File size: 24,447 Bytes
5263bd3
 
 
f1d4be6
5263bd3
4a7c026
910c6c2
6be7ede
de0719b
e9f8387
a6886ca
962ae70
de0719b
962ae70
 
5263bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0719b
5263bd3
 
b5edb58
962ae70
de0719b
962ae70
 
de0719b
 
870813f
 
 
 
f1d4be6
870813f
 
 
 
 
 
 
 
 
de0719b
870813f
 
 
 
a6886ca
de0719b
a6886ca
 
 
 
 
 
de0719b
a6886ca
de0719b
a6886ca
 
455bf4d
a6886ca
de0719b
6be7ede
962ae70
de0719b
962ae70
 
de0719b
 
 
 
 
f1d4be6
 
ef80028
7e92f7c
0d6258f
ef80028
 
7e92f7c
ef80028
de0719b
962ae70
7e92f7c
 
455bf4d
de0719b
7e92f7c
455bf4d
ef80028
a6886ca
de0719b
 
 
 
 
962ae70
 
 
 
 
 
 
 
 
 
de0719b
 
 
 
962ae70
 
de0719b
962ae70
 
de0719b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552aec4
 
de0719b
d76e76a
 
de0719b
 
 
 
 
 
 
 
 
 
455bf4d
 
 
de0719b
455bf4d
de0719b
 
 
 
 
 
 
 
2e254a9
de0719b
 
2e254a9
de0719b
 
 
 
455bf4d
de0719b
455bf4d
de0719b
2e254a9
 
455bf4d
de0719b
455bf4d
6be7ede
2e254a9
 
 
455bf4d
 
 
2e254a9
455bf4d
 
2e254a9
de0719b
2e254a9
 
455bf4d
6d0235b
962ae70
 
de0719b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d0235b
 
de0719b
 
 
 
 
 
 
 
 
f1d4be6
 
de0719b
 
 
 
 
 
962ae70
82425ee
962ae70
 
455bf4d
 
 
 
 
 
 
 
 
82425ee
de0719b
82425ee
 
de0719b
82425ee
 
 
 
 
 
 
455bf4d
82425ee
 
 
 
455bf4d
 
 
 
82425ee
 
 
 
 
 
455bf4d
 
 
 
 
 
82425ee
 
 
 
 
 
 
 
455bf4d
82425ee
 
 
455bf4d
82425ee
 
 
 
 
455bf4d
82425ee
 
 
 
 
 
 
 
 
 
 
 
 
455bf4d
 
 
 
 
56468ea
de0719b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d0235b
de0719b
 
 
 
 
 
 
d1cde92
455bf4d
d1cde92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de0719b
d1cde92
 
 
 
 
 
455bf4d
d1cde92
 
 
 
 
455bf4d
d1cde92
455bf4d
d1cde92
 
 
 
 
 
 
 
 
455bf4d
d1cde92
 
 
 
455bf4d
d1cde92
 
 
 
455bf4d
d1cde92
 
 
455bf4d
d1cde92
 
 
 
 
 
 
 
 
 
 
 
 
 
455bf4d
d1cde92
 
 
05b9733
 
 
c5accc7
 
 
 
 
05b9733
c5accc7
 
05b9733
c5accc7
 
05b9733
 
c5accc7
 
 
 
 
05b9733
 
 
c5accc7
d1cde92
 
 
 
455bf4d
d1cde92
 
 
82425ee
de0719b
455bf4d
de0719b
 
 
 
 
 
 
 
 
 
d153967
de0719b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455bf4d
de0719b
 
 
 
 
 
455bf4d
de0719b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455bf4d
de0719b
 
ef80028
de0719b
56468ea
de0719b
 
 
56468ea
de0719b
 
 
 
56468ea
de0719b
 
 
 
56468ea
de0719b
 
 
6be7ede
de0719b
 
 
 
 
e9f8387
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82425ee
de0719b
 
 
 
 
 
 
 
 
 
 
 
82425ee
 
 
 
de0719b
0d2d632
723da6d
82425ee
 
 
 
 
 
455bf4d
 
 
 
 
0d6258f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import gradio as gr
import torch
import numpy as np
from itertools import product
import torch.nn as nn
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import io
from PIL import Image
from scipy.interpolate import interp1d

###############################################################################
# 1. MODEL DEFINITION
###############################################################################

class VirusClassifier(nn.Module):
    def __init__(self, input_shape: int):
        super(VirusClassifier, self).__init__()
        self.network = nn.Sequential(
            nn.Linear(input_shape, 64),
            nn.GELU(),
            nn.BatchNorm1d(64),
            nn.Dropout(0.3),
            nn.Linear(64, 32),
            nn.GELU(),
            nn.BatchNorm1d(32),
            nn.Dropout(0.3),
            nn.Linear(32, 32),
            nn.GELU(),
            nn.Linear(32, 2)
        )

    def forward(self, x):
        return self.network(x)

###############################################################################
# 2. FASTA PARSING & K-MER FEATURE ENGINEERING
###############################################################################

def parse_fasta(text):
    """Parse FASTA formatted text into a list of (header, sequence)."""
    sequences = []
    current_header = None
    current_sequence = []
    
    for line in text.strip().split('\n'):
        line = line.strip()
        if not line:
            continue
        if line.startswith('>'):
            if current_header:
                sequences.append((current_header, ''.join(current_sequence)))
            current_header = line[1:]
            current_sequence = []
        else:
            current_sequence.append(line.upper())
    if current_header:
        sequences.append((current_header, ''.join(current_sequence)))
    return sequences

def sequence_to_kmer_vector(sequence: str, k: int = 4) -> np.ndarray:
    """Convert a sequence to a k-mer frequency vector for classification."""
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    vec = np.zeros(len(kmers), dtype=np.float32)
    
    for i in range(len(sequence) - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            vec[kmer_dict[kmer]] += 1

    total_kmers = len(sequence) - k + 1
    if total_kmers > 0:
        vec /= total_kmers

    return vec

###############################################################################
# 3. SHAP-VALUE (ABLATION) CALCULATION
###############################################################################

def calculate_shap_values(model, x_tensor):
    """
    Calculate SHAP values using a simple ablation approach.
    Returns shap_values, prob_human
    """
    model.eval()
    with torch.no_grad():
        baseline_output = model(x_tensor)
        baseline_probs = torch.softmax(baseline_output, dim=1)
        baseline_prob = baseline_probs[0, 1].item()  # Probability of 'human'
        
        shap_values = []
        x_zeroed = x_tensor.clone()
        for i in range(x_tensor.shape[1]):
            original_val = x_zeroed[0, i].item()
            x_zeroed[0, i] = 0.0
            output = model(x_zeroed)
            probs = torch.softmax(output, dim=1)
            prob = probs[0, 1].item()
            impact = baseline_prob - prob
            shap_values.append(impact)
            x_zeroed[0, i] = original_val
    return np.array(shap_values), baseline_prob

###############################################################################
# 4. PER-BASE SHAP AGGREGATION
###############################################################################

def compute_positionwise_scores(sequence, shap_values, k=4):
    kmers = [''.join(p) for p in product("ACGT", repeat=k)]
    kmer_dict = {km: i for i, km in enumerate(kmers)}
    
    seq_len = len(sequence)
    shap_sums = np.zeros(seq_len, dtype=np.float32)
    coverage = np.zeros(seq_len, dtype=np.float32)
    
    for i in range(seq_len - k + 1):
        kmer = sequence[i:i+k]
        if kmer in kmer_dict:
            val = shap_values[kmer_dict[kmer]]
            shap_sums[i : i + k] += val
            coverage[i : i + k] += 1

    with np.errstate(divide='ignore', invalid='ignore'):
        shap_means = np.where(coverage > 0, shap_sums / coverage, 0.0)
        
    return shap_means

###############################################################################
# 5. FIND EXTREME SHAP REGIONS
###############################################################################

def find_extreme_subregion(shap_means, window_size=500, mode="max"):
    n = len(shap_means)
    if n == 0:
        return (0, 0, 0.0)
    if window_size >= n:
        avg_val = float(np.mean(shap_means))
        return (0, n, avg_val)
    
    csum = np.zeros(n + 1, dtype=np.float32)
    csum[1:] = np.cumsum(shap_means)

    best_start = 0
    best_sum = csum[window_size] - csum[0]
    best_avg = best_sum / window_size
    
    for start in range(1, n - window_size + 1):
        wsum = csum[start + window_size] - csum[start]
        wavg = wsum / window_size
        if mode == "max":
            if wavg > best_avg:
                best_avg = wavg
                best_start = start
        else:  # mode == "min"
            if wavg < best_avg:
                best_avg = wavg
                best_start = start

    return (best_start, best_start + window_size, float(best_avg))

###############################################################################
# 6. PLOTTING / UTILITIES
###############################################################################

def fig_to_image(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png', bbox_inches='tight', dpi=150)
    buf.seek(0)
    img = Image.open(buf)
    plt.close(fig)
    return img

def get_zero_centered_cmap():
    colors = [
        (0.0, 'blue'),
        (0.5, 'white'),
        (1.0, 'red')
    ]
    return mcolors.LinearSegmentedColormap.from_list("blue_white_red", colors)

def plot_linear_heatmap(shap_means, title="Per-base SHAP Heatmap", start=None, end=None):
    if start is not None and end is not None:
        local_shap = shap_means[start:end]
        subtitle = f" (positions {start}-{end})"
    else:
        local_shap = shap_means
        subtitle = ""
        
    if len(local_shap) == 0:
        local_shap = np.array([0.0])
        
    heatmap_data = local_shap.reshape(1, -1)
    min_val = np.min(local_shap)
    max_val = np.max(local_shap)
    extent = max(abs(min_val), abs(max_val))
    cmap = get_zero_centered_cmap()
    
    fig, ax = plt.subplots(figsize=(12, 1.8))
    cax = ax.imshow(
        heatmap_data,
        aspect='auto',
        cmap=cmap,
        vmin=-extent,
        vmax=extent
    )
    cbar = plt.colorbar(
        cax,
        orientation='horizontal',
        pad=0.25,
        aspect=40,
        shrink=0.8
    )
    cbar.ax.tick_params(labelsize=8)
    cbar.set_label('SHAP Contribution', fontsize=9, labelpad=5)
    
    ax.set_yticks([])
    ax.set_xlabel('Position in Sequence', fontsize=10)
    ax.set_title(f"{title}{subtitle}", pad=10)
    plt.subplots_adjust(bottom=0.25, left=0.05, right=0.95)
    
    return fig

def create_importance_bar_plot(shap_values, kmers, top_k=10):
    plt.rcParams.update({'font.size': 10})
    fig = plt.figure(figsize=(10, 5))
    
    indices = np.argsort(np.abs(shap_values))[-top_k:]
    values = shap_values[indices]
    features = [kmers[i] for i in indices]
    
    colors = ['#99ccff' if v < 0 else '#ff9999' for v in values]
    plt.barh(range(len(values)), values, color=colors)
    plt.yticks(range(len(values)), features)
    plt.xlabel('SHAP Value (impact on model output)')
    plt.title(f'Top {top_k} Most Influential k-mers')
    plt.gca().invert_yaxis()
    plt.tight_layout()
    return fig

def plot_shap_histogram(shap_array, title="SHAP Distribution in Region"):
    fig, ax = plt.subplots(figsize=(6, 4))
    ax.hist(shap_array, bins=30, color='gray', edgecolor='black')
    ax.axvline(0, color='red', linestyle='--', label='0.0')
    ax.set_xlabel("SHAP Value")
    ax.set_ylabel("Count")
    ax.set_title(title)
    ax.legend()
    plt.tight_layout()
    return fig

def compute_gc_content(sequence):
    if not sequence:
        return 0
    gc_count = sequence.count('G') + sequence.count('C')
    return (gc_count / len(sequence)) * 100.0

###############################################################################
# 7. SEQUENCE ANALYSIS FUNCTIONS
###############################################################################

# Set up device and load the model once globally
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = VirusClassifier(256)
model.load_state_dict(torch.load("model.pt", map_location=device))
model.to(device)
model.eval()

KMERS_4 = [''.join(p) for p in product("ACGT", repeat=4)]

def analyze_sequence(file_path, top_k=10, fasta_text="", window_size=500):
    """
    Analyze a virus sequence from a FASTA file or text input.
    Returns (results_text, kmer_plot, heatmap_plot, state_dict, header)
    """
    try:
        if file_path:
            with open(file_path, 'r') as f:
                fasta_text = f.read()
        
        if not fasta_text.strip():
            return ("Error: No sequence provided", None, None, {}, "")
        
        sequences = parse_fasta(fasta_text)
        if not sequences:
            return ("Error: No valid FASTA sequences found", None, None, {}, "")
        
        header, sequence = sequences[0]
        
        x = sequence_to_kmer_vector(sequence, k=4)
        x_tensor = torch.tensor(x).float().unsqueeze(0).to(device)
        
        with torch.no_grad():
            output = model(x_tensor)
            probs = torch.softmax(output, dim=1)
            pred_human = probs[0, 1].item()
        
        classification = "Human" if pred_human > 0.5 else "Non-human"
        
        shap_values, baseline_prob = calculate_shap_values(model, x_tensor)
        
        shap_means = compute_positionwise_scores(sequence, shap_values, k=4)
        
        start_max, end_max, avg_max = find_extreme_subregion(shap_means, window_size, mode="max")
        start_min, end_min, avg_min = find_extreme_subregion(shap_means, window_size, mode="min")
        
        results = (
            f"Classification: {classification} "
            f"(probability of human = {pred_human:.3f})\n\n"
            f"Sequence length: {len(sequence):,} bases\n"
            f"Overall GC content: {compute_gc_content(sequence):.1f}%\n\n"
            f"Most human-like {window_size} bp region:\n"
            f"Position {start_max:,} to {end_max:,}\n"
            f"Average SHAP: {avg_max:.4f}\n"
            f"GC content: {compute_gc_content(sequence[start_max:end_max]):.1f}%\n\n"
            f"Least human-like {window_size} bp region:\n"
            f"Position {start_min:,} to {end_min:,}\n"
            f"Average SHAP: {avg_min:.4f}\n"
            f"GC content: {compute_gc_content(sequence[start_min:end_min]):.1f}%"
        )
        
        kmer_fig = create_importance_bar_plot(shap_values, KMERS_4, top_k=top_k)
        kmer_img = fig_to_image(kmer_fig)
        
        heatmap_fig = plot_linear_heatmap(shap_means)
        heatmap_img = fig_to_image(heatmap_fig)
        
        state = {
            "seq": sequence,
            "shap_means": shap_means
        }
        
        return results, kmer_img, heatmap_img, state, header
        
    except Exception as e:
        return (f"Error analyzing sequence: {str(e)}", None, None, {}, "")

###############################################################################
# 8. SUBREGION ANALYSIS FUNCTION
###############################################################################

def analyze_subregion(state, header, region_start, region_end):
    if not state or "seq" not in state or "shap_means" not in state:
        return ("No sequence data found. Please run Step 1 first.", None, None)
    
    seq = state["seq"]
    shap_means = state["shap_means"]

    region_start = int(region_start)
    region_end = int(region_end)

    region_start = max(0, min(region_start, len(seq)))
    region_end = max(0, min(region_end, len(seq)))
    if region_end <= region_start:
        return ("Invalid region range. End must be > Start.", None, None)

    region_seq = seq[region_start:region_end]
    region_shap = shap_means[region_start:region_end]

    gc_percent = compute_gc_content(region_seq)
    avg_shap = float(np.mean(region_shap))

    positive_fraction = np.mean(region_shap > 0)
    negative_fraction = np.mean(region_shap < 0)

    if avg_shap > 0.05:
        region_classification = "Likely pushing toward human"
    elif avg_shap < -0.05:
        region_classification = "Likely pushing toward non-human"
    else:
        region_classification = "Near neutral (no strong push)"

    region_info = (
        f"Analyzing subregion of {header} from {region_start} to {region_end}\n"
        f"Region length: {len(region_seq)} bases\n"
        f"GC content: {gc_percent:.2f}%\n"
        f"Average SHAP in region: {avg_shap:.4f}\n"
        f"Fraction with SHAP > 0 (toward human): {positive_fraction:.2f}\n"
        f"Fraction with SHAP < 0 (toward non-human): {negative_fraction:.2f}\n"
        f"Subregion interpretation: {region_classification}\n"
    )

    heatmap_fig = plot_linear_heatmap(
        shap_means, 
        title="Subregion SHAP", 
        start=region_start, 
        end=region_end
    )
    heatmap_img = fig_to_image(heatmap_fig)

    hist_fig = plot_shap_histogram(region_shap, title="SHAP Distribution in Subregion")
    hist_img = fig_to_image(hist_fig)

    return (region_info, heatmap_img, hist_img)

###############################################################################
# 9. COMPARISON ANALYSIS FUNCTIONS
###############################################################################

def normalize_shap_lengths(shap1, shap2, num_points=1000):
    x1 = np.linspace(0, 1, len(shap1))
    x2 = np.linspace(0, 1, len(shap2))
    
    f1 = interp1d(x1, shap1, kind='linear')
    f2 = interp1d(x2, shap2, kind='linear')
    
    x_new = np.linspace(0, 1, num_points)
    
    shap1_norm = f1(x_new)
    shap2_norm = f2(x_new)
    
    return shap1_norm, shap2_norm

def compute_shap_difference(shap1_norm, shap2_norm):
    return shap2_norm - shap1_norm

def plot_comparative_heatmap(shap_diff, title="SHAP Difference Heatmap"):
    heatmap_data = shap_diff.reshape(1, -1)
    extent = max(abs(np.min(shap_diff)), abs(np.max(shap_diff)))
    cmap = get_zero_centered_cmap()
    
    fig, ax = plt.subplots(figsize=(12, 1.8))
    cax = ax.imshow(
        heatmap_data,
        aspect='auto',
        cmap=cmap,
        vmin=-extent,
        vmax=extent
    )
    cbar = plt.colorbar(
        cax,
        orientation='horizontal',
        pad=0.25,
        aspect=40,
        shrink=0.8
    )
    cbar.ax.tick_params(labelsize=8)
    cbar.set_label('SHAP Difference (Seq2 - Seq1)', fontsize=9, labelpad=5)
    
    ax.set_yticks([])
    ax.set_xlabel('Normalized Position (0-100%)', fontsize=10)
    ax.set_title(title, pad=10)
    plt.subplots_adjust(bottom=0.25, left=0.05, right=0.95)
    
    return fig

def analyze_sequence_comparison(file1, file2, fasta1="", fasta2=""):
    results1 = analyze_sequence(file1, top_k=10, fasta_text=fasta1, window_size=500)
    if isinstance(results1[0], str) and "Error" in results1[0]:
        return (f"Error in sequence 1: {results1[0]}", None, None)
    
    results2 = analyze_sequence(file2, top_k=10, fasta_text=fasta2, window_size=500)
    if isinstance(results2[0], str) and "Error" in results2[0]:
        return (f"Error in sequence 2: {results2[0]}", None, None)
    
    shap1 = results1[3]["shap_means"]
    shap2 = results2[3]["shap_means"]
    
    shap1_norm, shap2_norm = normalize_shap_lengths(shap1, shap2)
    shap_diff = compute_shap_difference(shap1_norm, shap2_norm)
    
    avg_diff = np.mean(shap_diff)
    std_diff = np.std(shap_diff)
    max_diff = np.max(shap_diff)
    min_diff = np.min(shap_diff)
    
    threshold = 0.05
    substantial_diffs = np.abs(shap_diff) > threshold
    frac_different = np.mean(substantial_diffs)
    
    classification1 = results1[0].split('Classification: ')[1].split('\n')[0].strip()
    classification2 = results2[0].split('Classification: ')[1].split('\n')[0].strip()
    
    len1_formatted = "{:,}".format(len(shap1))
    len2_formatted = "{:,}".format(len(shap2))
    frac_formatted = "{:.2%}".format(frac_different)
    
    comparison_text = (
        "Sequence Comparison Results:\n"
        f"Sequence 1: {results1[4]}\n"
        f"Length: {len1_formatted} bases\n"
        f"Classification: {classification1}\n\n"
        f"Sequence 2: {results2[4]}\n"
        f"Length: {len2_formatted} bases\n"
        f"Classification: {classification2}\n\n"
        "Comparison Statistics:\n"
        f"Average SHAP difference: {avg_diff:.4f}\n"
        f"Standard deviation: {std_diff:.4f}\n"
        f"Max difference: {max_diff:.4f} (Seq2 more human-like)\n"
        f"Min difference: {min_diff:.4f} (Seq1 more human-like)\n"
        f"Fraction of positions with substantial differences: {frac_formatted}\n\n"
        "Interpretation:\n"
        "Positive values (red) indicate regions where Sequence 2 is more 'human-like'\n"
        "Negative values (blue) indicate regions where Sequence 1 is more 'human-like'"
    )
    
    heatmap_fig = plot_comparative_heatmap(shap_diff)
    heatmap_img = fig_to_image(heatmap_fig)
    
    hist_fig = plot_shap_histogram(shap_diff, title="Distribution of SHAP Differences")
    hist_img = fig_to_image(hist_fig)
    
    return comparison_text, heatmap_img, hist_img

###############################################################################
# 10. BUILD GRADIO INTERFACE
###############################################################################

css = """
.gradio-container {
    font-family: 'IBM Plex Sans', sans-serif;
}
"""

with gr.Blocks(css=css) as iface:
    gr.Markdown("""
    # Virus Host Classifier
    **Step 1**: Predict overall viral sequence origin (human vs non-human) and identify extreme regions.  
    **Step 2**: Explore subregions to see local SHAP signals, distribution, GC content, etc.
    
    **Color Scale**: Negative SHAP = Blue, Zero = White, Positive = Red.
    """)
    
    with gr.Tab("1) Full-Sequence Analysis"):
        with gr.Row():
            with gr.Column(scale=1):
                file_input = gr.File(
                    label="Upload FASTA file",
                    file_types=[".fasta", ".fa", ".txt"],
                    type="filepath"
                )
                text_input = gr.Textbox(
                    label="Or paste FASTA sequence",
                    placeholder=">sequence_name\nACGTACGT...",
                    lines=5
                )
                top_k_slider = gr.Slider(
                    minimum=5,
                    maximum=30,
                    value=10,
                    step=1,
                    label="Number of top k-mers to display"
                )
                win_size_slider = gr.Slider(
                    minimum=100,
                    maximum=5000,
                    value=500,
                    step=100,
                    label="Window size for 'most pushing' subregions"
                )
                analyze_btn = gr.Button("Analyze Sequence", variant="primary")
                
            with gr.Column(scale=2):
                results_box = gr.Textbox(
                    label="Classification Results", lines=12, interactive=False
                )
                kmer_img = gr.Image(label="Top k-mer SHAP")
                genome_img = gr.Image(label="Genome-wide SHAP Heatmap (Blue=neg, White=0, Red=pos)")
        
        seq_state = gr.State()
        header_state = gr.State()

        analyze_btn.click(
            analyze_sequence,
            inputs=[file_input, top_k_slider, text_input, win_size_slider],
            outputs=[results_box, kmer_img, genome_img, seq_state, header_state]
        )
    
    with gr.Tab("2) Subregion Exploration"):
        gr.Markdown("""
        **Subregion Analysis**  
        Select start/end positions to view local SHAP signals, distribution, and GC content.  
        The heatmap also uses the same Blue-White-Red scale.  
        """)
        with gr.Row():
            region_start = gr.Number(label="Region Start", value=0)
            region_end = gr.Number(label="Region End", value=500)
            region_btn = gr.Button("Analyze Subregion")
        
        subregion_info = gr.Textbox(
            label="Subregion Analysis",
            lines=7, 
            interactive=False
        )
        with gr.Row():
            subregion_img = gr.Image(label="Subregion SHAP Heatmap (B-W-R)")
            subregion_hist_img = gr.Image(label="SHAP Distribution (Histogram)")
        
        region_btn.click(
            analyze_subregion,
            inputs=[seq_state, header_state, region_start, region_end],
            outputs=[subregion_info, subregion_img, subregion_hist_img]
        )

    with gr.Tab("3) Comparative Analysis"):
        gr.Markdown("""
        **Compare Two Sequences**  
        Upload or paste two FASTA sequences to compare their SHAP patterns.
        The sequences will be normalized to the same length for comparison.
        
        **Color Scale**:  
        - Red: Sequence 2 is more human-like in this region
        - Blue: Sequence 1 is more human-like in this region
        - White: No substantial difference
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                file_input1 = gr.File(
                    label="Upload first FASTA file",
                    file_types=[".fasta", ".fa", ".txt"],
                    type="filepath"
                )
                text_input1 = gr.Textbox(
                    label="Or paste first FASTA sequence",
                    placeholder=">sequence1\nACGTACGT...",
                    lines=5
                )
            
            with gr.Column(scale=1):
                file_input2 = gr.File(
                    label="Upload second FASTA file",
                    file_types=[".fasta", ".fa", ".txt"],
                    type="filepath"
                )
                text_input2 = gr.Textbox(
                    label="Or paste second FASTA sequence",
                    placeholder=">sequence2\nACGTACGT...",
                    lines=5
                )
        
        compare_btn = gr.Button("Compare Sequences", variant="primary")
        
        comparison_text = gr.Textbox(
            label="Comparison Results",
            lines=12,
            interactive=False
        )
        
        with gr.Row():
            diff_heatmap = gr.Image(label="SHAP Difference Heatmap")
            diff_hist = gr.Image(label="Distribution of SHAP Differences")
        
        compare_btn.click(
            analyze_sequence_comparison,
            inputs=[file_input1, file_input2, text_input1, text_input2],
            outputs=[comparison_text, diff_heatmap, diff_hist]
        )   
    
    gr.Markdown("""
    ### Interface Features
    - **Overall Classification** (human vs non-human) using k-mer frequencies.
    - **SHAP Analysis** to see which k-mers push classification toward or away from human.
    - **White-Centered SHAP Gradient**: 
      - Negative (blue), 0 (white), Positive (red), with symmetrical color range around 0. 
    - **Identify Subregions** with the strongest push for human or non-human.
    - **Subregion Exploration**: 
      - Local SHAP heatmap & histogram 
      - GC content 
      - Fraction of positions pushing human vs. non-human 
      - Simple logic-based classification
    - **Sequence Comparison**:
      - Compare two sequences to identify regions of difference
      - Normalized comparison to handle different sequence lengths
      - Statistical summary of differences
    """)

if __name__ == "__main__":
    plt.style.use('default')
    plt.rcParams['figure.figsize'] = [10, 6]
    plt.rcParams['figure.dpi'] = 100
    plt.rcParams['font.size'] = 10
    
    iface.launch(
        share=False,
        server_name="0.0.0.0",
        server_port=7860,
        show_api=False,
        debug=False
    )