Spaces:
Sleeping
Sleeping
File size: 6,306 Bytes
9c8ba2d df97270 7d8ec5e 822fee8 9eb2e2a 822fee8 5fc5e6a 0258ba7 5fc5e6a 822fee8 19d8d8c 9c8ba2d 19d8d8c c4e3ea5 822fee8 df97270 3dfd15f 9eb2e2a 9c8ba2d 9eb2e2a 9c8ba2d 9eb2e2a df97270 822fee8 9eb2e2a df97270 c4e3ea5 822fee8 5fc5e6a 822fee8 5fc5e6a 822fee8 0258ba7 5fc5e6a 822fee8 5fc5e6a 822fee8 5fc5e6a 822fee8 c4e3ea5 5fc5e6a 9eb2e2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
from fastapi import FastAPI, File, UploadFile
import requests
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import torch
import gradio as gr
from datetime import datetime
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Image as PDFImage
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from simple_salesforce import Salesforce
import os
from dotenv import load_dotenv
import base64
import io
import concurrent.futures
# Load environment variables from .env file
load_dotenv()
app = FastAPI()
# Salesforce credentials
SF_USERNAME = os.getenv('SF_USERNAME')
SF_PASSWORD = os.getenv('SF_PASSWORD')
SF_SECURITY_TOKEN = os.getenv('SF_SECURITY_TOKEN')
# Initialize Salesforce connection
try:
sf = Salesforce(username=SF_USERNAME, password=SF_PASSWORD, security_token=SF_SECURITY_TOKEN)
except Exception as e:
sf = None
print(f"Failed to connect to Salesforce: {str(e)}")
# Load BLIP model and processor
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
model.eval()
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
# FastAPI endpoint to handle image upload and forward it to Hugging Face API for caption generation
HUGGING_FACE_ENDPOINT = 'https://huggingface.co/spaces/Rammohan0504/DPR-4/predict'
@app.post("/predict/")
async def predict(image: UploadFile = File(...)):
try:
# Read the image from the request
image_bytes = await image.read()
image = Image.open(io.BytesIO(image_bytes))
# Forward the image to Hugging Face endpoint
response = forward_image_to_huggingface(image)
# Check the response from Hugging Face
if response.status_code == 200:
result = response.json()
caption = result.get("caption", "No caption found.")
return {"caption": caption}
else:
return {"error": f"Failed to get prediction from Hugging Face Space. Status code: {response.status_code}"}
except Exception as e:
return {"error": str(e)}
# Function to forward the image to Hugging Face API
def forward_image_to_huggingface(image: Image):
if image.mode != "RGB":
image = image.convert("RGB")
# Resize image for faster processing
image = image.resize((640, 640))
# Convert image to bytes for API request
img_byte_arr = io.BytesIO()
image.save(img_byte_arr, format='JPEG')
img_byte_arr = img_byte_arr.getvalue()
# Create the payload to send to Hugging Face (it expects a file)
files = {'file': ('image.jpg', img_byte_arr, 'image/jpeg')}
# Make the POST request to Hugging Face Space
response = requests.post(HUGGING_FACE_ENDPOINT, files=files)
return response
# Inference function to generate captions dynamically based on image content
def generate_captions_from_image(image):
inputs = processor(image, return_tensors="pt").to(device, torch.float16)
output = model.generate(**inputs, max_new_tokens=50)
caption = processor.decode(output[0], skip_special_tokens=True)
return caption
# Function to save DPR text to a PDF file
def save_dpr_to_pdf(dpr_text, image_paths, captions, filename):
try:
# Create a PDF document
doc = SimpleDocTemplate(filename, pagesize=letter)
styles = getSampleStyleSheet()
# Define custom styles
title_style = ParagraphStyle(
name='Title',
fontSize=16,
leading=20,
alignment=1, # Center
spaceAfter=20,
textColor=colors.black,
fontName='Helvetica-Bold'
)
body_style = ParagraphStyle(
name='Body',
fontSize=12,
leading=14,
spaceAfter=10,
textColor=colors.black,
fontName='Helvetica'
)
# Build the PDF content
flowables = []
# Add title
flowables.append(Paragraph("Daily Progress Report", title_style))
# Split DPR text into lines and add as paragraphs (excluding descriptions for images)
for line in dpr_text.split('\n'):
# Replace problematic characters for PDF
line = line.replace('\u2019', "'").replace('\u2018', "'")
if line.strip():
flowables.append(Paragraph(line, body_style))
else:
flowables.append(Spacer(1, 12))
# Add images and captions in the correct order (no need to add description to dpr_text again)
for img_path, caption in zip(image_paths, captions):
try:
# Add image first
img = PDFImage(img_path, width=200, height=150) # Adjust image size if needed
flowables.append(img)
# Add description below the image
description = f"Description: {caption}"
flowables.append(Paragraph(description, body_style))
flowables.append(Spacer(1, 12)) # Add some space between images
except Exception as e:
flowables.append(Paragraph(f"Error loading image: {str(e)}", body_style))
# Build the PDF
doc.build(flowables)
return f"PDF saved successfully as {filename}", filename
except Exception as e:
return f"Error saving PDF: {str(e)}", None
# Gradio interface for uploading multiple files, displaying DPR, and downloading PDF
iface = gr.Interface(
fn=generate_dpr,
inputs=gr.Files(type="filepath", label="Upload Site Photos"),
outputs=[
gr.Textbox(label="Daily Progress Report"),
gr.File(label="Download PDF")
],
title="Daily Progress Report Generator",
description="Upload up to 10 site photos. The AI model will generate a text-based Daily Progress Report (DPR), save it as a PDF, and upload the PDF and images to Salesforce under Daily_Progress_Reports__c in the Files related list. Download the PDF locally if needed.",
allow_flagging="never"
)
if __name__ == "__main__":
iface.launch()
|