File size: 8,723 Bytes
180d8ec a966a42 180d8ec 53da1d8 180d8ec 4c98e23 180d8ec 14b59b2 53da1d8 180d8ec 04f6a57 27c44df 180d8ec 04f6a57 180d8ec 9f04c37 04f6a57 180d8ec 4c98e23 04f6a57 180d8ec 07e701b 180d8ec 07e701b 180d8ec 4c98e23 07e701b 90c3d4c 07e701b 207df97 3612724 c8334c3 4c98e23 07e701b 4c98e23 492af17 180d8ec 07e701b 180d8ec 4c98e23 180d8ec 07e701b 180d8ec 4c98e23 180d8ec 6922363 180d8ec 1df9bbe fc2c761 1df9bbe fc2c761 180d8ec 8b1e0d6 180d8ec b127142 ca6a630 c325a6d ca6a630 180d8ec 8b1e0d6 180d8ec b127142 ca6a630 c325a6d ca6a630 180d8ec 9ca4933 1883c03 180d8ec 8408e1a 180d8ec 04f6a57 1883c03 04f6a57 9f04c37 180d8ec 04f6a57 180d8ec 9f04c37 180d8ec 38803fd 180d8ec 9f04c37 04f6a57 fc2c761 9f04c37 04f6a57 207df97 04f6a57 180d8ec f4a34e2 180d8ec 04f6a57 180d8ec f4a34e2 04f6a57 f4a34e2 04f6a57 f4a34e2 180d8ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 |
# %%
# imports
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import math
# %%
# import data
data = pd.read_excel("graph_data.xlsx",
sheet_name = "Sheet1",
header = 0
)
# clean data
# rename year column
data = data.rename(columns = {"Unnamed: 0": "Year"})
# drop rows without data
# data = data.drop([0,1,2,3,4,5,6,7,8,9,10,11])
# keep columns of interest
data = data[[
"Year",
"Total Revenues",
"Debt Balance",
"Revenues ex SS OASDI",
"Average Rate on Federal Debt",
"GDP",
"Net Interest"
]]
data.set_index("Year", inplace=True)
print(data)
# %%
baseline_interest_rate = 3.67
#baseline_revenues = 15928.73
baseline_cagr_revenues = 4.02
total_revenues_2024 = data.loc[2024, "Total Revenues"]
def plot_interest_coverage(interest_rate, cagr_revenues):
# calculate the yearly increase in the interest rate based on the projected interest rate in 2054
interest_rate_yearly_increase = (interest_rate - baseline_interest_rate) / (2054 - 2025) / 100
# calculate the yearly increase in revenues based on the projected interest rate in 2054
# revenues_yearly_increase = (revenues - baseline_revenues) / (2054 - 2025)
# add a baseline net interest / revenues column
data["Net Interest / Revenues (Baseline)"] = data["Net Interest"] / data["Total Revenues"]
# add a baseline net interest / revenues ex SS OASDI column
data["Net Interest / Revenues ex SS OASDI (Baseline)"] = data["Net Interest"] / data["Revenues ex SS OASDI"]
# add a baseline SS OASDI revenues column
data["SS OASDI Revenues"] = data["Total Revenues"] - data["Revenues ex SS OASDI"]
# add a projected average rate on federal debt column
data["Average Rate on Federal Debt (Projected)"] = np.where(
data.index.astype(int) < 2025,
data["Average Rate on Federal Debt"],
data["Average Rate on Federal Debt"] + (interest_rate_yearly_increase * (data.index.astype(int) - 2024)))
# add a projected revenues column
data["Total Revenues (Projected)"] = np.where(
data.index.astype(int) < 2025,
data["Total Revenues"],
total_revenues_2024 * ((1 + (cagr_revenues / 100)) ** (data.index.astype(int) - 2024)))
# data["Total Revenues"] + (revenues_yearly_increase * (data.index.astype(int) - 2025)))
print(data)
# add a projected revenues ex SS OASDI column
data["Revenues ex SS OASDI (Projected)"] = np.where(
data.index.astype(int) < 2025,
data["Revenues ex SS OASDI"],
data["Total Revenues (Projected)"] - data["SS OASDI Revenues"])
# add a projected interest / revenues column
data["Net Interest / Revenues (Projected)"] = np.where(
data.index.astype(int) < 2025,
data["Net Interest / Revenues (Baseline)"],
data["Average Rate on Federal Debt (Projected)"] * data["Debt Balance"] / data["Total Revenues (Projected)"])
# add a projected interest / revenues ex SS OASDI column
data["Net Interest / Revenues ex SS OASDI (Projected)"] = np.where(
data.index.astype(int) < 2025,
data["Net Interest / Revenues ex SS OASDI (Baseline)"],
data["Average Rate on Federal Debt (Projected)"] * data["Debt Balance"] / data["Revenues ex SS OASDI (Projected)"])
# Create the plot
plt.figure(figsize = (10, 4.8))
# plot average rate on federal debt
plt.plot(
data.index,
data["Average Rate on Federal Debt"],
color = "Green",
label = "Average Rate on Federal Debt"
)
# plot average rate on federal debt projected
if cagr_revenues != baseline_cagr_revenues or interest_rate != baseline_interest_rate:
plt.plot(
data.index,
data["Average Rate on Federal Debt (Projected)"],
color = "Green",
label = "Average Rate on Federal Debt (Projected)",
linestyle = "--"
)
else:
plt.plot(
data.index,
data["Average Rate on Federal Debt"],
color = "Green",
label = "Average Rate on Federal Debt (Projected)",
linestyle = "--"
)
# plot interest / revenues (baseline)
plt.plot(
data.index,
data["Net Interest / Revenues (Baseline)"],
color = "Blue",
label = "Net Interest / Revenues (Baseline)"
)
# plot interest / revenues (projected)
if cagr_revenues != baseline_cagr_revenues or interest_rate != baseline_interest_rate:
plt.plot(
data.index,
data["Net Interest / Revenues (Projected)"],
color = "Blue",
label = "Net Interest / Revenues (Projected)",
linestyle = "--"
)
else:
plt.plot(
data.index,
data["Net Interest / Revenues (Baseline)"],
color = "Blue",
label = "Net Interest / Revenues (Projected)",
linestyle = "--"
)
# plot interest / revenues ex ss oasdi (baseline)
plt.plot(
data.index,
data["Net Interest / Revenues ex SS OASDI (Baseline)"],
color = "Orange",
label = "Net Interest / Revenues ex SS OASDI (Baseline)"
)
# plot interest / revenues ex ss oasdi (projected)
if cagr_revenues != baseline_cagr_revenues or interest_rate != baseline_interest_rate:
plt.plot(
data.index,
data["Net Interest / Revenues ex SS OASDI (Projected)"],
color = "Orange",
label = "Net Interest / Revenues ex SS OASDI (Projected)",
linestyle = "--"
)
else:
plt.plot(
data.index,
data["Net Interest / Revenues ex SS OASDI (Baseline)"],
color = "Orange",
label = "Net Interest / Revenues ex SS OASDI (Projected)",
linestyle = "--"
)
plt.title("Interest as Share of Revenues Through 2054")
plt.legend(loc = "upper left")
plt.ylim(0, 1.05)
plt.yticks(np.arange(0, 1.1, 0.1))
plt.xticks(range(1940,2055,4), rotation = 45)
plt.axvline(x = 2024.5, color = "black", linestyle = '--')
plt.grid(True, axis = 'y', linestyle = '--', linewidth = 0.7)
# Save the plot to a file
plt.savefig("interest_coverage.png")
plt.close()
# Return the path to the image file
return "interest_coverage.png"
# %%
interest_rate_lowerbound = 0
interest_rate_upperbound = 10
# revenues_lower_bound = 10000
# revenues_upper_bound = 20000
cagr_revenues_lower_bound = 0
cagr_revenues_upper_bound = 8
with gr.Blocks() as interface:
# Create the image output
graph = gr.Image(type="filepath", label = "Graph", value = plot_interest_coverage(baseline_interest_rate, baseline_cagr_revenues))
# Create the slider input below the image for projected interest rate
interest_rate_slider = gr.Slider(
interest_rate_lowerbound,
interest_rate_upperbound,
step = .1,
value = baseline_interest_rate,
label = "2054 Projected Average Interest Rate on Federal Debt"
)
# Create the slider input below the image for projected revenues
cagr_revenues_slider = gr.Slider(
cagr_revenues_lower_bound,
cagr_revenues_upper_bound,
step = 0.01,
value = baseline_cagr_revenues,
label = "Compound Annual Growth Rate of Revenues through 2054"
)
gr.Markdown('<p style="font-size:11px;">Source: CBO June 2024 An Update to the Budget and Economic Outlook: 2024 to 2034, '
'March 2024 report The Long-Term Budget Outlook: 2024 to 2054, and author\'s calculations. Scenario of higher interest rate and revenues '
'is author\'s calculations. Data points for 2035-2054 calculated to build on CBO\'s June 2024 10-year update and be consistent '
'with the March 2024 long-term report. Historical Social Security OASDI payroll tax revenue from Table 4-3 of the SSA\'s '
'Trust Fund Data, and projections from the CBO\'s August 2024 Long Term Projections for Social Security.</p>')
# Set up an action that updates the graph when the interest rate slider value changes
interest_rate_slider.change(
plot_interest_coverage,
inputs = [interest_rate_slider, cagr_revenues_slider],
outputs = graph
)
# Set up an action that updates the graph when the revenues slider value changes
cagr_revenues_slider.change(
plot_interest_coverage,
inputs = [interest_rate_slider, cagr_revenues_slider],
outputs = graph
)
# Launch the interface
interface.launch(share = True)
|