File size: 10,705 Bytes
460fdc7
 
42e8f64
 
c40907d
2ec9b03
4f8bac4
2ec9b03
 
4f8bac4
2ec9b03
4f8bac4
 
077e5da
4f8bac4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
077e5da
4f8bac4
 
 
 
 
0bcbe4f
78b788d
 
 
 
 
52acc8a
78b788d
 
 
 
 
 
077e5da
 
78b788d
2af0c24
4f8bac4
78b788d
4f3cfa8
4f8bac4
78b788d
4f8bac4
 
52acc8a
077e5da
52acc8a
077e5da
4f8bac4
 
077e5da
4f8bac4
dae3ac5
077e5da
 
 
 
 
 
 
 
 
 
dae3ac5
e5599c2
f7b4006
0bcbe4f
4f8bac4
0bcbe4f
78b788d
077e5da
 
2af0c24
4f8bac4
 
 
4f3cfa8
 
4f8bac4
 
077e5da
2af0c24
077e5da
 
4f8bac4
 
077e5da
4f8bac4
0bcbe4f
077e5da
 
 
 
 
 
 
 
 
 
0bcbe4f
 
 
 
4f8bac4
78b788d
2ec9b03
329215f
2ec9b03
78b788d
4f8bac4
78b788d
077e5da
 
2af0c24
4f8bac4
2ec9b03
 
 
 
 
 
 
 
78b788d
077e5da
2ec9b03
0bcbe4f
 
4f8bac4
78b788d
077e5da
4f8bac4
 
 
0bcbe4f
78b788d
077e5da
 
2af0c24
4f8bac4
2ec9b03
4f8bac4
 
077e5da
2ec9b03
d4ded0a
4f8bac4
4567668
 
 
 
 
 
 
 
 
 
 
 
f7b4006
7022131
7786ff5
2ec9b03
 
4f8bac4
7786ff5
655d435
2ec9b03
4f8bac4
 
f7b4006
7022131
f7b4006
329215f
bb22059
b4c9d86
5966339
4f8bac4
7022131
f7b4006
2dc39dd
b7b78a8
2dc39dd
097117b
4f8bac4
7022131
f7b4006
d4ded0a
b7b78a8
d4ded0a
097117b
4f8bac4
7022131
f7b4006
2dc39dd
3e19f3e
2dc39dd
097117b
4f8bac4
3fe7e68
 
 
172dd94
3fe7e68
172dd94
4f8bac4
3fe7e68
 
 
e513088
3fe7e68
097117b
4f8bac4
 
3fe7e68
 
 
 
097117b
4f8bac4
3fe7e68
 
 
 
 
097117b
4f8bac4
3fe7e68
 
 
 
 
097117b
4f8bac4
7022131
f7b4006
2dc39dd
b7b78a8
2dc39dd
097117b
4f8bac4
296b387
0bcbe4f
e8159e6
0bcbe4f
e8159e6
eb5bbd0
4f8bac4
40e7d39
4f8bac4
 
 
 
 
 
 
077e5da
4f8bac4
2af0c24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import gradio as gr
import pandas as pd
import plotly.express as px

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
    author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
    title = {AI Energy Score Leaderboard - February 2025},
    year = {2025},
    publisher = {Hugging Face},
    howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""

# List of CSV filenames (one per task)
tasks = [
    'asr.csv',
    'object_detection.csv',
    'text_classification.csv',
    'image_captioning.csv',
    'question_answering.csv',
    'text_generation.csv',
    'image_classification.csv',
    'sentence_similarity.csv',
    'image_generation.csv',
    'summarization.csv'
]

def format_stars(score):
    try:
        score_int = int(score)
    except Exception:
        score_int = 0
    return f'<span style="color: #3fa45bff; font-size:2em;">{"★" * score_int}</span>'

def make_link(mname):
    parts = str(mname).split('/')
    display_name = parts[1] if len(parts) > 1 else mname
    return f'[{display_name}](https://huggingface.co/{mname})'

def read_csv_file(task):
    """
    Reads a CSV from the data/energy folder using the first column as the index
    and strips any extraneous whitespace from the column names.
    """
    df = pd.read_csv('data/energy/' + task, index_col=0)
    df.columns = df.columns.str.strip()  # remove any extra whitespace
    return df

def get_plots(task):
    df = read_csv_file(task)
    # Convert the numeric columns
    df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
    df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
    # Create a short model name for display on the y-axis.
    df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
    
    # Define a discrete color mapping for energy scores.
    color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
    
    # Build the scatter plot.
    fig = px.scatter(
        df,
        x="total_gpu_energy",
        y="Display Model",
        color="energy_score",
        custom_data=['model', 'total_gpu_energy', 'energy_score'],
        height=500,
        width=800,
        color_discrete_map=color_map,
    )
    fig.update_traces(
        hovertemplate=(
            "Model: %{customdata[0]}<br>" +
            "Total GPU Energy (Wh): %{customdata[1]:.4f}<br>" +
            "Energy Score: %{customdata[2]}"
        )
    )
    fig.update_layout(
        xaxis_title="Total GPU Energy (Wh)",
        yaxis_title="Model",
        margin=dict(l=40, r=40, t=40, b=40)
    )
    return fig

def get_all_plots():
    all_df = pd.DataFrame()
    for task in tasks:
        df = read_csv_file(task)
        df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
        df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
        df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
        all_df = pd.concat([all_df, df], ignore_index=True)
    all_df = all_df.drop_duplicates(subset=['model'])
    
    color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
    
    fig = px.scatter(
        all_df,
        x="total_gpu_energy",
        y="Display Model",
        color="energy_score",
        custom_data=['model', 'total_gpu_energy', 'energy_score'],
        height=500,
        width=800,
        color_discrete_map=color_map,
    )
    fig.update_traces(
        hovertemplate=(
            "Model: %{customdata[0]}<br>" +
            "Total GPU Energy (Wh): %{customdata[1]:.4f}<br>" +
            "Energy Score: %{customdata[2]}"
        )
    )
    fig.update_layout(
        xaxis_title="Total GPU Energy (Wh)",
        yaxis_title="Model",
        margin=dict(l=40, r=40, t=40, b=40)
    )
    return fig

def get_model_names(task):
    """
    For a given task, load the energy CSV and return a DataFrame with the following columns:
      - Model (a markdown link)
      - GPU Energy (Wh) formatted to 4 decimal places
      - Score (a star rating based on energy_score)
    For text_generation.csv only, also include the "Class" column if present.
    """
    df = read_csv_file(task)
    df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
    df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
    df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
    df['Model'] = df['model'].apply(make_link)
    df['Score'] = df['energy_score'].apply(format_stars)
    
    if 'class' in df.columns:
        df['Class'] = df['class']
        df = df[['Model', 'GPU Energy (Wh)', 'Score', 'Class']]
    else:
        df = df[['Model', 'GPU Energy (Wh)', 'Score']]
        
    # Sort by the numeric GPU energy value.
    df = df.sort_values(by='total_gpu_energy')
    return df

def get_all_model_names():
    """
    Combine data from all tasks and return a leaderboard DataFrame with:
      - Model, GPU Energy (Wh), Score.
    Duplicate models are dropped.
    """
    all_df = pd.DataFrame()
    for task in tasks:
        df = read_csv_file(task)
        df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
        df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
        df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
        df['Model'] = df['model'].apply(make_link)
        df['Score'] = df['energy_score'].apply(format_stars)
        all_df = pd.concat([all_df, df], ignore_index=True)
    all_df = all_df.drop_duplicates(subset=['model'])
    all_df = all_df.sort_values(by='total_gpu_energy')
    return all_df[['Model', 'GPU Energy (Wh)', 'Score']]

# Build the Gradio interface.
demo = gr.Blocks(css="""
.gr-dataframe table {
    table-layout: fixed;
    width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
    max-width: 150px;
    white-space: nowrap;
    overflow: hidden;
    text-overflow: ellipsis;
}
""")

with demo:
    gr.Markdown(
        """# AI Energy Score Leaderboard
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
Click through the tasks below to see how different models measure up in terms of energy efficiency."""
    )
    gr.Markdown(
        """Test your own models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
    )
    
    with gr.Tabs():
        with gr.TabItem("Text Generation 💬"):
            with gr.Row():
                with gr.Column(scale=2):
                    plot = gr.Plot(get_plots('text_generation.csv'))
                with gr.Column(scale=1):
                    table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
                    
        with gr.TabItem("Image Generation 📷"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('image_generation.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")
                    
        with gr.TabItem("Text Classification 🎭"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('text_classification.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")
                    
        with gr.TabItem("Image Classification 🖼️"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('image_classification.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")
                    
        with gr.TabItem("Image Captioning 📝"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('image_captioning.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")
                    
        with gr.TabItem("Summarization 📃"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('summarization.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")
                    
        with gr.TabItem("Automatic Speech Recognition 💬"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('asr.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")
                    
        with gr.TabItem("Object Detection 🚘"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('object_detection.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")
                    
        with gr.TabItem("Sentence Similarity 📚"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('sentence_similarity.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")
                    
        with gr.TabItem("Extractive QA ❔"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_plots('question_answering.csv'))
                with gr.Column():
                    table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")
                    
        with gr.TabItem("All Tasks 💡"):
            with gr.Row():
                with gr.Column():
                    plot = gr.Plot(get_all_plots)
                with gr.Column():
                    table = gr.Dataframe(get_all_model_names, datatype="markdown")
                    
    with gr.Accordion("📙 Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            lines=10,
            show_copy_button=True,
        )
    gr.Markdown("Last updated: February 2025")

demo.launch()