File size: 12,076 Bytes
abcb943
 
 
b68e73c
abcb943
 
091ef73
b68e73c
091ef73
0367bbe
 
cf0a632
24265ea
abcb943
7e4083f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e39132
 
 
 
 
 
 
 
7e4083f
 
 
 
 
 
5e39132
 
 
 
 
 
 
 
 
 
 
 
 
 
7e4083f
 
7625b8c
428bd87
c407d91
5e39132
 
c407d91
299f9c4
5cee989
7e4083f
 
ab089c7
5ca7f7e
291e330
 
 
 
 
7e4083f
 
 
291e330
 
 
 
 
 
 
 
7e4083f
 
 
3114e9c
 
 
 
 
 
7e4083f
 
 
 
abcb943
97a08ff
 
7e4083f
 
 
abcb943
 
 
 
 
 
 
 
 
 
252f58e
ccc2ebe
 
 
ce3ddc6
e1658f2
 
ccc2ebe
 
 
 
ce3ddc6
c0b5eb8
abcb943
14d8730
ccc2ebe
 
 
 
 
 
 
 
3ae02f6
ccc2ebe
 
 
 
 
 
 
 
14d8730
abcb943
 
091ef73
14d8730
 
 
abcb943
 
ccc2ebe
 
c0b5eb8
abcb943
7e4083f
 
97a08ff
7e4083f
0367bbe
c407d91
bd8f083
 
a42f45f
c407d91
 
 
 
 
 
 
 
37e7327
c407d91
 
 
 
 
 
 
 
d54eced
ab2cde2
c407d91
fbb9338
c407d91
0367bbe
 
 
a42f45f
 
 
 
 
 
 
 
 
 
 
 
 
dcaaa10
0367bbe
 
 
 
 
 
 
 
 
c407d91
0367bbe
 
 
 
 
 
 
 
 
 
 
 
 
 
c407d91
0367bbe
 
 
 
 
 
 
 
 
3114e9c
b734de7
3114e9c
b734de7
 
 
3114e9c
c14957a
c407d91
 
3114e9c
c407d91
 
 
 
 
 
7e4083f
 
 
 
 
 
291e330
7e4083f
 
 
 
 
 
 
 
 
 
 
 
 
 
abcb943
7e4083f
 
 
 
 
 
 
 
cc07c1e
7e4083f
 
 
abcb943
c407d91
5e39132
2117cb6
adabb71
abcb943
2117cb6
 
2279bd3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# app.py
import gradio as gr
import xgboost as xgb
from xgboost import DMatrix
from huggingface_hub import hf_hub_download
from app_training_df_getter import create_app_user_training_df
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from helper import *
from helper import ChampionConverter 
import joblib


# Define champion list for dropdowns
CHAMPIONS = [
    "Aatrox", "Ahri", "Akali", "Akshan", "Alistar", "Amumu", "Anivia", "Annie", "Aphelios", "Ashe",
    "Aurelion Sol", "Azir", "Bard", "Bel'Veth", "Blitzcrank", "Brand", "Braum", "Caitlyn", "Camille",
    "Cassiopeia", "Cho'Gath", "Corki", "Darius", "Diana", "Dr. Mundo", "Draven", "Ekko", "Elise",
    "Evelynn", "Ezreal", "Fiddlesticks", "Fiora", "Fizz", "Galio", "Gangplank", "Garen", "Gnar",
    "Gragas", "Graves", "Gwen", "Hecarim", "Heimerdinger", "Illaoi", "Irelia", "Ivern", "Janna",
    "Jarvan IV", "Jax", "Jayce", "Jhin", "Jinx", "Kai'Sa", "Kalista", "Karma", "Karthus", "Kassadin",
    "Katarina", "Kayle", "Kayn", "Kennen", "Kha'Zix", "Kindred", "Kled", "Kog'Maw", "KSante", "LeBlanc",
    "Lee Sin", "Leona", "Lillia", "Lissandra", "Lucian", "Lulu", "Lux", "Malphite", "Malzahar", "Maokai",
    "Master Yi", "Milio", "Miss Fortune", "Mordekaiser", "Morgana", "Naafiri", "Nami", "Nasus", "Nautilus",
    "Neeko", "Nidalee", "Nilah", "Nocturne", "Nunu & Willump", "Olaf", "Orianna", "Ornn", "Pantheon",
    "Poppy", "Pyke", "Qiyana", "Quinn", "Rakan", "Rammus", "Rek'Sai", "Rell", "Renata Glasc", "Renekton",
    "Rengar", "Riven", "Rumble", "Ryze", "Samira", "Sejuani", "Senna", "Seraphine", "Sett", "Shaco",
    "Shen", "Shyvana", "Singed", "Sion", "Sivir", "Skarner", "Sona", "Soraka", "Swain", "Sylas",
    "Syndra", "Tahm Kench", "Taliyah", "Talon", "Taric", "Teemo", "Thresh", "Tristana", "Trundle",
    "Tryndamere", "Twisted Fate", "Twitch", "Udyr", "Urgot", "Varus", "Vayne", "Veigar", "Vel'Koz",
    "Vex", "Vi", "Viego", "Viktor", "Vladimir", "Volibear", "Warwick", "Wukong", "Xayah", "Xerath",
    "Xin Zhao", "Yasuo", "Yone", "Yorick", "Yuumi", "Zac", "Zed", "Zeri", "Ziggs", "Zilean", "Zoe", "Zyra"
]

try:
    label_encoder = joblib.load('util/label_encoder.joblib')
    n_classes = len(label_encoder.classes_)
    print("Label encoder loaded successfully")
except Exception as e:
    print(f"Error loading label encoder: {e}")
    label_encoder = None

# Load model
try:
    model_path = hf_hub_download(
        repo_id="ivwhy/champion-predictor-model",
        filename="champion_predictor.json"
    )

    # Initialize the model with proper parameters
    model = xgb.XGBClassifier(
        use_label_encoder=False,
        objective='multi:softprob',
        num_class=n_classes
    )

    # Load the model
    model._Booster = xgb.Booster()
    model._Booster.load_model(model_path)

    # Set only n_classes_
    model.n_classes_ = n_classes
except Exception as e:
    print(f"Error loading model: {e}")
    model = None 

# Initialize champion name encoder
# champion_encoder = LabelEncoder()
# champion_encoder.fit(CHAMPIONS)


#==================================== Functions =================================================
def get_user_training_df(player_opgg_url):
    try:
        print("========= Inside get_user_training_df(player_opgg_url) ============= \n") 
        #print("player_opgg_url: ", player_opgg_url, "\n type(player_opgg_url): ", type(player_opgg_url), "\n")

        # Add input validation
        if not player_opgg_url or not isinstance(player_opgg_url, str):
            return "Invalid URL provided"

        training_df = create_app_user_training_df(player_opgg_url)
        return training_df
    except Exception as e:

        # Add more detailed error information
        import traceback
        error_trace = traceback.format_exc()
        print(f"Full error trace:\n{error_trace}")
        return f"Error getting training data: {str(e)}"

        #return f"Error getting training data: {e}"

def show_stats(player_opgg_url):
    """Display player statistics and recent matches"""

    '''
    to add: playstyle, role_specialization, champion_loyalty_score, most_champ_1, most_champ_2 ,  
    '''


    if not player_opgg_url:
        return "Please enter a player link to OPGG", None
    
    try:
        training_features = get_user_training_df(player_opgg_url)

        print("training_features: ", training_features, "\n")
        
        if isinstance(training_features, str):  # Error message
            return training_features, None

        wins = training_features['result'].sum()
        losses = len(training_features) - wins
        winrate = f"{(wins / len(training_features)) * 100:.0f}%"
        favorite_champions = (
            training_features['champion']
            .value_counts()
            .head(3)
            .index.tolist()
        )

        # print("training_features['playstyle']: \n", training_features['playstyle'])

        # print("training_features['role_specialization]: \n", training_features['role_specialization'])
        # print("training_features: \n", training_features[champion])
        
        # Extract additional stats
        # playstyle = training_features['playstyle'].mode()[0] if 'playstyle' in training_features else 'N/A'
        # print("processed playstyle.\n")
        # role_specialization = training_features['role_specialization'].mode()[0] if 'role_specialization' in training_features else 'N/A'  # Most common role
        # print("processed role_specialization.\n")
        #champion_loyalty_score = training_features['champion_loyalty_score'].mean().round(2) if 'champion_loyalty_score' in training_features else 'N/A'  # Average loyalty
        # print("processed champion_loyalty_score.\n")

        # Map numeric playstyle to descriptive text
        # playstyle_mapping = {
        #     0: "Assassin/Carry",
        #     1: "Support/Utility",
        #     2: "Tank/Initiator",
        #     3: "Split-pusher",
        #     4: "Aggressive/Fighter",
        #     5: "Undefined"
        # }
        
        # role_specialization_map = {
        #     0: "Pure Specialist",
        #     1: "Strong Dual Role",
        #     2: "Primary Role with Backups",
        #     3: "Role Swapper",
        #     4: "True Flex",
        #     5: "Undefined"
        # }

        stats_html = f"""
        <div style='padding: 20px; background: #f5f5f5; border-radius: 10px;'>
            <h3>Player's Recent Stats</h3>
            <p>Wins: {wins} | Losses: {losses}</p>
            <p>Winrate: {winrate}</p>
            <p>Favorite Champions: {', '.join(favorite_champions)}</p>
        </div>
        """
            # <p>Playstyle: {playstyle_mapping.get(playstyle, 'N/A')}</p>
            # <p>Role Specialization: {role_specialization_map.get(role_specialization, 'N/A')}</p>
            # <p>Champion Loyalty Score: {champion_loyalty_score}</p>
        
        return stats_html, None
    except Exception as e:
        return f"Error processing stats: {e}. ", None

def predict_top_5_champion_w_confidence(player_opgg_url, *champions):
    """Make prediction based on selected champions"""

    print("Selected Champions from Dropdowns:", champions)

    if not player_opgg_url or None in champions:
        return "Please fill in all fields"
    
    try:
        if model is None:
            return "Model not loaded properly"
        
        if label_encoder is None:
            return "Label encoder not loaded properly" 
            
        # Get and process the data
        training_df = get_user_training_df(player_opgg_url)
        
        if isinstance(training_df, str):
            return training_df

        training_df = convert_df(training_df)
        print("check_datatypes(training_df) BEFORE feature eng:  \n", check_datatypes(training_df), "\n")

        training_df = apply_feature_engineering(training_df)
        print("check_datatypes(training_df) AFTER feature eng: \n", check_datatypes(training_df), "\n")
        
        label_column = training_df['champion']
        predict_column = training_df.drop(columns=['champion', 'region'])

        # Mapping dropdown selections to the correct columns
        champ_columns = [
            'team_champ1', 'team_champ2', 'team_champ3', 'team_champ4',
            'opp_champ1', 'opp_champ2', 'opp_champ3', 'opp_champ4', 'opp_champ5'
        ]

        champion_converter = ChampionConverter()

        # Update predict_column with user-selected champions
        for col, champ_name in zip(champ_columns, champions):
            champ_num = champion_converter.champion_to_num(champ_name)
            predict_column.at[0, col] = champ_num

        proba = model.predict_proba(predict_column)

        # Get top 5 indices and probabilities
        top_5_idx = np.argsort(proba, axis=1)[:, -5:][:, ::-1]
        top_5_proba = np.take_along_axis(proba, top_5_idx, axis=1)

        # Initialize results DataFrame
        results = pd.DataFrame()

        champion_converter = ChampionConverter()
        
        # Add true champion - convert numeric label to champion name
        true_numbers = label_column
        results['True_Champion'] = [champion_converter.num_to_champion(int(num)) for num in true_numbers]
        
        # Process each rank separately
        for i in range(5):
            # Convert indices to champion names using the champion converter
            champions = [champion_converter.num_to_champion(int(label_encoder.classes_[idx])) for idx in top_5_idx[:, i]]
            probabilities = top_5_proba[:, i]
            
            # Add to results
            results[f'Rank_{i+1}_Champion'] = champions
            results[f'Rank_{i+1}_Confidence'] = probabilities.round(4)

        try:

            def find_champion_rank(row):
                true_champ = row['True_Champion']
                for i in range(1, 6):
                    if row[f'Rank_{i}_Champion'] == true_champ:
                        return f'Rank_{i}'
                return 'Not in Top 5'
            
            results['Prediction_Rank'] = results.apply(find_champion_rank, axis=1)
            # Select the last row and specific columns
            latest_result = results.iloc[-1][["Rank_1_Champion", "Rank_2_Champion", "Rank_3_Champion"]].tolist()

            latest_result = results.iloc[-1][["Rank_1_Champion", "Rank_2_Champion", "Rank_3_Champion"]]
            clean_output = "\n".join(f"{col}: {val}" for col, val in latest_result.items())
            print(clean_output)

            return clean_output
            
        except Exception as e:
            print(f"Error getting top 5 champions: {e}")
    
    except Exception as e:
        import traceback
        print(f"Full error trace:\n{traceback.format_exc()}")
        return f"Error making prediction: {e}"

# Define your interface
with gr.Blocks() as demo:
    gr.Markdown("# League of Legends Champion Prediction")
    
    with gr.Row():
        player_opgg_url = gr.Textbox(label="OPGG Player URL")
        show_button = gr.Button("Show Player Stats")
    
    with gr.Row():
        stats_output = gr.HTML(label="Player Statistics")
        recent_matches = gr.HTML(label="Recent Matches")
    
    with gr.Row():
        champion_dropdowns = [
            gr.Dropdown(choices=CHAMPIONS, label=f"Champion {i+1}")
            for i in range(9)
        ]
    
    with gr.Row():
        predict_button = gr.Button("Predict")
        prediction_output = gr.Text(label="Prediction")
        
    # Set up event handlers
    show_button.click(
        fn=show_stats,
        inputs=[player_opgg_url],
        outputs=[stats_output, recent_matches]
    )
    
    predict_button.click(
        fn=predict_top_5_champion_w_confidence,
        inputs=[player_opgg_url] + champion_dropdowns,
        outputs=prediction_output
    )

# Optional: Save the champion encoder for future use
#joblib.dump(champion_encoder, 'champion_encoder.joblib')
# Enable queuing
demo.launch(debug=True)

# For local testing
if __name__ == "__main__":
    demo.launch()