File size: 11,459 Bytes
df97270
7d8ec5e
9eb2e2a
6916a8a
822fee8
5fc5e6a
0258ba7
5fc5e6a
 
822fee8
 
 
 
 
 
19d8d8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4e3ea5
822fee8
df97270
 
 
 
 
3dfd15f
6916a8a
0efb9f9
 
 
 
 
 
 
 
 
 
 
 
 
 
6916a8a
 
9c8ba2d
6916a8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c8ba2d
6916a8a
9c8ba2d
ee25197
 
 
6916a8a
ee25197
 
 
 
 
 
 
 
bd14ff7
 
 
 
 
 
 
 
8286229
ee25197
 
 
 
 
11c72f7
ee25197
 
 
 
 
 
 
 
 
 
bd14ff7
ee25197
11c72f7
ee25197
 
 
bd14ff7
6916a8a
ee25197
 
 
 
9eb2e2a
bd14ff7
7e4e6e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6916a8a
 
7e4e6e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8286229
bd14ff7
 
7e4e6e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4e3ea5
822fee8
 
 
 
 
 
 
 
 
 
 
 
c4e3ea5
5fc5e6a
6916a8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import gradio as gr
import torch
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PDFImage
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from simple_salesforce import Salesforce
import os
from dotenv import load_dotenv
import base64
import io
import concurrent.futures

# Load environment variables from .env file
load_dotenv()

# Salesforce credentials
SF_USERNAME = os.getenv('SF_USERNAME')
SF_PASSWORD = os.getenv('SF_PASSWORD')
SF_SECURITY_TOKEN = os.getenv('SF_SECURITY_TOKEN')

# Initialize Salesforce connection
try:
    sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN)
except Exception as e:
    sf = None
    print(f"Failed to connect to Salesforce: {str(e)}")

# Load BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)

# Inference function to generate captions dynamically based on image content
def generate_captions_from_image(image):
    if image.mode != "RGB":
        image = image.convert("RGB")
    
    # Resize image for faster processing
    image = image.resize((640, 640))
    
    # Preprocess the image and generate a caption
    inputs = processor(image, return_tensors="pt").to(device, torch.float16)
    output = model.generate(**inputs, max_new_tokens=50)
    caption = processor.decode(output[0], skip_special_tokens=True)
    
    return caption

# Function to save DPR text to a PDF file
def save_dpr_to_pdf(dpr_text, image_paths, captions, filename):
    try:
        # Create a PDF document
        doc = SimpleDocTemplate(filename, pagesize=letter)
        styles = getSampleStyleSheet()
        
        # Define custom styles
        title_style = ParagraphStyle(
            name='Title',
            fontSize=16,
            leading=20,
            alignment=1,  # Center
            spaceAfter=20,
            textColor=colors.black,
            fontName='Helvetica-Bold'
        )
        body_style = ParagraphStyle(
            name='Body',
            fontSize=12,
            leading=14,
            spaceAfter=10,
            textColor=colors.black,
            fontName='Helvetica'
        )
        
        # Build the PDF content
        flowables = []
        
        # Add title
        flowables.append(Paragraph("Daily Progress Report", title_style))
        
        # Split DPR text into lines and add as paragraphs (excluding descriptions for images)
        for line in dpr_text.split('\n'):
            # Replace problematic characters for PDF
            line = line.replace('\u2019', "'").replace('\u2018', "'")
            if line.strip():
                flowables.append(Paragraph(line, body_style))
            else:
                flowables.append(Spacer(1, 12))
        
        # Add images and captions in the correct order (no need to add description to dpr_text again)
        for img_path, caption in zip(image_paths, captions):
            try:
                # Add image first
                img = PDFImage(img_path, width=200, height=150)  # Adjust image size if needed
                flowables.append(img)
                # Add description below the image
                description = f"Description: {caption}"
                flowables.append(Paragraph(description, body_style))
                flowables.append(Spacer(1, 12))  # Add some space between images
            except Exception as e:
                flowables.append(Paragraph(f"Error loading image: {str(e)}", body_style))
        
        # Build the PDF
        doc.build(flowables)
        return f"PDF saved successfully as {filename}", filename
    except Exception as e:
        return f"Error saving PDF: {str(e)}", None



def upload_pdf_to_salesforce(pdf_file, project_title, record_id=None):
    try:
        sf = get_salesforce_connection()  # Ensure Salesforce connection
        if not sf:
            logger.error("Salesforce connection failed. Cannot upload PDF.")
            return None, None

        # Encode PDF data in base64
        encoded_pdf_data = base64.b64encode(pdf_file.getvalue()).decode('utf-8')
        logger.debug(f"Uploading PDF for project: {project_title}, record ID: {record_id}")
        
        # Create ContentVersion
        content_version = sf_connection.ContentVersion.create({
            'Title': filename,
            'PathOnClient': filename,
            'VersionData': file_content_b64,
            'Description': description
        })
        

        if record_id:
            content_version_data["FirstPublishLocationId"] = record_id

        # Upload the PDF file to Salesforce
        content_version = sf.ContentVersion.create(content_version)
        content_version_id = content_version["id"]
        logger.info(f"PDF uploaded to Salesforce with ContentVersion ID: {content_version_id}")

        # Query to get the ContentDocumentId
        result = sf.query(f"SELECT Id, ContentDocumentId FROM ContentVersion WHERE Id = '{content_version_id}'")
        if not result['records']:
            logger.error("No records returned for ContentVersion query")
            return content_version_id, None

        content_document_id = result['records'][0]['ContentDocumentId']
        
        # Correct URL format for downloading the file from Salesforce
        file_url = f"https://{sf.sf_instance}.salesforce.com/sfc/servlet.shepherd/document/download/{content_version_id}"
        logger.debug(f"Generated PDF URL: {file_url}")
        
        return content_version_id, file_url

    except Exception as e:
        logger.error(f"Error uploading PDF to Salesforce: {str(e)}", exc_info=True)
        return None, None



# Function to generate the daily progress report (DPR), save as PDF, and upload to Salesforce
def generate_dpr(files):
    dpr_text = []
    captions = []
    image_paths = []
    current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    
    # Add header to the DPR
    dpr_text.append(f"Daily Progress Report\nGenerated on: {current_time}\n")
    
    # Process images in parallel for faster performance
    with concurrent.futures.ThreadPoolExecutor() as executor:
        results = list(executor.map(lambda file: generate_captions_from_image(Image.open(file.name)), files))
    
    for i, file in enumerate(files):
        caption = results[i]
        captions.append(caption)
        
        # Generate DPR section for this image with dynamic caption
        dpr_section = f"\nImage: {file.name}\nDescription: {caption}\n"
        # Remove the description from the dpr_text section
        # No need to add it again as the image and caption will be inserted in the PDF
        dpr_text.append(dpr_section)
        
        # Save image path for embedding in the report
        image_paths.append(file.name)
    
    # Combine DPR text (no redundant description here)
    dpr_output = "\n".join(dpr_text)
    
    # Generate PDF filename with timestamp
    pdf_filename = f"DPR_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.pdf"
    
    # Save DPR text to PDF
    pdf_result, pdf_filepath = save_dpr_to_pdf(dpr_output, image_paths, captions, pdf_filename)
    
    # Salesforce upload
    salesforce_result = ""
    pdf_content_document_id = None
    pdf_url = None
    image_content_document_ids = []
    
    if sf and pdf_filepath:
        try:
            # Create Daily_Progress_Reports__c record
            report_description = "; ".join(captions)[:255]  # Concatenate captions, limit to 255 chars
            dpr_record = sf.Daily_Progress_Reports__c.create({
                'Detected_Activities__c': report_description  # Store in Detected_Activities__c field
            })
            dpr_record_id = dpr_record['id']
            salesforce_result += f"Created Daily_Progress_Reports__c record with ID: {dpr_record_id}\n"
            
            # Upload PDF to Salesforce
            pdf_content_document_id, pdf_url, pdf_upload_result = upload_file_to_salesforce(
                pdf_filepath, pdf_filename, sf, "pdf"
            )
            salesforce_result += pdf_upload_result + "\n"
            
            # Link PDF to DPR record
            if pdf_content_document_id:
                sf.ContentDocumentLink.create({
                    'ContentDocumentId': pdf_content_document_id,
                    'LinkedEntityId': dpr_record_id,
                    'ShareType': 'V'
                })
            
            # Update the DPR record with the PDF URL
            if pdf_url:
                sf.Daily_Progress_Reports__c.update(dpr_record_id, {
                    'PDF_URL__c': pdf_url  # Storing the PDF URL correctly
                })
                salesforce_result += f"Updated PDF URL for record ID {dpr_record_id}\n"
            
            # Upload images to Salesforce and create Site_Images__c records
            for file in files:
                image_filename = os.path.basename(file.name)
                image_content_document_id, image_upload_result = upload_file_to_salesforce(
                    file.name, image_filename, sf, "image"
                )
                if image_content_document_id:
                    image_content_document_ids.append(image_content_document_id)
                
                # Create Site_Images__c record and link to DPR
                site_image_record = sf.Site_Images__c.create({
                    'Image__c': image_content_document_id,
                    'Related_Report__c': dpr_record_id  # Link image to DPR record
                })
                salesforce_result += image_upload_result + "\n"
                
                # Link image to DPR record
                if image_content_document_id:
                    sf.ContentDocumentLink.create({
                        'ContentDocumentId': image_content_document_id,
                        'LinkedEntityId': dpr_record_id,
                        'ShareType': 'V'
                    })
            
        except Exception as e:
            salesforce_result += f"Error interacting with Salesforce: {str(e)}\n"
    else:
        salesforce_result = "Salesforce connection not available or PDF generation failed.\n"
    
    # Return DPR text, PDF file, and Salesforce upload status
    return (
        dpr_output + f"\n\n{pdf_result}\n\nSalesforce Upload Status:\n{salesforce_result}",
        pdf_filepath
    )

# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
iface = gr.Interface(
    fn=generate_dpr,
    inputs=gr.Files(type="filepath", label="Upload Site Photos"),
    outputs=[
        gr.Textbox(label="Daily Progress Report"),
        gr.File(label="Download PDF")
    ],
    title="Daily Progress Report Generator",
    description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.",
    allow_flagging="never"
)

if __name__ == "__main__":
    iface.launch()