File size: 17,565 Bytes
d15523e 4f5ca28 30d2275 781132f 86ef0ef 4f5ca28 0174b5b dcceddd 4f5ca28 9536dc3 4f5ca28 b67aac7 7dd7b62 4f5ca28 425a4ef c601a4c dcceddd 4f5ca28 b67aac7 4f5ca28 0a661ec 9536dc3 fbb556e a3f8ecb fbb556e a3f8ecb 2dd2ae5 a3f8ecb fbb556e 2dd2ae5 c601a4c 592f75d c601a4c 2dd2ae5 fbb556e 2dd2ae5 fbb556e d13852b fbb556e d13852b fbb556e d13852b fbb556e d44dbc0 00c86de 2dd2ae5 86ef0ef 2dd2ae5 200b5c1 2dd2ae5 86ef0ef d44dbc0 9536dc3 30d2275 9a3d99f 31cab2b 9a3d99f 7dd7b62 31cab2b 30d2275 dcceddd 9a3d99f 30d2275 9a3d99f 30d2275 8a2b98c d1aff91 a3f8ecb 7dd7b62 d1aff91 9536dc3 d1aff91 9536dc3 7dd7b62 d1aff91 9536dc3 8a2b98c d1aff91 9536dc3 d1aff91 d1aee89 d1aff91 9536dc3 7dd7b62 d1aff91 9536dc3 d1aff91 9536dc3 d1aff91 84ce222 d1aff91 84ce222 d1aff91 9536dc3 d1aff91 9536dc3 d1aff91 d1aee89 9536dc3 d1aff91 9536dc3 9beb383 9536dc3 d13852b 9536dc3 84ce222 9536dc3 f8271ac d13852b b1f0abc d13852b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
from typing import Any, Dict, List, Optional, Tuple
import torch
import torch.nn.functional as F
from einops import rearrange
from torch import Tensor, nn
from torch.nn.common_types import _size_2_t
from yolo.utils.logger import logger
from yolo.utils.module_utils import auto_pad, create_activation_function, round_up
# ----------- Basic Class ----------- #
class Conv(nn.Module):
"""A basic convolutional block that includes convolution, batch normalization, and activation."""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: _size_2_t,
*,
activation: Optional[str] = "SiLU",
**kwargs,
):
super().__init__()
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, bias=False, **kwargs)
self.bn = nn.BatchNorm2d(out_channels, eps=1e-3, momentum=3e-2)
self.act = create_activation_function(activation)
def forward(self, x: Tensor) -> Tensor:
return self.act(self.bn(self.conv(x)))
class Pool(nn.Module):
"""A generic pooling block supporting 'max' and 'avg' pooling methods."""
def __init__(self, method: str = "max", kernel_size: _size_2_t = 2, **kwargs):
super().__init__()
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
pool_classes = {"max": nn.MaxPool2d, "avg": nn.AvgPool2d}
self.pool = pool_classes[method.lower()](kernel_size=kernel_size, **kwargs)
def forward(self, x: Tensor) -> Tensor:
return self.pool(x)
class Concat(nn.Module):
def __init__(self, dim=1):
super(Concat, self).__init__()
self.dim = dim
def forward(self, x):
return torch.cat(x, self.dim)
# ----------- Detection Class ----------- #
class Detection(nn.Module):
"""A single YOLO Detection head for detection models"""
def __init__(self, in_channels: Tuple[int], num_classes: int, *, reg_max: int = 16, use_group: bool = True):
super().__init__()
groups = 4 if use_group else 1
anchor_channels = 4 * reg_max
first_neck, in_channels = in_channels
anchor_neck = max(round_up(first_neck // 4, groups), anchor_channels, reg_max)
class_neck = max(first_neck, min(num_classes * 2, 128))
self.anchor_conv = nn.Sequential(
Conv(in_channels, anchor_neck, 3),
Conv(anchor_neck, anchor_neck, 3, groups=groups),
nn.Conv2d(anchor_neck, anchor_channels, 1, groups=groups),
)
self.class_conv = nn.Sequential(
Conv(in_channels, class_neck, 3), Conv(class_neck, class_neck, 3), nn.Conv2d(class_neck, num_classes, 1)
)
self.anc2vec = Anchor2Vec(reg_max=reg_max)
self.anchor_conv[-1].bias.data.fill_(1.0)
self.class_conv[-1].bias.data.fill_(-10) # TODO: math.log(5 * 4 ** idx / 80 ** 3)
def forward(self, x: Tensor) -> Tuple[Tensor]:
anchor_x = self.anchor_conv(x)
class_x = self.class_conv(x)
anchor_x, vector_x = self.anc2vec(anchor_x)
return class_x, anchor_x, vector_x
class IDetection(nn.Module):
def __init__(self, in_channels: Tuple[int], num_classes: int, *args, anchor_num: int = 3, **kwargs):
super().__init__()
if isinstance(in_channels, tuple):
in_channels = in_channels[1]
out_channel = num_classes + 5
out_channels = out_channel * anchor_num
self.head_conv = nn.Conv2d(in_channels, out_channels, 1)
self.implicit_a = ImplicitA(in_channels)
self.implicit_m = ImplicitM(out_channels)
def forward(self, x):
x = self.implicit_a(x)
x = self.head_conv(x)
x = self.implicit_m(x)
return x
class MultiheadDetection(nn.Module):
"""Mutlihead Detection module for Dual detect or Triple detect"""
def __init__(self, in_channels: List[int], num_classes: int, **head_kwargs):
super().__init__()
DetectionHead = Detection
if head_kwargs.pop("version", None) == "v7":
DetectionHead = IDetection
self.heads = nn.ModuleList(
[DetectionHead((in_channels[0], in_channel), num_classes, **head_kwargs) for in_channel in in_channels]
)
def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
return [head(x) for x, head in zip(x_list, self.heads)]
# ----------- Segmentation Class ----------- #
class Segmentation(nn.Module):
def __init__(self, in_channels: Tuple[int], num_maskes: int):
super().__init__()
first_neck, in_channels = in_channels
mask_neck = max(first_neck // 4, num_maskes)
self.mask_conv = nn.Sequential(
Conv(in_channels, mask_neck, 3), Conv(mask_neck, mask_neck, 3), nn.Conv2d(mask_neck, num_maskes, 1)
)
def forward(self, x: Tensor) -> Tuple[Tensor]:
x = self.mask_conv(x)
return x
class MultiheadSegmentation(nn.Module):
"""Mutlihead Segmentation module for Dual segment or Triple segment"""
def __init__(self, in_channels: List[int], num_classes: int, num_maskes: int, **head_kwargs):
super().__init__()
mask_channels, proto_channels = in_channels[:-1], in_channels[-1]
self.detect = MultiheadDetection(mask_channels, num_classes, **head_kwargs)
self.heads = nn.ModuleList(
[Segmentation((in_channels[0], in_channel), num_maskes) for in_channel in mask_channels]
)
self.heads.append(Conv(proto_channels, num_maskes, 1))
def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
return [head(x) for x, head in zip(x_list, self.heads)]
class Anchor2Vec(nn.Module):
def __init__(self, reg_max: int = 16) -> None:
super().__init__()
reverse_reg = torch.arange(reg_max, dtype=torch.float32).view(1, reg_max, 1, 1, 1)
self.anc2vec = nn.Conv3d(in_channels=reg_max, out_channels=1, kernel_size=1, bias=False)
self.anc2vec.weight = nn.Parameter(reverse_reg, requires_grad=False)
def forward(self, anchor_x: Tensor) -> Tensor:
anchor_x = rearrange(anchor_x, "B (P R) h w -> B R P h w", P=4)
vector_x = anchor_x.softmax(dim=1)
vector_x = self.anc2vec(vector_x)[:, 0]
return anchor_x, vector_x
# ----------- Classification Class ----------- #
class Classification(nn.Module):
def __init__(self, in_channel: int, num_classes: int, *, neck_channels=1024, **head_args):
super().__init__()
self.conv = Conv(in_channel, neck_channels, 1)
self.pool = nn.AdaptiveAvgPool2d(1)
self.head = nn.Linear(neck_channels, num_classes)
def forward(self, x: Tensor) -> Tuple[Tensor]:
x = self.pool(self.conv(x))
x = self.head(x.flatten(start_dim=1))
return x
# ----------- Backbone Class ----------- #
class RepConv(nn.Module):
"""A convolutional block that combines two convolution layers (kernel and point-wise)."""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: _size_2_t = 3,
*,
activation: Optional[str] = "SiLU",
**kwargs,
):
super().__init__()
self.act = create_activation_function(activation)
self.conv1 = Conv(in_channels, out_channels, kernel_size, activation=False, **kwargs)
self.conv2 = Conv(in_channels, out_channels, 1, activation=False, **kwargs)
def forward(self, x: Tensor) -> Tensor:
return self.act(self.conv1(x) + self.conv2(x))
class Bottleneck(nn.Module):
"""A bottleneck block with optional residual connections."""
def __init__(
self,
in_channels: int,
out_channels: int,
*,
kernel_size: Tuple[int, int] = (3, 3),
residual: bool = True,
expand: float = 1.0,
**kwargs,
):
super().__init__()
neck_channels = int(out_channels * expand)
self.conv1 = RepConv(in_channels, neck_channels, kernel_size[0], **kwargs)
self.conv2 = Conv(neck_channels, out_channels, kernel_size[1], **kwargs)
self.residual = residual
if residual and (in_channels != out_channels):
self.residual = False
logger.warning(
"Residual connection disabled: in_channels ({}) != out_channels ({})", in_channels, out_channels
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
y = self.conv2(self.conv1(x))
return x + y if self.residual else y
class RepNCSP(nn.Module):
"""RepNCSP block with convolutions, split, and bottleneck processing."""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int = 1,
*,
csp_expand: float = 0.5,
repeat_num: int = 1,
neck_args: Dict[str, Any] = {},
**kwargs,
):
super().__init__()
neck_channels = int(out_channels * csp_expand)
self.conv1 = Conv(in_channels, neck_channels, kernel_size, **kwargs)
self.conv2 = Conv(in_channels, neck_channels, kernel_size, **kwargs)
self.conv3 = Conv(2 * neck_channels, out_channels, kernel_size, **kwargs)
self.bottleneck = nn.Sequential(
*[Bottleneck(neck_channels, neck_channels, **neck_args) for _ in range(repeat_num)]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1 = self.bottleneck(self.conv1(x))
x2 = self.conv2(x)
return self.conv3(torch.cat((x1, x2), dim=1))
class ELAN(nn.Module):
"""ELAN structure."""
def __init__(
self,
in_channels: int,
out_channels: int,
part_channels: int,
*,
process_channels: Optional[int] = None,
**kwargs,
):
super().__init__()
if process_channels is None:
process_channels = part_channels // 2
self.conv1 = Conv(in_channels, part_channels, 1, **kwargs)
self.conv2 = Conv(part_channels // 2, process_channels, 3, padding=1, **kwargs)
self.conv3 = Conv(process_channels, process_channels, 3, padding=1, **kwargs)
self.conv4 = Conv(part_channels + 2 * process_channels, out_channels, 1, **kwargs)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1, x2 = self.conv1(x).chunk(2, 1)
x3 = self.conv2(x2)
x4 = self.conv3(x3)
x5 = self.conv4(torch.cat([x1, x2, x3, x4], dim=1))
return x5
class RepNCSPELAN(nn.Module):
"""RepNCSPELAN block combining RepNCSP blocks with ELAN structure."""
def __init__(
self,
in_channels: int,
out_channels: int,
part_channels: int,
*,
process_channels: Optional[int] = None,
csp_args: Dict[str, Any] = {},
csp_neck_args: Dict[str, Any] = {},
**kwargs,
):
super().__init__()
if process_channels is None:
process_channels = part_channels // 2
self.conv1 = Conv(in_channels, part_channels, 1, **kwargs)
self.conv2 = nn.Sequential(
RepNCSP(part_channels // 2, process_channels, neck_args=csp_neck_args, **csp_args),
Conv(process_channels, process_channels, 3, padding=1, **kwargs),
)
self.conv3 = nn.Sequential(
RepNCSP(process_channels, process_channels, neck_args=csp_neck_args, **csp_args),
Conv(process_channels, process_channels, 3, padding=1, **kwargs),
)
self.conv4 = Conv(part_channels + 2 * process_channels, out_channels, 1, **kwargs)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x1, x2 = self.conv1(x).chunk(2, 1)
x3 = self.conv2(x2)
x4 = self.conv3(x3)
x5 = self.conv4(torch.cat([x1, x2, x3, x4], dim=1))
return x5
class AConv(nn.Module):
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
mid_layer = {"kernel_size": 3, "stride": 2}
self.avg_pool = Pool("avg", kernel_size=2, stride=1)
self.conv = Conv(in_channels, out_channels, **mid_layer)
def forward(self, x: Tensor) -> Tensor:
x = self.avg_pool(x)
x = self.conv(x)
return x
class ADown(nn.Module):
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
half_in_channels = in_channels // 2
half_out_channels = out_channels // 2
mid_layer = {"kernel_size": 3, "stride": 2}
self.avg_pool = Pool("avg", kernel_size=2, stride=1)
self.conv1 = Conv(half_in_channels, half_out_channels, **mid_layer)
self.max_pool = Pool("max", **mid_layer)
self.conv2 = Conv(half_in_channels, half_out_channels, kernel_size=1)
def forward(self, x: Tensor) -> Tensor:
x = self.avg_pool(x)
x1, x2 = x.chunk(2, dim=1)
x1 = self.conv1(x1)
x2 = self.max_pool(x2)
x2 = self.conv2(x2)
return torch.cat((x1, x2), dim=1)
class CBLinear(nn.Module):
"""Convolutional block that outputs multiple feature maps split along the channel dimension."""
def __init__(self, in_channels: int, out_channels: List[int], kernel_size: int = 1, **kwargs):
super(CBLinear, self).__init__()
kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs))
self.conv = nn.Conv2d(in_channels, sum(out_channels), kernel_size, **kwargs)
self.out_channels = list(out_channels)
def forward(self, x: Tensor) -> Tuple[Tensor]:
x = self.conv(x)
return x.split(self.out_channels, dim=1)
class SPPCSPConv(nn.Module):
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
def __init__(self, in_channels: int, out_channels: int, expand: float = 0.5, kernel_sizes: Tuple[int] = (5, 9, 13)):
super().__init__()
neck_channels = int(2 * out_channels * expand)
self.pre_conv = nn.Sequential(
Conv(in_channels, neck_channels, 1),
Conv(neck_channels, neck_channels, 3),
Conv(neck_channels, neck_channels, 1),
)
self.short_conv = Conv(in_channels, neck_channels, 1)
self.pools = nn.ModuleList([Pool(kernel_size=kernel_size, stride=1) for kernel_size in kernel_sizes])
self.post_conv = nn.Sequential(Conv(4 * neck_channels, neck_channels, 1), Conv(neck_channels, neck_channels, 3))
self.merge_conv = Conv(2 * neck_channels, out_channels, 1)
def forward(self, x):
features = [self.pre_conv(x)]
for pool in self.pools:
features.append(pool(features[-1]))
features = torch.cat(features, dim=1)
y1 = self.post_conv(features)
y2 = self.short_conv(x)
y = torch.cat((y1, y2), dim=1)
return self.merge_conv(y)
class SPPELAN(nn.Module):
"""SPPELAN module comprising multiple pooling and convolution layers."""
def __init__(self, in_channels: int, out_channels: int, neck_channels: Optional[int] = None):
super(SPPELAN, self).__init__()
neck_channels = neck_channels or out_channels // 2
self.conv1 = Conv(in_channels, neck_channels, kernel_size=1)
self.pools = nn.ModuleList([Pool("max", 5, stride=1) for _ in range(3)])
self.conv5 = Conv(4 * neck_channels, out_channels, kernel_size=1)
def forward(self, x: Tensor) -> Tensor:
features = [self.conv1(x)]
for pool in self.pools:
features.append(pool(features[-1]))
return self.conv5(torch.cat(features, dim=1))
class UpSample(nn.Module):
def __init__(self, **kwargs):
super().__init__()
self.UpSample = nn.Upsample(**kwargs)
def forward(self, x):
return self.UpSample(x)
class CBFuse(nn.Module):
def __init__(self, index: List[int], mode: str = "nearest"):
super().__init__()
self.idx = index
self.mode = mode
def forward(self, x_list: List[torch.Tensor]) -> List[Tensor]:
target = x_list[-1]
target_size = target.shape[2:] # Batch, Channel, H, W
res = [F.interpolate(x[pick_id], size=target_size, mode=self.mode) for pick_id, x in zip(self.idx, x_list)]
out = torch.stack(res + [target]).sum(dim=0)
return out
class ImplicitA(nn.Module):
"""
Implement YOLOR - implicit knowledge(Add), paper: https://arxiv.org/abs/2105.04206
"""
def __init__(self, channel: int, mean: float = 0.0, std: float = 0.02):
super().__init__()
self.channel = channel
self.mean = mean
self.std = std
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.implicit + x
class ImplicitM(nn.Module):
"""
Implement YOLOR - implicit knowledge(multiply), paper: https://arxiv.org/abs/2105.04206
"""
def __init__(self, channel: int, mean: float = 1.0, std: float = 0.02):
super().__init__()
self.channel = channel
self.mean = mean
self.std = std
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.implicit * x
|