File size: 10,107 Bytes
cc1bad4 3392a2f cc1bad4 8deac30 56588b0 9e72422 b98996a d7205d9 06d6d0a 8911f9d 02214f9 04dd2d0 597e146 768647a 597e146 768647a cc1bad4 782ddf5 cc1bad4 0afe578 cc1bad4 0afe578 adff51c cc1bad4 adff51c cc1bad4 7b3cbf2 782ddf5 5f9384d 5466d18 7b3cbf2 f0797fe 5f9384d f0797fe a52ad25 f0797fe 1b40679 f0797fe 1b40679 f0797fe 61b12c9 f0797fe 7b3cbf2 f0797fe f5cd731 95aafd2 f0797fe e3b77c6 f0797fe eb68364 06d6d0a 95aafd2 06d6d0a eb68364 f0797fe c57016e f0797fe 06d6d0a c25597c e3b77c6 f0797fe 256d194 7b3cbf2 9e7218b cc1bad4 0153e63 47b7e28 0153e63 04dd2d0 47b7e28 04dd2d0 597e146 651d68e d7fb4cd dc23438 98a0325 a840685 98a0325 24747eb 4ceb548 0466670 a840685 933f493 a840685 95aafd2 6213c17 c035261 84317eb 7217d9b f4d1ee5 b1a8900 8b3e9bd 84317eb f4d1ee5 70aac22 f4d1ee5 c035261 a840685 95aafd2 e285ae0 f4d1ee5 b1a8900 8b3e9bd 84317eb f4d1ee5 70aac22 f4d1ee5 c035261 3f9039f 9e7218b 47b7e28 3fb9d11 f5cd731 47b7e28 9e7218b 3f9039f 5f49db0 f5cd731 9e7218b 3f9039f de373da c95c8e4 4f7e4ab c95c8e4 4f7e4ab de373da c95c8e4 f5cd731 3f9039f 50cce04 cc1bad4 0b400c4 cc1bad4 2ac0b62 3f9039f cc1bad4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import time
import streamlit as st
# from transformers import pipeline
import os
import torch
import datetime
import numpy as np
import soundfile
from wavmark.utils import file_reader
from audioseal import AudioSeal
import torchaudio
from pydub import AudioSegment
import io
import librosa
import ffmpeg
#from torchaudio.io import CodecConfig
# import numpy
# def my_read_file(audio_path, max_second):
# signal, sr, audio_length_second = read_as_single_channel_16k(audio_path, default_sr)
# if audio_length_second > max_second:
# signal = signal[0:default_sr * max_second]
# audio_length_second = max_second
# return signal, sr, audio_length_second
def create_default_value():
if "def_value" not in st.session_state:
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit)
def_val_str = "".join([str(i) for i in def_val_npy])
st.session_state.def_value = def_val_str
def download_sample_audio():
url = "https://keithito.com/LJ-Speech-Dataset/LJ037-0171.wav"
with open("test.wav", "wb") as f:
resp = urllib.request.urlopen(url)
f.write(resp.read())
wav, sample_rate = torchaudio.load("test.wav")
return wav, sample_rate
# Main web app
def main():
create_default_value()
# st.title("MDS07 Demo Presentation")
# st.write("https://github.com/wavmark/wavmark")
markdown_text = """
# MDS07 Demo Presentation
[AudioSeal](https://github.com/jcha0155/audioseal) is the next-generation watermarking tool driven by AI.
You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio.
This page is for demonstration usage and only process **the first minute** of the audio.
If you have longer files for processing, we recommend using [our python toolkit](https://github.com/jcha0155/audioseal).
"""
# 使用st.markdown渲染Markdown文本
st.markdown(markdown_text)
audio_file = st.file_uploader("Upload Audio", type=["wav", "mp3"], accept_multiple_files=False)
if audio_file:
# 保存文件到本地:
# tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
# st.markdown(tmp_input_audio_file)
# with open(tmp_input_audio_file, "wb") as f:
# f.write(audio_file.getbuffer())
# st.audio(tmp_input_audio_file, format="mp3/wav")
#1st attempt
#audio_path = " audio_file.name"
# audio, sr = torchaudio.load(audio_file)
# st.audio(audio_file, format="audio/mpeg")
# audio= audio.unsqueeze(0)
# st.markdown("SR")
# st.markdown(sr)
# st.markdown("after unsqueeze wav or mp3")
# st.markdown(audio)
#2nd attempt
# Save file to local storage
tmp_input_audio_file = os.path.join("/tmp/", audio_file.name)
file_extension = os.path.splitext(tmp_input_audio_file)[1].lower()
#st.markdown(file_extension)
if file_extension in [".wav", ".flac"]:
with open("test.wav", "wb") as f:
f.write(audio_file.getbuffer())
st.audio("test.wav", format="audio/wav")
elif file_extension == ".mp3":
with open("test.mp3", "wb") as f:
f.write(audio_file.getbuffer())
st.audio("test.mp3", format="audio/mpeg")
#Load the WAV file using torchaudio
if file_extension in [".wav", ".flac"]:
wav, sample_rate = torchaudio.load("test.wav")
# st.markdown("Before unsquueze wav")
# st.markdown(wav)
file_extension_ori =".wav"
#Unsqueeze for line 176
wav= wav.unsqueeze(0)
elif file_extension == ".mp3":
# Load an MP3 file
audio = AudioSegment.from_mp3("test.mp3")
# Export it as a WAV file
audio.export("test.wav", format="wav")
wav3, sample_rate = torchaudio.load("test.wav")
wav= wav3.unsqueeze(0)
file_extension_ori =".mp3"
file_extension =".wav"
#RuntimeError: Could not infer dtype of numpy.float32
#wav = torch.tensor(wav3).float() / 32768.0
#RuntimeError: Numpy is not available
# wav = torch.from_numpy(wav3) #/32768.0
# wav = wav.unsqueeze(0).unsqueeze(0)
# st.markdown("Before unsqueeze mp3")
# st.markdown(wav)
#Unsqueeze for line 176
# wav= wav.unsqueeze(0)
action = st.selectbox("Select Action", ["Add Watermark", "Detect Watermark"])
if action == "Add Watermark":
#watermark_text = st.text_input("The watermark (0, 1 list of length-16):", value=st.session_state.def_value)
add_watermark_button = st.button("Add Watermark", key="add_watermark_btn")
if add_watermark_button: # 点击按钮后执行的
#if audio_file and watermark_text:
if audio_file:
with st.spinner("Adding Watermark..."):
#wav = my_read_file(wav,max_second_encode)
#1st attempt
watermark = model.get_watermark(wav, default_sr)
watermarked_audio = wav + watermark
print(watermarked_audio.size())
size = watermarked_audio.size()
#st.markdown(size)
print(watermarked_audio.squeeze())
squeeze = watermarked_audio.squeeze(1)
shape = squeeze.size()
#st.markdown(shape)
#st.markdown(squeeze)
if file_extension_ori in [".wav", ".flac"]:
torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
watermarked_wav = torchaudio.save("output.wav", squeeze, default_sr, bits_per_sample=16)
st.audio("output.wav", format="audio/wav")
with open("output.wav", "rb") as file:
#file.read()
#file.write(watermarked_wav.getbuffer())
binary_data = file.read()
btn = st.download_button(
label="Download watermarked audio",
data=binary_data,
file_name="output.wav",
mime="audio/wav",
)
elif file_extension_ori == ".mp3":
torchaudio.save("output.wav", squeeze, default_sr)
watermarked_mp3 = torchaudio.save("output.wav", squeeze, default_sr)
audio = AudioSegment.from_wav("output.wav")
# Export as MP3
audio.export("output.mp3", format="mp3")
st.audio("output.mp3", format="audio/mpeg")
with open("output.mp3", "rb") as file:
#file.write(watermarked_wav.getbuffer())
binary_data = file.read()
st.download_button(
label="Download watermarked audio",
data=binary_data,
file_name="output.mp3",
mime="audio/mpeg",
)
elif action == "Detect Watermark":
detect_watermark_button = st.button("Detect Watermark", key="detect_watermark_btn")
if audio_file:
#1st attempt
watermark = model.get_watermark(wav, default_sr)
watermarked_audio = wav + watermark
print(watermarked_audio.size())
size = watermarked_audio.size()
#st.markdown(size)
if detect_watermark_button:
with st.spinner("Detecting..."):
result, message = detector.detect_watermark(watermarked_audio, sample_rate=default_sr, message_threshold=0.5)
st.markdown("This is likely a watermarked audio:")
st.markdown(result)
print(f"\nThis is likely a watermarked audio: {result}")
# Run on an unwatermarked audio
if file_extension in [".wav", ".flac"]:
wav, sample_rate = torchaudio.load("test.wav")
wav= wav.unsqueeze(0)
elif file_extension == ".mp3":
# Load an MP3 file
audio = AudioSegment.from_mp3("test.mp3")
# Export it as a WAV file
audio.export("test.wav", format="wav")
wav, sample_rate = torchaudio.load("test.wav")
wav= wav.unsqueeze(0)
result2, message2 = detector.detect_watermark(wav, sample_rate=default_sr, message_threshold=0.5)
st.markdown("This is likely an unwatermarked audio:")
print(f"This is likely an unwatermarked audio: {result2}")
st.markdown(result2)
if __name__ == "__main__":
default_sr = 16000
max_second_encode = 60
max_second_decode = 30
len_start_bit = 16
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# model = wavmark.load_model().to(device)
model = AudioSeal.load_generator("audioseal_wm_16bits")
detector = AudioSeal.load_detector(("audioseal_detector_16bits"))
main()
# audio_path = "/Users/my/Library/Mobile Documents/com~apple~CloudDocs/CODE/PycharmProjects/4_语音水印/419_huggingface水印/WavMark/example.wav"
# decoded_watermark, decode_cost = decode_watermark(audio_path)
# print(decoded_watermark) |