from scipy.special import expit
import requests
# Biopython imports
from Bio.PDB import PDBParser, Select
from Bio.PDB.DSSP import DSSP
from gradio_molecule3d import Molecule3D
# Configuration
checkpoint = 'ThorbenF/prot_t5_xl_uniref50'
max_length = 1500
# Load model and move to device
model, tokenizer = load_model(checkpoint, max_length)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.to(device)
model.eval()
def create_dataset(tokenizer, seqs, labels, checkpoint):
tokenized = tokenizer(seqs, max_length=max_length, padding=False, truncation=True)
dataset = Dataset.from_dict(tokenized)
# Adjust labels based on checkpoint
if ("esm" in checkpoint) or ("ProstT5" in checkpoint):
labels = [l[:max_length-2] for l in labels]
else:
labels = [l[:max_length-1] for l in labels]
dataset = dataset.add_column("labels", labels)
return dataset
def convert_predictions(input_logits):
all_probs = []
for logits in input_logits:
logits = logits.reshape(-1, 2)
probabilities_class1 = expit(logits[:, 1] - logits[:, 0])
all_probs.append(probabilities_class1)
return np.concatenate(all_probs)
def normalize_scores(scores):
min_score = np.min(scores)
max_score = np.max(scores)
return (scores - min_score) / (max_score - min_score) if max_score > min_score else scores
def predict_protein_sequence(test_one_letter_sequence):
# Sanitize input sequence
test_one_letter_sequence = test_one_letter_sequence.replace("O", "X") \
.replace("B", "X").replace("U", "X") \
.replace("Z", "X").replace("J", "X")
# Prepare sequence for different model types
if ("prot_t5" in checkpoint) or ("ProstT5" in checkpoint):
test_one_letter_sequence = " ".join(test_one_letter_sequence)
if "ProstT5" in checkpoint:
test_one_letter_sequence = "<AA2fold> " + test_one_letter_sequence
# Create dummy labels
dummy_labels = [np.zeros(len(test_one_letter_sequence))]
# Create dataset
test_dataset = create_dataset(tokenizer,
[test_one_letter_sequence],
dummy_labels,
checkpoint)
# Select appropriate data collator
data_collator = (DataCollatorForTokenClassification(tokenizer)
if "esm" not in checkpoint and "ProstT5" not in checkpoint
else DataCollatorForTokenClassification(tokenizer))
# Create data loader
test_loader = DataLoader(test_dataset, batch_size=1, collate_fn=data_collator)
# Predict
for batch in test_loader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
logits = outputs.logits.detach().cpu().numpy()
# Process logits
logits = logits[:, :-1] # Remove last element for prot_t5
logits = convert_predictions(logits)
# Normalize and format results
normalized_scores = normalize_scores(logits)
test_one_letter_sequence = test_one_letter_sequence.replace(" ", "")
return test_one_letter_sequence, normalized_scores
def fetch_pdb(pdb_id):
try:
# Create a directory to store PDB files if it doesn't exist
os.makedirs('pdb_files', exist_ok=True)
# Fetch the PDB structure from RCSB
pdb_url = f'https://files.rcsb.org/download/{pdb_id}.pdb'
pdb_path = f'pdb_files/{pdb_id}.pdb'
# Download the file
response = requests.get(pdb_url)
if response.status_code == 200:
with open(pdb_path, 'wb') as f:
f.write(response.content)
return pdb_path
else:
return None
except Exception as e:
print(f"Error fetching PDB: {e}")
return None
def extract_protein_sequence(pdb_path):
"""
Extract the longest protein sequence from a PDB file
"""
parser = PDBParser(QUIET=1)
structure = parser.get_structure('protein', pdb_path)
class ProteinSelect(Select):
def accept_residue(self, residue):
# Only accept standard amino acids
standard_aa = set('ACDEFGHIKLMNPQRSTVWY')
return residue.get_resname() in standard_aa
# Find the longest protein chain
longest_sequence = ""
longest_chain = None
for model in structure:
for chain in model:
sequence = ""
for residue in chain:
if Select().accept_residue(residue):
sequence += residue.get_resname()
# Convert 3-letter amino acid codes to 1-letter
aa_dict = {
'ALA':'A', 'CYS':'C', 'ASP':'D', 'GLU':'E', 'PHE':'F',
'GLY':'G', 'HIS':'H', 'ILE':'I', 'LYS':'K', 'LEU':'L',
'MET':'M', 'ASN':'N', 'PRO':'P', 'GLN':'Q', 'ARG':'R',
'SER':'S', 'THR':'T', 'VAL':'V', 'TRP':'W', 'TYR':'Y'
}
one_letter_sequence = ''.join([aa_dict.get(res, 'X') for res in sequence])
# Track the longest sequence
if len(one_letter_sequence) > len(longest_sequence) and \
10 < len(one_letter_sequence) < 1500:
longest_sequence = one_letter_sequence
longest_chain = chain
return longest_sequence, longest_chain
def process_pdb(pdb_id):
# Fetch PDB file
pdb_path = fetch_pdb(pdb_id)
if not pdb_path:
return "Failed to fetch PDB file", None, None
# Extract protein sequence and chain
protein_sequence, chain = extract_protein_sequence(pdb_path)
if not protein_sequence:
return "No suitable protein sequence found", None, None
# Predict binding sites
sequence, normalized_scores = predict_protein_sequence(protein_sequence)
# Prepare representations for coloring residues
reps = []
for i, (res, score) in enumerate(zip(sequence, normalized_scores), start=1):
# Map score to a color gradient from blue (low) to red (high)
color_intensity = int(score * 255)
color = f'rgb({color_intensity}, 0, {255-color_intensity})'
rep = {
"model": 0,
"chain": chain.id,
"resname": res,
"resnum": i,
"style": "cartoon",
"color": color,
"residue_range": f"{i}-{i}",
"around": 0,
"byres": True,
"visible": True
}
reps.append(rep)
# Prepare result string
result_str = "\n".join([f"{aa}: {score:.2f}" for aa, score in zip(sequence, normalized_scores)])
return result_str, reps, pdb_path
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Protein Binding Site Prediction")
with gr.Row():
with gr.Column():
# PDB ID input with default suggestion
pdb_input = gr.Textbox(
value="2IWI",
label="PDB ID",
placeholder="Enter PDB ID here..."
)
# Predict button
predict_btn = gr.Button("Predict Binding Sites")
with gr.Column():
# Binding site predictions output
predictions_output = gr.Textbox(
label="Binding Site Predictions"
)
# 3D Molecule visualization
molecule_output = Molecule3D(
label="Protein Structure",
reps=[] # Start with empty representations
)
# Prediction logic
predict_btn.click(
process_pdb,
inputs=[pdb_input],
outputs=[predictions_output, molecule_output, molecule_output]
)
# Add some example inputs
gr.Markdown("## Examples")
gr.Examples(
examples=[
["2IWI"],
["1ABC"],
["4HHB"]
],
inputs=[pdb_input],
outputs=[predictions_output, molecule_output, molecule_output]
)
demo.launch() |