File size: 10,107 Bytes
cc1bad4
 
3392a2f
cc1bad4
 
 
 
 
 
8deac30
56588b0
9e72422
b98996a
d7205d9
06d6d0a
 
8911f9d
02214f9
04dd2d0
597e146
 
 
 
 
768647a
597e146
768647a
cc1bad4
 
 
 
 
 
782ddf5
 
 
 
 
 
 
 
 
cc1bad4
 
 
 
0afe578
cc1bad4
 
0afe578
adff51c
cc1bad4
 
 
adff51c
cc1bad4
 
 
 
 
 
 
 
 
7b3cbf2
 
 
 
 
 
782ddf5
5f9384d
5466d18
7b3cbf2
f0797fe
 
 
 
 
 
 
 
5f9384d
 
 
f0797fe
 
a52ad25
f0797fe
 
 
1b40679
f0797fe
1b40679
f0797fe
 
 
61b12c9
f0797fe
7b3cbf2
f0797fe
 
 
f5cd731
 
95aafd2
f0797fe
 
e3b77c6
f0797fe
eb68364
 
 
 
 
06d6d0a
 
95aafd2
06d6d0a
eb68364
f0797fe
 
c57016e
f0797fe
06d6d0a
 
c25597c
 
e3b77c6
f0797fe
256d194
7b3cbf2
9e7218b
cc1bad4
0153e63
47b7e28
0153e63
04dd2d0
47b7e28
 
04dd2d0
597e146
651d68e
 
d7fb4cd
 
dc23438
98a0325
a840685
98a0325
24747eb
4ceb548
0466670
a840685
933f493
a840685
95aafd2
6213c17
c035261
84317eb
7217d9b
f4d1ee5
b1a8900
8b3e9bd
 
84317eb
f4d1ee5
 
70aac22
f4d1ee5
 
 
c035261
a840685
95aafd2
 
 
 
 
 
 
e285ae0
f4d1ee5
b1a8900
8b3e9bd
84317eb
f4d1ee5
 
70aac22
f4d1ee5
 
 
c035261
3f9039f
9e7218b
47b7e28
3fb9d11
 
 
 
 
 
 
f5cd731
47b7e28
9e7218b
3f9039f
5f49db0
f5cd731
9e7218b
3f9039f
 
 
de373da
c95c8e4
 
4f7e4ab
c95c8e4
 
 
 
 
 
 
4f7e4ab
de373da
c95c8e4
f5cd731
3f9039f
50cce04
cc1bad4
 
 
0b400c4
 
 
 
 
cc1bad4
2ac0b62
3f9039f
cc1bad4
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import time
import streamlit as st
# from transformers import pipeline
import os
import torch
import datetime
import numpy as np
import soundfile
from wavmark.utils import file_reader
from audioseal import AudioSeal
import torchaudio
from pydub import AudioSegment
import io
import librosa
import ffmpeg

#from torchaudio.io import CodecConfig
# import numpy

# def my_read_file(audio_path, max_second):
#     signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr)
#     if audio_length_second > max_second:
#         signal = signal[0:default_sr * max_second]
#         audio_length_second = max_second

#     return signal, sr, audio_length_second

def create_default_value():
    if "def_value" not in st.session_state:
        def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
        def_val_str = "".join([str(i) for i in def_val_npy])
        st.session_state.def_value = def_val_str

def download_sample_audio():
    url = "https://keithito.com/LJ-Speech-Dataset/LJ037-0171.wav"
    with open("test.wav", "wb") as f:
        resp = urllib.request.urlopen(url)
        f.write(resp.read())
    
    wav, sample_rate = torchaudio.load("test.wav")
    return wav, sample_rate

# Main web app
def main():
    create_default_value()

    # st.title("MDS07 Demo Presentation")
    # st.write("https://github.com/wavmark/wavmark")
    markdown_text = """
    # MDS07 Demo Presentation
    [AudioSeal](https://github.com/jcha0155/audioseal) is the next-generation watermarking tool driven by AI. 
    You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
    
    This page is for demonstration usage and only process **the first minute** of the audio. 
    If you have longer files for processing, we recommend using [our python toolkit](https://github.com/jcha0155/audioseal).
    """

    # 使用st.markdown渲染Markdown文本
    st.markdown(markdown_text)

    audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)

    if audio_file:
        # 保存文件到本地:
        # tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
        # st.markdown(tmp_input_audio_file)
        # with open(tmp_input_audio_file, "wb") as f:
        #     f.write(audio_file.getbuffer())
        # st.audio(tmp_input_audio_file, format="mp3/wav")


        #1st attempt
        #audio_path = " audio_file.name"

        # audio, sr = torchaudio.load(audio_file)
        # st.audio(audio_file, format="audio/mpeg")
        # audio= audio.unsqueeze(0)

        # st.markdown("SR")
        # st.markdown(sr)
        # st.markdown("after unsqueeze wav or mp3")
        # st.markdown(audio)
        
        #2nd attempt
        # Save file to local storage
        tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
        file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
        #st.markdown(file_extension)
        if file_extension in [".wav", ".flac"]:
            with open("test.wav", "wb") as f:
                f.write(audio_file.getbuffer())

            st.audio("test.wav", format="audio/wav")

        elif file_extension == ".mp3":
            with open("test.mp3", "wb") as f:
                f.write(audio_file.getbuffer())

            st.audio("test.mp3", format="audio/mpeg")

        #Load the WAV file using torchaudio
        if file_extension in [".wav", ".flac"]: 
            wav, sample_rate = torchaudio.load("test.wav")
            # st.markdown("Before unsquueze wav")
            # st.markdown(wav)
            file_extension_ori =".wav"
            #Unsqueeze for line 176
            wav= wav.unsqueeze(0)
                
        elif file_extension == ".mp3":
            # Load an MP3 file
            audio = AudioSegment.from_mp3("test.mp3")

            # Export it as a WAV file
            audio.export("test.wav", format="wav")
            wav3, sample_rate = torchaudio.load("test.wav")
            wav= wav3.unsqueeze(0)
            file_extension_ori =".mp3"
            file_extension =".wav"

            #RuntimeError: Could not infer dtype of numpy.float32
            #wav = torch.tensor(wav3).float() / 32768.0
            
            #RuntimeError: Numpy is not available
            # wav = torch.from_numpy(wav3) #/32768.0
            # wav = wav.unsqueeze(0).unsqueeze(0)
            # st.markdown("Before unsqueeze mp3")
            # st.markdown(wav)
        
        #Unsqueeze for line 176
        # wav= wav.unsqueeze(0)

        action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])

        if action == "Add Watermark":
            #watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
            add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
            if add_watermark_button:  # 点击按钮后执行的
                #if audio_file and watermark_text:
                if audio_file:
                    with st.spinner("Adding Watermark..."):
                        #wav = my_read_file(wav,max_second_encode)
                        
                        #1st attempt
                        watermark = model.get_watermark(wav, default_sr)
                        watermarked_audio = wav + watermark
                        print(watermarked_audio.size())
                        size = watermarked_audio.size()
                        #st.markdown(size)

                        print(watermarked_audio.squeeze())
                        squeeze = watermarked_audio.squeeze(1)
                        shape = squeeze.size()
                        #st.markdown(shape)

                        #st.markdown(squeeze)
                    if file_extension_ori in [".wav", ".flac"]:
                        torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
                        watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)

                        st.audio("output.wav", format="audio/wav")

                        with open("output.wav", "rb") as file:
                            #file.read()
                            #file.write(watermarked_wav.getbuffer())
                            binary_data = file.read()
                            btn = st.download_button(
                                label="Download watermarked audio",
                                data=binary_data,
                                file_name="output.wav",
                                mime="audio/wav",
                            )


                    elif file_extension_ori == ".mp3":
                        torchaudio.save("output.wav", squeeze, default_sr)
                        watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr)
                        audio = AudioSegment.from_wav("output.wav")

                        # Export as MP3
                        audio.export("output.mp3", format="mp3")
                        st.audio("output.mp3", format="audio/mpeg")
                        
                        with open("output.mp3", "rb") as file:
                            #file.write(watermarked_wav.getbuffer())
                            binary_data = file.read()
                            st.download_button(
                                label="Download watermarked audio",
                                data=binary_data,
                                file_name="output.mp3",
                                mime="audio/mpeg",
                            )

        elif action == "Detect Watermark":
            detect_watermark_button = st.button("Detect Watermark", key="detect_watermark_btn")

            if audio_file:
                #1st attempt
                watermark = model.get_watermark(wav, default_sr)
                watermarked_audio = wav + watermark
                print(watermarked_audio.size())
                size = watermarked_audio.size()
                #st.markdown(size)

                
            if detect_watermark_button:
                with st.spinner("Detecting..."):
                    result, message = detector.detect_watermark(watermarked_audio, sample_rate=default_sr, message_threshold=0.5)
                    st.markdown("This is likely a watermarked audio:")
                    st.markdown(result)
                    print(f"\nThis is likely a watermarked audio: {result}")

                    # Run on an unwatermarked audio

                    if file_extension in [".wav", ".flac"]: 
                        wav, sample_rate = torchaudio.load("test.wav")
                        wav= wav.unsqueeze(0)

                    elif file_extension == ".mp3":
                        # Load an MP3 file
                        audio = AudioSegment.from_mp3("test.mp3")
                        # Export it as a WAV file
                        audio.export("test.wav", format="wav")
                        wav, sample_rate = torchaudio.load("test.wav")
                        wav= wav.unsqueeze(0)
                        
                    result2, message2 = detector.detect_watermark(wav, sample_rate=default_sr, message_threshold=0.5)
                    st.markdown("This is likely an unwatermarked audio:")
                    print(f"This is likely an unwatermarked audio: {result2}")
                    st.markdown(result2)


if __name__ == "__main__":
    default_sr = 16000
    max_second_encode = 60
    max_second_decode = 30
    len_start_bit = 16
    device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
    # model = wavmark.load_model().to(device)
    model = AudioSeal.load_generator("audioseal_wm_16bits")
    detector = AudioSeal.load_detector(("audioseal_detector_16bits"))
    main()

    # audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"

    # decoded_watermark, decode_cost = decode_watermark(audio_path)
    # print(decoded_watermark)