Spaces:
Sleeping
Sleeping
File size: 12,076 Bytes
abcb943 b68e73c abcb943 091ef73 b68e73c 091ef73 0367bbe cf0a632 24265ea abcb943 7e4083f 5e39132 7e4083f 5e39132 7e4083f 7625b8c 428bd87 c407d91 5e39132 c407d91 299f9c4 5cee989 7e4083f ab089c7 5ca7f7e 291e330 7e4083f 291e330 7e4083f 3114e9c 7e4083f abcb943 97a08ff 7e4083f abcb943 252f58e ccc2ebe ce3ddc6 e1658f2 ccc2ebe ce3ddc6 c0b5eb8 abcb943 14d8730 ccc2ebe 3ae02f6 ccc2ebe 14d8730 abcb943 091ef73 14d8730 abcb943 ccc2ebe c0b5eb8 abcb943 7e4083f 97a08ff 7e4083f 0367bbe c407d91 bd8f083 a42f45f c407d91 37e7327 c407d91 d54eced ab2cde2 c407d91 fbb9338 c407d91 0367bbe a42f45f dcaaa10 0367bbe c407d91 0367bbe c407d91 0367bbe 3114e9c b734de7 3114e9c b734de7 3114e9c c14957a c407d91 3114e9c c407d91 7e4083f 291e330 7e4083f abcb943 7e4083f cc07c1e 7e4083f abcb943 c407d91 5e39132 2117cb6 adabb71 abcb943 2117cb6 2279bd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# app.py
import gradio as gr
import xgboost as xgb
from xgboost import DMatrix
from huggingface_hub import hf_hub_download
from app_training_df_getter import create_app_user_training_df
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from helper import *
from helper import ChampionConverter
import joblib
# Define champion list for dropdowns
CHAMPIONS = [
"Aatrox", "Ahri", "Akali", "Akshan", "Alistar", "Amumu", "Anivia", "Annie", "Aphelios", "Ashe",
"Aurelion Sol", "Azir", "Bard", "Bel'Veth", "Blitzcrank", "Brand", "Braum", "Caitlyn", "Camille",
"Cassiopeia", "Cho'Gath", "Corki", "Darius", "Diana", "Dr. Mundo", "Draven", "Ekko", "Elise",
"Evelynn", "Ezreal", "Fiddlesticks", "Fiora", "Fizz", "Galio", "Gangplank", "Garen", "Gnar",
"Gragas", "Graves", "Gwen", "Hecarim", "Heimerdinger", "Illaoi", "Irelia", "Ivern", "Janna",
"Jarvan IV", "Jax", "Jayce", "Jhin", "Jinx", "Kai'Sa", "Kalista", "Karma", "Karthus", "Kassadin",
"Katarina", "Kayle", "Kayn", "Kennen", "Kha'Zix", "Kindred", "Kled", "Kog'Maw", "KSante", "LeBlanc",
"Lee Sin", "Leona", "Lillia", "Lissandra", "Lucian", "Lulu", "Lux", "Malphite", "Malzahar", "Maokai",
"Master Yi", "Milio", "Miss Fortune", "Mordekaiser", "Morgana", "Naafiri", "Nami", "Nasus", "Nautilus",
"Neeko", "Nidalee", "Nilah", "Nocturne", "Nunu & Willump", "Olaf", "Orianna", "Ornn", "Pantheon",
"Poppy", "Pyke", "Qiyana", "Quinn", "Rakan", "Rammus", "Rek'Sai", "Rell", "Renata Glasc", "Renekton",
"Rengar", "Riven", "Rumble", "Ryze", "Samira", "Sejuani", "Senna", "Seraphine", "Sett", "Shaco",
"Shen", "Shyvana", "Singed", "Sion", "Sivir", "Skarner", "Sona", "Soraka", "Swain", "Sylas",
"Syndra", "Tahm Kench", "Taliyah", "Talon", "Taric", "Teemo", "Thresh", "Tristana", "Trundle",
"Tryndamere", "Twisted Fate", "Twitch", "Udyr", "Urgot", "Varus", "Vayne", "Veigar", "Vel'Koz",
"Vex", "Vi", "Viego", "Viktor", "Vladimir", "Volibear", "Warwick", "Wukong", "Xayah", "Xerath",
"Xin Zhao", "Yasuo", "Yone", "Yorick", "Yuumi", "Zac", "Zed", "Zeri", "Ziggs", "Zilean", "Zoe", "Zyra"
]
try:
label_encoder = joblib.load('util/label_encoder.joblib')
n_classes = len(label_encoder.classes_)
print("Label encoder loaded successfully")
except Exception as e:
print(f"Error loading label encoder: {e}")
label_encoder = None
# Load model
try:
model_path = hf_hub_download(
repo_id="ivwhy/champion-predictor-model",
filename="champion_predictor.json"
)
# Initialize the model with proper parameters
model = xgb.XGBClassifier(
use_label_encoder=False,
objective='multi:softprob',
num_class=n_classes
)
# Load the model
model._Booster = xgb.Booster()
model._Booster.load_model(model_path)
# Set only n_classes_
model.n_classes_ = n_classes
except Exception as e:
print(f"Error loading model: {e}")
model = None
# Initialize champion name encoder
# champion_encoder = LabelEncoder()
# champion_encoder.fit(CHAMPIONS)
#==================================== Functions =================================================
def get_user_training_df(player_opgg_url):
try:
print("========= Inside get_user_training_df(player_opgg_url) ============= \n")
#print("player_opgg_url: ", player_opgg_url, "\n type(player_opgg_url): ", type(player_opgg_url), "\n")
# Add input validation
if not player_opgg_url or not isinstance(player_opgg_url, str):
return "Invalid URL provided"
training_df = create_app_user_training_df(player_opgg_url)
return training_df
except Exception as e:
# Add more detailed error information
import traceback
error_trace = traceback.format_exc()
print(f"Full error trace:\n{error_trace}")
return f"Error getting training data: {str(e)}"
#return f"Error getting training data: {e}"
def show_stats(player_opgg_url):
"""Display player statistics and recent matches"""
'''
to add: playstyle, role_specialization, champion_loyalty_score, most_champ_1, most_champ_2 ,
'''
if not player_opgg_url:
return "Please enter a player link to OPGG", None
try:
training_features = get_user_training_df(player_opgg_url)
print("training_features: ", training_features, "\n")
if isinstance(training_features, str): # Error message
return training_features, None
wins = training_features['result'].sum()
losses = len(training_features) - wins
winrate = f"{(wins / len(training_features)) * 100:.0f}%"
favorite_champions = (
training_features['champion']
.value_counts()
.head(3)
.index.tolist()
)
# print("training_features['playstyle']: \n", training_features['playstyle'])
# print("training_features['role_specialization]: \n", training_features['role_specialization'])
# print("training_features: \n", training_features[champion])
# Extract additional stats
# playstyle = training_features['playstyle'].mode()[0] if 'playstyle' in training_features else 'N/A'
# print("processed playstyle.\n")
# role_specialization = training_features['role_specialization'].mode()[0] if 'role_specialization' in training_features else 'N/A' # Most common role
# print("processed role_specialization.\n")
#champion_loyalty_score = training_features['champion_loyalty_score'].mean().round(2) if 'champion_loyalty_score' in training_features else 'N/A' # Average loyalty
# print("processed champion_loyalty_score.\n")
# Map numeric playstyle to descriptive text
# playstyle_mapping = {
# 0: "Assassin/Carry",
# 1: "Support/Utility",
# 2: "Tank/Initiator",
# 3: "Split-pusher",
# 4: "Aggressive/Fighter",
# 5: "Undefined"
# }
# role_specialization_map = {
# 0: "Pure Specialist",
# 1: "Strong Dual Role",
# 2: "Primary Role with Backups",
# 3: "Role Swapper",
# 4: "True Flex",
# 5: "Undefined"
# }
stats_html = f"""
<div style='padding: 20px; background: #f5f5f5; border-radius: 10px;'>
<h3>Player's Recent Stats</h3>
<p>Wins: {wins} | Losses: {losses}</p>
<p>Winrate: {winrate}</p>
<p>Favorite Champions: {', '.join(favorite_champions)}</p>
</div>
"""
# <p>Playstyle: {playstyle_mapping.get(playstyle, 'N/A')}</p>
# <p>Role Specialization: {role_specialization_map.get(role_specialization, 'N/A')}</p>
# <p>Champion Loyalty Score: {champion_loyalty_score}</p>
return stats_html, None
except Exception as e:
return f"Error processing stats: {e}. ", None
def predict_top_5_champion_w_confidence(player_opgg_url, *champions):
"""Make prediction based on selected champions"""
print("Selected Champions from Dropdowns:", champions)
if not player_opgg_url or None in champions:
return "Please fill in all fields"
try:
if model is None:
return "Model not loaded properly"
if label_encoder is None:
return "Label encoder not loaded properly"
# Get and process the data
training_df = get_user_training_df(player_opgg_url)
if isinstance(training_df, str):
return training_df
training_df = convert_df(training_df)
print("check_datatypes(training_df) BEFORE feature eng: \n", check_datatypes(training_df), "\n")
training_df = apply_feature_engineering(training_df)
print("check_datatypes(training_df) AFTER feature eng: \n", check_datatypes(training_df), "\n")
label_column = training_df['champion']
predict_column = training_df.drop(columns=['champion', 'region'])
# Mapping dropdown selections to the correct columns
champ_columns = [
'team_champ1', 'team_champ2', 'team_champ3', 'team_champ4',
'opp_champ1', 'opp_champ2', 'opp_champ3', 'opp_champ4', 'opp_champ5'
]
champion_converter = ChampionConverter()
# Update predict_column with user-selected champions
for col, champ_name in zip(champ_columns, champions):
champ_num = champion_converter.champion_to_num(champ_name)
predict_column.at[0, col] = champ_num
proba = model.predict_proba(predict_column)
# Get top 5 indices and probabilities
top_5_idx = np.argsort(proba, axis=1)[:, -5:][:, ::-1]
top_5_proba = np.take_along_axis(proba, top_5_idx, axis=1)
# Initialize results DataFrame
results = pd.DataFrame()
champion_converter = ChampionConverter()
# Add true champion - convert numeric label to champion name
true_numbers = label_column
results['True_Champion'] = [champion_converter.num_to_champion(int(num)) for num in true_numbers]
# Process each rank separately
for i in range(5):
# Convert indices to champion names using the champion converter
champions = [champion_converter.num_to_champion(int(label_encoder.classes_[idx])) for idx in top_5_idx[:, i]]
probabilities = top_5_proba[:, i]
# Add to results
results[f'Rank_{i+1}_Champion'] = champions
results[f'Rank_{i+1}_Confidence'] = probabilities.round(4)
try:
def find_champion_rank(row):
true_champ = row['True_Champion']
for i in range(1, 6):
if row[f'Rank_{i}_Champion'] == true_champ:
return f'Rank_{i}'
return 'Not in Top 5'
results['Prediction_Rank'] = results.apply(find_champion_rank, axis=1)
# Select the last row and specific columns
latest_result = results.iloc[-1][["Rank_1_Champion", "Rank_2_Champion", "Rank_3_Champion"]].tolist()
latest_result = results.iloc[-1][["Rank_1_Champion", "Rank_2_Champion", "Rank_3_Champion"]]
clean_output = "\n".join(f"{col}: {val}" for col, val in latest_result.items())
print(clean_output)
return clean_output
except Exception as e:
print(f"Error getting top 5 champions: {e}")
except Exception as e:
import traceback
print(f"Full error trace:\n{traceback.format_exc()}")
return f"Error making prediction: {e}"
# Define your interface
with gr.Blocks() as demo:
gr.Markdown("# League of Legends Champion Prediction")
with gr.Row():
player_opgg_url = gr.Textbox(label="OPGG Player URL")
show_button = gr.Button("Show Player Stats")
with gr.Row():
stats_output = gr.HTML(label="Player Statistics")
recent_matches = gr.HTML(label="Recent Matches")
with gr.Row():
champion_dropdowns = [
gr.Dropdown(choices=CHAMPIONS, label=f"Champion {i+1}")
for i in range(9)
]
with gr.Row():
predict_button = gr.Button("Predict")
prediction_output = gr.Text(label="Prediction")
# Set up event handlers
show_button.click(
fn=show_stats,
inputs=[player_opgg_url],
outputs=[stats_output, recent_matches]
)
predict_button.click(
fn=predict_top_5_champion_w_confidence,
inputs=[player_opgg_url] + champion_dropdowns,
outputs=prediction_output
)
# Optional: Save the champion encoder for future use
#joblib.dump(champion_encoder, 'champion_encoder.joblib')
# Enable queuing
demo.launch(debug=True)
# For local testing
if __name__ == "__main__":
demo.launch() |