Spaces:
Runtime error
Runtime error
File size: 4,818 Bytes
3e6e3a1 65fceff 3e6e3a1 65fceff 3e6e3a1 912706a a04df1c 65fceff 3e6e3a1 48482d6 3e6e3a1 65fceff 3e6e3a1 d72f5a1 65fceff d72f5a1 65fceff 3fb95e1 a04df1c 3fb95e1 3e6e3a1 48482d6 2394291 3fb95e1 48482d6 d72f5a1 48482d6 3fb95e1 48482d6 8496f4f 02b7531 3fb95e1 02b7531 8496f4f d72f5a1 3fb95e1 48482d6 3fb95e1 48482d6 d72f5a1 48482d6 d72f5a1 48482d6 8496f4f 48482d6 e03fb29 48482d6 d72f5a1 48482d6 3fb95e1 d72f5a1 e03fb29 48482d6 3fb95e1 d72f5a1 3fb95e1 65fceff 3e6e3a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
import gradio as gr
import numpy as np
from transformers import pipeline
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import PyPDF2
# Load local models for inference
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
tts_model = pipeline("text-to-speech", model="facebook/fastspeech2-en-ljspeech")
# Load a pre-trained model for vector embeddings
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# Parse PDF and create resume content
def parse_resume(pdf):
"""Extract text from an uploaded PDF file."""
reader = PyPDF2.PdfReader(pdf)
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
sections = {"Resume Content": text}
return sections
# Process job description text
def process_job_description(job_desc):
"""Encode the job description for analysis."""
return embedding_model.encode(job_desc)
# Process resume and generate embeddings
def process_resume(pdf):
resume_content = parse_resume(pdf)
resume_embeddings = {
section: embedding_model.encode(content) for section, content in resume_content.items()
}
return resume_embeddings
# Generate question from user response
def generate_question(user_input, resume_embeddings):
"""Find the most relevant section in the resume and generate a question."""
user_embedding = embedding_model.encode(user_input)
similarities = {
section: cosine_similarity([user_embedding], [embedding])[0][0]
for section, embedding in resume_embeddings.items()
}
most_relevant_section = max(similarities, key=similarities.get)
return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
# Generate TTS output
def generate_audio(text):
"""Convert text to audio using Hugging Face TTS model."""
audio_data = tts_model(text, return_tensors=True)["waveform"]
return audio_data
# Gradio interface
class MockInterview:
def __init__(self):
self.resume_embeddings = None
self.job_desc_embedding = None
self.interview_active = False
def upload_inputs(self, resume, job_desc):
self.resume_embeddings = process_resume(resume)
self.job_desc_embedding = process_job_description(job_desc)
self.interview_active = True
question = "Tell me about yourself."
audio_output = generate_audio(question)
return "Resume and job description processed. Starting the interview.", audio_output
def conduct_interview(self, audio_file):
if not self.interview_active:
return "Please upload your resume and job description first.", None
# Transcribe audio
transcription = stt_model(audio_file)["text"]
if not transcription.strip():
return "No audio detected. Please try again.", None
# Generate next question
question = generate_question(transcription, self.resume_embeddings)
audio_output = generate_audio(question)
return transcription, audio_output
def end_interview(self):
self.interview_active = False
audio_output = generate_audio("Thank you for participating in the interview. Goodbye!")
return "Interview ended. Thank you for participating.", audio_output
mock_interview = MockInterview()
def upload_inputs(resume, job_desc):
return mock_interview.upload_inputs(resume, job_desc)
def conduct_interview(audio_file):
return mock_interview.conduct_interview(audio_file)
def end_interview():
return mock_interview.end_interview()
interface = gr.Blocks()
with interface:
gr.Markdown("""# Mock Interview AI
Upload your resume and job description, then engage in a realistic audio-based interview simulation.""")
with gr.Row():
resume_input = gr.File(label="Upload Resume (PDF)")
job_desc_input = gr.Textbox(label="Paste Job Description")
upload_button = gr.Button("Upload and Start Interview")
with gr.Row():
audio_input = gr.Audio(type="filepath", label="Respond with Your Answer")
transcription_output = gr.Textbox(label="Transcription")
question_output = gr.Audio(label="Question Audio")
submit_button = gr.Button("Submit Response")
end_button = gr.Button("End Interview")
upload_button.click(upload_inputs, inputs=[resume_input, job_desc_input], outputs=[transcription_output, question_output])
submit_button.click(conduct_interview, inputs=[audio_input], outputs=[transcription_output, question_output])
end_button.click(end_interview, outputs=[transcription_output, question_output])
if __name__ == "__main__":
interface.launch()
|