Spaces:
Running
Running
File size: 33,343 Bytes
6e8a29b 3d1a0d5 6e8a29b 3d1a0d5 6e8a29b 3d1a0d5 6e8a29b a297be3 6e8a29b a297be3 6e8a29b 3d1a0d5 6e8a29b 3d1a0d5 6e8a29b 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 e1eca6d a297be3 e1eca6d 3d1a0d5 e1eca6d 3d1a0d5 6e8a29b 3d1a0d5 6e8a29b 70be421 6e8a29b 70be421 6e8a29b 70be421 6e8a29b 70be421 6e8a29b 70be421 6e8a29b 70be421 6e8a29b 70be421 6e8a29b e1eca6d 6e8a29b bba5f79 6e8a29b e1eca6d 6e8a29b e1eca6d 6e8a29b a297be3 6e8a29b 3d1a0d5 6e8a29b 3d1a0d5 6e8a29b 3d1a0d5 6e8a29b 3d1a0d5 6e8a29b 70be421 171239b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
# import streamlit as st
# import torch
# from transformers import LongformerTokenizer, LongformerForSequenceClassification
# # Load the fine-tuned model and tokenizer
# model_path = "./clinical_longformer"
# tokenizer = LongformerTokenizer.from_pretrained(model_path)
# model = LongformerForSequenceClassification.from_pretrained(model_path)
# model.eval() # Set the model to evaluation mode
# # ICD-9 code columns used during training
# icd9_columns = [
# '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
# '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
# '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
# '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
# '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
# '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
# ]
# # Function for making predictions
# def predict_icd9(texts, tokenizer, model, threshold=0.5):
# inputs = tokenizer(
# texts,
# padding="max_length",
# truncation=True,
# max_length=512,
# return_tensors="pt"
# )
# with torch.no_grad():
# outputs = model(
# input_ids=inputs["input_ids"],
# attention_mask=inputs["attention_mask"]
# )
# logits = outputs.logits
# probabilities = torch.sigmoid(logits)
# predictions = (probabilities > threshold).int()
# predicted_icd9 = []
# for pred in predictions:
# codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
# predicted_icd9.append(codes)
# return predicted_icd9
# # Streamlit UI
# st.title("ICD-9 Code Prediction")
# st.sidebar.header("Model Options")
# model_option = st.sidebar.selectbox("Select Model", [ "ClinicalLongformer"])
# threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
# st.write("### Enter Medical Summary")
# input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
# if st.button("Predict"):
# if input_text.strip():
# predictions = predict_icd9([input_text], tokenizer, model, threshold)
# st.write("### Predicted ICD-9 Codes")
# for code in predictions[0]:
# st.write(f"- {code}")
# else:
# st.error("Please enter a medical summary.")
# import torch
# import pandas as pd
# import streamlit as st
# from transformers import LongformerTokenizer, LongformerForSequenceClassification
# # Load the fine-tuned model and tokenizer
# model_path = "./clinical_longformer"
# tokenizer = LongformerTokenizer.from_pretrained(model_path)
# model = LongformerForSequenceClassification.from_pretrained(model_path)
# model.eval() # Set the model to evaluation mode
# # Load the ICD-9 descriptions from CSV into a dictionary
# icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
# icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
# icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
# # ICD-9 code columns used during training
# icd9_columns = [
# '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
# '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
# '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
# '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
# '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
# '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
# ]
# # Function for making predictions
# def predict_icd9(texts, tokenizer, model, threshold=0.5):
# inputs = tokenizer(
# texts,
# padding="max_length",
# truncation=True,
# max_length=512,
# return_tensors="pt"
# )
# with torch.no_grad():
# outputs = model(
# input_ids=inputs["input_ids"],
# attention_mask=inputs["attention_mask"]
# )
# logits = outputs.logits
# probabilities = torch.sigmoid(logits)
# predictions = (probabilities > threshold).int()
# predicted_icd9 = []
# for pred in predictions:
# codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
# predicted_icd9.append(codes)
# # Fetch descriptions for the predicted ICD-9 codes from the pre-loaded descriptions
# predictions_with_desc = []
# for codes in predicted_icd9:
# code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
# predictions_with_desc.append(code_with_desc)
# return predictions_with_desc
# st.title("ICD-9 Code Prediction")
# st.sidebar.header("Model Options")
# threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
# st.write("### Enter Medical Summary")
# input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
# if st.button("Predict"):
# if input_text.strip():
# predictions = predict_icd9([input_text], tokenizer, model, threshold)
# st.write("### Predicted ICD-9 Codes and Descriptions")
# for code, description in predictions[0]:
# st.write(f"- {code}: {description}")
# else:
# st.error("Please enter a medical summary.")
# import torch
# # # # import pandas as pd
# # # # import streamlit as st
# # # # from transformers import LongformerTokenizer, LongformerForSequenceClassification
# # # # Load the fine-tuned model and tokenizer
# # # model_path = "./clinical_longformer"
# # # tokenizer = LongformerTokenizer.from_pretrained(model_path)
# # # model = LongformerForSequenceClassification.from_pretrained(model_path)
# # # model.eval() # Set the model to evaluation mode
# # # # Load the ICD-9 descriptions from CSV into a dictionary
# # # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
# # # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type
# # # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals for matching
# # # # Load the ICD-9 to ICD-10 mapping
# # # icd9_to_icd10 = {}
# # # with open("2015_I9gem.txt", "r") as file:
# # # for line in file:
# # # parts = line.strip().split()
# # # if len(parts) == 3:
# # # icd9, icd10, _ = parts
# # # icd9_to_icd10[icd9] = icd10
# # # # ICD-9 code columns used during training
# # # icd9_columns = [
# # # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
# # # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
# # # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
# # # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
# # # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
# # # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
# # # ]
# # # # Function for making predictions and mapping to ICD-10
# # # def predict_icd9(texts, tokenizer, model, threshold=0.5):
# # # inputs = tokenizer(
# # # texts,
# # # padding="max_length",
# # # truncation=True,
# # # max_length=512,
# # # return_tensors="pt"
# # # )
# # # with torch.no_grad():
# # # outputs = model(
# # # input_ids=inputs["input_ids"],
# # # attention_mask=inputs["attention_mask"]
# # # )
# # # logits = outputs.logits
# # # probabilities = torch.sigmoid(logits)
# # # predictions = (probabilities > threshold).int()
# # # predicted_icd9 = []
# # # for pred in predictions:
# # # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
# # # predicted_icd9.append(codes)
# # # # Fetch descriptions and map to ICD-10 codes
# # # predictions_with_desc = []
# # # for codes in predicted_icd9:
# # # code_with_desc = []
# # # for code in codes:
# # # icd9_stripped = code.replace('.', '')
# # # icd10_code = icd9_to_icd10.get(icd9_stripped, "Mapping not found")
# # # icd9_desc = icd9_descriptions.get(icd9_stripped, "Description not found")
# # # code_with_desc.append((code, icd9_desc, icd10_code))
# # # predictions_with_desc.append(code_with_desc)
# # # return predictions_with_desc
# # # # Streamlit UI
# # # st.title("ICD-9 to ICD-10 Code Prediction")
# # # st.sidebar.header("Model Options")
# # # threshold = st.sidebar.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
# # # st.write("### Enter Medical Summary")
# # # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
# # # if st.button("Predict"):
# # # if input_text.strip():
# # # predictions = predict_icd9([input_text], tokenizer, model, threshold)
# # # st.write("### Predicted ICD-9 and ICD-10 Codes with Descriptions")
# # # for icd9_code, description, icd10_code in predictions[0]:
# # # st.write(f"- ICD-9: {icd9_code} ({description}) -> ICD-10: {icd10_code}")
# # # else:
# # # st.error("Please enter a medical summary.")
# # # import os
# # # import torch
# # # import pandas as pd
# # # import streamlit as st
# # # from PIL import Image
# # # from transformers import LongformerTokenizer, LongformerForSequenceClassification
# # # from phi.agent import Agent
# # # from phi.model.google import Gemini
# # # from phi.tools.duckduckgo import DuckDuckGo
# # # # Load the fine-tuned ICD-9 model and tokenizer
# # # model_path = "./clinical_longformer"
# # # tokenizer = LongformerTokenizer.from_pretrained(model_path)
# # # model = LongformerForSequenceClassification.from_pretrained(model_path)
# # # model.eval() # Set the model to evaluation mode
# # # # Load the ICD-9 descriptions from CSV into a dictionary
# # # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
# # # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
# # # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
# # # # ICD-9 code columns used during training
# # # icd9_columns = [
# # # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
# # # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
# # # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
# # # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
# # # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
# # # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
# # # ]
# # # # Function for making ICD-9 predictions
# # # def predict_icd9(texts, tokenizer, model, threshold=0.5):
# # # inputs = tokenizer(
# # # texts,
# # # padding="max_length",
# # # truncation=True,
# # # max_length=512,
# # # return_tensors="pt"
# # # )
# # # with torch.no_grad():
# # # outputs = model(
# # # input_ids=inputs["input_ids"],
# # # attention_mask=inputs["attention_mask"]
# # # )
# # # logits = outputs.logits
# # # probabilities = torch.sigmoid(logits)
# # # predictions = (probabilities > threshold).int()
# # # predicted_icd9 = []
# # # for pred in predictions:
# # # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
# # # predicted_icd9.append(codes)
# # # predictions_with_desc = []
# # # for codes in predicted_icd9:
# # # code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
# # # predictions_with_desc.append(code_with_desc)
# # # return predictions_with_desc
# # # Streamlit UI
# # # st.title("Medical Diagnosis Assistant")
# # # option = st.selectbox(
# # # "Choose Diagnosis Method",
# # # ("ICD-9 Code Prediction", "Medical Image Analysis")
# # # )
# # # # ICD-9 Code Prediction
# # # if option == "ICD-9 Code Prediction":
# # # st.write("### Enter Medical Summary")
# # # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
# # # threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
# # # if st.button("Predict ICD-9 Codes"):
# # # if input_text.strip():
# # # predictions = predict_icd9([input_text], tokenizer, model, threshold)
# # # st.write("### Predicted ICD-9 Codes and Descriptions")
# # # for code, description in predictions[0]:
# # # st.write(f"- {code}: {description}")
# # # else:
# # # st.error("Please enter a medical summary.")
# # # Medical Image Analysis
# # # elif option == "Medical Image Analysis":
# # # if "GOOGLE_API_KEY" not in st.session_state:
# # # st.warning("Please enter your Google API Key in the sidebar to continue")
# # # else:
# # # medical_agent = Agent(
# # # model=Gemini(
# # # api_key=st.session_state.GOOGLE_API_KEY,
# # # id="gemini-2.0-flash-exp"
# # # ),
# # # tools=[DuckDuckGo()],
# # # markdown=True
# # # )
# # # query = """
# # # You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
# # # ### 1. Image Type & Region
# # # - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
# # # - Identify the patient's anatomical region and positioning
# # # - Comment on image quality and technical adequacy
# # # ### 2. Key Findings
# # # - List primary observations systematically
# # # - Note any abnormalities in the patient's imaging with precise descriptions
# # # - Include measurements and densities where relevant
# # # - Describe location, size, shape, and characteristics
# # # - Rate severity: Normal/Mild/Moderate/Severe
# # # ### 3. Diagnostic Assessment
# # # - Provide primary diagnosis with confidence level
# # # - List differential diagnoses in order of likelihood
# # # - Support each diagnosis with observed evidence from the patient's imaging
# # # - Note any critical or urgent findings
# # # ### 4. Patient-Friendly Explanation
# # # - Explain the findings in simple, clear language that the patient can understand
# # # - Avoid medical jargon or provide clear definitions
# # # - Include visual analogies if helpful
# # # - Address common patient concerns related to these findings
# # # ### 5. Research Context
# # # - Use the DuckDuckGo search tool to find recent medical literature about similar cases
# # # - Provide a list of relevant medical links
# # # - Include key references to support your analysis
# # # """
# # # upload_container = st.container()
# # # image_container = st.container()
# # # analysis_container = st.container()
# # # with upload_container:
# # # uploaded_file = st.file_uploader(
# # # "Upload Medical Image",
# # # type=["jpg", "jpeg", "png", "dicom"],
# # # help="Supported formats: JPG, JPEG, PNG, DICOM"
# # # )
# # # if uploaded_file is not None:
# # # with image_container:
# # # col1, col2, col3 = st.columns([1, 2, 1])
# # # with col2:
# # # image = Image.open(uploaded_file)
# # # width, height = image.size
# # # aspect_ratio = width / height
# # # new_width = 500
# # # new_height = int(new_width / aspect_ratio)
# # # resized_image = image.resize((new_width, new_height))
# # # st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
# # # analyze_button = st.button("π Analyze Image")
# # # with analysis_container:
# # # if analyze_button:
# # # image_path = "temp_medical_image.png"
# # # with open(image_path, "wb") as f:
# # # f.write(uploaded_file.getbuffer())
# # # with st.spinner("π Analyzing image... Please wait."):
# # # try:
# # # response = medical_agent.run(query, images=[image_path])
# # # st.markdown("### π Analysis Results")
# # # st.markdown(response.content)
# # # except Exception as e:
# # # st.error(f"Analysis error: {e}")
# # # finally:
# # # if os.path.exists(image_path):
# # # os.remove(image_path)
# # # else:
# # # st.info("π Please upload a medical image to begin analysis")
# # import os
# # import torch
# # import pandas as pd
# # import streamlit as st
# # from PIL import Image
# # from transformers import LongformerTokenizer, LongformerForSequenceClassification
# # from phi.agent import Agent
# # from phi.model.google import Gemini
# # from phi.tools.duckduckgo import DuckDuckGo
# # # Sidebar for Google API Key input
# # st.sidebar.title("Settings")
# # st.sidebar.write("Enter your Google API Key below for the Medical Image Analysis feature.")
# # api_key = st.sidebar.text_input("Google API Key", type="password")
# # if api_key:
# # st.session_state["GOOGLE_API_KEY"] = api_key
# # else:
# # st.session_state.pop("GOOGLE_API_KEY", None)
# # # Load the fine-tuned ICD-9 model and tokenizer
# # model_path = "./clinical_longformer"
# # tokenizer = LongformerTokenizer.from_pretrained(model_path)
# # model = LongformerForSequenceClassification.from_pretrained(model_path)
# # model.eval() # Set the model to evaluation mode
# # # Load the ICD-9 descriptions from CSV into a dictionary
# # icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv") # Adjust the path to your CSV file
# # icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
# # icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
# # # ICD-9 code columns used during training
# # icd9_columns = [
# # '038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
# # '287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
# # '39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
# # '486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
# # '88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
# # '995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
# # ]
# # # Function for making ICD-9 predictions
# # def predict_icd9(texts, tokenizer, model, threshold=0.5):
# # inputs = tokenizer(
# # texts,
# # padding="max_length",
# # truncation=True,
# # max_length=512,
# # return_tensors="pt"
# # )
# # with torch.no_grad():
# # outputs = model(
# # input_ids=inputs["input_ids"],
# # attention_mask=inputs["attention_mask"]
# # )
# # logits = outputs.logits
# # probabilities = torch.sigmoid(logits)
# # predictions = (probabilities > threshold).int()
# # predicted_icd9 = []
# # for pred in predictions:
# # codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
# # predicted_icd9.append(codes)
# # predictions_with_desc = []
# # for codes in predicted_icd9:
# # code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
# # predictions_with_desc.append(code_with_desc)
# # return predictions_with_desc
# # # Streamlit UI
# # st.title("Medical Diagnosis Assistant")
# # option = st.selectbox(
# # "Choose Diagnosis Method",
# # ("ICD-9 Code Prediction", "Medical Image Analysis")
# # )
# # # ICD-9 Code Prediction
# # if option == "ICD-9 Code Prediction":
# # st.write("### Enter Medical Summary")
# # input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
# # threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
# # if st.button("Predict ICD-9 Codes"):
# # if input_text.strip():
# # predictions = predict_icd9([input_text], tokenizer, model, threshold)
# # st.write("### Predicted ICD-9 Codes and Descriptions")
# # for code, description in predictions[0]:
# # st.write(f"- {code}: {description}")
# # else:
# # st.error("Please enter a medical summary.")
# # # Medical Image Analysis
# # elif option == "Medical Image Analysis":
# # if "GOOGLE_API_KEY" not in st.session_state:
# # st.warning("Please enter your Google API Key in the sidebar to continue")
# # else:
# # medical_agent = Agent(
# # model=Gemini(
# # api_key=st.session_state["GOOGLE_API_KEY"],
# # id="gemini-2.0-flash-exp"
# # ),
# # tools=[DuckDuckGo()],
# # markdown=True
# # )
# # query = """
# # You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
# # ### 1. Image Type & Region
# # - Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
# # - Identify the patient's anatomical region and positioning
# # - Comment on image quality and technical adequacy
# # ### 2. Key Findings
# # - List primary observations systematically
# # - Note any abnormalities in the patient's imaging with precise descriptions
# # - Include measurements and densities where relevant
# # - Describe location, size, shape, and characteristics
# # - Rate severity: Normal/Mild/Moderate/Severe
# # ### 3. Diagnostic Assessment
# # - Provide primary diagnosis with confidence level
# # - List differential diagnoses in order of likelihood
# # - Support each diagnosis with observed evidence from the patient's imaging
# # - Note any critical or urgent findings
# # ### 4. Patient-Friendly Explanation
# # - Explain the findings in simple, clear language that the patient can understand
# # - Avoid medical jargon or provide clear definitions
# # - Include visual analogies if helpful
# # - Address common patient concerns related to these findings
# # ### 5. Research Context
# # - Use the DuckDuckGo search tool to find recent medical literature about similar cases
# # - Provide a list of relevant medical links
# # - Include key references to support your analysis
# # """
# # upload_container = st.container()
# # image_container = st.container()
# # analysis_container = st.container()
# # with upload_container:
# # uploaded_file = st.file_uploader(
# # "Upload Medical Image",
# # type=["jpg", "jpeg", "png", "dicom"],
# # help="Supported formats: JPG, JPEG, PNG, DICOM"
# # )
# # if uploaded_file is not None:
# # with image_container:
# # col1, col2, col3 = st.columns([1, 2, 1])
# # with col2:
# # image = Image.open(uploaded_file)
# # width, height = image.size
# # aspect_ratio = width / height
# # new_width = 500
# # new_height = int(new_width / aspect_ratio)
# # resized_image = image.resize((new_width, new_height))
# # st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
# # analyze_button = st.button("π Analyze Image")
# # with analysis_container:
# # if analyze_button:
# # image_path = "temp_medical_image.png"
# # with open(image_path, "wb") as f:
# # f.write(uploaded_file.getbuffer())
# # with st.spinner("π Analyzing image... Please wait."):
# # try:
# # response = medical_agent.run(query, images=[image_path])
# # st.markdown("### π Analysis Results")
# # st.markdown(response.content)
# # except Exception as e:
# # st.error(f"Analysis error: {e}")
# # finally:
# # if os.path.exists(image_path):
# # os.remove(image_path)
# # else:
# # st.info("π Please upload a medical image to begin analysis")
import os
import torch
import pandas as pd
import streamlit as st
from PIL import Image
from transformers import LongformerTokenizer, LongformerForSequenceClassification
from phi.agent import Agent
from phi.model.google import Gemini
from phi.tools.duckduckgo import DuckDuckGo
# Load the fine-tuned ICD-9 model and tokenizer
model_path = "./clinical_longformer"
tokenizer = LongformerTokenizer.from_pretrained(model_path)
model = LongformerForSequenceClassification.from_pretrained(model_path)
model.eval() # Set the model to evaluation mode
# Load the ICD-9 descriptions from CSV into a dictionary
icd9_desc_df = pd.read_csv("D_ICD_DIAGNOSES.csv")
icd9_desc_df['ICD9_CODE'] = icd9_desc_df['ICD9_CODE'].astype(str) # Ensure ICD9_CODE is string type for matching
icd9_descriptions = dict(zip(icd9_desc_df['ICD9_CODE'].str.replace('.', ''), icd9_desc_df['LONG_TITLE'])) # Remove decimals in ICD9 code for matching
# ICD-9 code columns used during training
icd9_columns = [
'038.9', '244.9', '250.00', '272.0', '272.4', '276.1', '276.2', '285.1', '285.9',
'287.5', '305.1', '311', '36.15', '37.22', '37.23', '38.91', '38.93', '39.61',
'39.95', '401.9', '403.90', '410.71', '412', '414.01', '424.0', '427.31', '428.0',
'486', '496', '507.0', '511.9', '518.81', '530.81', '584.9', '585.9', '599.0',
'88.56', '88.72', '93.90', '96.04', '96.6', '96.71', '96.72', '99.04', '99.15',
'995.92', 'V15.82', 'V45.81', 'V45.82', 'V58.61'
]
# Function for making ICD-9 predictions
def predict_icd9(texts, tokenizer, model, threshold=0.5):
inputs = tokenizer(
texts,
padding="max_length",
truncation=True,
max_length=512,
return_tensors="pt"
)
with torch.no_grad():
outputs = model(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"]
)
logits = outputs.logits
probabilities = torch.sigmoid(logits)
predictions = (probabilities > threshold).int()
predicted_icd9 = []
for pred in predictions:
codes = [icd9_columns[i] for i, val in enumerate(pred) if val == 1]
predicted_icd9.append(codes)
predictions_with_desc = []
for codes in predicted_icd9:
code_with_desc = [(code, icd9_descriptions.get(code.replace('.', ''), "Description not found")) for code in codes]
predictions_with_desc.append(code_with_desc)
return predictions_with_desc
# Define the API key directly in the code
GOOGLE_API_KEY = "AIzaSyA24A6egT3L0NAKkkw9QHjfoizp7cJUTaA"
# Streamlit UI
st.title("Medical Diagnosis Assistant")
option = st.selectbox(
"Choose Diagnosis Method",
("ICD-9 Code Prediction", "Medical Image Analysis")
)
# ICD-9 Code Prediction
if option == "ICD-9 Code Prediction":
st.write("### Enter Medical Summary")
input_text = st.text_area("Medical Summary", placeholder="Enter clinical notes here...")
threshold = st.slider("Prediction Threshold", 0.0, 1.0, 0.5, 0.01)
if st.button("Predict ICD-9 Codes"):
if input_text.strip():
predictions = predict_icd9([input_text], tokenizer, model, threshold)
st.write("### Predicted ICD-9 Codes and Descriptions")
for code, description in predictions[0]:
st.write(f"- {code}: {description}")
else:
st.error("Please enter a medical summary.")
# Medical Image Analysis
elif option == "Medical Image Analysis":
medical_agent = Agent(
model=Gemini(
api_key=GOOGLE_API_KEY,
id="gemini-2.0-flash-exp"
),
tools=[DuckDuckGo()],
markdown=True
)
query = """
You are a highly skilled medical imaging expert with extensive knowledge in radiology and diagnostic imaging. Analyze the patient's medical image and structure your response as follows:
### 1. Image Type & Region
- Specify imaging modality (X-ray/MRI/CT/Ultrasound/etc.)
- Identify the patient's anatomical region and positioning
- Comment on image quality and technical adequacy
### 2. Key Findings
- List primary observations systematically
- Note any abnormalities in the patient's imaging with precise descriptions
- Include measurements and densities where relevant
- Describe location, size, shape, and characteristics
- Rate severity: Normal/Mild/Moderate/Severe
### 3. Diagnostic Assessment
- Provide primary diagnosis with confidence level
# - List differential diagnoses in order of likelihood
# - Support each diagnosis with observed evidence from the patient's imaging
# - Note any critical or urgent findings
# ### 4. Patient-Friendly Explanation
# - Explain the findings in simple, clear language that the patient can understand
# - Avoid medical jargon or provide clear definitions
# - Include visual analogies if helpful
# - Address common patient concerns related to these findings
# ### 5. Research Context
# - Use the DuckDuckGo search tool to find recent medical literature about similar cases
# - Provide a list of relevant medical links
# - Include key references to support your analysis
# """
upload_container = st.container()
image_container = st.container()
analysis_container = st.container()
with upload_container:
uploaded_file = st.file_uploader(
"Upload Medical Image",
type=["jpg", "jpeg", "png", "dicom"],
help="Supported formats: JPG, JPEG, PNG, DICOM"
)
if uploaded_file is not None:
with image_container:
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
image = Image.open(uploaded_file)
width, height = image.size
aspect_ratio = width / height
new_width = 500
new_height = int(new_width / aspect_ratio)
resized_image = image.resize((new_width, new_height))
st.image(resized_image, caption="Uploaded Medical Image", use_container_width=True)
analyze_button = st.button("π Analyze Image")
with analysis_container:
if analyze_button:
image_path = "temp_medical_image.png"
with open(image_path, "wb") as f:
f.write(uploaded_file.getbuffer())
with st.spinner("π Analyzing image... Please wait."):
try:
response = medical_agent.run(query, images=[image_path])
st.markdown("### π Analysis Results")
st.markdown(response.content)
except Exception as e:
st.error(f"Analysis error: {e}")
finally:
if os.path.exists(image_path):
os.remove(image_path)
else:
st.info("π Please upload a medical image to begin analysis")
|