Spaces:
Sleeping
Sleeping
File size: 10,705 Bytes
460fdc7 42e8f64 c40907d 2ec9b03 4f8bac4 2ec9b03 4f8bac4 2ec9b03 4f8bac4 077e5da 4f8bac4 077e5da 4f8bac4 0bcbe4f 78b788d 52acc8a 78b788d 077e5da 78b788d 2af0c24 4f8bac4 78b788d 4f3cfa8 4f8bac4 78b788d 4f8bac4 52acc8a 077e5da 52acc8a 077e5da 4f8bac4 077e5da 4f8bac4 dae3ac5 077e5da dae3ac5 e5599c2 f7b4006 0bcbe4f 4f8bac4 0bcbe4f 78b788d 077e5da 2af0c24 4f8bac4 4f3cfa8 4f8bac4 077e5da 2af0c24 077e5da 4f8bac4 077e5da 4f8bac4 0bcbe4f 077e5da 0bcbe4f 4f8bac4 78b788d 2ec9b03 329215f 2ec9b03 78b788d 4f8bac4 78b788d 077e5da 2af0c24 4f8bac4 2ec9b03 78b788d 077e5da 2ec9b03 0bcbe4f 4f8bac4 78b788d 077e5da 4f8bac4 0bcbe4f 78b788d 077e5da 2af0c24 4f8bac4 2ec9b03 4f8bac4 077e5da 2ec9b03 d4ded0a 4f8bac4 4567668 f7b4006 7022131 7786ff5 2ec9b03 4f8bac4 7786ff5 655d435 2ec9b03 4f8bac4 f7b4006 7022131 f7b4006 329215f bb22059 b4c9d86 5966339 4f8bac4 7022131 f7b4006 2dc39dd b7b78a8 2dc39dd 097117b 4f8bac4 7022131 f7b4006 d4ded0a b7b78a8 d4ded0a 097117b 4f8bac4 7022131 f7b4006 2dc39dd 3e19f3e 2dc39dd 097117b 4f8bac4 3fe7e68 172dd94 3fe7e68 172dd94 4f8bac4 3fe7e68 e513088 3fe7e68 097117b 4f8bac4 3fe7e68 097117b 4f8bac4 3fe7e68 097117b 4f8bac4 3fe7e68 097117b 4f8bac4 7022131 f7b4006 2dc39dd b7b78a8 2dc39dd 097117b 4f8bac4 296b387 0bcbe4f e8159e6 0bcbe4f e8159e6 eb5bbd0 4f8bac4 40e7d39 4f8bac4 077e5da 4f8bac4 2af0c24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import gradio as gr
import pandas as pd
import plotly.express as px
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""@misc{aienergyscore-leaderboard,
author = {Sasha Luccioni and Boris Gamazaychikov and Emma Strubell and Sara Hooker and Yacine Jernite and Carole-Jean Wu and Margaret Mitchell},
title = {AI Energy Score Leaderboard - February 2025},
year = {2025},
publisher = {Hugging Face},
howpublished = "\url{https://huggingface.co/spaces/AIEnergyScore/Leaderboard}",
}"""
# List of CSV filenames (one per task)
tasks = [
'asr.csv',
'object_detection.csv',
'text_classification.csv',
'image_captioning.csv',
'question_answering.csv',
'text_generation.csv',
'image_classification.csv',
'sentence_similarity.csv',
'image_generation.csv',
'summarization.csv'
]
def format_stars(score):
try:
score_int = int(score)
except Exception:
score_int = 0
return f'<span style="color: #3fa45bff; font-size:2em;">{"★" * score_int}</span>'
def make_link(mname):
parts = str(mname).split('/')
display_name = parts[1] if len(parts) > 1 else mname
return f'[{display_name}](https://huggingface.co/{mname})'
def read_csv_file(task):
"""
Reads a CSV from the data/energy folder using the first column as the index
and strips any extraneous whitespace from the column names.
"""
df = pd.read_csv('data/energy/' + task, index_col=0)
df.columns = df.columns.str.strip() # remove any extra whitespace
return df
def get_plots(task):
df = read_csv_file(task)
# Convert the numeric columns
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
# Create a short model name for display on the y-axis.
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
# Define a discrete color mapping for energy scores.
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
# Build the scatter plot.
fig = px.scatter(
df,
x="total_gpu_energy",
y="Display Model",
color="energy_score",
custom_data=['model', 'total_gpu_energy', 'energy_score'],
height=500,
width=800,
color_discrete_map=color_map,
)
fig.update_traces(
hovertemplate=(
"Model: %{customdata[0]}<br>" +
"Total GPU Energy (Wh): %{customdata[1]:.4f}<br>" +
"Energy Score: %{customdata[2]}"
)
)
fig.update_layout(
xaxis_title="Total GPU Energy (Wh)",
yaxis_title="Model",
margin=dict(l=40, r=40, t=40, b=40)
)
return fig
def get_all_plots():
all_df = pd.DataFrame()
for task in tasks:
df = read_csv_file(task)
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
df['Display Model'] = df['model'].apply(lambda m: m.split('/')[-1])
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
color_map = {1: "red", 2: "orange", 3: "yellow", 4: "lightgreen", 5: "green"}
fig = px.scatter(
all_df,
x="total_gpu_energy",
y="Display Model",
color="energy_score",
custom_data=['model', 'total_gpu_energy', 'energy_score'],
height=500,
width=800,
color_discrete_map=color_map,
)
fig.update_traces(
hovertemplate=(
"Model: %{customdata[0]}<br>" +
"Total GPU Energy (Wh): %{customdata[1]:.4f}<br>" +
"Energy Score: %{customdata[2]}"
)
)
fig.update_layout(
xaxis_title="Total GPU Energy (Wh)",
yaxis_title="Model",
margin=dict(l=40, r=40, t=40, b=40)
)
return fig
def get_model_names(task):
"""
For a given task, load the energy CSV and return a DataFrame with the following columns:
- Model (a markdown link)
- GPU Energy (Wh) formatted to 4 decimal places
- Score (a star rating based on energy_score)
For text_generation.csv only, also include the "Class" column if present.
"""
df = read_csv_file(task)
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
if 'class' in df.columns:
df['Class'] = df['class']
df = df[['Model', 'GPU Energy (Wh)', 'Score', 'Class']]
else:
df = df[['Model', 'GPU Energy (Wh)', 'Score']]
# Sort by the numeric GPU energy value.
df = df.sort_values(by='total_gpu_energy')
return df
def get_all_model_names():
"""
Combine data from all tasks and return a leaderboard DataFrame with:
- Model, GPU Energy (Wh), Score.
Duplicate models are dropped.
"""
all_df = pd.DataFrame()
for task in tasks:
df = read_csv_file(task)
df['total_gpu_energy'] = pd.to_numeric(df['total_gpu_energy'], errors='coerce')
df['energy_score'] = pd.to_numeric(df['energy_score'], errors='coerce').astype(int)
df['GPU Energy (Wh)'] = df['total_gpu_energy'].apply(lambda x: f"{x:.4f}")
df['Model'] = df['model'].apply(make_link)
df['Score'] = df['energy_score'].apply(format_stars)
all_df = pd.concat([all_df, df], ignore_index=True)
all_df = all_df.drop_duplicates(subset=['model'])
all_df = all_df.sort_values(by='total_gpu_energy')
return all_df[['Model', 'GPU Energy (Wh)', 'Score']]
# Build the Gradio interface.
demo = gr.Blocks(css="""
.gr-dataframe table {
table-layout: fixed;
width: 100%;
}
.gr-dataframe th, .gr-dataframe td {
max-width: 150px;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;
}
""")
with demo:
gr.Markdown(
"""# AI Energy Score Leaderboard
### Welcome to the leaderboard for the [AI Energy Score Project!](https://huggingface.co/AIEnergyScore)
Click through the tasks below to see how different models measure up in terms of energy efficiency."""
)
gr.Markdown(
"""Test your own models via the [submission portal](https://huggingface.co/spaces/AIEnergyScore/submission_portal)"""
)
with gr.Tabs():
with gr.TabItem("Text Generation 💬"):
with gr.Row():
with gr.Column(scale=2):
plot = gr.Plot(get_plots('text_generation.csv'))
with gr.Column(scale=1):
table = gr.Dataframe(get_model_names('text_generation.csv'), datatype="markdown")
with gr.TabItem("Image Generation 📷"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_generation.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_generation.csv'), datatype="markdown")
with gr.TabItem("Text Classification 🎭"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('text_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('text_classification.csv'), datatype="markdown")
with gr.TabItem("Image Classification 🖼️"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_classification.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_classification.csv'), datatype="markdown")
with gr.TabItem("Image Captioning 📝"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('image_captioning.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('image_captioning.csv'), datatype="markdown")
with gr.TabItem("Summarization 📃"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('summarization.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('summarization.csv'), datatype="markdown")
with gr.TabItem("Automatic Speech Recognition 💬"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('asr.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('asr.csv'), datatype="markdown")
with gr.TabItem("Object Detection 🚘"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('object_detection.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('object_detection.csv'), datatype="markdown")
with gr.TabItem("Sentence Similarity 📚"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('sentence_similarity.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('sentence_similarity.csv'), datatype="markdown")
with gr.TabItem("Extractive QA ❔"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_plots('question_answering.csv'))
with gr.Column():
table = gr.Dataframe(get_model_names('question_answering.csv'), datatype="markdown")
with gr.TabItem("All Tasks 💡"):
with gr.Row():
with gr.Column():
plot = gr.Plot(get_all_plots)
with gr.Column():
table = gr.Dataframe(get_all_model_names, datatype="markdown")
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
lines=10,
show_copy_button=True,
)
gr.Markdown("Last updated: February 2025")
demo.launch()
|