Spaces:
Running
Running
File size: 16,179 Bytes
412e24c f9661d8 f407850 412e24c 7d77c56 4419092 2494f6a 7d77c56 b999878 4419092 412e24c f407850 412e24c f407850 412e24c f407850 412e24c f9661d8 412e24c f407850 412e24c f9661d8 412e24c f9661d8 412e24c f407850 412e24c f9661d8 412e24c f407850 412e24c f9661d8 412e24c f407850 412e24c f9661d8 412e24c f9661d8 412e24c f9661d8 412e24c f9661d8 412e24c f407850 412e24c f407850 412e24c f407850 412e24c f9661d8 412e24c f9661d8 412e24c f407850 412e24c f9661d8 412e24c f407850 412e24c f9661d8 412e24c f407850 412e24c f407850 412e24c f407850 412e24c f407850 412e24c f407850 412e24c f407850 412e24c f407850 412e24c f407850 412e24c f407850 412e24c f407850 412e24c 361b1c3 f9661d8 412e24c f9661d8 e23262e 412e24c e23262e 412e24c 6e082a5 663ab52 412e24c 6e082a5 2494f6a 412e24c 2494f6a 412e24c 2494f6a 412e24c 2494f6a 412e24c 663ab52 412e24c f407850 412e24c a7b44f0 412e24c f407850 412e24c f407850 412e24c b999878 412e24c f9661d8 412e24c f9661d8 412e24c ed154bd 412e24c 6e082a5 412e24c 8c431ab a10afc1 8c431ab e155746 8c431ab e155746 8c431ab 412e24c d2f461c b3c8835 d2f461c 9387eb2 d2f461c 342ec3a d2f461c 9387eb2 89f97e0 59439cc 44e0ed8 59439cc 44e0ed8 05314eb f9661d8 fd90ce6 412e24c f9661d8 412e24c f9661d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import random
import gradio
import numpy
import tensorflow
import math
from tensorflow.python.framework.ops import disable_eager_execution
import huggingface_hub # for loading model
# Because important
disable_eager_execution()
def basic_box_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
# Creates the outside edges of the box
for i in range(image_size):
for j in range(image_size):
if i == 0 or j == 0 or i == image_size - 1 or j == image_size - 1:
A[i][j] = 1
return A
def back_slash_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == j:
A[i][j] = 1
return A
def forward_slash_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == (image_size - 1) - j:
A[i][j] = 1
return A
def hot_dog_array(image_size):
# Places pixels down the vertical axis to split the box
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if j == math.floor((image_size - 1) / 2) or j == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def hamburger_array(image_size):
# Places pixels across the horizontal axis to split the box
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == math.floor((image_size - 1) / 2) or i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def center_array(image_size):
A = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for i in range(image_size):
for j in range(image_size):
if i == math.floor((image_size - 1) / 2) and j == math.ceil((image_size - 1) / 2):
A[i][j] = 1
if i == math.floor((image_size - 1) / 2) and j == math.floor((image_size - 1) / 2):
A[i][j] = 1
if j == math.ceil((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
if j == math.floor((image_size - 1) / 2) and i == math.ceil((image_size - 1) / 2):
A[i][j] = 1
return A
def update_array(array_original, array_new, image_size):
A = array_original
for i in range(image_size):
for j in range(image_size):
if array_new[i][j] == 1:
A[i][j] = 1
return A
def add_pixels(array_original, additional_pixels, image_size):
# Adds pixels to the thickness of each component of the box
A = array_original
A_updated = numpy.zeros((int(image_size), int(image_size))) # Initializes A matrix with 0 values
for dens in range(additional_pixels):
for i in range(1, image_size - 1):
for j in range(1, image_size - 1):
if A[i - 1][j] + A[i + 1][j] + A[i][j - 1] + A[i][j + 1] > 0:
A_updated[i][j] = 1
A = update_array(A, A_updated, image_size)
return A
def basic_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def horizontal_vertical_box_split(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Place pixels across the horizontal and vertical axes to split the box
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def diagonal_box_split(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Creates the outside edges of the box
# Add pixels along the diagonals of the box
A = update_array(A, back_slash_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
# Adds pixels to the thickness of each component of the box
# Increase the thickness of each part of the box
A = add_pixels(A, additional_pixels, image_size)
return A * density
def back_slash_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def forward_slash_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, forward_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def hot_dog_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def hamburger_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hamburger_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def forward_slash_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
# A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def back_slash_plus_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
# A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_hot_dog_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, hot_dog_array(image_size), image_size)
# A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def x_hamburger_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
# A = update_array(A, hot_dog_array(image_size), image_size)
A = update_array(A, hamburger_array(image_size), image_size)
A = update_array(A, forward_slash_array(image_size), image_size)
A = update_array(A, back_slash_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
def center_box(additional_pixels, density, image_size):
A = basic_box_array(image_size) # Initializes A matrix with 0 values
A = update_array(A, center_array(image_size), image_size)
A = add_pixels(A, additional_pixels, image_size)
return A * density
# import tensorflow as tf
#
# sess = tf.compat.v1.Session()
#
# from keras import backend as K
#
# K.set_session(sess)
endpoint_options = (
"basic_box", "diagonal_box_split", "horizontal_vertical_box_split", "back_slash_box", "forward_slash_box",
"back_slash_plus_box", "forward_slash_plus_box", "hot_dog_box", "hamburger_box", "x_hamburger_box",
"x_hot_dog_box", "x_plus_box")
density_options = ["{:.2f}".format(x) for x in numpy.linspace(0.1, 1, 10)]
thickness_options = [str(int(x)) for x in numpy.linspace(0, 10, 11)]
interpolation_options = [str(int(x)) for x in [3, 5, 10, 20]]
def generate_unit_cell(t, d, th):
return globals()[t](int(th), float(d), 28)
def interpolate(t1, t2, d1, d2, th1, th2, steps):
# Load the decoder model
decoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-decoder")
# decoder_model_boxes = tensorflow.keras.models.load_model('data/decoder_model_boxes', compile=False)
# # import the encoder model architecture
# json_file_loaded = open('data/model.json', 'r')
# loaded_model_json = json_file_loaded.read()
# load model using the saved json file
# encoder_model_boxes = tensorflow.keras.models.model_from_json(loaded_model_json)
# load weights into newly loaded_model
# encoder_model_boxes.load_weights('data/model_tf')
encoder_model_boxes = huggingface_hub.from_pretrained_keras("cmudrc/2d-lattice-encoder")
num_internal = int(steps)
number_1 = generate_unit_cell(t1, d1, th1)
number_2 = generate_unit_cell(t2, d2, th2)
# resize the array to match the prediction size requirement
number_1_expand = numpy.expand_dims(numpy.expand_dims(number_1, axis=2), axis=0)
number_2_expand = numpy.expand_dims(numpy.expand_dims(number_2, axis=2), axis=0)
# Determine the latent point that will represent our desired number
latent_point_1 = encoder_model_boxes.predict(number_1_expand)[0]
latent_point_2 = encoder_model_boxes.predict(number_2_expand)[0]
latent_dimensionality = len(latent_point_1) # define the dimensionality of the latent space
num_interp = num_internal # the number of images to be pictured
latent_matrix = [] # This will contain the latent points of the interpolation
for column in range(latent_dimensionality):
new_column = numpy.linspace(latent_point_1[column], latent_point_2[column], num_interp)
latent_matrix.append(new_column)
latent_matrix = numpy.array(latent_matrix).T # Transposes the matrix so that each row can be easily indexed
# plot_rows = 2
# plot_columns = num_interp + 2
predicted_interps = [number_1_expand[0, :, :, 0]]
for latent_point in range(2, num_interp + 2): # cycles the latent points through the decoder model to create images
generated_image = decoder_model_boxes.predict(numpy.array([latent_matrix[latent_point - 2]]))[
0] # generates an interpolated image based on the latent point
predicted_interps.append(generated_image[:, :, -1])
predicted_interps.append(number_2_expand[0, :, :, 0])
transition_region = predicted_interps[0]
for i in range(len(predicted_interps) - 1):
transition_region = numpy.hstack((transition_region, predicted_interps[i + 1]))
return transition_region
with gradio.Blocks() as demo:
with gradio.Accordion("✨ Read about the ML model here! ✨", open=False):
with gradio.Row():
with gradio.Column():
gradio.Markdown("# A Data-Driven Approach for Multi-Lattice Transitions")
gradio.HTML("Martha Baldwin, Carnegie Mellon University<br/>Nicholas A. Meisel, Penn State<br/>Christopher McComb, Carnegie Mellon University")
gradio.Markdown("_Abstract_: Additive manufacturing is advantageous for producing lightweight components while maintaining function and form. This ability has been bolstered by the introduction of unit lattice cells and the gradation of those cells. In cases where loading varies throughout a part, it may be necessary to use multiple lattice cell types, also known as multi-lattice structures. In such structures, abrupt transitions between geometries may cause stress concentrations, making the boundary a primary failure point; thus, transition regions should be created between each lattice cell type. Although computational approaches have been proposed, smooth transition regions are still difficult to intuit and design, especially between lattices of drastically different geometries. This work demonstrates and assesses a method for using variational autoencoders to automate the creation of transitional lattice cells. In particular, the work focuses on identifying the relationships that exist within the latent space produced by the variational autoencoder. Through computational experimentation, it was found that the smoothness of transition regions was higher when the endpoints were located closer together in the latent space.")
with gradio.Column():
download = gradio.HTML("<a href=\"https://huggingface.co/spaces/cmudrc/lattice-interpolation/resolve/main/M169970.pdf\" style=\"width: 60%; display: block; margin: auto;\"><img src=\"https://huggingface.co/spaces/cmudrc/lattice-interpolation/resolve/main/coverpage.png\"></a>")
gradio.Markdown("Lattices are used in 3D-printing to reduce weight, and its usually good to use more than one type of lattice. This demo can create smooth transitions between different lattices to improve the strength of the part. To use the demo, set the characteristics of the lattice unit cells you want to use as the endpoints, select the length of the transitions, and then hit `Interpolate!`")
with gradio.Row():
with gradio.Column(min_width=200):
t1 = gradio.Dropdown(endpoint_options, label="Type 1", value="hamburger_box")
d1 = gradio.Dropdown(density_options, label="Density 1", value="1.00")
th1 = gradio.Dropdown(thickness_options, label="Thickness 1", value="2")
with gradio.Column(min_width=200):
img1 = gradio.Image(label="Endpoint 1")#, value=generate_unit_cell("hamburger_box", "1.00", "2"))
with gradio.Column(min_width=200):
t2 = gradio.Dropdown(endpoint_options, label="Type 2", value="hot_dog_box")
d2 = gradio.Dropdown(density_options, label="Density 2", value="1.00")
th2 = gradio.Dropdown(thickness_options, label="Thickness 2", value="2")
with gradio.Column(min_width=200):
img2 = gradio.Image(label="Endpoint 2")#, value=generate_unit_cell("hot_dog_box", "1.00", "2"))
lattice_inputs_1 = [t1, d1, th1]
[x.change(fn=generate_unit_cell, inputs=lattice_inputs_1, outputs=[img1], show_progress=False) for x in lattice_inputs_1]
lattice_inputs_2 = [t2, d2, th2]
[x.change(fn=generate_unit_cell, inputs=lattice_inputs_2, outputs=[img2], show_progress=False) for x in lattice_inputs_2]
steps = gradio.Dropdown(interpolation_options, label="Interpolation Length",
value=random.choice(interpolation_options))
btn = gradio.Button("Interpolate!", variant="primary")
img = gradio.Image(label="Transition")
btn.click(fn=interpolate, inputs=[t1, t2, d1, d2, th1, th2, steps], outputs=[img])
examples = gradio.Examples(examples=[["hamburger_box", "hot_dog_box", "1.00", "1.00", "2", "2", "20"],
["hamburger_box", "hot_dog_box", "0.10", "1.00", "10", "10", "5"]],
fn=interpolate,
inputs=[t1, t2, d1, d2, th1, th2, steps], outputs=[img], cache_examples=True)
demo.launch()
|